WO2020048042A1 - 一种去耦装置及mimo天线 - Google Patents

一种去耦装置及mimo天线 Download PDF

Info

Publication number
WO2020048042A1
WO2020048042A1 PCT/CN2018/121462 CN2018121462W WO2020048042A1 WO 2020048042 A1 WO2020048042 A1 WO 2020048042A1 CN 2018121462 W CN2018121462 W CN 2018121462W WO 2020048042 A1 WO2020048042 A1 WO 2020048042A1
Authority
WO
WIPO (PCT)
Prior art keywords
decoupling
decoupling device
dielectric substrate
antenna
radiation
Prior art date
Application number
PCT/CN2018/121462
Other languages
English (en)
French (fr)
Inventor
熊锡刚
骆胜军
潘波
Original Assignee
武汉虹信通信技术有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉虹信通信技术有限责任公司 filed Critical 武汉虹信通信技术有限责任公司
Publication of WO2020048042A1 publication Critical patent/WO2020048042A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • H01Q1/523Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas between antennas of an array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/104Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces using a substantially flat reflector for deflecting the radiated beam, e.g. periscopic antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays

Definitions

  • the invention belongs to the technical field of wireless communication, and particularly relates to a decoupling device and a MIMO antenna.
  • the antenna In traditional 2D-MIMO technology, the antenna generally uses a one-dimensional linear array antenna. The number of ports leads to a wider wave width, and the interference between base stations is more serious. The beam direction can only be adjusted mechanically in the horizontal dimension, and the energy in the vertical dimension cannot be adjusted. Centralized to the user terminal, the communication efficiency is low.
  • the antenna In 3D-MIMO technology, the antenna uses a two-dimensional large-scale planar array. Through beamforming, narrower beams can be achieved, and interference between base stations is greatly reduced.
  • the beam The horizontal and vertical dimensions can be adjusted and tracked in real time, always keeping the beam energy concentrated on the user terminal, and the communication quality is greatly improved; at the same time, the same frequency can serve more users and greatly increase the communication capacity.
  • the embodiments of the present application solve the problems of poor isolation and pattern distortion of large-scale array antennas in the prior art by providing a decoupling device and a MIMO antenna.
  • An embodiment of the present application provides a decoupling device, including: a first decoupling device, the first decoupling device is located above a radiation unit array, and the first decoupling device includes a dielectric substrate, a guide sheet, and a decoupling device; Strips, the guide strips, and the decoupling strips are all disposed on the dielectric substrate, the guide strips are located directly above the radiation units, and the decoupling strips are located between two columns of radiation units.
  • the distribution of the guide sheet and the decoupling strip on the dielectric substrate is one of the following distribution modes:
  • the guide piece and the decoupling strip are both located on a bottom surface of the dielectric substrate;
  • the guide piece and the decoupling strip are both located on the top surface of the dielectric substrate;
  • the guide sheet is located on a bottom surface of the dielectric substrate, and the decoupling strips are located on a top surface of the dielectric substrate;
  • the guide sheet is located on a top surface of the dielectric substrate, and the decoupling strips are all located on a bottom surface of the dielectric substrate.
  • the thickness of the dielectric substrate is between 0.0058 ⁇ and 0.035 ⁇ , and the dielectric constant of the dielectric substrate is between 2.2 and 9.8, where ⁇ is a wavelength corresponding to the center frequency of the radiating unit when transmitting in free space.
  • the distance between the bottom surface of the dielectric substrate and the top surface of the radiation surface of the radiation unit is between 3 mm and 8 mm.
  • the dielectric substrate is a whole dielectric substrate, or the dielectric substrate is composed of several small dielectric substrates.
  • the decoupling device further includes a second decoupling device.
  • the second decoupling device is disposed on the antenna reflection plate and is located between adjacent radiation units.
  • the second decoupling device is an isolation plate, and the isolation plate is made of copper, aluminum, or copper on both sides of the PCB.
  • the length of the isolation plate is between 0.2 ⁇ -0.6 ⁇ , the width is between 0.0117 ⁇ -0.0467 ⁇ , and the thickness is between 0.5mm-1.5mm, where ⁇ is the center frequency of the radiating unit and is transmitted in free space. Corresponding wavelength.
  • the partition plate is rectangular or wall shaped.
  • an embodiment of the present application provides a MIMO antenna, including an antenna reflection plate, a radiating unit, and the foregoing decoupling device.
  • the first decoupling device is located above the radiation unit array.
  • the first decoupling device includes a dielectric substrate, a guide sheet, and a decoupling strip.
  • the guide sheet and the decoupling strip are both disposed on the dielectric substrate.
  • the deflector is located directly above the radiating elements, and the decoupling strip is located between the two columns of radiating elements.
  • the leading piece of the first decoupling device is transmitted through electromagnetic coupling, and receives a part of the energy of the MIMO radiating unit to generate a weak induced electromagnetic wave signal.
  • the direction of the induced current is opposite to the current component of the cross-polarized electromagnetic wave, thereby canceling part of the cross-polarization.
  • Components to improve the isolation and cross-polarization ratio between the polarizations of the radiating elements Components to improve the isolation and cross-polarization ratio between the polarizations of the radiating elements.
  • the current direction and the radiating element are reached when they reach the position of the radiating element.
  • the direction of the current is the same, which improves the directivity coefficient of the antenna radiating unit and improves the front-to-back ratio.
  • the MIMO antenna array spacing is small (0.5 ⁇ , ⁇ is the wavelength of the antenna's working center frequency transmitted in free space), and the spatial coupling of electromagnetic waves is more serious.
  • the isolation between different columns of the MIMO antenna is poor.
  • the decoupling strips of the first decoupling device have a certain reflection effect on the radiated electromagnetic wave energy of the radiating unit, thereby reducing the mutual influence between the antenna units and improving the different columns of the antenna. Isolation.
  • the first decoupling device can effectively improve the mutual coupling relationship of large-scale array antennas, and improve indicators such as isolation between units and front-to-back ratio.
  • FIG. 1 is a left side view of a decoupling device according to an embodiment of the present invention
  • FIG. 2 is a top view of a decoupling device provided by an embodiment of the present invention.
  • FIG. 3 is a top view of a first decoupling device in a decoupling device according to an embodiment of the present invention
  • FIG. 4 is a first structural distribution diagram of a first decoupling device in a decoupling device according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a second structure distribution of a first decoupling device in a decoupling device according to an embodiment of the present invention
  • FIG. 6 is a third structural distribution diagram of a first decoupling device in a decoupling device according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a fourth structure distribution of a first decoupling device in a decoupling device according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a dielectric substrate composed of several small pieces in a decoupling device according to an embodiment of the present invention.
  • FIG. 9 is a first schematic structural diagram of a guide piece in a decoupling device according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a second structure of a guide piece in a decoupling device according to an embodiment of the present invention.
  • FIG. 11 is a third schematic structural diagram of a guide piece in a decoupling device according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a fourth structure of a guide piece in a decoupling device according to an embodiment of the present invention.
  • FIG. 13 is a fifth schematic structural diagram of a guide piece in a decoupling device according to an embodiment of the present invention.
  • FIG. 14 is a schematic diagram of a decoupling bar in a decoupling device according to an embodiment of the present invention.
  • FIG. 15 is a top view of a second decoupling device in a decoupling device according to an embodiment of the present invention.
  • FIG. 16 is a left side view of a second decoupling device in a decoupling device according to an embodiment of the present invention.
  • FIG. 17 is a comparison chart of the isolation curve simulation
  • FIG. 18 is a simulation comparison diagram of the normalized gain curve.
  • the first decoupling device 10—the first decoupling device
  • 101 the dielectric substrate
  • 102 the deflector
  • 103 the decoupling strip
  • 20 the second decoupling device
  • 301 the radiating unit
  • 302 the antenna reflection plate.
  • an embodiment of the present invention provides a decoupling device for a large-scale array antenna, which mainly includes a first decoupling device 10.
  • a second decoupling device 20 may also be included.
  • the first decoupling device 10 is located above the radiation unit array.
  • the first decoupling device 10 includes a dielectric substrate 101, a guide sheet 102, and a decoupling strip 103.
  • the decoupling strips 103 are all disposed on the dielectric substrate 101, the directing sheet 102 is located directly above the radiation unit 301, and the decoupling strips 103 are located between two columns of radiation units 301.
  • the second decoupling device 20 is disposed on the antenna reflection plate 302 and is located between adjacent radiation units 301.
  • the decoupling device involves the first decoupling device 10, the second decoupling device 20, and is associated with the decoupling device.
  • Large-scale array antenna structure including a radiating unit 301 and an antenna reflecting plate 302).
  • the first decoupling device 10 is connected to the antenna through a plastic support column, the first decoupling device 10 is located above the antenna radiating unit 301, and the direction of the first decoupling device 10 is The sheet 102 is located directly above the radiating unit 301, and is periodically arranged with the radiating unit 301.
  • the bottom surface of the dielectric substrate 101 of the first decoupling device 10 and the top of the radiating surface of the radiating unit 301 The distance between the faces is H, 3mm ⁇ H ⁇ 8mm.
  • the direction of the induced current generated by the guide piece of the first decoupling device is opposite to the current component of the cross-polarized electromagnetic wave, thereby canceling out a portion of the cross-polarized component.
  • the decoupling bar has a certain reflection effect on the radiated electromagnetic wave energy of the radiation unit, weakens the mutual coupling relationship between the antenna units, improves the spatial coupling, and can effectively improve the mutual coupling relationship of the MIMO antenna Improve the isolation between units and front-to-back ratio and other indicators.
  • the guides and decoupling strips are symmetrically distributed, which can minimize the impact on the field distribution of the radiating element, and have a small impact on other antenna indicators, ensuring that other antenna indicators are basically unchanged.
  • the second decoupling device (that is, the isolation plate) is located in the middle of the column of the MIMO antenna, and the isolation plate is fixed on the floor on which the radiation unit is installed by welding (the best effect of full welding).
  • the antenna radiating unit After the antenna radiating unit is excited, surface traveling waves will be generated on the antenna floor, and the surface waves will be transmitted on the floor. When they hit the edge of the board or vias, etc., they will generate secondary radiation, which will affect the antenna's pattern (pattern distortion); When transmitted to the feed points of other radiating elements, surface wave coupling occurs, affecting indexes such as antenna isolation.
  • the isolation plate of the second decoupling device changes the current distribution of the secondary radiation field, reduces the influence of the secondary radiation on the radiation field itself, improves the distortion of the antenna pattern, and also improves the surface wave coupling and antenna isolation.
  • the second decoupling device can effectively improve the mutual coupling relationship of MIMO antennas, significantly improve the distortion problem of the radiation pattern of the horizontal plane of the unit, and improve the radiation performance index of the unit and the entire machine.
  • first decoupling device 10 and the second decoupling device 20 may be applied to a MIMO antenna at the same time, or one of them may be applied to a MIMO antenna.
  • first A decoupling device 10 is used in a MIMO antenna.
  • the decoupling bar 103 is an auxiliary device, and whether to add the decoupling bar 103 can be optimized and selected according to actual conditions.
  • the components of the decoupling device 10 include the dielectric substrate 101, the directing sheet 102, and the decoupling strip 103, as shown in FIG.
  • the guide sheet 102 and the decoupling strip 103 are distributed on the dielectric substrate 101.
  • the position distribution of the guide sheet 102 and the decoupling strip 103 may be the same on the dielectric substrate 101
  • the two planes of the dielectric substrate 101 can be optimized and selected according to the actual conditions to select the planes on which the guide and decoupling strips are located. Referring to FIG. 4 to FIG.
  • the thickness of the dielectric substrate 101 is between 0.0058 ⁇ and 0.035 ⁇ , where ⁇ is a wavelength corresponding to the center frequency of the antenna radiating unit during free space transmission.
  • the dielectric constant of the dielectric substrate 101 is between 2.2 and 9.8.
  • the dielectric substrate 101 may be an entire piece or may be divided into several small pieces, and is selected according to actual application conditions. Dividing the dielectric substrate 101 into several small pieces can reduce the weight of the antenna. The sizes of the small pieces are the same. The specific size is divided according to the number of rows of the antenna periodically, and the antenna is connected to the antenna through a plastic support post.
  • the guide sheet 102 is distributed on the dielectric substrate 101.
  • the shape of the guide sheet 102 may be a square, a circle, a square ring, a cross, or a ring, as shown in FIGS. 9 to 13.
  • the directing sheet 102 is located directly above the radiating unit 301; the number M of the directing sheets 102 is less than or equal to the number N of the radiating units 301, that is, M ⁇ N.
  • the radiating unit 301 in a certain column of the antenna or a column that changes periodically does not need to add the directing sheet 102, and the remaining radiating units 301 need to add the directing sheet 102 At this time, M ⁇ N.
  • the length of the metal strip forming the cross-shaped guide piece is between 0.117 ⁇ -0.233 ⁇ , and the width is between 0.0117 ⁇ -0.0467 ⁇ .
  • the diameter of the circular guide piece is between 0.14 ⁇ -0.21 ⁇ .
  • the diameter of the large circle of the ring guide piece is 0.14 ⁇ -0.21 ⁇ , and the ring width is between 0.0117 ⁇ -0.0583 ⁇ .
  • the length of the side of the square guide piece is between 0.117 ⁇ and 0.233 ⁇ .
  • the square side of the square ring is 0.14 ⁇ -0.21 ⁇ , and the ring width is between 0.0117 ⁇ -0.0583 ⁇ .
  • the decoupling strips 103 are distributed on the dielectric substrate 101 and may be rectangular in shape.
  • the decoupling strips 103 are located in the middle of each column of the MIMO antenna, as shown in FIG. 14.
  • the number of the decoupling strips 103 is denoted by K, and the number of columns of the radiating unit 301 in the large-scale array antenna is denoted by J, which satisfies 0 ⁇ K ⁇ J + 1, and the decoupling strips 103 are selected according to needs in specific applications. quantity.
  • the material of the dielectric substrate 101 is a non-metallic medium.
  • the material of the guide sheet 102 is a good electrical conductor, such as copper, aluminum, etc. In practical applications, considering the stability, feasibility, weight and other factors of the structure, the dielectric substrate is generally coated with copper on both sides.
  • the material of the decoupling strip 103 is a good electrical conductor, such as copper, aluminum, etc. In practical applications, considering the stability, feasibility, weight and other factors of the structure, the dielectric substrate is generally coated with copper.
  • the second decoupling device 20 is further described.
  • the isolation plate is located between the column and the column of the MIMO antenna radiation unit, and is fixed on the antenna reflection plate 302.
  • the form of the partition plate may be rectangular, “city wall”, etc.
  • the second decoupling device 20, that is, the partition plate is in the shape of a city wall.
  • the specific application can be selected according to the actual situation.
  • the material of the second decoupling device 20 is a good electrical conductor, such as copper, aluminum, or copper on both sides of the PCB.
  • the length of the isolation plate is between 0.2 ⁇ -0.6 ⁇ , and the width is between 0.0117 ⁇ -0.0467 ⁇ .
  • the thickness of the separator is between 0.5mm-1.5mm, and the length is selected according to the distribution of the actual structure.
  • the present invention also provides a MIMO antenna, which includes the above-mentioned decoupling device, a MIMO antenna reflection plate, and a periodically arranged radiation unit.
  • the first decoupling device is installed directly above the radiation unit, and the second decoupling device is installed. Between two adjacent rows of radiating elements.
  • the application of the present invention to a large-scale array antenna can improve the mutual coupling relationship between the antenna radiating elements, improve the isolation by more than 10dB, and also effectively improve the antenna unit's pattern distortion. Problems that improve antenna efficiency.
  • the mutual coupling relationship of the MIMO antenna can be improved, thereby improving the isolation of the MIMO antenna and improving the distortion of the pattern.
  • reducing the size of the antenna can be widely used in the design of mobile communication base station antennas.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明属于无线通信技术领域,公开了一种去耦装置及MIMO天线,去耦装置包括第一去耦装置,第一去耦装置位于辐射单元阵列的上方,第一去耦装置包括介质基板、引向片、去耦条,引向片、去耦条均设置在介质基板上,引向片位于辐射单元的正上方,去耦条位于两列辐射单元之间;MIMO天线包括天线反射板、辐射单元和上述的去耦装置。本发明解决了现有技术中MIMO天线(5G大规模阵列天线)隔离度差及方向图畸变的问题。

Description

一种去耦装置及MIMO天线
交叉引用
本申请引用于2018年09月05日提交的专利名称为“一种去耦装置及MIMO天线”的第201811031141.4号中国专利申请,其通过引用被全部并入本申请。
技术领域
本发明属于无线通信技术领域,具体涉及一种去耦装置及MIMO天线。
背景技术
随着智能移动终端的高速发展,无线数据流量呈指数级增长,物联网的引入及快速发展,对未来无线通信系统提出更高的要求。
传统的2D-MIMO技术,天线一般采用一维直线阵列天线,端口数较少导致波宽较宽,基站之间干扰较为严重,且只能在水平维度机械调整波束方向,无法将垂直维度的能量集中到用户终端,通信效率较低。相对于传统的2D-MIMO技术,3D-MIMO技术中,天线采用二维大规模平面阵列,通过波束赋型,能实现较窄波束,基站之间干扰大大降低;另外,根据用户的位置,波束在水平维度和垂直维度可实时调整和跟踪,始终保持波束能量集中到用户终端,通信质量大大提高;同时同频能够服务更多的用户,极大提高通信容量。
大规模平面阵列天线单元数较多,在一定的工作频率条件下,减小单元的组阵间距能有效减小天线尺寸,单位面积下能够布局更多的 天线数量,重量更轻,降低运营成本。然而,天线组阵间距的减小会导致单元间的能量互耦更强,进而导致天线隔离度变差、方向图产生畸变,从而导致天线性能指标恶化,影响通信效率。
发明内容
本申请实施例通过提供一种去耦装置及MIMO天线,解决了现有技术中大规模阵列天线隔离度较差及方向图畸变问题。
本申请实施例提供一种去耦装置,包括:第一去耦装置,所述第一去耦装置位于辐射单元阵列的上方,所述第一去耦装置包括介质基板、引向片、去耦条,所述引向片、所述去耦条均设置在所述介质基板上,所述引向片位于所述辐射单元的正上方,所述去耦条位于两列辐射单元之间。
优选的,所述引向片、所述去耦条在所述介质基板上的分布为下列分布方式中的一种:
所述引向片、所述去耦条均位于所述介质基板的底面上;
所述引向片、所述去耦条均位于所述介质基板的顶面上;
所述引向片位于所述所述介质基板的底面上,所述去耦条均位于所述介质基板的顶面上;
所述引向片位于所述所述介质基板的顶面上,所述去耦条均位于所述介质基板的底面上。
优选的,所述介质基板的厚度在0.0058λ-0.035λ之间,所述介质基板的介电常数在2.2-9.8之间,其中,λ为辐射单元中心频率在自由空间传输时对应的波长。
优选的,所述介质基板的底面与所述辐射单元的辐射面顶面之间的距离在3mm-8mm之间。
优选的,所述介质基板为一整块介质基板,或者所述介质基板由若干小块的介质基板组成。
优选的,所述去耦装置还包括第二去耦装置,所述第二去耦装置设置在天线反射板上,且位于相邻辐射单元之间。
优选的,所述第二去耦装置为隔离板,所述隔离板采用铜、铝或者PCB双面覆铜制作而成。
优选的,所述隔离板的长度在0.2λ-0.6λ之间,宽度在0.0117λ-0.0467λ之间,厚度在0.5mm-1.5mm之间,其中,λ为辐射单元中心频率在自由空间传输时对应的波长。
优选的,所述隔离板为矩形或城墙状。
另一方面,本申请实施例提供一种MIMO天线,包括天线反射板、辐射单元和上述的去耦装置。
本申请实施例中提供的一个或多个技术方案,至少具有如下技术效果或优点:
在本申请实施例中,第一去耦装置位于辐射单元阵列的上方,第一去耦装置包括介质基板、引向片、去耦条,引向片、去耦条均设置在介质基板上,引向片位于辐射单元的正上方,去耦条位于两列辐射单元之间。第一去耦装置的引向片通过电磁耦合传输,接收到MIMO辐射单元部分能量,产生较弱的感应电磁波信号,感应电流方向与交叉极化电磁波的电流分量反向,从而抵消部分交叉极化分量,提高辐射 单元极化间的隔离度和交叉极化比,另外,感应电流经过一定的空间距离(引向片离辐射单元的高度)传输后,到达辐射单元位置时,电流方向和辐射单元的电流方向相同,从而提高天线辐射单元的方向性系数,改善前后比;MIMO天线组阵间距较小(0.5λ,λ为天线工作中心频率在自由空间传输的波长),电磁波的空间耦合较为严重,MIMO天线不同列之间的隔离度较差,第一去耦装置的去耦条对辐射单元的辐射电磁波能量有一定的反射作用,从而减弱天线单元之间的相互影响,改善天线不同列之间的隔离度。综上,第一去耦装置能有效改善大规模阵列天线的互耦关系,提高单元之间的隔离度及前后比等指标。
附图说明
为了更清楚地说明本实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一个实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种去耦装置的左视图;
图2为本发明实施例提供的一种去耦装置的俯视图;
图3为本发明实施例提供的一种去耦装置中第一去耦装置的俯视图;
图4为本发明实施例提供的一种去耦装置中第一去耦装置的第一种结构分布示意图;
图5为本发明实施例提供的一种去耦装置中第一去耦装置的第二种结构分布示意图;
图6为本发明实施例提供的一种去耦装置中第一去耦装置的第三种结构分布示意图;
图7为本发明实施例提供的一种去耦装置中第一去耦装置的第四种结构分布示意图;
图8为本发明实施例提供的一种去耦装置中介质基板由若干小块组成的示意图;
图9为本发明实施例提供的一种去耦装置中引向片的第一种结构示意图;
图10为本发明实施例提供的一种去耦装置中引向片的第二种结构示意图;
图11为本发明实施例提供的一种去耦装置中引向片的第三种结构示意图;
图12为本发明实施例提供的一种去耦装置中引向片的第四种结构示意图;
图13为本发明实施例提供的一种去耦装置中引向片的第五种结构示意图;
图14为本发明实施例提供的一种去耦装置中去耦条的示意图;
图15为本发明实施例提供的一种去耦装置中第二去耦装置的俯视图;
图16为本发明实施例提供的一种去耦装置中第二去耦装置的左视图;
图17为隔离度曲线仿真对比图;
图18为归一化增益曲线仿真对比图。
其中,10—第一去耦装置,101—介质基板,102—引向片,103—去耦条,20—第二去耦装置,301—辐射单元,302—天线反射板。
具体实施方式
为了更好的理解上述技术方案,下面将结合说明书附图以及具体的实施方式对上述技术方案进行详细的说明。
参见图1、图2,本发明实施例提供用于大规模阵列天线的去耦装置,主要包括第一去耦装置10,优选的方案中也可同时包括第二去耦装置20。其中,所述第一去耦装置10位于辐射单元阵列的上方,所述第一去耦装置10包括介质基板101、引向片102、去耦条103,所述引向片102、所述去耦条103均设置在所述介质基板101上,所述引向片102位于所述辐射单元301的正上方,所述去耦条103位于两列辐射单元301之间。其中,所以第二去耦装置20设置在天线反射板302上,且位于相邻辐射单元301之间。
因此,在同时包括所述第一去耦装置10和所述第二去耦装置20的情况下,去耦装置涉及第一去耦装置10、第二去耦装置20,以及与去耦装置关联的大规模阵列天线结构(包括辐射单元301、天线反射板302)。
通过塑料支撑柱,将所述第一去耦装置10与天线相连接,所述第一去耦装置10处于天线所述辐射单元301的上方,所述第一去耦装置10的所述引向片102位置位于所述辐射单元301的正上方,随所述辐射单元301呈周期性排列,所述第一去耦装置10的所述介质基板101 的底面与所述辐射单元301辐射面的顶面之间的距离为H,3mm≤H≤8mm。
所述第一去耦装置的引向片产生的感应电流方向与交叉极化电磁波的电流分量反向,从而抵消部分交叉极化分量,同时,感应电流到达辐射单元位置时,电流方向和辐射单元的电流方向相同,增强天线方向性;去耦条对辐射单元的辐射电磁波能量有一定的反射作用,减弱天线单元之间的相互耦合关系,改善空间耦合,能有效改善MIMO天线的互耦关系,提高单元之间的隔离度及前后比等指标。此外,引向片及去耦条均为对称分布,能最大限度减小对辐射单元场分布的影响,对天线其他指标影响较小,保证天线其他指标基本不变。
所述第二去耦装置(即隔离板)位于MIMO天线的列中间,通过焊接(满焊效果最佳)将隔离板固定在安装辐射单元的地板上。给天线辐射单元激励后,会在天线地板产生表面行波,表面波在地板上传输,碰到板边或者是过孔等,会产生次级辐射,影响天线的方向图(方向图畸变);当传输到其它辐射单元的馈电点后,产生表面波耦合,影响天线隔离度等指标。第二去耦装置隔离板改变次级辐射场的电流分布,减弱次级辐射对辐射单元自身辐射场的影响,改善天线方向图畸变,同时也改善表面波耦合,提升天线隔离度。综上,所述第二去耦装置能有效改善MIMO天线的互耦关系,明显改善单元水平面辐射方向图的畸形问题,提升单元及整机的辐射性能指标。
需要说明的是,所述第一去耦装置10和所述第二去耦装置20这两部分可同时应用于MIMO天线中,也可以是其中一个部分应用于 MIMO天线中,例如只有所述第一去耦装置10应用于MIMO天线中。
需要说明的是,所述去耦条103为辅助装置,是否加所述去耦条103可根据实际情况进行优化选择。
所述去耦装置10的组成部分有所述介质基板101、所述引向片102、所述去耦条103,如图3所示。其中,所述引向片102、所述去耦条103分布于所述介质基板101上。当所述引向片102、所述去耦条103同时存在于所述介质基板101上时,所述引向片102、所述去耦条103的位置分布可以在所述介质基板101的同一平面上,也可以在所述介质基板101的两个平面(一般情况下为介质基板的“顶”、“底”面),根据实际情况进行优化选择引向片、去耦条所在的平面。参见图4~图7,具体有四种分布方式:①所述引向片102、所述去耦条103分布于所述介质基板101的底面;②所述引向片102、所述去耦条103分布于所述介质基板101的顶面;③所述引向片102分布于所述介质基板101的底面,所述去耦条103分布于所述介质基板101的顶面;④所述引向片102分布于所述介质基板101的顶面,所述去耦条103分布于所述介质基板101的底面;上述四种分布方式可根据实际应用进行优化选择。
所述介质基板101的厚度在0.0058λ-0.035λ之间,λ为天线辐射单元中心频率在自由空间传输时对应的波长。所述介质基板101的介电常数在2.2-9.8之间。
如图8所示,所述介质基板101可是一整块也可分成若干的小块,根据实际应用情况选择。所述介质基板101分成若干小块可减轻天线 重量,若干小块的尺寸一样,具体尺寸按天线周期性变化的行数进行分割,通过塑料支撑柱与天线连接。
所述引向片102分布于所述介质基板101上,所述引向片102形状可以为:方形、圆形、方环、十字形、圆环,如图9~图13所示。所述引向片102位于所述辐射单元301的正上方;所述引向片102的数量M小于等于所述辐射单元301的数量N,即M≤N。一般地,所述引向片102数量和所述辐射单元301的数量相等,即天线所有的所述辐射单元301都加有所述引向片102,即M=N。在一些应用情况下,天线的某一列或者是呈周期性变化的列中的所述辐射单元301不需要加所述引向片102,其余的所述辐射单元301需要加所述引向片102,此时,M<N。
构成十字形引向片的金属条长度在0.117λ-0.233λ之间,宽度在0.0117λ-0.0467λ之间。圆形引向片的直径在0.14λ-0.21λ之间。圆环引向片大圆直径在0.14λ-0.21λ,环宽在0.0117λ-0.0583λ之间。方形引向片边长在0.117λ-0.233λ之间。方环大方形边长0.14λ-0.21λ,环宽在0.0117λ-0.0583λ之间。
所述去耦条103分布于所述介质基板101上,形状可以为矩形,所述去耦条103位置位于MIMO天线每列辐射单元的中间,如图14所示。
所述去耦条103的数量记为K,大规模阵列天线中所述辐射单元301的列数记为J,满足0≤K≤J+1,具体应用中根据需要选择所述去耦条103的数量。
所述介质基板101的材料为非金属的介质。所述引向片102的材料为良好的电导体,如铜、铝等,在实际应用中,考虑到结构的稳定性、可行性及重量等因数,一般采用介质基板双面覆铜的形式。所述去耦条103的材料为良好的电导体,如铜、铝等,在实际应用中,考虑到结构的稳定性、可行性及重量等因数,一般采用介质基板覆铜的形式。
以所述第二去耦装置20为隔离板为例,对所述第二去耦装置20做进一步的说明。
如图15所示,隔离板位于MIMO天线辐射单元的列与列中间,并固定在所述天线反射板302上。
隔离板形式可采用矩形、“城墙”等,如图16所示,所述第二去耦装置20即隔离板为城墙状。具体应用中可以根据实际情况进行选择。
所述第二去耦装置20的材料为良好的电导体,如铜、铝或者是PCB双面覆铜等。
所述隔离板的长度在0.2λ-0.6λ之间,宽度在0.0117λ-0.0467λ之间。隔离板厚度在0.5mm-1.5mm之间,长度根据实际结构的分布进行选择。
本发明还提供一种MIMO天线,包括上述的去耦装置、MIMO天线反射板、周期性排列的辐射单元,所述第一去耦装置安装于辐射单元正上方,所述第二去耦装置安装于相邻两列辐射单元之间。
从图17、图18可以看出,将本发明应用于大规模阵列天线,能够改善天线辐射单元之间的互耦关系,对隔离度提升10dB以上,同时也能够有效改善天线单元的方向图畸变问题,提高天线效率。
通过优化去耦装置相关参数可改善MIMO天线的互耦关系,从而提升MIMO天线的隔离度和改善方向图畸变。在保证天线性能的前提下减小天线的尺寸,可广泛应用于移动通信基站天线的设计。
最后所应说明的是,以上具体实施方式仅用以说明本发明的技术方案而非限制,尽管参照实例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (10)

  1. 一种去耦装置,其特征在于,包括:第一去耦装置,所述第一去耦装置位于辐射单元阵列的上方,所述第一去耦装置包括介质基板、引向片、去耦条,所述引向片、所述去耦条均设置在所述介质基板上,所述引向片位于所述辐射单元的正上方,所述去耦条位于两列辐射单元之间。
  2. 根据权利要求1所述的去耦装置,其特征在于,所述引向片、所述去耦条在所述介质基板上的分布为下列分布方式中的一种:
    所述引向片、所述去耦条均位于所述介质基板的底面上;
    所述引向片、所述去耦条均位于所述介质基板的顶面上;
    所述引向片位于所述介质基板的底面上,所述去耦条均位于所述介质基板的顶面上;
    所述引向片位于所述介质基板的顶面上,所述去耦条均位于所述介质基板的底面上。
  3. 根据权利要求1所述的去耦装置,其特征在于,所述介质基板的厚度在0.0058λ-0.035λ之间,所述介质基板的介电常数在2.2-9.8之间,其中,λ为辐射单元中心频率在自由空间传输时对应的波长。
  4. 根据权利要求1所述的去耦装置,其特征在于,所述介质基板的底面与所述辐射单元的辐射面顶面之间的距离在3mm-8mm之间。
  5. 根据权利要求1所述的去耦装置,其特征在于,所述介质基板为一整块介质基板,或者所述介质基板由若干小块的介质基板组成。
  6. 根据权利要求1-5中任一所述的去耦装置,其特征在于,还包 括第二去耦装置,所述第二去耦装置设置在天线反射板上,且位于相邻辐射单元之间。
  7. 根据权利要求6所述的去耦装置,其特征在于,所述第二去耦装置为隔离板,所述隔离板采用铜、铝或者PCB双面覆铜制作而成。
  8. 根据权利要求7所述的去耦装置,其特征在于,所述隔离板的长度在0.2λ-0.6λ之间,宽度在0.0117λ-0.0467λ之间,厚度在0.5mm-1.5mm之间,其中,λ为辐射单元中心频率在自由空间传输时对应的波长。
  9. 根据权利要求7所述的去耦装置,其特征在于,所述隔离板为矩形或城墙状。
  10. 一种MIMO天线,其特征在于,包括天线反射板、辐射单元、如权利要求1-9中任一所述的去耦装置。
PCT/CN2018/121462 2018-09-05 2018-12-17 一种去耦装置及mimo天线 WO2020048042A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811031141.4 2018-09-05
CN201811031141.4A CN109149108A (zh) 2018-09-05 2018-09-05 一种去耦装置及mimo天线

Publications (1)

Publication Number Publication Date
WO2020048042A1 true WO2020048042A1 (zh) 2020-03-12

Family

ID=64827018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121462 WO2020048042A1 (zh) 2018-09-05 2018-12-17 一种去耦装置及mimo天线

Country Status (2)

Country Link
CN (1) CN109149108A (zh)
WO (1) WO2020048042A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12003038B2 (en) 2021-02-08 2024-06-04 Nokia Technologies Oy Array of patch antennas

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112234344B (zh) * 2019-06-30 2022-03-15 Oppo广东移动通信有限公司 天线装置及电子设备
CN110350312B (zh) * 2019-07-04 2020-08-25 北京理工大学 一种基于电路解耦的5g移动终端mimo天线
CN112803146A (zh) * 2019-11-14 2021-05-14 惠州硕贝德无线科技股份有限公司 一种具备同频互耦效应降低装置的基站天线
CN111740221A (zh) * 2020-06-19 2020-10-02 中天通信技术有限公司 含去耦装置的多端口基站天线
CN112164888B (zh) * 2020-08-21 2024-05-03 西安朗普达通信科技有限公司 一种采用去耦引波器改善多天线系统耦合性能的方法
CN112563742A (zh) * 2020-12-03 2021-03-26 西安朗普达通信科技有限公司 一种新型宽带去耦天线罩
CN113471699B (zh) * 2021-07-05 2023-03-28 湖南大学 一种基于耦合模式转换的去耦方法及其装置
CN115693152B (zh) * 2022-12-30 2023-03-28 华南理工大学 天线去耦组件及天线

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1710751A (zh) * 2005-06-13 2005-12-21 京信通信技术(广州)有限公司 高隔离度板状定向智能天线阵
CN103887600A (zh) * 2012-12-19 2014-06-25 深圳光启创新技术有限公司 无线覆盖天线单元、天线组件及多天线组件
CN206349515U (zh) * 2016-10-26 2017-07-21 深圳鲲鹏无限科技有限公司 一种天线及其引向器
WO2017153730A1 (en) * 2016-03-08 2017-09-14 Cambium Networks Ltd Antenna array assembly

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201392888Y (zh) * 2009-04-10 2010-01-27 北京华盛天基通信技术有限公司 智能双极化天线
EP3465819A4 (en) * 2016-05-26 2020-01-08 The Chinese University Of Hong Kong DEVICE AND METHOD FOR REDUCING MUTUAL COUPLINGS IN AN ANTENNA ARRANGEMENT
WO2018053698A1 (zh) * 2016-09-21 2018-03-29 广东通宇通讯股份有限公司 天线、mimo天线及用于降低天线互耦能量的隔离条
CN106207457B (zh) * 2016-09-21 2019-03-29 广东通宇通讯股份有限公司 天线、mimo天线及用于降低天线互耦能量的隔离条
CN207038736U (zh) * 2017-07-03 2018-02-23 广东博纬通信科技有限公司 一种阵列天线
CN107634337B (zh) * 2017-08-21 2020-01-31 西安电子科技大学 基于软表面结构的贴片阵列天线
CN107799896A (zh) * 2017-11-24 2018-03-13 广东博纬通信科技有限公司 一种运用于3500MHz附近频段的TD‑LTE智能天线

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1710751A (zh) * 2005-06-13 2005-12-21 京信通信技术(广州)有限公司 高隔离度板状定向智能天线阵
CN103887600A (zh) * 2012-12-19 2014-06-25 深圳光启创新技术有限公司 无线覆盖天线单元、天线组件及多天线组件
WO2017153730A1 (en) * 2016-03-08 2017-09-14 Cambium Networks Ltd Antenna array assembly
CN206349515U (zh) * 2016-10-26 2017-07-21 深圳鲲鹏无限科技有限公司 一种天线及其引向器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12003038B2 (en) 2021-02-08 2024-06-04 Nokia Technologies Oy Array of patch antennas

Also Published As

Publication number Publication date
CN109149108A (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
WO2020048042A1 (zh) 一种去耦装置及mimo天线
KR102464064B1 (ko) 안테나 및 안테나를 포함하는 무선 통신 장치
WO2006133609A1 (fr) Réseau d’antennes horizontales intelligent à séparation élevée
CN108736163A (zh) 一种Ku频段平衡馈电双频双极化介质喇叭天线
US11201394B2 (en) Antenna device and electronic device
US11239544B2 (en) Base station antenna and multiband base station antenna
CN104681927A (zh) 天线
CN113517558B (zh) 一种高隔离度5g基站天线、无线通信终端
CN112271444B (zh) 一种高增益双极化siw-cts天线阵
CN101420067A (zh) 利用异向介质材料天线罩的多波束天线
CN105048066A (zh) 一种低剖面高增益分形小型基站天线
CN114464990B (zh) 一种低剖面高隔离度的双极化天线辐射单元
US20210391657A1 (en) Antenna, multi-band antenna and antenna tuning method
CN211376942U (zh) 一种移动通信基站的栅格式波导天线阵
CN110233324B (zh) 一种应用于5g通信的双极化大规模mimo天线
CN112103625B (zh) 一种高隔离、低副瓣MassiveMIMO天线阵列及组阵方法
CN113471670A (zh) 一种加载天线去耦表面的5g多频宽带双极化基站天线
WO2022128079A1 (en) A display assembly, a client device comprising the display assembly, and a method of manufacturing the display assembly
CN104393423A (zh) 一种lte频段多天线阵列增益补偿方法
CN105633564A (zh) 平板双极化天线及复合天线
EP1498986A1 (en) Antenna system for generation and utilizing several small beams from several wide-beam antennas
CN216085339U (zh) 一种全向环形缝隙阵列天线
CN104009298A (zh) 双指向性多输入多输出天线单元及其阵列
CN217485706U (zh) 天线组件和基站天线
CN211957931U (zh) 宽带天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18932653

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18932653

Country of ref document: EP

Kind code of ref document: A1