WO2020056858A1 - 新能源汽车用能源系统 - Google Patents

新能源汽车用能源系统 Download PDF

Info

Publication number
WO2020056858A1
WO2020056858A1 PCT/CN2018/113030 CN2018113030W WO2020056858A1 WO 2020056858 A1 WO2020056858 A1 WO 2020056858A1 CN 2018113030 W CN2018113030 W CN 2018113030W WO 2020056858 A1 WO2020056858 A1 WO 2020056858A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
vehicle according
new energy
slot
energy system
Prior art date
Application number
PCT/CN2018/113030
Other languages
English (en)
French (fr)
Inventor
刘贵生
赵扬
刘志钢
黄达
孙鹏
丁浩
Original Assignee
北斗航天汽车(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北斗航天汽车(北京)有限公司 filed Critical 北斗航天汽车(北京)有限公司
Publication of WO2020056858A1 publication Critical patent/WO2020056858A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of energy equipment for new energy vehicles, in particular to an energy system for new energy vehicles.
  • the battery pack of an electric vehicle is generally arranged in a battery pack housing at the bottom of the car.
  • the battery pack housing on the upper side, needs to carry the battery, protect the module, and complete the task of energy output; on the other hand, as the bottom shell of the car, it needs to face external hazards such as stone hits, rain, and impact.
  • the battery PACK case needs to be light, which can improve vehicle handling and increase driving range.
  • the battery module shell of the existing electric vehicle has sufficient strength, and the thickness of the bottom plate of the plate body is large, and the mass is large; the mass is small, and the strength is small.
  • control module usually includes control parts such as relays, insurance, and maintenance switches. These control parts are generally scattered throughout the battery pack. During the use of the battery pack, once the battery pack When shaking occurs, these control parts will move in the battery pack, and the movement of these control parts will easily cause the connection wire to fall off, and the positive and negative device connection wires will be short-circuited, which will seriously affect the function and safety of the battery pack.
  • the battery module as the upper level assembly of the single cell, is an intermediate structure connecting the single cell and the battery pack, and its design significantly affects the performance of the battery pack.
  • Lithium-ion battery module-type lithium-ion batteries have a large capacity of individual cells, so they have a large weight, and they need to have a high-strength structure to form a module.
  • the specific surface area is likely to be insufficient, and better heat dissipation conditions are required.
  • the lighter the group of fixed structures the better.
  • the current 18650 lithium-ion battery module cannot meet the above requirements.
  • the purpose of the present invention is to provide an energy system for a new energy vehicle.
  • the strength of a battery pack case is strengthened by the lateral stiffeners and the longitudinal stiffeners to solve the difference in strength of the power battery pack case existing in the prior art. Or a technical problem that the quality of the power battery pack case is too large in order to meet the strength requirements.
  • the present invention provides the following solutions:
  • An energy system for a new energy vehicle includes a battery pack case, and a battery management system controller, an integrated high-voltage distribution box, and a plurality of battery modules arranged in series are installed in the battery pack case;
  • Two ends of each of the battery modules in series are electrically connected to electrical devices in the integrated high-voltage distribution box, and the battery management system controller is electrically connected to a voltage sensor and a temperature sensor in each of the battery modules. Connection, the battery management system controller is electrically connected with the electrical components in the integrated high-voltage distribution box respectively;
  • the battery pack housing is provided with a battery module mounting groove, and a plurality of lateral reinforcing ribs are arranged in the battery module mounting groove at intervals. At least one longitudinal reinforcing rib is arranged at the lower end of the battery module mounting groove; The transverse stiffeners are staggered in a direction with each of the longitudinal stiffeners.
  • the battery module mounting groove includes a bottom plate, end plates located at left and right ends of the bottom plate, and side plates located at the front and back sides of the bottom plate; both the side plates are provided with at least one reinforced bending portion;
  • the lateral reinforcing ribs are arranged on the bottom plate, and the longitudinal reinforcing ribs are arranged under the bottom plate.
  • the battery module installation groove includes a plurality of sub-installation grooves provided in succession, and the two side plates at the front and rear of each of the sub-installation grooves are connected through the reinforced bending portion; each of the sub-installations
  • the grooves are all rectangular, and the area of each of the sub-installation grooves increases from left to right.
  • each of the end plates and each of the side plates is provided with a side reinforcing connection block for connecting with the vehicle body, and the side reinforcing connection block is provided with a bolt hole connected with the vehicle body.
  • the longitudinal section of the transverse stiffener is in a zigzag shape.
  • a fixing hole is arranged along the length direction of the transverse stiffener, and a pre-installed nut is provided in the fixing hole.
  • each of the reinforcing bent portions is laterally connected with a lateral reinforcing back plate.
  • the transverse stiffeners are all arranged vertically in space with the longitudinal stiffeners.
  • the integrated high-voltage distribution box includes a box body and a box cover, and a device receiving slot is provided in the box, and a positive and negative electrode isolation plate is disposed in the device receiving slot, and the positive and negative electrode isolation plate is provided.
  • the device accommodating slot is divided into a positive device accommodating slot and a negative device accommodating slot.
  • the positive device accommodating slot is used for accommodating a control part connected to the positive electrode of the battery, and the negative device accommodating slot is used for accommodating.
  • a control part connected to the battery negative is provided; a negative high voltage line input hole and a negative high voltage line output hole are provided on the groove wall of the negative device receiving groove; a positive high voltage line input hole and Positive high-voltage line output hole; a weak current wiring path is provided between the positive device receiving slot and the negative device receiving slot to communicate the positive device receiving slot and the negative device receiving slot.
  • a fixing claw for fixing the box body in the battery pack is provided on the outer wall of the box body.
  • the mounting side edge of the positive and negative electrode isolation plate is connected to one side wall of the device receiving groove, and the free side edge of the positive and negative electrode isolation plate is connected to the other side wall of the device receiving groove.
  • the weak current traces are placed between the free side and a side wall of the device receiving slot.
  • both the groove wall of the positive-device accommodating groove and the groove wall of the negative-device accommodating groove are provided with fixing screw holes for controlling the alignment and fixing of the parts.
  • both the free side and the mounting side are provided with a strength reinforcing post.
  • the two strength-strengthening posts are provided with first threaded holes
  • the box cover is provided with at least two first threaded holes, each of the first threaded holes and each of the first threaded holes.
  • One-to-one mapping of the threaded holes are provided.
  • a first low-voltage wire harness opening is provided on a side wall of the positive-device accommodating groove, and a second low-voltage wire harness opening is provided on a side wall of the box cover; the first low-voltage wire harness opening and the second low-voltage Harness openings correspond to buckles.
  • a plurality of second threaded holes are provided on the wall of the box body, a plurality of second threaded holes are provided on the box cover, each of the second threaded holes and each of the second One-to-one mapping of the threaded holes.
  • a foot is provided at the bottom end of the box body.
  • the battery module includes a plurality of 18650 battery module units arranged in sequence, and each of the 18650 battery module units is sequentially worn and fixed into a whole through a wearing fixing member;
  • the 18650 battery module unit includes a module case and a plurality of 18650 battery cells. Each of the 18650 battery cells is installed in the module case. A bus plate is installed for paralleling each of the 18650 individual battery cells, and a plurality of insertion slots for correspondingly inserting each of the 18650 individual battery cells are arranged on the inner walls of both sides of the module case. The two side walls of the module housing are also provided with electrode through-holes for passing through the electrodes of the 18650 single cell, each of the electrode through-holes and each of the insertion slots.
  • the positions are one-to-one corresponding, and a plurality of bus bars on each of the bus plates are connected to the electrodes on each end of each of the 18650 single cell cells one-to-one respectively; Radiation gap that penetrates through the length of the insertion slot;
  • Each of the bus plates in each of the 18650 battery module units is electrically connected in series in series.
  • a plurality of heat dissipation through holes are also provided on two side walls of the module housing, and a central axis of each of the heat dissipation through holes is parallel to a central axis of each of the insertion slots, and each of the heat dissipation through holes is provided in parallel.
  • the holes are uniformly arranged at intervals from each of the insertion slots; the positions of each of the heat dissipation through holes in each of the 18650 battery module units are in one-to-one correspondence.
  • the slot wall of the insertion slot includes a plurality of heat dissipation blocks, the heat dissipation gap is set between each of the heat dissipation blocks, and the side of each heat dissipation block opposite to the 18650 single cell is arc-shaped. It is provided that the heat dissipation through hole is provided on a central axis of the common heat dissipation block between the four insertion slots.
  • the module housing includes two half housings with identical structures, and the positions of each of the half housings are correspondingly fastened and locked by a locking connection member; an inner side wall of each of the half housings
  • the insertion slots are provided on the upper side, and the slot positions of each of the insertion slots are correspondingly set one by one; the positions of the half shells in each of the 18650 battery module units correspond to the snap-in limit positions .
  • a plurality of positioning columns for buckling positioning of the half-shells are also provided on the inner side wall of the half-shell, and a plurality of positioning-post reinforcing ribs are arranged in the circumferential direction of each of the positioning columns.
  • Each of the positioning column reinforcing ribs is parallel to the central axis of the positioning column in the length direction.
  • the number of the positioning posts is an even number, and each of the positioning posts is symmetrically disposed with respect to the center line of the half-shell in the height direction, and one of the pair of the positioning posts is symmetrically disposed.
  • An insertion slot is provided at the top of the positioning column, and an insertion head is provided at the top of the other positioning column, which is used for insertion positioning when the two half-shells are fastened.
  • the half shell includes a left side plate, an upper side plate, a right side plate, and a lower side plate connected in order, the left side plate, the upper side plate, the right side plate, and the lower side.
  • a buckle structure for buckling the two half shells is provided on each edge of the board.
  • the buckle structure on the left side plate is a clip head
  • the buckle structure on the right side plate is a clip groove
  • the buckle structure on the upper side plate is a buckle
  • the inserting plate, and the fastening structure on the lower side plate is an engaging slot.
  • a battery module mounting groove is provided in the battery pack housing, and a plurality of the lateral reinforcing ribs arranged at intervals are arranged in the battery module mounting groove.
  • At least one longitudinal stiffener is arranged at the lower end of the battery module installation groove; each of the lateral stiffeners is arranged staggered with the longitudinal stiffener; the lateral stiffener and the longitudinal stiffener are respectively separated from Different directions strengthen the strength of the battery pack case, thereby increasing the optional materials and available thickness specifications of the battery module mounting grooves, which helps reduce the weight of the battery pack case, thereby reducing the overall vehicle mass.
  • the battery module installation slot includes the bottom plate, the end plates located on the left and right ends of the bottom plate, and the side plates located on the front and back sides of the bottom plate; at least one of the two side plates is provided.
  • the battery module installation groove includes a plurality of the sub-installation grooves provided in succession, and the two side plates at the front and rear of each of the sub-installation grooves are connected through the reinforced bending portion;
  • the design of the mounting grooves is rectangular, and the area of each of the sub-mounting grooves is gradually increased from left to right; a “convex” shape is formed between two adjacent sub-mounting grooves to increase the resistance of the battery module mounting groove.
  • the longitudinal cross section of the transverse stiffener is designed in a zigzag shape; the transverse stiffener with a longitudinal shape in a zigzag shape has a strong anti-deformation ability, and it is arranged on the battery module mounting groove to help improve the The strength of the battery case is described.
  • the fixing hole is arranged along the length direction of the transverse stiffener, and the design of the pre-installed nut is arranged in the fixing hole; the fixing hole reduces the transverse direction to a certain extent
  • the quality of the stiffeners, when used in new energy electric vehicles, helps to reduce the overall vehicle mass; the pre-installed nuts are used to fix the battery module to the battery module shell reinforcing beam by bolts, It is further fixed on the battery pack housing to prevent the power battery module from moving, and the battery module installation groove causes damage or causes a vehicle displacement gap.
  • the integrated high-voltage breakout box includes the box body and the box cover, the device receiving groove is set in the box body, and the positive and negative electrode isolation plates are set in the device receiving groove.
  • the positive and negative electrode isolation plate divides the device accommodating slot into the positive device accommodating slot and the negative device accommodating slot, and the positive device accommodating slot is used for accommodating the control connected to the positive electrode of the battery Parts, the negative device receiving groove is used for receiving the control part connected to the negative electrode of the battery;
  • the negative wall of the negative device receiving groove is provided with the negative high voltage line input hole and the negative high voltage line output hole;
  • a positive electrode high-voltage line input hole and a positive high-voltage line output hole are provided on a groove wall of a positive-electrode device receiving groove; a communication between the positive-electrode device receiving groove and the negative-electrode device receiving groove is provided for the positive electrode device Design of the weak current wiring path of the accommodating slot and the negative device accommodating slot; the concept of a high-voltage junction box is introduced in the
  • the positive electrode device and the negative electrode device are separated to avoid a short circuit between the positive electrode and the negative electrode, thereby ensuring the safety of use.
  • the prefabricated high-voltage junction box is directly connected to other components in the battery pack when assembling the battery pack, which can effectively improve the production efficiency of the battery pack and facilitate the unified management and unification of the control devices protection.
  • the battery module includes a plurality of 18650 battery module units connected in series, and each of the 18650 battery module units corresponds to the snap-in limit in order from left to right, and is sequentially worn from left to right through bolt and nut connectors.
  • the 18650 battery module unit includes a module case and a plurality of 18650 battery cells. Each of the 18650 battery cells is installed in the module case, and the two sides of the module case Busbars are installed on the outer wall for connecting each of the 18650 individual battery cells in parallel, and a plurality of correspondingly inserted 18650 individual battery cells are arranged on the inner walls of both sides of the module case.
  • An insertion slot, and two side walls of the module housing are further provided with electrode through holes for passing the electrodes of the 18650 single cell, and each of the electrode through holes and each of the The positions of the plug-in slots are one-to-one, and the plurality of bus bars on each of the bus plates are connected to the electrodes at both ends of each of the 18650 single-cell cells in a one-to-one correspondence; the slot walls of each of the plug-in slots are provided with A heat dissipation gap penetrating along the length direction of the insertion slot; each of the sinks in each of the 18650 battery module units The boards are connected in series in sequence; by providing a plurality of insertion slots in the module housing for inserting the 18650 single-cell batteries, the 18650 single-cell batteries are fixed in the module housing by means of plug-in snap-in.
  • each of the 18650 battery module units is fixed through bolt-nut connection, which can meet the high-strength structure required by a series-parallel battery module composed of 18650 single-cell batteries with large capacity. , And the structure is simple, and the manufacturing cost is low; at the same time, the slot wall of each of the insertion slots is provided with a heat dissipation gap that penetrates along the length direction of the insertion slot, which increases the heat dissipation area and meets the large capacity of 18650 monomers.
  • the heat dissipation required by a series-parallel battery module composed of battery cells improves the reliability of the battery module.
  • the two side walls of the module housing are also provided with a plurality of heat dissipation through holes, the central axis of each of the heat dissipation through holes is parallel to the central axis of each of the insertion slots, and each of the heat dissipation through holes They are uniformly arranged at intervals from each of the insertion slots; the slot wall of the insertion slot includes a plurality of heat dissipation blocks, the heat dissipation gap is set between each of the heat dissipation blocks, and each of the heat dissipation blocks and the 18650
  • the opposite sides of the single cell are arc-shaped, and the heat dissipation through-holes are provided on the central axis of the common heat dissipation block between the four insertion slots; the heat dissipation of the module is improved, and the battery is improved.
  • the module housing is formed by setting two half-shells with the same structure, and the positions of each of the half-shells are correspondingly set and locked by a locking connection, which further increases the strength of the structure and is reliable. High sex.
  • the inner wall of the half-shell is further provided with a plurality of positioning columns for buckling and positioning of the half-shell.
  • Each of the positioning columns is provided with a plurality of positioning column reinforcing ribs in the circumferential direction.
  • the positioning column stiffeners are parallel to the center axis of the positioning column in the length direction; the number of the positioning columns is an even number, and each of the positioning columns is relative to the center line of the half-shell in the height direction.
  • the pair of positioning posts arranged symmetrically, one of the positioning posts is provided with an insertion slot at the top thereof, and the other of the positioning posts is provided with an insertion head at the top of the two positioning posts.
  • the half-shell is inserted and positioned when the half-shell is fastened;
  • the half-shell includes a left side plate, an upper side plate, a right side plate, and a lower side plate connected in order, the left side plate, the upper side plate,
  • the edges of the right side plate and the lower side plate are provided with a fastening structure for fastening the two half shells;
  • the fastening structure on the left side plate is a clip
  • the buckle structure on the right side plate is a card slot
  • the buckle structure on the upper side plate is a buckle plate.
  • the fastening structure on the lower side plate is a fastening slot;
  • the positioning and fastening structure of the entire module guarantees the rapid assembly of the module and the overall strength requirements, further increasing the energy of the module, and the structure is simple. Easy to operate and maintain, taking into account the economics and rationality of the structure.
  • FIG. 1 is a schematic structural view (a perspective view) of a battery pack case according to the present invention
  • FIG. 2 is a schematic structural view (a perspective view) of a slot cover of the present invention
  • FIG. 3 is a schematic structural view (a perspective view) of a bottom surface of a battery pack case according to the present invention.
  • FIG. 4 is a schematic structural diagram of a lateral stiffener of the present invention.
  • FIG. 5 is a perspective view of an integrated high-voltage distribution box according to the present invention.
  • FIG. 6 is a schematic structural diagram (exploded view) of a high-voltage distribution box according to the present invention.
  • FIG. 7 is a schematic structural view (a perspective view) of a box body of the present invention.
  • FIG. 8 is a schematic diagram (top view) of a control electric device installed in an integrated high-voltage distribution box according to the present invention.
  • FIG. 9 is a structural schematic diagram (a perspective view) of a battery module of the present invention.
  • FIG. 10 is a structural schematic diagram (a perspective view) of an 18650 battery cell module unit according to the present invention.
  • FIG. 11 is a structural schematic diagram (exploded view) of an 18650 battery cell module unit according to the present invention.
  • FIG. 12 is a schematic structural view (a perspective view) of a half shell of the present invention.
  • FIG. 13 is a structural schematic diagram (front view) of a half-shell of the present invention.
  • FIG. 14 is a schematic structural view of a half-shell of the present invention (back view); FIG.
  • FIG. 15 is a schematic structural view of a half-shell of the present invention (left side view);
  • FIG. 16 is a schematic structural view of a half-shell of the present invention (right side view);
  • FIG. 17 is a schematic structural view (bottom view) of a half-shell of the present invention.
  • FIG. 18 is a schematic structural view (top view) of a half-shell of the present invention.
  • FIG. 19 is a schematic structural view of a positioning post of the present invention (cross-sectional view, with a slot structure for inserting);
  • FIG. 20 is a schematic structural view of a positioning post of the present invention (cross-sectional view, structure with a plug-in head);
  • 21 is an assembly structure diagram (inside view) of a module insert board and a module slot according to the present invention.
  • FIG. 22 is a schematic structural diagram of a fastening component of the present invention.
  • an energy system for a new energy vehicle is characterized in that it includes a battery pack case, and a battery management system controller and an integrated high-voltage branch line are installed in the battery pack case.
  • the voltage sensor and the temperature sensor in the battery module are respectively electrically connected, and the battery management system controller is electrically connected with the electrical devices in the integrated high-voltage distribution box.
  • the battery pack housing includes a battery module installation groove 1 and a groove cover 7 corresponding to the battery module installation groove.
  • a plurality of spaced-apart lateral reinforcing ribs 3 are arranged in the battery module installation groove. At least one longitudinal reinforcing rib 4 is arranged at the lower end of the battery module installation groove; each of the transverse reinforcing ribs is staggered with the longitudinal reinforcing ribs in a direction.
  • the transverse stiffeners are all arranged vertically in space with the longitudinal stiffeners.
  • Through-holes 701 are uniformly arranged along the edge of the Cao cover, and the battery module installation groove and the Cao cover are connected by bolts.
  • the battery pack casing provided by the present utility model includes the battery module mounting groove, and a plurality of the transverse reinforcing ribs arranged at intervals are arranged in the battery module mounting groove. At least one of the longitudinal reinforcing ribs is arranged at the lower end of the battery module installation groove; each of the transverse reinforcing ribs is staggered with the longitudinal reinforcing ribs in a direction; the transverse reinforcing ribs and the longitudinal reinforcing ribs are respectively different from Direction to strengthen the strength of the battery pack case (the lateral stiffeners strengthen the strength of the battery pack case in the X direction, and the longitudinal stiffeners increase the strength of the battery pack case in the Y direction), Therefore, the optional materials and available thickness specifications of the battery module mounting groove are increased, which helps to reduce the weight of the battery pack casing, thereby reducing the overall vehicle mass.
  • the battery module mounting groove in this embodiment includes a bottom plate 11, end plates 12 located at left and right ends of the bottom plate, and side plates 13 located at the front and rear sides of the bottom plate; At least one reinforcing bending portion 131 is provided on each side plate; the lateral reinforcing ribs are arranged on the bottom plate, and the longitudinal reinforcing ribs are arranged under the bottom plate.
  • the battery pack housing provided by the utility model adopts the battery module mounting groove, and includes the bottom plate, the end plates located at the left and right ends of the bottom plate, and the side plates located at the front and back sides of the bottom plate; two At least one reinforcing bending portion is provided on each side plate; the lateral reinforcing ribs are provided on the bottom plate, and the longitudinal reinforcing ribs are provided under the bottom plate; the reinforcing bending portion adds the side The strength of the plate prevents the side plate from being deformed when the battery module placed in the battery module installation groove is moved against the side plate.
  • the battery module installation groove in this embodiment includes a plurality of sub-installation grooves 101 arranged in succession; the front and rear side plates of each of the sub-installation grooves are reinforced by the reinforcement.
  • the bent portions are connected, that is, the two adjacent side plates on the same side are connected by the reinforced bent portions; each of the divided installation grooves is rectangular, and each of the divided installation grooves The area increases from left to right.
  • the high-voltage distribution box includes a box body 81 and a box cover 82.
  • a device receiving slot is provided in the box.
  • the device receiving slot is provided with a positive and negative electrode isolation plate 83.
  • the negative electrode isolation plate divides the device accommodating groove into a positive device accommodating groove 831 and a negative device accommodating groove 832.
  • the positive device accommodating groove is used for accommodating a control part connected to the positive electrode of the battery.
  • the slot is used to receive the control part connected to the negative electrode of the battery;
  • the negative electrode device receiving slot is provided with a negative high voltage line input hole 8321 and a negative high voltage line output hole 8322;
  • the positive device receiving slot is provided with There are a positive high-voltage line input hole 8311 and a positive high-voltage line output hole 8312; the negative high-voltage line input hole, the negative high-voltage line output hole, the positive high-voltage line input hole and the positive high-voltage line output hole are all spaced apart; the positive device capacity
  • a weak current wiring path 8101 is provided between the receiving slot and the negative device receiving slot for communicating the positive device receiving slot and the negative device receiving slot.
  • the high-voltage distribution box used in the battery pack provided by the present invention includes the box body and the box cover.
  • the device receiving slot is provided in the box, and the positive and negative electrode isolation plates are provided in the device receiving slot.
  • the positive and negative electrode isolation plate divides the device receiving slot into the positive device receiving slot and the negative device receiving slot, and the positive device receiving slot is used to receive a control part connected to the positive electrode of the battery.
  • the negative device accommodating slot is used for accommodating a control part connected to the negative electrode of the battery; the negative wall of the negative device accommodating slot is provided with the negative high voltage line input hole and the negative high voltage line output hole; the positive device capacity
  • the slot wall of the slot is provided with the positive high-voltage line input hole and the positive high-voltage line output hole, and the positive device receiving slot and the negative device receiving slot are provided between the positive device receiving slot and the positive device receiving slot.
  • Each control is zero Moving off the harness occurs, it affects the battery pack, while the positive electrode and the negative electrode device spaced from the device to avoid positive, short circuit occurs between the negative electrode, security of safety.
  • the prefabricated high-voltage junction box is directly connected to other components in the battery pack when assembling the battery pack, which can effectively improve the production efficiency of the battery pack and facilitate the unified management and unification of the control devices. protection.
  • the positive-electrode high-voltage line output hole in this embodiment includes a positive-electrode output opening 83121 provided on a groove wall of the positive-device accommodating slot, and A positive output baffle 83122, the positive output baffle matches the positive output opening, and when the box cover is provided on the box body, the bottom end of the positive output baffle is connected to the positive output opening
  • the positive high-voltage line output hole is formed between the bottom walls. It is convenient to install the high-voltage positive output cable or the high-voltage positive output copper bar, and it is beneficial to speed up the assembly of various control parts in the high-voltage distribution box used by the battery pack.
  • the negative high-voltage line output hole in this embodiment includes a negative output gap 83221 provided on a groove wall of the negative device receiving groove and a downwardly extending portion from the side of the cover.
  • a negative output baffle 83222, the negative output baffle matches the negative output opening, and when the lid is provided on the box body, the bottom end of the negative output baffle is connected to the negative output opening
  • the negative high-voltage line output hole is formed between the bottom walls.
  • a fixing claw 811 for fixing the case to the battery pack is provided on an outer wall of the case, and each of the fixing claws is provided with a fixing hole 8111.
  • the box body is fixed in the battery pack by bolts.
  • the positive and negative electrode isolation plates are arranged in parallel with the side wall of the inner cavity of the box body; the mounting side 8301 of the positive and negative electrode isolation plates and the device One side wall of the accommodation groove is connected, and the free side edge 8302 of the positive and negative electrode isolation plates is spaced apart from the other side wall of the device accommodation groove; the weak current path is placed on the free side edge and Between the side walls of the device accommodating slot opposite to the free side; in this embodiment, the weak current wiring path is a fixing slot for installing a fuse. Of course, the fuse may also be fixed to the negative device.
  • the shape and size of the weak current wiring path can be adjusted according to the thickness of the passing wire, and the shape and size of the weak current wiring path are designed according to the thickness of the passing wire. Technology is not repeated here.
  • the groove wall of the positive device receiving groove and the negative wall of the negative device receiving groove are provided with fixing screw holes 8102 for controlling the alignment of the components.
  • Control parts such as high-voltage positive relays, sub-relays, and pre-charge resistors arranged in the positive-device accommodating tank are fixed in the positive-device accommodating tank by bolts; high-voltage negative electrodes disposed in the negative-device accommodating tank
  • Control parts such as relays are fixed in the negative device accommodating slot by bolts.
  • the mounting screw holes for matching the existing control parts are provided at the lower ends of the two control parts, and the fixed screw holes are respectively provided on the bottom wall of the groove of the positive device receiving groove and the negative electrode.
  • the device receiving groove is on the bottom wall of the groove.
  • both the free side and the mounting side are provided with strength reinforcing columns 8303, and the two reinforced sides are respectively along the height direction of the free side and
  • the mounting side is arranged in a height direction; the mounting side is in contact with an inner wall of the device accommodating groove through the strength reinforcing post.
  • a first threading hole 8304 is provided on each of the two strength-enhancing columns, and at least two first threading holes 8201 are provided on the box cover. Each of the first threading holes and each of the first threading holes are provided.
  • the mounting screw holes are in one-to-one correspondence, and the box body and the box cover can be fixedly connected by bolts.
  • a first low-voltage wiring harness opening 8401 is provided on a side wall of the positive-device accommodating groove in this embodiment, and a second low-voltage wiring harness opening 8402 is provided on a side wall of the box cover;
  • the first low-voltage wire harness opening and the second low-voltage wire harness opening are correspondingly fastened.
  • the first low-voltage wiring harness notch and the second low-voltage wiring harness notch communicate with the positive device receiving slot and an external space, and are used for an external low-voltage control wiring harness to enter the positive device receiving slot and the positive electrode.
  • the control parts in the device accommodating slot are connected; the first low-voltage wire harness opening and the second low-voltage wire harness opening fastened up and down facilitate the installation of the low-voltage wire harness.
  • a plurality of second threaded holes 8103 are provided on the wall of the box body, and a plurality of second threaded holes 8202 are provided on the box cover.
  • the second through-holes are in one-to-one correspondence with each of the second through-holes, and the box body and the box cover can be fixedly connected by bolts.
  • a foot 812 is provided at the bottom end of the box body in this embodiment.
  • the foot is used to separate the present invention from the bottom wall of the battery pack to reduce the heat generated during the use of the battery pack.
  • the bottom wall is transmitted to the box body, and at the same time, transmission to the box body when the battery pack is vibrated can be reduced.
  • the process of installing control parts in the high-voltage distribution box used by the battery pack provided in this embodiment is briefly described: as shown in FIG. 4, the high-voltage positive relay 8501, the sub-relay 8502, the pre-charge resistor 8503, etc. are respectively placed correspondingly.
  • a high voltage positive relay 8501, a secondary relay 8502, a pre-charge resistor 8503, etc. In the positive device accommodating slot 831, a high voltage positive relay 8501, a secondary relay 8502, a pre-charge resistor 8503, etc.
  • a high voltage negative relay 8511 It is placed in the negative device accommodating slot 832, and a high voltage negative relay 8511 is placed in the negative device accommodating slot through bolts and the fixing screw hole; two fuses respectively connected to the two high voltage positive relays 8501 8521 and the fuse 8521 connected to the high-voltage negative relay are spaced apart from each other at the weak current track 8101; in this embodiment, there are three fuse slots at the weak track, and the three fuses are respectively placed in one fuse slot. .
  • the battery module includes a plurality of 18650 battery module units connected in series, and each of the 18650 battery module units corresponds to a clamping limit position in order from left to right and is connected by bolts and nuts.
  • the 18650 battery module unit includes a module housing 91 and a plurality of 18650 single battery cells 92, and each of the 18650 single battery cells is installed in the module housing.
  • the two sides of the module case are equipped with bus plates 93 for connecting the 18650 individual battery cells in parallel.
  • the two sides of the module case are provided with a plurality of corresponding plugs.
  • An inserting slot 95 for installing each of the 18650 single-cell batteries, and two side walls of the module case are further provided with electrode through-holes 96 for passing the electrodes of the 18650 single-cell batteries,
  • Each of the electrode through-holes corresponds to the position of each of the insertion slots, and the plurality of bus bars 94 on each of the bus plates are connected to the electrodes at both ends of each of the 18650 single cells in a one-to-one correspondence.
  • the slot wall of each of the insertion slots is provided with a heat dissipation gap 912 penetrating along the length direction of the insertion slot; each of the 18650
  • Each of the bus plates in the battery module unit is connected in series in order.
  • the two side walls of the module housing are also provided with a plurality of heat dissipation through holes 98.
  • the central axis of each heat dissipation through hole is parallel to the central axis of each of the insertion slots, and each of the heat dissipation through holes and Each of the inserting slots is uniformly arranged at intervals; the positions of the heat dissipation through holes in each of the 18650 battery module units are in one-to-one correspondence.
  • the slot wall of the insertion slot includes a plurality of heat dissipation blocks 911, the heat dissipation gap is set between each of the heat dissipation blocks, and the side of each heat dissipation block opposite to the 18650 single cell is arc-shaped,
  • the heat dissipation through hole is disposed on a central axis of the heat dissipation block that is common between the four insertion slots.
  • the module housing includes two half-shells 97 having the same structure, and the positions of each of the half-shells are correspondingly fastened and locked by a locking connector, which is a card slot card Locking connector; the insertion grooves are provided on the inner side wall of each of the half-shells, and the slot positions of each of the insertion grooves are correspondingly arranged one by one; The positions of each of the half-shells correspond to the snap-in limit.
  • On the inner side wall of the half-shell there are also a plurality of positioning pillars 913 for buckling positioning of the half-shell.
  • Each of the positioning pillars is provided with a plurality of positioning-post reinforcement ribs 914 in the circumferential direction.
  • Each of the positioning column reinforcing ribs is parallel to a central axis of the positioning column in a length direction.
  • the number of the positioning posts is an even number, and each of the positioning posts is symmetrically disposed with respect to the center line of the half-shell in the height direction, and one of the pair of the positioning posts is symmetrically disposed.
  • An insertion slot 915 is provided at the top of the positioning post, and an insertion head 916 is provided at the top of the other positioning post, which is used for insertion positioning when the two half-shells are engaged;
  • An auxiliary heat dissipation through hole 99 is provided on the central axis of the positioning column, and is used to discharge the heat in the module housing. The auxiliary heat dissipation through hole is communicated with the insertion slot and the insertion head, respectively.
  • the half shell includes a left side plate 917, an upper side plate 918, a right side plate 919, and a lower side plate 920, which are sequentially connected, the left side plate, the upper side plate, the right side plate, and the lower side plate.
  • the edges of the side plates are provided with fastening structures for fastening the two half shells.
  • the fastening structure on the left side plate is a clip head 921
  • the fastening structure on the right side plate is a slot 922
  • the fastening structure on the upper side plate is a fastening plug Plate 923
  • the fastening structure on the lower side plate is a fastening slot 924
  • the upper side plate is also provided with a bolt hole 910 for fixing the bus plate
  • the half shell is integrally injection-molded Molding, the half shell is made of phenolic plastic.
  • the 18650 battery series-parallel battery module in this embodiment includes a plurality of 18650 battery module units connected in series, and each of the 18650 battery module units corresponds to the clamping limit position in order from left to right, and passes bolts and nuts.
  • the connecting parts are sequentially fixed from left to right;
  • the 18650 battery module unit includes a module case and a plurality of 18650 single cells, and each of the 18650 single cells is installed in the module case.
  • Busbars for parallel connection of each of the 18650 individual battery cells are installed on the outer walls of the two sides of the module case, and a plurality of corresponding ones are arranged on the inner walls of the two sides of the module case for corresponding insertion.
  • two side walls of the module case are further provided with electrode through holes for passing the electrodes of the 18650 single cell, each of the electrodes.
  • the through-holes correspond one-to-one to the positions of each of the insertion slots, and the plurality of bus bars on each of the bus plates are connected to the electrodes at both ends of each of the 18650 single cells in a one-to-one correspondence with each other;
  • the groove wall of the groove is provided with a heat dissipation gap that penetrates along the length direction of the insertion groove;
  • Each of the bus plates in the module unit is connected in series in sequence; by providing a plurality of insertion slots in the module housing for inserting the 18650 single-cell battery cells, the 18650 single-cell battery cells are inserted and snap-fitted.
  • each of the 18650 battery module units corresponding to the clamping limit is worn and fixed by bolt and nut connectors, which can meet the series and parallel composed of 18650 single-cell batteries with large capacity.
  • the high-strength structure required by the battery module is simple in structure and low in manufacturing cost; at the same time, the slot wall of each of the insertion slots is provided with a heat dissipation gap passing through the length of the insertion slot, which increases heat dissipation.
  • the area meets the heat dissipation required by a series-parallel battery module composed of 18650 single-cell batteries with large capacity, which improves the reliability of the battery module.
  • the 18650 battery cells are connected in series and parallel to the battery module.
  • the two side walls of the module housing are also provided with a plurality of heat dissipation through holes, and the central axis of each heat dissipation through hole and each of the insertion slots.
  • the central axis of the insertion groove is arranged in parallel, and each of the heat dissipation through holes and each of the insertion grooves are evenly spaced;
  • the groove wall of the insertion groove includes a plurality of heat dissipation blocks, and the heat dissipation blocks are arranged between the heat dissipation blocks.
  • a heat dissipation gap, and the sides of each of the heat sink blocks opposite to the 18650 single cell are arc-shaped, and the heat dissipation through holes are arranged in the center of the common heat sink block between the four insertion slots On the axis; while improving the heat dissipation of the module, while increasing the energy density of the battery, it is convenient to dissipate the heat on the surface of each 18650 cell and increase the service life of the battery module.
  • the 18650 battery cell series and parallel battery modules are formed by providing two half shells with exactly the same structure to form a module case.
  • Each of the half shell positions is correspondingly fastened and connected by locking. The components are locked, which further improves the strength of the structure and has high reliability.
  • a plurality of positioning columns for buckling positioning of the half-shell are further provided on an inner side wall of the half-shell.
  • a plurality of positioning column stiffeners are uniformly distributed in the circumferential direction, and each of the positioning column stiffeners is parallel to the center axis of the positioning column in the length direction; the number of the positioning columns is an even number, and each of the positioning columns is relative to
  • the center line of the half-shell in the height direction is symmetrically arranged, and among a pair of the positioning pillars symmetrically arranged, one of the positioning pillars is provided with an insertion slot at the top end, and the other of the positioning pillars is
  • a plug-in head is provided at the top end for plug-in positioning when the two half-shells are fastened; the half-shell includes a left side plate, an upper side plate, a right side plate, and a lower side plate connected in sequence.
  • the edge of the left side plate, the upper side plate, the right side plate, and the lower side plate are provided with a fastening structure for fastening the two half shells;
  • the fastening structure on the side plate is a clip head, and the fastening structure on the right side is a card slot, so
  • the buckle structure on the upper side plate is a buckle insert plate, and the buckle structure on the lower side plate is a buckle slot; the positioning and the buckle structure of the entire module ensure the rapid assembly of the module And overall strength requirements, to further enhance the energy of the module, and the structure is simple, easy to operate, easy to maintain, taking into account the economical and reasonable structure.
  • the 18650 battery series-parallel battery module is integrally injection-molded, and the half-shell is made of phenolic plastic, preferably acrylonitrile-butadiene-styrene copolymer (ABS ) Or polyphenylene ether (PPO), in order to meet the weight reduction and reduce the process cost of production and processing.
  • ABS acrylonitrile-butadiene-styrene copolymer
  • PPO polyphenylene ether
  • the 18650 battery cell series and parallel battery module described in this embodiment is an example of a battery module unit with 18650 cylindrical battery cells in parallel. It includes four 18650 battery cell modules, two M8 long screws 25, and two M6. Long screw 26, 2 plastic end plates 27, 2 side plate golds 28 and 1 harness cover 29. Among them, the module housing has a special design that can be combined with each other to play a limiting role. When assembling, first connect four 44 parallel battery module units in series, then install plastic end plates on both sides, and install side sheet metal on the outside of the plastic end plates, and then connect the whole with four long screws and fasten with nuts to complete Assembly of the entire battery module. As shown in FIG.
  • two adjacent 18650 battery cell module units are fixed by a long screw after the insertion limit is achieved through the insertion fit between the module insert plate 930 and the module slot 931; further, Ground, referring to FIG. 22, after the 18650 battery series-parallel battery module is assembled, a clamping component 932 can be further tightened and fixed to strengthen the structural strength of the entire module.
  • the 18650 battery cell module unit is a battery module unit with 18650 cylindrical battery cells in parallel and includes two half-shells. Made of copper-nickel material) 2; the half shells can be fastened by two to form a complete, closed module shell through special design.
  • the insertion slot is designed in the half-shell, which can be inserted into the battery core, and plays a fixed supporting role on the battery core.
  • the bus plate adopts laser welding to weld the bus bar and the contact nickel sheet together.
  • the assembly process is as follows: firstly place the 18650 single cell in the half-shell on one side in the same electrode direction, and then buckle the half-shell on the other side to the half-shell on the side in the form of flipping 180 °
  • the two modules are combined together by the buckles on the half shell to form a complete module shell.
  • the two bus plates are placed in the grooves on both sides of the half shell to make contact with the nickel sheet and the cell electrode.
  • a professional welding machine is used to weld the nickel sheet and the cell electrode together to complete the assembly of the entire battery module.
  • the 18650 battery cell series and parallel battery module disclosed in the present invention is provided with an insertion slot inside the half shell for fixing the 18650 single cell; the front of the half shell is provided with an electrode through hole for The cell electrode is exposed to facilitate the welding with the bus bar; the inside of the half-shell has two annular positioning posts, one of which is provided with a plug-in head and the other end is provided with a plug-in slot, During two-to-two assembly, when one of the half-shells is turned 180 °, the insertion head and the insertion slot on the positioning posts of the two half-shells can be fastened to each other.
  • the edges of the side panels of the half shell are designed with the same idea, half of the interior is convex, and half of the interior is grooved.
  • the 18650 battery series-parallel battery module disclosed in the present invention can connect 18650 cylindrical battery cells in parallel through a structure to increase the energy of the module, and has a simple structure, easy operation and easy maintenance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

一种新能源汽车用能源系统,包括电池包壳体,该电池包壳体内安装有电池管理系统控制器、集成式高压分线盒和多个呈串联设置的电池模组;该电池包壳体内设有电池模组安装槽,该电池模组安装槽内布设多条呈间隔设置的横向加强筋(3),在该电池模组安装槽下端布设至少一条纵向加强筋(4);各横向加强筋(3)均与各纵向加强筋(4)呈方向交错设置。横向加强筋和纵向加强筋从不同的方向加强电池包壳体的强度,增加可选材料和可用厚度规格,有利于减小电池包壳体重量,进而减小整车重量。

Description

新能源汽车用能源系统 技术领域
本发明涉及新能源汽车用能源设备技术领域,尤其涉及一种新能源汽车用能源系统。
背景技术
当今社会,随着人们生活水平的不断提高,对汽车的需求越来越多,同时,能源问题不断加深,石油产品逐渐紧缺,而对环境的污染也不断加深。如何能行之有效的制造一种替代传统汽车的新能源汽车,成为当今所有汽车企业的发展目标。而且,国家对新能源汽车产业的大力扶持,也正是出于这一目的。新能源汽车又可以被分为纯电动汽车和混合动力汽车,但不论是哪一种,都离不开动力电池为其提供动力。而作为能源的动力电池,由于其本身的特性,在使用过程中需要通过串联或并联的方式增加电池包的能量及电压,如何将电芯通过结构设计满足其串并需求便成为新能源汽车研发的一大方向。
电动车的电池包一般布置在汽车底部的电池包壳体内。电池包壳体,对上需要承载电池,保护模组,完成能量输出的任务;对下,其作为汽车的底部外壳,需要面对石子击打,淋雨,冲击等外部危害。这就要求电池PACK需要具有高强度,能够应对各种外界影响,同时由于电池的重量已经很大了,电池PACK壳体需要重量轻,这样能够提高车辆操控,增加续驶里程。而现有电动车的电池模组壳体强度够的板体底板厚度大,质量大;质量小的,强度小。
同时,在电池包中,电池模组通过高压线缆连接后,需要输出至包外,提供给负载设备。在电池模组与负载之间,需要引入控制模块,控制模块通常包含继电器、保险、维修开关等控制零件,这些控制零件一般分散在电池包内各处,在电池包使用过程中,一旦电池包发生晃动,这些控制零 件就会在电池包内移动,而这些控制零件的移动容易引起连接线脱落,正、负极器件连接线短路相接等问题,这些问题严重影响着电池包的功能和使用安全;如何妥善安置这些控制零件,确保电池包的正常使用并保障其安全,成为电池包设计中亟待解决的问题;同时电池包安装时各控制零件需要分别与电池包或用电器内其他器件连接,连接麻烦,且电池包组装效率低。
再次,电池模组作为单体电芯的上一级总成,是连接单体电芯和电池包的中间结构,其设计好坏显著影响电池包的性能发挥。锂离子电池模组型锂离子电池中的单体电芯容量大,所以重量较大,组成模组需要具有较高强度的结构。同样由于18650单体电芯容量大,容易造成比表面积不足,需要更好的散热条件。同时为了满足能量密度需求,成组的固定结构越轻越好。然而目前的18650锂离子电池模组无法满足上述要求。
因此,为了解决上述问题,急需发明一种新的新能源汽车用能源系统。
发明内容
本发明的目的在于:提供一种新能源汽车用能源系统,通过所述横向加强筋和所述纵向加强筋加强电池包壳体的强度以解决现有技术中存在的动力电池包壳体强度差或为满足强度要求而使动力电池包壳体质量过大的技术问题。
本发明提供了下述方案:
一种新能源汽车用能源系统,包括电池包壳体,所述电池包壳体内安装有电池管理系统控制器、集成式高压分线盒和多个呈串联设置的电池模组;
各所述电池模组串联后的两端与所述集成式高压分线盒内的电器件电连接,所述电池管理系统控制器与各所述电池模组内的电压传感器和温度传感器分别电连接,所述电池管理系统控制器与所述集成式高压分线盒内的电器件分别电连接;
所述电池包壳体内设有电池模组安装槽,所述电池模组安装槽内布设 多条呈间隔设置的横向加强筋,在所述电池模组安装槽下端布设至少一条纵向加强筋;各所述横向加强筋均与各所述纵向加强筋呈方向交错设置。
优选地,所述电池模组安装槽包括底板、位于所述底板左右两端的端板以及位于所述底板前后两侧的侧板;两所述侧板上均设有至少一个加强弯折部;所述底板上设置所述横向加强筋,所述底板下设置所述纵向加强筋。
优选地,所述电池模组安装槽包括多个连续设置的分安装槽,各所述分安装槽的前后两所述侧板之间均通过所述加强弯折部连接;各所述分安装槽均为矩形,且各所述分安装槽的面积由左至右面积依次递增。
优选地,各所述端板和各所述侧板上均设有用于与车体连接的边侧加强连接块,所述边侧加强连接块上设有与车体连接的螺栓孔。
优选地,所述横向加强筋的纵截面为几字形。
优选地,沿所述横向加强筋的长度方向在其上布设有固定孔,所述固定孔内设有预装螺母。
优选地,各所述加强弯折部均侧向连接有侧向加强背板。
优选地,所述横向加强筋均与所述纵向加强筋呈空间垂直设置。
优选地,所述集成式高压分线盒包括盒体和盒盖,所述盒体内设器件容置槽,所述器件容置槽内设有正负极隔离板,所述正负极隔离板将所述器件容置槽分隔为正极器件容置槽和负极器件容置槽,所述正极器件容置槽用于容置与电池正极连接的控制零件,所述负极器件容置槽用于容置与电池负极连接的控制零件;所述负极器件容置槽的槽壁上设有负极高压线输入孔和负极高压线输出孔;所述正极器件容置槽的槽壁上设有正极高压线输入孔和正极高压线输出孔;所述正极器件容置槽与所述负极器件容置槽之间设有用于连通所述正极器件容置槽与所述负极器件容置槽的弱电走 线道。
优选地,所述盒体外壁上设有用于将所述盒体固定于电池包内的固定爪。
优选地,所述正负极隔离板的安装侧边与所述器件容置槽的一侧壁连接,所述正负极隔离板的自由侧边与所述器件容置槽的另一侧壁间隔设置;所述弱电走线道置于所述自由侧边与所述器件容置槽的侧壁之间。
优选地,所述正极器件容置槽的槽壁和所述负极器件容置槽的槽壁上均设有用于控制零件对位固定的固定螺孔。
优选地,所述自由侧边和所述安装侧边上均设有强度加强柱。
优选地,两所述强度加强柱上均设有第一穿装螺纹孔,所述盒盖上布设有至少两个第一穿装孔,各所述第一穿装孔与各所述第一穿装螺纹孔位置一一对应。
优选地,所述正极器件容置槽的侧壁上设有第一低压线束豁口,所述盒盖侧壁上设有第二低压线束豁口;所述第一低压线束豁口和所述第二低压线束豁口对应扣合。
优选地,所述盒体的壁上设有多个第二穿装螺纹孔,所述盒盖上设有多个第二穿装孔,各所述第二穿装孔与各所述第二穿装螺纹孔位置一一对应。
优选地,所述盒体底端设有支脚。
优选地,所述电池模组包括多个顺序排列设置的18650电池模组单元,并通过穿装固定件将各所述18650电池模组单元依次穿装固定成一体;
所述18650电池模组单元包括模组壳体和多个18650单体电芯,各所述18650单体电芯均安装在所述模组壳体内,所述模组壳体两侧外壁上均安装有用于将各所述18650单体电芯进行并联的汇流板,所述模组壳体的 两侧内壁上布设有多个用于对应插装各所述18650单体电芯的插装槽,所述模组壳体的两侧壁上还设有用于将所述18650单体电芯的电极穿出的电极穿装通孔,各所述电极穿装通孔与各所述插装槽位置一一对应,各所述汇流板上的多个汇流片与各所述18650单体电芯两端的电极分别一一对应连接;各所述插装槽的槽壁上均设有沿所述插装槽长度方向贯通的散热间隙;
各所述18650电池模组单元中的各所述汇流板依次串联电连接。
优选地,所述模组壳体两侧壁上还设有多个散热通孔,各所述散热通孔的中心轴线与各所述插装槽的中心轴线平行设置,且各所述散热通孔与各所述插装槽呈间隔均布设置;各所述18650电池模组单元中的各所述散热通孔位置一一对应连通。
优选地,所述插装槽的槽壁包括多个散热块,各所述散热块之间设置所述散热间隙,且各所述散热块与所述18650单体电芯相对的侧面呈弧面设置,所述散热通孔设置在四个所述插装槽之间的公共的所述散热块的中心轴线上。
优选地,所述模组壳体包括两个结构完全相同的半壳体,各所述半壳体位置对应扣合设置,并通过锁止连接件锁止;各所述半壳体的内侧壁上均设有所述插装槽,且各所述插装槽的槽口位置一一对应设置;各所述18650电池模组单元中的各所述半壳体位置一一对应卡接限位。
优选地,所述半壳体的内侧壁上还设有多个用于所述半壳体进行扣合定位的定位柱,各所述定位柱的圆周方向上均布设有多个定位柱加强筋,各所述定位柱加强筋在长度方向上与所述定位柱的中心轴线平行。
优选地,所述定位柱的数量为偶数,各所述定位柱相对于所述半壳体在高度方向上的中心线呈对称设置,且对称设置的一对所述定位柱中,其中一个所述定位柱的顶端设有插装槽口,另一个所述定位柱的顶端设有插 装头,用于在两个所述半壳体进行扣合时的插装定位。
优选地,所述半壳体包括依次连接的左侧板、上侧板、右侧板和下侧板,所述左侧板、所述上侧板、所述右侧板和所述下侧板的边沿上均设有用于将两个所述半壳体进行扣合的扣合结构。
优选地,所述左侧板上的所述扣合结构为卡头,所述右侧板上的所述扣合结构为卡槽,所述上侧板上的所述扣合结构为扣合插板,所述下侧板上的所述扣合结构为扣合插槽。
本发明产生的有益效果:
1、本发明所公开的新能源汽车用能源系统,所述电池包壳体内设有电池模组安装槽,所述电池模组安装槽内布设多条呈间隔设置的所述横向加强筋,在所述电池模组安装槽下端布设至少一条所述纵向加强筋;各所述横向加强筋均与所述纵向加强筋呈方向交错设置的设计;所述横向加强筋和所述纵向加强筋分别从不同的方向加强所述电池包壳体的强度,从而增加了电池模组安装槽的可选材料和可用厚度规格,有助于减小所述电池包壳体重量,进而减小整车质量。
2、所述电池模组安装槽包括所述底板、位于所述底板左右两端的所述端板以及位于所述底板前后两侧的所述侧板;两所述侧板上均设有至少一个所述加强弯折部;所述底板上设置所述横向加强筋,所述底板下设置所述纵向加强筋的设计;所述加强弯折部增加了所述侧板的强度,防止置于所述电池模组安装槽内的电池模组发生移动时撞击到所述侧板而使所述侧板发生变形。
3、所述电池模组安装槽包括多个连续设置的所述分安装槽,各所述分安装槽的前后两所述侧板之间均通过所述加强弯折部连接;各所述分安装槽均为矩形,且各所述分安装槽的面积由左至右面积依次递增的设计;相邻两所述分安装槽间形成“凸”形,以增加所述电池模组安装槽抗受扭力 变形的能力。
4、所述横向加强筋的纵截面为几字形的设计;纵截面为几字形的所述横向加强筋抗变形能力强,将其设置于所述电池模组安装槽上,有助于提高所述电池包壳体强度。
5、沿所述横向加强筋的长度方向在其上布设有所述固定孔,所述固定孔内设有所述预装螺母的设计;所述固定孔在一定程度上减小了所述横向加强筋的质量,当用在新能源电动车上时,有助于减小整车质量;所述预装螺母用于将电池模组通过螺栓固定于所述电池模组壳体加强梁上,进而固定于电池包壳体上,防止动力电池模组移动,所述电池模组安装槽造成损坏或引起整车位移差距。
6、所述集成式高压分线盒采用包括所述盒体和所述盒盖,所述盒体内设所述器件容置槽,所述器件容置槽内设有所述正负极隔离板,所述正负极隔离板将所述器件容置槽分隔为所述正极器件容置槽和所述负极器件容置槽,所述正极器件容置槽用于容置与电池正极连接的控制零件,所述负极器件容置槽用于容置与电池负极连接的控制零件;所述负极器件容置槽的槽壁上设有所述负极高压线输入孔和所述负极高压线输出孔;所述正极器件容置槽的槽壁上设有所述正极高压线输入孔和所述正极高压线输出孔;所述正极器件容置槽与所述负极器件容置槽之间设有用于连通所述正极器件容置槽与所述负极器件容置槽的所述弱电走线道的设计;在电池包中引入高压分线盒的概念,将控制模块的控制零件集成在所述器件容置槽内,避免电池包震动倾斜时,各控制零件移动而发生线束脱落,影响电池包的使用,同时将正极器件与负极器件分隔开避免正、负极间发生短路,保障使用安全。将控制模块的各控制零件集成在一起,提前预制,装配电池包时预制的高压分线盒直接与电池包内其他器件连接,能有效提高电池 包的生产效率,便于控制器件的统一管理、统一保护。
7、所述电池模组包括多个串联的18650电池模组单元,各所述18650电池模组单元从左至右依次位置对应卡接限位,并通过螺栓螺母连接件从左至右依次穿装固定;所述18650电池模组单元包括模组壳体和多个18650单体电芯,各所述18650单体电芯均安装在所述模组壳体内,所述模组壳体两侧外壁上均安装有用于将各所述18650单体电芯进行并联的汇流板,所述模组壳体的两侧内壁上布设有多个用于对应插装各所述18650单体电芯的插装槽,所述模组壳体的两侧壁上还设有用于将所述18650单体电芯的电极穿出的电极穿装通孔,各所述电极穿装通孔与各所述插装槽位置一一对应,各所述汇流板上的多个汇流片与各所述18650单体电芯两端的电极分别一一对应连接;各所述插装槽的槽壁上均设有沿所述插装槽长度方向贯通的散热间隙;各所述18650电池模组单元中的各所述汇流板依次串联;通过在模组壳体内设置多个用于插装所述18650单体电芯的插装槽,将18650单体电芯以插装卡接的方式固定于所述模组壳体内,并将各所述18650电池模组单元位置对应卡接限位通过螺栓螺母连接件穿装固定,能够满足容量大的18650单体电芯所组成的串并联电池模组所需要的高强度结构,且结构简单、制造成本较低;同时,各所述插装槽的槽壁上均设有沿所述插装槽长度方向贯通的散热间隙,增加了散热面积,满足容量大的18650单体电芯所组成的串并联电池模组所需要的散热性,提高了电池模组的使用可靠性。
8、所述模组壳体两侧壁上还设有多个散热通孔,各所述散热通孔的中心轴线与各所述插装槽的中心轴线平行设置,且各所述散热通孔与各所述插装槽呈间隔均布设置;所述插装槽的槽壁包括多个散热块,各所述散热块之间设置所述散热间隙,且各所述散热块与所述18650单体电芯相对的 侧面呈弧面设置,所述散热通孔设置在四个所述插装槽之间的公共的所述散热块的中心轴线上;提高了模组的散热性,提升电池能量密度的同时,便于各18650电芯表面的散热,提高电池模组的使用寿命。
9、通过设置两个结构完全相同的半壳体来组成模组壳体,各所述半壳体位置对应扣合设置,并通过锁止连接件锁止,进一步提高了结构的强度,且可靠性高。
10、所述半壳体的内侧壁上还设有多个用于所述半壳体进行扣合定位的定位柱,各所述定位柱的圆周方向上均布设有多个定位柱加强筋,各所述定位柱加强筋在长度方向上与所述定位柱的中心轴线平行;所述定位柱的数量为偶数,各所述定位柱相对于所述半壳体在高度方向上的中心线呈对称设置,且对称设置的一对所述定位柱中,其中一个所述定位柱的顶端设有插装槽口,另一个所述定位柱的顶端设有插装头,用于在两个所述半壳体进行扣合时的插装定位;所述半壳体包括依次连接的左侧板、上侧板、右侧板和下侧板,所述左侧板、所述上侧板、所述右侧板和所述下侧板的边沿上均设有用于将两个所述半壳体进行扣合的扣合结构;所述左侧板上的所述扣合结构为卡头,所述右侧板上的所述扣合结构为卡槽,所述上侧板上的所述扣合结构为扣合插板,所述下侧板上的所述扣合结构为扣合插槽;整个模组的定位和扣合结构保证了模组的快速组装及整体强度要求,进一步提升模组的能量,并且结构简单,易操作,易维护,兼顾了结构的经济型和合理性。
附图说明
图1为本发明的电池包壳体的结构示意图(立体图);
图2为本发明的槽盖的结构示意图(立体图);
图3为本发明的电池包壳体的底面结构示意图(立体图);
图4为本发明的横向加强筋的结构示意图;
图5为本发明的集成式高压分线盒的立体视图;
图6为本发明的高压分线盒的结构示意图(爆炸图);
图7为本发明的盒体的结构示意图(立体图);
图8为本发明控制电器件安装于集成式高压分线盒内的示意图(俯视图);
图9为本发明的电池模组的结构示意图(立体图);
图10为本发明的18650电芯模组单元的结构示意图(立体图);
图11为本发明的18650电芯模组单元的结构示意图(爆炸图);
图12为本发明的半壳体的结构示意图(立体图);
图13为本发明的半壳体的结构示意图(主视图);
图14为本发明的半壳体的结构示意图(背视图);
图15为本发明的半壳体的结构示意图(左视图);
图16为本发明的半壳体的结构示意图(右视图);
图17为本发明的半壳体的结构示意图(仰视图);
图18为本发明的半壳体的结构示意图(俯视图);
图19为本发明的定位柱的结构示意图(剖视图,带插装槽口结构);
图20为本发明的定位柱的结构示意图(剖视图,带插装头结构);
图21为本发明的模组插板和模组插槽的装配结构示意图(内部视图);
图22为本发明的箍紧组件的结构示意图。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和 操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
参见图1、图2、图3所示,一种新能源汽车用能源系统,其特征在于:包括电池包壳体,所述电池包壳体内安装有电池管理系统控制器、集成式高压分线盒和多个呈串联设置的电池模组;各所述电池模组串联后的两端与所述集成式高压分线盒内的电器件电连接,所述电池管理系统控制器与各所述电池模组内的电压传感器和温度传感器分别电连接,所述电池管理系统控制器与所述集成式高压分线盒内的电器件分别电连接。所述电池包壳体包括电池模组安装槽1和与该电池模组安装槽对应扣合的槽盖7,该电池模组安装槽内布设多条呈间隔设置的横向加强筋3,在该电池模组安装槽下端布设至少一条纵向加强筋4;各所述横向加强筋均与所述纵向加强筋呈方向交错设置。本实施例中所述横向加强筋均与所述纵向加强筋呈空间垂直设置。沿所述曹盖边缘均匀布设有穿装螺孔701,所述电池模组安装槽与所述曹盖间通过螺栓连接。
参见图1、图3所示,本实用新型提供的电池包壳体采用包括所述电池模组安装槽,该电池模组安装槽内布设多条呈间隔设置的所述横向加强筋,在该电池模组安装槽下端布设至少一条所述纵向加强筋;各所述横向加强筋均与所述纵向加强筋呈方向交错设置的设计;所述横向加强筋和所述纵向加强筋分别从不同的方向加强所述电池包壳体的强度(所述横向加强筋在X方向上加强所述电池包壳体的强度,所述纵向加强筋在Y方向上 增加所述电池包壳体的强度),从而增加了电池模组安装槽的可选材料和可用厚度规格,有助于减小所述电池包壳体重量,进而减小整车质量。
参见图1、图3所示,本实施例中所述电池模组安装槽包括底板11、位于所述底板左右两端的端板12以及位于所述底板前后两侧的侧板13;两所述侧板上均设有至少一个加强弯折部131;所述底板上设置所述横向加强筋,所述底板下设置所述纵向加强筋。
本实用新型提供的电池包壳体采用所述电池模组安装槽包括所述底板、位于所述底板左右两端的所述端板以及位于所述底板前后两侧的所述侧板;两所述侧板上均设有至少一个所述加强弯折部;所述底板上设置所述横向加强筋,所述底板下设置所述纵向加强筋的设计;所述加强弯折部增加了所述侧板的强度,防止置于所述电池模组安装槽内的电池模组发生移动时撞击到所述侧板而使所述侧板发生变形。
参见图1所示,本实施例中所述电池模组安装槽包括多个连续设置的分安装槽101;各所述分安装槽的前、后两所述侧板之间均通过所述加强弯折部连接,即相邻两所述分安装槽位于同一侧的两所述侧板间通过所述加强弯折部连接;各所述分安装槽均为矩形,且各所述分安装槽的面积由左至右面积依次递增。
参见图5至图8所示,所述高压分线盒包括盒体81和盒盖82,该盒体内设器件容置槽,该器件容置槽内设有正负极隔离板83,该正负极隔离板将所述器件容置槽分隔为正极器件容置槽831和负极器件容置槽832,该正极器件容置槽用于容置与电池正极连接的控制零件,该负极器件容置槽用于容置与电池负极连接的控制零件;所述负极器件容置槽的槽壁上设有负极高压线输入孔8321和负极高压线输出孔8322;所述正极器件容置槽的槽壁上设有正极高压线输入孔8311和正极高压线输出孔8312;所述负极高压线输入孔、所述负极高压线输出孔、所述正极高压线输入孔和所述正极高压线输出孔间均间隔设置;所述正极器件容置槽与所述负极器件 容置槽之间设有用于连通该正极器件容置槽与该负极器件容置槽的弱电走线道8101。
本发明提供的电池包使用的高压分线盒采用包括所述盒体和所述盒盖,该盒体内设所述器件容置槽,该器件容置槽内设有所述正负极隔离板,该正负极隔离板将所述器件容置槽分隔为所述正极器件容置槽和所述负极器件容置槽,该正极器件容置槽用于容置与电池正极连接的控制零件,该负极器件容置槽用于容置与电池负极连接的控制零件;所述负极器件容置槽的槽壁上设有所述负极高压线输入孔和所述负极高压线输出孔;所述正极器件容置槽的槽壁上设有所述正极高压线输入孔和所述正极高压线输出孔;所述正极器件容置槽与所述负极器件容置槽之间设有用于连通该正极器件容置槽与该负极器件容置槽的所述弱电走线道的设计;在电池包中引入高压分线盒的概念,将控制模块的控制零件集成在所述器件容置槽内,避免电池包震动倾斜时,各控制零件移动而发生线束脱落,影响电池包的使用,同时将正极器件与负极器件分隔开避免正、负极间发生短路,保障使用安全。将控制模块的各控制零件集成在一起,提前预制,装配电池包时预制的高压分线盒直接与电池包内其他器件连接,能有效提高电池包的生产效率,便于控制器件的统一管理、统一保护。
参见图5至图8所示,本实施例中所述正极高压线输出孔包括设置于所述正极器件容置槽的槽壁上的正极输出豁口83121和自所述盒盖侧边向下延伸的正极输出挡板83122,所述正极输出挡板与所述正极输出豁口相匹配,当所述盒盖盖设于所述盒体上时,所述正极输出挡板底端与所述正极输出豁口底壁间形成所述正极高压线输出孔。方便高压正极输出线或高压正极输出铜排的安装,有利于加快各控制零件装配于所述电池包使用的高压分线盒内的速度。
参见图5至图8所示,本实施例中所述负极高压线输出孔包括设置于所述负极器件容置槽的槽壁上的负极输出豁口83221和自所述盒盖侧边向下延伸的负极输出挡板83222,所述负极输出挡板与所述负极输出豁口相匹配,当所述盒盖盖设于所述盒体上时,所述负极输出挡板底端与所述负极输出豁口底壁间形成所述负极高压线输出孔。以方便负压正极输出线或 高压负极输出铜排的安装,有利于加快各控制零件装配于所述电池包使用的高压分线盒内的速度。
参见图5至图8所示,本实施例中所述盒体外壁上设有用于将所述盒体固定于电池包内的固定爪811,各所述固定爪上均设有固定孔8111,通过螺栓将所述盒体固定于电池包内。
参见图6至图8所示,本实施例中所述正负极隔离板与所述盒体的内腔的侧壁平行设置;所述正负极隔离板的安装侧边8301与所述器件容置槽的一侧壁连接,所述正负极隔离板的自由侧边8302与所述器件容置槽的另一侧壁间隔设置;所述弱电走线道置于所述自由侧边及与该自由侧边相对的所述器件容置槽的侧壁之间;本实施例中所述弱电走线道为用于安装保险丝的固定槽,当然也可以选择将保险丝固定于所述负极器件容置槽或所述负极器件容置槽内,此时,该弱电走线道的形状尺寸可根据过线的粗细进行调整,根据过线的粗细设计弱电走线道的形状尺寸此为现有技术,此处不再过多赘述。
参见图5至图8所示,本实施例中所述正极器件容置槽的槽壁和所述负极器件容置槽的槽壁上均设有用于控制零件对位固定的固定螺孔8102;布设于所述正极器件容置槽内的高压正极继电器、副继电器、预充电阻等控制零件通过螺栓固定于所述正极器件容置槽内;布设于所述负极器件容置槽内的高压负极继电器等控制零件通过螺栓固定于所述负极器件容置槽内。本实施例中为配合现有的控制零件的穿装螺孔均设置于各控制两件的下端,所述固定螺孔分别设置于所述正极器件容置槽的槽底壁上和所述负极器件容置槽的槽底壁上。
参见图5至图8所示,本实施例中所述自由侧边和所述安装侧边上均设有强度加强柱8303,两所述加强侧边分别沿所述自由侧边的高度方向和所述安装侧边的高度方向设置;所述安装侧边通过所述强度加强柱与所述器件容置槽内壁相接。两所述强度加强柱上均设有第一穿装螺纹孔8304,所述盒盖上布设有至少两个第一穿装孔8201,各所述第一穿装孔与各所述第一穿装螺纹孔位置一一对应,其可通过螺栓固定连接所述盒体与所述盒盖。
参见图5至图8所示,本实施例中所述正极器件容置槽的侧壁上设有第一低压线束豁口8401,所述盒盖侧壁上设有第二低压线束豁口8402;所述第一低压线束豁口和所述第二低压线束豁口对应扣合。本实施例中所述第一低压线束豁口和所述第二低压线束豁口均连通所述正极器件容置槽和外部空间,用于外部低压控制线束进入所述正极器件容置槽与所述正极器件容置槽内的控制零件连接;上、下扣合的所述第一低压线束豁口和所述第二低压线束豁口便于低压线束的安装。
参见图5至图8所示,本实施例中所述盒体的壁上设有多个第二穿装螺纹孔8103,所述盒盖上设有多个第二穿装孔8202,各所述第二穿装孔与各所述第二穿装螺纹孔位置一一对应,其可通过螺栓固定连接所述盒体与所述盒盖。
参见图5至图8所示,本实施例中所述盒体底端设有支脚812,通过该支脚将本发明与电池包的底壁间隔开,减少电池包使用时产生的热量沿电池包底壁传递到所述盒体内,同时,可减少电池包振动时传递到所述盒体。
本实施例提供的所述电池包使用的高压分线盒内安装控制零件的过程进行简单描述:按图4所示,将高压正极继电器8501、副继电器8502,预充电阻8503等分别对应置于所述正极器件容置槽831内,通过螺栓与所述固定螺孔配合将高压正极继电器8501、副继电器8502,预充电阻8503等固定于所述正极器件容置槽内;将高压负极继电器8511置于所述负极器件容置槽832内,通过螺栓与所述固定螺孔配合将高压负极继电器8511置于所述负极器件容置槽内;将两个分别与两高压正极继电器8501连接的保险丝8521和与高压负极继电器连接的保险丝8521间隔置于所述弱电走线道8101处;本实施例中所述弱走线道处设有三个保险丝槽,三个保险丝分别对应置于一个保险丝槽内。
参见图9至图22所示,所述电池模组包括多个串联的18650电池模组单元,各所述18650电池模组单元从左至右依次位置对应卡接限位,并通过螺栓螺母连接件从左至右依次穿装固定;所述18650电池模组单元包括模组壳体91和多个18650单体电芯92,各所述18650单体电芯均安装在 所述模组壳体内,所述模组壳体两侧外壁上均安装有用于将各所述18650单体电芯进行并联的汇流板93,所述模组壳体的两侧内壁上布设有多个用于对应插装各所述18650单体电芯的插装槽95,所述模组壳体的两侧壁上还设有用于将所述18650单体电芯的电极穿出的电极穿装通孔96,各所述电极穿装通孔与各所述插装槽位置一一对应,各所述汇流板上的多个汇流片94与各所述18650单体电芯两端的电极分别一一对应连接;各所述插装槽的槽壁上均设有沿所述插装槽长度方向贯通的散热间隙912;各所述18650电池模组单元中的各所述汇流板依次串联。所述模组壳体两侧壁上还设有多个散热通孔98,各所述散热通孔的中心轴线与各所述插装槽的中心轴线平行设置,且各所述散热通孔与各所述插装槽呈间隔均布设置;各所述18650电池模组单元中的各所述散热通孔位置一一对应连通。所述插装槽的槽壁包括多个散热块911,各所述散热块之间设置所述散热间隙,且各所述散热块与所述18650单体电芯相对的侧面呈弧面设置,所述散热通孔设置在四个所述插装槽之间的公共的所述散热块的中心轴线上。所述模组壳体包括两个结构完全相同的半壳体97,各所述半壳体位置对应扣合设置,并通过锁止连接件锁止,所述锁止连接件为卡槽卡头锁止连接件;各所述半壳体的内侧壁上均设有所述插装槽,且各所述插装槽的槽口位置一一对应设置;各所述18650电池模组单元中的各所述半壳体位置一一对应卡接限位。所述半壳体的内侧壁上还设有多个用于所述半壳体进行扣合定位的定位柱913,各所述定位柱的圆周方向上均布设有多个定位柱加强筋914,各所述定位柱加强筋在长度方向上与所述定位柱的中心轴线平行。
本实施例中所述定位柱的数量为偶数,各所述定位柱相对于所述半壳体在高度方向上的中心线呈对称设置,且对称设置的一对所述定位柱中,其中一个所述定位柱的顶端设有插装槽口915,另一个所述定位柱的顶端设有插装头916,用于在两个所述半壳体进行扣合时的插装定位;所述定位柱的中心轴线上设有辅助散热通孔99,用于将模组壳体内的热量导出,所述辅助散热通孔分别与所述插装槽口和所述插装头连通。所述半壳体包括依次连接的左侧板917、上侧板918、右侧板919和下侧板920,所述左侧板、所述上侧板、所述右侧板和所述下侧板的边沿上均设有用于将两个 所述半壳体进行扣合的扣合结构。所述左侧板上的所述扣合结构为卡头921,所述右侧板上的所述扣合结构为卡槽922,所述上侧板上的所述扣合结构为扣合插板923,所述下侧板上的所述扣合结构为扣合插槽924;所述上侧板上还设有用于固定所述汇流板的螺栓孔910,所述半壳体呈一体注塑成型,所述半壳体采用酚醛塑料制成。
本实施例中所述18650电芯串并联电池模组,包括多个串联的18650电池模组单元,各所述18650电池模组单元从左至右依次位置对应卡接限位,并通过螺栓螺母连接件从左至右依次穿装固定;所述18650电池模组单元包括模组壳体和多个18650单体电芯,各所述18650单体电芯均安装在所述模组壳体内,所述模组壳体两侧外壁上均安装有用于将各所述18650单体电芯进行并联的汇流板,所述模组壳体的两侧内壁上布设有多个用于对应插装各所述18650单体电芯的插装槽,所述模组壳体的两侧壁上还设有用于将所述18650单体电芯的电极穿出的电极穿装通孔,各所述电极穿装通孔与各所述插装槽位置一一对应,各所述汇流板上的多个汇流片与各所述18650单体电芯两端的电极分别一一对应连接;各所述插装槽的槽壁上均设有沿所述插装槽长度方向贯通的散热间隙;各所述18650电池模组单元中的各所述汇流板依次串联;通过在模组壳体内设置多个用于插装所述18650单体电芯的插装槽,将18650单体电芯以插装卡接的方式固定于所述模组壳体内,并将各所述18650电池模组单元位置对应卡接限位通过螺栓螺母连接件穿装固定,能够满足容量大的18650单体电芯所组成的串并联电池模组所需要的高强度结构,且结构简单、制造成本较低;同时,各所述插装槽的槽壁上均设有沿所述插装槽长度方向贯通的散热间隙,增加了散热面积,满足容量大的18650单体电芯所组成的串并联电池模组所需要的散热性,提高了电池模组的使用可靠性。
本实施例中所述18650电芯串并联电池模组,所述模组壳体两侧壁上还设有多个散热通孔,各所述散热通孔的中心轴线与各所述插装槽的中心轴线平行设置,且各所述散热通孔与各所述插装槽呈间隔均布设置;所述插装槽的槽壁包括多个散热块,各所述散热块之间设置所述散热间隙,且各所述散热块与所述18650单体电芯相对的侧面呈弧面设置,所述散热通 孔设置在四个所述插装槽之间的公共的所述散热块的中心轴线上;提高了模组的散热性,提升电池能量密度的同时,便于各18650电芯表面的散热,提高电池模组的使用寿命。
本实施例中所述18650电芯串并联电池模组,通过设置两个结构完全相同的半壳体来组成模组壳体,各所述半壳体位置对应扣合设置,并通过锁止连接件锁止,进一步提高了结构的强度,且可靠性高。
本实施例中所述18650电芯串并联电池模组,所述半壳体的内侧壁上还设有多个用于所述半壳体进行扣合定位的定位柱,各所述定位柱的圆周方向上均布设有多个定位柱加强筋,各所述定位柱加强筋在长度方向上与所述定位柱的中心轴线平行;所述定位柱的数量为偶数,各所述定位柱相对于所述半壳体在高度方向上的中心线呈对称设置,且对称设置的一对所述定位柱中,其中一个所述定位柱的顶端设有插装槽口,另一个所述定位柱的顶端设有插装头,用于在两个所述半壳体进行扣合时的插装定位;所述半壳体包括依次连接的左侧板、上侧板、右侧板和下侧板,所述左侧板、所述上侧板、所述右侧板和所述下侧板的边沿上均设有用于将两个所述半壳体进行扣合的扣合结构;所述左侧板上的所述扣合结构为卡头,所述右侧板上的所述扣合结构为卡槽,所述上侧板上的所述扣合结构为扣合插板,所述下侧板上的所述扣合结构为扣合插槽;整个模组的定位和扣合结构保证了模组的快速组装及整体强度要求,进一步提升模组的能量,并且结构简单,易操作,易维护,兼顾了结构的经济型和合理性。
本实施例中所述18650电芯串并联电池模组,所述半壳体呈一体注塑成型,所述半壳体采用酚醛塑料制成,优选丙烯腈-丁二烯-苯乙烯共聚物(ABS)或聚苯醚(PPO)制成,以满足轻量化,并降低生产加工的工艺成本。
本实施例中所述18650电芯串并联电池模组,以18650圆柱电芯44并的电池模组单元为例,包括4个18650电芯模组单元,2个M8长螺杆25,2个M6长螺杆26,2个塑料端板27,2个侧板金28和1个线束上盖29。其中,模组外壳通过特殊设计,可以两两结合卡接,起到限位作用。装配时,先将4个44并电池模组单元串联在一起,然后在两侧安装塑料端板, 塑料端板外侧安装侧板金,之后用四根长螺杆将整体连接,用螺母紧固,完成整个电池模组的装配。参见图21所示,相邻两个所述18650电芯模组单元通过模组插板930和模组插槽931之间的插装配合进行插装限位后,通过长螺杆进行固定;进一步地,参见图22,所述18650电芯串并联电池模组装配完之后还可以设置箍紧组件932进行进一步箍紧固定,加强整个模组的结构强度。
本实施例中所述18650电芯串并联电池模组,所述18650电芯模组单元,以18650圆柱电芯44并的电池模组单元为例,包括半壳体2个,汇流板(采用铜镍材料制成)2个;所述半壳体通过特殊设计,可以两两扣合组成一个完整的、封闭的模组壳体。半壳体内设计插装槽,能够嵌入电芯,对电芯起到固定支撑作用。汇流板采用激光焊接方式,将汇流铜排及接触镍片焊接在一起。其组装过程为:先将18650单体电芯按照相同电极方向放置在一侧半壳体中,然后将另一侧所述半壳体按照翻转180°的形式扣在这一侧的半壳体上,通过半壳体上的卡扣结合在一起,组成一个完整的模组壳体;最后将两个汇流板分别放置在半壳体两侧的凹槽内,使接触镍片与电芯电极相接触,之后利用专业焊机,将镍片与电芯电极焊接在一起,完成整个电池模组的装配。
本发明所公开的18650电芯串并联电池模组,所述半壳体内部设有插装槽用以固定18650单体电芯;所述半壳体正面开有电极穿装通孔,用以将电芯电极裸露出来,方便与汇流片焊接;所述半壳体内侧有两个圆环型定位柱,其中一个端部设有插装头,另外一侧端部设有插装槽口,在两两装配时,其中一个半壳体翻转180°时,两个半壳体的定位柱上的插装头和插装槽口能够相互扣合。半壳体的四周侧板边沿采用相同思路设计,一半内部采用凸型设计,一半内部采用凹槽设计,在两两装配时,其中一个外壳翻转180°时,两个半壳体的外圈的突出和凹槽可以相互扣合。在所述半壳体的外侧,采用相同设计,保证在组成完整模组后,模组和模组之间也可以相互配合,提高装配的便捷性。本发明所公开的18650电芯串并联电池模组,能够通过结构将18650圆柱电芯并联在一起,提升模组的能量,并且结构简单,易操作,易维护。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (25)

  1. 一种新能源汽车用能源系统,其特征在于:包括电池包壳体,所述电池包壳体内安装有电池管理系统控制器、集成式高压分线盒和多个呈串联设置的电池模组;
    各所述电池模组串联后的两端与所述集成式高压分线盒内的电器件电连接,所述电池管理系统控制器与各所述电池模组内的电压传感器和温度传感器分别电连接,所述电池管理系统控制器与所述集成式高压分线盒内的电器件分别电连接;
    所述电池包壳体内设有电池模组安装槽,所述电池模组安装槽内布设多条呈间隔设置的横向加强筋,在所述电池模组安装槽下端布设至少一条纵向加强筋;各所述横向加强筋均与各所述纵向加强筋呈方向交错设置。
  2. 根据权利要求1所述的新能源汽车用能源系统,其特征在于:所述电池模组安装槽包括底板、位于所述底板左右两端的端板以及位于所述底板前后两侧的侧板;两所述侧板上均设有至少一个加强弯折部;所述底板上设置所述横向加强筋,所述底板下设置所述纵向加强筋。
  3. 根据权利要求2所述的新能源汽车用能源系统,其特征在于:所述电池模组安装槽包括多个连续设置的分安装槽,各所述分安装槽的前后两所述侧板之间均通过所述加强弯折部连接;各所述分安装槽均为矩形,且各所述分安装槽的面积由左至右面积依次递增。
  4. 根据权利要求3所述的新能源汽车用能源系统,其特征在于:各所述端板和各所述侧板上均设有用于与车体连接的边侧加强连接块,所述边侧加强连接块上设有与车体连接的螺栓孔。
  5. 根据权利要求4所述的新能源汽车用能源系统,其特征在于:所述横向加强筋的纵截面为几字形。
  6. 根据权利要求5所述的新能源汽车用能源系统,其特征在于:沿所述横向加强筋的长度方向在其上布设有固定孔,所述固定孔内设有预装螺母。
  7. 根据权利要求6所述的新能源汽车用能源系统,其特征在于:各所述加强弯折部均侧向连接有侧向加强背板。
  8. 根据权利要求7所述的新能源汽车用能源系统,其特征在于:所述横向加强筋均与所述纵向加强筋呈空间垂直设置。
  9. 根据权利要求1所述的新能源汽车用能源系统,其特征在于:所述集成式高压分线盒包括盒体和盒盖,所述盒体内设器件容置槽,所述器件容置槽内设有正负极隔离板,所述正负极隔离板将所述器件容置槽分隔为正极器件容置槽和负极器件容置槽,所述正极器件容置槽用于容置与电池正极连接的控制零件,所述负极器件容置槽用于容置与电池负极连接的控制零件;所述负极器件容置槽的槽壁上设有负极高压线输入孔和负极高压线输出孔;所述正极器件容置槽的槽壁上设有正极高压线输入孔和正极高压线输出孔;所述正极器件容置槽与所述负极器件容置槽之间设有用于连通所述正极器件容置槽与所述负极器件容置槽的弱电走线道。
  10. 根据权利要求9所述的新能源汽车用能源系统,其特征在于:所述盒体外壁上设有用于将所述盒体固定于电池包内的固定爪。
  11. 根据权利要求10所述的新能源汽车用能源系统,其特征在于:所述正负极隔离板的安装侧边与所述器件容置槽的一侧壁连接,所述正负极隔离板的自由侧边与所述器件容置槽的另一侧壁间隔设置;所述弱电走线道置于所述自由侧边与所述器件容置槽的侧壁之间。
  12. 根据权利要求11所述的新能源汽车用能源系统,其特征在于:所述正极器件容置槽的槽壁和所述负极器件容置槽的槽壁上均设有用于控制零件对位固定的固定螺孔。
  13. 根据权利要求12所述的新能源汽车用能源系统,其特征在于:所述 自由侧边和所述安装侧边上均设有强度加强柱。
  14. 根据权利要求13所述的新能源汽车用能源系统,其特征在于:两所述强度加强柱上均设有第一穿装螺纹孔,所述盒盖上布设有至少两个第一穿装孔,各所述第一穿装孔与各所述第一穿装螺纹孔位置一一对应。
  15. 根据权利要求14所述的新能源汽车用能源系统,其特征在于:所述正极器件容置槽的侧壁上设有第一低压线束豁口,所述盒盖侧壁上设有第二低压线束豁口;所述第一低压线束豁口和所述第二低压线束豁口对应扣合。
  16. 根据权利要求15所述的新能源汽车用能源系统,其特征在于:所述盒体的壁上设有多个第二穿装螺纹孔,所述盒盖上设有多个第二穿装孔,各所述第二穿装孔与各所述第二穿装螺纹孔位置一一对应。
  17. 根据权利要求16所述的新能源汽车用能源系统,其特征在于:所述盒体底端设有支脚。
  18. 根据权利要求1所述的新能源汽车用能源系统,其特征在于:所述电池模组包括多个顺序排列设置的18650电池模组单元,并通过穿装固定件将各所述18650电池模组单元依次穿装固定成一体;
    所述18650电池模组单元包括模组壳体和多个18650单体电芯,各所述18650单体电芯均安装在所述模组壳体内,所述模组壳体两侧外壁上均安装有用于将各所述18650单体电芯进行并联的汇流板,所述模组壳体的两侧内壁上布设有多个用于对应插装各所述18650单体电芯的插装槽,所述模组壳体的两侧壁上还设有用于将所述18650单体电芯的电极穿出的电极穿装通孔,各所述电极穿装通孔与各所述插装槽位置一一对应,各所述汇流板上的多个汇流片与各所述18650单体电芯两端的电极分别一一对应连接;各所述插装槽的槽壁上均设有沿所述插装槽长度方向贯通的散热间隙;
    各所述18650电池模组单元中的各所述汇流板依次串联电连接。
  19. 根据权利要求18所述的新能源汽车用能源系统,其特征在于:所述 模组壳体两侧壁上还设有多个散热通孔,各所述散热通孔的中心轴线与各所述插装槽的中心轴线平行设置,且各所述散热通孔与各所述插装槽呈间隔均布设置;各所述18650电池模组单元中的各所述散热通孔位置一一对应连通。
  20. 根据权利要求19所述的新能源汽车用能源系统,其特征在于:所述插装槽的槽壁包括多个散热块,各所述散热块之间设置所述散热间隙,且各所述散热块与所述18650单体电芯相对的侧面呈弧面设置,所述散热通孔设置在四个所述插装槽之间的公共的所述散热块的中心轴线上。
  21. 根据权利要求20所述的新能源汽车用能源系统,其特征在于:所述模组壳体包括两个结构完全相同的半壳体,各所述半壳体位置对应扣合设置,并通过锁止连接件锁止;各所述半壳体的内侧壁上均设有所述插装槽,且各所述插装槽的槽口位置一一对应设置;各所述18650电池模组单元中的各所述半壳体位置一一对应卡接限位。
  22. 根据权利要求21所述的新能源汽车用能源系统,其特征在于:所述半壳体的内侧壁上还设有多个用于所述半壳体进行扣合定位的定位柱,各所述定位柱的圆周方向上均布设有多个定位柱加强筋,各所述定位柱加强筋在长度方向上与所述定位柱的中心轴线平行。
  23. 根据权利要求22所述的新能源汽车用能源系统,其特征在于:所述定位柱的数量为偶数,各所述定位柱相对于所述半壳体在高度方向上的中心线呈对称设置,且对称设置的一对所述定位柱中,其中一个所述定位柱的顶端设有插装槽口,另一个所述定位柱的顶端设有插装头,用于在两个所述半壳体进行扣合时的插装定位。
  24. 根据权利要求23所述的新能源汽车用能源系统,其特征在于:所述半壳体包括依次连接的左侧板、上侧板、右侧板和下侧板,所述左侧板、所述上侧板、所述右侧板和所述下侧板的边沿上均设有用于将两个所述半壳体进行扣合的扣合结构。
  25. 根据权利要求24所述的新能源汽车用能源系统,其特征在于:所述左侧板上的所述扣合结构为卡头,所述右侧板上的所述扣合结构为卡槽,所述上侧板上的所述扣合结构为扣合插板,所述下侧板上的所述扣合结构为扣合插槽。
PCT/CN2018/113030 2018-09-18 2018-10-31 新能源汽车用能源系统 WO2020056858A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811086496.3A CN109166995A (zh) 2018-09-18 2018-09-18 新能源汽车用能源系统
CN201811086496.3 2018-09-18

Publications (1)

Publication Number Publication Date
WO2020056858A1 true WO2020056858A1 (zh) 2020-03-26

Family

ID=64879682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/113030 WO2020056858A1 (zh) 2018-09-18 2018-10-31 新能源汽车用能源系统

Country Status (2)

Country Link
CN (1) CN109166995A (zh)
WO (1) WO2020056858A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111509156A (zh) * 2020-04-15 2020-08-07 力神动力电池系统有限公司 一种高集成紧凑型电池系统
CN113451684A (zh) * 2021-07-30 2021-09-28 湖北亿纬动力有限公司 储能箱
CN113991225A (zh) * 2021-11-01 2022-01-28 北京理工大学 一种新能源汽车用电池托盘及制备方法
CN114243151A (zh) * 2021-11-30 2022-03-25 中国第一汽车股份有限公司 一种一体化电池总成、热管理方法及具有其的电动车辆
CN116156832A (zh) * 2022-09-08 2023-05-23 文依精密科技(上海)有限公司 一种新能源车载电源模块控制总成装置
CN117790980A (zh) * 2023-12-28 2024-03-29 惠州市华盛源机电有限公司 新能源汽车电池液冷散热器及其加工方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110190216B (zh) * 2019-03-08 2020-06-19 比亚迪股份有限公司 动力电池包、储能装置以及电动车
CN110350122A (zh) * 2019-07-26 2019-10-18 东莞市德富新能源有限公司 一种磷酸铁锂电池
CN112838316A (zh) * 2019-11-01 2021-05-25 爱驰汽车有限公司 电池包组件及其使用方法
CN113904051B (zh) * 2020-06-19 2024-01-09 帝亚一维新能源汽车有限公司 便携式换电电动车电池包固定结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107742680A (zh) * 2017-10-13 2018-02-27 常州普莱德新能源电池科技有限公司 一种动力电池模组上盖及具有该上盖的电池模组
CN207303174U (zh) * 2017-08-17 2018-05-01 国联汽车动力电池研究院有限责任公司 动力电池模组总成
CN108054467A (zh) * 2017-12-05 2018-05-18 长沙展朔轩兴信息科技有限公司 大型太阳能无人机储能电源
CN108172702A (zh) * 2017-12-29 2018-06-15 力帆实业(集团)股份有限公司 新能源汽车插接叠装电池
CN108511659A (zh) * 2018-06-25 2018-09-07 北斗航天汽车(北京)有限公司 一种21700电芯串并联电池模组

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8945746B2 (en) * 2009-08-12 2015-02-03 Samsung Sdi Co., Ltd. Battery pack with improved heat dissipation efficiency
DE112016002474T5 (de) * 2015-06-04 2018-02-15 Honda Motor Co., Ltd. Fahrzeugbatterieeinheit
CN105416070B (zh) * 2015-12-01 2017-11-17 北京新能源汽车股份有限公司 动力电池的高压控制装置
CN205723678U (zh) * 2016-03-27 2016-11-23 深圳市沃特玛电池有限公司 电动汽车的电池模组
CN105742541A (zh) * 2016-04-29 2016-07-06 宁德时代新能源科技股份有限公司 一种电池箱
DE102016214974A1 (de) * 2016-08-11 2018-02-15 Thyssenkrupp Ag Batteriegehäuse
CN106784482B (zh) * 2016-12-30 2023-03-07 常州普莱德新能源电池科技有限公司 电箱
CN208622840U (zh) * 2018-09-18 2019-03-19 北斗航天汽车(北京)有限公司 新能源汽车用能源系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207303174U (zh) * 2017-08-17 2018-05-01 国联汽车动力电池研究院有限责任公司 动力电池模组总成
CN107742680A (zh) * 2017-10-13 2018-02-27 常州普莱德新能源电池科技有限公司 一种动力电池模组上盖及具有该上盖的电池模组
CN108054467A (zh) * 2017-12-05 2018-05-18 长沙展朔轩兴信息科技有限公司 大型太阳能无人机储能电源
CN108172702A (zh) * 2017-12-29 2018-06-15 力帆实业(集团)股份有限公司 新能源汽车插接叠装电池
CN108511659A (zh) * 2018-06-25 2018-09-07 北斗航天汽车(北京)有限公司 一种21700电芯串并联电池模组

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111509156A (zh) * 2020-04-15 2020-08-07 力神动力电池系统有限公司 一种高集成紧凑型电池系统
CN113451684A (zh) * 2021-07-30 2021-09-28 湖北亿纬动力有限公司 储能箱
CN113991225A (zh) * 2021-11-01 2022-01-28 北京理工大学 一种新能源汽车用电池托盘及制备方法
CN113991225B (zh) * 2021-11-01 2023-12-26 北京理工大学 一种新能源汽车用电池托盘及制备方法
CN114243151A (zh) * 2021-11-30 2022-03-25 中国第一汽车股份有限公司 一种一体化电池总成、热管理方法及具有其的电动车辆
CN116156832A (zh) * 2022-09-08 2023-05-23 文依精密科技(上海)有限公司 一种新能源车载电源模块控制总成装置
CN116156832B (zh) * 2022-09-08 2024-01-30 文依精密科技(上海)有限公司 一种新能源车载电源模块控制总成装置
CN117790980A (zh) * 2023-12-28 2024-03-29 惠州市华盛源机电有限公司 新能源汽车电池液冷散热器及其加工方法
CN117790980B (zh) * 2023-12-28 2024-06-07 惠州市华盛源机电有限公司 新能源汽车电池液冷散热器及其加工方法

Also Published As

Publication number Publication date
CN109166995A (zh) 2019-01-08

Similar Documents

Publication Publication Date Title
WO2020056858A1 (zh) 新能源汽车用能源系统
JP5285960B2 (ja) 組電池の電源制御装置
TWI504045B (zh) 電池模組及包含此電池模組之電池組
KR20080047639A (ko) 전지모듈 어셈블리 제조용 전원 스위칭 모듈
JP2013114951A (ja) 電源装置及びこれを備える車両並びに蓄電装置、連結ユニット
KR20120081402A (ko) 전지 셀의 효율적 직 병렬 연결 방법 및 이를 이용한 전지모듈 조립
CN208127265U (zh) 电池包
JP2009289428A (ja) 組電池の電源制御装置
JP2014010984A (ja) バッテリシステム
CN109950448B (zh) 软包锂电池模组
CN211555995U (zh) 一种软包锂电池组装支架
KR101136806B1 (ko) 전극단자 연결장치 및 이를 포함하는 전지모듈 어셈블리
CN210040349U (zh) 电池模组的模组外壳、电池模组及动力电池
CN215451593U (zh) 电芯安装结构、电池包和电动汽车
WO2024041500A1 (zh) 汇流排支架总成、动力电池及车辆
CN113258195B (zh) 电池包及其制造方法、用电设备
CN114374021A (zh) 动力电池总成
KR20230129053A (ko) 배터리, 전기 장치, 배터리 제조 방법 및 장치
KR20150107698A (ko) 버스 바 어셈블리를 포함하는 전지모듈 및 이를 포함하는 전지팩
CN221080280U (zh) 集成母排组件及电池模组
KR20210043991A (ko) 전지 모듈 및 이를 포함한 전지 팩
CN220086149U (zh) Bdu及电池包
CN219163565U (zh) 电芯模组及动力装置
CN113794017B (zh) 房车电池
CN219476908U (zh) 一种电池模组端板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934142

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18934142

Country of ref document: EP

Kind code of ref document: A1