WO2020054875A1 - 充填部材及び組電池 - Google Patents

充填部材及び組電池 Download PDF

Info

Publication number
WO2020054875A1
WO2020054875A1 PCT/JP2019/036283 JP2019036283W WO2020054875A1 WO 2020054875 A1 WO2020054875 A1 WO 2020054875A1 JP 2019036283 W JP2019036283 W JP 2019036283W WO 2020054875 A1 WO2020054875 A1 WO 2020054875A1
Authority
WO
WIPO (PCT)
Prior art keywords
filling member
heat transfer
pouch
thickness
thickness direction
Prior art date
Application number
PCT/JP2019/036283
Other languages
English (en)
French (fr)
Inventor
川井 友博
弘樹 速水
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to EP19859019.2A priority Critical patent/EP3819979A4/en
Priority to KR1020217001477A priority patent/KR20210056998A/ko
Priority to JP2020546242A priority patent/JP7306401B2/ja
Priority to CN201980052468.6A priority patent/CN112585803B/zh
Publication of WO2020054875A1 publication Critical patent/WO2020054875A1/ja
Priority to US17/164,896 priority patent/US11929478B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/651Means for temperature control structurally associated with the cells characterised by parameters specified by a numeric value or mathematical formula, e.g. ratios, sizes or concentrations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • H01M50/133Thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/227Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/231Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/291Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/20Pressure-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a filling member and a battery pack having the filling member.
  • Secondary batteries are used as power sources for vehicles and the like. Investigation to further increase the energy density of secondary batteries for the purpose of improving the degree of freedom when mounted in a limited space such as a vehicle, or to extend the cruising range that can be run per charge Has been widely promoted.
  • the safety of the secondary battery tends to be opposite to the energy density, and the higher the energy density of the secondary battery is, the lower the safety tends to be.
  • the battery surface temperature exceeds several hundred degrees Celsius, and 1000 In some cases, it can reach nearly °C.
  • a secondary battery used for a power source of a vehicle or the like is generally an assembled battery having a plurality of cells (cells).
  • the heat may damage the adjacent unit cell, and the damage may spread to the entire assembled battery in a chain.
  • various techniques have been proposed for cooling a damaged unit cell and for suppressing heat transfer from a damaged unit cell to an undamaged unit cell.
  • Patent Document 1 describes that a partition member provided between batteries is made of a fusible base material and a thermosetting resin, and the base material is melted to suppress heat conduction by the partition member.
  • Patent Literature 2 discloses a base material formed of resin as a partition member provided between power storage elements, and a foaming agent held by the base material and thermally decomposed in response to a temperature rise accompanying heat generation of the power storage elements. It is described that it is constituted by having.
  • Patent Document 3 discloses that, in a partition member that separates between cells or between a cell and another member, by controlling the heat transfer resistance in the thickness direction of the partition member to a specific condition, it is possible to prevent the spread of the cells from spreading or It is stated to delay.
  • Currently, widely used single cells include square cells, cylindrical cells and pouch cells.
  • the unit cells are mainly rectangular unit cells.
  • the object of the present invention is to provide a filling member that can improve safety when used in a battery pack composed of pouch-type cells, and a battery pack having this filling member.
  • the heat transfer resistance (hereinafter, also simply referred to as thermal resistance) is set to a specific condition in the filling member used between the pouch type cells.
  • thermal resistance is set to a specific condition in the filling member used between the pouch type cells.
  • a filling member interposed between pouch-type cells in an assembled battery A first surface orthogonal to the thickness direction and a second surface opposite to the first surface, A filling member in which ⁇ d1 and ⁇ d2 defined below satisfy the following expressions (1) and (2), ⁇ p satisfies the following expression (3), and ⁇ d1 > ⁇ d2 .
  • ⁇ d1 ⁇ 3.0 ⁇ 10 ⁇ 3 (m 2 ⁇ K) / W (1) ⁇ d2 ⁇ 8.0 ⁇ 10 ⁇ 3 (m 2 ⁇ K) / W (2) 0.5K / W ⁇ ⁇ p1 ⁇ 1000K / W (3) 0.5K / W ⁇ ⁇ p2 ⁇ 1000K / W (4) ⁇ d1 : heat transfer resistance per unit area in the thickness direction when the average temperature of one of the first and second surfaces exceeds 180 ° C.
  • ⁇ d2 the heat transfer resistance of the first surface and the second surface Heat transfer resistance per unit area in the thickness direction ⁇ p1 when the average temperature of both does not exceed 80 ° C .: Heat in the surface direction when the average temperature of one of the first and second surfaces exceeds 180 ° C.
  • Transfer resistance ⁇ p2 heat transfer resistance in the surface direction when the average temperature of both the first and second surfaces does not exceed 80 ° C.
  • the filling member includes a partition member and a heat transfer sheet,
  • the thermal conductivity in the thickness direction of the partition member is 2.0 ⁇ 10 ⁇ 2 W / m ⁇ K or more and 2.0 W or more. / M ⁇ K or less
  • the thermal conductivity in the thickness direction of the partition member is 5.0 ⁇ 10 ⁇ 2 W / m ⁇ .
  • the thermal conductivity in the surface direction of the heat transfer sheet (B) is 1.0 ⁇ 10 1 W / m ⁇ K or more and 2.0 ⁇ 10 3 W / m ⁇ K or less.
  • the filling member is the filling member according to any one of [1] to [4], and when the thickness of the pouch type cell is L, the thickness of the heat transfer sheet is L /
  • a filling member having two surfaces in the thickness direction that partitions between pouch-type cells and has ⁇ d1 and ⁇ d2 defined as follows: Is a filling member that satisfies each of the following formulas (1) and (2).
  • ⁇ d1 ⁇ 5.0 ⁇ 10 ⁇ 3 (m 2 ⁇ K) / W (1) ⁇ d2 ⁇ 4.0 ⁇ 10 ⁇ 3 (m 2 ⁇ K) / W (2)
  • ⁇ d1 Heat transfer resistance in the thickness direction when the average temperature of one of the two surfaces exceeds 180 ° C.
  • ⁇ d2 Heat transfer resistance in the thickness direction when the average temperature of both surfaces does not exceed 80 ° C.
  • the thermal conductivity in the thickness direction of the partition member (A) includes the partition member (A) and the heat transfer sheet (B), and the average temperature of one of the two surfaces exceeds 180 ° C.
  • the partition The thermal conductivity of the member (A) in the thickness direction is 2.0 ⁇ 10 ⁇ 2 W / m ⁇ K or more and 2.0 W / m ⁇ K or less, and both of the two members in the thickness direction of the partition member (A).
  • the thermal conductivity in the thickness direction of the partition member (A) is not less than 5.0 ⁇ 10 ⁇ 2 W / m ⁇ K and not more than 5.0 ⁇ 10 1 W / m ⁇ K.
  • the filling member of the present invention suppresses heat transfer between pouch-type cells.
  • FIG. 2C is a cross-sectional view illustrating the operation of the filling member of FIG. 1D.
  • 4 is a two-dimensional simulation model of the battery pack used in the example. 4 is a two-dimensional simulation model of the battery pack used in the example. It is a graph which shows the time change of the maximum temperature of a single electrode. 4 is a simulation model of a battery pack used in an example.
  • the assembled battery of the present invention has a plurality of pouch-shaped cells and a filling member arranged between the pouch-shaped cells.
  • a filling member arranged between the pouch-shaped cells.
  • FIG. 1C One example of this battery pack is shown in FIG. 1C.
  • the 1C includes a cooling plate 11, a plurality of pouch-shaped cells 12 disposed on the cooling plate 11, and a filling member 20 disposed between the pouch-shaped cells 12. .
  • the filling member 20 is also arranged on the outer surface side of the pouch type cell 12 on one end side (the left end side in the figure) in the arrangement direction.
  • FIG. 1C eight pouch-type cells 12 are shown, but the number of pouch-type cells 12 is not limited to this. Usually, about 2 to 500 pouch type cells are arranged.
  • the filling member 20 is formed by stacking a plate-shaped partition member 21 and a heat transfer sheet 22 having an L-shaped cross section.
  • the plate-shaped partition member 21 has two plate surfaces, that is, first and second surfaces 21a and 21b orthogonal to the thickness direction.
  • the heat transfer sheet 22 has a main piece 22a overlapping the partition member 21 and an extension piece 22b extending from the main piece 22a.
  • the extension piece 22 b is interposed between the pouch-type cell 12 and the cooling plate 11.
  • the filling member 20 is an example of the filling member of the present invention.
  • 1A, 1B, 1D, and 1E show other examples of the filling member.
  • FIG. 1A illustrates a filling member 1A having a rectangular parallelepiped (plate-like) shape having a length, width, and thickness (width).
  • the filling member 1A has two surfaces 1a and 1b orthogonal to the thickness direction.
  • the surface 1a is one plate surface of the filling member 1A, and the surface 1b is the other plate surface.
  • the filling member 1A is disposed between the pouch-type cells so as to partition between the pouch-type cells constituting the assembled battery.
  • each of the surface 1a and the surface 1b faces the pouch type cell.
  • the surface 1a and the surface 1b may be arranged so as to be in contact with the opposing pouch-type cell, or may be arranged so as to leave a gap between the pouch-type cell and the heat transfer resistance. It is preferable to make contact in terms of reducing
  • the filling member 1A shown in FIG. 1A is suitable when the surface 1a and the surface 1b are arranged so as to face the pouch type single cell.
  • the surfaces other than the surfaces 1a and 1b may be arranged so as to face the pouch type cell.
  • FIG. 1B illustrates a filling member 1B having a comb structure.
  • the filling member 1B is formed in a plate shape as a whole.
  • the filling member 1B has two surfaces 1c and 1d orthogonal to the thickness direction.
  • the surface 1c is composed of one plane as a whole.
  • the surface 1d has an elongated surface 1f extending parallel to the lateral direction of the filling member 1B, and a bottom surface 1r of a groove recessed from the surface 1f.
  • the groove extends parallel to the horizontal direction and extends from one end to the other end of the filling member 1B in the horizontal direction.
  • the filling member 30 illustrated in FIG. 1D includes a bag-shaped structure 31, a lattice-shaped frame 32 provided inside the bag-shaped structure 31, and T [° C. filled inside the bag-shaped structure 31. And a fluid material 34 in a liquid state.
  • the opening 31e provided on the lower surface 31d of the bag-shaped structure is closed with a stopper 33 made of a material having a melting point around T [° C.]. Note that the opening 33 may be provided below the bag-shaped structure 31 other than the lower surface 31d.
  • the bag-shaped structure 31 has a hollow substantially rectangular parallelepiped shape having a pair of vertical main surfaces 31a and 31b, an upper surface 31c, and a lower surface 31d.
  • the frame 32 has a lattice shape having a vertical piece 32a parallel to the main surfaces 31a and 31b, and a plurality of horizontal pieces 32b standing upright from the vertical piece 32a.
  • the vertical piece 32a extends from the lower surface 31d to the upper surface 31c.
  • a plurality of horizontal pieces 32b are provided at intervals in the height direction.
  • the tip of each horizontal piece 32b is in contact with the back surface of the main surface 31a or 31b.
  • FIG. 1E when the stopper 33 is melted, the fluid material 34 in the bag-shaped structure 31 flows down from the opening 31e to the outside.
  • the frame 32 has an action of retaining the shape of the bag-like structure 31.
  • the filling member 30 in FIG. 1F has the frame 32, but may be a filling member having a structure in which the frame 32 is omitted.
  • a plurality of bag-shaped structures 31 may be arranged between the cells in the horizontal or vertical direction.
  • the stopper 33 is not necessarily required.
  • the melting point of the material 34 forming the stopper 33 may be equal to or lower than the melting point of the fluid material.
  • the stopper may be formed of the same material as the fluid material 34.
  • the fluid material 34 may be liquid at T [° C.] or may be in a flowable state other than liquid.
  • the filling member of the present invention may be constituted by a single member or may be constituted by a plurality of members.
  • the filling member composed of the plurality of members it has the partition member 21 and the heat transfer sheet 22 shown in FIG. 1C, and preferably, the partition member 21 and the heat transfer sheet 22 are laminated.
  • the filling member 20 is exemplified.
  • the filling member 20 is an example of a filling member having a partition member and a heat transfer sheet, and may be a filling member having a partition member and a heat transfer sheet other than FIG. 1C.
  • the thickness of the filling member is L / 50. Or more, and more preferably L / 40 or more.
  • the thickness of the filling member is preferably L / 10 or less, more preferably L / 11 or less.
  • the thickness of the filling member is preferably 0.2 mm or more, more preferably 0.3 mm or more.
  • the thickness of the filling member is preferably 10 mm or less, more preferably 9 mm or less.
  • the filling member of the present invention is a filling member having two surfaces in the thickness direction that separates the pouch-type cells in a battery pack composed of a plurality of pouch-type cells, and is defined as ⁇ below.
  • d1 and ⁇ d2 satisfy the following expressions (1) and (2), respectively.
  • ⁇ d1 ⁇ 3.0 ⁇ 10 ⁇ 3 (m 2 ⁇ K) / W (1)
  • ⁇ d2 ⁇ 8.0 ⁇ 10 ⁇ 3 (m 2 ⁇ K) / W
  • ⁇ d1 heat transfer resistance in the thickness direction when the average temperature of one of the two surfaces of the filler exceeds 180 ° C.
  • ⁇ d2 heat transfer resistance in the thickness direction when the average temperature of both surfaces of the filler is less than 80 ° C. Heat transfer resistance
  • the filling member of the present invention partitions the pouch-shaped unit cells constituting the assembled battery and has two surfaces in the thickness direction, and the thickness when the average temperature of one of the two surfaces exceeds 180 ° C.
  • the thermal resistance per unit area in the direction ( ⁇ d1 ) satisfies the formula (1) and the average temperature of both surfaces does not exceed 80 ° C.
  • the thermal resistance per unit area in the thickness direction ( ⁇ d2 ) satisfies the expression (2).
  • ⁇ d1 does not satisfy Expressions (1) and (2), when one cell in the battery pack generates abnormal heat, heat transfer to a cell adjacent to the cell is large. In this case, the temperature of adjacent cells may be increased, and the adjacent cells may generate abnormal heat.
  • ⁇ d1 is preferably at least 3.0 ⁇ 10 ⁇ 3 (m 2 ⁇ K) / W, more preferably at least 4.0 ⁇ 10 ⁇ 3 (m 2 ⁇ K) / W, and still more preferably. It is 5.0 ⁇ 10 ⁇ 3 (m 2 ⁇ K) / W or more, and particularly preferably 6.0 ⁇ 10 ⁇ 3 (m 2 ⁇ K) / W or more.
  • ⁇ d1 is preferably 15.0 ⁇ 10 ⁇ 2 (m 2 ⁇ K) or less, more preferably 2.0 ⁇ 10 ⁇ 2 (m 2 ⁇ K) or less.
  • ⁇ d2 is preferably 8.0 ⁇ 10 ⁇ 3 (m 2 ⁇ K) / W or less, more preferably 7.5 ⁇ 10 ⁇ 3 (m 2 ⁇ K) / W or less, and further preferably It is at most 7.0 ⁇ 10 ⁇ 3 (m 2 ⁇ K) / W, particularly preferably at most 6.5 ⁇ 10 ⁇ 3 (m 2 ⁇ K) / W.
  • ⁇ d2 is preferably 1.0 ⁇ 10 ⁇ 3 (m 2 ⁇ K) or more, and more preferably 1.5 ⁇ 10 ⁇ 3 (m 2 ⁇ K) or more.
  • ⁇ d1 ⁇ d2 is preferably at least 5.0 ⁇ 10 ⁇ 4 (m 2 ⁇ K) / W, more preferably at least 1.0 ⁇ 10 ⁇ 3 (m 2 ⁇ K) / W. And more preferably 2.0 ⁇ 10 ⁇ 3 (m 2 ⁇ K) / W or more.
  • ⁇ d1 ⁇ d2 is preferably 2.0 ⁇ 10 ⁇ 2 (m 2 ⁇ K) or less.
  • ⁇ p1 and ⁇ p2 defined as below satisfy each of the following expressions (3) and (4).
  • the filling member satisfies the formulas (3) and (4), when one of the cells generates abnormal heat, the unit cell adjacent to the unit cell generates abnormal heat around the unit cell. Heat transfer to uncommitted cells is reduced. Thereby, the temperature rise of the adjacent unit cell is suppressed, and the adjacent unit cell is also prevented from generating abnormal heat.
  • ⁇ p1 Heat transfer resistance in the surface direction when the average temperature of one of the two surfaces of the charging member exceeds 180 ° C.
  • ⁇ p2 Heat transfer in the surface direction when the average temperature of both surfaces of the filling member is less than 80 ° C. resistance
  • ⁇ p1 is preferably 5.0 ⁇ 10 ⁇ 1 K / W or more, and more preferably 2.0 K / W or more.
  • the upper limit of ⁇ p1 is not particularly limited, but is usually 5.0 ⁇ 10 3 K / W or less, more preferably 1.0 ⁇ 10 3 K / W or less.
  • ⁇ p2 is preferably at least 5.0 ⁇ 10 ⁇ 1 K / W, more preferably at least 2.0 K / W.
  • the upper limit of ⁇ p2 is not particularly limited, but is usually 5.0 ⁇ 10 3 K / W or less, more preferably 1.0 ⁇ 10 3 K / W or less.
  • each of the thermal resistances ⁇ d1 , ⁇ d2 , ⁇ p1, and ⁇ p2 is smaller than the thermal resistance of each member constituting the filling member. It can be treated as the resulting combined thermal resistance. A method for calculating the combined thermal resistance will be described later.
  • the filling member of the present invention may be constituted by a single member or may be constituted by combining a plurality of members, but preferably is constituted by combining a plurality of members. It is preferable to include a partition member and a heat transfer sheet, like the filling member 20.
  • the thermal conductivity in the thickness direction of the partition member Is preferably 2.0 ⁇ 10 ⁇ 2 W / m ⁇ K or more, and more preferably 3.0 ⁇ 10 ⁇ 2 W / m ⁇ K or more.
  • the thermal conductivity is preferably 2.0 W / m ⁇ K or less, and more preferably 1.9 W / m ⁇ K or less.
  • the thermal conductivity in the thickness direction of the partition member may be 5.0 ⁇ 10 ⁇ 2 W / m ⁇ K or more. More preferably, it is 1.0 ⁇ 10 ⁇ 1 W / m ⁇ K or more. In this case, the thermal conductivity is preferably 5.0 ⁇ 10 W / m ⁇ K or less, and more preferably 4.0 ⁇ 10 W / m ⁇ K or less.
  • the heat transfer sheet preferably has a thermal conductivity in the plane direction of 1.0 ⁇ 10 ⁇ 1 W / m ⁇ K or more, and more preferably 1.0 ⁇ 10 W / m ⁇ K or more. More preferably, there is.
  • the thermal conductivity in the surface direction of the heat transfer sheet is preferably 1.0 ⁇ 10 3 W / m ⁇ K or less, more preferably 8.0 ⁇ 10 2 W / m ⁇ K or less, and more preferably .0 ⁇ 10 2 W / m ⁇ K or less, particularly preferably not more than 6.0 ⁇ 10 2 W / m ⁇ K, most preferably at most 5.0 ⁇ 10 2 W / m ⁇ K.
  • Materials for the heat transfer sheet include graphite, graphene, metal (aluminum (including aluminum foil or aluminum plate, etc.), copper (including copper foil or copper plate, etc.), metal mesh (aluminum mesh, copper mesh), Examples thereof include a carbon fiber sheet and a plate, among which a graphite sheet and an aluminum plate are preferable, and a heat transfer sheet obtained by laminating a resin film on the above-mentioned material can also be used.
  • the thickness of the partition member is preferably 0.2 mm or more, more preferably 0.3 mm or more, while preferably 10 mm or less, more preferably 9 mm or less.
  • the thickness of the partition member is in the above range, it is preferable from the viewpoint of preventing a chain of damage between the batteries and maintaining a high energy density of the assembled battery.
  • the thickness of the heat transfer sheet is preferably at least 0.006 mm, more preferably at least 0.02 mm, further preferably at least 0.05 mm, while preferably at most 10 mm, more preferably 9 mm. Or less, more preferably 5 mm or less.
  • the thickness of the heat transfer sheet is in the above range, it is preferable from the viewpoint of preventing a chain of damage between batteries and maintaining a high energy density of the battery pack.
  • the thermal resistance per unit area of the filling member means a heat transfer resistance per unit sectional area in the thickness direction of the filling member.
  • the thermal resistance in the thickness direction per unit area of the filling member is obtained by calculating the thermal conductivity (k [W / m ⁇ K]) and the thickness (d [m]) of the material used as the filling member in the thickness direction. Can be used to represent it.
  • the unit area in this case represents a unit area on a plane perpendicular to the thickness direction.
  • the thermal resistance ( ⁇ d ) in the thickness direction per unit area of the filling member 1A shown in FIG. 1A will be described.
  • the thermal conductivity in the thickness direction of the filling member 1A formed of a single material and having a constant density is k [W / m ⁇ K]
  • the thickness of the filling member 1A is d [m]
  • the surface temperature of the surface 1b is The average value is T 1 [° C.]
  • the average value of the surface temperature of the surface 1 a is T 2 [° C.].
  • T 2 is less than T 1
  • T 1 the difference between the surface temperature of the surface 1b and the surface 1a of the filling member 1A is T 1 -T 2
  • the heat in the thickness direction i.e., flows from the surface 1b to the surface 1a.
  • Equation (13) the thermal resistance ( ⁇ d ) in the thickness direction per unit area can be expressed by the following Equation (13).
  • ⁇ d d / k [m 2 ⁇ K / W] (13)
  • the definition of the thermal resistance ( ⁇ p ) in the surface direction of the filling member 1A will be described.
  • the plane direction indicates a direction parallel to the planes 1a and 1b. It is assumed that the thermal conductivity of the filling member 1A is isotropic, that is, the thermal conductivity in the thickness direction and the thermal conductivity in the plane direction are equal.
  • the thermal resistance in the plane direction of the filling member is inversely proportional to the product k ⁇ d of the thermal conductivity (k [W / m ⁇ K]) and the thickness (d [m]) of the filling member, that is, the following equation ( 14).
  • ⁇ p 1 / (k ⁇ d) [K / W] (14)
  • the shape (structure) of the filling member is not limited to a rectangular parallelepiped. Even when the filling member has a structure such as a comb structure, a hollow structure, or a lattice structure, the thermal resistance in the thickness direction per unit area of the filling member can be expressed by the above equation (13). Further, the filling member is not limited to the case where it is formed of a single material, and may be formed of a combination of a plurality of materials. Even in the case of being formed by a combination of a plurality of materials, the thermal resistance in the thickness direction per unit area of the filling member can be represented by the above equation (13).
  • the filling member is formed by combining a plurality of materials, polyethylene, chlorinated polyethylene, ethylene-vinyl chloride copolymer, ethylene-vinyl acetate copolymer, polyvinyl acetate, polypropylene, polybutene, polybutadiene, polymethylpentene, polystyrene, poly- ⁇ -methyl Styrene, polyparavinylphenol, ABS resin, SAN resin, AES resin, AAS resin, methacrylic resin, norbornene resin, polyvinyl chloride, acryl-modified polyvinyl chloride, polyvinylidene chloride, polyallylamine, polyvinyl ether, polyvinyl alcohol, ethylene vinyl Alcohol copolymer, petroleum resin, thermoplastic elastomer, thermoplastic polyurethane resin, polyacrylonitrile, polyvinyl butyral, phenolic resin, epoxy resin, Base resin, melamine resin, furan resin, unsaturated polyester resin, diallyl phthalate,
  • the method of obtaining the thermal resistance ( ⁇ d ) in the thickness direction per unit area of the filling member 1B shown in FIG. 1B is as follows.
  • the average temperature at the surface of the plane 1d and T 1 the average temperature of the surface 1c and T 2.
  • the heat flow per unit area and the heat resistance of the filling member 1B can be expressed by the above equations (11), (12) and (13) using these T 1 and T 2 .
  • the composite thermal conductivity calculated in consideration of the structure and the material type of the filling member is calculated as the thermal conductivity (k) by using the above formula (11) and
  • the thermal conductivity (k) in Expression (13) the thermal resistance ( ⁇ d ) in the thickness direction per unit area can be expressed by Expression (13).
  • the thermal resistance in the thickness direction per unit area ( ⁇ d ) can use the effective thermal resistance per unit area in the thickness direction calculated in consideration of the structure and material type of the filling member. .
  • the composite thermal conductivity of the composite member when n types of materials are arranged in series is calculated.
  • the combined thermal conductivity ( ⁇ ) in the thickness direction can be expressed as follows.
  • the composite thermal conductivity of the composite member when n types of materials are arranged in parallel is calculated.
  • the thermal conductivity of air which is the material of the cavity, and the thickness and cross-sectional area of the cavity are determined. By giving, the combined thermal conductivity can be calculated.
  • the thermal conductivity in the thickness direction of the filling member is 2 ° C.
  • the thermal conductivity in the thickness direction of the filling member is not less than 5.0 ⁇ 10 ⁇ 2 W / m ⁇ K and not more than 50 W / m ⁇ K.
  • the thermal resistance in the thickness direction is set to a desired value as follows. (Even when the partition member 21 in FIG. 1C is made of the material A and the heat transfer sheet 22 is made of the material B, the thermal resistance in the thickness direction of the filling member can be adjusted as follows.)
  • the material A is, for example, a resin plate made of polycarbonate or butyl rubber.
  • the material B is, for example, ceramics, a glass plate, polyethylene or the like in a solid state, and water, ethylene glycol, glycerin or the like in a liquid state.
  • the bag-shaped structure 31 is formed of the material A having a melting point at a temperature higher than T [° C.].
  • the inside of the bag-like structure 31 is filled with a fluid material 34 that is in a liquid state at T [° C.].
  • a fluid material water, ethylene glycol, glycerin and the like exemplified as the liquid in the above-mentioned material B are suitable.
  • the opening 31e is closed by the stopper 33 made of a material having a melting point near T [° C.].
  • the material of the stopper 33 include propylene / butylene / ethylene terpolymer, polypropylene, polyethylene, ethylene / propylene copolymer, ethylene / acrylic acid copolymer, propylene / acrylic acid copolymer, nylon, polyethylene terephthalate, Examples include a tin-lead alloy, a tin-bismuth alloy, and a lead-bismuth alloy.
  • the outer shape of the bag-shaped structure may have a shape other than a rectangular parallelepiped.
  • the opening is provided on the lower surface of the bag-shaped structure.
  • the opening may be provided on the side surface as long as the material B flows from the opening to the outside of the bag-shaped structure.
  • the filling member 1 may have a structure in which a plurality of bag-like structures filled with the above-described material B are arranged in a horizontal direction or a vertical direction.
  • the stopper is not necessarily required.
  • the melting point of the material C may be equal to or lower than that of the material B.
  • the plug may be formed of material B.
  • the material B does not necessarily have to be liquid at T [° C.], and may be in a fluid state other than liquid.
  • the filling member including the bag-shaped structure 31 and the fluid material 34 has a thermal resistance in the thickness direction per unit area due to the fluid material in the bag-shaped structure. ( ⁇ d ) satisfies the above equation (2).
  • the thermal resistance ( ⁇ d ) in the thickness direction per unit area of the filling member satisfies the above expression (1).
  • a lattice-shaped frame 32 made of material A is provided inside a bag-shaped structure 31 made of material A.
  • a portion other than the frame 32 in the inside of the bag-shaped structure 31 is filled with a fluid material 34 made of the material B, which is in a liquid state at T [° C.].
  • the opening 31e is closed with a stopper 33 made of a material C having a melting point near T [° C.]. In the vicinity of T [° C.], when the plug 33 formed of the material C is melted, the fluid material 34 flows out of the opening 31e.
  • the thermal resistance ( ⁇ d ) in the thickness direction per unit area due to the fluid material filled in the bag-shaped structure 31 is as described above. Equation (2) is satisfied.
  • the thermal resistance ( ⁇ d ) in the thickness direction per unit area of the filling member satisfies the above equation (1).
  • the assembled battery of the present invention includes a plurality of pouch-type cells and the above-described filling member of the present invention, and the pouch-type cells are separated by the filling member.
  • the ⁇ pouch type unit cell '' is a positive electrode sheet, a negative electrode sheet, a separator sheet, and a resin sheet or film or an exterior material for filling components such as terminals in the unit cell. It means a unit cell using a laminate or a laminate of these and a metal foil.
  • Lithium ion secondary batteries can be manufactured in various forms, but typically include prismatic lithium ion secondary batteries, cylindrical lithium ion secondary batteries, and pouch type lithium ion secondary batteries.
  • the pouch type lithium ion secondary battery generally includes an electrode assembly and a case for housing the electrode assembly.
  • the electrode assembly is composed of a negative electrode sheet in which a carbon material capable of occluding and releasing lithium ions is applied to a metal sheet, a positive electrode sheet in which a lithium-containing oxide is applied to a metal sheet, and an electrode interposed between the negative electrode and the positive electrode and electrically connected to each other. And a separator sheet for insulation.
  • the electrode assembly is provided with terminals for extracting electric power from each of the negative electrode sheet and the positive electrode sheet to the outside.
  • the pouch type lithium ion secondary battery includes a pouch type case made of a sheet formed by laminating a polymer film and a metal sheet such as aluminum.
  • the case is made by bonding or fusing two sheets formed by laminating the polymer film and a metal sheet such as aluminum, and has a space therein for accommodating an electrode assembly.
  • a pouch type lithium ion secondary battery an electrolyte is injected after an electrode assembly is placed in a pouch type case having a space formed therein. Then, the periphery of the pouch-shaped case is sealed by bonding or fusing to complete the pouch-shaped lithium ion secondary battery.
  • the pouch type lithium ion secondary battery uses a pouch type case formed of a sheet, light and various forms of lithium secondary batteries can be manufactured, and the manufacturing process is simple.
  • the pouch-type lithium-ion secondary battery is easy to assemble and has few restrictions on the shape and size of the battery.
  • the pouch-type lithium-ion secondary battery generally has a box-like shape, and has a vertical and horizontal length of 5 mm to 500 mm. The thickness is about 0.5 mm to about 30 mm.
  • the use of a pouch-type case does not have a metal can compared to cylindrical or square batteries, so there is a problem that heat removal characteristics to the outside are inferior, and the charge / discharge performance and safety of batteries are also low. Have a big impact. Further, even when the battery is formed in a box shape, there is a problem that it is difficult to flatten the side surface and it is difficult to directly contact the side surface with a cooling plate outside the battery for cooling the battery.
  • the “abnormal heat generation state” in the pouch-type cell constituting the assembled battery means that a part or the whole area of the pouch-type cell is 200 It means a state where the temperature becomes over °C.
  • thermal runaway refers to a phenomenon in which the pouch-shaped single cell reaches an abnormally heated state, and the heat generation rate of the pouch-shaped single cell exceeds the cooling rate, and the temperature cannot be controlled.
  • Normal time normal temperature refers to a state in which the temperature at which the pouch-type cell normally charges and discharges without severe capacity deterioration is equal to or lower than the upper limit. Specifically, the temperature is lower than the upper limit of use temperature specified by the manufacturer, typically 80 ° C. or lower.
  • Examples of the unit cell in the pouch type unit cell include a lithium ion secondary battery including a positive electrode and a negative electrode capable of inserting and extracting lithium ions, and an electrolyte.
  • a secondary battery such as a lithium ion all-solid battery, a nickel hydride battery, a nickel cadmium battery, and a lead storage battery can be applied.
  • the pouch type cell used for the battery pack of the present invention is usually surrounded by the outer package.
  • This exterior material preferably has a layered structure including a resin layer and a metal foil layer.
  • a resin layer constituting the exterior material propylene / butylene / ethylene terpolymer, polypropylene, polyethylene, ethylene / propylene copolymer, ethylene / acrylic acid copolymer, propylene / acrylic acid copolymer, nylon, And a single layer selected from the group consisting of polyethylene terephthalate and a composite layer obtained by combining two or more thereof.
  • the metal foil layer constituting the exterior material include aluminum, copper, and stainless steel.
  • the aluminum foil may be pure aluminum alone, but an aluminum alloy is preferable.
  • the aluminum alloy used for the aluminum foil includes, for example, an aluminum-Fe alloy, an aluminum-Mn alloy, and preferably an aluminum-Fe alloy.
  • the battery pack of the present invention includes a pouch-type unit cell (pouch-type cell) and a filling member (in FIG. 1C, a partition member 21 and a heat transfer sheet 22) disposed on a cooling plate. It is preferable to have a filling member 20) composed of In the battery pack configured as described above, when the pouch-type unit cell generates heat in a steady state range, the heat sufficiently moves in the surface direction of the filling member. For this reason, the heat of the pouch type cell is sufficiently transmitted to the cooling plate, and the pouch type cell is efficiently cooled.
  • the material of the cooling plate include a metal plate, and examples of the metal include aluminum, copper, steel, and SUS.
  • a liquid passage may be provided in the metal plate, and the coolant may flow therethrough. Further, a tube having a liquid flow path or a heat sink may be in contact with the metal plate.
  • the cooling plate an aluminum plate and an aluminum plate and a refrigerant circulation structure integrated type (a structure similar to an aluminum plate having a hollow structure through which a refrigerant passes) are preferable.
  • the thickness of the cooling plate is preferably 0.5 mm or more and 30 mm or less, and the thickness when the cooling plate does not have a coolant channel is preferably 0.5 mm or more and 10 mm or less, more preferably 0.5 mm or more and 2 mm or less.
  • the pouch type cell 41 is surrounded by a very thin plastic film, but is not included in the modeling here because the thermal resistance of the film is small.
  • Table 1 shows the dimensions of each member.
  • Table 3 shows the physical properties of each component used next.
  • the filling member 52 is made of a material whose thermal conductivity switches at 100 ° C.
  • each component was divided into minute regions called meshes, and a heat transfer analysis was performed. It is assumed that the thermal conductivity switches when the temperature of all the small regions constituting the filling member 52 reaches 100 ° C.
  • the average temperature of one of the two surfaces orthogonal to the thickness direction of the filling member exceeds 180 ° C.
  • a thermal conductivity of 100 ° C. or more is applied, and both of the two surfaces crossing the thickness direction of the filling member are applied.
  • a thermal conductivity of less than 100 ° C was applied.
  • FIG. 2C shows the change over time in the maximum temperature of the adjacent pouch-type cells.
  • the maximum temperature is 253.6 ° C.
  • the maximum temperature is 160.8 ° C.
  • the result is that the temperature rise of the second embodiment is significantly smaller than that of the first embodiment. Obtained. From this result, it is recognized that it is preferable to dispose a heat transfer sheet for dissipating heat of the pouch-type unit cell to the cooling plate between the pouch-type unit cell and the cooling plate.
  • Example 1 Based on this finding, a heat transfer analysis was performed on a simulation model 40 ′ shown in FIG. 2D.
  • Example 1 The simulation was performed under the same conditions as in Example 1 except that the partition member was fixed at 0.15 W / m ⁇ K where the thermal conductivity was not switched. Table 5 shows the results. The “difference in maximum temperature” in Table 5 represents the difference between the maximum temperature in Example 1 and the maximum temperature in Comparative Example 1.
  • Table 7 shows the results of the thermal resistance in the plane direction obtained by using Equation (21).
  • the thermal conductivity is not switched, the combined thermal resistance is equal to or higher than 100 ° C. in Tables 6 and 7.
  • Example 2 and Comparative Example 2 Further, the same analysis as in Example 1 and Comparative Example 1 was conducted with the case where the thickness of the partition member was reduced to 0.5 mm without changing the thickness of the heat transfer sheet.
  • the reason why the electrode maximum temperature of the adjacent cell in Table 9 is generally lower than that in Table 5 is that the thickness of the partition member 21 on the left side of the thermal runaway cell is reduced, so that heat radiation of the thermal runaway cell proceeds. It is considered easier. That is, it is desirable to use only the heat transfer sheet without providing the partition member 21 at the left end.
  • the composite thermal resistance in Tables 10 and 11 is equal to or higher than 100 ° C.
  • Comparative Example 3 shows a case where the thermal conductivity is not switched between the case where the thermal conductivity of the filling member in Table 3 is less than 100 ° C. and the case where the thermal conductivity of 100 ° C. or more is changed as shown in Table 12.
  • a case where the thermal conductivity is switched is referred to as a third embodiment.
  • a thermal conductivity of 100 ° C. or higher was used.
  • Table 15 shows the results of the thermal resistance in the plane direction obtained by using Equation (21).
  • the combined thermal resistance in Tables 14 and 15 is equal to or higher than 100 ° C.
  • the maximum temperature difference ⁇ t in Table 13 is smaller than the maximum temperature difference ⁇ t in Table 5. That is, when the difference between the thermal conductivity (or thermal resistance) of less than 100 ° C. and the thermal conductivity (or thermal resistance) of 100 ° C. or more is small, the difference ⁇ t between the maximum temperatures tends to be small.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Algebra (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

組電池内のパウチ型単電池間に介在される充填部材であって、厚み方向と直交方向の、第1の面及びそれと反対側の第2の面を有し、以下に定義されるθd1及びθd2が下記式(1)及び(2)のそれぞれを満足し、θp1及びθp2が下記式(3)及び(4)のそれぞれを満足し、かつθd1>θd2を満たす充填部材。 θd1≧3.0×10-3(m・K)/W (1) θd2≦8.0×10-3(m・K)/W (2) 0.5K/W≦θp1≦1000K/W (3)  0.5K/W≦θp2≦1000K/W (4) θd1:前記第1及び第2の面のうち一方の面の平均温度が180℃を超える場合における厚み方向の単位面積当たりの熱移動抵抗 θd2:前記第1の面及び第2の面の双方の平均温度が80℃を超えない場合における厚み方向の単位面積当たりの熱移動抵抗 θp1:前記第1及び第2の面のうち一面の平均温度が180℃を超える場合における面方向の熱移動抵抗 θp2:前記第1及び第2の面の双方の平均温度が80℃を超えない場合における面方向の熱移動抵抗 

Description

充填部材及び組電池
 本発明は、充填部材と、この充填部材を有する組電池に関する。
 車両等の電源として二次電池が用いられている。車両等の限られた空間に搭載する際の自由度を向上させる目的や、一度の充電に対して走行可能な航続距離を伸ばす等の目的から、二次電池のエネルギー密度をより高めるための検討が広く進められている。
 二次電池の安全性はエネルギー密度とは相反する傾向にあり、高エネルギー密度を有する二次電池となるほど安全性は低下する傾向にある。例えば、航続距離が数百kmに及ぶような電気自動車に搭載される二次電池では、過充電や内部短絡等により二次電池が損傷した場合に、電池表面温度が数百℃を超え、1000℃近くに及ぶ場合もある。
 車両等の電源に使用される二次電池は、一般に複数の単電池(セル)を有する組電池である。組電池の一つの単電池が損傷し、該単電池が上記のような高温度に到達した場合、その熱により隣接する単電池が損傷し、連鎖的に組電池全体に損傷が拡がるおそれがある。このような単電池の損傷の連鎖を防ぐため、損傷した単電池を冷却する技術や、損傷した単電池から損傷していない単電池への熱の移動を抑制する技術が種々提案されている。
 特許文献1には、電池間に設置した仕切り部材を溶融性の母材と熱硬化性樹脂で構成し、母材の溶融によって、仕切り部材による熱伝導を抑制することが記載されている。特許文献2には、蓄電素子間に設置した仕切り部材を樹脂で形成された母材と、この母材に保持され、蓄電素子の発熱に伴う温度上昇に応じて熱分解される発泡剤とを有するものにより構成することが記載されている。特許文献3には、単電池間又は単電池と他の部材とを仕切る仕切り部材において、仕切り部材の厚み方向の熱移動抵抗を特定の条件に制御することにより、単電池の延焼を防止する又は遅延させることが記載されている。
特開2010-97693号公報 特開2010-165597号公報 WO2018/124231
 現在、広く用いられている単電池には、角型単電池、円筒状単電池及びパウチ型単電池がある。特許文献1~3では、単電池は主として角形単電池である。
 本発明はパウチ型単電池により構成される組電池に用いた場合に安全性を向上させることができる充填部材と、この充填部材を有する組電池を提供することを目的とする。
 本発明者等が上記課題を解決するために詳細な検討を行った結果、パウチ型単電池間に用いる充填部材において、熱移動抵抗(以下、単に熱抵抗ともいう)を特定の条件とすることにより上記課題を解決し得ることを見出した。即ち、本発明の要旨は以下の通りである。
[1] 組電池内のパウチ型単電池間に介在される充填部材であって、
 厚み方向に直交する第1の面及びそれと反対側の第2の面を有し、
 以下に定義されるθd1及びθd2が下記式(1)及び(2)のそれぞれを満足し、θが下記式(3)を満足し、かつθd1>θd2を満たす充填部材。
 θd1≧3.0×10-3(m・K)/W    (1)
 θd2≦8.0×10-3(m・K)/W    (2)
 0.5K/W≦θp1≦1000K/W     (3)
 0.5K/W≦θp2≦1000K/W     (4)
θd1:前記第1及び第2の面のうち一方の面の平均温度が180℃を超える場合における厚み方向の単位面積当たりの熱移動抵抗
θd2:前記第1の面及び第2の面の双方の平均温度が80℃を超えない場合における厚み方向の単位面積当たりの熱移動抵抗
θp1:前記第1及び第2の面のうち一面の平均温度が180℃を超える場合における面方向の熱移動抵抗
θp2:前記第1及び第2の面の双方の平均温度が80℃超えない場合における面方向の熱移動抵抗
[2] 前記充填部材は、仕切り部材及び伝熱シートを含み、
 前記第1及び第2の面の一方の面の平均温度が180℃を超える場合において、該仕切り部材の厚み方向の熱伝導率が2.0×10-2W/m・K以上2.0W/m・K以下であり、
 該仕切り部材の厚み方向の第1及び第2の二面の双方の平均温度が80℃を超えない場合において、仕切り部材の厚み方向の熱伝導率が5.0×10-2W/m・K以上5.0×10W/m・K以下であり、
 該仕切り部材の温度に拘わらず、伝熱シート(B)の面方向の熱伝導率が1.0×10W/m・K以上2.0×10W/m・K以下である、[1]に記載の充填部材。
[3] 前記伝熱シートの厚みが0.02~2mmである、[2]に記載の充填部材。
[4] 厚みが0.2~10mmである、[2]又は[3]に記載の充填部材。
[5] 厚みが0.2~10mmである、[1]に記載の充填部材。
[6] 複数のパウチ型単電池と、各パウチ型単電池間に介在された[1]~[5]のいずれか1項に記載の充填部材とを含む組電池。
[7] 前記パウチ型単電池間に介在された前記充填部材の前記第1の面及び第2の面がそれぞれ前記パウチ型単電池に対面している、[6]に記載の組電池。
[8] 前記パウチ型単電池が外装材により包含されており、該外装材は樹脂層と金属箔層とを含む層状構造を有する、[6]又は[7]に記載の組電池。
[9] 前記パウチ型単電池の厚みがLである場合に、充填部材の厚みがL/50~L/10である、[6]~[9]のいずれか1項に記載の組電池。
[10] 前記充填部材は[1]~[4]のいずれか1項に記載の充填部材であり、前記パウチ型単電池の厚みがLである場合に、前記伝熱シートの厚みがL/1000~L/10である、[6]~[9]のいずれか1項に記載の組電池。
[A1]複数のパウチ型単電池により構成される組電池において、パウチ型単電池間を仕切る、厚み方向の二面を有する充填部材であって、以下のように定義されるθd1及びθd2が下記式(1)及び(2)のそれぞれを満足する充填部材。
 θd1≧5.0×10-3(m・K)/W   (1)
 θd2≦4.0×10-3(m・K)/W   (2)
θd1:前記二面のうち一面の平均温度が180℃を超える場合における厚み方向の熱移動抵抗
θd2:前記二面の双方の平均温度が80℃を超えない場合における厚み方向の熱移動抵抗
[A2]以下のように定義されるθp1及びθp2が下記式(3)及び(4)のそれぞれを満足する、[A1]に記載の充填部材。
 θp1≧1.0×10-7(m・K)/W   (3)
 θp2≧1.0×10-7(m・K)/W   (4)
θp1:前記二面のうち一面の平均温度が180℃を超える場合における面方向の熱移動抵抗
θp2:前記二面の双方の平均温度が80℃超えない場合における面方向の熱移動抵抗
[A3]仕切り部材(A)及び伝熱シート(B)を含み、仕切り部材(A)の厚み方向の熱伝導率が前記二面における一方の面の平均温度が180℃を超える場合において、前記仕切り部材(A)の厚み方向の熱伝導率が2.0×10-2W/m・K以上2.0W/m・K以下であり、仕切り部材(A)の厚み方向の二面の双方の平均温度が80℃を超えない場合において、仕切り部材(A)の厚み方向の熱伝導率が5.0×10-2W/m・K以上5.0×10W/m・K以下であり、仕切り部材(A)の温度に関わらず、伝熱シート(B)の面方向の熱伝導率が2.0×10-2W/m・K以上1.0×10W/m・K以下である、[A1]又は[A2]に記載の充填部材。
[A4]厚みが0.2~10mmである、[A1]乃至[A3]のいずれか一つに記載の充填部材。
[A5]複数のパウチ型単電池と[A1]乃至[A4]のいずれか一つに記載の充填部材とを含み、パウチ型単電池が該充填部材により仕切られている、組電池。
[A6]前記パウチ型単電池が外装材により包含されており、該外装材は樹脂層と金属箔層とを含む層状構造を有する、[A5]に記載の組電池。
[A7]前記パウチ型単電池の厚みがLである場合に、充填部材の厚みがL/50~L/10である、[A5]又は[A6]に記載の組電池。
 本発明の充填部材は、パウチ型単電池間の熱移動を抑制する。
充填部材を例示する斜視図である。 櫛形構造を有する充填部材を例示する斜視図である。 仕切り部材と伝熱シートとから構成される充填部材を用いた組電池の一例を示す断面図である。 袋状構造物を有する充填部材の断面図である。 図1Dの充填部材の作動を示す断面図である。 実施例で用いた組電池の2次元シミュレーションモデルである。 実施例で用いた組電池の2次元シミュレーションモデルである。 単電極の最大温度の時間変化を示すグラフである。 実施例で用いた組電池のシミュレーションモデルである。
 以下に本発明を詳細に説明する。以下の説明は、本発明の実施形態の一例(代表例)であり、本発明はその要旨を超えない限り、これらの内容に限定されない。
 本発明の組電池は、複数のパウチ型単電池と、各パウチ型単電池同士の間に配置された充填部材とを有する。この組電池の一例を図1Cに示す。
 図1Cの組電池10は、冷却プレート11と、該冷却プレート11上に配置された複数のパウチ型単電池12と、各パウチ型単電池12同士の間に配置された充填部材20とを有する。図1Cの組電池10では、配置方向一端側(図の左端側)のパウチ型単電池12にあっては、外面側にも充填部材20が配置されている。
 なお、図1Cでは、パウチ型単電池12が8個示されているが、パウチ型単電池12の数はこれに限定されるものではない。通常は2~500個程度のパウチ型単電池が配列される。
 この組電池10にあっては、充填部材20は、板形状の仕切り部材21と、L字形断面形状の伝熱シート22とを積層したものである。板形状の仕切り部材21は、2つの板面すなわち、厚み方向と直交する第1及び第2の面21a,21bを有する。
 伝熱シート22は、仕切り部材21と重なる主片22aと、該主片22aから延出した延出片22bとを有する。延出片22bは、パウチ型単電池12と冷却プレート11との間に介在されている。
 充填部材20は本発明の充填部材の一例である。充填部材のその他の例を図1A,図1B,図1D,図1Eに示す。
 図1Aには、縦、横、厚み(幅)を有する直方体(板状体)の形状を有した充填部材1Aが例示されている。充填部材1Aは、厚み方向と直交する二つの面1a及び面1bを有している。面1aは充填部材1Aの一方の板面であり、面1bは他方の板面である。
 充填部材1Aは、組電池を構成するパウチ型単電池間を仕切るように、パウチ型単電池間に配置される。パウチ型単電池間に配置された状態において、面1a及び面1bのそれぞれは、パウチ型単電池と対面する。面1a及び面1bは、対向するパウチ型単電池と接触するように配置されてもよく、パウチ型単電池との間に隙間が生じるように離反して配置されてもよいが、熱移動抵抗を小さくする点で接触することが好ましい。
 図1Aに示す充填部材1Aは、面1a及び面1bがパウチ型単電池に対面するように配置される場合に好適である。ただし、面1a,1b以外の面がパウチ型単電池と対面するように配置されてもよい。
 図1Bは、櫛型構造を有する充填部材1Bを例示する。充填部材1Bは、全体として板状に形成されている。充填部材1Bは、厚み方向と直交する二つの面1c及び面1dを有する。面1cは全体として1つの平面よりなる。面1dは、それぞれ充填部材1Bの横方向に平行に延在する細長い面1fと、該面1fから凹陥した溝の底面1rとを有する。溝は横方向に平行に延在し、充填部材1Bの横方向の一端から他端まで延在する。これにより、充填部材1Bを横方向から見たときの形状は櫛形となっている。
 図1Dに示す充填部材30は、袋状構造物31と、該袋状構造物31の内部に設けられた格子状のフレーム32と、袋状構造物31の内部に充填された、T[℃]において液体状態である流体材料34とを有する。袋状構造物の下面31dに設けられた開口31eは、T[℃]付近に融点を持つ材料で形成された栓33で閉じられている。
 なお、開口33は、下面31d以外の袋状構造物31下部に設けられてもよい。
 袋状構造物31は、縦方向の1対の主面31a,31bと、上面31cと、下面31dとを有した中空の略直方体形状を有する。
 フレーム32は、主面31a,31bと平行な縦片32aと、縦片32aから略垂直に起立する複数の横片32bとを有した格子状である。縦片32aは、下面31dから上面31cまで延在する。横片32bは、高さ方向に間隔をおいて複数設けられている。各横片32bの先端は主面31a又は31bの裏面に当接している。
 図1Eの通り、栓33が溶融した場合に、袋状構造物31内の流体材料34が開口31eから外部に流れ落ちる。フレーム32は、袋状構造物31を保形する作用を有する。袋状構造物31を設けたことにより、流体材料34が流出した後においても袋状構造物の中空形状が維持される。
 図1Fの充填部材30はフレーム32を有するが、フレーム32を省略した構造の充填部材であってもよい。
 なお、単電池間に、複数の袋状構造物31が横方向又は縦方向に並べて配置されてもよい。また、栓33は必ずしも必須ではない。栓33を構成する材料34の融点は流体材料の融点と同等かそれ以下でもよい。栓を流体材料34と同一材料で形成する場合もあり得る。流体材料34はT[℃]において液体であってもよく、液体以外の流動可能状態であってもよい。
 本発明の充填部材は、単独の部材から構成されているものであっても、複数の部材から構成されているものであってもよい。この複数の部材から構成されている充填部材の一例としては、図1Cに示した仕切り部材21と伝熱シート22とを有し、好ましくは、仕切り部材21と伝熱シート22とを積層させた充填部材20が挙げられる。
 ただし、充填部材20は仕切り部材と伝熱シートとを有する充填部材の一例であり、図1C以外の、仕切り部材と伝熱シートとを有する充填部材であってもよい。
 単電池間の損傷の連鎖を防ぎ、かつ、組電池のエネルギー密度を高く維持する観点より、組電池を構成するパウチ型単電池の厚みがLである場合、前記充填部材の厚みはL/50以上であることが好ましく、L/40以上であることがより好ましい。充填部材の厚みは、L/10以下であることが好ましく、L/11以下であることがより好ましい。
 充填部材の厚みは、好ましくは0.2mm以上であり、より好ましくは0.3mm以上である。充填部材の厚みは、好ましくは10mm以下であり、より好ましくは9mm以下である。
〔充填部材の伝熱特性〕
 本発明の充填部材は、複数のパウチ型単電池により構成される組電池において、パウチ型単電池間を仕切る、厚み方向の二面を有する充填部材であって、以下のように定義されるθd1及びθd2が下記式(1)及び式(2)のそれぞれを満足するものである。
 θd1≧3.0×10-3(m・K)/W   (1)
 θd2≦8.0×10-3(m・K)/W   (2)
θd1:前記充填材の二面のうち一方の平均温度が180℃を超える場合における厚み方向の熱移動抵抗
θd2:前記充填材の二面の双方の平均温度が80℃未満における厚み方向の熱移動抵抗
 本発明の充填部材は、組電池を構成するパウチ型単電池間を仕切り、厚み方向の二面を有するものであり、この二面のうちの一方の平均温度が180℃を超える場合における前記厚み方向の単位面積当たりの熱抵抗(θd1)が式(1)を満たし、かつ、前記二面の双方の平均温度が80℃を超えない場合における前記厚み方向の単位面積当たりの熱抵抗(θd2)が前記式(2)を満たす。θd1が式(1)及び式(2)を満足しない場合、組電池の中の1個の単電池が異常発熱を起こした場合に、その単電池に隣接する単電池への熱移動が大きくなり、隣接する単電池の温度上昇を促進して隣接する単電池も異常発熱を起こすおそれがある。
 θd1は、好ましくは3.0×10-3(m・K)/W以上であり、より好ましくは4.0×10-3(m・K)/W以上であり、さらに好ましくは5.0×10-3(m・K)/W以上であり、特に好ましくは6.0×10-3(m・K)/W以上である。θd1は、15.0×10-2(m・K)以下が好ましく、2.0×10-2(m・K)以下がより好ましい。
 θd2は、好ましくは8.0×10-3(m・K)/W以下であり、より好ましくは7.5×10-3(m・K)/W以下であり、さらに好ましくは7.0×10-3(m・K)/W以下であり、特に好ましくは6.5×10-3(m・K)/W以下である。θd2は、1.0×10-3(m・K)以上が好ましく、1.5×10-3(m・K)以上がより好ましい。
 熱暴走セルとそれに隣接するセルの間にある充填部材は熱抵抗を大きくすることによって熱移動を小さくする必要がある。一方、それ以外の充填部材は熱抵抗を小さくすることによって熱移動を促進する必要がある。そのためθd1-θd2は、好ましくは5.0×10-4(m・K)/W以上であり、より好ましくは1.0×10-3(m・K)/W以上であり、さらに好ましくは2.0×10-3(m・K)/W以上である。θd1-θd2は、2.0×10-2(m・K)以下が好ましい。
 本発明の充填部材は、以下のように定義されるθp1及びθp2が下記式(3)及び式(4)のそれぞれを満足することが好ましい。充填部材が式(3)及び(4)を満足すると、電池の中の1個の単電池が異常発熱を起こした場合に、その単電池に隣接する単電池から、その周囲の異常発熱を起こしていない単電池への熱移動が小さくなる。これにより、隣接する単電池の温度上昇が抑制され、隣接する単電池も異常発熱を起こすことが抑制される。
 0.5K/W≦θp1≦1000K/W   (3)
 0.5K/W≦θp2≦1000K/W   (4)
θp1:充電部材の二面のうち一面の平均温度が180℃を超える場合における面方向の熱移動抵抗
θp2:充填部材の二面の双方の平均温度が80℃未満における面方向の熱移動抵抗
 θp1は、好ましくは5.0×10-1K/W以上であり、より好ましくは2.0K/W以上である。θp1の上限は特に制限されないが、通常、5.0×10K/W以下であり、1.0×10K/W以下がより好ましい。
 θp2は、好ましくは5.0×10-1K/W以上であり、より好ましくは2.0K/W以上である。θp2の上限は特に制限されないが、通常、5.0×10K/W以下であり、1.0×10K/W以下がより好ましい。
 本発明において、充填部材が複数の部材から構成されるものであった場合、上記熱抵抗θd1、θd2、θp1及びθp2のそれぞれは、充填部材を構成するそれぞれの部材における熱抵抗より得られる合成熱抵抗として扱うことができる。合成熱抵抗の算出方法については後述する。
[仕切り部材と伝熱シートとを有する充填部材の好適な特性及び仕様]
 前述の通り、本発明の充填部材は単独の部材から構成されているものであっても、複数の部材を組み合わせて構成されているものでもあってもよいが、好ましくは複数の部材を組み合わせて構成されているものであり、特に、充填部材20のように、仕切り部材及び伝熱シートを含むことが好ましい。
 仕切り部材の厚み方向と直交する二面(例えば、充填部材20の仕切り部材21の二面21a,21b)における一方の面の平均温度が180℃を超える場合、仕切り部材の厚み方向の熱伝導率が2.0×10-2W/m・K以上であることが好ましく、3.0×10-2W/m・K以上であることがより好ましい。また、この場合、熱伝導率は、2.0W/m・K以下であることが好ましく、1.9W/m・K以下であることがより好ましい。
 仕切り部材の厚み方向と直交する二面の双方の平均温度が80℃を超えない場合、仕切り部材の厚み方向の熱伝導率が5.0×10-2W/m・K以上であることが好ましく、1.0×10-1W/m・K以上であることがより好ましい。また、この場合、熱伝導率は5.0×10W/m・K以下であることが好ましく、4.0×10W/m・K以下であることがより好ましい。
 仕切り部材の熱伝導率が上記条件を満足することにより、異常発熱を起こした単電池から隣接する単電池への熱移動が抑制され、かつ異常発熱を起こしていない単電池の間の熱移動が促進される。これにより、組電池の安全性が向上する。
 仕切り部材の温度に拘わらず、伝熱シートは、面方向の熱伝導率が1.0×10-1W/m・K以上であることが好ましく、1.0×10W/m・K以上であることがより好ましい。伝熱シートの面方向の熱伝導率は、1.0×10W/m・K以下であることが好ましく、8.0×10W/m・K以下であることがより好ましく、7.0×10W/m・K以下が更に好ましく、6.0×10W/m・K以下が特に好ましく、5.0×10W/m・K以下が最も好ましい。伝熱シートの熱伝導率が上記条件を満足することにより、比較的低コストで異常発熱を起こした単電池の発熱の除熱が促進される。これにより、単電池の損傷の連鎖が抑制される。
 伝熱シートの材質としては、グラファイト、グラフェン、金属(アルミニウム(アルミ箔、またはアルミプレート等も含む)、銅(銅箔、または銅プレート等も含む)、金属メッシュ(アルミメッシュ、銅メッシュ)、カーボンファイバーシート・プレート等が挙げられるが、中でもグラファイトシート及びアルミプレートが好ましい。伝熱シートは上記材質に樹脂フィルムをラミネートしたものも使用することができる。
 仕切り部材の厚みは好ましくは0.2mm以上であり、より好ましくは0.3mm以上であり、一方、好ましくは10mm以下であり、より好ましくは9mm以下である。仕切り部材の厚みが上記範囲であると電池間の損傷の連鎖を防ぎ、かつ、組電池のエネルギー密度を高く維持する観点で好ましい。
 また、伝熱シートの厚みは好ましくは0.006mm以上であり、より好ましくは0.02mm以上であり、さらに好ましくは0.05mm以上であり、一方、好ましくは10mm以下であり、より好ましくは9mm以下であり、さらに好ましくは5mm以下である。伝熱シートの厚みが上記範囲であると電池間の損傷の連鎖を防ぎ、かつ組電池のエネルギー密度を高く維持する観点で好ましい。
[充填部材の熱抵抗]
 本発明において、充填部材の単位面積当たりの熱抵抗とは、充填部材の厚み方向の単位断面積あたりの熱移動抵抗を意味する。充填部材の単位面積当たりの厚み方向の熱抵抗は、充填部材として使用される材料の厚み方向における熱伝導率(k[W/m・K])及び充填部材の厚み(d[m])を用いて表すことができる。この場合の単位面積とは、厚み方向と垂直な面における単位面積を表す。
 図1Aに示す充填部材1Aの単位面積当たりの厚み方向の熱抵抗(θ)について説明する。単一の材料で形成され、密度が一定である充填部材1Aの厚み方向の熱伝導率をk[W/m・K]、充填部材1Aの厚みをd[m]、面1bの表面温度の平均値をT[℃]とし、面1aの表面温度の平均値をT[℃]とする。
 TがTより低い場合、充填部材1Aの面1bと面1aとの表面温度の差はT-Tであり、熱は厚み方向に、すなわち面1bから面1aに向って流れる。充填部材1Aの単位面積当たりの熱流量(熱流束)qは、以下の式(11)によって表すことができる。
 q = k(T-T)/d [W/m]  …(11)
 また、熱流束(q)は、単位面積当たりの厚み方向の熱抵抗(θ)を用いて以下の式(12)によって表すことができる。
 q = (1/θ)(T-T)  …(12)
 式(11)及び式(12)から、単位面積当たりの厚み方向の熱抵抗(θ)は、以下の式(13)によって表すことができる。
 θ = d/k [m・K/W]  …(13)
 充填部材1Aの面方向の熱抵抗(θ)の定義について説明する。この面方向とは、面1a,1bと平行方向を表す。充填部材1Aの熱伝導率が等方的である、すなわち厚み方向及び面方向の熱伝導率が等しいものとする。充填部材の面方向の熱抵抗は、充填部材の熱伝導率(k[W/m・K])と厚み(d[m])との積k・dに反比例するもの、すなわち次の式(14)によって定義されるものとする。
 θ=1/(k・d)[K/W]  …(14)
 充填部材の形状(構造)は、直方体に制限されない。充填部材が櫛型構造、中空構造、格子構造等の構造を有する場合であっても、充填部材の単位面積当りの厚み方向の熱抵抗は上記式(13)によって表すことができる。また、充填部材は、単一の材料で形成される場合に限らず、複数の材料の組み合わせによって形成されてもよい。複数の材料の組み合わせによって形成されている場合であっても、充填部材の単位面積当たりの厚み方向の熱抵抗は上記式(13)によって表すことが可能である。
 充填部材を複数の材料の組み合わせによって形成する場合、ポリエチレン、塩素化ポリエチレン、エチレン塩化ビニルコポリマー、エチレン・酢酸ビニルコポリマー、ポリ酢酸ビニル、ポリプロピレン、ポリブテン、ポリブタジエン、ポリメチルペンテン、ポリスチレン、ポリα-メチルスチレン、ポリパラビニルフェノール、ABS樹脂、SAN樹脂、AES樹脂、AAS樹脂、メタクリル樹脂、ノルボルネン樹脂、ポリ塩化ビニル、アクリル変性ポリ塩化ビニル、ポリ塩化ビニリデン、ポリアリルアミン、ポリビニルエーテル、ポリビニルアルコール、エチレンビニルアルコール共重合体、石油樹脂、熱可塑性エラストマ―、熱可塑性ポリウレタン樹脂、ポリアクリロニトリル、ポリビニルブチラール、フェノール樹脂、エポキシ樹脂、尿素樹脂、メラミン樹脂、フラン樹脂、不飽和ポリエステル樹脂、ジアリルフタレート、グアナミン、ケトン樹脂、酢酸セルロース、セロファン、硝酸セルロース、アセチルセルロース、ナイロン、ポリアミド、ポリアセタール、ポリオキシメチレン、ポリカーボネート、ポリカーボネート/ABSアロイ、ポリカーボネート/ポリエステルアロイ、ポリフェニレンエーテル、ポリブチレンテレフタラート、ポリエチレンテレフタラート、ポリスルフォン、ポリエーテルスルフォン、ポリフェニレンサルファイド、ポリアリレート、ポリアミドイミド、ポリエーテルイミド、ポリエーテルエーテルケトン、超高分子ポリエチレン、アイソタクチックポリスチレン、液晶ポリマー、ポリイミド、4フッ化エチレン・ペルフルオロアルコキシビニルエーテル共重合体、4フッ化エチレン・6フッ化エチレン共重合体、ポリクロロトリフルオロエチレン、4フッ化エチレン・エチレン共重合体、ポリフッ化ビニリデン、ポリビニルフロライド、ポリアミノビスマレインイミド、ポリトリアジン、架橋ポリアミドイミド、上記以外のフッ素樹脂等の種々の材料から二以上の材料を選択し、組み合わせることができる。
 図1Bに示す充填部材1Bの単位面積当たりの厚み方向の熱抵抗(θ)の求め方は以下の通りである。面1dの表面における平均温度をTとし、面1cの平均温度をTとする。充填部材1Bの単位面積当たりの熱流量及び熱抵抗は、これらのT,Tを用いて上記式(11),(12)及び式(13)によって表すことができる。
 充填部材が複数(n種類)の材料で構成される場合、熱伝導率(k)として、当該充填部材の構造及び材料種を考慮して算出した合成熱伝導率を、上記式(11)及び式(13)の熱伝導率(k)として用いることで、単位面積当たりの厚み方向の熱抵抗(θ)を上記式(13)により表すことができる。このように、単位面積当たりの厚み方向の熱抵抗(θ)は、充填部材の構造及び材料種を考慮して算出される厚み方向の単位面積当たりの有効熱抵抗を用いることが可能である。
 なお、合成熱伝導率は、例えば以下の方法により算出することができる。まず、熱伝導率:k[W/m・K]、厚み:d[m]、熱抵抗:R(n=1,2,・・・n)のn種類の材料を組み合わせた複合部材の合成熱抵抗(R)を求める。n種類の材料が直列で並んでいる場合、合成熱抵抗(R)は、以下の式(15)によって表すことができる。
 R=R+R+R+・・・+R  …(15)
 n種類の材料が並列で並んでいる場合は、合成熱抵抗(R)は、以下の式(16)によって表すことができる。このとき、R=θpnとする。
 1/R=1/R+1/R+1/R+・・・+1/R  …(16)
 次に、n種類の材料が直列で並んでいる場合の複合部材の合成熱伝導率を算出する。この場合、n種類の材料の熱移動方向の断面積(A)は全て等しいものとする。即ち、A=A=A=・・・=A=A[m]とすると、各材料の熱抵抗(R)は、単位断面積あたりの熱抵抗(θdn)を用いて以下の式(17)によって表される。
 R=θ/A  …(17)
 式(15)を式(17)及び式(13)を用いて変形すると、以下の式(18)が得られる。
 R=(θd1+θd2+θd3+・・・+θdn)/A
 =(d/k+d/k+d/k+・・・+d/k)/A  …(18)
 複合部材の合成熱伝導率をκとすると、複合部材の総厚みはΣdであるから、合成熱伝導率(κ)は、以下の式(19)のように表すこともできる。
 R=(Σd/κ)/A  …(19)
 式(18)及び式(19)より、厚み方向の合成熱伝導率(κ)は、以下のように表すことができる。
 κ=Σd/Σ(d/k
 =(d+d+d+・・・+d)/(d/k+d/k+d/k+・・・+d/k
 また、n種類の材料が並列で並んでいる場合の複合部材の合成熱伝導率を算出する。この場合、n種類の材料の熱移動方向の厚みは全て等しいものとする。即ち、d=d=d=・・・=d[m]とする。n種類の材料の熱移動方向の断面積をそれぞれA[m]とすると、各材料の熱抵抗(R)は面方向の熱抵抗(θpn)を用いて次のように表せる。
 R=θpn  …(20)
 式(16)を式(20)及び式(14)を用いて変形すると、以下の式(21)が得られる。
 1/R=1/θp1+1/θp2+1/θp3+・・・+1/θpn
   =d+d+d+・・・+d    …(21)
 複合部材の合成熱伝導率をκとすると、複合部材の総厚みはΣdであるから、面方向の合成熱伝導率(κ)は、以下の式(22)のように表すこともできる。
 R=κ・Σd  …(22)
 式(21)及び式(22)より、面方向の合成熱伝導率(κ)は、以下のように表すことができる。
κ=Σ(d)/Σd
 =(d+d+d+・・・+d)/(d+d+d+・・・+d)  …(23)
 充填部材1Bのような櫛形構造の仕切り部材であっても、中空構造、格子構造等の充填部材であっても、空洞部位の材質である空気の熱伝導率および空洞部位の厚みや断面積を与えることで、合成熱伝導率を算出することができる。
 充填部材の厚み方向と直交する二面のうちの一方(例えば、面1a~1dのいずれか)の平均温度が180℃を超える場合であって、充填部材の厚み方向の熱伝導率が2.0×10-2W/m・K以上2.0W/m・K以下であり、かつ、前記面(例えば、面1a~1dのいずれか)の平均温度が80℃を超えない場合においては、充填部材の厚み方向の熱伝導率が5.0×10-2W/m・K以上50W/m・K以下であるようにするのが好ましい。
[充填部材の熱抵抗の調整方法]
 充填部材の単位面積当たりの厚み方向の熱抵抗(θ)を所望値とする方法について説明する。
 充填部材が2種類の材料A及び材料Bで構成されている場合、その厚み方向の熱抵抗は次のようにして所望値とされる。(図1Cの仕切り部材21が材料Aで構成され、伝熱シート22が材料Bで構成されている場合も、以下のようにして充填部材の厚み方向の熱抵抗を調整することができる。)
 材料Aを、単位面積当たりの厚み方向の熱抵抗(θ)が前記式(1)を満たす材料とする。材料Aの熱伝導率:k≦0.20[W/m・K]、厚み:d=1.0[mm]とすると、厚み方向の単位面積当たりの熱抵抗:θ=d/k≧(1.0×10-3)/0.20=5.0×10-3[m・K/W]である。
 材料Aは、例えば、ポリカーボネートやブチルゴム製の樹脂板等である。
 また、材料Bを、単位面積当たりの厚み方向の熱抵抗(θ)が前記式(2)を満たす材料とする。材料Bの熱伝導率:k≧0.25[W/m・K]、厚み:d=1.0[mm]とすると、単位面積当たりの熱抵抗:θ=d/k≦(1.0×10-3)/0.25=4.0×10-3[m・K/W]である。材料Bは、例えば、固体ではセラミックス、ガラス板、ポリエチレン等であり、液体では水、エチレングリコール、グリセリン等である。
 単位面積当たりの厚み方向の熱抵抗(θ)が温度T[℃]以上で上記式(1)を満たし、かつT[℃]未満で上記式(2)を満たす充填部材の第1の例として、図1Dの充填部材30からフレーム32を除いた充填部材、すなわち袋状構造物31と、流体材料34とからなる充填部材について説明する。
 この例においては、袋状構造物31は、T[℃]より高い温度に融点を持つ材料Aで形成されている。袋状構造物31の内部には、T[℃]において液体状態である流体材料34が充填されている。流体材料としては、上記材料Bのうち液体として例示された水、エチレングリコール、グリセリン等が好適である。
 前述の通り、開口31eはT[℃]付近に融点を持つ材料よりなる栓33で閉じられている。栓33の材料としては、プロピレン・ブチレン・エチレン三元共重合体、ポリプロピレン、ポリエチレン、エチレン・プロピレン共重合体、エチレン・アクリル酸共重合体、プロピレン・アクリル酸共重合体、ナイロン、ポリエチレンテレフタレート、スズ・鉛合金、スズ・ビスマス合金、および、鉛・ビスマス合金等が例示される。栓33が溶融した場合、流体材料34が開口部33から外部に流れ落ちる。
 袋状構造物の外形形状は、直方体以外の形状を有していてもよい。また、図1Dでは、開口部は袋状構造物の下面に設けられるが、開口部から材料Bが袋状構造物の外部に流れ落ちる位置であれば、開口部は側面に設けられても良い。なお、充填部材1は、上述した材料Bが充填された複数の袋状構造物が横方向又は縦方向に並べて形成された構造であってもよい。また、栓は必ずしも必須ではない。材料Cの融点は材料Bと同等かそれ以下でもよい。栓を材料Bで形成する場合もあり得る。材料Bは必ずしもT[℃]において液体で無くてもよく、液体以外の流体状態である場合もあり得る。
 このような袋状構造物31と流体材料34とからなる充填部材は、表面温度がT[℃]未満の場合には、袋状構造物内の流体材料によって単位面積当たりの厚み方向の熱抵抗(θ)が上記式(2)を満たす。また、充填部材の表面温度がT[℃]以上になった場合には、流体材料が袋状構造物の外部に流出するため、充填部材は、袋状構造物で構成されることになり、充填部材の単位面積当たりの厚み方向の熱抵抗(θ)は上記式(1)を満たす。
 単位面積当たりの厚み方向の熱抵抗(θ)が温度T[℃]以上で上記式(1)を満たし、かつT[℃]未満で上記式(2)を満たす充填部材の第2の例として、図1Dの充填部材1Dについて説明する。
 この例においては、材料Aよりなる袋状構造物31の内部に材料Aよりなる格子状のフレーム32が設けられている。袋状構造物31の内部のうち、フレーム32以外の部分は、T[℃]において液体状態である、材料Bよりなる流体材料34で満たされている。開口31eは、T[℃]付近に融点を持つ材料Cで形成される栓33で閉じられている。T[℃]付近において、材料Cで形成された栓33が溶融した場合に、流体材料34が開口31eから流出する。この充填部材1Dにあっては、表面温度がT[℃]未満の場合には、袋状構造物31内に充填された流体材料によって単位面積当たりの厚み方向の熱抵抗(θ)は上記式(2)を満たす。また、充填部材1Dの表面温度がT[℃]以上になった場合には、流体材料34が流出するため、充填部材1Dは材料Aよりなる袋状構造物31及びフレーム32で構成されることになり、この充填部材の単位面積当たりの厚み方向の熱抵抗(θ)は上記式(1)を満たす。
〔組電池〕
 本発明の組電池は、複数のパウチ型単電池と前述の本発明の充填部材とを含み、パウチ型単電池が該充填部材により仕切られているものである。
<パウチ型単電池>
 本発明において、「パウチ型単電池」とは、単電池内の正極シート、負極シート、セパレータシート、端子など単電池内の構成部材を充填する外装材として、樹脂製のシート若しくはフィルム又はそれらの積層体若しくはこれらと金属箔との積層体を用いた単電池を意味する。
 リチウムイオン二次電池は多様な形態で製造可能であるが、代表的には角形リチウムイオン二次電池、円筒形リチウムイオン二次電池、およびパウチ形リチウムイオン二次電池がある。この中で、パウチ形リチウムイオン二次電池は、一般に電極組立品およびこれを収容するケースよりなる。電極組立品はリチウムイオンを吸蔵及び放出できる炭素材を金属シートに塗布した負極シート、リチウム含有酸化物を金属シートに塗布した正極シート、および、前記負極と正極の間に介在しこれらを電気的に絶縁させるセパレータシートを備える。電極組立品は負極シート及び正極シートのそれぞれから外部に電力を取り出すための端子が取り付けられている。
 パウチ形リチウムイオン二次電池は高分子フィルムとアルミニウムなどの金属シートをラミネートして形成したシートで作られたパウチ形ケースを備える。前記ケースは前記高分子フィルムとアルミニウムなどの金属シートをラミネートして形成したシート2枚を接着ないしは融着させることで作られ、内部に電極組立品を収容できる空間部が形成されている。
 パウチ形リチウムイオン二次電池は、電極組立品を空間部が形成されたパウチ形ケースに入れた後、電解液を注入する。その後、パウチ形ケースの周辺部を接着ないしは融着することで封止し、パウチ形リチウムイオン二次電池を完成する。
 パウチ型リチウムイオン二次電池はシートで形成されたパウチ型ケースを使用するため、軽くて多様な形態のリチウム二次電池を製造することができ、製造工程も単純であるという長所がある。パウチ形リチウムイオン二次電池は組立が容易であり、電池の形態及び大きさに制約がすくないが、通常、概略、箱型形状を有しており、その縦及び横の長さは5mm~500mm程度、厚みは、0.5mmから30mm程度で作られる。
 一方、パウチ型ケースを使用するため、円筒型や角型電池に比べて金属缶を有さないことから、外部に対する除熱特性に劣るという問題があり、電池の充放電性能や安全性にも大きな影響を及ぼす。また、箱型形状に作った場合にも、側面を平坦にしにくく、電池の冷却のため電池外部の冷却板に直接、側面を接触させることが難しいという問題がある。
 なお、組電池を構成するパウチ型単電池における「異常発熱状態」とは、パウチ型単電池内部で短絡の発生や発熱を伴いながら、分解反応によってパウチ型単電池の一部ないし全領域が200℃以上になる状態を意味する。また、「熱暴走」とは、パウチ型単電池が異常発熱状態に至り、パウチ型単電池の発熱速度が冷却速度を上回って温度制御不能になる現象をいう。「通常時」(常温)とは、パウチ型単電池が激しく容量劣化することなく正常に充放電する温度の上限以下の状態である。具体的には、メーカーによって指定された使用上限温度以下、典型的には80℃以下の状態である。
 パウチ型単電池における単電池としては、例えば、リチウムイオンを吸蔵・放出可能な正極及び負極、並びに電解質を備えるリチウムイオン二次電池が挙げられる。また、リチウムイオン二次電池以外に、リチウムイオン全固体電池、ニッケル水素電池、ニッケルカドミウム電池、鉛蓄電池等の二次電池を適用し得る。
 上述の通り、本発明の組電池に用いられるパウチ型単電池は、通常、外装材により包囲されている。この外装材は樹脂層と金属箔層とを含む層状構造を有することが好ましい。
 外装材を構成する樹脂層としては、プロピレン・ブチレン・エチレン三元共重合体、ポリプロピレン、ポリエチレン、エチレン・プロピレン共重合体、エチレン・アクリル酸共重合体、プロピレン・アクリル酸共重合体、ナイロン、及びポリエチレンテレフタレートからなる群から選ばれる1種の単一層又はこれらを2種以上組み合わせた複合層等が挙げられる。また、外装材を構成する金属箔層としては、アルミニウム、銅、ステンレス鋼等があげられ、アルミニウム箔は、純アルミニウム単独であってもよいが、アルミニウム合金が好ましい。当該アルミニウム箔に使用されるアルミニウム合金としては、例えば、アルミニウム-Fe系合金、アルミニウム-Mn系合金等が挙げられ、好ましくはアルミニウム-Fe系合金が挙げられる。
 図1Cに例示するように、本発明の組電池は、冷却プレートの上に配置されたパウチ型単電池(パウチ型セル)及び充填部材(図1Cの場合は仕切り部材21と伝熱シート22とから構成された充填部材20)を有することが好ましい。このように構成された組電池では、パウチ型単電池が定常状態の範囲において発熱した場合、充填部材の面方向に熱が十分に移動する。このため、パウチ型単電池の熱が十分に冷却プレートに伝わるので、パウチ型単電池が効率的に冷却される。
 冷却プレートの材質としては、金属板が挙げられ、金属としてはアルミ、銅、スチール、SUS等が挙げられる。また、金属板の中に液体流路があって、冷媒が流通しているものであってもよい。また、金属板に液体流路を持つチューブまたはヒートシンクが接触しているものであってもよい。冷却プレートとしては、中でもアルミ板及びアルミ板と冷媒流通構造一体型(冷媒が通る中空構造を持つアルミプレート様の構造)が好ましい。冷却プレートの厚みは0.5mm以上30mm以下が好ましく、冷却プレートの内部に冷媒流路を持たない場合の厚みは0.5mm以上10mm以下が好ましく、0.5mm以上2mm以下がより好ましい。
 以下に、実施例により本発明を更に具体的に説明するが、本発明は、これらの実施例に限定されるものではない。
[参考比較例1]
 2次元モデル化された図2Aに示す組電池のシミュレーションモデル40を用いて伝熱特性をシミュレーションした。このシミュレーションモデル40では、10個のパウチ型単電池41間の全てに充填部材42が配置されている。パウチ型単電池41及び充填部材42は、冷却板43上に載置されている。
 パウチ型単電池41は、非常に薄いプラスチックフィルムで包囲されているが、ここでは、フィルムによる熱抵抗が小さいため、モデル化には含めない。
 パウチ型単電池41及び充填部材42の底面と冷却板43との接触が不十分と仮定し、これらの境界面では断熱境界になると想定した。
 表1にそれぞれの部材の寸法を示す。
Figure JPOXMLDOC01-appb-T000001
[参考比較例2]
 図2Bに示す組電池のシミュレーションモデル50を用いてシミュレーションした。このシミュレーションモデル50では、10個の缶セル(パウチ型単電池が缶で包囲されたもの)51間の全てに充填部材52が配置されている。缶セル51及び充填部材52は冷却板53上に載置されている。缶と冷却板53は密着していると想定した。表2にそれぞれの部材の寸法を示す。
Figure JPOXMLDOC01-appb-T000002
 次に使用している各構成部材の物性を表3に示す。充填部材52は、100℃で熱伝導率が切替わる材料とした。シミュレーションでは、各構成部材をメッシュと呼ばれる微小領域に分割して、伝熱解析を行った。充填部材52を構成するすべての微小領域の温度が100℃になったときに熱伝導率が切り替わるとした。
 ここで、充填部材の厚み方向に直交する二面のうち一面の平均温度が180℃を超える場合については100℃以上の熱伝導率を適用し、充填部材の厚み方向に交差する二面の双方の平均温度が80℃を超えない場合については100℃未満の熱伝導率を適用した。
Figure JPOXMLDOC01-appb-T000003
[熱暴走のシミュレーション]
 図2A,2Bに示す組電池の一番左のパウチ型単電池が熱暴走すると仮定した。パウチ型単電池の初期温度は700℃、それ以外の部材は23℃とした。境界条件として、外周部は空気と接触すると仮定し、自然対流の熱伝達境界条件(4.0W/m・K)を与えた。ここで、組電池全体の初期温度を25℃とし、外周部の空気の温度も25℃とした。
 図2Cに、隣接するパウチ型単電池の最高温度の経時変化を示す。実施例1の場合、最高温度は253.6℃、実施例2の場合、最高温度は160.8℃となり、実施例2の方が実施例1に比べて、著しく温度上昇が小さくなる結果が得られた。この結果から、パウチ型単電池の熱を冷却板の方に逃がすための伝熱シートをパウチ型単電池と冷却板との間に配置することが好ましいことが認められる。
[実施例1]
 この知見に基づいて、図2Dに示すシミュレーションモデル40’について伝熱解析を行った。
 このシミュレーションモデル40’では、充填部材42の代わりに、図1Cに示される伝熱シート22と仕切り部材21とを積層した充填部材20を用いたものである。ただし、パウチ型単電池41の底面と伝熱シート22の延出片22bとの接触が不十分と仮定し、これらの境界面では断熱境界になると想定した。表4にそれぞれの部材の寸法を示す。
Figure JPOXMLDOC01-appb-T000004
 仕切り部材、パウチ型単電池、冷却板の物性は表3と同じものとした。伝熱シートの熱伝導率[W/m・K]を0.1、0.2、0.5、1.0、10、50、100、500、1000、5000、10000と変更して、隣接パウチ型単電池の最高温度をシミュレーションした。結果を表5に示す。
 なお、仕切り部材は、表3の充填部材の欄に記載の通り、熱伝導率が100℃で切り替わる。
[比較例1]
 実施例1において、仕切り部材を、熱伝導率が切替わらない0.15W/m・K一定のものとしたこと以外は同一条件としてシミュレーションを行った。結果を表5に示す。表5の「最高温度の差」は、実施例1での最高温度と比較例1での最高温度の差を表す。
Figure JPOXMLDOC01-appb-T000005
 表5より、伝熱シートの熱伝導率の大きさに拘わらず、100℃で仕切り部材の熱伝導率を切り替える方が、隣接パウチ型単電池の最高温度が低くなることが認められる。ただし、熱伝導率が小さ過ぎる場合と大き過ぎる場合は熱伝導率が切替わりがない場合とある場合との最高温度の差Δtが小さくなる傾向が見られる。即ち、伝熱シートは、熱伝導率がある大きさ(ここでは10.0W/m・K程度)で切替わる場合に効果が最も良好になることが認められる。
 熱伝導率が100℃で切替わる仕切り部材を用いた実施例1において、仕切り部材と伝熱シートを接合したときの100℃未満の場合と100℃以上の場合の厚み方向の熱抵抗は式(18)を用いて、A=1.0として求めた結果を表6に示し、面方向の熱抵抗は式(21)を用いて求めた結果を表7に示す。熱伝導率が切替わらない場合は、表6,7における100℃以上の合成熱抵抗と同じになる。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表6から伝熱シートの熱抵抗が小さいほど、面方向の100℃未満の合成熱抵抗および100℃以上の合成熱抵抗は双方近づくが、この場合であっても温度によって厚み方向の合成抵抗が異なる、熱抵抗の切替えがある方が隣接セルの最大温度を低くする効果が見られた。
[実施例2と比較例2]
 さらに、実施例1と比較例1と同様の解析を伝熱シートの厚みを変更せずに、仕切り部材の厚みを0.5mmに薄くした場合について検討を行った。
Figure JPOXMLDOC01-appb-T000008
 仕切り部材、パウチ型電池、冷却板の物性は表3と同じものとした。結果を表9に示す。表9の「最高温度差」は、実施例2での最高温度と比較例2での最高温度の差を表す。
Figure JPOXMLDOC01-appb-T000009
 表9より、仕切り部材の厚みを薄くした場合であっても、伝熱シートの熱伝導率の大きさに関わらず、100℃で仕切り部材の熱伝導率を切り替える方が、隣接パウチ型電池の電極の最高温度が低くなることが認められる。ただし、熱伝導率が小さ過ぎる場合と大き過ぎる場合は熱伝導率の切替わりがない場合とある場合との最高温度の差Δtが小さくなる傾向が見られる。即ち、伝熱シートは、熱伝導率がある大きさ(ここでは10.0W/m・K程度)で切替わる場合に効果が最も良好になることが認められる。
 表9の隣接セルの電極最大温度が表5に比べて全般的に低くなっている原因として、熱暴走セルの左側にある仕切り部材21の厚みが薄くなることで、熱暴走セルの放熱が進み易くなったと考えられる。つまり、左端には仕切り部材21を設けずに伝熱シートのみにすることが望ましい。
 熱伝導率が100℃で切替わる仕切り部材を用いた実施例2において、仕切り部材と伝熱シートを接合したときの100℃未満の場合と100℃以上の場合の厚み方向の熱抵抗は式(18)を用いて、A=1.0として求めた結果を表10に示し、面方向の熱抵抗は式(21)を用いて求めた結果を表11に示す。熱伝導率が切替わらない比較例2の場合は、表10,11における100℃以上の合成熱抵抗と同じになる。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
[実施例3と比較例3]
 次に、表3にある充填部材の熱伝導率が100℃未満の場合と100℃以上の熱伝導率を表12のように変更した場合について、熱伝導率が切り替わらない場合を比較例3とし、熱伝導率が切り替わる場合を実施例3とする。熱伝導率が切り替わらない場合の熱伝導率は100℃以上の熱伝導率を用いた。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 表13より、伝熱シートの熱伝導率の大きさに関わらず、100℃で仕切り部材の熱伝導率を切り替える方が、隣接パウチ型単電池の最高温度が低くなることが認められる。ただし、熱伝導率が小さ過ぎる場合と大き過ぎる場合は熱伝導率の切替わりがない場合とある場合との最高温度の差Δtが小さくなる傾向が見られる。即ち、伝熱シートは、熱伝導率がある大きさ(ここでは10.0W/m・K程度)で切替わる場合に効果が最も良好になることが認められる。
 熱伝導率が100℃で切替わる仕切り部材を用いた実施例3において、仕切り部材と伝熱シートを接合したときの100℃未満の場合と100℃以上の場合の厚み方向の熱抵抗は式(18)を用いて、A=1.0として求めた結果を表14に示し、面方向の熱抵抗は式(21)を用いて求めた結果を表15に示す。熱伝導率が切替わらない比較例3の場合は、表14,15における100℃以上の合成熱抵抗と同じになる。
 表5の最高温度の差Δtに比べて表13の最高温度の差Δtは小さい。つまり100℃未満の熱伝導率(または熱抵抗)と100℃以上の熱伝導率(または熱抵抗)の差が小さいと最高温度の差Δtも小さくなる傾向が見られた。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2018年9月14日付で出願された日本特許出願2018-172560に基づいており、その全体が引用により援用される。
 1A,1B 充填部材
 10 組電池
 11 冷却板
 12 パウチ型単電池
 20 充填部材
 21 仕切り部材
 22 伝熱シート
 30 充填部材
 31 袋状構造物
 32 フレーム
 33 栓
 34 流動材料
 40,40’,50 組電池のシミュレーションモデル
 41 パウチ型単電池
 51 缶セル

 

Claims (10)

  1.  組電池内のパウチ型単電池間に介在される充填部材であって、
     厚み方向と直交方向の、第1の面及びそれと反対側の第2の面を有し、
     以下に定義されるθd1及びθd2が下記式(1)及び(2)のそれぞれを満足し、θが下記式(3)を満足し、かつθd1>θd2を満たす充填部材。
     θd1≧3.0×10-3(m・K)/W    (1)
     θd2≦8.0×10-3(m・K)/W    (2)
     0.5K/W≦θp1≦1000K/W     (3)
     0.5K/W≦θp2≦1000K/W     (4)
    θd1:前記第1及び第2の面のうち一方の面の平均温度が180℃を超える場合における厚み方向の単位面積当たりの熱移動抵抗
    θd2:前記第1の面及び第2の面の双方の平均温度が80℃を超えない場合における厚み方向の単位面積当たりの熱移動抵抗
    θp1:前記第1及び第2の面のうち一面の平均温度が180℃を超える場合における面方向の熱移動抵抗
    θp2:前記第1及び第2の面の双方の平均温度が80℃超えない場合における面方向の熱移動抵抗
  2.  前記充填部材は、仕切り部材及び伝熱シートを含み、
     前記第1及び第2の面の一方の面の平均温度が180℃を超える場合において、該仕切り部材の厚み方向の熱伝導率が2.0×10-2W/m・K以上2.0W/m・K以下であり、
     該仕切り部材の厚み方向の第1及び第2の二面の双方の平均温度が80℃を超えない場合において、仕切り部材の厚み方向の熱伝導率が5.0×10-2W/m・K以上5.0×10W/m・K以下であり、
     該仕切り部材の温度に拘わらず、伝熱シート(B)の面方向の熱伝導率が1.0×10W/m・K以上2.0×10W/m・K以下である、請求項1に記載の充填部材。
  3.  前記伝熱シートの厚みが0.02~2mmである、請求項2に記載の充填部材。
  4.  厚みが0.2~10mmである、請求項2又は3に記載の充填部材。
  5.  厚みが0.2~10mmである、請求項1に記載の充填部材。
  6.  複数のパウチ型単電池と、各パウチ型単電池間に介在された請求項1~5のいずれか1項に記載の充填部材とを含む組電池。
  7.  前記パウチ型単電池間に介在された前記充填部材の前記第1の面及び第2の面がそれぞれ前記パウチ型単電池に対面している、請求項6に記載の組電池。
  8.  前記パウチ型単電池が外装材により包含されており、該外装材は樹脂層と金属箔層とを含む層状構造を有する、請求項6又は7に記載の組電池。
  9.  前記パウチ型単電池の厚みがLである場合に、充填部材の厚みがL/50~L/10である、請求項6~8のいずれか1項に記載の組電池。
  10.  前記充填部材は請求項2~4のいずれか1項に記載の充填部材であり、
     前記パウチ型単電池の厚みがLである場合に、前記伝熱シートの厚みがL/1000~L/10である、請求項6~9のいずれか1項に記載の組電池。
PCT/JP2019/036283 2018-09-14 2019-09-17 充填部材及び組電池 WO2020054875A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19859019.2A EP3819979A4 (en) 2018-09-14 2019-09-17 FILLER ELEMENT AND BATTERY PACK
KR1020217001477A KR20210056998A (ko) 2018-09-14 2019-09-17 충전 부재 및 조전지
JP2020546242A JP7306401B2 (ja) 2018-09-14 2019-09-17 充填部材及び組電池
CN201980052468.6A CN112585803B (zh) 2018-09-14 2019-09-17 填充构件及电池组
US17/164,896 US11929478B2 (en) 2018-09-14 2021-02-02 Filling member and battery pack

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-172560 2018-09-14
JP2018172560 2018-09-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/164,896 Continuation US11929478B2 (en) 2018-09-14 2021-02-02 Filling member and battery pack

Publications (1)

Publication Number Publication Date
WO2020054875A1 true WO2020054875A1 (ja) 2020-03-19

Family

ID=69777660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036283 WO2020054875A1 (ja) 2018-09-14 2019-09-17 充填部材及び組電池

Country Status (6)

Country Link
US (1) US11929478B2 (ja)
EP (1) EP3819979A4 (ja)
JP (1) JP7306401B2 (ja)
KR (1) KR20210056998A (ja)
CN (1) CN112585803B (ja)
WO (1) WO2020054875A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6930673B2 (ja) * 2019-01-18 2021-09-01 大日本印刷株式会社 蓄電デバイス、電動自動車及び蓄電デバイスの製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009283148A (ja) * 2008-05-19 2009-12-03 Furukawa Battery Co Ltd:The 組電池モジュール
JP2010097693A (ja) 2008-10-14 2010-04-30 Toyota Motor Corp 蓄電装置
JP2010165597A (ja) 2009-01-16 2010-07-29 Toyota Motor Corp 蓄電装置
US20130323564A1 (en) * 2012-06-04 2013-12-05 Graftech International Holdings Inc. Battery Pack Assembly
WO2018124231A1 (ja) 2016-12-27 2018-07-05 三菱ケミカル株式会社 仕切り部材、組電池及び組電池の熱伝達制御方法
JP2018172560A (ja) 2017-03-31 2018-11-08 三井化学株式会社 ゴム組成物

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101112442B1 (ko) * 2008-10-14 2012-02-20 주식회사 엘지화학 냉각 효율성이 향상된 전지모듈 어셈블리
JP5740103B2 (ja) 2009-10-19 2015-06-24 日東電工株式会社 熱伝導部材、及びそれを用いた組電池装置
TWI419391B (zh) 2009-12-25 2013-12-11 Ind Tech Res Inst 電池系統中的散熱與熱失控擴散防護結構
JP2012084347A (ja) 2010-10-08 2012-04-26 Nitto Denko Corp 組電池装置
JP2012124319A (ja) 2010-12-08 2012-06-28 Jm Energy Corp 蓄電デバイス
WO2015156155A1 (ja) * 2014-04-11 2015-10-15 日産自動車株式会社 非水電解質二次電池
CN109643778B (zh) 2016-09-27 2023-07-11 松下知识产权经营株式会社 电池模块

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009283148A (ja) * 2008-05-19 2009-12-03 Furukawa Battery Co Ltd:The 組電池モジュール
JP2010097693A (ja) 2008-10-14 2010-04-30 Toyota Motor Corp 蓄電装置
JP2010165597A (ja) 2009-01-16 2010-07-29 Toyota Motor Corp 蓄電装置
US20130323564A1 (en) * 2012-06-04 2013-12-05 Graftech International Holdings Inc. Battery Pack Assembly
WO2018124231A1 (ja) 2016-12-27 2018-07-05 三菱ケミカル株式会社 仕切り部材、組電池及び組電池の熱伝達制御方法
JP2018172560A (ja) 2017-03-31 2018-11-08 三井化学株式会社 ゴム組成物

Also Published As

Publication number Publication date
JPWO2020054875A1 (ja) 2021-09-24
KR20210056998A (ko) 2021-05-20
EP3819979A1 (en) 2021-05-12
JP7306401B2 (ja) 2023-07-11
US11929478B2 (en) 2024-03-12
CN112585803B (zh) 2023-12-29
CN112585803A (zh) 2021-03-30
EP3819979A4 (en) 2022-04-13
US20210159559A1 (en) 2021-05-27

Similar Documents

Publication Publication Date Title
EP3163673B1 (en) Battery cell cooling device and battery module including same
JP6147346B2 (ja) 電池モジュール
KR101833526B1 (ko) 수냉식 냉각구조를 포함하는 전지모듈
KR101272524B1 (ko) 배터리 셀용 방열판 및 이를 갖는 배터리 모듈
EP2851991B1 (en) Battery module
KR101359905B1 (ko) 조립 생산성이 향상된 냉각부재와 이를 포함하는 전지모듈
KR101212369B1 (ko) 리튬 2차 전지 시스템의 냉각구조
KR101910244B1 (ko) 냉각 성능이 개선된 배터리 모듈
CN110114903B (zh) 分隔构件、电池组和电池组的传热控制方法
JP6650472B2 (ja) エッジ冷却方式の部材を含む電池パック
KR102051109B1 (ko) 전지 모듈
JP7055203B2 (ja) 冷却効率が向上したバッテリーモジュール及びそれを含むバッテリーパック
JP2012014938A (ja) 電池モジュール
KR20160147565A (ko) 배터리 셀 냉각장치
KR101761825B1 (ko) 배터리 모듈 및 그를 구비하는 배터리 팩
WO2020054875A1 (ja) 充填部材及び組電池
KR102352295B1 (ko) 냉각 효율이 향상된 배터리 모듈
WO2018180254A1 (ja) 電池パック
KR102193166B1 (ko) 배터리 모듈
US11901535B2 (en) Partition member, assembled battery, and heat transfer control method of assembled battery
WO2014103592A1 (ja) 電池装置
JP2023531641A (ja) 電池パックおよびこれを含むデバイス
KR20240052319A (ko) 개선된 냉각 구조를 갖는 전지 모듈 및 이를 포함하는 전지 팩
KR20240045611A (ko) 냉각 부재 및 이를 포함하는 전지 팩

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19859019

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020546242

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019859019

Country of ref document: EP

Effective date: 20210208

WWE Wipo information: entry into national phase

Ref document number: 2101000973

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE