WO2020051633A1 - Building panel - Google Patents
Building panel Download PDFInfo
- Publication number
- WO2020051633A1 WO2020051633A1 PCT/AU2019/050969 AU2019050969W WO2020051633A1 WO 2020051633 A1 WO2020051633 A1 WO 2020051633A1 AU 2019050969 W AU2019050969 W AU 2019050969W WO 2020051633 A1 WO2020051633 A1 WO 2020051633A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- building panel
- backing member
- panel according
- strengthening element
- timber board
- Prior art date
Links
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B5/00—Floors; Floor construction with regard to insulation; Connections specially adapted therefor
- E04B5/16—Load-carrying floor structures wholly or partly cast or similarly formed in situ
- E04B5/17—Floor structures partly formed in situ
- E04B5/23—Floor structures partly formed in situ with stiffening ribs or other beam-like formations wholly or partly prefabricated
- E04B5/29—Floor structures partly formed in situ with stiffening ribs or other beam-like formations wholly or partly prefabricated the prefabricated parts of the beams consisting wholly of metal
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B5/00—Floors; Floor construction with regard to insulation; Connections specially adapted therefor
- E04B5/16—Load-carrying floor structures wholly or partly cast or similarly formed in situ
- E04B5/32—Floor structures wholly cast in situ with or without form units or reinforcements
- E04B5/326—Floor structures wholly cast in situ with or without form units or reinforcements with hollow filling elements
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B5/00—Floors; Floor construction with regard to insulation; Connections specially adapted therefor
- E04B5/16—Load-carrying floor structures wholly or partly cast or similarly formed in situ
- E04B5/32—Floor structures wholly cast in situ with or without form units or reinforcements
- E04B5/36—Floor structures wholly cast in situ with or without form units or reinforcements with form units as part of the floor
- E04B5/38—Floor structures wholly cast in situ with or without form units or reinforcements with form units as part of the floor with slab-shaped form units acting simultaneously as reinforcement; Form slabs with reinforcements extending laterally outside the element
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B5/00—Floors; Floor construction with regard to insulation; Connections specially adapted therefor
- E04B5/16—Load-carrying floor structures wholly or partly cast or similarly formed in situ
- E04B5/32—Floor structures wholly cast in situ with or without form units or reinforcements
- E04B5/36—Floor structures wholly cast in situ with or without form units or reinforcements with form units as part of the floor
- E04B5/38—Floor structures wholly cast in situ with or without form units or reinforcements with form units as part of the floor with slab-shaped form units acting simultaneously as reinforcement; Form slabs with reinforcements extending laterally outside the element
- E04B5/40—Floor structures wholly cast in situ with or without form units or reinforcements with form units as part of the floor with slab-shaped form units acting simultaneously as reinforcement; Form slabs with reinforcements extending laterally outside the element with metal form-slabs
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B5/00—Floors; Floor construction with regard to insulation; Connections specially adapted therefor
- E04B5/48—Special adaptations of floors for incorporating ducts, e.g. for heating or ventilating
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B2103/00—Material constitution of slabs, sheets or the like
- E04B2103/02—Material constitution of slabs, sheets or the like of ceramics, concrete or other stone-like material
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B2103/00—Material constitution of slabs, sheets or the like
- E04B2103/04—Material constitution of slabs, sheets or the like of plastics, fibrous material or wood
Definitions
- the present invention relates to a building panel for forming a load-bearing structure, and especially for forming a suspended composite floor slab.
- the invention is particularly designed for use in industrial applications, and it will be convenient to describe the invention herein in this exemplary context. It will be appreciated, however, that the invention is not limited to this particular application but may also be employed in commercial or domestic applications.
- Suspended floor slabs are typically constructed of concrete, which is poured into shuttering or formwork spanning between temporary or permanent floor supports, such as walls, band beams or columns, to form a concrete floor.
- This method has the disadvantages, however, that the process of erecting and stripping the shuttering or formwork is time-consuming, labor intensive, high risk from a safety perspective and costly.
- the span of the concrete floor between the support columns is often limited by the weight of the concrete floor.
- the present invention provides a building panel for forming a load- bearing structure, the building panel comprising:
- a void former mountable to the backing member and disposed adjacent to the strengthening element for forming a void in the structure; wherein the backing member, the strengthening element, and the void former are configured to receive a mixture curable to form the structure.
- the mixture is a concrete mixture.
- the building panel further comprises a reinforcing mesh spaced apart from the strengthening element to provide tensile strength to the structure.
- the backing member is comprised of a fire-resistant material to substantially protect the structure from fire damage.
- the backing member is in the form of a timber board having a predetermined thickness, wherein the timber board is configured to char when exposed to a fire hazard thereby substantially protecting the structure from fire damage.
- the timber board has a predetermined length and width, wherein the void former extends substantially along the entire predetermined length of the timber board and at least along a majority of the predetermined width of the timber board.
- the strengthening element is in the form of a steel beam having a uniform transverse cross-sectional profile and extending substantially along the entire predetermined length of the timber board.
- the strengthening element comprises a number of truss elements arranged in a repeating manner along the entire predetermined length of the timber board.
- the void former is comprised of polystyerene, polyisocyanurate (PIR) foam, rock wool or plastics, or combinations thereof.
- the present invention provides a building panel for forming a load- bearing structure, the building panel comprising:
- a backing member a strengthening element mountable to the backing member such that the strengthening element and the backing member enclose a volume therebetween, wherein the volume defines a void;
- the backing member and the strengthening element are configured to receive a mixture curable to form the structure.
- the mixture is a concrete mixture.
- the building panel further comprises a reinforcing mesh spaced apart from the strengthening element to provide tensile strength to the structure.
- the building panel further comprises a reinforcing mesh fixed to or laid on top of the strengthening element to provide tensile strength to the structure.
- the backing member is comprised of a fire-resistant material to substantially protect the structure from fire damage.
- the backing member is in the form of a timber board having a predetermined thickness, wherein the timber board is configured to char when exposed to a fire hazard.
- the timber board has a predetermined length and width, wherein the strengthening element extends substantially along the entire predetermined length of the timber board and at least along a majority of the predetermined width of the timber board.
- the strengthening element is in the form of a folded steel sheet having a uniform transverse cross-sectional profile and extending substantially along the entire predetermined length of the timber board.
- the cross-sectional profile of the folded steel sheet is substantially trapezoidal.
- the present invention provides a composite floor slab comprising: at least one of the building panels according to any one of the aspects or embodiments of the invention described above;
- the present invention provides a method of constructing a suspended composite floor slab comprising:
- FIG. 1 is a perspective view of a building panel according to a first embodiment of the present invention
- FIG. 2 is a sectional view of the building panel of FIG. 1;
- FIG. 3 is a perspective view of a building panel according to a second embodiment of the present invention.
- FIG. 4 is a sectional view of the building panel of FIG. 3;
- FIG. 5 is a perspective view of a building panel according to a third embodiment of the present invention.
- FIG. 6 is a sectional view of the building panel of FIG. 5;
- FIG. 7 is a perspective view of a building panel according to a fourth embodiment of the present invention.
- FIG. 8 is a sectional view of the building panel of FIG. 7;
- FIG. 9 is a perspective view of a building panel according to a fifth embodiment of the present invention.
- FIG. 10 is a sectional view of the building panel of FIG. 9;
- FIG. 11 is a perspective view of a building panel according to a sixth embodiment of the present invention.
- FIG. 12 is a sectional view of the building panel of FIG. 11;
- FIG. 13 is a perspective view of a building panel according to a seventh embodiment of the present invention.
- FIG. 14 is a sectional view of the building panel of FIG. 13.
- FIGS. 1 and 2 show a building panel 100 according to a first embodiment.
- the building panel 100 is suitable for use in forming a load-bearing structure such as a suspended composite floor slab (not shown).
- the building panel 100 includes a backing member in the form of a timber board 102 having a predetermined thickness preferably in the range of about 60 mm to 100 mm, more preferably about 80 mm.
- the timber board 102 is designed to a thickness so that, in the event of a fire hazard, the timber board 102 is allowed to char when exposed to the fire hazard thereby substantially protecting the rest of the structure from fire damage. It can also be envisaged that the timber board 102 is treated or coated with a fire- resistant material or compound for added fire protection.
- the timber board 102 may be engineered as cross laminated timber (CLT), laminated veneer lumber (LVL), nail-laminated timber (NLT) or glue laminated timber (GLT), although other suitable engineered wood products may be used.
- the timber board 102 has a predetermined length preferably in the range of about 4m to l2m, more preferably about 9m, and a predetermined width preferably in the range of about lm to 2.5m, more preferably about l.2m and 2.4m. It will be appreciated that the length and width of the timber board 102 is determined based on certain design criteria for a particular application.
- the building panel 100 further includes a strengthening element in the form of repeating steel truss elements 104 (only one of the truss elements 104 is labelled in FIG. 1 for clarity) arranged along the entire predetermined length of the timber board 102.
- Each of the truss elements 104 include a number of web chord elements 105 (shown in FIG. 2) which define a substantially pyramidal arrangement in which the proximal ends of each of the web chord elements 105 which are located at the corners of the pyramidal arrangement are welded to a steel plate 106.
- each of the web chord elements 105 are welded together to define an apex 107 of the substantially pyramidal arrangement which in turn is welded to a steel bridging chord 108 extending along the entire predetermined length of the timber board 102 parallel with the timber board 102.
- the steel plate 106 is mounted to the timber board 102 via a composite connection such as with nail fixings (not shown), screw fixings (not shown) or an adhesive.
- the truss elements 104 are designed to limit deflection of the timber board 102 and hence the structure when under axial load.
- the building panel 100 further includes a void former 110 mounted to the timber board 102 and disposed adjacent to the truss elements 104 for forming a void 112 (shown in FIG. 2) in the structure.
- the void former 110 is preferably a block of lightweight material such as polystyrene, polyisocyanurate (PIR) foam, rock wool or plastics, or combinations thereof.
- the void former 110 is preferably mounted to the timber board 102 via an adhesive or other suitable fixing means.
- the void former 110 extends substantially along the entire predetermined length of the timber board 102 and at least along a majority of the predetermined width of the timber board 102, that is, the void former 110 occupies more of the width of the timber board 102 than the truss elements 104.
- the building panel 100 further includes a reinforcing mesh 114, preferably steel or fibreglass mesh, shown spaced apart from the steel bridging chord 108 of the truss elements 104 to provide tensile strength to the structure.
- a reinforcing mesh 114 preferably steel or fibreglass mesh, shown spaced apart from the steel bridging chord 108 of the truss elements 104 to provide tensile strength to the structure.
- the reinforcing mesh 114 it is preferred for the reinforcing mesh 114 to be fixed to or laid on top of the steel bridging chord 108.
- the timber board 102, the truss elements 104, the void former 110 and the reinforcing mesh 114 are configured to receive a concrete mixture 116 which is cured to form a concrete structure of the composite floor slab.
- the void 112 formed by the void former 110 defines a volume impenetrable by the concrete mixture 116 thereby reducing the volume of concrete mixture required to form the composite floor slab (and hence reducing the total dead weight) whilst still maintaining overall strength of the composite floor slab.
- the concrete mixture 116 preferably covers the reinforcing mesh 114 to a depth of at least about 65 mm.
- the thickness of the concrete mixture 116 between the reinforcing mesh 114 and the bridging chord 108 is preferably in the range of about 30 mm to 35 mm. Although it will be appreciated that the depth of the concrete mixture 116 above the reinforcing mesh 114 and the thickness of the concrete mixture 116 between the reinforcing mesh 114 and the bridging chord 108 can be tailored to meet particular design standards for a given application.
- more than one arrangement of repeating truss elements 104 and more than one void former 110 may be mounted in an alternating manner on the one timber board 102 per building panel 100 as depicted in FIGS. 1 and 2.
- one or more of the building panels 100 may be entirely pre-fabricated off-site and delivered ready to use on-site.
- FIG. 3 shows a building panel 200 according to a second embodiment.
- the building panel 200 is similar to that of the building panel 100, but does not include the truss elements 104. Rather, the truss elements 104 are replaced with a steel beam 204. Accordingly, features of the building panel 200 that are identical to those of the building panel 100 are provided with an identical reference numeral. For features that are identical between the building panel 100 and the building panel 200, it will be appreciated that the above description of those features in relation to the building panel 100 is also applicable to the corresponding identical features found in the building panel 200.
- the steel beam 204 extends substantially along the entire predetermined length of the timber board 102.
- the steel beam 204 is preferably comprised of cold-formed “C” sections 205 (shown in FIG. 4) which are welded together along their longitudinal length back-to-back to form a uniform transverse cross-sectional profile along the length of the steel beam 204.
- the steel beam 204 is mounted to the timber board 102 via a composite connection such as with nail fixings (not shown), screw fixings (not shown) or an adhesive between a bottommost surface of the steel beam 204 and the timber board 102. In this way, the steel beam 204 is designed to limit deflection of the timber board 102 and hence the structure when under axial load.
- the reinforcing mesh 114 is shown spaced apart from the top most surface of the steel beam 204. Although, it is preferred for the reinforcing mesh 114 to be fixed to or laid on top of the top most surface of the steel beam 204.
- the timber board 102, the cold-formed“C” sections 205 of the steel beam 204, the void former 110 and the reinforcing mesh 114 are configured to receive the concrete mixture 116 which is cured to form the concrete structure of the composite floor slab.
- the concrete mixture 116 preferably covers the reinforcing mesh 114 to a depth of at least about 65 mm.
- the thickness of the concrete mixture 116 between the reinforcing mesh 114 and the top most surface of the steel beam 204 is preferably in the range of about 30 mm to 35 mm.
- the depth of the concrete mixture 116 above the reinforcing mesh 114 and the thickness of the concrete mixture 116 between the reinforcing mesh 114 and the top most surface of the steel beam 204 can be tailored to meet particular design standards for a given application.
- more than one arrangement of the steel beam 204 and more than one void former 110 may be mounted in an alternating manner on the one timber board 102 per building panel 200.
- one or more of the building panels 200 may be entirely pre-fabricated off-site and delivered ready to use on-site.
- FIGS. 5 and 7 show a building panel 300 and a building panel 400 according to a third and fourth embodiment, respectively.
- Both the building panel 300 and the building panel 400 are similar to that of the building panel 200, but the steel beam 304 of the building panel 300 and the steel beam 404 of the building panel 400 each have a different transverse cross-sectional profile to that of the steel beam 204 of the building panel 200.
- the steel beam 304 of the building panel 300 is comprised of cold-formed“Z” sections 305 which are welded together along their bottommost edges to form a generally“U” shaped uniform transverse cross- sectional profile along the length of the steel beam 304.
- the steel beam 404 of the building panel 400 is comprised of a cold-formed box section 405 forming a generally box shaped uniform transverse cross-sectional profile along the length of the steel beam 404. Accordingly, features of the building panel 300 and the building panel 400 that are identical to those of the building panel 200 are provided with an identical reference numeral, whereas equivalent features are provided with the same reference numeral to that of the second embodiment, increased by 100 and 200 respectively. For features that are identical/equivalent between the building panel 200 and the building panels 300, 400, it will be appreciated that the above description of those features in relation to the building panel 200 is also applicable to the corresponding identical/equivalent features found in the building panels 300, 400.
- more than one arrangement of the steel beams 304, 404 and more than one void former 110 may be mounted in an alternating manner on the one timber board 102 per building panel 300, 400.
- one or more of the building panels 300, 400 may be entirely pre-fabricated off-site and delivered ready to use on-site.
- FIG. 9 shows a building panel 500 according to a fifth embodiment.
- the building panel 500 is similar to that of the building panel 100, but does not include the truss elements 104, nor the void former 110. Rather, the building panel 500 includes a strengthening element in the form of a folded steel sheet 504. Accordingly, features of the building panel 500 that are identical to those of the building panel 100 are provided with an identical reference numeral. For features that are identical between the building panel 100 and the building panel 500, it will be appreciated that the above description of those features in relation to the building panel 100 is also applicable to the corresponding identical features found in the building panel 500.
- the folded steel sheet 504 is mountable to the timber board 102 such that the folded steel sheet 504 and the timber board 102 enclose a volume therebetween so that the volume defines a void 112.
- the folded steel sheet 504 is comprised of a cold-formed top hat section 505 which is mounted at its bottommost flanges to the timber board 102 via composite connections such as those described above.
- the folded steel sheet 504 preferably defines a uniform transverse cross-sectional trapezoidal profile and extends substantially along the entire predetermined length of the timber board 102. In this way, the folded steel sheet 504 is designed to limit deflection of the timber board 102 and hence the structure when under axial load whilst simultaneously forming the void 112.
- the reinforcing mesh 114 is shown spaced apart from the top most surface of the folded steel sheet 504. Although, it is preferred for the reinforcing mesh 114 to be fixed to or laid on top of the top most surface of the steel sheet 504.
- the timber board 102 and the folded steel sheet 504 are configured to receive a concrete mixture 116 which is cured to form a concrete structure of the composite floor slab.
- the void 112 formed by the folded steel sheet 504 and the timber board 102 defines a volume impenetrable by the concrete mixture 116 thereby reducing the volume of concrete mixture required to form the composite floor slab (and hence reducing the total dead weight) whilst still maintaining overall strength of the composite floor slab.
- the concrete mixture 116 preferably covers the reinforcing mesh 114 to a depth of at least about 65 mm.
- the thickness of the concrete mixture 116 between the reinforcing mesh 114 and the top most surface of the steel sheet 504 is preferably in the range of about 30 mm to 35 mm.
- the depth of the concrete mixture 116 above the reinforcing mesh 114 and the thickness of the concrete mixture 116 between the reinforcing mesh 114 and the top most surface of the steel sheet 504 can be tailored to meet particular design standards for a given application.
- the building panel 500 is more cost efficient to fabricate compared to the building panel 100.
- more than one arrangement of the folded steel sheet 504 may be mounted in a repeating manner on the one timber board 102 per building panel 500.
- one or more of the building panels 500 may be entirely pre-fabricated off-site and delivered ready to use on-site.
- FIGS. 11 and 12 show a building panel 600 according to a sixth embodiment.
- the building panel 600 is similar to that of the building panel 500, but the folded steel sheet 604 of the building panel 600 has a different transverse cross-sectional profile. Accordingly, features of the building panel 600 that are identical to those of the building panel 500 are provided with an identical reference numeral. For features that are identical between the building panel 500 and the building panel 600, it will be appreciated that the above description of those features in relation to the building panel 500 is also applicable to the corresponding identical features found in the building panel 600.
- the folded steel sheet 604 is comprised of a cold-formed top hat section 605 which is mounted at its bottommost flanges to the timber board 102 via composite connections such as screws 601 (shown in FIG. 12) or those described above. These connections / fixings may extend into the concrete mixture to act as shear studs, connecting the concrete mixture 116 to the timber board 102.
- the top hat section 605 includes a trough portion 606 extending along the length of the folded steel sheet 604 which is configured to receive the concrete mixture 116.
- the reinforcing mesh 114 rests on the uppermost surface of the folded steel sheet 604 as shown in FIG. 12.
- the trough portion 606 is configured to receive a portion of the concrete mixture 116 so that the thickness of the concrete mixture 116 between the reinforcing mesh 114 and the bottommost surface of the trough portion 606 is preferably in the range of about 30 mm to 35 mm, although it will be appreciated that this thickness of the concrete mixture 116 can be tailored to meet particular design standards for a given application.
- more than one arrangement of the folded steel sheet 604 may be mounted in a repeating manner on the one timber board 102 per building panel 600.
- one or more of the building panels 600 may be entirely pre-fabricated off-site and delivered ready to use on-site.
- FIGS. 13 and 14 show a building panel 700 according to a seventh embodiment.
- the building panel 700 is suitable for use in forming a load-bearing structure such as a suspended composite floor slab (not shown).
- the building panel 700 includes a laminated backing member 702 having a plurality of treated or untreated timber lamellas 703 that are adhered to each other.
- the lamellas 703 can also be dowelled or nailed together.
- the building panel 700 further includes a plurality of strengthening elements in the form of N20 reinforcing bars 704 arranged along the entire predetermined length of the laminated blacking member 702.
- the N20 reinforcing bars 704 are designed to limit deflection of the backing member 702 and hence the structure when under axial load.
- the building panel 700 further includes a void former 710.
- the void former is formed by providing that a number of lamellas 706 have a longer width than the other lamellas 703.
- a cross-member 708 in the form of an 18mm formply panel is secured to two longer lamellas 706 as shown to form a void 712.
- the void former 710 extends substantially along the entire predetermined length of the backing member 702.
- the building panel 700 further includes a reinforcing mesh 714, preferably steel or fibreglass mesh, shown spaced apart from the cross-members 708 to provide tensile strength to the structure.
- a reinforcing mesh 714 preferably steel or fibreglass mesh, shown spaced apart from the cross-members 708 to provide tensile strength to the structure.
- the backing member 702, strengthening elements 104, void formers 110 and the reinforcing mesh 714 are configured to receive a concrete mixture 716 which is cured to form a concrete structure of the composite floor slab.
- the void 712 formed by the void former 710 defines a volume impenetrable by the concrete mixture 716 to reduce the volume of concrete mixture required to form the composite floor slab.
- To secure the backing member 702 in position a number of dowels 718 spaced along the length of the backing member 702.
- the concrete mixture 716 is connected to the backing member 702 by non-illustrated shear studs or steel rods located between the wider lamellas.
- more than one arrangement of repeating truss elements 104 and more than one void former 110 may be mounted in an alternating manner on the one timber board 102 per building panel 100 as depicted in FIGS. 1 and 2.
- one or more of the building panels 100 may be entirely pre-fabricated off-site and delivered ready to use on-site.
- the method comprises the initial step of arranging at least one of the building panels 100, 200, 300, 400, 500, 600, 700 to span across temporary or permanent floor supports such as columns, band beams or wall.
- the building panel 100, 200, 300, 400, 500, 600, 700 may be arranged adjacent to many of the same or different building panels 100, 200, 300, 400, 500, 600, 700 to span a desired area.
- a concrete mixture is then poured over the one or more building panels 100, 200, 300, 400, 500, 600, 700 and allowed to cure using typical techniques to form a concrete structure.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Building Environments (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA3112329A CA3112329A1 (en) | 2018-09-10 | 2019-09-10 | Building panel |
AU2019338428A AU2019338428A1 (en) | 2018-09-10 | 2019-09-10 | Building panel |
EP19859065.5A EP3850167A4 (en) | 2018-09-10 | 2019-09-10 | Building panel |
US17/274,806 US20220049495A1 (en) | 2018-09-10 | 2019-09-10 | Building panel |
AU2022100084A AU2022100084A4 (en) | 2018-09-10 | 2022-06-21 | Building Panel |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2018903375A AU2018903375A0 (en) | 2018-09-10 | Building panel | |
AU2018903375 | 2018-09-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020051633A1 true WO2020051633A1 (en) | 2020-03-19 |
Family
ID=69776465
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/AU2019/050969 WO2020051633A1 (en) | 2018-09-10 | 2019-09-10 | Building panel |
Country Status (5)
Country | Link |
---|---|
US (1) | US20220049495A1 (en) |
EP (1) | EP3850167A4 (en) |
AU (2) | AU2019338428A1 (en) |
CA (1) | CA3112329A1 (en) |
WO (1) | WO2020051633A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111608315A (en) * | 2020-06-08 | 2020-09-01 | 百安力钢结构应用科技有限公司 | A kind of fire-resistant composite floor and its fire-resistant performance test method |
CN112248221A (en) * | 2020-10-26 | 2021-01-22 | 渝建建筑科技集团有限公司 | Construction method of fabricated floor |
JP2022026964A (en) * | 2020-07-31 | 2022-02-10 | 株式会社熊谷組 | Mold form of concrete slab |
AU2021103539B4 (en) * | 2021-06-22 | 2022-02-17 | SHAPE Australia Pty Limited | A flooring panel, system and method for constructing a fire-rated suspended floor |
WO2022150224A1 (en) * | 2021-01-07 | 2022-07-14 | Skidmore, Owings & Merrill Llp | Modular composite action panel and structural systems using same |
WO2024158534A1 (en) * | 2023-01-26 | 2024-08-02 | Som Iw Holdings, Llc | Timber-concrete composite connector and ductile reinforcement chair |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113638532B (en) * | 2021-08-24 | 2024-06-21 | 浙江亚厦装饰股份有限公司 | Assembled floor slab structure with fireproof performance and installation method |
CN115182497A (en) * | 2022-06-23 | 2022-10-14 | 四川恒增装配式建筑科技有限公司 | Reinforced composite floor slab structure and demolding method applied to floor slab |
CN116677115B (en) * | 2023-06-02 | 2024-01-30 | 中交建筑集团有限公司 | A kind of concrete-wood composite floor slab, formwork box structure and production method of floor slab |
ES1304560Y (en) * | 2023-09-06 | 2024-03-04 | Metalblox S L | INTEGRAL PREFABRICATED PANELS FOR THE CONSTRUCTION OF FLOORS AND ROOFS FOR BUILDINGS IN GENERAL |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1119435A (en) * | 1913-10-04 | 1914-12-01 | Martin Kuehne | Hollow concrete floor construction. |
FR670890A (en) * | 1928-06-28 | 1929-12-05 | Improvements in the construction of composite floors | |
GB573106A (en) * | 1943-11-26 | 1945-11-06 | Albert Thomas Oliver Quick | Improvements in concrete floors, walls and like structures |
AU229875B2 (en) * | 1957-06-06 | 1958-12-04 | Frederick Bernhard Rice | A structural element for building reinforced concrete floors and ceilings |
GB884553A (en) * | 1957-03-11 | 1961-12-13 | Rheinbau Gmbh | Improvements in or relating to concrete ceiling or floor structures |
US3334458A (en) * | 1963-10-21 | 1967-08-08 | John C Leemhuis | Structural member |
GB1339607A (en) * | 1971-04-21 | 1973-12-05 | Bastgen A | Reinforced concrete ribbed floor or roof structure |
AU6655781A (en) * | 1980-01-22 | 1982-07-29 | Transfloors Pty. Ltd. | Modular building slab |
EP0617180A2 (en) * | 1993-03-26 | 1994-09-28 | ONDAPLAST S.p.A. | Products for the fabrication of floors with lightening box elements and floors made with these products |
JPH11141036A (en) * | 1997-11-13 | 1999-05-25 | Ishii:Kk | Floor component unit for building and floor construction using it |
JP2000186387A (en) * | 1998-12-21 | 2000-07-04 | Sekisui Plastics Co Ltd | Substrate for hollow concrete slab and structure using the substrate |
JP2000204706A (en) * | 1999-01-11 | 2000-07-25 | Nippon Kaiser Kk | Precast concrete boards, floor slabs and structures |
JP2002004476A (en) * | 2000-06-20 | 2002-01-09 | Mitsui Constr Co Ltd | Slab construction method |
JP2003155794A (en) * | 2001-11-20 | 2003-05-30 | Osuga Runao Kenchiku Kozo Sekkei Jimusho:Kk | Synthetic hollow floor plate |
US20050284071A1 (en) * | 2002-09-23 | 2005-12-29 | Ewald Houben | Construction element and method for manufacturing it |
WO2006097962A1 (en) * | 2005-03-14 | 2006-09-21 | Cenci, Sabrina | Process for manufacturing composite structural elements by gluing wood or its derivatives with concrete in the state of fresh mixture |
Family Cites Families (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1095204A (en) * | 1913-05-19 | 1914-05-05 | John F. Golding | Concrete floor and ceiling. |
US1251151A (en) * | 1916-11-13 | 1917-12-25 | Widmer Engineering Company | Plaster-ceiling support. |
US1729612A (en) * | 1926-10-13 | 1929-10-01 | Goldsmith Metal Lath Company | Concrete floor construction |
US2017833A (en) * | 1933-01-13 | 1935-10-15 | Budd Edward G Mfg Co | Flooring structure |
US2017832A (en) * | 1933-01-13 | 1935-10-15 | Budd Edward G Mfg Co | Flooring structure |
US2844024A (en) * | 1954-10-21 | 1958-07-22 | Mcdonald James Leonard | Combination preformed and cast-in-situ reinforced flooring structure |
GB1132538A (en) * | 1965-04-15 | 1968-11-06 | Longinotti Enrico | Improvements in building structures |
BE714016A (en) * | 1968-04-22 | 1968-09-16 | ||
DE2058714A1 (en) * | 1970-11-28 | 1972-11-16 | Remy Friedr Nfg | Ribbed concrete slab |
GB1375404A (en) * | 1971-01-29 | 1974-11-27 | ||
US4507901A (en) * | 1974-04-04 | 1985-04-02 | Carroll Frank E | Sheet metal structural shape and use in building structures |
US4272230A (en) * | 1975-09-05 | 1981-06-09 | Solai Vignola Di Faviani Orlando Ec Societa | Slip form for building components |
SE7901731L (en) * | 1979-02-27 | 1980-08-28 | Frelena Ab | BJELKLAG |
GB2085502A (en) * | 1980-01-22 | 1982-04-28 | Transfloors Pty Ltd | Building units for forming permanent formwork |
EP0037126B1 (en) * | 1980-04-02 | 1987-07-22 | Sergio Sartorio | A method and a former for the manufacture of building elements and elements thus obtained |
FR2499612B1 (en) * | 1981-02-09 | 1986-05-30 | Sambuchi Boisbluche & Cie | INDOOR AIR VACUUM CONSTRUCTION ELEMENT, IN PARTICULAR FOR THE MANUFACTURE OF EXTERIOR WALLS OF A HOUSE |
US4486996A (en) * | 1982-05-19 | 1984-12-11 | Luis Alejos | Construction-panel prefabrication method, panels thus made and equipment for implementing said method |
EP0104992B1 (en) * | 1982-09-20 | 1986-09-10 | South African Inventions Development Corporation | Composite floor structures |
US4715155A (en) * | 1986-12-29 | 1987-12-29 | Holtz Neal E | Keyable composite joist |
US4909007A (en) * | 1987-03-19 | 1990-03-20 | Ernest R. Bodnar | Steel stud and precast panel |
CA1296501C (en) * | 1988-01-14 | 1992-03-03 | Herbert K. Schilger | Composite column or beam for building construction |
US4885884A (en) * | 1988-05-25 | 1989-12-12 | Schilger Herbert K | Building panel assembly |
US4930278A (en) * | 1988-06-02 | 1990-06-05 | In-Ve-Nit International Inc. | Composite cementitious building panels |
GB2236339B (en) * | 1989-09-07 | 1994-06-01 | Kajima Corp | Trusses and precast concrete slabs reinforced thereby |
US5235791A (en) * | 1992-04-28 | 1993-08-17 | Yaguchi Kenzai Khakko Co., Ltd. | Deck plate |
US5414972A (en) * | 1993-11-09 | 1995-05-16 | Composite Building Systems Incorporated | Reinforced structural member for building constructions |
DE19605142C1 (en) * | 1996-02-13 | 1999-10-14 | Schlueter Systems Gmbh | Floor composite body |
ES2132002B1 (en) * | 1996-02-15 | 2000-04-16 | Larracoechea Ramon Mimenza | IMPROVEMENTS IN FLOOR CONSTRUCTION SYSTEMS FOR FORGED FLOORS ONE-WAY. |
JPH1025854A (en) * | 1996-07-12 | 1998-01-27 | Jiyoisuto:Kk | Lightweight concrete plate |
US6298622B1 (en) * | 1996-10-15 | 2001-10-09 | Plastedil, S.A. | Self-supporting construction element of expanded plastics, in particular for manufacturing floor elements and walls of buildings in general |
US5930965A (en) * | 1997-09-23 | 1999-08-03 | Carver; Tommy Lee | Insulated deck structure |
US6427406B1 (en) * | 1998-12-11 | 2002-08-06 | Swa Holding Company, Inc. | Monolithic stud form for concrete wall production |
US6167671B1 (en) * | 1998-12-21 | 2001-01-02 | Steven D. Wilson | Prefabricated concrete wall form system |
US6332301B1 (en) * | 1999-12-02 | 2001-12-25 | Jacob Goldzak | Metal beam structure and building construction including same |
DE50302102D1 (en) * | 2002-10-05 | 2006-03-30 | Dywidag Systems Int Gmbh | Steel composite construction for floor slabs |
FI20021934L (en) * | 2002-10-31 | 2004-07-16 | Tartuntamarkkinointi Oy | Joint beam |
ITBO20030046A1 (en) * | 2003-02-03 | 2004-08-04 | Coperlegno Srl | PREFABRICATED ELEMENTS FOR THE REALIZATION OF FLOORS |
DE10351989A1 (en) * | 2003-10-23 | 2005-06-09 | Bathon, Leander | Wood-concrete composite systems made of wooden components, intermediate layers and concrete components |
US7814719B2 (en) * | 2004-06-14 | 2010-10-19 | Plastedil S.A. | Self-supporting construction element made of expanded plastic material, in particular for manufacturing building floors and floor structure incorporating such element |
US8006450B2 (en) * | 2004-10-13 | 2011-08-30 | Plastedil S.A. | Composite floor structure with a protruding bar upper portion in a floor element groove |
ATE444416T1 (en) * | 2005-07-28 | 2009-10-15 | Vst Verbundschalungstechnik Gm | METHOD FOR PRODUCING A REINFORCED CONCRETE WALL-CEILING CONSTRUCTION |
EP1790789A1 (en) * | 2005-11-28 | 2007-05-30 | Bartoli N.V. | Building system, beam element, column and method |
DE202006000593U1 (en) * | 2006-01-13 | 2006-05-18 | Bathon, Leander, Prof. Dr. | Structures in wood-concrete composite construction |
US7891150B2 (en) * | 2006-01-25 | 2011-02-22 | Finfrock Industries, Inc. | Composite truss |
WO2008094175A2 (en) * | 2006-06-20 | 2008-08-07 | New Jersey Institute Of Technology | System and method of use for composite floor |
US8661754B2 (en) * | 2006-06-20 | 2014-03-04 | New Jersey Institute Of Technology | System and method of use for composite floor |
US20080155924A1 (en) * | 2006-10-23 | 2008-07-03 | Ronald Jean Degen | Flooring System |
US8186122B2 (en) * | 2008-01-24 | 2012-05-29 | Glenn Wayne Studebaker | Flush joist seat |
US8661755B2 (en) * | 2008-01-24 | 2014-03-04 | Nucor Corporation | Composite wall system |
US8161691B2 (en) * | 2008-05-14 | 2012-04-24 | Plattforms, Inc. | Precast composite structural floor system |
US8297017B2 (en) * | 2008-05-14 | 2012-10-30 | Plattforms, Inc. | Precast composite structural floor system |
IES20100101A2 (en) * | 2009-04-24 | 2010-10-27 | Maurice O'brien | A construction system |
US8453406B2 (en) * | 2010-05-04 | 2013-06-04 | Plattforms, Inc. | Precast composite structural girder and floor system |
US20120117902A1 (en) * | 2010-11-15 | 2012-05-17 | Garcia Jr Robert James | Concrete Form |
PT2698484E (en) * | 2012-08-13 | 2015-02-04 | Filigran Trägersysteme GmbH & Co KG | Point supported element or flat concrete construction |
JP6373975B2 (en) * | 2013-05-06 | 2018-08-15 | ユニバーシティー・オブ・カンタベリーUniversity Of Canterbury | Prestressed beam or panel and method for manufacturing prestressed beam or panel |
US9528269B2 (en) * | 2014-06-09 | 2016-12-27 | Johns Manville | Roofing systems and roofing boards with non-halogenated fire retardant |
EP3186454B1 (en) * | 2014-08-30 | 2021-01-20 | Innovative Building Technologies LLC | Prefabricated demising walls |
KR101588665B1 (en) * | 2015-04-28 | 2016-01-28 | 안승한 | Concrete structure device having fire fighting function for constructing floor of building and floor construction structure of building comprising the same |
FR3035669B1 (en) * | 2015-04-30 | 2018-11-23 | Saint Gobain Isover | CONSTRUCTION ELEMENT AND REINFORCING DEVICE THEREFOR |
AU2016265049B2 (en) * | 2015-05-21 | 2021-02-18 | Inquik Ip Holdings Pty Ltd | A module for a structure |
US10724228B2 (en) * | 2017-05-12 | 2020-07-28 | Innovative Building Technologies, Llc | Building assemblies and methods for constructing a building using pre-assembled floor-ceiling panels and walls |
US10260224B1 (en) * | 2017-12-29 | 2019-04-16 | Mohammad Omar A. Jazzar | Simplified precast concrete system with rapid assembly formwork |
-
2019
- 2019-09-10 EP EP19859065.5A patent/EP3850167A4/en active Pending
- 2019-09-10 WO PCT/AU2019/050969 patent/WO2020051633A1/en not_active Application Discontinuation
- 2019-09-10 CA CA3112329A patent/CA3112329A1/en active Pending
- 2019-09-10 AU AU2019338428A patent/AU2019338428A1/en not_active Abandoned
- 2019-09-10 US US17/274,806 patent/US20220049495A1/en not_active Abandoned
-
2022
- 2022-06-21 AU AU2022100084A patent/AU2022100084A4/en active Active
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1119435A (en) * | 1913-10-04 | 1914-12-01 | Martin Kuehne | Hollow concrete floor construction. |
FR670890A (en) * | 1928-06-28 | 1929-12-05 | Improvements in the construction of composite floors | |
GB573106A (en) * | 1943-11-26 | 1945-11-06 | Albert Thomas Oliver Quick | Improvements in concrete floors, walls and like structures |
GB884553A (en) * | 1957-03-11 | 1961-12-13 | Rheinbau Gmbh | Improvements in or relating to concrete ceiling or floor structures |
AU229875B2 (en) * | 1957-06-06 | 1958-12-04 | Frederick Bernhard Rice | A structural element for building reinforced concrete floors and ceilings |
US3334458A (en) * | 1963-10-21 | 1967-08-08 | John C Leemhuis | Structural member |
GB1339607A (en) * | 1971-04-21 | 1973-12-05 | Bastgen A | Reinforced concrete ribbed floor or roof structure |
AU6655781A (en) * | 1980-01-22 | 1982-07-29 | Transfloors Pty. Ltd. | Modular building slab |
EP0617180A2 (en) * | 1993-03-26 | 1994-09-28 | ONDAPLAST S.p.A. | Products for the fabrication of floors with lightening box elements and floors made with these products |
JPH11141036A (en) * | 1997-11-13 | 1999-05-25 | Ishii:Kk | Floor component unit for building and floor construction using it |
JP2000186387A (en) * | 1998-12-21 | 2000-07-04 | Sekisui Plastics Co Ltd | Substrate for hollow concrete slab and structure using the substrate |
JP2000204706A (en) * | 1999-01-11 | 2000-07-25 | Nippon Kaiser Kk | Precast concrete boards, floor slabs and structures |
JP2002004476A (en) * | 2000-06-20 | 2002-01-09 | Mitsui Constr Co Ltd | Slab construction method |
JP2003155794A (en) * | 2001-11-20 | 2003-05-30 | Osuga Runao Kenchiku Kozo Sekkei Jimusho:Kk | Synthetic hollow floor plate |
US20050284071A1 (en) * | 2002-09-23 | 2005-12-29 | Ewald Houben | Construction element and method for manufacturing it |
WO2006097962A1 (en) * | 2005-03-14 | 2006-09-21 | Cenci, Sabrina | Process for manufacturing composite structural elements by gluing wood or its derivatives with concrete in the state of fresh mixture |
Non-Patent Citations (1)
Title |
---|
See also references of EP3850167A4 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111608315A (en) * | 2020-06-08 | 2020-09-01 | 百安力钢结构应用科技有限公司 | A kind of fire-resistant composite floor and its fire-resistant performance test method |
CN111608315B (en) * | 2020-06-08 | 2021-07-13 | 百安力钢结构应用科技有限公司 | A kind of fire-resistant composite floor and its fire-resistant performance test method |
JP2022026964A (en) * | 2020-07-31 | 2022-02-10 | 株式会社熊谷組 | Mold form of concrete slab |
JP7424937B2 (en) | 2020-07-31 | 2024-01-30 | 株式会社熊谷組 | concrete slab formwork |
CN112248221A (en) * | 2020-10-26 | 2021-01-22 | 渝建建筑科技集团有限公司 | Construction method of fabricated floor |
CN112248221B (en) * | 2020-10-26 | 2022-02-11 | 渝建建筑科技集团有限公司 | Construction method of fabricated floor |
WO2022150224A1 (en) * | 2021-01-07 | 2022-07-14 | Skidmore, Owings & Merrill Llp | Modular composite action panel and structural systems using same |
CN115244260A (en) * | 2021-01-07 | 2022-10-25 | Som建筑设计事务所 | Modular composite action plate and structural system adopting same |
JP2023514035A (en) * | 2021-01-07 | 2023-04-05 | スキッドモア オーウィングス アンド メリル リミテッド ライアビリティ パートナーシップ | MODULAR COMPOSITE ACTION PANEL AND STRUCTURAL SYSTEM USING THE SAME |
AU2021103539B4 (en) * | 2021-06-22 | 2022-02-17 | SHAPE Australia Pty Limited | A flooring panel, system and method for constructing a fire-rated suspended floor |
AU2021103539C4 (en) * | 2021-06-22 | 2022-12-15 | SHAPE Australia Pty Limited | A flooring panel, system and method for constructing a fire-rated suspended floor |
WO2024158534A1 (en) * | 2023-01-26 | 2024-08-02 | Som Iw Holdings, Llc | Timber-concrete composite connector and ductile reinforcement chair |
Also Published As
Publication number | Publication date |
---|---|
AU2019338428A1 (en) | 2021-04-15 |
EP3850167A4 (en) | 2022-05-25 |
CA3112329A1 (en) | 2020-03-19 |
AU2022100084A4 (en) | 2022-07-21 |
US20220049495A1 (en) | 2022-02-17 |
EP3850167A1 (en) | 2021-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2022100084A4 (en) | Building Panel | |
US10024057B2 (en) | Construction panel system and methods of assembly thereof | |
CA2692723C (en) | Structural insulated roof panels with a rigid foam core | |
US5899037A (en) | Composite wall structure | |
US9328506B2 (en) | Construction panel system and methods of assembly | |
US20220213684A1 (en) | Modular composite action panel and structural systems using same | |
US8015771B2 (en) | Building form for concrete floors, walls and beams | |
US5930965A (en) | Insulated deck structure | |
RU2656260C2 (en) | Method for constructing building having strong thermal insulation and building constructed by means of said method | |
KR100979264B1 (en) | Formwork assembly using formwork panel of corrugated material | |
WO2018146536A1 (en) | Fast construction of energy-efficient buildings | |
JP2020186631A (en) | Vertical lattice presser fittings for indoor insulation panel formwork | |
RU2462563C2 (en) | Ceiling element | |
JP2020165174A (en) | Floor panel for wooden building | |
EP4488464A1 (en) | Layered construction element, building part and building composed thereof, and methods for constructing such a construction element, building part and building | |
US12065833B1 (en) | Architectural floor and roof framing system | |
JP7538063B2 (en) | Wooden members | |
EP4481129A1 (en) | Prefabricated building construction kit, the method of making said kit and the method of constructing a building using said construction kit | |
RU184476U1 (en) | PANEL FLOOR OF UNIT-MODULAR BUILDING | |
RU2150557C1 (en) | Fixture to reinforce stone structure | |
JP2025071658A (en) | Deck Slab | |
JP2023162735A (en) | Construction method of synthetic slab and synthetic slab | |
NL2008601C2 (en) | METHOD FOR BUILDING A WALL, PREFAB SANDWICH PANEL AND WALL. | |
WO2015152735A1 (en) | Cross laminated timber construction | |
JP2021156096A (en) | Floor framing structure for wooden building |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19859065 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3112329 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019338428 Country of ref document: AU Date of ref document: 20190910 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2019859065 Country of ref document: EP Effective date: 20210412 |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 774025 Country of ref document: NZ |