WO2020044477A1 - Abnormality diagnosis system, method, and program - Google Patents

Abnormality diagnosis system, method, and program Download PDF

Info

Publication number
WO2020044477A1
WO2020044477A1 PCT/JP2018/032026 JP2018032026W WO2020044477A1 WO 2020044477 A1 WO2020044477 A1 WO 2020044477A1 JP 2018032026 W JP2018032026 W JP 2018032026W WO 2020044477 A1 WO2020044477 A1 WO 2020044477A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
model
learning
unit
abnormality
Prior art date
Application number
PCT/JP2018/032026
Other languages
French (fr)
Japanese (ja)
Inventor
幸造 伴野
俊也 高野
友祐 星野
Original Assignee
株式会社 東芝
東芝エネルギーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝エネルギーシステムズ株式会社 filed Critical 株式会社 東芝
Priority to JP2020539935A priority Critical patent/JP6957762B2/en
Priority to PCT/JP2018/032026 priority patent/WO2020044477A1/en
Publication of WO2020044477A1 publication Critical patent/WO2020044477A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology

Definitions

  • the embodiments of the present invention relate to an abnormality diagnosis system, method, and program.
  • Machine learning such as neural networks, is used to identify the causes of failures, accidents, etc. in equipment or equipment that supports social infrastructure such as power equipment, such as failures and accidents.
  • a classifier In order to construct a classifier using machine learning, it is generally necessary to train a large number of abnormal data.However, failures and accidents of social infrastructure equipment and devices rarely occur, and the number of actual abnormal data Is less.
  • Such facilities and equipment are installed in various environments, and the data obtained from each facility and equipment is affected by noise and the like specific to each environment, but abnormal data covering all environments is collected. It is difficult to prepare.
  • Regarding diagnosis by machine learning in a situation where the number of data is limited, a technique is known in which learning is performed using a large number of normal data and a small number of abnormal data to distinguish between normal and abnormal. For example, learning is performed using a small number of data when the object surface is frozen and a large number of data when the object surface is not frozen, and whether or not the object surface is frozen is identified.
  • simulated data that simulates a failure is prepared in advance by simulation or desk experiment, and the simulated data is learned to construct a classifier.
  • a method of identifying data and confirming the identification accuracy can be considered.
  • the environment in which the equipment and devices are installed cannot be completely reproduced by simulation or desk experiment, and the simulated data and the actual data may have different characteristics such as noise.
  • the simulation data can be correctly identified, but there is a problem that the actual data cannot be identified correctly.
  • the noise is erroneously learned to be a feature indicating the cause of the abnormality, and the identification accuracy is deteriorated. was there.
  • An embodiment of the present invention has been made to solve the above-described problem, and has an object to provide an abnormality diagnosis system, method, and program that can accurately diagnose an abnormality cause type to be diagnosed.
  • an abnormality diagnosis system is an abnormality diagnosis system that diagnoses an abnormality cause of a diagnosis target, and a diagnosis unit that identifies a type of the abnormality cause of the diagnosis target based on a model. And a learning unit that generates the model by machine learning, wherein the diagnostic unit is capable of identifying the type of the cause of the abnormality from the data when the data output from the diagnosis target is input.
  • a data processing unit that generates pre-processed data in which noise, which is a characteristic part other than the part, is attenuated, and a diagnostic model that outputs the type of abnormality cause of the diagnosis target when the pre-processed data is input
  • An abnormality cause identification unit that identifies a type of the abnormality cause to be diagnosed, wherein the diagnosis model is a machine learning model, and the learning unit is configured to execute the diagnosis model by machine learning.
  • a diagnostic model learning unit for generating, and a noise attenuating unit for generating attenuated data in which the noise is attenuated from learning data for machine learning of the diagnostic model, wherein the learning data includes the diagnostic data.
  • the method is characterized in that a model is generated.
  • the present embodiment can also be understood as a method of realizing the processing of each unit by a computer or an electronic circuit, and a program for realizing the processing of each unit by a computer.
  • the abnormality diagnosis method of the present embodiment is an abnormality diagnosis method for diagnosing an abnormality cause of a diagnosis target, and includes a diagnosis step of identifying a type of the abnormality cause of the diagnosis target based on a model;
  • the diagnostic step is a characteristic part other than the characteristic part that, when the data output from the diagnosis target is input, enables the type of the abnormal cause to be identified from the data.
  • An abnormality cause identification step of identifying a type wherein the diagnostic model is a machine learning model, and A diagnostic model learning step generated by learning, and a noise attenuation step of generating attenuated data in which the noise is attenuated from learning data for machine learning of the diagnostic model, wherein the learning data includes: Simulation data simulating the abnormality of the diagnosis target or actual data indicating the abnormality of the diagnosis target, wherein the diagnostic model learning step uses the attenuated data as learning data and the abnormality cause type as teacher data by machine learning.
  • the diagnostic model is generated.
  • the abnormality diagnosis program is an abnormality diagnosis program for diagnosing an abnormality cause of a diagnosis target.
  • the computer includes: a diagnosis step for identifying a type of the abnormality cause of the diagnosis target based on a model; A learning step of generating by learning, wherein the diagnosis step is characterized in that, when data output from the diagnosis target is input, a characteristic part other than a characteristic part that enables the type of the abnormal cause to be identified from the data.
  • An abnormality cause identification step of identifying a cause type wherein the diagnostic model is a machine learning model, and the learning step A diagnostic model learning step of generating the diagnostic model by machine learning, and a noise attenuation step of generating attenuated data in which the noise is attenuated from learning data for machine learning of the diagnostic model,
  • the learning data is simulated data simulating the abnormality of the diagnosis target or actual data indicating the abnormality of the diagnosis target
  • the diagnosis model learning step uses the attenuated data as learning data and sets the abnormality cause type.
  • the diagnostic model is generated by machine learning as teacher data.
  • FIG. 1 is a diagram illustrating a configuration of an abnormality diagnosis system according to a first embodiment.
  • FIG. 5 is a diagram illustrating an example of data acquired by a data acquisition unit. 6 shows an example of a table of learning data stored in a learning data storage unit. It is a schematic diagram of a neural network of a data conversion unit. It is a schematic diagram of a neural network of a data identification unit. It is a schematic diagram of the said neural network when the machine learning model of an abnormality cause identification part is a neural network.
  • 5 is an operation flowchart illustrating an example of an operation of the abnormality diagnosis system. It is a schematic diagram of the neural network of the data conversion part and the data identification part at the time of learning.
  • FIG. 5 is a diagram illustrating an example of data acquired by a data acquisition unit. 6 shows an example of a table of learning data stored in a learning data storage unit. It is a schematic diagram of a neural network of a data conversion unit. It is a schematic diagram of a neural network
  • FIG. 5 is a diagram illustrating a display example of a diagnosis result on a display unit according to the first embodiment.
  • FIG. 6 is a diagram illustrating a configuration of an abnormality diagnosis system according to a second embodiment.
  • FIG. 4 is a diagram illustrating an example of a screen displayed on a display unit by a display control unit.
  • 9 is an operation flowchart illustrating an example of an operation of the abnormality diagnosis system according to the second embodiment. It is a figure showing an example of a screen which a display control part concerning modification 1 of a 2nd embodiment displays on a display part. It is a figure showing an example of a screen which a display control part concerning modification 2 of a 2nd embodiment displays on a display part.
  • FIG. 4 is an operation flowchart illustrating an example of an operation of the abnormality diagnosis system according to the present embodiment based on the first embodiment. It is an operation
  • FIG. 1 is a diagram illustrating a configuration of the abnormality diagnosis system according to the first embodiment.
  • the abnormality diagnosis system 1 constructs a machine learning model, and diagnoses the cause of an abnormality in equipment or equipment to be diagnosed (hereinafter, also simply referred to as “diagnosis object”) using the machine learning model.
  • the diagnosis target is, for example, equipment or equipment used in a power system, and the abnormality diagnosis system 1 is used in a power system monitoring system or the like.
  • a data acquisition unit 100 and a learning data storage unit 200 are connected to the abnormality diagnosis system 1.
  • the data acquisition unit 100 acquires data (hereinafter, simply referred to as “diagnosis target data”) diagnosed by the abnormality diagnosis system 1.
  • the diagnosis target data is data measured when an abnormality occurs in the diagnosis target. Examples of the abnormality of the diagnosis target include a failure of the diagnosis target and a defect due to an accident.
  • the diagnosis target data is, for example, waveform data as shown in FIG. However, the diagnosis target data is not limited to the waveform data, and may be image data.
  • the learning data storage unit 200 stores learning data used for learning of the abnormality diagnosis system 1.
  • the learning data is actual data of past abnormalities of the actual diagnosis target, and simulated data imitating the abnormalities of the diagnosis target.
  • the actual data of the past actual abnormality of the diagnosis target and the simulated data simulating the abnormality of the diagnosis target are provided for each data, the information indicating the abnormality cause type, and the actual data or the simulated data.
  • Information indicating the data type of the data is added and stored. For example, as shown in FIG. 3, actual data at the time of past actual equipment failure (“actual failure data” in the figure) and simulated data simulating a failure by a simulation or a desk test are included in each data.
  • Information indicating the cause type is associated with information indicating the data type.
  • the actual data stored in the learning data storage unit 200 is data indicating an abnormality of a diagnosis target measured in the past.
  • the failure cause types are two types, failures A and B, but may be three or more types.
  • the learning data may include noise specific to the simulation data or the real data.
  • This noise is a part where the cause of abnormality is not reflected. That is, since the simulated data or the actual data is data indicating one of the abnormality cause types, the simulation data or the actual data includes a characteristic portion that makes it possible to identify the abnormality cause type and a noise portion that is another characteristic portion.
  • This noise portion is a characteristic portion other than the characteristic portion that makes the abnormality cause type identifiable. For example, simulated data or real data is made into waveform data as shown in FIG. Assuming that the characteristic portion is a peak of a waveform, it is an offset value of the waveform.
  • the specific noise of the actual data is, for example, noise that reflects the environment in which the diagnosis target is installed, and the specific noise of the simulation data is, for example, noise that reflects an experimental environment such as a desk experiment.
  • the abnormality diagnosis system 1 includes a single computer or a plurality of computers and a display device connected to a network.
  • the abnormality diagnosis system 1 stores a program and a database in a storage such as an HDD or an SSD, and appropriately develops the program and the database in a memory such as a RAM, and processes the data by a CPU. Perform necessary calculations.
  • the abnormality diagnosis system 1 includes a processing unit 2, a storage unit 3, an input unit 4, and a display unit 5.
  • the storage unit 3 includes a memory or a storage, and stores an operation program of the processing unit 2, an operation result, and the like.
  • the input unit 4 is an input interface by a user, and is, for example, a keyboard, a mouse, and a touch panel.
  • the display unit 5 displays the calculation result of the processing unit 2.
  • the display unit 5 is a display device such as an organic EL or a liquid crystal display.
  • the processing unit 2 includes a CPU and performs various operations described later. Specifically, the processing unit 2 includes a diagnosis unit 21, a learning unit 22, and a display control unit 23.
  • the diagnosis unit 21 includes a CPU, and identifies the type of abnormality cause to be diagnosed based on the model.
  • the learning unit 22 generates the model by machine learning.
  • the diagnosis unit 21 includes a data processing unit 211 and an abnormality cause identification unit 212.
  • the data processing unit 211 is configured to include a CPU, and when data to be diagnosed is input, generates preprocessed data in which noise is attenuated from the data. That is, the data processing unit 211 acquires the data to be diagnosed from the data acquisition unit 100, and generates preprocessed data by converting the data to be diagnosed based on a noise attenuation model described later.
  • the noise refers to a portion of the diagnosis target data that is a feature other than a feature portion that makes it possible to identify the cause of the abnormality. For example, if the data to be diagnosed is waveform data as shown in FIG. 2 and the characteristic portion that makes it possible to identify the type of the cause of the abnormality is a waveform peak, it is the offset value of the waveform.
  • the abnormality cause identification unit 212 includes a CPU, and identifies the type of abnormality cause to be diagnosed based on a diagnostic model that outputs the type of abnormality cause to be diagnosed when preprocessed data is input.
  • the diagnostic model is a machine learning model, for example, a neural network, a decision tree, a random forest, an SVM (support @ vector @ machine), or the like can be used.
  • FIG. 6 is a schematic diagram of the neural network when the machine learning model of the abnormality cause identification unit 212 is a neural network. As illustrated in FIG. 6, the abnormality cause identification unit 212 receives the preprocessed data output from the data processing unit 211 as input and outputs the abnormality cause type.
  • the learning unit 22 includes a CPU and includes a noise attenuation unit 221, a noise attenuation model generation unit 222, and a diagnostic model learning unit 223.
  • the noise attenuator 221 is configured to include a CPU, and generates attenuated data in which noise has been removed from learning data for machine learning of a diagnostic model.
  • the learning data is learning data acquired from the learning data storage unit 200.
  • the noise refers to a part of the learning data that has a characteristic other than a characteristic part that enables the cause of the abnormality to be identified. For example, if the learning data is waveform data as shown in FIG. 3 and the characteristic portion that makes it possible to identify the cause of the abnormality is a waveform peak, it is an offset value of the waveform.
  • the noise attenuator 221 generates attenuated data based on a noise attenuation model that attenuates noise from input data.
  • This noise attenuation model is used not only by the noise attenuation unit 221 in the learning stage for generating a diagnostic model, but also by the diagnostic unit 21 in the diagnostic stage. That is, the data processing unit 211 attenuates noise from the input diagnosis target data and generates preprocessed data based on the noise attenuation model.
  • the noise attenuation model generation unit 222 includes a CPU and generates a noise attenuation model used in the noise attenuation unit 221.
  • the noise attenuation model generation unit 222 includes a data conversion unit 222a, a data identification unit 222b, a conversion model learning unit 222c, and an identification model learning unit 222d.
  • the data conversion unit 222a is configured to include a CPU, and converts the learning data based on a conversion model for converting the learning data and outputs converted data.
  • the learning data is learning data acquired from the learning data storage unit 200.
  • the transformation model is here a neural network.
  • FIG. 4 is a schematic diagram of a neural network of the data conversion unit 222a. This neural network is, for example, an auto encoder.
  • the data identification unit 222b includes a CPU, and based on an identification model for identifying the data type of the learning data when the converted data is input, a data type indicating whether the learning data is simulated data or real data. Identify.
  • the identification model is here a neural network.
  • FIG. 5 is a schematic diagram of a neural network of the data identification unit 222b. The data identification unit 222b acquires the converted data from the data conversion unit 222a, and identifies, using this neural network, whether the learning data that is the source of the converted data is simulated data or real data.
  • the identification model learning unit 222d includes a CPU and generates an identification model by machine learning. That is, the identification model learning unit 222d generates the identification model so that the identification model is a model that correctly identifies the data type of the learning data from the converted data. Specifically, an identification model is generated by updating the model of the data identification unit 222b so that the error between the output result of the data identification unit 222b and the data type of the learning data serving as teacher data is reduced.
  • the conversion model learning unit 222c includes a CPU and generates a noise attenuation model by machine learning. That is, a noise attenuation model is generated by updating the conversion model of the data conversion unit 222a by machine learning. Specifically, the conversion model learning unit 222c generates a noise attenuation model that is similar to the learning data but outputs the converted data so that the data identification unit 222b cannot correctly identify the data. More specifically, the conversion model learning unit 222c reduces the error between the learning data and the converted data, and the error between the output result of the data identification unit 222b and the incorrect data type. To generate a noise attenuation model. Note that the incorrect data type is a data type obtained by inverting the data type of the learning data corresponding to the output result of the data identification unit 222b.
  • the diagnostic model learning unit 223 includes a CPU and generates a diagnostic model by machine learning. That is, the diagnostic model learning unit 223 generates a diagnostic model by a machine learning model using the attenuated data output from the noise attenuating unit 221 as learning data and the abnormality cause type as teacher data.
  • the abnormality cause type used as the teacher data is the abnormality cause type of the learning data (input) corresponding to the attenuated data (output). Also, the diagnostic model learning unit 223 may update the diagnostic model once constructed using new teacher data.
  • the display control unit 23 includes a CPU, and causes the display unit 5 to display the identification result of the abnormality cause identification unit 212 (diagnosis model).
  • FIG. 7 is an operation flowchart illustrating an example of the operation of the abnormality diagnosis system 1.
  • the conversion model learning unit 222c and the identification model learning unit 222d learn each neural network of the data conversion unit 222a and the data identification unit 222b (step S01).
  • the network is configured such that the output of the neural network of the data conversion unit 222a becomes the input of the neural network of the data identification unit 222b.
  • the data conversion unit 222a acquires learning data from the learning data storage unit 200, and performs data conversion to output converted data.
  • the data identification unit 222b acquires the converted data from the data conversion unit 222a, and identifies the data type.
  • the discrimination model learning unit 222d acquires the output result of the data discrimination unit 222b and the data type of the learning data input to the data conversion unit 222a, which is the source of the output result, as teacher data.
  • the conversion model learning unit 222c acquires the converted data from the data conversion unit 222a and the learning data from the learning data storage unit 200 as the teacher data.
  • the weight of the neural network of the data conversion unit 222a is updated using the backpropagation method, taking into account the output result of the data identification unit 222b.
  • the discrimination model learning unit 222d uses the neural network of the data discrimination unit 222b as a two-class using the output data of the data conversion unit 222a as an input variable and a data type indicating whether it is simulated data or real data as an output variable. Train as a classifier.
  • the identification model learning unit 222d calculates Expression (1) indicating the cross entropy error as a loss function, and uses the error backpropagation method to calculate the data.
  • the output y D1k of 222b as close to the true label t k, generating an identification model by updating the weights included in the neural network of the data identification unit 222b.
  • the conversion model learning unit 222c receives the learning data obtained from the learning data storage unit 200 as an input to the neural network of the data conversion unit 222a, and is similar to the input data.
  • a noise attenuation model is generated by learning as a data converter that converts and outputs input data so that it cannot be correctly identified.
  • the conversion model learning unit 222c constructs a neural network of the data conversion unit 222a based on an auto encoder (Auto Encoder). Specifically, the index data of the l, a u l of l-th input data value, when the output value of the l-th data with the y ael to the data conversion section 222a, using the formula (2) as a loss function
  • the data converter 222a and the noise attenuator 221 are constructed as an auto encoder, and output a value similar to the input data.
  • the conversion model learning unit 222c sets the auto encoder so that the data type output by the data identification unit 222b is correct so that the data identification unit 222b outputs data that cannot be correctly identified as simulated data or real data.
  • the learning is performed so as to be inverted with respect to the data type of the learning data. That is, the learning is performed so that the error between the data type output from the data identification unit 222b and the data type obtained by inverting the data type of the learning data as the correct answer is improved.
  • the conversion model learning unit 222c updates the conversion model of the data conversion unit 222a based on the expression (3) as a loss function so as to improve the error E ae ′ of the expression (3). , And outputs data that is similar to the input data (learning data) and cannot be correctly identified by the data identification unit 222b, thereby generating a noise attenuation model.
  • the weighting parameter a 1 of Learning of formula (3) may be a constant, it may be determined by trial and error. Further, for example, when the accuracy of the neural network identification of the data identification unit 222b is high, the output of the data conversion unit 222a is greatly changed. It is good also as a formula which makes a loss function a variable.
  • the learning unit 22 sets the neural network of the data identification unit 222b based on the loss function of the equation (1) and the neural network of the data conversion unit 222a based on the loss function of the equation (3).
  • the process of updating using the back propagation method is repeated a fixed number of times or until the loss function value does not improve, thereby completing the learning.
  • the neural network of the data conversion unit 222a may perform pre-learning using Equation (2) before learning using Equation (3).
  • the diagnostic model learning unit 223 makes the machine learning model learn (step S02). That is, the machine learning model of the abnormality cause identification unit 212 is learned as a multi-class classifier using the converted data (attenuated data) of the data conversion unit 222a trained in step S01 as an input variable and the abnormality cause type as an output variable. By doing so, a diagnostic model is generated. For this learning, only the simulation data among the learning data in the learning data storage unit 200 is used. That is, the input variable to the machine learning model of the abnormality cause identification unit 212 is data (attenuated data) obtained by converting the simulation data of the learning data storage unit 200 by the learned data conversion unit 222a. After learning only the simulation data, it is confirmed that the learning data in the learning data storage unit 200 can be correctly identified using actual data.
  • m the abnormality cause type, one-hot representation of true label indicating the abnormality cause type of v m (only the index which is a true label is 1 and the other is a 0)
  • y d2m Is the output value of the m-th output node by the abnormality cause identification unit 212
  • the diagnostic model learning unit 223 calculates Expression (4) indicating the cross entropy error as a loss function, and uses the error backpropagation method.
  • the output y d2m of abnormality cause identifying unit 212 so as to approach the true label v m, updates the weight with the neural network.
  • the diagnostic model learning unit 223 repeats this update a fixed number of times or until the loss function value does not improve, thereby completing the learning. Thereby, a diagnostic model is generated.
  • the data to be diagnosed is diagnosed by the data processing unit 211 and the abnormality cause identification unit 212 (step S03). That is, the data processing unit 211 acquires the diagnosis target data from the data acquisition unit 100, converts the acquired data by the noise attenuation model generated by the conversion model learning unit 222c, and converts the acquired data as preprocessed data into the abnormality cause identification unit 212. Output to The abnormal cause identification unit 212 acquires the preprocessed data from the data processing unit 211, and outputs an abnormal cause type.
  • the display control unit 23 acquires the abnormality cause type output from the abnormality cause identification unit 212 and causes the display unit 5 to display the abnormality cause type as a diagnosis result as shown in FIG. 9 (step S04).
  • the abnormality diagnosis system 1 of the present embodiment is an abnormality diagnosis system for diagnosing an abnormality cause of a diagnosis target.
  • the diagnosis unit 21 for identifying a type of the abnormality cause of the diagnosis target based on a model, and a machine And a learning unit 22 that is generated by learning.
  • the diagnostic unit 21 is a characteristic part other than the characteristic part that enables identification of the type of the cause of the abnormality from the data when the data output from the diagnosis target is input.
  • the type of the abnormal cause of the diagnostic target is determined.
  • the diagnostic model is a machine learning model.
  • the learning unit 22 includes a diagnostic model learning unit 223 that generates a diagnostic model by machine learning.
  • a noise attenuator 221 that generates attenuated data from which the noise has been removed from learning data for machine learning of the model, wherein the learning data is simulation data simulating an abnormality of a diagnosis target or a diagnosis target.
  • the diagnostic model learning unit 223 generates the diagnostic model by machine learning using the attenuated data as learning data and the abnormality cause type as teacher data.
  • the diagnostic model is generated by using the noise attenuating unit 221 as input, attenuated data obtained by attenuating noise, which is a characteristic part other than the characteristic part that enables the type of the cause of the abnormality to be identified from the learning data.
  • the type of abnormality cause to be diagnosed can be accurately diagnosed. That is, since the simulation data and the actual data include a characteristic portion that allows the type of abnormality to be identified and a noise portion that is a characteristic other than the characteristic portion, the noise portion is attenuated by the noise attenuator 221.
  • the diagnostic model learning unit 223 allows the machine learning model to learn characteristic parts of the simulated data and the actual data that can identify the cause of the abnormality, and generate a diagnostic model.
  • the data processing unit 211 When identifying the cause of the abnormality using the diagnosis model, the data processing unit 211 attenuates a noise portion that is a feature other than a feature that allows the cause of the abnormality to be identified from the data to be diagnosed. A characteristic portion that makes the type identifiable is left, and is easily diagnosed by the abnormality cause identification unit 212. As a result, it is possible to accurately diagnose the type of abnormality cause to be diagnosed.
  • the noise attenuation unit 221 generates attenuated data based on a noise attenuation model that removes noise from input data
  • the learning unit 22 includes a noise attenuation model generation unit 222 that generates a noise attenuation model. I did it. Then, based on the conversion model that converts the learning data, the noise attenuation model generation unit 222 converts the learning data and outputs the converted data.
  • the data conversion unit 222a receives the converted data. Based on an identification model that identifies the data type of the learning data, a data identification unit 222b that identifies a data type indicating whether the learning data is simulated data or real data, and a conversion model that is updated by machine learning to perform learning.
  • Model learning unit 222c that generates a noise attenuation model that outputs attenuated data when input data is input, and an identification model learning unit 222d that updates an identification model by machine learning. Is a neural network, and the discrimination model learning unit 222d converts the discrimination model from the converted data to the learning data.
  • the conversion model learning unit 222c generates an identification model so as to be a model that correctly identifies the data type.
  • the conversion model learning unit 222c converts the conversion model into a model similar to the learning data, but converts the conversion model so that the data identification unit 222b cannot correctly identify it.
  • a noise attenuation model is generated, and the data processing unit 211 performs preprocessing on the data output from the diagnosis target based on the noise attenuation model generated by the conversion model learning unit 222c. Generated data.
  • the noise attenuation unit 221 is generated by updating the conversion model to be similar to the learning data but outputting the converted data so that the data identification unit 222b cannot correctly identify the noise attenuation model.
  • the specific noise of the simulation data or the actual data is attenuated or removed from the learning data, and the data is converted into intermediate data that cannot be identified as the simulation data or the actual data by the data identification unit 222b.
  • the data identification unit 222d can identify the data type by focusing on the noise portion such as an offset in the above example.
  • the conversion model is updated so as to output converted data (for example, data having the same waveform but an offset value different from both the simulation data and the actual data) that cannot be identified as the simulation data or the actual data by the data identification unit 222b, and the noise attenuation model Is generated, intermediate data obtained by attenuating or removing noise peculiar to the simulation data and the real data can be obtained. That is, the characteristic part necessary for identifying the original abnormality cause type is left in the intermediate data.
  • the diagnostic model learning unit 223 learns the machine learning model and generates a diagnostic model using such intermediate data, it is possible to accurately identify the cause of the abnormality regardless of whether the original learning data is simulated data or real data. In addition to this, it is possible to identify the cause of the abnormality with high accuracy even for new diagnosis target data.
  • the conversion model learning unit 222c updates the conversion model such that the data type of the simulated data or the actual data output from the data identification unit 222b is inverted from the data type of the input data input to the data conversion unit 222a. I did it.
  • the conversion model learning unit 222c only trains the conversion model to improve the error between the input data and the output data (the first term on the rightmost side of Expression (2) or Expression (3))
  • the data type of the output data of the conversion model is further input to the data conversion unit 222a by the conversion model learning unit 222c. Since the learning is performed so that the data type becomes the data type inverted from the data type of the input data (corresponding to the second term on the rightmost side of Expression (3)), the data output from the noise attenuation model is correctly recognized by the data identification unit 222b. It can be unidentifiable data. This makes it possible to generate intermediate data that cannot be distinguished from real data and simulation data.
  • the display control unit 23 for displaying the identification result of the abnormality cause identification unit 212 on the display unit is provided. As a result, the user can obtain a result of identifying the cause of the abnormality displayed on the display unit 5, and can cope with the abnormality to be diagnosed.
  • FIG. 10 is a diagram illustrating the configuration of the abnormality diagnosis system according to the second embodiment.
  • the input unit 4 receives a user's input of parameters related to learning by the learning unit 22.
  • Parameters relating to the learning, the data conversion section 222a and a data discrimination unit 222b of the neural network, and the network structure of the machine learning model abnormality cause identifying unit 212, the number of times of learning, the formula (3) in the weight parameter a 1, etc. included is there.
  • the parameters related to the learning are used for learning in the learning unit 22.
  • the display control unit 23 causes the display unit 5 to display the parameter reset button PR as shown in FIG.
  • the parameter reset button PR is a button for adjusting parameters and causing the learning unit 22 to execute learning.
  • the display control unit 23 learns the data conversion unit 222a, the neural network of the data identification unit 222b, and the learning of the machine learning model of the abnormality cause identification unit 212 by the learning unit 22, and the noise attenuation model and the diagnostic model. Is generated, the display unit 5 displays on the display unit 5 the type of abnormality cause of the learning data, the correct answer rate of the learning data based on the diagnostic model, the data before and after noise attenuation by the noise attenuator 221 and the data number of the data, or the diagnosis based on the diagnostic model Display the result.
  • This correct answer rate can be calculated by (number of diagnostic models matching the abnormality cause type indicated by the learning data / number of learning data) ⁇ 100.
  • the processing unit 2 has a correct answer rate calculating unit 24 including a CPU, and the correct answer rate calculating unit 24 calculates the correct answer rate.
  • the correct answer rate is also referred to as a failure cause identification rate in the present specification or the drawings.
  • a diagnosis result by the diagnosis model is also referred to as a determination result in the present specification or the drawings.
  • the noise-attenuated data is equal to the converted data of the data conversion unit 222a after learning by the conversion model learning unit 222c, and the data before noise attenuation is the data conversion unit 222a after learning by the conversion model learning unit 222c. Is equal to the data before conversion, that is, the learning data. Therefore, the data before and after the noise attenuation by the noise attenuator 221 is also referred to as data before and after the conversion by the data converter 222a after learning (hereinafter, also simply referred to as “data before and after the conversion”) in this specification or the drawings.
  • the display control unit 23 uses the learning data from the learning data storage unit 200, the data after conversion from the data conversion unit 222a after learning, and the identification result from the abnormality cause identification unit 212 after learning. Acquires each type of abnormality cause.
  • the display control unit 23 causes the display unit 5 to display the left and right buttons LR and the abnormality diagnosis start button S as shown in FIG.
  • the left and right buttons LR switch the display of data before and after conversion. That is, when the left button is pressed once, the data before and after the conversion with the data number smaller by one is displayed, and when the right button is pressed once, the data before and after the conversion with the data number larger by one is displayed.
  • the abnormality diagnosis start button S is a button for starting identification of an abnormality cause type.
  • the abnormality diagnosis start button S is a failure diagnosis start button S when the abnormality is a failure.
  • Each display on the display unit 5 by the display control unit 23 is performed before diagnosing the cause of the abnormality with respect to the diagnosis target data.
  • FIG. 12 is an operation flowchart illustrating an example of the operation of the abnormality diagnosis system 1 according to the second embodiment. Note that the description of the same operation as that of the first embodiment will be appropriately omitted.
  • step S11 input of a parameter related to learning by the input unit 4 is received, and the parameter is set (step S11). Thereafter, the learning unit 22 causes the neural network of the data conversion unit 222a and the data identification unit 222b to learn (step S01), and causes the abnormality cause identification unit 212 to learn the machine learning model (step S02).
  • the display control unit 23 displays a confirmation screen on the display unit 5 (step S12). That is, the correct answer rate, the data before and after the conversion and the data numbers thereof, the abnormality cause type of the learning data, and the identification result of the abnormality cause identification unit 212 are displayed.
  • the user confirms the display on the display unit 5 by pressing the left and right buttons LR or the like and resets the parameters (YES in step S13)
  • the user returns to step S11 by pressing the parameter reset button PR, and returns to step S11.
  • the diagnosis target data is diagnosed by the user pressing the abnormality diagnosis start button S (step S03), and the diagnosis result is displayed on the display unit 5 by the display control unit 23. (Step S04).
  • the display control unit 23 displays a diagnosis on the learning data on the display unit 5 before diagnosing the abnormality cause to be diagnosed.
  • the correct answer rate of the model or the data before and after the conversion by the data conversion unit 222a is displayed.
  • a peak portion is a characteristic portion indicating an abnormality
  • the waveform data before conversion is biased downward so that the signal intensity is reduced as a whole.
  • the converted waveform data has the signal intensity increased as a whole, the noise is attenuated, and the peak portion of the characteristic portion remains, and the processing of the noise attenuation model is appropriate. It can be confirmed that the process has been performed.
  • the display control unit 23 includes a correct answer rate, individual data information including a data number, data before and after conversion, an abnormal cause type of learning data, and an abnormal cause identification result. May be displayed on the display unit 5 side by side for the simulation data and the actual data. Thereby, the user can confirm the validity of the diagnostic model while comparing the validity of the learning using the simulated data with the validity of the learning using the actual data.
  • the display control unit 23 causes the display unit 5 to display the correct answer rate and the individual data information side by side with the simulation data, the actual data, and the abnormality cause type. May be.
  • the user can confirm the validity of the machine learning model by comparing the validity of the learning using the simulated data and the validity of the learning using the actual data for each abnormality cause type. A high degree of abnormality diagnosis can be performed.
  • the display control unit 23 causes the display unit 5 to display the identification result of the abnormality cause identification unit 212 and the data before and after the conversion by the data conversion unit 222a in step S04. You may do it. Thereby, it is possible to confirm what kind of conversion has been performed by the data conversion unit 222a. That is, since the learning data of the abnormality cause identification unit 212 and the data on which the learning data is based can be confirmed, the reliability of the diagnosis result can be verified by the user.
  • the machine learning model of the abnormality cause identification unit 212 of the present embodiment is a neural network.
  • the learning unit 22 simultaneously learns the neural networks of the data conversion unit 222a, the data identification unit 222b, and the abnormality cause identification unit 212. As illustrated in FIG. 16, the learning unit 22 configures the network such that an output of the neural network of the data conversion unit 222a is an input of the data identification unit 222b and the abnormality cause identification unit 212. Update weights simultaneously.
  • the data conversion unit 222a acquires learning data from the learning data storage unit 200, performs data conversion, and outputs the converted data to the data identification unit 222b and the abnormality cause identification unit 212. Then, the data identification unit 222b identifies the data type of the converted data, and the abnormality cause identification unit 212 identifies the abnormality cause type from the converted data.
  • the learning unit 22 receives the identification result of the data identification unit 222b and the identification result of the abnormality cause identification unit 212, and updates the weight of the neural network of each of the units 211, 212, and 23 using the backpropagation method.
  • the diagnostic model learning unit 223 sets the neural network of the abnormal cause identifying unit 212 to the abnormal cause type that is the identification result of the abnormal cause identifying unit 212 and the abnormal cause type of the learning data from which the identification result is based.
  • the error is back-propagated, and the identification model learning unit 222d converts the neural network of the data identification unit 222b into a data type that is the identification result of the data identification unit 222b,
  • the data is updated using the backpropagation method so that the error between the original learning data and the data type is improved.
  • the diagnostic model learning unit 223 trains the neural network of the abnormality cause identification unit 212 using Expression (4) as a loss function, and the identification model learning unit 222d calculates Expression (1) as a loss function.
  • the identification model learning unit 222d calculates Expression (1) as a loss function.
  • the learning of the abnormality cause identification unit 212 can be performed using only the simulation data among the learning data of the learning data storage unit 200.
  • the conversion model learning unit 222c sets the neural network of the data conversion unit 222a to data which is similar to the input data, but which cannot be correctly identified by the data identification unit 222b and which can be identified correctly by the abnormality cause identification unit 212.
  • the data conversion unit 222a is trained to output.
  • the conversion model learning unit 222c uses the neural network of the data conversion unit 222a to determine the error between the learning data and the data after conversion by the data conversion unit 222a, the data type output by the data identification unit 222b, and the learning that is the correct answer.
  • the error is updated so that the error between the data type obtained by inverting the data type of the use data and the error between the error cause type output from the error cause identification unit 212 and the error cause type of the learning data as the correct answer are improved. .
  • the conversion model learning unit 222c repeats the process of updating using the error back propagation method a fixed number of times, or until the loss function value does not improve, based on Equation (5) as the loss function, and performs learning. .
  • weighting parameters a 1 and a 2 relating to the learning of Expression (5) may be constants or may be determined by trial and error.
  • a 1 of the neural network of the data identification unit 222b may be used for a1.
  • an expression using a loss function such as the identification rate (correct answer rate) of the neural network of the data identification unit 222b or equation (1) as a variable may be used.
  • the identification rate of the neural network (percentage of correct answers) and loss function such as equation (4) May be a mathematical expression having as a variable.
  • FIG. 17 is an operation flowchart showing an example of the operation of the abnormality diagnosis system 1 of the present embodiment based on the first embodiment.
  • FIG. 18 is an operation flowchart illustrating an example of an operation of the abnormality diagnosis system 1 according to the present embodiment based on the second embodiment. Note that the description of the same operation as that of the first embodiment and the second embodiment will be appropriately omitted.
  • the learning unit 22 executes a neural network of the units 222a, 222b, and 212 as step S1a. Let them learn.
  • the conversion model learning unit 222c converts the conversion model into an error between the learning data and the converted data, an error between the output result of the data identification unit 222b and the incorrect data type, and an abnormality cause identification.
  • the noise attenuation model is generated by updating so that the error between the output result of the unit 212 and the correct abnormality cause type becomes small.
  • the conversion model learning unit 222c outputs the error between the learning data and the data after the conversion by the data conversion unit 222a, and outputs the data identification unit 222b.
  • the neural network of the data conversion unit 222a is trained so that the output result of the abnormality cause identification unit 212 is correct, so that the features necessary for identifying the abnormality cause are emphasized.
  • the converted data can be output by the data conversion unit 222a. It is possible to improve the degree.
  • the learning unit 22 generates two or more diagnostic models of the abnormality cause identification unit 212.
  • the diagnostic model according to the first or second embodiment hereinafter, also referred to as a first model
  • the diagnostic model according to the third embodiment hereinafter, also referred to as a second model
  • the correct answer rate calculating unit 24 calculates the correct answer rate of the abnormal cause identifying unit 212 based on the first model and the correct answer rate of the abnormal cause identifying unit 212 based on the second model. As described above, this correct answer rate can be calculated by (the number of the identification results of the abnormality cause identification unit 212 after learning that matches the abnormality cause type indicated by the learning data / the number of learning data) ⁇ 100.
  • the abnormality cause identification unit 212 receives the correct answer rate of each model from the correct answer rate calculation unit 24, and sets a model having high diagnostic accuracy among the models as its own diagnostic model. That is, a diagnostic model that maximizes the correct answer rate is adopted.
  • FIG. 20 is an operation flowchart illustrating an example of the operation of the abnormality diagnosis system 1 according to the fourth embodiment. Note that the description of the same operation as that of the first, second, and third embodiments will be appropriately omitted.
  • the learning unit 22 first learns the neural network of the data conversion unit 222a and the data identification unit 222b (step S01), and learns the machine learning model of the abnormality cause identification unit 212 (step S02). .
  • the learning unit 22 causes the neural networks of the units 222a, 222b, and 223 to learn (step S1a). Steps S01 and S02 and step S1a may be performed simultaneously.
  • the correct answer rate calculation unit 24 calculates the correct answer rate of the abnormality cause identification unit 212 based on each machine learning model (step S21).
  • the abnormal cause identification unit 212 acquires the correct answer rate of each diagnostic model from the correct answer rate calculation unit 24, selects the model with the highest correct answer rate, and sets the model as the diagnostic model for identifying the type of the abnormal cause (step S22).
  • the diagnosis target data is diagnosed by the abnormality cause identification unit 212 (step S03), and the diagnosis result is displayed on the display unit 5 by the display control unit 23 (step S04).
  • the diagnostic model learning unit 223 generates two or more diagnostic models, and the diagnostic model of the abnormality cause identifying unit 212 is a model with high diagnostic accuracy from the two or more generated diagnostic models.
  • diagnostic accuracy can be improved.
  • Which diagnostic model of the abnormality cause identification unit 212 has the higher identification accuracy depends on various parameters such as the number of times of learning, and cannot be known unless actually verified. Since the verification is performed by the abnormality cause identification unit 212, the accuracy of diagnosis can be improved.
  • the display control unit 23 determines, for the diagnostic model generated by the diagnostic model learning unit 223, the correct answer rate of the diagnostic model and the data (before and after the attenuation of the noise attenuation unit 221). (Data before and after the conversion) are displayed on the display unit 5.
  • the display control unit 23 acquires the correct answer rate from, for example, the correct answer rate calculating unit 24.
  • the input unit 4 accepts a user's selection of the machine learning model displayed on the display unit 5.
  • the display control unit 23 causes the display unit 5 to display a selection unit SL that receives the selection.
  • FIG. 22 is an operation flowchart illustrating an example of the operation of the abnormality diagnosis system 1 according to the fifth embodiment. The description of the same operation as the fourth operation will be appropriately omitted.
  • step S22 instead of step S22 in FIG. 20, for each diagnostic model generated by the diagnostic model learning unit 223, the display control unit 23 calculates the correct answer rate and the data before and after the conversion. Is displayed on the display unit 5 (step S31). Then, the input unit 4 accepts the selection of the diagnostic model by the user (step S32), sets the diagnostic model of the abnormality cause identifying unit 212 as the selected diagnostic model, and diagnoses the diagnosis target data by the abnormal cause identifying unit 212. (Step S03), and the display control unit 23 causes the display unit 5 to display the diagnosis result (Step S04).
  • the diagnostic model learning unit 223 generates two or more diagnostic models, and the display control unit 23 displays, on the display unit 5, the correct answer rate of the diagnostic model and before and after attenuation by the noise attenuation unit 221 for each diagnostic model. Displayed with data. This allows the user to examine the validity of the diagnostic model. Then, a more appropriate diagnostic model can be adopted to diagnose the cause of the abnormality.
  • the input unit 4 of the present embodiment receives an input of a hyperparameter used in the generation of the noise attenuation model in the conversion model learning unit 222c.
  • This hyper parameter is a parameter of the neural network constituting the conversion model, where is the weighting parameter a 1 of the formula (3) or Formula (5) used in converting the model learning unit 222c.
  • the input unit 4 receives an input of the weighting parameter a 1 depending on the data type of either the learning data is simulated data or actual data. Transformation model learning unit 222c sets the weighting parameter a 1 input from the input unit 4 separately.
  • the conversion model learning unit 222c multiplies the error between the output result of the data identification unit 222b and the correct teacher data by the hyperparameter received by the input unit 4, and generates a noise attenuation model. Was generated.
  • the weighting parameter for the actual data is set to 0, so that the data conversion unit 222a functions as a noise filter and includes noise.
  • the data type is not identified by the data identification unit 222b to which the data after the actual data is converted by the data conversion unit 222a is input, thereby preventing erroneous learning of noise. That is, the noise included in the actual data does not need to be reflected in the learning of the machine learning model of the abnormality cause identification unit 212. Therefore, the accuracy of identifying the cause of the abnormality can be improved.
  • the display control unit 23 displays the data before and after the attenuation of the noise attenuating unit 221 (data before and after the conversion) on the display unit 5, it is possible to visually confirm that noise has been removed from the data before and after the conversion. Therefore, it can be determined that the diagnosis model of the abnormality cause identification unit 212 is identified without being affected by noise, and the reliability of the diagnosis result can be improved.
  • FIG. 23 is a diagram showing the configuration of the abnormality diagnosis system according to the seventh embodiment.
  • the abnormality diagnosis system 1 according to the present embodiment includes an adjustment unit 25.
  • the adjustment unit 25 includes a CPU, and adjusts a hyper parameter used for generating a noise attenuation model.
  • the conversion model learning unit 222c generates a noise attenuation model by updating the conversion model using the hyperparameter adjusted by the adjustment unit 25.
  • the display control unit 23 displays, on the display unit 5, an adjustment reception image for receiving the adjustment of the adjustment unit 25 and an adjustment result including a correct answer rate of the diagnostic model or data before and after attenuation by the noise attenuation unit 221. It is displayed on the same display screen of the unit 5.
  • the adjustment reception image includes, for example, a slide bar 51 and a knob 52 on the slide bar 51, and the user places the knob 52 on the slide bar 51 via the input unit 4 such as a mouse. slide adjusts the weighting parameter a 1.
  • the adjustment unit 25 multiplies the weight parameter a 1 when the learning data is the simulation data by x, and the weight parameter a 1 when the learning data is the real data. Let 1 be (1-x) times.
  • FIG. 25 is an operation flowchart illustrating an example of the operation of the abnormality diagnosis system 1 according to the seventh embodiment. Note that the description of the same operation as that of the sixth embodiment will be appropriately omitted.
  • the adjustment unit 25 adjusts the weighting parameters a 1 (step S41).
  • Learning unit 22 each unit using the weight parameters a 1 after adjustment 222a, train the neural network 222b (step S42), further, after completion of the learning, the converted data in the data conversion unit 222a after learning, That is, the diagnostic model is generated by learning the machine learning model of the abnormality cause identification unit 212 using the attenuated data of the noise attenuation unit 221 (step S43).
  • the display control unit 23 displays, on the same display screen as the screen on which the adjustment reception screen of the display unit 5 is displayed, the correct answer rate of the diagnostic model or the data before and after the attenuation by the noise attenuation unit 221 (by the data conversion unit 222a).
  • the adjustment result including the data before and after the conversion is displayed (step S44).
  • step S45 if the abnormality diagnosis start button S displayed on the display unit 5 is not pressed by the input unit 4 (NO in step S45), that is, if the user determines that the adjustment result is not appropriate, without starting a diagnosis, the process returns to step S41, adjusting the weighting parameter a 1.
  • the abnormality diagnosis start button S displayed on the display unit 5 is pressed by the input unit 4 (YES in step S45), that is, when the adjustment result is determined to be valid by the user, the abnormality diagnosis is started.
  • the diagnosis target data is diagnosed by the abnormality cause identification unit 212 (step S03), and the diagnosis result is displayed on the display unit 5 by the display control unit 23 (step S04).
  • the learning unit 22 each unit using the weight parameters a 1 after adjustment by the adjustment portion 25 222a , 222b, and 223 (step S45a).
  • Abnormality diagnosis system 1 of this embodiment includes a controller 25 for adjusting the weighting parameters a 1, transformation model learning unit 222c includes a diagnostic model by updating the conversion model using the weighting parameters a 1, which is adjusted Generated. Then, the display control unit 23 outputs the adjustment reception image for receiving the adjustment of the adjustment unit 23 and the correct answer rate of the diagnostic model or the adjustment result including the data before and after the attenuation by the noise attenuation unit 221 to the display unit 5. Display on the same display screen.
  • the display control unit 23 determines the correct answer rate, the data number, the data before and after the attenuation (data before and after the conversion), the abnormality cause type of the learning data, and the abnormality cause.
  • the individual data information including the identification result may be arranged for each of the simulation data and the actual data, and may be displayed on the display screen of the display unit 5 on which the adjustment reception image is displayed. Thereby, the user can confirm the validity of the diagnostic model while comparing the validity of the learning using the simulated data with the validity of the learning using the actual data.
  • the display control unit 23 arranges the correct answer rate and the individual data information for each of the simulation data, the actual data, and the abnormality cause type, and adjusts the adjustment reception image of the display unit 5. May be displayed on a display screen on which is displayed.
  • the user can confirm the validity of the diagnosis model by comparing the validity of learning using the simulated data and the validity of learning using the actual data for each type of abnormality cause, and can improve the reliability. Abnormal diagnosis can be performed.
  • the abnormality diagnosis system 1 includes the display unit 5, but the display unit 5 does not necessarily have to include the display unit 5.
  • the abnormality diagnosis system 1 outputs an identification result of the abnormality cause identification unit 212, a correct answer rate, data before and after conversion by the data conversion unit 222a, and the like in response to a request from the outside, and causes the external display device to display the data. You may do it.
  • Such an abnormality diagnosis system 1 is, for example, a single server or a server configured by a computer.
  • abnormality diagnosis system processing unit 21 diagnosis unit 211 data processing unit 212 abnormality cause identification unit 22 learning unit 221 noise attenuation unit 222 noise attenuation model generation unit 222a data conversion unit 222b data identification unit 222c conversion model learning unit 222d identification model learning unit 223 diagnostic model learning unit 23 display control unit 24 correct answer rate calculation unit 25 adjustment unit 3 storage unit 4 input unit 5 display unit 51 slide bar 52 knob 100 data acquisition unit 200 learning data storage unit

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

Provided are an abnormality diagnosis system, method, and program capable of accurately diagnosing the classification of an abnormality cause under diagnosis. In the present invention, a diagnosis unit comprises a data processing unit for, upon receiving data output from an object of diagnosis, generating preprocessed data in which noise, which consists of features other than features that make it possible to identify the category of an abnormality cause from the data, has been attenuated and an abnormality cause identification unit for, upon receiving the preprocessed data, identifying the category of an abnormality cause under diagnosis on the basis of a diagnosis model for outputting the classification of an abnormality cause under diagnosis. The diagnosis model is a machine learning model. A learning unit comprises a diagnosis model learning unit for generating a diagnosis model through machine learning and a noise attenuation unit for generating attenuated data in which the aforementioned noise has been removed from learning data for the diagnosis model machine learning. The learning data is either simulated data simulating abnormalities in the object of diagnosis or real data indicating abnormalities in the object of diagnosis. The diagnosis model learning unit generates a diagnosis model through machine learning by using the attenuated data as the learning data and using abnormality cause classifications as teaching data.

Description

異常診断システム、方法及びプログラムAbnormality diagnosis system, method and program
 本発明の実施形態は、異常診断システム、方法及びプログラムに関する。 The embodiments of the present invention relate to an abnormality diagnosis system, method, and program.
 電力機器など社会インフラを支える設備又は機器の故障、事故等の異常に対し、その原因の識別にニューラルネットワークをはじめとした機械学習が用いられている。機械学習を用いて識別器を構築するためには、一般に数多くの異常データを学習させる必要があるが、社会インフラの設備、機器の故障や事故は滅多に発生せず、実際の異常データの数は少ない。さらに、このような設備、機器は、様々な環境に設置されており、各設備、機器から得られるデータは環境毎に特有のノイズ等の影響を受けるが、全ての環境を網羅した異常データを用意することは難しい。 機械 Machine learning, such as neural networks, is used to identify the causes of failures, accidents, etc. in equipment or equipment that supports social infrastructure such as power equipment, such as failures and accidents. In order to construct a classifier using machine learning, it is generally necessary to train a large number of abnormal data.However, failures and accidents of social infrastructure equipment and devices rarely occur, and the number of actual abnormal data Is less. Furthermore, such facilities and equipment are installed in various environments, and the data obtained from each facility and equipment is affected by noise and the like specific to each environment, but abnormal data covering all environments is collected. It is difficult to prepare.
 データ数が限られた状況下での機械学習による診断について、多数の正常データと、少数の異常データにより学習を行い、正常と異常を識別させる技術が知られている。例えば、物体表面凍結時の少数データと、非凍結時の多数データを用いて学習させ、物体表面が凍結しているか否かを識別させる。 診断 Regarding diagnosis by machine learning in a situation where the number of data is limited, a technique is known in which learning is performed using a large number of normal data and a small number of abnormal data to distinguish between normal and abnormal. For example, learning is performed using a small number of data when the object surface is frozen and a large number of data when the object surface is not frozen, and whether or not the object surface is frozen is identified.
 しかし、上記技術では、多数の正常データを元にした、正常と異常の2状態の識別は可能であるが、データ数が少ない異常データの種類を識別させることはできない。すなわち、異常データが示す診断対象の異常原因の種別を識別することはできない。 However, according to the above-mentioned technology, it is possible to distinguish between two states of normal and abnormal based on a large number of normal data, but it is not possible to identify the type of abnormal data having a small number of data. That is, the type of the cause of the abnormality to be diagnosed indicated by the abnormality data cannot be identified.
特開2017-125809号公報JP-A-2017-125809
 異常データの種類を識別させるための対策として、シミュレーションや机上実験などにより、故障を模した模擬データを予め用意し、模擬データを学習させて識別器を構築した後、その識別器に実際の故障データを識別させ、その識別精度を確認する方法が考えられる。 As a measure to identify the type of abnormal data, simulated data that simulates a failure is prepared in advance by simulation or desk experiment, and the simulated data is learned to construct a classifier. A method of identifying data and confirming the identification accuracy can be considered.
 しかし、設備や機器が設置されている環境をシミュレーションや机上実験では完全に再現することができず、模擬データと実際のデータはノイズ等の特性が異なってしまう場合がある。この場合、模擬データのみを学習させた識別器では、模擬データは正しく識別できるものの、実際のデータを正しく識別できないという問題が発生する。また、模擬データや実際のデータに特有のノイズが含まれ、データに偏りがあると、当該ノイズが異常原因を示す特徴であると誤って学習してしまい、識別精度が悪化してしまうという問題があった。 However, the environment in which the equipment and devices are installed cannot be completely reproduced by simulation or desk experiment, and the simulated data and the actual data may have different characteristics such as noise. In this case, in the classifier that has learned only the simulation data, the simulation data can be correctly identified, but there is a problem that the actual data cannot be identified correctly. In addition, if the simulation data or the actual data contains noise peculiar to the data and the data is biased, the noise is erroneously learned to be a feature indicating the cause of the abnormality, and the identification accuracy is deteriorated. was there.
 本発明の実施形態は、上記のような課題を解決するためになされたものであり、診断対象の異常原因種別を精度良く診断することのできる異常診断システム、方法及びプログラムを提供することを目的とする。 An embodiment of the present invention has been made to solve the above-described problem, and has an object to provide an abnormality diagnosis system, method, and program that can accurately diagnose an abnormality cause type to be diagnosed. And
 上記の目的を達成するために、本実施形態の異常診断システムは、診断対象の異常原因を診断する異常診断システムであって、モデルに基づいて前記診断対象の異常原因の種類を識別する診断部と、前記モデルを機械学習により生成する学習部と、を備え、前記診断部は、前記診断対象から出力されたデータが入力されると、当該データから前記異常原因の種類を識別可能にする特徴部分以外の特徴部分であるノイズが減衰された前処理済みデータを生成するデータ処理部と、前記前処理済みデータが入力されると前記診断対象の異常原因種別を出力する診断モデルに基づいて、前記診断対象の異常原因の種類を識別する異常原因識別部と、を有し、前記診断モデルが機械学習モデルであり、前記学習部は、前記診断モデルを機械学習により生成する診断モデル学習部と、前記診断モデルの機械学習のための学習用データから前記ノイズが減衰された減衰済みデータを生成するノイズ減衰部と、を有し、前記学習用データは、前記診断対象の異常を模擬した模擬データ又は前記診断対象の異常を示す実データであり、前記診断モデル学習部は、前記減衰済みデータを学習データとし、前記異常原因種別を教師データとして機械学習により前記診断モデルを生成することを特徴とする。 In order to achieve the above object, an abnormality diagnosis system according to the present embodiment is an abnormality diagnosis system that diagnoses an abnormality cause of a diagnosis target, and a diagnosis unit that identifies a type of the abnormality cause of the diagnosis target based on a model. And a learning unit that generates the model by machine learning, wherein the diagnostic unit is capable of identifying the type of the cause of the abnormality from the data when the data output from the diagnosis target is input. A data processing unit that generates pre-processed data in which noise, which is a characteristic part other than the part, is attenuated, and a diagnostic model that outputs the type of abnormality cause of the diagnosis target when the pre-processed data is input, An abnormality cause identification unit that identifies a type of the abnormality cause to be diagnosed, wherein the diagnosis model is a machine learning model, and the learning unit is configured to execute the diagnosis model by machine learning. A diagnostic model learning unit for generating, and a noise attenuating unit for generating attenuated data in which the noise is attenuated from learning data for machine learning of the diagnostic model, wherein the learning data includes the diagnostic data. Simulation data simulating an abnormality of the target or actual data indicating the abnormality of the diagnosis target, wherein the diagnosis model learning unit performs the diagnosis by machine learning using the attenuated data as learning data and the abnormality cause type as teacher data. The method is characterized in that a model is generated.
 また、本形態は、上記各部の処理をコンピュータ又は電子回路により実現する方法、上記の各部の処理をコンピュータに実現させるプログラムとして捉えることもできる。 The present embodiment can also be understood as a method of realizing the processing of each unit by a computer or an electronic circuit, and a program for realizing the processing of each unit by a computer.
 すなわち、本実施形態の異常診断方法は、診断対象の異常原因を診断する異常診断方法であって、モデルに基づいて前記診断対象の異常原因の種類を識別する診断ステップと、前記モデルを機械学習により生成する学習ステップと、を備え、前記診断ステップは、前記診断対象から出力されたデータが入力されると、当該データから前記異常原因の種類を識別可能にする特徴部分以外の特徴部分であるノイズが減衰された前処理済みデータを生成するデータ処理ステップと、前記前処理済みデータが入力されると前記診断対象の異常原因種別を出力する診断モデルに基づいて、前記診断対象の異常原因の種類を識別する異常原因識別ステップと、を有し、前記診断モデルが機械学習モデルであり、前記学習ステップは、前記診断モデルを機械学習により生成する診断モデル学習ステップと、前記診断モデルの機械学習のための学習用データから前記ノイズが減衰された減衰済みデータを生成するノイズ減衰ステップと、を有し、前記学習用データは、前記診断対象の異常を模擬した模擬データ又は前記診断対象の異常を示す実データであり、前記診断モデル学習ステップは、前記減衰済みデータを学習データとし、前記異常原因種別を教師データとして機械学習により前記診断モデルを生成することを特徴とする。 That is, the abnormality diagnosis method of the present embodiment is an abnormality diagnosis method for diagnosing an abnormality cause of a diagnosis target, and includes a diagnosis step of identifying a type of the abnormality cause of the diagnosis target based on a model; The diagnostic step is a characteristic part other than the characteristic part that, when the data output from the diagnosis target is input, enables the type of the abnormal cause to be identified from the data. A data processing step of generating pre-processed data in which noise has been attenuated, and a diagnosis model that outputs an abnormality cause type of the diagnosis target when the pre-processed data is input, based on a diagnosis model of the abnormality cause of the diagnosis target. An abnormality cause identification step of identifying a type, wherein the diagnostic model is a machine learning model, and A diagnostic model learning step generated by learning, and a noise attenuation step of generating attenuated data in which the noise is attenuated from learning data for machine learning of the diagnostic model, wherein the learning data includes: Simulation data simulating the abnormality of the diagnosis target or actual data indicating the abnormality of the diagnosis target, wherein the diagnostic model learning step uses the attenuated data as learning data and the abnormality cause type as teacher data by machine learning. The diagnostic model is generated.
 本実施形態の異常診断プログラムは、診断対象の異常原因を診断する異常診断プログラムであって、コンピュータに、モデルに基づいて前記診断対象の異常原因の種類を識別する診断ステップと、前記モデルを機械学習により生成する学習ステップと、を実行させ、前記診断ステップは、前記診断対象から出力されたデータが入力されると、当該データから前記異常原因の種類を識別可能にする特徴部分以外の特徴部分であるノイズが減衰された前処理済みデータを生成するデータ処理ステップと、前記前処理済みデータが入力されると前記診断対象の異常原因種別を出力する診断モデルに基づいて、前記診断対象の異常原因の種類を識別する異常原因識別ステップと、を有し、前記診断モデルが機械学習モデルであり、前記学習ステップは、前記診断モデルを機械学習により生成する診断モデル学習ステップと、前記診断モデルの機械学習のための学習用データから前記ノイズが減衰された減衰済みデータを生成するノイズ減衰ステップと、を有し、前記学習用データは、前記診断対象の異常を模擬した模擬データ又は前記診断対象の異常を示す実データであり、前記診断モデル学習ステップは、前記減衰済みデータを学習データとし、前記異常原因種別を教師データとして機械学習により前記診断モデルを生成することを特徴とする。 The abnormality diagnosis program according to the present embodiment is an abnormality diagnosis program for diagnosing an abnormality cause of a diagnosis target.The computer includes: a diagnosis step for identifying a type of the abnormality cause of the diagnosis target based on a model; A learning step of generating by learning, wherein the diagnosis step is characterized in that, when data output from the diagnosis target is input, a characteristic part other than a characteristic part that enables the type of the abnormal cause to be identified from the data. A data processing step of generating pre-processed data in which noise has been attenuated, and an abnormality of the diagnosis target based on a diagnosis model that outputs an abnormality cause type of the diagnosis target when the pre-processed data is input. An abnormality cause identification step of identifying a cause type, wherein the diagnostic model is a machine learning model, and the learning step A diagnostic model learning step of generating the diagnostic model by machine learning, and a noise attenuation step of generating attenuated data in which the noise is attenuated from learning data for machine learning of the diagnostic model, The learning data is simulated data simulating the abnormality of the diagnosis target or actual data indicating the abnormality of the diagnosis target, and the diagnosis model learning step uses the attenuated data as learning data and sets the abnormality cause type. The diagnostic model is generated by machine learning as teacher data.
第1の実施形態に係る異常診断システムの構成を示す図である。1 is a diagram illustrating a configuration of an abnormality diagnosis system according to a first embodiment. データ取得部で取得されるデータの一例を示す図である。FIG. 5 is a diagram illustrating an example of data acquired by a data acquisition unit. 学習データ格納部で保持する学習データのテーブルの一例を示すである。6 shows an example of a table of learning data stored in a learning data storage unit. データ変換部のニューラルネットワークの模式図である。It is a schematic diagram of a neural network of a data conversion unit. データ識別部のニューラルネットワークの模式図である。It is a schematic diagram of a neural network of a data identification unit. 異常原因識別部の機械学習モデルがニューラルネットワークである場合の当該ニューラルネットワークの模式図である。It is a schematic diagram of the said neural network when the machine learning model of an abnormality cause identification part is a neural network. 異常診断システムの動作の一例を示す動作フローチャートである。5 is an operation flowchart illustrating an example of an operation of the abnormality diagnosis system. 学習時におけるデータ変換部及びデータ識別部のニューラルネットワークの模式図である。It is a schematic diagram of the neural network of the data conversion part and the data identification part at the time of learning. 第1の実施形態における表示部の診断結果の表示例を示す図である。FIG. 5 is a diagram illustrating a display example of a diagnosis result on a display unit according to the first embodiment. 第2の実施形態に係る異常診断システムの構成を示す図である。FIG. 6 is a diagram illustrating a configuration of an abnormality diagnosis system according to a second embodiment. 表示制御部が表示部に表示させる画面の一例を示す図である。FIG. 4 is a diagram illustrating an example of a screen displayed on a display unit by a display control unit. 第2の実施形態に係る異常診断システムの動作の一例を示す動作フローチャートである。9 is an operation flowchart illustrating an example of an operation of the abnormality diagnosis system according to the second embodiment. 第2の実施形態の変形例1に係る表示制御部が表示部に表示させる画面の一例を示す図である。It is a figure showing an example of a screen which a display control part concerning modification 1 of a 2nd embodiment displays on a display part. 第2の実施形態の変形例2に係る表示制御部が表示部に表示させる画面の一例を示す図である。It is a figure showing an example of a screen which a display control part concerning modification 2 of a 2nd embodiment displays on a display part. 第2の実施形態の変形例3に係る表示制御部が表示部に表示させる画面の一例を示す図である。It is a figure showing an example of a screen which a display control part concerning modification 3 of a 2nd embodiment displays on a display part. 学習時におけるデータ変換部、データ識別部及び異常原因識別部のニューラルネットワークの模式図である。It is a schematic diagram of the neural network of the data conversion part, the data identification part, and the abnormality cause identification part at the time of learning. 第1の実施形態をベースにした本実施形態の異常診断システムの動作の一例を示す動作フローチャートである。4 is an operation flowchart illustrating an example of an operation of the abnormality diagnosis system according to the present embodiment based on the first embodiment. 第2の実施形態をベースにした本実施形態の異常診断システムの動作の一例を示す動作フローチャートである。It is an operation | movement flowchart which shows an example of operation | movement of the abnormality diagnosis system of this embodiment based on 2nd Embodiment. 第3の実施形態の作用を説明するための図である。It is a figure for explaining an operation of a 3rd embodiment. 第4の実施形態に係る異常診断システムの動作の一例を示す動作フローチャートである。14 is an operation flowchart illustrating an example of an operation of the abnormality diagnosis system according to the fourth embodiment. 第5の実施形態において表示制御部が表示部に表示させる画面の一例を示す図である。It is a figure showing an example of a screen which a display control part displays on a display part in a 5th embodiment. 第5の実施形態に係る異常診断システムの動作の一例を示す動作フローチャートである。It is an operation | movement flowchart which shows an example of operation | movement of the abnormality diagnosis system which concerns on 5th Embodiment. 第7の実施形態に係る異常診断システムの構成を示す図である。It is a figure showing the composition of the abnormality diagnosis system concerning a 7th embodiment. 第7の実施形態において表示制御部が表示部に表示させる画面の一例を示す図である。It is a figure showing an example of a screen which a display control part displays on a display part in a 7th embodiment. 第7の実施形態の異常診断システム1の動作の一例を示す動作フローチャートである。It is an operation | movement flowchart which shows an example of an operation | movement of the abnormality diagnosis system 1 of 7th Embodiment. 第7の実施形態の変形例に係る異常診断システム1の動作の一例を示す動作フローチャートである。It is an operation | movement flowchart which shows an example of operation | movement of the abnormality diagnosis system 1 which concerns on the modification of 7th Embodiment. 第7の実施形態の変形例1に係る表示制御部が表示部に表示させる画面の一例を示す図である。It is a figure showing an example of a screen which a display control part concerning modification 1 of a 7th embodiment displays on a display part. 第7の実施形態の変形例2に係る表示制御部が表示部に表示させる画面の一例を示す図である。It is a figure showing an example of a screen which a display control part concerning modification 2 of a 7th embodiment displays on a display part.
 [第1の実施形態]
 (概略構成)
 図1は、第1の実施形態に係る異常診断システムの構成を示す図である。異常診断システム1は、機械学習モデルを構築し、当該機械学習モデルによって、診断対象となる設備又は機器(以下、単に「診断対象」ともいう。)の異常原因を診断する。診断対象は、例えば、電力系統に用いられる設備又は機器であり、異常診断システム1は、電力系統の監視システムなどに用いられる。図1に示すように、この異常診断システム1には、データ取得部100、学習データ格納部200が接続されている。
[First Embodiment]
(Schematic configuration)
FIG. 1 is a diagram illustrating a configuration of the abnormality diagnosis system according to the first embodiment. The abnormality diagnosis system 1 constructs a machine learning model, and diagnoses the cause of an abnormality in equipment or equipment to be diagnosed (hereinafter, also simply referred to as “diagnosis object”) using the machine learning model. The diagnosis target is, for example, equipment or equipment used in a power system, and the abnormality diagnosis system 1 is used in a power system monitoring system or the like. As shown in FIG. 1, a data acquisition unit 100 and a learning data storage unit 200 are connected to the abnormality diagnosis system 1.
 データ取得部100は、異常診断システム1が診断するデータ(以下、単に「診断対象データ」ともいう。)を取得する。診断対象データは、診断対象に異常が発生した際に測定されたデータである。診断対象の異常としては、例えば、診断対象の故障、事故による不具合が挙げられる。診断対象データは、例えば図2に示すような波形データである。但し、診断対象データは、波形データに限られず、画像データであっても良い。 The data acquisition unit 100 acquires data (hereinafter, simply referred to as “diagnosis target data”) diagnosed by the abnormality diagnosis system 1. The diagnosis target data is data measured when an abnormality occurs in the diagnosis target. Examples of the abnormality of the diagnosis target include a failure of the diagnosis target and a defect due to an accident. The diagnosis target data is, for example, waveform data as shown in FIG. However, the diagnosis target data is not limited to the waveform data, and may be image data.
 学習データ格納部200は、異常診断システム1の学習に用いられる学習用データを格納している。学習用データは、過去の実際の診断対象の異常の実データ、診断対象の異常を模した模擬データである。 The learning data storage unit 200 stores learning data used for learning of the abnormality diagnosis system 1. The learning data is actual data of past abnormalities of the actual diagnosis target, and simulated data imitating the abnormalities of the diagnosis target.
 学習データ格納部200には、過去の実際の診断対象の異常の実データと、診断対象の異常を模した模擬データとが、各データに対し、異常原因種別を示す情報と、実データか模擬データかのデータ種別を示す情報が付加されて格納されている。例えば、図3に示すように、過去の実際の機器故障時の実データ(図中の「実故障データ」)と、シミュレーションや机上実験などにより故障を模擬した模擬データとが、各データに故障原因種別を示す情報と、データ種別を示す情報とが対応付けられている。学習データ格納部200に格納されている実データは、過去に測定された診断対象の異常を示すデータである。なお、図3では、故障原因種別は、故障A、Bの2種類となっているが、3種類以上であっても良い。 In the learning data storage unit 200, the actual data of the past actual abnormality of the diagnosis target and the simulated data simulating the abnormality of the diagnosis target are provided for each data, the information indicating the abnormality cause type, and the actual data or the simulated data. Information indicating the data type of the data is added and stored. For example, as shown in FIG. 3, actual data at the time of past actual equipment failure (“actual failure data” in the figure) and simulated data simulating a failure by a simulation or a desk test are included in each data. Information indicating the cause type is associated with information indicating the data type. The actual data stored in the learning data storage unit 200 is data indicating an abnormality of a diagnosis target measured in the past. In FIG. 3, the failure cause types are two types, failures A and B, but may be three or more types.
 学習用データには、模擬データ又は実データの特有のノイズが含まれていても良い。このノイズは、異常原因種別が反映されていない部分である。すなわち、模擬データ又は実データは、何れかの異常原因種別を示すデータであるため、異常原因種別を識別可能にする特徴部分と、それ以外の特徴部分となるノイズ部分とを有する。このノイズ部分は、異常原因種別を識別可能にする特徴部分以外の特徴となる部分であり、例えば、模擬データ又は実データを図3に示すような波形データとし、異常原因種別を識別可能にする特徴部分を波形の山の形とすると、波形のオフセット値である。実データの特有のノイズは、例えば、診断対象が設置された環境が反映されたノイズであり、模擬データの特有のノイズは、例えば、机上実験等の実験環境が反映されたノイズである。 (4) The learning data may include noise specific to the simulation data or the real data. This noise is a part where the cause of abnormality is not reflected. That is, since the simulated data or the actual data is data indicating one of the abnormality cause types, the simulation data or the actual data includes a characteristic portion that makes it possible to identify the abnormality cause type and a noise portion that is another characteristic portion. This noise portion is a characteristic portion other than the characteristic portion that makes the abnormality cause type identifiable. For example, simulated data or real data is made into waveform data as shown in FIG. Assuming that the characteristic portion is a peak of a waveform, it is an offset value of the waveform. The specific noise of the actual data is, for example, noise that reflects the environment in which the diagnosis target is installed, and the specific noise of the simulation data is, for example, noise that reflects an experimental environment such as a desk experiment.
 異常診断システム1は、単一のコンピュータ又はネットワーク接続された複数のコンピュータ及び表示装置を含み構成されている。異常診断システム1は、プログラム及びデータベースをHDDやSSD等のストレージに記憶しており、RAM等のメモリに適宜展開し、CPUで処理することにより、後述する機械学習モデルの構築やデータ変換などの必要な演算を行う。 The abnormality diagnosis system 1 includes a single computer or a plurality of computers and a display device connected to a network. The abnormality diagnosis system 1 stores a program and a database in a storage such as an HDD or an SSD, and appropriately develops the program and the database in a memory such as a RAM, and processes the data by a CPU. Perform necessary calculations.
 具体的には、異常診断システム1は、処理部2、記憶部3、入力部4、表示部5を備える。記憶部3は、メモリ又はストレージを含み構成され、処理部2の動作プログラム、演算結果等を記憶する。入力部4は、ユーザによる入力インタフェースであり、例えば、キーボードやマウス、タッチパネルである。表示部5は、処理部2の演算結果を表示する。表示部5は、例えば、有機ELや液晶ディスプレイなどの表示装置である。 Specifically, the abnormality diagnosis system 1 includes a processing unit 2, a storage unit 3, an input unit 4, and a display unit 5. The storage unit 3 includes a memory or a storage, and stores an operation program of the processing unit 2, an operation result, and the like. The input unit 4 is an input interface by a user, and is, for example, a keyboard, a mouse, and a touch panel. The display unit 5 displays the calculation result of the processing unit 2. The display unit 5 is a display device such as an organic EL or a liquid crystal display.
 処理部2は、CPUを含み構成され、後述する種々の演算を行う。具体的には、処理部2は、診断部21、学習部22、及び表示制御部23を有する。 The processing unit 2 includes a CPU and performs various operations described later. Specifically, the processing unit 2 includes a diagnosis unit 21, a learning unit 22, and a display control unit 23.
 診断部21は、CPUを含み構成され、モデルに基づいて診断対象の異常原因の種類を識別する。学習部22は、上記モデルを機械学習により生成する。 The diagnosis unit 21 includes a CPU, and identifies the type of abnormality cause to be diagnosed based on the model. The learning unit 22 generates the model by machine learning.
 具体的には、診断部21は、データ処理部211、異常原因識別部212を有する。データ処理部211は、CPUを含み構成され、診断対象データが入力されると、当該データからノイズが減衰された前処理済みデータを生成する。すなわち、データ処理部211は、データ取得部100から診断対象データを取得し、後述するノイズ減衰モデルに基づいて診断対象データを変換することで前処理済みデータを生成する。ここでいうノイズとは、診断対象データのうち、異常原因を識別可能にする特徴部分以外の特徴となる部分をいう。例えば、診断対象データが図2に示すような波形データであり、異常原因種別を識別可能にする特徴部分が波形の山の形であるとすると、波形のオフセット値である。 Specifically, the diagnosis unit 21 includes a data processing unit 211 and an abnormality cause identification unit 212. The data processing unit 211 is configured to include a CPU, and when data to be diagnosed is input, generates preprocessed data in which noise is attenuated from the data. That is, the data processing unit 211 acquires the data to be diagnosed from the data acquisition unit 100, and generates preprocessed data by converting the data to be diagnosed based on a noise attenuation model described later. Here, the noise refers to a portion of the diagnosis target data that is a feature other than a feature portion that makes it possible to identify the cause of the abnormality. For example, if the data to be diagnosed is waveform data as shown in FIG. 2 and the characteristic portion that makes it possible to identify the type of the cause of the abnormality is a waveform peak, it is the offset value of the waveform.
 異常原因識別部212は、CPUを含み構成され、前処理済みデータが入力されると診断対象の異常原因種別を出力する診断モデルに基づいて、診断対象の異常原因の種類を識別する。診断モデルは、機械学習モデルであり、例えば、ニューラルネットワーク、決定木、ランダムフォレスト、SVM(support vector machine)などを用いることができる。図6は、異常原因識別部212の機械学習モデルがニューラルネットワークである場合の当該ニューラルネットワークの模式図である。図6に示すように、異常原因識別部212は、データ処理部211から出力された前処理済みデータを入力とし、異常原因種別を出力とする。 The abnormality cause identification unit 212 includes a CPU, and identifies the type of abnormality cause to be diagnosed based on a diagnostic model that outputs the type of abnormality cause to be diagnosed when preprocessed data is input. The diagnostic model is a machine learning model, for example, a neural network, a decision tree, a random forest, an SVM (support @ vector @ machine), or the like can be used. FIG. 6 is a schematic diagram of the neural network when the machine learning model of the abnormality cause identification unit 212 is a neural network. As illustrated in FIG. 6, the abnormality cause identification unit 212 receives the preprocessed data output from the data processing unit 211 as input and outputs the abnormality cause type.
 学習部22は、CPUを含み構成され、ノイズ減衰部221、ノイズ減衰モデル生成部222、診断モデル学習部223を有する。 The learning unit 22 includes a CPU and includes a noise attenuation unit 221, a noise attenuation model generation unit 222, and a diagnostic model learning unit 223.
 ノイズ減衰部221は、CPUを含み構成され、診断モデルの機械学習のための学習用データからノイズが除去された減衰済みデータを生成する。この学習用データは、学習データ格納部200から取得した学習用データである。ここでいうノイズとは、学習用データのうち、異常原因を識別可能にする特徴部分以外の特徴となる部分をいう。例えば、学習用データが図3に示すような波形データであり、異常原因種別を識別可能にする特徴部分が波形の山の形であるとすると、波形のオフセット値である。 The noise attenuator 221 is configured to include a CPU, and generates attenuated data in which noise has been removed from learning data for machine learning of a diagnostic model. The learning data is learning data acquired from the learning data storage unit 200. Here, the noise refers to a part of the learning data that has a characteristic other than a characteristic part that enables the cause of the abnormality to be identified. For example, if the learning data is waveform data as shown in FIG. 3 and the characteristic portion that makes it possible to identify the cause of the abnormality is a waveform peak, it is an offset value of the waveform.
 より詳細には、ノイズ減衰部221は、入力されたデータからノイズを減衰するノイズ減衰モデルに基づいて減衰済みデータを生成する。このノイズ減衰モデルは、診断モデルを生成するための学習段階のノイズ減衰部221で用いられる他、また診断段階の診断部21でも用いられる。すなわち、データ処理部211は、ノイズ減衰モデルに基づいて、入力された診断対象データからノイズを減衰して前処理済みデータを生成する。 More specifically, the noise attenuator 221 generates attenuated data based on a noise attenuation model that attenuates noise from input data. This noise attenuation model is used not only by the noise attenuation unit 221 in the learning stage for generating a diagnostic model, but also by the diagnostic unit 21 in the diagnostic stage. That is, the data processing unit 211 attenuates noise from the input diagnosis target data and generates preprocessed data based on the noise attenuation model.
 ノイズ減衰モデル生成部222は、CPUを含み構成され、ノイズ減衰部221で用いられるノイズ減衰モデルを生成する。このノイズ減衰モデル生成部222は、データ変換部222a、データ識別部222b、変換モデル学習部222c、識別モデル学習部222dを有する。 The noise attenuation model generation unit 222 includes a CPU and generates a noise attenuation model used in the noise attenuation unit 221. The noise attenuation model generation unit 222 includes a data conversion unit 222a, a data identification unit 222b, a conversion model learning unit 222c, and an identification model learning unit 222d.
 データ変換部222aは、CPUを含み構成され、学習用データを変換する変換モデルに基づいて、学習用データを変換して変換後データを出力する。この学習用データは、学習データ格納部200から取得した学習用データである。変換モデルは、ここではニューラルネットワークである。図4は、データ変換部222aのニューラルネットワークの模式図である。このニューラルネットワークは、例えば、オートエンコーダである。 The data conversion unit 222a is configured to include a CPU, and converts the learning data based on a conversion model for converting the learning data and outputs converted data. The learning data is learning data acquired from the learning data storage unit 200. The transformation model is here a neural network. FIG. 4 is a schematic diagram of a neural network of the data conversion unit 222a. This neural network is, for example, an auto encoder.
 データ識別部222bは、CPUを含み構成され、変換後データが入力されることで学習用データのデータ種別を識別する識別モデルに基づいて、学習用データが模擬データか実データかを示すデータ種別を識別する。識別モデルは、ここではニューラルネットワークである。図5は、データ識別部222bのニューラルネットワークの模式図である。データ識別部222bは、データ変換部222aから変換後データを取得し、このニューラルネットワークにより、変換後データの元となった学習用データが模擬データか実データかを識別する。 The data identification unit 222b includes a CPU, and based on an identification model for identifying the data type of the learning data when the converted data is input, a data type indicating whether the learning data is simulated data or real data. Identify. The identification model is here a neural network. FIG. 5 is a schematic diagram of a neural network of the data identification unit 222b. The data identification unit 222b acquires the converted data from the data conversion unit 222a, and identifies, using this neural network, whether the learning data that is the source of the converted data is simulated data or real data.
 識別モデル学習部222dは、CPUを含み構成され、識別モデルを機械学習により生成する。すなわち、識別モデル学習部222dは、識別モデルが変換後データから学習用データのデータ種別を正しく識別するモデルとなるように識別モデルを生成する。具体的には、データ識別部222bの出力結果と、教師データとなる学習用データのデータ種別との誤差が小さくなるようにデータ識別部222bのモデルを更新することで、識別モデルを生成する。 The identification model learning unit 222d includes a CPU and generates an identification model by machine learning. That is, the identification model learning unit 222d generates the identification model so that the identification model is a model that correctly identifies the data type of the learning data from the converted data. Specifically, an identification model is generated by updating the model of the data identification unit 222b so that the error between the output result of the data identification unit 222b and the data type of the learning data serving as teacher data is reduced.
 変換モデル学習部222cは、CPUを含み構成され、ノイズ減衰モデルを機械学習により生成する。すなわち、データ変換部222aの変換モデルを機械学習により更新することでノイズ減衰モデルを生成する。具体的には、変換モデル学習部222cは、学習用データに類似しているが、データ識別部222bが正しく識別できないように変換後データを出力するノイズ減衰モデルを生成する。より詳細には、変換モデル学習部222cは、変換モデルを、学習用データと変換後データとの誤差、及び、データ識別部222bの出力結果と不正解となるデータ種別との誤差が小さくなるように更新することで、ノイズ減衰モデルを生成する。なお、不正解となるデータ種別とは、データ識別部222bの出力結果と対応する学習用データのデータ種別を反転させたデータ種別である。 The conversion model learning unit 222c includes a CPU and generates a noise attenuation model by machine learning. That is, a noise attenuation model is generated by updating the conversion model of the data conversion unit 222a by machine learning. Specifically, the conversion model learning unit 222c generates a noise attenuation model that is similar to the learning data but outputs the converted data so that the data identification unit 222b cannot correctly identify the data. More specifically, the conversion model learning unit 222c reduces the error between the learning data and the converted data, and the error between the output result of the data identification unit 222b and the incorrect data type. To generate a noise attenuation model. Note that the incorrect data type is a data type obtained by inverting the data type of the learning data corresponding to the output result of the data identification unit 222b.
 診断モデル学習部223は、CPUを含み構成され、診断モデルを機械学習により生成する。すなわち、診断モデル学習部223は、ノイズ減衰部221から出力された減衰済みデータを学習データとし、異常原因種別を教師データとして機械学習モデルにより診断モデルを生成する。教師データとする異常原因種別は、減衰済みデータ(出力)に対応する学習用データ(入力)の異常原因種別である。また、診断モデル学習部223は、一度構築した診断モデルを新たな教師データを用いて更新するようにしても良い。 The diagnostic model learning unit 223 includes a CPU and generates a diagnostic model by machine learning. That is, the diagnostic model learning unit 223 generates a diagnostic model by a machine learning model using the attenuated data output from the noise attenuating unit 221 as learning data and the abnormality cause type as teacher data. The abnormality cause type used as the teacher data is the abnormality cause type of the learning data (input) corresponding to the attenuated data (output). Also, the diagnostic model learning unit 223 may update the diagnostic model once constructed using new teacher data.
 表示制御部23は、CPUを含み構成され、異常原因識別部212(診断モデル)の識別結果を表示部5に表示させる。 The display control unit 23 includes a CPU, and causes the display unit 5 to display the identification result of the abnormality cause identification unit 212 (diagnosis model).
 (詳細構成)
 異常診断システム1の処理をフローチャートに従って詳細に説明する。図7は、異常診断システム1の動作の一例を示す動作フローチャートである。
(Detailed configuration)
The processing of the abnormality diagnosis system 1 will be described in detail with reference to a flowchart. FIG. 7 is an operation flowchart illustrating an example of the operation of the abnormality diagnosis system 1.
 図7に示すように、まず、変換モデル学習部222c、識別モデル学習部222dは、データ変換部222a及びデータ識別部222bの各ニューラルネットワークを学習させる(ステップS01)。 As shown in FIG. 7, first, the conversion model learning unit 222c and the identification model learning unit 222d learn each neural network of the data conversion unit 222a and the data identification unit 222b (step S01).
 すなわち、図8に示すように、データ変換部222aのニューラルネットワークの出力が、データ識別部222bのニューラルネットワークの入力となるようにネットワークを構成する。データ変換部222aは学習データ格納部200より学習用データを取得し、データ変換することで変換後データを出力する。そして、データ識別部222bは、データ変換部222aから変換後データを取得し、データ種別を識別する。識別モデル学習部222dは、データ識別部222bの出力結果と、教師データとして当該出力結果の元となったデータ変換部222aに入力された学習用データのデータ種別とを取得し、誤差逆伝播法を用いてデータ識別部222bのニューラルネットワークの重みを更新するとともに、変換モデル学習部222cは、データ変換部222aから変換後データと、教師データとして学習データ格納部200から学習用データとを取得し、データ識別部222bの出力結果を加味し誤差逆伝播法を用いてデータ変換部222aのニューラルネットワークの重みを更新する。 That is, as shown in FIG. 8, the network is configured such that the output of the neural network of the data conversion unit 222a becomes the input of the neural network of the data identification unit 222b. The data conversion unit 222a acquires learning data from the learning data storage unit 200, and performs data conversion to output converted data. Then, the data identification unit 222b acquires the converted data from the data conversion unit 222a, and identifies the data type. The discrimination model learning unit 222d acquires the output result of the data discrimination unit 222b and the data type of the learning data input to the data conversion unit 222a, which is the source of the output result, as teacher data. Is used to update the weight of the neural network of the data identification unit 222b, and the conversion model learning unit 222c acquires the converted data from the data conversion unit 222a and the learning data from the learning data storage unit 200 as the teacher data. The weight of the neural network of the data conversion unit 222a is updated using the backpropagation method, taking into account the output result of the data identification unit 222b.
 より具体的には、識別モデル学習部222dは、データ識別部222bのニューラルネットワークを、データ変換部222aの出力データを入力変数、模擬データか実データかを示すデータ種別を出力変数とする2クラス分類器として学習させる。例えば、kをデータ種別(0又は1)、tをデータ種別を示す正解ラベルのone-hot表現(すなわち、正解ラベルとなるインデックスだけが1で、その他は0とする)、yd1kをデータ識別部222bによるk番目の出力ノードの出力値としたとき、識別モデル学習部222dは、損失関数として交差エントロピー誤差を示す式(1)を算出し、誤差逆伝播法を用いて、データ識別部222bの出力yd1kを正解ラベルtに近づけるように、データ識別部222bのニューラルネットワークの有する重みを更新することで識別モデルを生成する。
Figure JPOXMLDOC01-appb-M000001
More specifically, the discrimination model learning unit 222d uses the neural network of the data discrimination unit 222b as a two-class using the output data of the data conversion unit 222a as an input variable and a data type indicating whether it is simulated data or real data as an output variable. Train as a classifier. For example, the k data type (0 or 1), one-hot representation of true label indicating a data type and t k (i.e., only the index to be correct label 1, others are set to 0), data y D1k When the output value of the k-th output node is used as the output value of the k-th output node by the identification unit 222b, the identification model learning unit 222d calculates Expression (1) indicating the cross entropy error as a loss function, and uses the error backpropagation method to calculate the data. the output y D1k of 222b as close to the true label t k, generating an identification model by updating the weights included in the neural network of the data identification unit 222b.
Figure JPOXMLDOC01-appb-M000001
 同時に変換モデル学習部222cは、データ変換部222aのニューラルネットワークを、学習データ格納部200から取得した学習データを入力とし、その入力データと類似しているが、そのデータ種別をデータ識別部222bが正しく識別できないように入力データを変換して出力するデータ変換器として学習させることで、ノイズ減衰モデルを生成する。 At the same time, the conversion model learning unit 222c receives the learning data obtained from the learning data storage unit 200 as an input to the neural network of the data conversion unit 222a, and is similar to the input data. A noise attenuation model is generated by learning as a data converter that converts and outputs input data so that it cannot be correctly identified.
 すなわち、変換モデル学習部222cは、データ変換部222aのニューラルネットワークを、オートエンコーダ(Auto Encoder)を基本として構築する。具体的には、lをデータのインデックス、uをl番目の入力データの値、yaelをデータ変換部222aによるl番目データの出力値としたとき、損失関数として式(2)を用いることで、データ変換部222a及びノイズ減衰部221はオートエンコーダとして構築され、入力データと類似した値を出力する。
Figure JPOXMLDOC01-appb-M000002
That is, the conversion model learning unit 222c constructs a neural network of the data conversion unit 222a based on an auto encoder (Auto Encoder). Specifically, the index data of the l, a u l of l-th input data value, when the output value of the l-th data with the y ael to the data conversion section 222a, using the formula (2) as a loss function Thus, the data converter 222a and the noise attenuator 221 are constructed as an auto encoder, and output a value similar to the input data.
Figure JPOXMLDOC01-appb-M000002
 また、データ識別部222bが模擬データか実データか正しく識別できないようなデータを出力させるように、変換モデル学習部222cは、上記オートエンコーダを、データ識別部222bの出力したデータ種別が、正解となる学習用データのデータ種別と反転するように学習させる。つまり、データ識別部222bの出力したデータ種別と、正解となる学習用データのデータ種別を反転させたデータ種別との誤差が改善されるように学習させる。 Further, the conversion model learning unit 222c sets the auto encoder so that the data type output by the data identification unit 222b is correct so that the data identification unit 222b outputs data that cannot be correctly identified as simulated data or real data. The learning is performed so as to be inverted with respect to the data type of the learning data. That is, the learning is performed so that the error between the data type output from the data identification unit 222b and the data type obtained by inverting the data type of the learning data as the correct answer is improved.
 具体的には、変換モデル学習部222cは、損失関数として式(3)に基づいて、式(3)の誤差Eae’が改善されるようにデータ変換部222aの変換モデルを更新することで、入力データ(学習用データ)と類似し、且つ、データ識別部222bが正しく識別できないようなデータを出力するようにさせ、ノイズ減衰モデルを生成する。
Figure JPOXMLDOC01-appb-M000003
Specifically, the conversion model learning unit 222c updates the conversion model of the data conversion unit 222a based on the expression (3) as a loss function so as to improve the error E ae ′ of the expression (3). , And outputs data that is similar to the input data (learning data) and cannot be correctly identified by the data identification unit 222b, thereby generating a noise attenuation model.
Figure JPOXMLDOC01-appb-M000003
 なお、式(3)の学習に関する重みパラメータaは、定数としても良いし、試行錯誤により決定しても良い。また、例えばデータ識別部222bのニューラルネットワークの識別精度が高いときにはデータ変換部222aの出力を大きく変動させるために、データ識別部222bのニューラルネットワークの識別率(正答率)や式(1)などの損失関数を変数とする数式としても良い。 Incidentally, the weighting parameter a 1 of Learning of formula (3) may be a constant, it may be determined by trial and error. Further, for example, when the accuracy of the neural network identification of the data identification unit 222b is high, the output of the data conversion unit 222a is greatly changed. It is good also as a formula which makes a loss function a variable.
 以上のように、学習部22は、データ識別部222bのニューラルネットワークを式(1)の損失関数に基づいて、データ変換部222aのニューラルネットワークを式(3)の損失関数に基づいて、それぞれ誤差逆伝播法を用いて更新する処理を一定回数、又は損失関数値が改善しなくなるまで繰り返し、学習を完了させる。なお、データ変換部222aのニューラルネットワークは、式(3)を用いて学習する前に、式(2)を用いて事前学習しても良い。 As described above, the learning unit 22 sets the neural network of the data identification unit 222b based on the loss function of the equation (1) and the neural network of the data conversion unit 222a based on the loss function of the equation (3). The process of updating using the back propagation method is repeated a fixed number of times or until the loss function value does not improve, thereby completing the learning. Note that the neural network of the data conversion unit 222a may perform pre-learning using Equation (2) before learning using Equation (3).
 次に、診断モデル学習部223は、機械学習モデルを学習させる(ステップS02)。すなわち、異常原因識別部212の機械学習モデルを、ステップS01で学習させたデータ変換部222aの変換後データ(減衰済みデータ)を入力変数、異常原因種別を出力変数とする多クラス分類器として学習させることで、診断モデルを生成する。この学習には、学習データ格納部200の学習データのうち、模擬データのみを用いる。つまり、異常原因識別部212の機械学習モデルへの入力変数は、学習後のデータ変換部222aが学習データ格納部200の模擬データを変換したデータ(減衰済みデータ)である。また、模擬データのみの学習後、学習データ格納部200の学習データのうち、実データを用いて正しく識別できることを確認する。 Next, the diagnostic model learning unit 223 makes the machine learning model learn (step S02). That is, the machine learning model of the abnormality cause identification unit 212 is learned as a multi-class classifier using the converted data (attenuated data) of the data conversion unit 222a trained in step S01 as an input variable and the abnormality cause type as an output variable. By doing so, a diagnostic model is generated. For this learning, only the simulation data among the learning data in the learning data storage unit 200 is used. That is, the input variable to the machine learning model of the abnormality cause identification unit 212 is data (attenuated data) obtained by converting the simulation data of the learning data storage unit 200 by the learned data conversion unit 222a. After learning only the simulation data, it is confirmed that the learning data in the learning data storage unit 200 can be correctly identified using actual data.
 機械学習モデルとしてニューラルネットワーク用いる場合、mを異常原因種別、vを異常原因種別を示す正解ラベルのone-hot表現(正解ラベルとなるインデックスだけが1で、その他は0とする)、yd2mを異常原因識別部212によるm番目の出力ノードの出力値としたとき、診断モデル学習部223は、損失関数として交差エントロピー誤差を示す式(4)を算出し、誤差逆伝播法を用いて、異常原因識別部212の出力yd2mを正解ラベルvに近づけるように、ニューラルネットワークが有する重みを更新する。診断モデル学習部223は、この更新を一定回数、又は損失関数値が改善しなくなるまで繰り返し、学習を完了させる。これにより診断モデルが生成される。
Figure JPOXMLDOC01-appb-M000004
When used neural network as a machine learning model, m the abnormality cause type, one-hot representation of true label indicating the abnormality cause type of v m (only the index which is a true label is 1 and the other is a 0), y d2m Is the output value of the m-th output node by the abnormality cause identification unit 212, the diagnostic model learning unit 223 calculates Expression (4) indicating the cross entropy error as a loss function, and uses the error backpropagation method. the output y d2m of abnormality cause identifying unit 212 so as to approach the true label v m, updates the weight with the neural network. The diagnostic model learning unit 223 repeats this update a fixed number of times or until the loss function value does not improve, thereby completing the learning. Thereby, a diagnostic model is generated.
Figure JPOXMLDOC01-appb-M000004
 その後、データ処理部211及び異常原因識別部212により、診断対象データを診断する(ステップS03)。すなわち、データ処理部211は、データ取得部100から診断対象データを取得し、変換モデル学習部222cにより生成されたノイズ減衰モデルによって、取得したデータを変換し前処理済みデータとして異常原因識別部212に出力する。異常原因識別部212は、データ処理部211から前処理済みデータを取得し、異常原因種別を出力する。 Then, the data to be diagnosed is diagnosed by the data processing unit 211 and the abnormality cause identification unit 212 (step S03). That is, the data processing unit 211 acquires the diagnosis target data from the data acquisition unit 100, converts the acquired data by the noise attenuation model generated by the conversion model learning unit 222c, and converts the acquired data as preprocessed data into the abnormality cause identification unit 212. Output to The abnormal cause identification unit 212 acquires the preprocessed data from the data processing unit 211, and outputs an abnormal cause type.
 表示制御部23は、異常原因識別部212が出力した異常原因種別を取得し、当該異常原因種別を診断結果として、図9に示すように表示部5に表示させる(ステップS04)。 (5) The display control unit 23 acquires the abnormality cause type output from the abnormality cause identification unit 212 and causes the display unit 5 to display the abnormality cause type as a diagnosis result as shown in FIG. 9 (step S04).
 (作用・効果)
 (1)本実施形態の異常診断システム1は、診断対象の異常原因を診断する異常診断システムであって、モデルに基づいて診断対象の異常原因の種類を識別する診断部21と、モデルを機械学習により生成する学習部22と、を備え、診断部21は、診断対象から出力されたデータが入力されると、当該データから異常原因の種類を識別可能にする特徴部分以外の特徴部分であるノイズが減衰された前処理済みデータを生成するデータ処理部211と、前処理済みデータが入力されると診断対象の異常原因種別を出力する診断モデルに基づいて、診断対象の異常原因の種類を識別する異常原因識別部212と、を有し、診断モデルが機械学習モデルであり、学習部22は、診断モデルを機械学習により生成する診断モデル学習部223と、診断モデルの機械学習のための学習用データから上記ノイズが除去された減衰済みデータを生成するノイズ減衰部221と、を有し、学習用データは、診断対象の異常を模擬した模擬データ又は診断対象の異常を示す実データであり、診断モデル学習部223は、減衰済みデータを学習データとし、異常原因種別を教師データとして機械学習により診断モデルを生成するようにした。
(Action / Effect)
(1) The abnormality diagnosis system 1 of the present embodiment is an abnormality diagnosis system for diagnosing an abnormality cause of a diagnosis target. The diagnosis unit 21 for identifying a type of the abnormality cause of the diagnosis target based on a model, and a machine And a learning unit 22 that is generated by learning. The diagnostic unit 21 is a characteristic part other than the characteristic part that enables identification of the type of the cause of the abnormality from the data when the data output from the diagnosis target is input. Based on a data processing unit 211 that generates pre-processed data in which noise has been attenuated and a diagnostic model that outputs the type of an abnormal cause of the diagnostic target when the pre-processed data is input, the type of the abnormal cause of the diagnostic target is determined. The diagnostic model is a machine learning model. The learning unit 22 includes a diagnostic model learning unit 223 that generates a diagnostic model by machine learning. A noise attenuator 221 that generates attenuated data from which the noise has been removed from learning data for machine learning of the model, wherein the learning data is simulation data simulating an abnormality of a diagnosis target or a diagnosis target. The diagnostic model learning unit 223 generates the diagnostic model by machine learning using the attenuated data as learning data and the abnormality cause type as teacher data.
 これにより、ノイズ減衰部221によって学習用データから、異常原因の種類を識別可能にする特徴部分以外の特徴部分であるノイズを減衰した減衰済みデータを入力として、診断モデルを生成するようにしたので、診断対象の異常原因種別を精度良く診断することができる。すなわち、模擬データ、実データには、異常原因種別を識別可能にする特徴部分と、当該特徴部分以外の特徴となるノイズ部分とが含まれることから、当該ノイズ部分をノイズ減衰部221によって減衰することにより、診断モデル学習部223によって機械学習モデルが、異常原因を識別可能にする模擬データ、実データの特徴部分を学習し、診断モデルを生成することができる。そして、診断モデルを用いて異常原因種別を識別する際には、データ処理部211により診断対象データから異常原因を識別可能にする特徴分以外の特徴となるノイズ部分を減衰することで、異常原因種別を識別可能にする特徴部分が残され、異常原因識別部212によって診断し易い形になっている。その結果、診断対象の異常原因種別を精度良く診断することができる。 Thus, the diagnostic model is generated by using the noise attenuating unit 221 as input, attenuated data obtained by attenuating noise, which is a characteristic part other than the characteristic part that enables the type of the cause of the abnormality to be identified from the learning data. In addition, the type of abnormality cause to be diagnosed can be accurately diagnosed. That is, since the simulation data and the actual data include a characteristic portion that allows the type of abnormality to be identified and a noise portion that is a characteristic other than the characteristic portion, the noise portion is attenuated by the noise attenuator 221. Thus, the diagnostic model learning unit 223 allows the machine learning model to learn characteristic parts of the simulated data and the actual data that can identify the cause of the abnormality, and generate a diagnostic model. When identifying the cause of the abnormality using the diagnosis model, the data processing unit 211 attenuates a noise portion that is a feature other than a feature that allows the cause of the abnormality to be identified from the data to be diagnosed. A characteristic portion that makes the type identifiable is left, and is easily diagnosed by the abnormality cause identification unit 212. As a result, it is possible to accurately diagnose the type of abnormality cause to be diagnosed.
 (2)ノイズ減衰部221は、入力されたデータからノイズを除去するノイズ減衰モデルに基づいて減衰済みデータを生成し、学習部22は、ノイズ減衰モデルを生成するノイズ減衰モデル生成部222を有するようにした。そして、ノイズ減衰モデル生成部222は、学習用データを変換する変換モデルに基づいて、学習用データを変換して変換後データを出力するデータ変換部222aと、変換後データが入力されることで学習用データのデータ種別を識別する識別モデルに基づいて、学習用データが模擬データか実データかを示すデータ種別を識別するデータ識別部222bと、変換モデルを機械学習により更新することで、学習用データが入力されると減衰済みデータを出力するノイズ減衰モデルを生成する変換モデル学習部222cと、識別モデルを機械学習により更新する識別モデル学習部222dと、を有し、識別モデル及び変換モデルは、ニューラルネットワークであり、識別モデル学習部222dは、識別モデルが変換後データから学習用データのデータ種別を正しく識別するモデルとなるように識別モデルを生成し、変換モデル学習部222cは、変換モデルを、学習用データに類似しているが、データ識別部222bが正しく識別できないように変換後データを出力するよう更新することにより、ノイズ減衰モデルを生成し、データ処理部211は、変換モデル学習部222cにより生成されたノイズ減衰モデルに基づいて、診断対象から出力されたデータから前処理済みデータを生成するようにした。 (2) The noise attenuation unit 221 generates attenuated data based on a noise attenuation model that removes noise from input data, and the learning unit 22 includes a noise attenuation model generation unit 222 that generates a noise attenuation model. I did it. Then, based on the conversion model that converts the learning data, the noise attenuation model generation unit 222 converts the learning data and outputs the converted data. The data conversion unit 222a receives the converted data. Based on an identification model that identifies the data type of the learning data, a data identification unit 222b that identifies a data type indicating whether the learning data is simulated data or real data, and a conversion model that is updated by machine learning to perform learning. Model learning unit 222c that generates a noise attenuation model that outputs attenuated data when input data is input, and an identification model learning unit 222d that updates an identification model by machine learning. Is a neural network, and the discrimination model learning unit 222d converts the discrimination model from the converted data to the learning data. The conversion model learning unit 222c generates an identification model so as to be a model that correctly identifies the data type. The conversion model learning unit 222c converts the conversion model into a model similar to the learning data, but converts the conversion model so that the data identification unit 222b cannot correctly identify it. By updating the data to be output, a noise attenuation model is generated, and the data processing unit 211 performs preprocessing on the data output from the diagnosis target based on the noise attenuation model generated by the conversion model learning unit 222c. Generated data.
 これにより、変換モデルを、学習用データに類似しているが、データ識別部222bが正しく識別できないように変換後データを出力するよう更新してノイズ減衰モデルを生成することで、ノイズ減衰部221により、学習用データから模擬データ又は実データの特有のノイズが減衰又は除去され、データ識別部222bにより模擬データとも実データとも識別できないような中間的データに変換される。例えば、模擬データ、実データにそれぞれ特有のノイズが含まれていると、データ識別部222dは、上記の例で言えばオフセット等、当該ノイズ部分に着目することでデータ種別を識別し得るが、データ識別部222bにより模擬データとも実データとも識別できないような変換後データ(例えば、波形は同じでオフセット値が模擬データとも実データとも異なるデータ)を出力するよう変換モデルを更新させてノイズ減衰モデルを生成することで、模擬データ、実データに特有のノイズを減衰又は除去した中間的データを得ることができる。つまり、本来の異常原因種別を識別するのに必要な特徴部分が中間的データに残されることになる。 Accordingly, the noise attenuation unit 221 is generated by updating the conversion model to be similar to the learning data but outputting the converted data so that the data identification unit 222b cannot correctly identify the noise attenuation model. Thus, the specific noise of the simulation data or the actual data is attenuated or removed from the learning data, and the data is converted into intermediate data that cannot be identified as the simulation data or the actual data by the data identification unit 222b. For example, if the simulation data and the actual data each include a specific noise, the data identification unit 222d can identify the data type by focusing on the noise portion such as an offset in the above example. The conversion model is updated so as to output converted data (for example, data having the same waveform but an offset value different from both the simulation data and the actual data) that cannot be identified as the simulation data or the actual data by the data identification unit 222b, and the noise attenuation model Is generated, intermediate data obtained by attenuating or removing noise peculiar to the simulation data and the real data can be obtained. That is, the characteristic part necessary for identifying the original abnormality cause type is left in the intermediate data.
 このような中間的データを用いて診断モデル学習部223が機械学習モデルを学習させて診断モデルを生成するので、元の学習用データが模擬データでも実データでも精度良く異常原因種別を識別することができるとともに、新たな診断対象データに対しても精度良く異常原因種別を識別することができる。 Since the diagnostic model learning unit 223 learns the machine learning model and generates a diagnostic model using such intermediate data, it is possible to accurately identify the cause of the abnormality regardless of whether the original learning data is simulated data or real data. In addition to this, it is possible to identify the cause of the abnormality with high accuracy even for new diagnosis target data.
 (3)変換モデル学習部222cは、当該変換モデルを、データ識別部222bの出力した模擬データ又は実データのデータ種別がデータ変換部222aに入力された入力データのデータ種別と反転するように更新するようにした。 (3) The conversion model learning unit 222c updates the conversion model such that the data type of the simulated data or the actual data output from the data identification unit 222b is inverted from the data type of the input data input to the data conversion unit 222a. I did it.
 これにより、実データとも模擬データとも識別できないような中間的データを生成することができる。すなわち、変換モデル学習部222cが、変換モデルに対し、入力データと出力データとの誤差を改善するように学習させるだけであれば(式(2)又は式(3)の最右辺第1項に対応)、出力データが入力データに近づくように学習されるだけであるが、本実施形態では更に、変換モデル学習部222cにより変換モデルの出力データのデータ種別が、データ変換部222aに入力された入力データのデータ種別と反転したデータ種別になるように学習させるようにしたので(式(3)の最右辺の第2項に対応)、ノイズ減衰モデルの出力したデータがデータ識別部222bによって正しく識別できないデータとすることができる。これにより、実データとも模擬データとも識別できないような中間的データを生成することができる。 This makes it possible to generate intermediate data that cannot be distinguished from real data and simulation data. That is, if the conversion model learning unit 222c only trains the conversion model to improve the error between the input data and the output data (the first term on the rightmost side of Expression (2) or Expression (3)) Although only the output data is learned so as to approach the input data, in the present embodiment, the data type of the output data of the conversion model is further input to the data conversion unit 222a by the conversion model learning unit 222c. Since the learning is performed so that the data type becomes the data type inverted from the data type of the input data (corresponding to the second term on the rightmost side of Expression (3)), the data output from the noise attenuation model is correctly recognized by the data identification unit 222b. It can be unidentifiable data. This makes it possible to generate intermediate data that cannot be distinguished from real data and simulation data.
 (4)異常原因識別部212の識別結果を表示部に表示させる表示制御部23を備えるようにした。これにより、ユーザが表示部5に表示された異常原因の識別結果を得ることができ、診断対象の異常に対処することができる。 (4) The display control unit 23 for displaying the identification result of the abnormality cause identification unit 212 on the display unit is provided. As a result, the user can obtain a result of identifying the cause of the abnormality displayed on the display unit 5, and can cope with the abnormality to be diagnosed.
 (第2の実施形態)
 (構成)
 第2の実施形態を、図10を用いて説明する。第2の実施形態は、第1の実施形態の基本構成と同じである。以下では、第1の実施形態と異なる点のみを説明し、第1の実施形態と同じ部分については同じ符号を付して詳細な説明は省略する。
(Second embodiment)
(Constitution)
A second embodiment will be described with reference to FIG. The second embodiment is the same as the basic configuration of the first embodiment. Hereinafter, only different points from the first embodiment will be described, and the same parts as those in the first embodiment will be denoted by the same reference numerals and detailed description thereof will be omitted.
 図10は、第2の実施形態に係る異常診断システムの構成を示す図である。本実施形態では、入力部4は、学習部22の学習に関するパラメータのユーザによる入力を受け付ける。この学習に関するパラメータは、データ変換部222a及びデータ識別部222bのニューラルネットワーク、並びに、異常原因識別部212の機械学習モデルのネットワーク構成、学習回数、式(3)に含まれる重みパラメータaなどである。この学習に関するパラメータは、学習部22での学習に用いられる。 FIG. 10 is a diagram illustrating the configuration of the abnormality diagnosis system according to the second embodiment. In the present embodiment, the input unit 4 receives a user's input of parameters related to learning by the learning unit 22. Parameters relating to the learning, the data conversion section 222a and a data discrimination unit 222b of the neural network, and the network structure of the machine learning model abnormality cause identifying unit 212, the number of times of learning, the formula (3) in the weight parameter a 1, etc. included is there. The parameters related to the learning are used for learning in the learning unit 22.
 表示制御部23は、図11に示すように、パラメータ再設定ボタンPRを表示部5に表示させる。パラメータ再設定ボタンPRは、パラメータを再調整して学習部22による学習を実行させるボタンである。 The display control unit 23 causes the display unit 5 to display the parameter reset button PR as shown in FIG. The parameter reset button PR is a button for adjusting parameters and causing the learning unit 22 to execute learning.
 また、表示制御部23は、図11に示すように、学習部22によるデータ変換部222a、データ識別部222bのニューラルネットワーク、異常原因識別部212の機械学習モデルの学習によってノイズ減衰モデルと診断モデルの生成後、表示部5に、学習用データの異常原因種別と、学習用データに対する診断モデルによる正答率、ノイズ減衰部221によるノイズ減衰前後のデータと当該データのデータ番号、又は診断モデルによる診断結果を表示させる。この正答率は、(診断モデルが学習用データが示す異常原因種別と一致する数/学習用データの数)×100で算出することができる。ここでは、処理部2がCPUを含み構成された正答率算出部24を有し、正答率算出部24が正答率を算出する。なお、この正答率は、本明細書又は図面において故障原因識別率とも称する。 Further, as shown in FIG. 11, the display control unit 23 learns the data conversion unit 222a, the neural network of the data identification unit 222b, and the learning of the machine learning model of the abnormality cause identification unit 212 by the learning unit 22, and the noise attenuation model and the diagnostic model. Is generated, the display unit 5 displays on the display unit 5 the type of abnormality cause of the learning data, the correct answer rate of the learning data based on the diagnostic model, the data before and after noise attenuation by the noise attenuator 221 and the data number of the data, or the diagnosis based on the diagnostic model Display the result. This correct answer rate can be calculated by (number of diagnostic models matching the abnormality cause type indicated by the learning data / number of learning data) × 100. Here, the processing unit 2 has a correct answer rate calculating unit 24 including a CPU, and the correct answer rate calculating unit 24 calculates the correct answer rate. The correct answer rate is also referred to as a failure cause identification rate in the present specification or the drawings.
 また、診断モデルによる診断結果は、本明細書又は図面において判定結果とも称する。また、ノイズ減衰済みデータは、変換モデル学習部222cによる学習後のデータ変換部222aの変換後データと等しく、また、ノイズ減衰前のデータは、変換モデル学習部222cによる学習後のデータ変換部222aの変換前のデータ、すなわち学習用データと等しい。そのため、ノイズ減衰部221によるノイズ減衰前後のデータは、本明細書又は図面において、学習後のデータ変換部222aの変換前後のデータ(以下、単に「変換前後のデータ」ともいう。)とも称する。 診断 A diagnosis result by the diagnosis model is also referred to as a determination result in the present specification or the drawings. The noise-attenuated data is equal to the converted data of the data conversion unit 222a after learning by the conversion model learning unit 222c, and the data before noise attenuation is the data conversion unit 222a after learning by the conversion model learning unit 222c. Is equal to the data before conversion, that is, the learning data. Therefore, the data before and after the noise attenuation by the noise attenuator 221 is also referred to as data before and after the conversion by the data converter 222a after learning (hereinafter, also simply referred to as “data before and after the conversion”) in this specification or the drawings.
 上記表示をさせるべく、表示制御部23は、学習データ格納部200から学習用データを、学習後のデータ変換部222aから変換後のデータを、学習後の異常原因識別部212からその識別結果である異常原因種別をそれぞれ取得する。 In order to perform the display, the display control unit 23 uses the learning data from the learning data storage unit 200, the data after conversion from the data conversion unit 222a after learning, and the identification result from the abnormality cause identification unit 212 after learning. Acquires each type of abnormality cause.
 また、表示制御部23は、図11に示すように、左右ボタンLR、異常診断開始ボタンSを表示部5に表示させる。左右ボタンLRは、変換前後のデータの表示を切り替える。すなわち、左側のボタンを1回押下すると、データ番号が1つ小さい変換前後のデータを表示させ、右側のボタンを1回押下すると、データ番号が1つ大きい変換前後のデータを表示させる。異常診断開始ボタンSは、異常原因種別の識別を開始するためのボタンである。なお、異常診断開始ボタンSは、異常が故障である場合、故障診断開始ボタンSである。 (4) The display control unit 23 causes the display unit 5 to display the left and right buttons LR and the abnormality diagnosis start button S as shown in FIG. The left and right buttons LR switch the display of data before and after conversion. That is, when the left button is pressed once, the data before and after the conversion with the data number smaller by one is displayed, and when the right button is pressed once, the data before and after the conversion with the data number larger by one is displayed. The abnormality diagnosis start button S is a button for starting identification of an abnormality cause type. The abnormality diagnosis start button S is a failure diagnosis start button S when the abnormality is a failure.
 表示制御部23による表示部5への各表示は、診断対象データに対する異常原因を診断する前に行う。 (4) Each display on the display unit 5 by the display control unit 23 is performed before diagnosing the cause of the abnormality with respect to the diagnosis target data.
 図12は、第2の実施形態に係る異常診断システム1の動作の一例を示す動作フローチャートである。なお、第1の実施形態の動作と同じ動作については、適宜説明を省略する。 FIG. 12 is an operation flowchart illustrating an example of the operation of the abnormality diagnosis system 1 according to the second embodiment. Note that the description of the same operation as that of the first embodiment will be appropriately omitted.
 図12に示すように、まず、入力部4による学習に関するパラメータの入力を受け付け、パラメータを設定する(ステップS11)。その後、学習部22により、データ変換部222a及びデータ識別部222bのニューラルネットワークを学習させ(ステップS01)、異常原因識別部212の機械学習モデルの学習をさせる(ステップS02)。 As shown in FIG. 12, first, input of a parameter related to learning by the input unit 4 is received, and the parameter is set (step S11). Thereafter, the learning unit 22 causes the neural network of the data conversion unit 222a and the data identification unit 222b to learn (step S01), and causes the abnormality cause identification unit 212 to learn the machine learning model (step S02).
 各ニューラルネットワーク及び機械学習モデルの学習後、表示制御部23により、表示部5に、確認画面を表示させる(ステップS12)。すなわち、正答率、変換前後のデータ及びそのデータ番号、学習用データの異常原因種別、異常原因識別部212の識別結果を表示させる。ユーザが左右ボタンLRを押下する等して表示部5の表示を確認し、パラメータを再設定する場合は(ステップS13のYES)、ユーザのパラメータ再設定ボタンPRの押下によりステップS11に戻り、パラメータの再設定が不要であれば(ステップS13のNO)、ユーザの異常診断開始ボタンSの押下により、診断対象データを診断し(ステップS03)、表示制御部23によって診断結果を表示部5に表示する(ステップS04)。 (4) After learning of each neural network and the machine learning model, the display control unit 23 displays a confirmation screen on the display unit 5 (step S12). That is, the correct answer rate, the data before and after the conversion and the data numbers thereof, the abnormality cause type of the learning data, and the identification result of the abnormality cause identification unit 212 are displayed. When the user confirms the display on the display unit 5 by pressing the left and right buttons LR or the like and resets the parameters (YES in step S13), the user returns to step S11 by pressing the parameter reset button PR, and returns to step S11. If the resetting is not necessary (NO in step S13), the diagnosis target data is diagnosed by the user pressing the abnormality diagnosis start button S (step S03), and the diagnosis result is displayed on the display unit 5 by the display control unit 23. (Step S04).
 (作用・効果)
 本実施形態では、表示制御部23は、学習部22によるデータ変換部222a及び異常原因識別部212の学習後、診断対象の異常原因を診断する前に、表示部5に、学習用データに対する診断モデルの正答率、又は、データ変換部222aによる変換前後のデータを表示させるようにした。
(Action / Effect)
In the present embodiment, after the learning of the data conversion unit 222a and the abnormality cause identification unit 212 by the learning unit 22, the display control unit 23 displays a diagnosis on the learning data on the display unit 5 before diagnosing the abnormality cause to be diagnosed. The correct answer rate of the model or the data before and after the conversion by the data conversion unit 222a is displayed.
 これにより、異常原因診断前に、ノイズ減衰モデルと診断モデルの妥当性をユーザが確認することができる。例えば、図11の例で説明すると、波形の学習データにおいて、山の部分が異常を示す特徴部分であり、変換前の波形データが全体的に信号強度が低下するように下側に偏っているノイズが含まれているとすると、変換後の波形データは、全体的に信号強度が増大してノイズが減衰し、特徴部分の山の部分が残されており、ノイズ減衰モデルの処理が妥当な処理となっていることが確認できる。 This allows the user to confirm the validity of the noise attenuation model and the diagnostic model before diagnosing the cause of the abnormality. For example, referring to the example of FIG. 11, in the learning data of the waveform, a peak portion is a characteristic portion indicating an abnormality, and the waveform data before conversion is biased downward so that the signal intensity is reduced as a whole. Assuming that noise is included, the converted waveform data has the signal intensity increased as a whole, the noise is attenuated, and the peak portion of the characteristic portion remains, and the processing of the noise attenuation model is appropriate. It can be confirmed that the process has been performed.
 変形例1として、図13に示すように、表示制御部23は、正答率と、データ番号及び変換前後のデータ、学習用データの異常原因種別、異常原因の識別結果を含む個別のデータ情報とを、模擬データ、実データ毎に並べて表示部5に表示させるようにしても良い。これにより、ユーザは、模擬データを用いた学習の妥当性と、実データを用いた学習の妥当性を比較しながら診断モデルの妥当性を確認することができる。 As a first modification, as illustrated in FIG. 13, the display control unit 23 includes a correct answer rate, individual data information including a data number, data before and after conversion, an abnormal cause type of learning data, and an abnormal cause identification result. May be displayed on the display unit 5 side by side for the simulation data and the actual data. Thereby, the user can confirm the validity of the diagnostic model while comparing the validity of the learning using the simulated data with the validity of the learning using the actual data.
 変形例2として、図14に示すように、表示制御部23は、正答率と上記個別のデータ情報とを模擬データ、実データ毎、且つ異常原因種別毎に並べて表示部5に表示させるようにしても良い。これにより、ユーザは、機械学習モデルの妥当性について、異常原因種別毎に模擬データを用いた学習の妥当性、実データを用いた学習の妥当性を比較して確認することができ、より信頼度の高い異常診断を行うことができる。 As a second modification, as shown in FIG. 14, the display control unit 23 causes the display unit 5 to display the correct answer rate and the individual data information side by side with the simulation data, the actual data, and the abnormality cause type. May be. As a result, the user can confirm the validity of the machine learning model by comparing the validity of the learning using the simulated data and the validity of the learning using the actual data for each abnormality cause type. A high degree of abnormality diagnosis can be performed.
 変形例3として、図15に示すように、表示制御部23は、ステップS04において、表示部5に、異常原因識別部212の識別結果と、データ変換部222aによる変換前後のデータとを表示させるようにしても良い。これにより、データ変換部222aによってどのような変換がなされているかを確認することができる。すなわち、異常原因識別部212の学習用データ及び学習用データの元となるデータを確認できるので、ユーザによって診断結果に対する信頼性を検証することができる。 As a third modification, as shown in FIG. 15, the display control unit 23 causes the display unit 5 to display the identification result of the abnormality cause identification unit 212 and the data before and after the conversion by the data conversion unit 222a in step S04. You may do it. Thereby, it is possible to confirm what kind of conversion has been performed by the data conversion unit 222a. That is, since the learning data of the abnormality cause identification unit 212 and the data on which the learning data is based can be confirmed, the reliability of the diagnosis result can be verified by the user.
 (第3の実施形態)
 (構成)
 第3の実施形態を説明する。第3の実施形態は、第1の実施形態又は第2の実施形態の基本構成と同じである。以下では、第2の実施形態と異なる点のみを説明し、第2の実施形態と同じ部分については同じ符号を付して詳細な説明は省略する。
(Third embodiment)
(Constitution)
A third embodiment will be described. The third embodiment is the same as the basic configuration of the first embodiment or the second embodiment. Hereinafter, only differences from the second embodiment will be described, and the same parts as those in the second embodiment will be denoted by the same reference numerals and detailed description thereof will be omitted.
 本実施形態の異常原因識別部212の機械学習モデルは、ニューラルネットワークである。学習部22は、データ変換部222a、データ識別部222b、異常原因識別部212のニューラルネットワークを同時に学習させる。図16に示すように、学習部22は、データ変換部222aのニューラルネットワークの出力が、データ識別部222b及び異常原因識別部212の入力となるようにネットワークを構成することで、各ニューラルネットワークの重みを同時に更新する。 機械 The machine learning model of the abnormality cause identification unit 212 of the present embodiment is a neural network. The learning unit 22 simultaneously learns the neural networks of the data conversion unit 222a, the data identification unit 222b, and the abnormality cause identification unit 212. As illustrated in FIG. 16, the learning unit 22 configures the network such that an output of the neural network of the data conversion unit 222a is an input of the data identification unit 222b and the abnormality cause identification unit 212. Update weights simultaneously.
 具体的には、データ変換部222aが学習データ格納部200から学習用データを取得し、データ変換を行い、データ識別部222b及び異常原因識別部212に変換後のデータを出力する。そして、データ識別部222bが変換後のデータのデータ種別を識別するとともに、異常原因識別部212が、変換後のデータから異常原因種別を識別する。学習部22は、データ識別部222bの識別結果、及び異常原因識別部212の識別結果を受け取り、誤差逆伝播法を用いて、各部211、212、23のニューラルネットワークの重みを更新する。 Specifically, the data conversion unit 222a acquires learning data from the learning data storage unit 200, performs data conversion, and outputs the converted data to the data identification unit 222b and the abnormality cause identification unit 212. Then, the data identification unit 222b identifies the data type of the converted data, and the abnormality cause identification unit 212 identifies the abnormality cause type from the converted data. The learning unit 22 receives the identification result of the data identification unit 222b and the identification result of the abnormality cause identification unit 212, and updates the weight of the neural network of each of the units 211, 212, and 23 using the backpropagation method.
 すなわち、診断モデル学習部223は、異常原因識別部212のニューラルネットワークを、異常原因識別部212の識別結果である異常原因種別と、その識別結果の元となった学習用データの異常原因種別との誤差が改善されるように、誤差逆伝播法を用いて更新させるとともに、識別モデル学習部222dは、データ識別部222bのニューラルネットワークを、データ識別部222bの識別結果であるデータ種別と、その元となった学習用データのデータ種別との誤差が改善されるように、誤差逆伝播法を用いて更新させる。 In other words, the diagnostic model learning unit 223 sets the neural network of the abnormal cause identifying unit 212 to the abnormal cause type that is the identification result of the abnormal cause identifying unit 212 and the abnormal cause type of the learning data from which the identification result is based. In order to improve the error, the error is back-propagated, and the identification model learning unit 222d converts the neural network of the data identification unit 222b into a data type that is the identification result of the data identification unit 222b, The data is updated using the backpropagation method so that the error between the original learning data and the data type is improved.
 より詳細には、診断モデル学習部223は、損失関数として式(4)を用いて、異常原因識別部212のニューラルネットワークを学習させ、識別モデル学習部222dは、損失関数として式(1)を用いて、データ識別部222bのニューラルネットワークを学習させる。異常原因識別部212の学習には、学習データ格納部200の学習データのうち、模擬データのみで学習を行わせることができる。 More specifically, the diagnostic model learning unit 223 trains the neural network of the abnormality cause identification unit 212 using Expression (4) as a loss function, and the identification model learning unit 222d calculates Expression (1) as a loss function. To learn the neural network of the data identification unit 222b. The learning of the abnormality cause identification unit 212 can be performed using only the simulation data among the learning data of the learning data storage unit 200.
 また、変換モデル学習部222cは、データ変換部222aのニューラルネットワークを、入力データに類似しているが、データ識別部222bが正しく識別できず、かつ、異常原因識別部212が正しく識別できるデータをデータ変換部222aが出力するように学習させる。つまり、変換モデル学習部222cは、データ変換部222aのニューラルネットワークを、学習用データとデータ変換部222aの変換後のデータとの誤差、データ識別部222bが出力したデータ種別と、正解となる学習用データのデータ種別を反転させたデータ種別との誤差、及び、異常原因識別部212が出力した異常原因種別と、正解となる学習データの異常原因種別との誤差が改善されるように更新させる。 Further, the conversion model learning unit 222c sets the neural network of the data conversion unit 222a to data which is similar to the input data, but which cannot be correctly identified by the data identification unit 222b and which can be identified correctly by the abnormality cause identification unit 212. The data conversion unit 222a is trained to output. In other words, the conversion model learning unit 222c uses the neural network of the data conversion unit 222a to determine the error between the learning data and the data after conversion by the data conversion unit 222a, the data type output by the data identification unit 222b, and the learning that is the correct answer. The error is updated so that the error between the data type obtained by inverting the data type of the use data and the error between the error cause type output from the error cause identification unit 212 and the error cause type of the learning data as the correct answer are improved. .
 より詳細には、変換モデル学習部222cは、損失関数として式(5)に基づいて、誤差逆伝播法を用いて更新する処理を一定回数、又は損失関数値が改善しなくなるまで繰り返し、学習させる。
Figure JPOXMLDOC01-appb-M000005
More specifically, the conversion model learning unit 222c repeats the process of updating using the error back propagation method a fixed number of times, or until the loss function value does not improve, based on Equation (5) as the loss function, and performs learning. .
Figure JPOXMLDOC01-appb-M000005
 なお、式(5)の学習に関する重みパラメータa、aは、定数としても良いし、試行錯誤により決定しても良いし、また、例えば、aについてはデータ識別部222bのニューラルネットワークの識別精度が高いときにはデータ変換部222aの出力を大きく変動させるために、データ識別部222bのニューラルネットワークの識別率(正答率)や式(1)などの損失関数を変数とする数式としても良い。aについては異常原因識別部212のニューラルネットワークの識別精度が低いときにはデータ変換部222aの出力を大きく変動させるために、当該ニューラルネットワークの識別率(正答率)や式(4)などの損失関数を変数に持つ数式としても良い。 Note that the weighting parameters a 1 and a 2 relating to the learning of Expression (5) may be constants or may be determined by trial and error. For example, a 1 of the neural network of the data identification unit 222b may be used for a1. When the identification accuracy is high, in order to greatly change the output of the data conversion unit 222a, an expression using a loss function such as the identification rate (correct answer rate) of the neural network of the data identification unit 222b or equation (1) as a variable may be used. For the varying increase the output of the data converter 222a when the neural network identification accuracy of the abnormality cause identifying unit 212 for a 2 is low, the identification rate of the neural network (percentage of correct answers) and loss function, such as equation (4) May be a mathematical expression having as a variable.
 図17は、第1の実施形態をベースにした本実施形態の異常診断システム1の動作の一例を示す動作フローチャートである。図18は、第2の実施形態をベースにした本実施形態の異常診断システム1の動作の一例を示す動作フローチャートである。なお、第1の実施形態、第2の実施形態の動作と同じ動作については、適宜説明を省略する。 FIG. 17 is an operation flowchart showing an example of the operation of the abnormality diagnosis system 1 of the present embodiment based on the first embodiment. FIG. 18 is an operation flowchart illustrating an example of an operation of the abnormality diagnosis system 1 according to the present embodiment based on the second embodiment. Note that the description of the same operation as that of the first embodiment and the second embodiment will be appropriately omitted.
 本実施形態の動作では、図17及び図18に示すように、図7及び図12のステップS01、S02に代えて、学習部22は、ステップS1aとして、各部222a、222b、212のニューラルネットワークを学習させる。 In the operation of the present embodiment, as shown in FIGS. 17 and 18, instead of steps S01 and S02 of FIGS. 7 and 12, the learning unit 22 executes a neural network of the units 222a, 222b, and 212 as step S1a. Let them learn.
 (作用・効果)
 本実施形態では、変換モデル学習部222cは、変換モデルを、学習用データと変換後データとの誤差、データ識別部222bの出力結果と不正解となるデータ種別との誤差、及び、異常原因識別部212の出力結果と正解となる異常原因種別との誤差が小さくなるように更新することでノイズ減衰モデルを生成するようにした。
(Action / Effect)
In the present embodiment, the conversion model learning unit 222c converts the conversion model into an error between the learning data and the converted data, an error between the output result of the data identification unit 222b and the incorrect data type, and an abnormality cause identification. The noise attenuation model is generated by updating so that the error between the output result of the unit 212 and the correct abnormality cause type becomes small.
 これにより、ノイズ減衰部221の減衰済みデータについて、異常原因の識別に必要な特徴を強調させることができ、同じ学習回数であっても異常原因識別の精度を向上させることができる。また、少ない学習回数で異常原因識別の精度を向上させることができる。 (4) This makes it possible to emphasize features necessary for identifying the cause of the abnormality in the data that has been attenuated by the noise attenuator 221, and to improve the accuracy of identifying the cause of the abnormality even with the same number of learnings. In addition, the accuracy of abnormality cause identification can be improved with a small number of learnings.
 すなわち、図19に示すように、変換モデル学習部222cは、データ変換部222aのニューラルネットワークの学習において、学習用データとデータ変換部222aの変換後のデータとの誤差、データ識別部222bが出力したデータ種別と、正解となる学習データのデータ種別を反転させたデータ種別との誤差だけでなく、異常原因識別部212が出力した異常原因種別と、正解となる学習用データの異常原因種別との誤差をも改善するようにしたので、データ変換部222aのニューラルネットワークが、異常原因識別部212の出力結果が正解となるように学習されるため、異常原因の識別に必要な特徴が強調させたデータをデータ変換部222aが出力できるようになり、結果として、異常原因種別の識別精度の向上又は学習速度の向上を図ることができる。 That is, as shown in FIG. 19, in the learning of the neural network by the data conversion unit 222a, the conversion model learning unit 222c outputs the error between the learning data and the data after the conversion by the data conversion unit 222a, and outputs the data identification unit 222b. Not only the error between the data type obtained and the data type obtained by inverting the data type of the learning data to be the correct answer, but also the error cause type output by the error cause identifying unit 212, and the error cause type of the learning data to be the correct answer Is improved, the neural network of the data conversion unit 222a is trained so that the output result of the abnormality cause identification unit 212 is correct, so that the features necessary for identifying the abnormality cause are emphasized. The converted data can be output by the data conversion unit 222a. It is possible to improve the degree.
 (第4の実施形態)
 (構成)
 第4の実施形態を説明する。第4の実施形態は、第1の実施形態、第2の実施形態又は第3の実施形態の基本構成と同じである。以下では、第3の実施形態と異なる点のみを説明し、第3の実施形態と同じ部分については同じ符号を付して詳細な説明は省略する。
(Fourth embodiment)
(Constitution)
A fourth embodiment will be described. The fourth embodiment is the same as the basic configuration of the first embodiment, the second embodiment, or the third embodiment. Hereinafter, only different points from the third embodiment will be described, and the same portions as those in the third embodiment will be denoted by the same reference numerals and detailed description thereof will be omitted.
 本実施形態の学習部22は、異常原因識別部212の診断モデルを2以上生成する。例えば、第1又は第2の実施形態の診断モデル(以下、第1のモデルともいう。)と、第3の実施形態の診断モデル(以下、第2のモデルともいう。)とをそれぞれの手法によりそれぞれ生成する。 (4) The learning unit 22 according to the present embodiment generates two or more diagnostic models of the abnormality cause identification unit 212. For example, the diagnostic model according to the first or second embodiment (hereinafter, also referred to as a first model) and the diagnostic model according to the third embodiment (hereinafter, also referred to as a second model) are respectively used. Respectively.
 また、正答率算出部24は、第1のモデルによる異常原因識別部212の正答率、第2のモデルによる異常原因識別部212の正答率を算出する。この正答率は、上記の通り、(学習後の異常原因識別部212の識別結果が学習用データが示す異常原因種別と一致する数/学習データの数)×100で算出することができる。 {Circle around (1)} The correct answer rate calculating unit 24 calculates the correct answer rate of the abnormal cause identifying unit 212 based on the first model and the correct answer rate of the abnormal cause identifying unit 212 based on the second model. As described above, this correct answer rate can be calculated by (the number of the identification results of the abnormality cause identification unit 212 after learning that matches the abnormality cause type indicated by the learning data / the number of learning data) × 100.
 異常原因識別部212は、正答率算出部24から各モデルの正答率を受け取り、各モデルの中から診断精度の良いモデルを自身の診断モデルとする。すなわち、正答率が最大となる診断モデルを採用する。 (4) The abnormality cause identification unit 212 receives the correct answer rate of each model from the correct answer rate calculation unit 24, and sets a model having high diagnostic accuracy among the models as its own diagnostic model. That is, a diagnostic model that maximizes the correct answer rate is adopted.
 図20は、第4の実施形態に係る異常診断システム1の動作の一例を示す動作フローチャートである。なお、第1、第2、第3の実施形態の動作と同じ動作については、適宜説明を省略する。 FIG. 20 is an operation flowchart illustrating an example of the operation of the abnormality diagnosis system 1 according to the fourth embodiment. Note that the description of the same operation as that of the first, second, and third embodiments will be appropriately omitted.
 図20に示すように、まず、学習部22は、データ変換部222a、データ識別部222bのニューラルネットワークを学習させ(ステップS01)、異常原因識別部212の機械学習モデルを学習させる(ステップS02)。次に、学習部22は、各部222a、222b、223のニューラルネットワークを学習させる(ステップS1a)。なお、ステップS01、S02とステップS1aとは同時並行しても良い。 As shown in FIG. 20, the learning unit 22 first learns the neural network of the data conversion unit 222a and the data identification unit 222b (step S01), and learns the machine learning model of the abnormality cause identification unit 212 (step S02). . Next, the learning unit 22 causes the neural networks of the units 222a, 222b, and 223 to learn (step S1a). Steps S01 and S02 and step S1a may be performed simultaneously.
 次に、正答率算出部24により、各機械学習モデルによる異常原因識別部212の正答率をそれぞれ算出する(ステップS21)。異常原因識別部212は、正答率算出部24から各診断モデルの正答率を取得し、最大の正答率のモデルを選択し、異常原因種別を識別するための診断モデルとする(ステップS22)。そして、この異常原因識別部212により、診断対象データを診断し(ステップS03)、その診断結果を表示制御部23により表示部5に表示させる(ステップS04)。 Next, the correct answer rate calculation unit 24 calculates the correct answer rate of the abnormality cause identification unit 212 based on each machine learning model (step S21). The abnormal cause identification unit 212 acquires the correct answer rate of each diagnostic model from the correct answer rate calculation unit 24, selects the model with the highest correct answer rate, and sets the model as the diagnostic model for identifying the type of the abnormal cause (step S22). Then, the diagnosis target data is diagnosed by the abnormality cause identification unit 212 (step S03), and the diagnosis result is displayed on the display unit 5 by the display control unit 23 (step S04).
 (作用・効果)
 本実施形態では、診断モデル学習部223は、診断モデルを2以上生成し、異常原因識別部212の診断モデルは、生成された2以上の診断モデルの中から診断精度の良いモデルとした。
(Action / Effect)
In the present embodiment, the diagnostic model learning unit 223 generates two or more diagnostic models, and the diagnostic model of the abnormality cause identifying unit 212 is a model with high diagnostic accuracy from the two or more generated diagnostic models.
 これにより、診断精度を向上させることができる。異常原因識別部212の各診断モデルモデルは、いずれの識別精度が優れているかは、学習回数などの各種パラメータに依存し、実際に検証しなければ分からず、ここでは、正答率算出部24及び異常原因識別部212により検証するようにしたので、診断精度を向上させることができる。 Thereby, the diagnostic accuracy can be improved. Which diagnostic model of the abnormality cause identification unit 212 has the higher identification accuracy depends on various parameters such as the number of times of learning, and cannot be known unless actually verified. Since the verification is performed by the abnormality cause identification unit 212, the accuracy of diagnosis can be improved.
 (第5の実施形態)
 (構成)
 第5の実施形態を説明する。第5の実施形態は、第4の実施形態の基本構成と同じである。以下では、第4の実施形態と異なる点のみを説明し、第4の実施形態と同じ部分については同じ符号を付して詳細な説明は省略する。
(Fifth embodiment)
(Constitution)
A fifth embodiment will be described. The fifth embodiment is the same as the basic configuration of the fourth embodiment. Hereinafter, only different points from the fourth embodiment will be described, and the same portions as those in the fourth embodiment will be denoted by the same reference numerals and detailed description thereof will be omitted.
 本実施形態では、図21に示すように、表示制御部23は、診断モデル学習部223で生成された診断モデルに対し、当該診断モデルの正答率と、ノイズ減衰部221の減衰前後のデータ(変換前後のデータ)とを、表示部5に表示させる。表示制御部23は、正答率を例えば正答率算出部24から取得する。また、入力部4は、表示部5に表示された機械学習モデルのユーザによる選択を受け付ける。表示制御部23は、当該選択を受け付ける選択部SLを表示部5に表示させる。 In the present embodiment, as shown in FIG. 21, the display control unit 23 determines, for the diagnostic model generated by the diagnostic model learning unit 223, the correct answer rate of the diagnostic model and the data (before and after the attenuation of the noise attenuation unit 221). (Data before and after the conversion) are displayed on the display unit 5. The display control unit 23 acquires the correct answer rate from, for example, the correct answer rate calculating unit 24. Further, the input unit 4 accepts a user's selection of the machine learning model displayed on the display unit 5. The display control unit 23 causes the display unit 5 to display a selection unit SL that receives the selection.
 図22は、第5の実施形態に係る異常診断システム1の動作の一例を示す動作フローチャートである。なお、第4の動作と同じ動作については、適宜説明を省略する。 FIG. 22 is an operation flowchart illustrating an example of the operation of the abnormality diagnosis system 1 according to the fifth embodiment. The description of the same operation as the fourth operation will be appropriately omitted.
 本実施形態では、図22に示すように、図20のステップS22に代えて、診断モデル学習部223により生成された各診断モデルについて、表示制御部23により、正答率と、変換前後のデータとを表示部5に表示させる(ステップS31)。そして、入力部4によって、ユーザによる診断モデルの選択を受け付け(ステップS32)、異常原因識別部212の診断モデルを選択された診断モデルとし、この異常原因識別部212により、診断対象データを診断し(ステップS03)、その診断結果を表示制御部23により表示部5に表示させる(ステップS04)。 In the present embodiment, as shown in FIG. 22, instead of step S22 in FIG. 20, for each diagnostic model generated by the diagnostic model learning unit 223, the display control unit 23 calculates the correct answer rate and the data before and after the conversion. Is displayed on the display unit 5 (step S31). Then, the input unit 4 accepts the selection of the diagnostic model by the user (step S32), sets the diagnostic model of the abnormality cause identifying unit 212 as the selected diagnostic model, and diagnoses the diagnosis target data by the abnormal cause identifying unit 212. (Step S03), and the display control unit 23 causes the display unit 5 to display the diagnosis result (Step S04).
 (作用・効果)
 本実施形態では、診断モデル学習部223は、診断モデルを2以上生成し、表示制御部23は、表示部5に、各診断モデルについて、診断モデルの正答率とノイズ減衰部221による減衰前後のデータとを表示させるようにした。これにより、ユーザが診断モデルの妥当性を検討することができる。その上でより妥当性のある診断モデルを採用し、異常原因診断をすることができる。
(Action / Effect)
In the present embodiment, the diagnostic model learning unit 223 generates two or more diagnostic models, and the display control unit 23 displays, on the display unit 5, the correct answer rate of the diagnostic model and before and after attenuation by the noise attenuation unit 221 for each diagnostic model. Displayed with data. This allows the user to examine the validity of the diagnostic model. Then, a more appropriate diagnostic model can be adopted to diagnose the cause of the abnormality.
 (第6の実施形態)
 第6の実施形態を説明する。第6の実施形態は、第1乃至第5の実施形態の何れかの基本構成と同じである。以下では、第5の実施形態と異なる点のみを説明し、第5の実施形態と同じ部分については同じ符号を付して詳細な説明は省略する。
(Sixth embodiment)
A sixth embodiment will be described. The sixth embodiment is the same as the basic configuration of any of the first to fifth embodiments. Hereinafter, only different points from the fifth embodiment will be described, and the same portions as those in the fifth embodiment will be denoted by the same reference numerals and detailed description thereof will be omitted.
 本実施形態の入力部4は、変換モデル学習部222cにおいてノイズ減衰モデルの生成で用いられるハイパーパラメータの入力を受け付ける。このハイパーパラメータは、変換モデルを構成するニューラルネットワークのパラメータであり、ここでは、変換モデル学習部222cで用いる式(3)又は式(5)の重みパラメータaである。入力部4は、この重みパラメータaの入力を学習用データが模擬データか実データかのデータ種別に応じて受け付ける。変換モデル学習部222cは、入力部4から入力された重みパラメータaを個別に設定する。 The input unit 4 of the present embodiment receives an input of a hyperparameter used in the generation of the noise attenuation model in the conversion model learning unit 222c. This hyper parameter is a parameter of the neural network constituting the conversion model, where is the weighting parameter a 1 of the formula (3) or Formula (5) used in converting the model learning unit 222c. The input unit 4 receives an input of the weighting parameter a 1 depending on the data type of either the learning data is simulated data or actual data. Transformation model learning unit 222c sets the weighting parameter a 1 input from the input unit 4 separately.
 このように、本実施形態では、変換モデル学習部222cは、入力部4により受け付けたハイパーパラメータを、データ識別部222bの出力結果とその正解となる教師データとの誤差に乗算し、ノイズ減衰モデルを生成するようにした。 As described above, in the present embodiment, the conversion model learning unit 222c multiplies the error between the output result of the data identification unit 222b and the correct teacher data by the hyperparameter received by the input unit 4, and generates a noise attenuation model. Was generated.
 これにより、データ変換部222aの変換後データを、模擬データと実データのどちらに近い出力とするかを調整することができる。例えば、実データにのみノイズが含まれており、模擬データにノイズが含まれていない場合、実データに対する重みパラメータを0とすることで、データ変換部222aをノイズフィルタとして機能させ、ノイズを含む実データをデータ変換部222aにより変換した後のデータを入力とするデータ識別部222bによるデータ種別の識別を行わないようにし、ノイズを誤って学習することを防止することができる。すなわち、実データに含まれるノイズを異常原因識別部212の機械学習モデルの学習に反映させずに済む。そのため、異常原因の識別精度を向上させることができる。 This makes it possible to adjust whether the converted data of the data conversion unit 222a is closer to the output of the simulation data or the actual data. For example, when noise is included only in the actual data and noise is not included in the simulation data, the weighting parameter for the actual data is set to 0, so that the data conversion unit 222a functions as a noise filter and includes noise. The data type is not identified by the data identification unit 222b to which the data after the actual data is converted by the data conversion unit 222a is input, thereby preventing erroneous learning of noise. That is, the noise included in the actual data does not need to be reflected in the learning of the machine learning model of the abnormality cause identification unit 212. Therefore, the accuracy of identifying the cause of the abnormality can be improved.
 また、表示制御部23により、表示部5に、ノイズ減衰部221の減衰前後のデータ(変換前後のデータ)を表示させるので、変換前後のデータからノイズが除去されていることを目視確認することができるため、異常原因識別部212の診断モデルがノイズの影響を受けずに識別することが判断でき、診断結果の信頼性を向上させることができる。 Further, since the display control unit 23 displays the data before and after the attenuation of the noise attenuating unit 221 (data before and after the conversion) on the display unit 5, it is possible to visually confirm that noise has been removed from the data before and after the conversion. Therefore, it can be determined that the diagnosis model of the abnormality cause identification unit 212 is identified without being affected by noise, and the reliability of the diagnosis result can be improved.
 (第7の実施形態)
 (構成)
 第7の実施形態を説明する。第7の実施形態は、第6の実施形態の基本構成と同じである。以下では、第6の実施形態と異なる点のみを説明し、第6の実施形態と同じ部分については同じ符号を付して詳細な説明は省略する。
(Seventh embodiment)
(Constitution)
A seventh embodiment will be described. The seventh embodiment is the same as the basic configuration of the sixth embodiment. Hereinafter, only different points from the sixth embodiment will be described, and the same parts as those in the sixth embodiment will be denoted by the same reference numerals and detailed description thereof will be omitted.
 図23は、第7の実施形態に係る異常診断システムの構成を示す図である。本実施形態の異常診断システム1は、調整部25を備える。調整部25は、CPUを含み構成され、ノイズ減衰モデルの生成で用いられるハイパーパラメータを調整する。変換モデル学習部222cは、調整部25により調整されたハイパーパラメータを用いて変換モデルを更新することでノイズ減衰モデルを生成する。 FIG. 23 is a diagram showing the configuration of the abnormality diagnosis system according to the seventh embodiment. The abnormality diagnosis system 1 according to the present embodiment includes an adjustment unit 25. The adjustment unit 25 includes a CPU, and adjusts a hyper parameter used for generating a noise attenuation model. The conversion model learning unit 222c generates a noise attenuation model by updating the conversion model using the hyperparameter adjusted by the adjustment unit 25.
 表示制御部23は、表示部5に、調整部25の調整を受け付けるための調整受付画像と、診断モデルの正答率、又は、ノイズ減衰部221による減衰前後のデータを含む調整結果とを、表示部5の同一の表示画面に表示させる。調整受付画像は、図24に示すように、例えば、スライドバー51とスライドバー51上のつまみ52とから構成され、ユーザは、マウスなどの入力部4を介してつまみ52をスライドバー51上にスライドさせ、重みパラメータaを調整する。つまみ52の位置をx(0≦x≦1)としたとき、調整部25は、学習用データが模擬データの場合の重みパラメータaをx倍、学習データが実データの場合の重みパラメータaを(1-x)倍とする。 The display control unit 23 displays, on the display unit 5, an adjustment reception image for receiving the adjustment of the adjustment unit 25 and an adjustment result including a correct answer rate of the diagnostic model or data before and after attenuation by the noise attenuation unit 221. It is displayed on the same display screen of the unit 5. As shown in FIG. 24, the adjustment reception image includes, for example, a slide bar 51 and a knob 52 on the slide bar 51, and the user places the knob 52 on the slide bar 51 via the input unit 4 such as a mouse. slide adjusts the weighting parameter a 1. When the position of the knob 52 is x (0 ≦ x ≦ 1), the adjustment unit 25 multiplies the weight parameter a 1 when the learning data is the simulation data by x, and the weight parameter a 1 when the learning data is the real data. Let 1 be (1-x) times.
 図25は、第7の実施形態の異常診断システム1の動作の一例を示す動作フローチャートである。なお、第6の実施形態の動作と同じ動作については、適宜説明を省略する。 FIG. 25 is an operation flowchart illustrating an example of the operation of the abnormality diagnosis system 1 according to the seventh embodiment. Note that the description of the same operation as that of the sixth embodiment will be appropriately omitted.
 図25に示すように、調整部25により、重みパラメータaを調整する(ステップS41)。学習部22は、調整後の重みパラメータaを用いて各部222a、222bのニューラルネットワークを学習させ(ステップS42)、更に、その学習の完了後、学習後のデータ変換部222aの変換後データ、すなわちノイズ減衰部221の減衰済みデータを用いて、異常原因識別部212の機械学習モデルを学習させることで診断モデルを生成する(ステップS43)。 As shown in FIG. 25, the adjustment unit 25 adjusts the weighting parameters a 1 (step S41). Learning unit 22, each unit using the weight parameters a 1 after adjustment 222a, train the neural network 222b (step S42), further, after completion of the learning, the converted data in the data conversion unit 222a after learning, That is, the diagnostic model is generated by learning the machine learning model of the abnormality cause identification unit 212 using the attenuated data of the noise attenuation unit 221 (step S43).
 そして、表示制御部23により、表示部5の調整受付画面が表示された画面と同一の表示画面に、診断モデルの正答率、又は、ノイズ減衰部221の減衰前後のデータ(データ変換部222aによる変換前後のデータ)を含む調整結果を表示させる(ステップS44)。 Then, the display control unit 23 displays, on the same display screen as the screen on which the adjustment reception screen of the display unit 5 is displayed, the correct answer rate of the diagnostic model or the data before and after the attenuation by the noise attenuation unit 221 (by the data conversion unit 222a). The adjustment result including the data before and after the conversion is displayed (step S44).
 次に、入力部4により、表示部5に表示された異常診断開始ボタンSが押下されていない場合(ステップS45のNO)、つまり、ユーザにより調整結果が妥当でないと判断される場合は、異常診断を開始せず、ステップS41に戻り、重みパラメータaを調整する。一方、入力部4により、表示部5に表示された異常診断開始ボタンSが押下された場合(ステップS45のYES)、つまり、ユーザにより調整結果が妥当と判断される場合は、異常診断を開始し、異常原因識別部212により診断対象データを診断し(ステップS03)、表示制御部23により診断結果を表示部5に表示する(ステップS04)。 Next, if the abnormality diagnosis start button S displayed on the display unit 5 is not pressed by the input unit 4 (NO in step S45), that is, if the user determines that the adjustment result is not appropriate, without starting a diagnosis, the process returns to step S41, adjusting the weighting parameter a 1. On the other hand, when the abnormality diagnosis start button S displayed on the display unit 5 is pressed by the input unit 4 (YES in step S45), that is, when the adjustment result is determined to be valid by the user, the abnormality diagnosis is started. Then, the diagnosis target data is diagnosed by the abnormality cause identification unit 212 (step S03), and the diagnosis result is displayed on the display unit 5 by the display control unit 23 (step S04).
 なお、図26に示すように、図25のステップS42及びS43に代えて、第3の実施形態と同様に、学習部22は、調整部25による調整後の重みパラメータaを用いて各部222a、222b、223のニューラルネットワークを学習させても良い(ステップS45a)。 As shown in FIG. 26, instead of the steps S42 and S43 in FIG. 25, similarly to the third embodiment, the learning unit 22, each unit using the weight parameters a 1 after adjustment by the adjustment portion 25 222a , 222b, and 223 (step S45a).
 (作用・効果)
 本実施形態の異常診断システム1は、重みパラメータaを調整する調整部25を備え、変換モデル学習部222cは、調整された重みパラメータaを用いて変換モデルを更新することで診断モデルを生成するようにした。そして、表示制御部23は、調整部23の調整を受け付けるための調整受付画像と、診断モデルの正答率、又は、ノイズ減衰部221による減衰前後のデータを含む調整結果とを、表示部5の同一の表示画面に表示させるようにした。
(Action / Effect)
Abnormality diagnosis system 1 of this embodiment includes a controller 25 for adjusting the weighting parameters a 1, transformation model learning unit 222c includes a diagnostic model by updating the conversion model using the weighting parameters a 1, which is adjusted Generated. Then, the display control unit 23 outputs the adjustment reception image for receiving the adjustment of the adjustment unit 23 and the correct answer rate of the diagnostic model or the adjustment result including the data before and after the attenuation by the noise attenuation unit 221 to the display unit 5. Display on the same display screen.
 これにより、調整結果を見ながら、ユーザが重みパラメータaを調整できるため、利便性が向上する。すなわち、重みパラメータaの調整のための画面と、その調整結果である正答率や減衰前後のデータ(変換前後のデータ)との表示画面とを切り替えて重みパラメータaを調整する煩雑な作業をせずに済む。 Accordingly, while viewing the adjustment result, users because it can adjust the weighting parameters a 1, thereby improving convenience. That is, complicated operations to adjust the screen for adjusting the weighting parameters a 1, a weighting parameter a 1 by switching the display screen of the data before and after the adjustment result correct rate and an attenuation (data before and after conversion) You don't have to.
 本実施形態の変形例1として、図27に示すように、表示制御部23は、正答率と、データ番号及び減衰前後のデータ(変換前後のデータ)、学習データの異常原因種別、異常原因の識別結果を含む個別のデータ情報とを模擬データ、実データ毎に並べて、表示部5の調整受付画像が表示される表示画面に表示させるようにしても良い。これにより、ユーザは、模擬データを用いた学習の妥当性と、実データを用いた学習の妥当性を比較しながら診断モデルの妥当性を確認することができる。 As a first modification of the present embodiment, as shown in FIG. 27, the display control unit 23 determines the correct answer rate, the data number, the data before and after the attenuation (data before and after the conversion), the abnormality cause type of the learning data, and the abnormality cause. The individual data information including the identification result may be arranged for each of the simulation data and the actual data, and may be displayed on the display screen of the display unit 5 on which the adjustment reception image is displayed. Thereby, the user can confirm the validity of the diagnostic model while comparing the validity of the learning using the simulated data with the validity of the learning using the actual data.
 変形例2として、図28に示すように、表示制御部23は、正答率と上記個別のデータ情報とを模擬データ、実データ毎、且つ異常原因種別毎に並べて、表示部5の調整受付画像が表示される表示画面に表示させるようにしても良い。これにより、ユーザは、診断モデルの妥当性について、異常原因種別毎に模擬データを用いた学習の妥当性、実データを用いた学習の妥当性を比較して確認することができ、より信頼度の高い異常診断を行うことができる。 As a second modification, as shown in FIG. 28, the display control unit 23 arranges the correct answer rate and the individual data information for each of the simulation data, the actual data, and the abnormality cause type, and adjusts the adjustment reception image of the display unit 5. May be displayed on a display screen on which is displayed. As a result, the user can confirm the validity of the diagnosis model by comparing the validity of learning using the simulated data and the validity of learning using the actual data for each type of abnormality cause, and can improve the reliability. Abnormal diagnosis can be performed.
(他の実施形態)
 本明細書においては、本発明に係る複数の実施形態を説明したが、これらの実施形態は例として提示したものであって、発明の範囲を限定することを意図していない。以上のような実施形態は、その他の様々な形態で実施されることが可能であり、発明の範囲を逸脱しない範囲で、種々の省略や置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
(Other embodiments)
In the present specification, a plurality of embodiments according to the present invention have been described. However, these embodiments are presented as examples and are not intended to limit the scope of the invention. The embodiments described above can be implemented in other various forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the invention described in the claims and their equivalents.
 第1乃至第7の実施形態では、異常診断システム1が表示部5を備えるようにしたが、表示部5は必ずしも備えていなくても良い。例えば、異常診断システム1は、外部からの要求に応じて、異常原因識別部212の識別結果や、正答率、データ変換部222aによる変換前後のデータなどを出力し、外部の表示装置に表示させるようにしても良い。このような異常診断システム1は、例えば単一又はコンピュータで構成されたサーバである。 In the first to seventh embodiments, the abnormality diagnosis system 1 includes the display unit 5, but the display unit 5 does not necessarily have to include the display unit 5. For example, the abnormality diagnosis system 1 outputs an identification result of the abnormality cause identification unit 212, a correct answer rate, data before and after conversion by the data conversion unit 222a, and the like in response to a request from the outside, and causes the external display device to display the data. You may do it. Such an abnormality diagnosis system 1 is, for example, a single server or a server configured by a computer.
1     異常診断システム
2     処理部
21    診断部
211   データ処理部
212   異常原因識別部
22    学習部
221   ノイズ減衰部
222   ノイズ減衰モデル生成部
222a  データ変換部
222b  データ識別部
222c  変換モデル学習部
222d  識別モデル学習部
223   診断モデル学習部
23    表示制御部
24    正答率算出部
25    調整部
3     記憶部
4     入力部
5     表示部
51    スライドバー
52    つまみ
100   データ取得部
200   学習データ格納部
 
1 abnormality diagnosis system 2 processing unit 21 diagnosis unit 211 data processing unit 212 abnormality cause identification unit 22 learning unit 221 noise attenuation unit 222 noise attenuation model generation unit 222a data conversion unit 222b data identification unit 222c conversion model learning unit 222d identification model learning unit 223 diagnostic model learning unit 23 display control unit 24 correct answer rate calculation unit 25 adjustment unit 3 storage unit 4 input unit 5 display unit 51 slide bar 52 knob 100 data acquisition unit 200 learning data storage unit

Claims (14)

  1.  診断対象の異常原因を診断する異常診断システムであって、
     モデルに基づいて前記診断対象の異常原因の種類を識別する診断部と、
     前記モデルを機械学習により生成する学習部と、
     を備え、
     前記診断部は、
     前記診断対象から出力されたデータが入力されると、当該データから前記異常原因の種類を識別可能にする特徴部分以外の特徴部分であるノイズが減衰された前処理済みデータを生成するデータ処理部と、
     前記前処理済みデータが入力されると前記診断対象の異常原因種別を出力する診断モデルに基づいて、前記診断対象の異常原因の種類を識別する異常原因識別部と、
     を有し、
     前記診断モデルが機械学習モデルであり、
     前記学習部は、
     前記診断モデルを機械学習により生成する診断モデル学習部と、
     前記診断モデルの機械学習のための学習用データから前記ノイズが減衰された減衰済みデータを生成するノイズ減衰部と、
     を有し、
     前記学習用データは、前記診断対象の異常を模擬した模擬データ又は前記診断対象の異常を示す実データであり、
     前記診断モデル学習部は、
     前記減衰済みデータを学習データとし、前記異常原因種別を教師データとして機械学習により前記診断モデルを生成する、
     異常診断システム。
    An abnormality diagnosis system for diagnosing an abnormality cause to be diagnosed,
    A diagnosis unit that identifies a type of an abnormal cause of the diagnosis target based on a model,
    A learning unit that generates the model by machine learning,
    With
    The diagnostic unit includes:
    When data output from the diagnosis target is input, a data processing unit that generates preprocessed data in which noise, which is a characteristic part other than a characteristic part that enables the type of the cause of the abnormality to be identified from the data, is attenuated. When,
    An abnormal cause identification unit that identifies the type of the abnormal cause of the diagnostic target based on a diagnostic model that outputs the abnormal cause type of the diagnostic target when the preprocessed data is input,
    Has,
    The diagnostic model is a machine learning model,
    The learning unit includes:
    A diagnostic model learning unit that generates the diagnostic model by machine learning,
    A noise attenuator that generates attenuated data in which the noise is attenuated from learning data for machine learning of the diagnostic model,
    Has,
    The learning data is simulated data simulating the abnormality of the diagnosis target or actual data indicating the abnormality of the diagnosis target,
    The diagnostic model learning unit,
    The diagnostic data is generated by machine learning using the attenuated data as learning data and the abnormality cause type as teacher data,
    Abnormal diagnosis system.
  2.  前記ノイズ減衰部は、入力されたデータから前記ノイズを除去するノイズ減衰モデルに基づいて前記減衰済みデータを生成し、
     前記学習部は、
     前記ノイズ減衰モデルを生成するノイズ減衰モデル生成部を有し、
     前記ノイズ減衰モデル生成部は、
     前記学習用データを変換する変換モデルに基づいて、前記学習用データを変換して変換後データを出力するデータ変換部と、
     前記変換後データが入力されることで前記学習用データのデータ種別を識別する識別モデルに基づいて、前記学習用データが前記模擬データか前記実データかを示すデータ種別を識別するデータ識別部と、
     前記変換モデルを機械学習により更新することで、前記学習用データが入力されると前記減衰済みデータを出力するノイズ減衰モデルを生成する変換モデル学習部と、
     前記識別モデルを機械学習により更新する識別モデル学習部と、
     を有し、
     前記識別モデル及び前記変換モデルは、ニューラルネットワークであり、
     前記識別モデル学習部は、
     前記識別モデルが前記変換後データから前記学習用データのデータ種別を正しく識別するモデルとなるように前記識別モデルを生成し、
     前記変換モデル学習部は、
     前記変換モデルを、前記学習用データに類似しているが、前記データ識別部が正しく識別できないように前記変換後データを出力するよう更新することにより、前記ノイズ減衰モデルを生成し、
     前記データ処理部は、
     前記変換モデル学習部により生成された前記ノイズ減衰モデルに基づいて、前記診断対象から出力されたデータから前記前処理済みデータを生成する、
     請求項1記載の異常診断システム。
    The noise attenuator generates the attenuated data based on a noise attenuation model that removes the noise from the input data,
    The learning unit includes:
    Having a noise attenuation model generation unit that generates the noise attenuation model,
    The noise attenuation model generator,
    A data conversion unit that converts the learning data and outputs converted data based on a conversion model that converts the learning data;
    A data identification unit that identifies a data type indicating whether the learning data is the simulated data or the actual data, based on an identification model that identifies a data type of the learning data when the converted data is input; ,
    By updating the conversion model by machine learning, a conversion model learning unit that generates a noise attenuation model that outputs the attenuated data when the learning data is input,
    An identification model learning unit that updates the identification model by machine learning,
    Has,
    The identification model and the conversion model are neural networks,
    The identification model learning unit,
    Generate the identification model so that the identification model is a model that correctly identifies the data type of the learning data from the converted data,
    The conversion model learning unit,
    The noise reduction model is generated by updating the conversion model to be similar to the learning data but outputting the converted data so that the data identification unit cannot correctly identify the data.
    The data processing unit includes:
    Based on the noise attenuation model generated by the conversion model learning unit, to generate the pre-processed data from data output from the diagnosis target,
    The abnormality diagnosis system according to claim 1.
  3.  前記変換モデル学習部は、前記変換モデルを、前記データ識別部の出力した前記データ種別が前記学習用データのデータ種別と反転するように更新する、
     請求項2記載の異常診断システム。
    The conversion model learning unit updates the conversion model so that the data type output by the data identification unit is inverted from the data type of the learning data.
    The abnormality diagnosis system according to claim 2.
  4.  前記変換モデル学習部は、
     前記変換モデルを、
     前記学習用データと前記変換後データとの誤差、及び、
     前記データ識別部の出力結果と不正解となる前記データ種別との誤差が小さくなるように更新することで前記ノイズ減衰モデルを生成する、
     請求項2又は3記載の異常診断システム。
    The conversion model learning unit,
    The conversion model,
    An error between the learning data and the converted data, and
    Generating the noise attenuation model by updating the output result of the data identification unit and the error between the data type that is incorrect, so as to reduce the error,
    The abnormality diagnosis system according to claim 2 or 3.
  5.  前記変換モデル学習部は、
     前記変換モデルを、
     前記学習用データと前記変換後データとの誤差、
     前記データ識別部の出力結果と不正解となる前記データ種別との誤差、及び、
     前記異常原因識別部の出力結果と正解となる前記異常原因種別との誤差が小さくなるように更新することで前記ノイズ減衰モデルを生成する、
     請求項2~4の何れか記載の異常診断システム。
    The conversion model learning unit,
    The conversion model,
    An error between the learning data and the converted data,
    An error between the output result of the data identification unit and the data type that is incorrect, and
    The noise attenuation model is generated by updating the output result of the abnormality cause identification unit and the error between the abnormality cause type that is the correct answer so as to be small,
    An abnormality diagnosis system according to any one of claims 2 to 4.
  6.  前記診断モデル学習部は、前記診断モデルを2以上生成し、
     前記異常原因識別部の前記診断モデルは、前記生成された2以上の前記診断モデルの中から診断精度の良いモデルである、
     請求項2~5の何れか記載の異常診断システム。
    The diagnostic model learning unit generates two or more diagnostic models,
    The diagnostic model of the abnormality cause identification unit is a model with good diagnostic accuracy from the two or more generated diagnostic models.
    An abnormality diagnosis system according to any one of claims 2 to 5.
  7.  前記ノイズ減衰モデルの生成で用いられるハイパーパラメータの入力を受け付ける入力部を備え、
     前記ハイパーパラメータは、前記学習用データが前記模擬データか前記実データかのデータ種別に応じたパラメータであり、
     前記変換モデル学習部は、
     前記ハイパーパラメータを、前記データ識別部の出力結果とその正解となる教師データとの誤差に乗算し、前記ノイズ減衰モデルを生成する、
     請求項2~6の何れか記載の診断システム。
    An input unit that receives an input of a hyper parameter used in generating the noise attenuation model,
    The hyper parameter is a parameter corresponding to a data type of the learning data, the simulation data or the actual data,
    The conversion model learning unit,
    The hyperparameter is multiplied by the error between the output result of the data identification unit and the correct teacher data to generate the noise attenuation model,
    The diagnostic system according to any one of claims 2 to 6.
  8.  前記異常原因識別部の識別結果を表示部に表示させる表示制御部を備える、
     請求項2~7の何れか記載の異常診断システム。
    A display control unit that displays an identification result of the abnormality cause identification unit on a display unit,
    An abnormality diagnosis system according to any one of claims 2 to 7.
  9.  前記表示制御部は、前記診断対象の異常原因を診断する前に、前記表示部に、前記診断モデルの正答率、又は、前記ノイズ減衰部による減衰前後のデータを表示させる、
     請求項8記載の異常診断システム。
    The display control unit, before diagnosing the cause of the abnormality of the diagnosis target, on the display unit, the correct answer rate of the diagnostic model, or to display data before and after attenuation by the noise attenuation unit,
    An abnormality diagnosis system according to claim 8.
  10.  前記表示制御部は、前記表示部に、前記識別結果と前記ノイズ減衰部による前記減衰前後のデータを表示させる、
     請求項8又は9記載の異常診断システム。
    The display control unit causes the display unit to display the data before and after the attenuation by the identification result and the noise attenuation unit,
    The abnormality diagnosis system according to claim 8.
  11.  前記診断モデル学習部は、前記診断モデルを2以上生成し、
     前記表示制御部は、前記表示部に、各前記診断モデルについて、前記診断モデルの正答率と前記ノイズ減衰部による減衰前後のデータとを表示させる、
     請求項8~10の何れか記載の異常診断システム。
    The diagnostic model learning unit generates two or more diagnostic models,
    The display control unit causes the display unit to display, for each of the diagnostic models, a correct answer rate of the diagnostic model and data before and after attenuation by the noise attenuation unit.
    The abnormality diagnosis system according to any one of claims 8 to 10.
  12.  前記ノイズ減衰モデルの生成で用いられるハイパーパラメータを調整する調整部を備え、
     前記変換モデル学習部は、前記調整された前記ハイパーパラメータを用いて前記変換モデルを更新することで診断モデルを生成し、
     前記表示制御部は、
     前記調整部の前記調整を受け付けるための調整受付画像と、
     前記診断モデルの正答率、又は、前記ノイズ減衰部による減衰前後のデータを含む調整結果とを、
     前記表示部の同一の表示画面に表示させる、
     請求項8~11の何れか記載の異常診断システム。
    An adjustment unit that adjusts a hyper parameter used in generating the noise attenuation model,
    The conversion model learning unit generates a diagnostic model by updating the conversion model using the adjusted hyperparameter,
    The display control unit,
    An adjustment reception image for receiving the adjustment of the adjustment unit,
    Correction rate of the diagnostic model, or adjustment results including data before and after attenuation by the noise attenuation unit,
    Displaying on the same display screen of the display unit,
    An abnormality diagnosis system according to any one of claims 8 to 11.
  13.  診断対象の異常原因を診断する異常診断方法であって、
     モデルに基づいて前記診断対象の異常原因の種類を識別する診断ステップと、
     前記モデルを機械学習により生成する学習ステップと、
     を備え、
     前記診断ステップは、
     前記診断対象から出力されたデータが入力されると、当該データから前記異常原因の種類を識別可能にする特徴部分以外の特徴部分であるノイズが減衰された前処理済みデータを生成するデータ処理ステップと、
     前記前処理済みデータが入力されると前記診断対象の異常原因種別を出力する診断モデルに基づいて、前記診断対象の異常原因の種類を識別する異常原因識別ステップと、
     を有し、
     前記診断モデルが機械学習モデルであり、
     前記学習ステップは、
     前記診断モデルを機械学習により生成する診断モデル学習ステップと、
     前記診断モデルの機械学習のための学習用データから前記ノイズが減衰された減衰済みデータを生成するノイズ減衰ステップと、
     を有し、
     前記学習用データは、前記診断対象の異常を模擬した模擬データ又は前記診断対象の異常を示す実データであり、
     前記診断モデル学習ステップは、
     前記減衰済みデータを学習データとし、前記異常原因種別を教師データとして機械学習により前記診断モデルを生成する、
     異常診断方法。
    An abnormality diagnosis method for diagnosing an abnormality cause to be diagnosed,
    A diagnosis step of identifying a type of an abnormal cause of the diagnosis target based on a model,
    A learning step of generating the model by machine learning,
    With
    The diagnosis step includes:
    A data processing step of, when data output from the diagnosis target is input, generating pre-processed data in which noise, which is a characteristic portion other than a characteristic portion that enables the type of the cause of the abnormality to be identified from the data, is attenuated; When,
    An abnormal cause identification step of identifying the type of the abnormal cause of the diagnostic target based on a diagnostic model that outputs the abnormal cause type of the diagnostic target when the preprocessed data is input,
    Has,
    The diagnostic model is a machine learning model,
    The learning step includes:
    Diagnostic model learning step of generating the diagnostic model by machine learning,
    A noise attenuation step of generating attenuated data in which the noise is attenuated from learning data for machine learning of the diagnostic model,
    Has,
    The learning data is simulated data simulating the abnormality of the diagnosis target or actual data indicating the abnormality of the diagnosis target,
    The diagnostic model learning step includes:
    The diagnostic data is generated by machine learning using the attenuated data as learning data and the abnormality cause type as teacher data,
    Abnormal diagnosis method.
  14.  診断対象の異常原因を診断する異常診断プログラムであって、
     コンピュータに、
     モデルに基づいて前記診断対象の異常原因の種類を識別する診断ステップと、
     前記モデルを機械学習により生成する学習ステップと、
     を実行させ、
     前記診断ステップは、
     前記診断対象から出力されたデータが入力されると、当該データから前記異常原因の種類を識別可能にする特徴部分以外の特徴部分であるノイズが減衰された前処理済みデータを生成するデータ処理ステップと、
     前記前処理済みデータが入力されると前記診断対象の異常原因種別を出力する診断モデルに基づいて、前記診断対象の異常原因の種類を識別する異常原因識別ステップと、
     を有し、
     前記診断モデルが機械学習モデルであり、
     前記学習ステップは、
     前記診断モデルを機械学習により生成する診断モデル学習ステップと、
     前記診断モデルの機械学習のための学習用データから前記ノイズが減衰された減衰済みデータを生成するノイズ減衰ステップと、
     を有し、
     前記学習用データは、前記診断対象の異常を模擬した模擬データ又は前記診断対象の異常を示す実データであり、
     前記診断モデル学習ステップは、
     前記減衰済みデータを学習データとし、前記異常原因種別を教師データとして機械学習により前記診断モデルを生成する、
     異常診断プログラム。
     
    An abnormality diagnosis program for diagnosing the cause of the abnormality to be diagnosed,
    On the computer,
    A diagnosis step of identifying a type of an abnormal cause of the diagnosis target based on a model,
    A learning step of generating the model by machine learning,
    And execute
    The diagnosis step includes:
    A data processing step of, when data output from the diagnosis target is input, generating pre-processed data in which noise, which is a characteristic portion other than a characteristic portion that enables the type of the cause of the abnormality to be identified from the data, is attenuated; When,
    An abnormal cause identification step of identifying the type of the abnormal cause of the diagnostic target based on a diagnostic model that outputs the abnormal cause type of the diagnostic target when the preprocessed data is input,
    Has,
    The diagnostic model is a machine learning model,
    The learning step includes:
    Diagnostic model learning step of generating the diagnostic model by machine learning,
    A noise attenuation step of generating attenuated data in which the noise is attenuated from learning data for machine learning of the diagnostic model,
    Has,
    The learning data is simulated data simulating the abnormality of the diagnosis target or actual data indicating the abnormality of the diagnosis target,
    The diagnostic model learning step includes:
    The diagnostic data is generated by machine learning using the attenuated data as learning data and the abnormality cause type as teacher data,
    Abnormal diagnosis program.
PCT/JP2018/032026 2018-08-29 2018-08-29 Abnormality diagnosis system, method, and program WO2020044477A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020539935A JP6957762B2 (en) 2018-08-29 2018-08-29 Abnormality diagnostic system, method and program
PCT/JP2018/032026 WO2020044477A1 (en) 2018-08-29 2018-08-29 Abnormality diagnosis system, method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/032026 WO2020044477A1 (en) 2018-08-29 2018-08-29 Abnormality diagnosis system, method, and program

Publications (1)

Publication Number Publication Date
WO2020044477A1 true WO2020044477A1 (en) 2020-03-05

Family

ID=69643523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032026 WO2020044477A1 (en) 2018-08-29 2018-08-29 Abnormality diagnosis system, method, and program

Country Status (2)

Country Link
JP (1) JP6957762B2 (en)
WO (1) WO2020044477A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220142614A1 (en) * 2020-11-09 2022-05-12 Siemens Medical Solutions Usa, Inc. Ultrasound-derived proxy for physical quantity
JP7214176B1 (en) 2022-07-29 2023-01-30 国立大学法人茨城大学 Building integrity evaluation method and system
WO2024014070A1 (en) * 2022-07-11 2024-01-18 株式会社日本製鋼所 Inference method, inference device, and computer program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04259054A (en) * 1991-02-13 1992-09-14 Ono Sokki Co Ltd Method and device for recognizing pattern
JPH09166483A (en) * 1995-12-19 1997-06-24 Hitachi Ltd Method and apparatus for monitoring equipment
JP2005140707A (en) * 2003-11-07 2005-06-02 Matsushita Electric Works Ltd Apparatus for extracting feature sound, feature sound extraction method, and product evaluation system
JP2009146149A (en) * 2007-12-13 2009-07-02 Panasonic Electric Works Co Ltd Signal identification method and signal identification device
JP2017151872A (en) * 2016-02-26 2017-08-31 沖電気工業株式会社 Classification device, classification method, program and parameter creation device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04259054A (en) * 1991-02-13 1992-09-14 Ono Sokki Co Ltd Method and device for recognizing pattern
JPH09166483A (en) * 1995-12-19 1997-06-24 Hitachi Ltd Method and apparatus for monitoring equipment
JP2005140707A (en) * 2003-11-07 2005-06-02 Matsushita Electric Works Ltd Apparatus for extracting feature sound, feature sound extraction method, and product evaluation system
JP2009146149A (en) * 2007-12-13 2009-07-02 Panasonic Electric Works Co Ltd Signal identification method and signal identification device
JP2017151872A (en) * 2016-02-26 2017-08-31 沖電気工業株式会社 Classification device, classification method, program and parameter creation device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220142614A1 (en) * 2020-11-09 2022-05-12 Siemens Medical Solutions Usa, Inc. Ultrasound-derived proxy for physical quantity
WO2024014070A1 (en) * 2022-07-11 2024-01-18 株式会社日本製鋼所 Inference method, inference device, and computer program
JP7214176B1 (en) 2022-07-29 2023-01-30 国立大学法人茨城大学 Building integrity evaluation method and system
JP2024018265A (en) * 2022-07-29 2024-02-08 国立大学法人茨城大学 Soundness evaluation method and system for building

Also Published As

Publication number Publication date
JPWO2020044477A1 (en) 2021-08-10
JP6957762B2 (en) 2021-11-02

Similar Documents

Publication Publication Date Title
CN106407237B (en) Online learning test question recommendation method and system
WO2020044477A1 (en) Abnormality diagnosis system, method, and program
CN110389969A (en) The system and method for the learning Content of customization are provided
US10957216B2 (en) Assessing a training activity performed by a user in an interactive computer simulation
US10991262B2 (en) Performance metrics in an interactive computer simulation
JP6730340B2 (en) Causal estimation device, causal estimation method, and program
M. Radwan et al. A new expert system for learning management systems evaluation based on neutrosophic sets
Taylor et al. Verification and validation of neural networks: a sampling of research in progress
WO2021225097A1 (en) Image inspection device, image inspection method, and program
JP6718425B2 (en) Information processing apparatus, information processing method, and information processing program
CN108628265A (en) Method for running automation equipment and automation equipment
CN117836638A (en) Digital twinning with machine-learned waveform generation, including parameter control for device under test simulation
US20200019853A1 (en) Product testing system with auxiliary judging function and auxiliary testing method applied thereto
US20140272897A1 (en) Method and system for blending assessment scores
Ugur et al. A web‐based tool for teaching neural network concepts
CN113590772A (en) Abnormal score detection method, device, equipment and computer readable storage medium
CN110322098B (en) Standard operating program feedback during interactive computer simulation
CN111784553A (en) Data analysis method and device, electronic equipment and storage medium
US11922827B2 (en) Learning management systems and methods therefor
CN106971038A (en) Aviation electronics Schema control consistency verification method based on Coq
de-la-Fuente-Valentín et al. A4Learning--A Case Study to Improve the User Performance: Alumni Alike Activity Analytics to Self-Assess Personal Progress
US20230213897A1 (en) Information processing device, information processing method, and computer program product
CN110779566B (en) Product testing system with auxiliary judgment function and product testing auxiliary method
RU2675762C1 (en) Method of maximizing the degree of adequacy of model of the communication system
US20230004783A1 (en) Evaluation framework for time series data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18932044

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020539935

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18932044

Country of ref document: EP

Kind code of ref document: A1