WO2020054164A1 - 運転支援システム及び方法、自動プランナ、並びにコンピュータ可読媒体 - Google Patents

運転支援システム及び方法、自動プランナ、並びにコンピュータ可読媒体 Download PDF

Info

Publication number
WO2020054164A1
WO2020054164A1 PCT/JP2019/024164 JP2019024164W WO2020054164A1 WO 2020054164 A1 WO2020054164 A1 WO 2020054164A1 JP 2019024164 W JP2019024164 W JP 2019024164W WO 2020054164 A1 WO2020054164 A1 WO 2020054164A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
target state
learning
knowledge
inference
Prior art date
Application number
PCT/JP2019/024164
Other languages
English (en)
French (fr)
Inventor
駿平 窪澤
貴士 大西
慶雅 鶴岡
鷲尾 隆
Original Assignee
日本電気株式会社
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社, 国立研究開発法人産業技術総合研究所 filed Critical 日本電気株式会社
Priority to US17/274,922 priority Critical patent/US20220058501A1/en
Priority to JP2020546702A priority patent/JP7058387B2/ja
Publication of WO2020054164A1 publication Critical patent/WO2020054164A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/04Inference or reasoning models
    • G06N5/043Distributed expert systems; Blackboards
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/02Knowledge representation; Symbolic representation
    • G06N5/022Knowledge engineering; Knowledge acquisition
    • G06N5/025Extracting rules from data
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/004Artificial life, i.e. computing arrangements simulating life
    • G06N3/006Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/02Knowledge representation; Symbolic representation
    • G06N5/022Knowledge engineering; Knowledge acquisition

Definitions

  • the present disclosure relates to a driving assistance system and method, an automatic planner, and a computer-readable medium.
  • Patent Literature 1 generates an adjustment rule for appropriately and easily adjusting an input to a system such that a desired output is obtained from a system having multiple inputs and outputs and having nonlinear characteristics.
  • An adjustment rule generation device is disclosed.
  • Select Further, the adjustment rule generation device generates and outputs an adjustment rule according to a predetermined format for the selected combination of the operation amount and the control amount.
  • the adjustment rule generation device generates an adjustment rule using the dependent characteristic data and the control amount correlation characteristic data.
  • the dependency characteristic data is data indicating whether or not there is a dependency between the operation amount to be adjusted and the control amount (input and output).
  • the control amount correlation characteristic data is data that qualitatively indicates what changes in the control amount will be for each operation amount.
  • the control amount correlation characteristic data there are three characteristics between two arbitrary control amounts: "change in the same direction as each other", “change in the opposite direction to each other", and “change only one control amount”. are categorized.
  • the adjustment rule generation device can determine which control amount should be adjusted using which operation amount by using the dependency characteristic data.
  • the adjustment rule generation device estimates the adjustment characteristic by narrowing down the relationship between the control amount and the operation amount of interest using the dependent characteristic data and focusing on the control amount correlation characteristic data for that part.
  • the adjustment rule generation device estimates, for example, an adjustment characteristic indicating that when the operation amount X1 is operated, the control amounts Y2 and Y3 change in the same direction. In this case, if the control amounts Y2 and Y3 are substantially the same and both are outside the allowable deviation, the adjustment rule generation device adjusts the deviations using the operation amount X1 that changes these control amounts Y2 and Y3 in the same direction. can do.
  • the adjustment rule generation device outputs an adjustment rule in which such an adjustment rule is described in a predetermined format.
  • Patent Document 1 by referring to the adjustment rule, it is possible to determine which operation amount should be operated when there is a deviation in the control amount. However, in Patent Literature 1, it is not possible to determine in what order a plurality of operation amounts should be operated in a case where the dependency relationship is complicated. In addition, in Patent Literature 1, it is only possible to determine which operation amount should be operated, and it is not possible to determine the operation content in the operation.
  • the present disclosure provides an inference knowledge including a first state of a system driven based on an operation procedure including an order of operation elements and an operation amount of each operation element, and a relation between the states of the system.
  • target state inference means for inferring a target state of the system and a partial target state from the first state to the target state based on quantitative knowledge including numerical knowledge in the system, and an operation derivation rule
  • An operation sequence inference unit that infers an operation for transitioning to the partial target state based on the learning setting generation unit that generates a learning setting of the inferred operation based on a learning setting derivation rule;
  • a driving support system including: a learning agent that creates an operation content of the operation based on an operation learning setting.
  • the present disclosure also provides a first state of a system operated based on an operation procedure including an order of operation elements and an operation amount of each operation element, inference knowledge including a relationship between states of the system, and a number in the system.
  • State inference means for inferring a target state of the system and a partial target state from the first state to the target state based on quantitative knowledge including target knowledge, and the partial state based on an operation derivation rule.
  • An operation sequence inference means for inferring an operation for transitioning to a target state, and a learning setting for the inferred operation is generated based on a learning setting derivation rule, and output to a learning agent for creating an operation content in the operation.
  • An automatic planner is provided that includes a learning setting generation unit that performs the learning setting.
  • the present disclosure relates to a first state of a system driven based on an operation procedure including an order of operation elements and an operation amount of each operation element, inference knowledge including a relationship between states of the system, and numerical knowledge in the system.
  • inference knowledge including a relationship between states of the system
  • numerical knowledge including a relationship between states of the system
  • a driving support method is provided for inferring an operation, generating a learning setting of the inferred operation based on a learning setting derivation rule, and outputting the learning setting of the operation to a learning agent that creates an operation content in the operation.
  • the present disclosure relates to a first state of a system driven based on an operation procedure including an order of operation elements and an operation amount of each operation element, inference knowledge including a relationship between states of the system, and numerical knowledge in the system.
  • inference knowledge including a relationship between states of the system
  • numerical knowledge including a relationship between states of the system
  • a computer readable medium is provided.
  • the driving support system and method, the automatic planner, and the computer-readable medium according to the present disclosure can output what operation should be performed in the system and how.
  • FIG. 1 is a block diagram schematically illustrating a driving support system according to the present disclosure.
  • FIG. 1 is a block diagram illustrating a driving support system according to an embodiment of the present disclosure.
  • 5 is a flowchart illustrating an operation procedure in the driving support system.
  • FIG. 2 is a block diagram showing an example of a plant.
  • FIG. 2 is a block diagram illustrating a configuration example of an information processing device.
  • FIG. 1 schematically illustrates a driving support system according to the present disclosure.
  • the driving support system 10 includes a target state inference unit 11, an operation sequence inference unit 12, a learning setting generation unit 13, and a learning agent 14.
  • the target state inference means 11 determines the target state based on the first state, the inference knowledge 21, and the quantitative knowledge 22 of the system operated based on the operation procedure including the order of the operation elements and the operation amount of each operation element.
  • Inference knowledge 21 includes the relationships between the states of the system.
  • Quantitative knowledge 22 includes numerical knowledge in the system.
  • the target state inference means 11 infers a partial target state from the first state to the target state based on the inference knowledge 21.
  • the operation sequence inference means 12 infers an operation for transitioning to the partial target state based on the operation derivation rule 23.
  • the operation derivation rule 23 includes, for example, information in which the state of the system before the transition, the operation to be performed, and the state of the system to which the transition is performed after the operation are performed are associated.
  • the learning setting generation unit 13 generates a learning setting of the inferred operation based on the learning setting derivation rule 24.
  • the learning setting derivation rule 24 includes, for example, information in which an operation is associated with a learning setting when the operation is performed.
  • the learning agent 14 creates an operation content in the operation based on the learning setting of the operation generated by the learning setting generation unit 13.
  • the target state after the operation and the partial target state until the target state is reached are inferred using the inference knowledge 21 and the quantitative knowledge 22. Further, an operation for transitioning to each partial state is inferred using the operation derivation rule 23, and a learning setting for the operation is generated using the learning setting derivation rule 24.
  • the learning agent 14 by creating the operation content of the operation based on the learning setting, how and how to perform the operation before reaching the target state (or the partial target state) Can be output to a user or the like.
  • the system can be controlled to a desired state.
  • FIG. 2 illustrates a driving support system according to an embodiment of the present disclosure.
  • the driving support system 100 includes an automatic planner 101, a learning agent 102, and a simulator 103.
  • the automatic planner 101, the learning agent 102, and the simulator 103 are configured using a computer device including, for example, a processor and a memory. The functions of these elements can be realized by the processor operating according to the program read from the memory.
  • the automatic planner 101, the learning agent 102, and the simulator 103 do not necessarily need to be configured as physically separated devices.
  • the automatic planner 101 and at least one of the learning agent 102 and the simulator 103 may be configured as the same device.
  • the automatic planner 101, the learning agent 102, and the simulator 103 do not necessarily need to be arranged at the same place.
  • the automatic planner 101 may be connected to at least one of the learning agent 102 and the simulator 103 via a network, and may transmit and receive information via the network.
  • the automatic planner 101 includes a state determination unit 111, a target state inference unit 112, an operation sequence inference unit 113, and a learning setting generation unit 114.
  • the state determination unit (state determination unit) 111 changes the state of a system such as a plant that is operated based on an operation procedure including the order of operation elements and the operation amount of each operation element to a state requiring operation (first state). Is determined.
  • the simulator 103 simulates a system driven based on an operation procedure.
  • the state determination unit 111 monitors the state of the system simulated by the simulator 103, and determines whether or not an operation is necessary.
  • the qualitative knowledge 201 is qualitative knowledge in a system such as a plant.
  • the qualitative knowledge 201 includes, for example, knowledge such as operation rules in a plant, dependencies between operation procedures, and what kind of operation should be performed to make a transition from one state to another state.
  • the qualitative knowledge 201 includes the inference knowledge 21, the operation derivation rule 23, and the learning setting derivation rule 24 of FIG.
  • Quantitative knowledge 202 is knowledge about numerical values in a system such as a plant.
  • the quantitative knowledge 202 includes knowledge about threshold values used for determination, indicated values of sensors and the like in a steady state, amounts of raw materials, and the like.
  • the quantitative knowledge 202 corresponds to the quantitative knowledge 22 in FIG.
  • the qualitative knowledge 201 and the quantitative knowledge 202 are stored in a device such as an auxiliary storage device accessible from the automatic planner 101.
  • the target state inference unit (target state inference unit) 112 determines the qualitative knowledge 201 and the quantitative knowledge 202 and the current system state when the state determination unit 111 determines that the state requires operation. Is inferred based on the target state. In addition, the target state inference unit 112 infers a partial target state before transitioning from the current state to the inferred target state based on the qualitative knowledge 201.
  • the qualitative knowledge 201 includes first inference knowledge that defines a state before an operation and a target state after the operation in association with each other, and second inference knowledge that defines a state transition between states.
  • the target state inference unit 112 infers a target state using the first inference knowledge. Further, the target state inference unit 112 uses the second inference knowledge to infer a partial target state in each stage from the transition from the current state to the target state. The target state inference unit 112 infers the partial target state of each stage by, for example, using the second inference knowledge and going back from the inferred target state to the current state.
  • the target state inference unit 112 corresponds to the target state inference means 11 in FIG.
  • the operation sequence inference unit (operation sequence inference means) 113 infers an operation for transitioning to each partial target state based on the operation derivation rules included in the qualitative knowledge 201.
  • the operation derivation rule includes, for example, information in which the state of the system before the transition, the operation to be performed, and the state of the system to which the transition is performed after the operation are performed are associated.
  • the operation sequence inference unit 113 infers a sequence of operations for transitioning from the current state or the previous partial target state to the next partial target state or the final target state based on the operation derivation rule.
  • the operation sequence inference unit 113 corresponds to the operation sequence inference means 12 in FIG.
  • the learning setting generation unit (learning setting generation unit) 114 generates a learning setting of each operation inferred by the operation sequence inference unit 113 based on the learning setting derivation rule included in the qualitative knowledge 201.
  • the learning setting derivation rule includes, for example, information in which an operation is associated with a learning setting when the operation is performed.
  • the learning settings include, for example, input variables to the learning agent 102, output variables of the learning agent 102, objective functions, and types of learning.
  • the learning setting generation unit 114 corresponds to the learning setting generation unit 13 in FIG.
  • the learning agent 102 learns (creates) operation contents of each operation based on the learning settings generated by the learning setting generation unit 114 of the automatic planner 101. At this time, the learning agent 102 acquires a quantitative response of the system from the simulator 103, and performs learning based on the acquired quantitative response. Additional information such as operational constraints in the system may be set in the learning agent 102.
  • the learning agent 102 corresponds to the learning agent 14 in FIG.
  • the learning agent 102 learns how much the valve should be opened when, for example, what kind of sensor value is used, for example, with the state where the operation is determined to be necessary as an initial state.
  • the learning agent 102 generates an operation procedure 203 including the operation content of each learned operation.
  • the learning agent 102 outputs the generated operation procedure 203 to the user.
  • the operation procedure 203 is generated when the state determination unit 111 detects a state requiring an operation, so that the user can know what operation should be performed in that state and how. it can.
  • FIG. 3 shows an operation procedure (driving support method) in the driving support system 10.
  • the user inputs the qualitative knowledge 201, the quantitative knowledge 202, and the initial state of the environment of the simulator 103 using an input device such as a keyboard and a mouse (not shown) (step S1).
  • the simulator 103 starts operating from the initial state input in step S1.
  • the state determination unit 111 of the automatic planner 101 acquires the current state (simulation value) from the simulator 103, and monitors the operation target environment (step S2).
  • the state determination unit 111 determines whether the current state is a state requiring an operation (step S3). For example, when the value of a certain sensor indicates an abnormal value, the state determination unit 111 determines that an operation is necessary. For example, when the value of the sensor indicates a normal value, the state determination unit 111 determines that the operation is not required.
  • step S3 If the state determination unit 111 determines that the operation is not required in step S3, the process returns to step S2 and continues monitoring the environment of the operation target. If the state determination unit 111 determines in step S3 that the state requires an operation, the state determination unit 111 notifies the target state inference unit 112 of the current state of the operation required state.
  • the target state inference unit 112 infers the target state after the operation based on the current state and the qualitative knowledge 201 and the quantitative knowledge 202 (Step S4).
  • the qualitative knowledge 201 includes, as the first inference knowledge, information in which the operation required state and the target state after the operation are associated, and the target state inference unit 112 performs such first inference knowledge in step S4. Is used to infer the final goal state.
  • the target state inference unit 112 infers a partial target state from the current state to the final target state based on the current state, the target state after the operation, and the qualitative knowledge 201 (step S5).
  • the qualitative knowledge 201 includes, as second inference knowledge, information logically describing a state transition (causal relation between states) from one state to another state, and the target state inference unit 112 determines in step S5 , Using such second inference knowledge to infer a partial goal state. In some cases, such as when it is possible to directly transition from the current state to the target state after the operation, the partial target state may not exist.
  • the operation sequence inference unit 113 transitions from the current state to the target state after the operation based on the current state, each partial target state, and the target state and the operation derivation rule included in the qualitative knowledge 201. Is inferred (step S6).
  • the operation sequence inference unit 113 hypothesizes, for example, a sequence of operations required to transition to the next state by using an operation derivation rule.
  • the learning setting generation unit 114 infers a learning setting for each operation included in the operation sequence inferred by the operation sequence inference unit 113 using the learning setting derivation rule included in the qualitative knowledge 201 (step S7). .
  • the learning setting generation unit 114 hypothesizes the learning setting of each operation using a learning setting derivation rule.
  • the learning setting generation unit 114 passes the generated learning setting to the learning agent 102.
  • the learning agent 102 performs learning based on the learning settings generated in step S7, and learns the operation content of each operation (step S8).
  • the learning agent 102 includes, for example, a learning device corresponding to each operation, and learns the operation content using the corresponding learning device.
  • the learning agent 102 outputs each operation and the operation content as an operation procedure 203 (step S9).
  • the automatic planner 101 may acquire the operation content of each operation from the learning agent 102 and output the operation procedure 203.
  • the operation procedure 203 is displayed on, for example, a display device (not shown). The user can know what and how to operate by referring to the operation procedure 203.
  • FIG. 4 shows an example of the plant.
  • a plant 300 including a tank 301 into which liquid A and liquid B are injected is considered as the plant.
  • the liquid A is injected into the tank 301 through an injection valve 302A, and the liquid B is injected through an injection valve 302B.
  • the flow meter 303A measures the injection amount of the liquid A.
  • the flow meter 303B measures the injection amount of the liquid B.
  • the water level gauge (level gauge) 305 measures the level of the liquid injected into the tank 301.
  • the thermometer 306 measures the temperature of the outside air around the tank 301.
  • the liquid A and the liquid B injected into the tank 301 are extracted from the tank 301 through the extraction valve 304.
  • components to be operated are the injection valve 302A, the injection valve 302B, and the extraction valve 304.
  • the simulator 103 simulates the behavior in such a plant 300.
  • the liquid B is lighter than the liquid A, and the liquid B floats on the liquid A in the tank. Further, it is assumed that the liquid A and the liquid B cannot be simultaneously injected. As for the order of injection, it is assumed that the liquid A is injected before the liquid B. The liquid A emits a large amount of heat when injected into the tank at one time. The liquid B also emits a large amount of heat when it is injected into the tank at one time. The supply amounts of the liquid A and the liquid B are assumed to change. Assume that the temperature of the tank needs to be kept below 60 degrees. Further, the temperature of the tank is assumed to be cooled by outside air.
  • the current state is that the tank 301 is empty, the extraction valve 304 is “open”, the injection valves 302A and 302B are “closed”, and the temperature of the outside air measured by the thermometer 306 is “ “It's hot.”
  • the state determination unit 111 determines that an operation is required.
  • the qualitative knowledge 201 holds inferential knowledge (first inference knowledge) that the liquid A and the liquid B are injected into the tank 301 as a target state after the operation for the state in which the tank 301 is empty.
  • the quantitative knowledge 202 holds information that the injection amount of the liquid A is “20 kg” and the injection amount of the liquid B is “30 kg” in a state where the outside air is “hot”.
  • the target state inference unit 112 determines that the target state after the operation is a state in which the liquid A and the liquid B are injected, the injection amount of the liquid A is 20 kg, and the injection amount of the liquid B is 30 kg. Infer that there is.
  • the qualitative knowledge 201 includes “empty (tank) ⁇ extraction stop (tank)” and “extraction stop (tank) ⁇ state in which liquid A is being injected (tank) as information (second inference knowledge) regarding transition between states. ) "And” the state where the liquid A is being injected (tank) ⁇ the state where only the liquid A is injected (the tank) ". “ ⁇ ” indicates that the state (consequent) described after “ ⁇ ” can be derived from the state (condition, antecedent) described before “ ⁇ ”. “ ⁇ ” may not necessarily represent logical derivation, but may represent, for example, a temporal transition or the like.
  • the qualitative knowledge 201 includes “a state in which only the liquid A is injected (tank) ⁇ a state in which the liquid B is injected (tank)” and a “state in which the liquid B is injected (tank) ⁇ the liquid A”. And the state where the liquid B has been injected (tank).
  • the target state inference unit 112 uses the second inference knowledge to reach the final target by, for example, going back from the target state “the state where the liquid A and the liquid B are injected” to the current state “empty (tank)”. Infer the partial goals up to The target state inference unit 112 may start inference from the current state to the target state from the current state.
  • the target state inference unit 112 includes a “stop withdrawal (tank)”, a “state in which the liquid A is injected”, a “state in which only the liquid A is injected”, a “state in which the liquid B is injected”, and “ The state in which the liquid A and the liquid B are injected "is inferred as a partial target state.
  • the qualitative knowledge 201 holds knowledge (information) of “empty (tank) ⁇ closed (extraction valve) ⁇ extraction stop (tank)” as an operation derivation rule. “ ⁇ ” represents a logical product.
  • the operation sequence inference unit 113 performs hypothesis inference from the fact “empty (tank) and extraction stop (tank)” and the operation derivation rule, and transitions to “extraction stop (tank)” from the difference from the current state. Is inferred to be an operation for changing the extraction valve 304 from “open” to “closed”.
  • the qualitative knowledge 201 indicates that “withdrawal stop (tank) ⁇ closed (withdrawal valve) ⁇ opened (liquid A injection valve) ⁇ closed (liquid B injection valve) ⁇ state in which liquid A is being injected (tank)”.
  • Knowledge is held as operation derivation rules.
  • the operation sequence inference unit 113 makes a hypothesis inference from the fact “withdrawal stop (tank) and the state where the liquid A is being injected (tank)” and the operation derivation rule.
  • the operation sequence inference unit 113 changes the state of the injection valve 302A from “closed” to “open” from the difference from the state before the operation to the “state in which the liquid A is injected (tank)”. Infer that it is an operation.
  • the operation sequence inference unit 113 performs hypothesis inference using the operation derivation rules held in the qualitative knowledge 201.
  • the operation sequence inference unit 113 infers an operation for transitioning to the next partial target state or the final target state from the difference from the state before the operation.
  • the operation sequence inference unit 113 performs “operation of closing the extraction valve”, “opening the liquid A injection valve”, “closing the liquid A injection valve”, and “closing the liquid B injection valve” as an operation sequence for transitioning to the target state. "Open” and "close the liquid B injection valve”.
  • the qualitative knowledge 201 holds, as a learning setting derivation rule, a knowledge that learning is not necessary for “close (extraction valve)”.
  • the learning setting generation unit 114 outputs to the learning agent 102 that learning is not necessary for the operation of “closing (extracting valve)”.
  • the qualitative knowledge 201 indicates that the learning setting is “learning device (reinforcement learning) (environment (liquid A flowmeter, temperature) for the operation of“ open (liquid A injection valve) ⁇ 20 kg (liquid A injection amount) ”.
  • Meter water meter, liquid A injection amount
  • behavior opening of liquid A injection valve
  • reward reward function A20
  • termination condition liquid A20 kg injection
  • the reward function A20 is a continuously defined function that is separately defined as “a high score such that 20 kg of the liquid A can be quickly injected at a temperature lower than 60 ° C.”.
  • the learning setting generation unit 114 generates a learning setting by performing a hypothesis inference from the fact “open (liquid A injection valve) ⁇ 20 kg (injection amount)” and the learning setting derivation rule, and sets the learning setting to the learning agent 102.
  • the learning agent 102 performs machine learning according to the learning setting of each operation. For example, for the operation of “open (liquid A injection valve)”, the learning agent 102 learns the time series data of the opening degree of the injection valve 302A that can quickly inject 20 kg of liquid A at a temperature lower than 60 ° C. The learning agent 102 outputs a sequence of operations from the current state to the final target state and the operation content of each operation as an operation procedure 203.
  • the target state inference unit 112 uses the qualitative knowledge 201 and the quantitative knowledge 202 to infer the target state after the operation.
  • the operation sequence inference unit 113 uses the qualitative knowledge 201 to infer a sequence of operations for transitioning the state of the system from a state requiring an operation to an inferred target state.
  • the learning setting generation unit 114 generates a learning setting for each operation, and the learning agent 102 learns the operation content of each operation in accordance with the learning setting, and generates an operation procedure 203 including the operation and the operation content.
  • the operation procedure 203 includes not only the operation but also the content of the operation, and the user can know which operation and how to perform the operation by referring to the operation procedure 203. it can.
  • the user can control the system to a desired state by operating a system such as a plant according to the output operation procedure 203.
  • the learning may be supervised learning or unsupervised learning. For example, if there is a model that predicts the predicted value of a certain sensor using the indicated values of some other sensors, the learning agent 102 may perform supervised learning to build the model.
  • the state determining unit 111 determines that the state is the model departure state, Is determined to be necessary.
  • the target state inference unit 112 infers that the target state is to eliminate the model deviation state.
  • the operation sequence inference unit 113 infers “model restructuring” when “model divergence state ⁇ target is elimination of model divergence state”.
  • Environment simulation for 50 minutes of observation every minute ”is output as the learning setting. In this case, the predicted value of the sensor can be learned by supervised learning.
  • the learning agent 102 acquires a quantitative response of a system such as a plant from the simulator 103 and learns the response, but the present disclosure is not limited to this.
  • the learning agent 102 may acquire a quantitative response when an operation is performed from an actual system and perform learning.
  • the learning agent 102 may include an upper learning agent and a lower learning agent. In that case, the operation content of each operation may be learned by a lower learning agent, and the order of operations may be learned by a higher learning agent.
  • FIG. 5 shows a configuration example of an information processing device (computer device) that can be used for the automatic planner 101, the learning agent 102, and the simulator 103.
  • the information processing apparatus 500 includes a control unit (CPU: Central Processing Unit) 510, a storage unit 520, a read only memory (ROM) 530, a random access memory (RAM) 540, a communication interface (IF) 550, and a user interface 560. Having.
  • CPU Central Processing Unit
  • ROM read only memory
  • RAM random access memory
  • IF communication interface
  • the communication interface 550 is an interface for connecting the information processing device 500 to a communication network via a wired communication unit or a wireless communication unit.
  • the user interface 560 includes a display unit such as a display.
  • the user interface 560 includes an input unit such as a keyboard, a mouse, and a touch panel.
  • the storage unit 520 is an auxiliary storage device that can hold various data.
  • the storage unit 520 does not necessarily need to be a part of the information processing device 500, and may be an external storage device or a cloud storage connected to the information processing device 500 via a network.
  • the ROM 530 is a nonvolatile storage device.
  • As the ROM 530 for example, a semiconductor storage device such as a flash memory having a relatively small capacity is used.
  • the program executed by CPU 510 may be stored in storage unit 520 or ROM 530.
  • Non-transitory computer readable media includes various types of tangible storage media.
  • Examples of non-transitory computer-readable media are, for example, magnetic recording media such as, for example, flexible disks, magnetic tapes, or hard disks, magneto-optical recording media such as, for example, magneto-optical disks, CDs (compact discs), or DVDs (digital versatile disks).
  • a semiconductor memory such as a mask ROM, a PROM (programmable @ ROM), an EPROM (erasable @ PROM), a flash ROM, or a RAM.
  • the program may be supplied to the computer using various types of temporary computer-readable media.
  • Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves.
  • Transitory computer readable media can provide the program to a computer via a wired communication line such as an electric wire and an optical fiber, or a wireless communication line.
  • the RAM 540 is a volatile storage device.
  • various semiconductor memory devices such as DRAM (Dynamic Random Access Memory) or SRAM (Static Random Access Memory) are used.
  • the RAM 540 can be used as an internal buffer that temporarily stores data and the like.
  • the CPU 510 loads a program stored in the storage unit 520 or the ROM 530 into the RAM 540 and executes the program. When the CPU 510 executes the program, the functions of each unit in the automatic planner 101, the learning agent 102, and the simulator 103 can be realized.
  • CPU 510 may have an internal buffer that can temporarily store data and the like.
  • [Appendix 1] The first state of the system operated based on the operation procedure including the order of the operation elements and the operation amount of each operation element, inference knowledge including the relationship between the states of the system, and quantitative information including numerical knowledge in the system
  • a target state inference means for inferring a target state of the system and a partial target state from the first state to the target state based on the knowledge
  • Operation sequence inference means for inferring an operation for transitioning to the partial target state based on an operation derivation rule
  • a learning setting generation unit configured to generate a learning setting of the inferred operation based on a learning setting derivation rule
  • a driving support system comprising: a learning agent that creates an operation content of the operation based on a learning setting of the operation.
  • the inference knowledge includes first inference knowledge defining a state before operation and a target state after operation in association with each other, and second inference knowledge defining state transition between states.
  • the first state of the system operated based on the operation procedure including the order of the operation elements and the operation amount of each operation element, inference knowledge including the relationship between the states of the system, and quantitative information including numerical knowledge in the system
  • a target state inference means for inferring a target state of the system and a partial target state from the first state to the target state based on the knowledge
  • Operation sequence inference means for inferring an operation for transitioning to the partial target state based on an operation derivation rule
  • An automatic planner comprising: a learning setting generation unit configured to generate a learning setting of the inferred operation based on a learning setting derivation rule, and output the generated learning setting to a learning agent that creates an operation content of the operation.
  • the inference knowledge includes first inference knowledge defining a state before operation and a target state after operation in association with each other, and second inference knowledge defining state transition between states.
  • Driving support system 11 Target state inference means 12: Operation sequence inference means 13: Learning setting generation means 14: Learning agent 21: Inference knowledge 22: Quantitative knowledge 23: Operation derivation rule 24: Learning setting derivation rule 100: Driving Support system 101: automatic planner 102: learning agent 103: simulator 111: state determination unit 112: target state inference unit 113: operation sequence inference unit 114: learning setting generation unit 201: qualitative knowledge 202: quantitative knowledge 203: operation procedure 301: tank 302A, 302B: injection valve 303A, 303B: flow meter 304: extraction valve 305: water level meter 306: thermometer

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Computational Linguistics (AREA)
  • Medical Informatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

操作が必要な状態において、どのような操作をどのように実施すればよいかを出力可能とする。目標状態推論手段(11)は、操作手順に基づいて運転されるシステムの第1状態、推論知識(21)、及び定量的知識(22)に基づいて、目標状態と、第1状態から目標状態に至る部分目標状態とを推論する。操作列推論手段(12)は、操作導出規則(23)に基づいて、部分目標状態に遷移させるための操作を推論する。学習設定生成手段(13)は、学習設定導出規則(24)に基づいて、推論された操作の学習設定を生成する。学習エージェント(14)は、操作の学習設定に基づいて、操作における操作内容を作成する。

Description

運転支援システム及び方法、自動プランナ、並びにコンピュータ可読媒体
 本開示は、運転支援システム及び方法、自動プランナ、並びにコンピュータ可読媒体に関する。
 特許文献1は、多入出力であって、かつ非線形的特性を持つ系(システム)から所望の出力が得られるように、系への入力を適切かつ容易に調整するための調整ルールを生成する調整ルール生成装置を開示する。特許文献1に記載の調整ルール生成装置は、調整対象において、どの調整要素(操作量=調整対象への入力)を用いてどの可調整パラメータ(制御量=調整対象からの出力)を調整するかを選択する。また、調整ルール生成装置は、選択した操作量と制御量の組合せについて、所定の形式に従って調整ルールを生成し、出力する。
 具体的に、調整ルール生成装置は、依存特性データと制御量相関特性データとを用いて調整ルールを生成する。ここで、依存特性データは、調整対象の操作量と制御量(入力と出力)の間に依存関係があるか否かを示すデータである。また、制御量相関特性データは、各操作量に対して、制御量の変化が互いにどのようなものになるかを定性的に表すデータである。制御量相関特性データにおいて、任意の2つの制御量間の特性は、「互いに同方向に変化する」、「互いに異方向に変化する」、及び「片方の制御量だけが変化する」の3つに分類される。
 調整ルール生成装置では、上記依存特性データを用いることで、どの制御量をどの操作量を用いて調整すべきかを判断できる。調整ルール生成装置は、依存特性データを用いて着目する制御量と操作量との関係を絞り、その部分について制御量相関特性データを着目することで、調整特性を推定する。調整ルール生成装置は、例えば操作量X1が操作された場合に、制御量Y2及びY3が同じ方向に変化するということを示す調整特性を推定する。この場合、調整ルール生成装置は、制御量Y2及びY3がほぼ同じ偏差で共に許容偏差外であれば、これら制御量Y2及びY3を同じ方向に変化させる操作量X1を用いてそれらの偏差を調整することができる。調整ルール生成装置は、そのような調整のルールを所定の書式で記述した調整ルールを出力する。
特開平10-268906号公報
 特許文献1では、調整ルールを参照することで、制御量に偏差がある場合に、どの操作量を操作すればよいかを決定できる。しかしながら、特許文献1において、依存関係が複雑な場合などにおいて、複数の操作量をどのような順序で操作すればよいかは決定できない。加えて、特許文献1では、どの操作量を操作すればよいかを決定できるにとどまっており、操作における操作内容までは決定できない。
 本開示は、上記に鑑み、システムにおいて、どのような操作をどのように実施すればよいかを出力可能な運転支援システム及び方法、自動プランナ、並びにコンピュータ可読媒体を提供することを目的とする。
 上記目的を達成するために、本開示は、操作要素の順序及び各操作要素の操作量を含む操作手順に基づいて運転されるシステムの第1状態、当該システムの状態間の関係を含む推論知識、及び当該システムにおける数的知識を含む定量的知識に基づいて、当該システムの目標状態と、前記第1状態から前記目標状態に至る部分目標状態とを推論する目標状態推論手段と、操作導出規則に基づいて、前記部分目標状態に遷移させるための操作を推論する操作列推論手段と、学習設定導出規則に基づいて、前記推論された前記操作の学習設定を生成する学習設定生成手段と、前記操作の学習設定に基づいて、前記操作における操作内容を作成する学習エージェントとを備える運転支援システムを提供する。
 本開示は、また、操作要素の順序及び各操作要素の操作量を含む操作手順に基づいて運転されるシステムの第1状態、当該システムの状態間の関係を含む推論知識、及び当該システムにおける数的知識を含む定量的知識に基づいて、当該システムの目標状態と、前記第1状態から前記目標状態に至る部分目標状態とを推論する目標状態推論手段と、操作導出規則に基づいて、前記部分目標状態に遷移させるための操作を推論する操作列推論手段と、学習設定導出規則に基づいて、前記推論された前記操作の学習設定を生成し、前記操作における操作内容を作成する学習エージェントに出力する学習設定生成手段とを備える自動プランナを提供する。
 本開示は、操作要素の順序及び各操作要素の操作量を含む操作手順に基づいて運転されるシステムの第1状態、当該システムの状態間の関係を含む推論知識、及び当該システムにおける数的知識を含む定量的知識に基づいて、当該システムの目標状態と、前記第1状態から前記目標状態に至る部分目標状態とを推論し、操作導出規則に基づいて、前記部分目標状態に遷移させるための操作を推論し、学習設定導出規則に基づいて、前記推論された前記操作の学習設定を生成し、前記操作における操作内容を作成する学習エージェントに出力する運転支援方法を提供する。
 本開示は、操作要素の順序及び各操作要素の操作量を含む操作手順に基づいて運転されるシステムの第1状態、当該システムの状態間の関係を含む推論知識、及び当該システムにおける数的知識を含む定量的知識に基づいて、当該システムの目標状態と、前記第1状態から前記目標状態に至る部分目標状態とを推論し、操作導出規則に基づいて、前記部分目標状態に遷移させるための操作を推論し、学習設定導出規則に基づいて、前記推論された前記操作の学習設定を生成し、前記操作における操作内容を作成する学習エージェントに出力する処理をコンピュータに実行させるためのプログラムを格納したコンピュータ可読媒体を提供する。
 本開示に係る運転支援システム及び方法、自動プランナ、並びにコンピュータ可読媒体は、システムにおいて、どのような操作をどのように実施すればよいかを出力することができる。
本開示に係る運転支援システムを概略的に示すブロック図。 本開示の一実施形態に係る運転支援システムを示すブロック図。 運転支援システムにおける動作手順を示すフローチャート。 プラントの一例を示すブロック図。 情報処理装置の構成例を示すブロック図。
 本開示の実施形態の説明に先立って、本開示の概要を説明する。図1は、本開示に係る運転支援システムを概略的に示す。運転支援システム10は、目標状態推論手段11、操作列推論手段12、学習設定生成手段13、及び学習エージェント14を有する。
 目標状態推論手段11は、操作要素の順序及び各操作要素の操作量を含む操作手順に基づいて運転されるシステムの第1状態、推論知識21、及び定量的知識22に基づいて、目標状態を推論する。推論知識21は、システムの状態間の関係を含む。定量的知識22は、システムにおける数的知識を含む。また、目標状態推論手段11は、推論知識21に基づいて、第1状態から目標状態に至る部分目標状態を推論する。
 操作列推論手段12は、操作導出規則23に基づいて、部分目標状態に遷移させるための操作を推論する。操作導出規則23は、例えば、遷移前のシステムの状態と、実施される操作と、操作実施後に遷移するシステムの状態とを対応付けた情報を含む。学習設定生成手段13は、学習設定導出規則24に基づいて、推論された操作の学習設定を生成する。学習設定導出規則24は、例えば、操作と、その操作が実施される場合の学習設定とを対応付けた情報を含む。学習エージェント14は、学習設定生成手段13で生成された操作の学習設定に基づいて、操作における操作内容を作成する。
 本開示では、推論知識21及び定量的知識22を用いて操作後の目標状態、及び目標状態に到達するまでの部分目標状態が推論される。また、操作導出規則23を用いて各部分状態に遷移するための操作が推論され、学習設定導出規則24を用いて操作に対する学習設定が生成される。本開示では、学習エージェント14において、学習設定に基づいて操作の操作内容を作成することで、目標状態(又は部分目標状態)に至るまでに、どのような操作をどのように実施すればよいかをユーザなどに出力することができる。また、ユーザが出力された情報に従ってプラントなどのシステムを運転することで、システムを所望の状態に制御できる。
 以下、図面を参照しつつ、本開示の実施形態を詳細に説明する。図2は、本開示の一実施形態に係る運転支援システムを示す。運転支援システム100は、自動プランナ101、学習エージェント102、及びシミュレータ103を含む。自動プランナ101、学習エージェント102、及びシミュレータ103は、例えばプロセッサとメモリとを含むコンピュータ装置を用いて構成される。これら要素の機能は、プロセッサがメモリから読み出したプログラムに従って動作することで実現され得る。
 本実施形態において、自動プランナ101、学習エージェント102、及びシミュレータ103は、必ずしも物理的に分離された装置として構成されている必要はない。例えば、自動プランナ101と、学習エージェント102及びシミュレータ103の少なくとも一方とが同一の装置として構成されていてもよい。また、自動プランナ101、学習エージェント102、及びシミュレータ103は、必ずしも同じ場所に配置されている必要はない。例えば、自動プランナ101は、学習エージェント102及びシミュレータ103の少なくとも一方とネットワークを介して接続され、ネットワークを通じて情報の送受信を行ってもよい。
 自動プランナ101は、状態判定部111、目標状態推論部112、操作列推論部113、及び学習設定生成部114を有する。状態判定部(状態判定手段)111は、操作要素の順序及び各操作要素の操作量を含む操作手順に基づいて運転されるプラントなどのシステムの状態が、操作が必要な状態(第1状態)であるか否かを判定する。シミュレータ103は、操作手順に基づいて運転されるシステムをシミュレートする。状態判定部111は、シミュレータ103がシミュレートするシステムの状態を監視し、操作が必要な状態であるか否かを判定する。
 定性的知識201は、プラントなどのシステムにおける定性的知識である。定性的知識201は、例えばプラントにおける運転規則や、操作手順間の依存関係、ある状態から別の状態に遷移させるためにはどのような操作を行えばよいか、などといった知識を含む。定性的知識201は、図1の推論知識21、操作導出規則23、及び学習設定導出規則24を含む。
 定量的知識202は、プラントなどのシステムにおける数値に関する知識である。定量的知識202は、判定に用いられるしきい値や、定常状態におけるセンサなどの指示値、原料の量などに関する知識を含む。定量的知識202は、図1の定量的知識22に対応する。定性的知識201及び定量的知識202は、自動プランナ101からアクセスが可能な補助記憶装置などの装置に記憶される。
 目標状態推論部(目標状態推論部)112は、状態判定部111にて操作が必要な状態であると判定された場合に、定性的知識201及び定量的知識202と、現在のシステムの状態とに基づいて、目標状態を推論する。また、目標状態推論部112は、定性的知識201に基づいて、現在の状態から推論した目標状態に遷移させるまでの部分目標状態を推論する。
 より詳細には、定性的知識201は、操作前の状態と、操作後の目標状態とを対応付けて定義する第1推論知識と、状態間の状態遷移を定義する第2推論知識とを含んでいる。目標状態推論部112は、第1推論知識を用いて目標状態を推論する。また、目標状態推論部112は、第2推論知識を用いて、現在の状態から目標状態に遷移させるまでの各段階における部分目標状態を推論する。目標状態推論部112は、例えば第2推論知識を用い、推論した目標状態から現在の状態に遡ることで、各段階の部分目標状態を推論する。目標状態推論部112は、図1の目標状態推論手段11に対応する。
 操作列推論部(操作列推論手段)113は、定性的知識201に含まれる操作導出規則に基づいて、各部分目標状態に遷移させるための操作を推論する。操作導出規則は、例えば、遷移前のシステムの状態と、実施される操作と、操作実施後に遷移するシステムの状態とを対応付けた情報を含む。操作列推論部113は、操作導出規則に基づいて、現在の状態又は1つ前の部分目標状態から、次の部分目標状態又は最終的な目標状態に遷移させるための操作の列を推論する。操作列推論部113は、図1の操作列推論手段12に対応する。
 学習設定生成部(学習設定生成手段)114は、定性的知識201に含まれる学習設定導出規則に基づいて、操作列推論部113で推論された各操作の学習設定を生成する。学習設定導出規則は、例えば操作と、その操作が実施される場合の学習設定とを対応付けた情報を含む。学習設定は、例えば、学習エージェント102への入力変数、学習エージェント102の出力変数、目的関数、及び学習の種別を含む。学習設定生成部114は、図1の学習設定生成手段13に対応する。
 学習エージェント102は、自動プランナ101の学習設定生成部114が生成した学習設定に基づいて、各操作における操作内容を学習(作成)する。このとき、学習エージェント102は、シミュレータ103からシステムの定量的な応答を取得し、取得した定量的な応答に基づいて学習を行う。学習エージェント102には、システムにおける操作上の制約条件などの追加的な情報が設定されていてもよい。学習エージェント102は、図1の学習エージェント14に対応する。
 学習エージェント102は、例えば操作が必要と判断された状態を初期状態として、例えばどんなセンサ値の場合にどれだけバルブをあければよいかを学習する。学習エージェント102は、学習した各操作における操作内容を含む操作手順203を生成する。学習エージェント102は、生成した操作手順203をユーザに出力する。状態判定部111が操作が必要な状態を検出したことを契機に操作手順203が生成されることで、ユーザは、その状態においてどのような操作をどのように実施すればよいかを知ることができる。
 次いで、動作手順を説明する。図3は、運転支援システム10における動作手順(運転支援方法)を示す。ユーザは、例えば図示しないキーボードやマウスなどの入力装置を用いて、定性的知識201、定量的知識202、及びシミュレータ103の環境の初期状態を入力する(ステップS1)。シミュレータ103は、ステップS1で入力された初期状態から動作を開始する。
 自動プランナ101の状態判定部111は、シミュレータ103から現在の状態(シミュレーション値)を取得し、操作対象の環境を監視する(ステップS2)。状態判定部111は、現在の状態が、操作が必要な状態であるか否かを判断する(ステップS3)。状態判定部111は、例えばあるセンサの値が異常値を示している場合は操作が必要な状態であると判断する。状態判定部111は、例えばセンサの値が正常値を示している場合は操作が必要な状態ではないと判断する。
 状態判定部111は、ステップS3で操作が必要な状態ではないと判断した場合は、ステップS2に戻り、操作対象の環境の監視を継続する。状態判定部111は、ステップS3で操作が必要な状態であると判断すると、目標状態推論部112に要操作状態である現在の状態を通知する。目標状態推論部112は、現在の状態と定性的知識201及び定量的知識202とに基づいて、操作後の目標状態を推論する(ステップS4)。定性的知識201は、要操作状態と、操作後の目標状態とを対応付けた情報を第1推論知識として含んでおり、目標状態推論部112は、ステップS4では、そのような第1推論知識を用いて、最終的な目標状態を推論する。
 目標状態推論部112は、現在の状態、操作後の目標状態、及び定性的知識201に基づいて、現在の状態から最終的な目標状態に至るまでの部分目標状態を推論する(ステップS5)。定性的知識201は、ある状態から別の状態への状態遷移(状態間の因果関係)を論理的に記述した情報を第2推論知識として含んでおり、目標状態推論部112は、ステップS5では、そのような第2推論知識を用いて、部分目標状態を推論する。なお、現在の状態から直接に操作後の目標状態に遷移することが可能な場合など、部分目標状態が存在しない場合もあり得る。
 操作列推論部113は、現在の状態、各部分目標状態、及び目標状態と、定性的知識201に含まれる操作導出規則とに基づいて、現在の状態から操作後の目的の状態に遷移させるために必要な操作の列を推論する(ステップS6)。操作列推論部113は、ステップS6では、例えば、次の状態に遷移させるために必要な操作の列を、操作導出規則を用いて仮説推論する。
 学習設定生成部114は、操作列推論部113で推論された操作の列に含まれる各操作について、定性的知識201に含まれる学習設定導出規則を用いて、学習設定を推論する(ステップS7)。学習設定生成部114は、ステップS7では、例えば各操作の学習設定を、学習設定導出規則を用いて仮説推論する。
 学習設定生成部114は、生成した学習設定を、学習エージェント102に渡す。学習エージェント102は、ステップS7で生成された学習設定に基づいて学習を行い、各操作の操作内容などを学習する(ステップS8)。学習エージェント102は、例えば各操作に対応した学習器を含んでおり、対応する学習器を用いて操作内容を学習する。
 学習エージェント102は、各操作とその操作内容とを、操作手順203として出力する(ステップS9)。学習エージェント102が操作手順203を出力するのに代えて、自動プランナ101が学習エージェント102から各操作の操作内容を取得し、操作手順203を出力してもよい。操作手順203は、例えば図示しないディスプレイ装置に表示される。ユーザは、操作手順203を参照することで、何をどのように操作すればよいかを知ることができる。
 以下、具体例を用いて説明する。図4は、プラントの一例を示す。ここでは、プラントとして、液体A及び液体Bが注入されるタンク301を含むプラント300を考える。タンク301には、注入弁302Aを通じて液体Aが注入され、注入弁302Bを通じて液体Bが注入される。流量計303Aは、液体Aの注入量を計測する。流量計303Bは、液体Bの注入量を計測する。水位計(液面計)305は、タンク301に注入された液体の液面を計測する。温度計306は、タンク301周辺の外気の温度を計測する。タンク301内に注入された液体A及び液体Bは、抜出し弁304を通じてタンク301から抜き出される。プラント300において、操作の対象となる構成要素は、注入弁302A、注入弁302B、及び抜出し弁304である。シミュレータ103(図2を参照)は、このようなプラント300における挙動をシミュレートする。
 ここでは、前提条件として下記の条件を考える。液体Bは液体Aよりも軽く、タンク内で液体Bは液体Aに浮かぶものとする。また、液体Aと液体Bとは同時に注入できないものとする。注入の順序について、液体Aは液体Bよりも先に注入されるものとする。液体Aは、タンクに一度に注入されると大きな熱を発するものとする。液体Bも、同様に、タンクに一度に注入されると大きな熱を発するものとする。液体A及び液体Bの供給量は変化するものとする。タンクの温度は60度未満に保たれる必要があるとする。また、タンクの温度は外気で冷却されるものとする。
 上記プラント300において、現在の状態は、タンク301は空であり、抜出し弁304は「開」であり、注入弁302A及び302Bは「閉」であり、温度計306が計測する外気の温度は「暑い」であったとする。状態判定部111は、水位計305が検出する水位が0、つまり、タンク301が空である場合、操作が必要な状態であると判定する。
 定性的知識201は、タンク301が空であるという状態に対する操作後の目標状態として、タンク301に液体Aと液体Bとが注入された状態という推論知識(第1推論知識)を保持している。また、定量的知識202は、外気が「暑い」という状態に対して、液体Aの注入量は「20kg」であり、液体Bの注入量は「30kg」であるという情報を保持している。この場合、目標状態推論部112は、操作後の目標状態が、液体Aと液体Bとが注入された状態であり、液体Aの注入量は20kgであり、かつ液体Bの注入量は30kgであると推論する。
 定性的知識201は、状態間の遷移に関する情報(第2推論知識)として、「空(タンク)→抜出し停止(タンク)」、「抜出し停止(タンク)→液体Aを注入している状態(タンク)」、及び「液体Aを注入している状態(タンク)→液体Aのみが注入された状態(タンク)」を保持する。「→」は、「→」の前に記載されている状態(条件、前件)から、「→」の後に記載されている状態(後件)が導出可能であることを表している。「→」は、必ずしも、論理的な導出を表していなくてもよく、たとえば、時間的な推移等を表していてもよい。また、定性的知識201は、「液体Aのみが注入された状態(タンク)→液体Bを注入している状態(タンク)」、及び「液体Bを注入している状態(タンク)→液体Aと液体Bとが注入された状態(タンク)」を保持する。目標状態推論部112は、第2推論知識を用い、例えば、目標状態「液体Aと液体Bとが注入された状態」から現在の状態「空(タンク)」に遡ることで、最終目標に到達するまでの部分目標を推論する。目標状態推論部112は、現在の状態から目標の状態に至る推論を、現在の状態から開始してもよい。目標状態推論部112は、「抜出し停止(タンク)」、「液体Aを注入している状態」、「液体Aのみが注入された状態」、「液体Bを注入している状態」、及び「液体Aと液体Bとが注入された状態」を、部分目標状態として推論する。
 定性的知識201は、「空(タンク)∧閉(抜出し弁)→抜出し停止(タンク)」という知識(情報)を操作導出規則として保持している。「∧」は、論理積を表す。操作列推論部113は、事実「空(タンク)及び抜出し停止(タンク)」と操作導出規則とから仮説推論を行い、現在の状態との差分から、「抜出し停止(タンク)」に遷移するための操作は、抜出し弁304を「開」から「閉」にする操作であると推論する。
 また、定性的知識201は、「抜出し停止(タンク)∧閉(抜出し弁)∧開(液体A注入弁)∧閉(液体B注入弁)→液体Aを注入している状態(タンク)」という知識を操作導出規則として保持している。操作列推論部113は、事実「抜出し停止(タンク)及び液体Aを注入している状態(タンク)」と操作導出規則とから仮説推論を行う。操作列推論部113は、操作前の状態との差分から、「液体Aが注入されている状態(タンク)」へ遷移するための操作は、注入弁302Aを「閉」から「開」にする操作であると推論する。
 以降の部分目標状態についても、同様に、操作列推論部113は、定性的知識201に保持される操作導出規則を用いて仮説推論を行う。操作列推論部113は、操作前の状態との差分から、次の部分目標状態又は最終的な目標状態に遷移させるための操作を推論する。操作列推論部113は、目標状態に遷移させるための操作の列として、「抜出し弁を閉じる」、「液体A注入弁を開く」、「液体A注入弁を閉じる」、「液体B注入弁を開く」、及び「液体B注入弁を閉じる」を推論する。
 定性的知識201は、「閉(抜出し弁)」に対しては学習不要であるという知識を学習設定導出規則として保持している。この場合、学習設定生成部114は、「閉(抜出し弁)」の操作については学習不要である旨を学習エージェント102に出力する。
 また、定性的知識201は、「開(液体A注入弁)∧20kg(液体A注入量)」という操作に対して、学習設定が「学習器(強化学習)∧環境(液体A流量計、温度計、水位計、液体A注入量)∧行動(液体A注入弁の開度)∧報酬(報酬関数A20)∧終了条件(液体A20kg注入)」である知識(情報)を、学習設定導出規則として保持している。ここで、報酬関数A20は、「液体Aを温度60度未満で迅速に20kg注入できるほど高得点」という別途定義された連続関数である。この場合、学習設定生成部114は、事実「開(液体A注入弁)∧20kg(注入量)」と学習設定導出規則とから仮説推論を行って学習設定を生成し、学習設定を学習エージェント102に出力する。学習設定生成部114は、「学習器=強化学習、環境={液体A流量計、温度計、水位計、液体A注入量}、行動=液体A注入弁の開度、報酬=r(報酬関数A20)、終了条件=液体A20kg注入」を、「開(液体A注入弁)」の操作の学習設定として学習エージェント102に出力する。液体Bについても同様である。
 学習エージェント102は、各操作の学習設定に従って機械学習を行う。学習エージェント102は、例えば「開(液体A注入弁)」の操作について、液体Aを温度60度未満で迅速に20kg注入できる注入弁302Aの開度の時系列データを学習する。学習エージェント102は、現在の状態から最終的な目標状態に到達するまでの操作の列と、各操作における操作内容とを、操作手順203として出力する。
 本実施形態では、目標状態推論部112は、プラントなどのシステムの状態が操作が必要な状態な場合に、定性的知識201及び定量的知識202を用いて、操作後の目標状態を推論する。操作列推論部113は、定性的知識201を用いて、システムの状態を、操作が必要な状態から推論された目標状態まで遷移させるための操作の列を推論する。また、学習設定生成部114は、各操作の学習設定を生成し、学習エージェント102は、学習設定に従って各操作の操作内容を学習し、操作とその操作内容とを含む操作手順203を生成する。本実施形態では、操作手順203は、操作だけでなく、その操作内容を含んでおり、ユーザは、操作手順203を参照することで、どの操作をどのように実施すればよいかを知ることができる。ユーザが、出力された操作手順203に従ってプラントなどのシステムを運転することで、システムを所望の状態に制御することができる。
 なお、上記実施形態では、主に学習エージェント102において強化学習を行う例を説明したが、学習は強化学習には限定されない。学習は、教師あり学習であってもよいし、教師なし学習であってもよい。例えば、あるセンサの予測値を他のいくつかのセンサの指示値などを用いて予測するモデルがある場合、学習エージェント102において教師あり学習を行い、モデルを構築してもよい。
 上記の場合、状態判定部111は、モデルを用いて予測した圧力センサAの予測値と、圧力センサAの指示値との差がしきい値より大きい場合、モデル乖離状態である判断し、操作が必要な状態であると判断する。目標状態推論部112は、目標状態はモデル乖離状態の解消であると推論する。操作列推論部113は、「モデル乖離状態∧目標はモデル乖離状態の解消」である場合、「モデルの再構築」を推論する。学習設定生成部114は、「入力={圧力センサBの指示値、流量センサCの指示値}、出力=圧力センサAの指示値、目標関数=2乗誤差を最小化、学習器=ロジスティック回帰、環境=1分ごと観測の50分間のシミュレーション」を学習設定として出力する。この場合、センサの予測値を、教師あり学習で学習することができる。
 上記実施形態では、学習エージェント102が、プラントなどのシステムの定量的な応答をシミュレータ103から取得して学習する例を説明したが、本開示はこれには限定されない。学習エージェント102は、操作が行われた場合の定量的な応答を実際のシステムから取得し、学習を行ってもよい。
 学習エージェント102は、上位の学習エージェントと、下位の学習エージェントとを含んでいてもよい。その場合、下位の学習エージェントで各操作の操作内容を学習し、上位の学習エージェントとで操作の順序を学習してもよい。
 図5は、自動プランナ101、学習エージェント102、及びシミュレータ103に用いられ得る情報処理装置(コンピュータ装置)の構成例を示す。情報処理装置500は、制御部(CPU:Central Processing Unit)510、記憶部520、ROM(Read Only Memory)530、RAM(Random Access Memory)540、通信インタフェース(IF:Interface)550、及びユーザインタフェース560を有する。
 通信インタフェース550は、有線通信手段又は無線通信手段などを介して、情報処理装置500と通信ネットワークとを接続するためのインタフェースである。ユーザインタフェース560は、例えばディスプレイなどの表示部を含む。また、ユーザインタフェース560は、キーボード、マウス、及びタッチパネルなどの入力部を含む。
 記憶部520は、各種のデータを保持できる補助記憶装置である。記憶部520は、必ずしも情報処理装置500の一部である必要はなく、外部記憶装置であってもよいし、ネットワークを介して情報処理装置500に接続されたクラウドストレージであってもよい。ROM530は、不揮発性の記憶装置である。ROM530には、例えば比較的容量が少ないフラッシュメモリなどの半導体記憶装置が用いられる。CPU510が実行するプログラムは、記憶部520又はROM530に格納され得る。
 上記プログラムは、様々なタイプの非一時的なコンピュータ可読媒体を用いて格納され、情報処理装置500に供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記憶媒体を含む。非一時的なコンピュータ可読媒体の例は、例えばフレキシブルディスク、磁気テープ、又はハードディスクなどの磁気記録媒体、例えば光磁気ディスクなどの光磁気記録媒体、CD(compact disc)、又はDVD(digital versatile disk)などの光ディスク媒体、及び、マスクROM、PROM(programmable ROM)、EPROM(erasable PROM)、フラッシュROM、又はRAMなどの半導体メモリを含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体を用いてコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバなどの有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
 RAM540は、揮発性の記憶装置である。RAM540には、DRAM(Dynamic Random Access Memory)又はSRAM(Static Random Access Memory)などの各種半導体メモリデバイスが用いられる。RAM540は、データなどを一時的に格納する内部バッファとして用いられ得る。CPU510は、記憶部520又はROM530に格納されたプログラムをRAM540に展開し、実行する。CPU510がプログラムを実行することで、自動プランナ101内の各部、学習エージェント102、及びシミュレータ103の機能が実現され得る。CPU510は、データなどを一時的に格納できる内部バッファを有してもよい。
 以上、本開示の実施形態を詳細に説明したが、本開示は、上記した実施形態に限定されるものではなく、本開示の趣旨を逸脱しない範囲で上記実施形態に対して変更や修正を加えたものも、本開示に含まれる。
 例えば、上記の実施形態の一部又は全部は、以下の付記のようにも記載され得るが、以下には限られない。
[付記1]
 操作要素の順序及び各操作要素の操作量を含む操作手順に基づいて運転されるシステムの第1状態、当該システムの状態間の関係を含む推論知識、及び当該システムにおける数的知識を含む定量的知識に基づいて、当該システムの目標状態と、前記第1状態から前記目標状態に至る部分目標状態とを推論する目標状態推論手段と、
 操作導出規則に基づいて、前記部分目標状態に遷移させるための操作を推論する操作列推論手段と、
 学習設定導出規則に基づいて、前記推論された前記操作の学習設定を生成する学習設定生成手段と、
 前記操作の学習設定に基づいて、前記操作における操作内容を作成する学習エージェントとを備える運転支援システム。
[付記2]
 前記推論知識は、操作前の状態と操作後の目標状態とを対応付けて定義する第1推論知識と、状態間の状態遷移を定義する第2推論知識とを含み、
 前記目標状態推論手段は、第1推論知識を用いて前記目標状態を推論し、前記第2推論知識を用いて前記部分目標状態を推論する付記1に記載の運転支援システム。
[付記3]
 前記目標状態推論手段は、前記第2推論知識を用い、前記目標状態から前記第1状態に遡ることで、前記部分目標状態を推論する付記2に記載の運転支援システム。
[付記4]
 前記学習設定は、前記学習エージェントへの入力変数、前記学習エージェントの出力変数、目的関数、及び学習の種別を含む付記1から3何れか1つに記載の運転支援システム。
[付記5]
 前記学習エージェントは、前記システムの定量的な応答に基づいて、前記操作内容を作成する付記1から4何れか1つに記載の運転支援システム。
[付記6]
 前記システムの動作をシミュレートするシミュレータを更に有し、
 前記学習エージェントは、前記シミュレータから前記システムの定量的な応答を取得する付記5に記載の運転支援システム。
[付記7]
 前記学習エージェントは、前記システムから、前記システムの定量的な応答を取得する付記5に記載の運転支援システム。
[付記8]
 前記操作導出規則は、遷移前の前記システムの状態と、実施される操作と、操作実施後に遷移する前記システムの状態とを対応付けた情報を含む付記1から7何れか1つに記載の運転支援システム。
[付記9]
 前記学習設定導出規則は、操作と、該操作が実施される場合の前記学習設定とを対応付けた情報を含む付記1から8何れか1つに記載の運転支援システム。
[付記10]
 前記システムの状態が、前記操作が必要な状態であるか否かを判定する状態判定手段を更に有する付記1から9何れか1つに記載の運転支援システム。
[付記11]
 前記学習エージェントは、前記作成した操作内容をユーザに出力する付記1から10何れか1つに記載の運転支援システム。
[付記12]
 操作要素の順序及び各操作要素の操作量を含む操作手順に基づいて運転されるシステムの第1状態、当該システムの状態間の関係を含む推論知識、及び当該システムにおける数的知識を含む定量的知識に基づいて、当該システムの目標状態と、前記第1状態から前記目標状態に至る部分目標状態とを推論する目標状態推論手段と、
 操作導出規則に基づいて、前記部分目標状態に遷移させるための操作を推論する操作列推論手段と、
 学習設定導出規則に基づいて、前記推論された前記操作の学習設定を生成し、前記操作における操作内容を作成する学習エージェントに出力する学習設定生成手段とを備える自動プランナ。
[付記13]
 前記推論知識は、操作前の状態と操作後の目標状態とを対応付けて定義する第1推論知識と、状態間の状態遷移を定義する第2推論知識とを含み、
 前記目標状態推論手段は、第1推論知識を用いて前記目標状態を推論し、前記第2推論知識を用いて前記部分目標状態を推論する付記12に記載の自動プランナ。
[付記14]
 前記目標状態推論手段は、前記第2推論知識を用い、前記目標状態から前記第1状態に遡ることで、前記部分目標状態を推論する付記13に記載の自動プランナ。
[付記15]
 前記学習設定は、前記学習エージェントへの入力変数、前記学習エージェントの出力変数、目的関数、及び学習の種別を含む付記12から14何れか1つに記載の自動プランナ。
[付記16]
 前記システムの状態が、前記操作が必要な状態であるか否かを判定する状態判定手段を更に有する付記12から15何れか1つに記載の自動プランナ。
[付記17]
 操作要素の順序及び各操作要素の操作量を含む操作手順に基づいて運転されるシステムの第1状態、当該システムの状態間の関係を含む推論知識、及び当該システムにおける数的知識を含む定量的知識に基づいて、当該システムの目標状態と、前記第1状態から前記目標状態に至る部分目標状態とを推論し、
 操作導出規則に基づいて、前記部分目標状態に遷移させるための操作を推論し、
 学習設定導出規則に基づいて、前記推論された前記操作の学習設定を生成し、前記操作における操作内容を作成する学習エージェントに出力する運転支援方法。
[付記18]
 操作要素の順序及び各操作要素の操作量を含む操作手順に基づいて運転されるシステムの第1状態、当該システムの状態間の関係を含む推論知識、及び当該システムにおける数的知識を含む定量的知識に基づいて、当該システムの目標状態と、前記第1状態から前記目標状態に至る部分目標状態とを推論し、
 操作導出規則に基づいて、前記部分目標状態に遷移させるための操作を推論し、
 学習設定導出規則に基づいて、前記推論された前記操作の学習設定を生成し、前記操作における操作内容を作成する学習エージェントに出力する処理をコンピュータに実行させるためのプログラム。
 この出願は、2018年9月12日に出願された日本出願特願2018-170825を基礎とする優先権を主張し、その開示の全てをここに取り込む。
10:運転支援システム
11:目標状態推論手段
12:操作列推論手段
13:学習設定生成手段
14:学習エージェント
21:推論知識
22:定量的知識
23:操作導出規則
24:学習設定導出規則
100:運転支援システム
101:自動プランナ
102:学習エージェント
103:シミュレータ
111:状態判定部
112:目標状態推論部
113:操作列推論部
114:学習設定生成部
201:定性的知識
202:定量的知識
203:操作手順
301:タンク
302A、302B:注入弁
303A、303B:流量計
304:抜出し弁
305:水位計
306:温度計

Claims (18)

  1.  操作要素の順序及び各操作要素の操作量を含む操作手順に基づいて運転されるシステムの第1状態、当該システムの状態間の関係を含む推論知識、及び当該システムにおける数的知識を含む定量的知識に基づいて、当該システムの目標状態と、前記第1状態から前記目標状態に至る部分目標状態とを推論する目標状態推論手段と、
     操作導出規則に基づいて、前記部分目標状態に遷移させるための操作を推論する操作列推論手段と、
     学習設定導出規則に基づいて、前記推論された前記操作の学習設定を生成する学習設定生成手段と、
     前記操作の学習設定に基づいて、前記操作における操作内容を作成する学習エージェントとを備える運転支援システム。
  2.  前記推論知識は、操作前の状態と操作後の目標状態とを対応付けて定義する第1推論知識と、状態間の状態遷移を定義する第2推論知識とを含み、
     前記目標状態推論手段は、第1推論知識を用いて前記目標状態を推論し、前記第2推論知識を用いて前記部分目標状態を推論する請求項1に記載の運転支援システム。
  3.  前記目標状態推論手段は、前記第2推論知識を用い、前記目標状態から前記第1状態に遡ることで、前記部分目標状態を推論する請求項2に記載の運転支援システム。
  4.  前記学習設定は、前記学習エージェントへの入力変数、前記学習エージェントの出力変数、目的関数、及び学習の種別を含む請求項1から3何れか1項に記載の運転支援システム。
  5.  前記学習エージェントは、前記システムの定量的な応答に基づいて、前記操作内容を作成する請求項1から4何れか1項に記載の運転支援システム。
  6.  前記システムの動作をシミュレートするシミュレータを更に有し、
     前記学習エージェントは、前記シミュレータから前記システムの定量的な応答を取得する請求項5に記載の運転支援システム。
  7.  前記学習エージェントは、前記システムから、前記システムの定量的な応答を取得する請求項5に記載の運転支援システム。
  8.  前記操作導出規則は、遷移前の前記システムの状態と、実施される操作と、操作実施後に遷移する前記システムの状態とを対応付けた情報を含む請求項1から7何れか1項に記載の運転支援システム。
  9.  前記学習設定導出規則は、操作と、該操作が実施される場合の前記学習設定とを対応付けた情報を含む請求項1から8何れか1項に記載の運転支援システム。
  10.  前記システムの状態が、前記操作が必要な状態であるか否かを判定する状態判定手段を更に有する請求項1から9何れか1項に記載の運転支援システム。
  11.  前記学習エージェントは、前記作成した操作内容をユーザに出力する請求項1から10何れか1項に記載の運転支援システム。
  12.  操作要素の順序及び各操作要素の操作量を含む操作手順に基づいて運転されるシステムの第1状態、当該システムの状態間の関係を含む推論知識、及び当該システムにおける数的知識を含む定量的知識に基づいて、当該システムの目標状態と、前記第1状態から前記目標状態に至る部分目標状態とを推論する目標状態推論手段と、
     操作導出規則に基づいて、前記部分目標状態に遷移させるための操作を推論する操作列推論手段と、
     学習設定導出規則に基づいて、前記推論された前記操作の学習設定を生成し、前記操作における操作内容を作成する学習エージェントに出力する学習設定生成手段とを備える自動プランナ。
  13.  前記推論知識は、操作前の状態と操作後の目標状態とを対応付けて定義する第1推論知識と、状態間の状態遷移を定義する第2推論知識とを含み、
     前記目標状態推論手段は、第1推論知識を用いて前記目標状態を推論し、前記第2推論知識を用いて前記部分目標状態を推論する請求項12に記載の自動プランナ。
  14.  前記目標状態推論手段は、前記第2推論知識を用い、前記目標状態から前記第1状態に遡ることで、前記部分目標状態を推論する請求項13に記載の自動プランナ。
  15.  前記学習設定は、前記学習エージェントへの入力変数、前記学習エージェントの出力変数、目的関数、及び学習の種別を含む請求項12から14何れか1項に記載の自動プランナ。
  16.  前記システムの状態が、前記操作が必要な状態であるか否かを判定する状態判定手段を更に有する請求項12から15何れか1項に記載の自動プランナ。
  17.  操作要素の順序及び各操作要素の操作量を含む操作手順に基づいて運転されるシステムの第1状態、当該システムの状態間の関係を含む推論知識、及び当該システムにおける数的知識を含む定量的知識に基づいて、当該システムの目標状態と、前記第1状態から前記目標状態に至る部分目標状態とを推論し、
     操作導出規則に基づいて、前記部分目標状態に遷移させるための操作を推論し、
     学習設定導出規則に基づいて、前記推論された前記操作の学習設定を生成し、前記操作における操作内容を作成する学習エージェントに出力する運転支援方法。
  18.  操作要素の順序及び各操作要素の操作量を含む操作手順に基づいて運転されるシステムの第1状態、当該システムの状態間の関係を含む推論知識、及び当該システムにおける数的知識を含む定量的知識に基づいて、当該システムの目標状態と、前記第1状態から前記目標状態に至る部分目標状態とを推論し、
     操作導出規則に基づいて、前記部分目標状態に遷移させるための操作を推論し、
     学習設定導出規則に基づいて、前記推論された前記操作の学習設定を生成し、前記操作における操作内容を作成する学習エージェントに出力する処理をコンピュータに実行させるためのプログラムを格納したコンピュータ可読媒体。
PCT/JP2019/024164 2018-09-12 2019-06-18 運転支援システム及び方法、自動プランナ、並びにコンピュータ可読媒体 WO2020054164A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/274,922 US20220058501A1 (en) 2018-09-12 2019-06-18 Automatic planner, operation assistance method, and computer readable medium
JP2020546702A JP7058387B2 (ja) 2018-09-12 2019-06-18 運転支援システム及び方法、自動プランナ、並びにプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-170825 2018-09-12
JP2018170825 2018-09-12

Publications (1)

Publication Number Publication Date
WO2020054164A1 true WO2020054164A1 (ja) 2020-03-19

Family

ID=69776673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024164 WO2020054164A1 (ja) 2018-09-12 2019-06-18 運転支援システム及び方法、自動プランナ、並びにコンピュータ可読媒体

Country Status (3)

Country Link
US (1) US20220058501A1 (ja)
JP (1) JP7058387B2 (ja)
WO (1) WO2020054164A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220164647A1 (en) * 2020-11-24 2022-05-26 International Business Machines Corporation Action pruning by logical neural network

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02259803A (ja) * 1989-03-31 1990-10-22 Agency Of Ind Science & Technol プラント制御装置
JPH07219626A (ja) * 1994-02-04 1995-08-18 Toshiba Corp プラント制御装置及びトンネル換気制御装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4525477B2 (ja) * 2005-02-23 2010-08-18 ソニー株式会社 学習制御装置および学習制御方法、並びに、プログラム
WO2010004358A1 (en) * 2008-06-16 2010-01-14 Telefonaktiebolaget L M Ericsson (Publ) Automatic data mining process control
US9015092B2 (en) * 2012-06-04 2015-04-21 Brain Corporation Dynamically reconfigurable stochastic learning apparatus and methods
WO2013102926A2 (en) * 2011-12-13 2013-07-11 Tata Consultancy Services Limited A user specific plan generation method and system
US20140358828A1 (en) * 2013-05-29 2014-12-04 Purepredictive, Inc. Machine learning generated action plan

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02259803A (ja) * 1989-03-31 1990-10-22 Agency Of Ind Science & Technol プラント制御装置
JPH07219626A (ja) * 1994-02-04 1995-08-18 Toshiba Corp プラント制御装置及びトンネル換気制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GOFUKU, AKIO ET AL.: "Finding out Counter Actions in an Anomalous Plant Situation Based on Functions and Behavior", TRANSACTIONS OF THE INSTITUTE OF SYSTEMS, CONTROL AND INFORMATION ENGINEERS, vol. 11, no. 8, 15 August 1998 (1998-08-15), pages 42 - 49, XP003007196, ISSN: 1342-5668 *

Also Published As

Publication number Publication date
JPWO2020054164A1 (ja) 2021-09-24
JP7058387B2 (ja) 2022-04-22
US20220058501A1 (en) 2022-02-24

Similar Documents

Publication Publication Date Title
US11022965B2 (en) Controlling multi-stage manufacturing process based on internet of things (IOT) sensors and cognitive rule induction
JP5765873B2 (ja) 適応プロセス制御ループ制御装置、プロセス制御システム、およびプロセス制御システム制御方法
US11604459B2 (en) Real-time control using directed predictive simulation within a control system of a process plant
US11442416B2 (en) Plant control supporting apparatus, plant control supporting method, and recording medium
US11036214B2 (en) Industrial plant controller
EP3859455B1 (en) Learning apparatus, learning method, learning program, determination apparatus, determination method, determination program, and computer readable medium
Albalawi et al. Process operational safety via model predictive control: Recent results and future research directions
WO2020054164A1 (ja) 運転支援システム及び方法、自動プランナ、並びにコンピュータ可読媒体
CN113568379A (zh) 控制辅助装置、控制辅助方法、计算机可读介质及控制系统
Farias et al. Sim3tanks: a benchmark model simulator for process control and monitoring
Schulze Darup et al. How scaling of the disturbance set affects robust positively invariant sets for linear systems
JP2010049392A (ja) Pidコントローラのチューニング装置、pidコントローラのチューニング用プログラムおよびpidコントローラのチューニング方法
JP4524683B2 (ja) プラントモデルのパラメータ調整装置
JP7363839B2 (ja) 制御装置、制御方法、および、制御プログラム
CN109917825A (zh) 流体装置、流体装置用方法和存储介质
JP7359178B2 (ja) 制御装置、制御方法、および、制御プログラム
AU2021257589A1 (en) Method for an intelligent alarm management in industrial processes
JP7444186B2 (ja) モデル検証装置、モデル検証方法、および、モデル検証プログラム
JP7161379B2 (ja) 推論装置
Li et al. Fault detection for discrete piecewise linear systems with infinite distributed time-delays
US20230288882A1 (en) Aging aware reward construct for machine teaching
JP6150553B2 (ja) 運転操作評価装置、運転操作評価方法および運転操作評価プログラム
JP2023131987A (ja) 監視制御システム、監視制御方法、および監視制御プログラム
JP6139389B2 (ja) プラント制御ロジック設計支援システム、プラント制御ロジック設計支援方法、及びプログラム
JP2023165464A (ja) 機械学習モデル更新装置、機械学習モデル更新方法及び機械学習モデル更新プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19859790

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020546702

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19859790

Country of ref document: EP

Kind code of ref document: A1