WO2020034909A1 - 通信方法和通信装置 - Google Patents

通信方法和通信装置 Download PDF

Info

Publication number
WO2020034909A1
WO2020034909A1 PCT/CN2019/100044 CN2019100044W WO2020034909A1 WO 2020034909 A1 WO2020034909 A1 WO 2020034909A1 CN 2019100044 W CN2019100044 W CN 2019100044W WO 2020034909 A1 WO2020034909 A1 WO 2020034909A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
terminal device
indication information
entity
data
Prior art date
Application number
PCT/CN2019/100044
Other languages
English (en)
French (fr)
Inventor
李铕
朱元萍
袁世通
刘菁
戴明增
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19850138.9A priority Critical patent/EP3820189A4/en
Publication of WO2020034909A1 publication Critical patent/WO2020034909A1/zh
Priority to US17/172,249 priority patent/US20210168666A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2603Arrangements for wireless physical layer control
    • H04B7/2606Arrangements for base station coverage control, e.g. by using relays in tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0064Transmission or use of information for re-establishing the radio link of control information between different access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/18Management of setup rejection or failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • H04W36/087Reselecting an access point between radio units of access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • the present application relates to the field of communication, and more particularly, to a communication method and a communication device.
  • a relay node In a long term evolution (LTE) system, a relay node is mainly used to implement extended coverage or blind area coverage, or to improve system capacity.
  • LTE long term evolution
  • a relay node In the fifth generation communication system (5th generation mobile networks, 5th generation wireless wireless systems, 5G), relay nodes are also called integrated access and backhaul (IAB) nodes. IAB nodes are mainly used in 5G systems. Used to enhance coverage and increase system capacity.
  • IAB integrated access and backhaul
  • the IAB system supports multi-hop wireless relay and multi-connection scenarios.
  • the multi-connection supported by the IAB system means that one relay node can be connected to multiple superior nodes.
  • the IAB system supports multi-hop relay.
  • the relay system implements backhaul wirelessly, in a multi-hop IAB system, when the wireless backhaul link changes, the backhaul link of an IAB node may be interrupted. How to solve the backhaul link The problem caused by the interruption is an urgent problem that needs to be solved to achieve a high-quality IAB system.
  • This application provides a communication method, which can avoid packet loss caused by switching backhaul links as much as possible.
  • a communication method is provided.
  • the method is applied to a relay system.
  • the relay system includes a first node, a source node, and a target node, and the source node provides services to the first node.
  • the method includes: the first node determines to switch from the source node to the target node; the first node saves data buffered in at least one first entity, and the first entity is a radio link control RLC Entity or adaptation layer entity.
  • the first node may save data cached in at least one first entity, In other words, the first node does not release the data buffered in the at least one first entity.
  • the first entity is a radio link control (RLC) entity or an adaptation layer entity. In this way, after the first node switches to (or connects to) the target node, the first node may send data buffered in at least one entity to the target node.
  • RLC radio link control
  • the data cached in the first entity may include data that is not sent to the source node among the data received from the lower-level nodes. At this time, the discard operation of the data cached in the first entity will cause these Loss of data sent to the source node. Therefore, compared with the prior art, the communication method of the present application can avoid packet loss caused by switching backhaul links as much as possible.
  • the data buffered in the first entity may be data that is not sent to the source node from the data received from its subordinate nodes (for example, RLC Service Data Unit (SDU), RLC SDU fragments,
  • RLC Service Data Unit SDU
  • RLC SDU fragments RLC SDU fragments
  • the RLC protocol data unit may also be all the data in the data received from its subordinate nodes.
  • the first entity may specifically be a sending end of the first entity or a receiving end of the first entity.
  • the method further includes: when the first node saves the data cached in the at least one first entity, it may further save or reset a state variable of the at least one first entity, such as a serial number of the RLC SDU.
  • the first node determining to switch its parent node from the source node to the target node includes: the first node is receiving a switching command Or when a radio link failure RLF is detected, it is determined to switch its parent node from the source node to the target node, and the switching command is used to instruct the first node to switch to the target node.
  • the method further includes: the first node reconstructing, resetting, or releasing a lower-layer protocol entity of the first entity.
  • the lower-layer protocol entity may be a media access control (MAC).
  • the method before the data cached in at least one first entity of the first node, the method further includes: the first node receives indication information, the The indication information is used to instruct the first node to save data buffered in the at least one first entity.
  • the indication information may be sent by the host base station, but it is not limited in this application.
  • a communication method including: a first node determines a trigger event, the trigger event being used by the first node to trigger a terminal device for data transmission through the first node to perform a packet data convergence protocol
  • the trigger event includes the first node receiving the first instruction information sent by a superior node, or the first node determines to switch from a source node to a target node, the The first instruction information is used to instruct at least one terminal device connected to the first node to perform PDCP data retransmission, and the first instruction information is radio resource control (RRC) signaling, adaptation layer signaling, or F1-AP control plane signaling, the upper node includes the host base station and the integrated access and backhaul IAB node;
  • RRC radio resource control
  • the device or a terminal device connected to a second node performs PDCP data retransmission, and the second node is a subordinate node of the first node.
  • the first node may send the second node to the terminal device that needs to perform PDCP retransmission through the RRC signaling, the adaptation layer signaling, or the F1 control plane signaling.
  • the indication information triggers the at least one terminal device to perform PDCP data retransmission.
  • the first node may send second instruction information to a lower node of the first node through adaptation layer signaling, so that the lower node triggers the at least one terminal device to perform PDCP data re- pass.
  • the communication method in the embodiment of the present application is beneficial to recovering the data lost when the backhaul link is switched. Further, the upper node of the access terminal device sends signaling to the node of the access terminal device through the backhaul link, which avoids transmitting signaling for each wireless bearer of each terminal device directly on the backhaul link, thereby Can reduce signaling overhead.
  • F1 is an interface between a centralized unit (CU) and a distributed unit (DU).
  • CU centralized unit
  • DU distributed unit
  • the method further includes: receiving, by the first node, a terminal device that is connected to the first node or the second node that is connected to the second node. Retransmission data from the terminal device.
  • the second indication information is transmitted through a packet data convergence protocol PDCP control protocol data unit PDU, a radio link control RLC control PDU, an RLC data PDU, and a media access control.
  • the first indication information includes at least one of the following information:
  • At least one quality of service (QoS) flow identifier or QoS identifier of the at least one terminal device At least one quality of service (QoS) flow identifier or QoS identifier of the at least one terminal device.
  • QoS quality of service
  • An identifier of a lower node of the first node is an identifier of a lower node of the first node.
  • a communication method includes: the host base station receives a radio link failure notification from one or more third nodes, where the third node is an upper node of the first node;
  • the host base station Determining, by the host base station, at least one node device connected to the network through the first node, the node device including at least one of a terminal device and a second node connected to the first node, the first Two nodes are subordinate nodes of the first node;
  • the host base station Sending, by the host base station, the first indication information to the at least one node device, where the first indication information is used by the terminal device connected to the first node or the terminal device connected to the second node to perform PDCP data retransmission It is said that the first indication information is radio resource control RRC signaling, adaptation layer signaling, or F1-AP control plane signaling.
  • the method further includes:
  • the host base station receives retransmission data from the terminal device accessed to the first node or the terminal device accessed to the second node.
  • the at least one node device that accesses the network through the first node includes a device that accesses the network through the first node through multi-hop transmission. Node device.
  • the first indication information is sent by the host base station to the first node, and the first node accesses the first node to the first node.
  • Terminal device sends a PDCP data retransmission indication.
  • the first indication information is sent by the host base station to the second node, and the second node accesses the second node to the second node.
  • Terminal device sends a PDCP data retransmission indication.
  • the first indication information is sent by the host base station to the terminal device accessing the first node or the access device accessing the second node.
  • the first indication information is used to instruct the terminal device connected to the first node or the terminal device connected to the second node to perform PDCP data retransmission.
  • the first indication information includes at least one of the following information:
  • a communication method including: in a case where a radio link control RLC is retransmitted to a maximum number of times, a terminal device determines whether a radio link failure RLF occurs on an access link; and on the access link When no RLF occurs, the terminal device does not report the RLC retransmission to the upper layer to the maximum number of times.
  • the determining, by the terminal device, whether a radio link failure RLF occurs on the access link includes: receiving, by the terminal device, indication information that is used to indicate The backhaul link undergoes RLF or the backhaul link changes; the terminal device determines that the access link does not send RLF according to the instruction information.
  • a communication device includes a unit for executing the first aspect or any one of the possible implementation manners of the first aspect.
  • the units included in the communication device may be implemented by software and / or hardware.
  • a communication device includes a unit for performing the second aspect or any one of the possible implementation manners of the second aspect.
  • the units included in the communication device may be implemented by software and / or hardware.
  • a communication device includes a unit for performing the third aspect or any one of the possible implementation manners of the third aspect.
  • the units included in the communication device may be implemented by software and / or hardware.
  • a communication device includes a unit for performing the fourth aspect or any one of the possible implementation manners of the fourth aspect.
  • the units included in the communication device may be implemented by software and / or hardware.
  • a communication device including a processor and a memory, where the memory is used to store a computer program, and the processor is used to call and run the computer program from the memory, so that the apparatus executes the first aspect to the first.
  • the method in the four aspects or any one of the possible implementation manners of the first to fourth aspects.
  • processors there are one or more processors, and one or more memories.
  • the memory may be integrated with the processor, or the memory is separately provided from the processor.
  • the communication device further includes a transceiver or a transceiver circuit, configured to complete a function of transmitting and receiving information.
  • the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program.
  • the computer program is executed, the first to fourth aspects or the first aspect are implemented.
  • the method in any one of the possible implementation manners of the fourth aspect.
  • the present application provides a computer program product including a computer program.
  • the computer program When the computer program is executed, the method in any one of the possible implementation manners of the first to fourth aspects described above or the first to fourth aspects described above is implemented.
  • the present application provides a chip system including an input-output interface and at least one processor, where the at least one processor is configured to call an instruction in a memory to perform the foregoing first to fourth aspects or Operation of the method in any one of the foregoing possible implementation manners of the first to fourth aspects.
  • system chip may further include at least one memory and a bus, and the at least one memory is configured to store instructions executed by the processor.
  • the input / output interface is implemented in an interface circuit manner.
  • FIG. 1 is a schematic diagram of an application scenario of a method and a device according to an embodiment of the present application.
  • Figure 2 is a schematic diagram of protocol stack deployment.
  • Figure 3 is a schematic diagram of protocol stack deployment.
  • FIG. 4 is a schematic diagram of another application scenario of a method and an apparatus according to an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a method according to another embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a method according to another embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a method according to another embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a method according to another embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a method according to another embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a communication device according to the present application.
  • FIG. 11 is a schematic structural diagram of another communication device according to the present application.
  • FIG. 12 is a schematic structural diagram of a communication device according to the present application.
  • FIG. 13 is a schematic structural diagram of another communication device according to the present application.
  • FIG. 14 is a schematic structural diagram of another communication device of the present application.
  • FIG. 1 shows a schematic diagram of a multi-hop networking scenario in an IAB network.
  • One way to define multi-hop is: the data transmission between the terminal equipment and the donor base station (donor gNodeB, DgNB), if it passes through two relay nodes (RN, RN), it is called two-hop Three RNs are called triple hops, and so on.
  • the IAB network includes a terminal device 101, an IAB node 102, an IAB node 103, a host base station 104, and a 5G core network (5G core (5GC) 105).
  • the IAB node 102 is an access node of the terminal device 101 and can provide wireless access services for the terminal device 101.
  • the wireless link between the IAB node 102 and the terminal device 101 is called an access link (AC) .
  • the IAB node 103 is located between the IAB node 102 and the host base station 104, and may be called an intermediate (IAB) node.
  • the wireless link between the IAB node 102 and the IAB node 103 is called a backhaul link (BH) or wireless Backhaul link (wireless backhaul link).
  • the IAB node 103 is connected to the host base station 104 through a backhaul link to transmit service data of the terminal device 101.
  • the wireless link between the IAB node 103 and the host base station 104 is a backhaul link.
  • the host base station 104 may be a complete entity, or a form in which a centralized unit (CU) and a distributed unit (DU) are separated.
  • the host base station is connected to the 5G core network 105 through a wired link.
  • Each IAB node regards the node providing the backhaul service as an upper node (or a parent node); accordingly, the IAB node can be regarded as a lower node (or a child node) of its upper node.
  • the IAB node 103 is an upper node of the IAB node 102
  • the IAB node 102 is a lower node of the IAB node 103.
  • the host base station 104 is an upper node of the IAB node 103
  • the IAB node 103 is a lower node of the host base station 104.
  • the lower node is also referred to as a second node, and it should be understood that the second node refers to a lower node in a broad sense.
  • the host base station 10 is also an upper node of the IAB node 102, and the IAB node 102 is a lower node of the host base station 104.
  • the functions of the IAB node facing the upper node and the lower node are different.
  • the part / function of the IAB node accessing the upper node is called mobile-termination (MT), and this part can perform functions similar to the terminal equipment in NR, such as selecting upper nodes through measurement, or performing radio resource control (radio resource (control, RRC) connection establishment process establishes a connection with a superior node, and performs RRC measurement to obtain the link quality with the superior node.
  • the host base station 104 can configure and manage the MT through RRC signaling.
  • the IAB node provides a part / function of access to a lower-level IAB node or terminal device, which is called a distributed unit (DU). This section performs functions similar to NR DU.
  • the host base station 104 can configure and manage the DU part of the IAB node through F1-AP (application) signaling.
  • the interface between the terminal device and the IAB node is Uu
  • the interface between the IAB node and the IAB node is Un
  • the interface between the IAB node and the host base station is F1
  • the host base station and the user plane function user The interface between plane function (UPF) is N3.
  • the protocol stack of the user plane introduces the 1a architecture, and the IAB node is used as a host base station or a DU of a CU to provide services to terminal equipment.
  • the main idea is:
  • the packet data convergence protocol (PDCP) of the terminal device is deployed at the host base station or the CU of the host base station, and the adaptation layer is deployed in the following two ways:
  • Method 1 Above-RLC deployment, that is, the adaptation layer is deployed on the radio link control (RLC).
  • RLC radio link control
  • Method two Above-MAC deployment, that is, the adaptation layer is deployed on the medium access control (MAC) (between MAC and RLC).
  • MAC medium access control
  • the adaptation layer may be an independent protocol layer or a sublayer or submodule of an existing protocol layer. For example, it may be a sublayer of the RLC layer or a sublayer of the MAC layer.
  • the RLC layer is configured with acknowledged mode (AM)
  • AM acknowledged mode
  • ARQ end-to-end Automatic Repeat-request
  • hop-by-hop ARQ hop-by-hop ARQ
  • Each RLC entity on the access link and backhaul link maintains the (receiving and transmitting window) variables, timers, etc. required by the RLC;
  • the RLC entity of each hop node can detect whether packet loss has occurred and trigger the RLC retransmission of the current link;
  • the RLC entity of each hop node can perform segmentation or reorganization of RLC service data unit (SDU);
  • RLC in this application refers to the data packet received by the RLC from the upper layer, and the RLC protocol data unit (
  • the protocol data unit (PDU) refers to a data packet that is processed by the RLC layer, for example, an RLC header is added, or an RLC header is added after being segmented by the RLC layer.
  • the data packets of other layers are similar.
  • PDCP SDU refers to the data packets received by the PDCP layer from the upper layer
  • PDCP PDU refers to the data packets processed by the PDCP layer.
  • the RLC entity on the return link is multiplexed by multiple terminal devices wirelessly, the RLC entity of the access link is targeted at the terminal device, that is, the access link and the return link.
  • the granularity is different. You can consider ARQ hop by hop to avoid coordination between hops.
  • the management of retransmission is at the RLC entity of the end node-if there is packet loss on any link, the end node will detect the packet loss and trigger the retransmission; the data will be transmitted from the sending RLC entity to the receiving RLC entity through multiple hops.
  • the RLC entity / function of the intermediate IAB node may perform segmentation or re-segmentation of the RLC SDU in order to adapt to the link quality.
  • the RLC entity / function of the intermediate IAB node only needs to forward data.
  • SDAP service data adaptation protocol
  • PHY physical
  • GPRS tunneling protocol
  • GTP tunneling protocol
  • user datagram protocol user datagram
  • the quality of the backhaul link can change. If the quality of the backhaul link decreases, it may trigger the switching operation of the relay node or the radio link failure (RLF) recovery operation to reselect New backhaul link.
  • RLF radio link failure
  • the communication system shown in FIG. 4 is taken as an example for description.
  • the system may include a terminal device 1, an IAB node 1 to an IAB node 5, and a host base station.
  • the system may further include one or more of a terminal device 2, a terminal device 3, and a terminal device 4.
  • IAB node 1 Before IAB node 4 switches the backhaul link, IAB node 1 provides backhaul services for IAB node 4. If the quality of the backhaul link between IAB node 1 and IAB node 4 decreases, the host base station or IAB node 1 can trigger IAB node 4 to switch back to the backhaul link. For example, IAB node 1 can be switched to IAB node 5 as It provides backhaul services. Alternatively, if the IAB node 4 detects that an RLF occurs on the backhaul link with the IAB node 1, the IAB node 4 may perform an RLF recovery operation, for example, a backhaul link with the IAB node 5 may be established.
  • IAB node 4 when the IAB node 4 performs the operations such as switching backhaul links or performing RLF, it will cause packet loss if it operates according to the traditional method. For example, IAB node 4 may discard data packets (such as RLC protocol data unit (PDU), RLC, SDU, RLC, and SDU fragments, etc.) in the RLC entity cache, thereby causing data corruption. Therefore, as far as possible, avoiding packet loss caused by switching backhaul links or performing operations such as RLF, or recovering data in the event of packet loss has become an urgent technical problem.
  • PDU RLC protocol data unit
  • this application provides a communication method.
  • the method can be applied to a relay system, and the relay system can include a first node, a source node, and a target node.
  • the first node may be IAB node 4
  • the source node may be IAB node 1
  • the target node may be IAB node 5.
  • a communication method provided in this application includes: a first node determines to switch from the source node to the target node; the first node saves data buffered in at least one first entity, and the first entity is a wireless chain The control RLC entity or the adaptation layer entity.
  • the first node determining to switch its parent node from the source node to the target node includes:
  • the first node When the first node receives a handover command or detects a radio link failure RLF, it determines to switch its parent node from the source node to the target node, and the handover command is used to instruct the first node The node switches to the target node.
  • the method further includes: the first node reconstructs, resets, or releases a lower-layer protocol entity of the first entity.
  • GSM global mobile communications
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • general packet radio services general packet service, GPRS
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • UMTS universal mobile communication system
  • WiMAX worldwide interoperability for microwave access
  • 5G 5th-generation
  • 5G new air interface new radio, NR
  • the host base station may be a device for communicating with a mobile station, and may specifically be an access point (AP) in a wireless local area network (WLAN), a global mobile communication system ( global system (mobile communication, GSM) or code division multiple access (code division multiple access, CDMA) base station transceiver station (base transceiver station (BTS), wideband code division multiple access (WCDMA) Base station (nodeB, NB), evolutionary node (eNB), relay station or access point in LTE system, in-vehicle equipment, wearable equipment, access network equipment in future 5G networks, and future evolved public Any one of access network equipment in a land mobile network (PLMN).
  • WLAN wireless local area network
  • GSM global system
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • Base station nodeB, NB
  • eNB evolutionary node
  • relay station or access point in LTE system in-vehicle equipment, wearable equipment, access network equipment in future 5
  • the terminal device in the embodiments of the present application may refer to user equipment (UE), access terminal, user unit, user station, mobile station, remote station, remote terminal, mobile device, terminal, wireless communication device, user agent, or User devices, etc., may specifically be stations (STs), cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, individuals in WLAN Digital processing (personal digital assistant, PDA), handheld devices with wireless communication capabilities, computing devices, other processing devices connected to wireless modems, in-vehicle devices, wearable devices, mobile stations in future 5G networks, and future evolved PLMN networks Any of the terminal devices and the like.
  • stations such as stations (STs), cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, individuals in WLAN Digital processing (personal digital assistant, PDA), handheld devices with wireless communication capabilities, computing devices, other processing devices connected to wireless modems, in-vehicle devices, wearable devices, mobile stations in future 5G networks, and future evolved P
  • FIG. 5 is a schematic flowchart of a communication method 500 according to an embodiment of the present application. It should be understood that this application can be applied to the scenario of end-to-end ARQ, and also to the scenario of hop-by-hop ARQ. In addition, this application can be applied to the scenario where the adaptation layer above RLC is deployed, or the scenario where the adaptation layer above MAC is deployed or the adaptation layer is used as the MAC layer sublayer.
  • S510 The first node determines to switch from the source node to the target node.
  • the first node determines that it is necessary to switch from the source node to the target node. There are at least two possibilities. One is that the network instructs the first node to switch from the source node to the target node. Accordingly, the return link is switched, and the other is due to the chain. The path quality cannot meet the service requirements. For example, when the first node detects RLF, it is determined that the target node needs to be accessed through cell selection or cell reselection. Correspondingly, the backhaul link is changed.
  • the first node determines that the need to switch from the source node to the target node according to the network instruction includes an instruction to receive the host base station, or the source node indicates that it needs to switch from the source node to the target node. For example, the source node's capacity cannot meet the link quality requirements of the first node, or the source node's backhaul link fails, or the source node actively requests the first node to switch to better meet the The business requirements of a node, etc.
  • the source node or the host base station controls the first node to switch to the target node by using a handover command, such as Reconfiguration with Sync in RRC signaling.
  • the host base station may also directly control the first node to switch to a certain target node, for example, control the first node to switch to a certain target node through the F1-AP interface.
  • the first node may actively initiate a node reselection process.
  • the first node saves data buffered in at least one first entity. Specifically, when the first node determines to switch from the source node to the target node, for example, when a switch command is received or an RLF is detected, data cached in at least one first entity may be saved, or the first node does not release at least one The data cached in the first entity.
  • the first entity is an RLC entity or an adaptation layer entity. In this way, after the first node switches to (or connects to) the target node, the first node may send data buffered in at least one entity to the target node. Taking the data stored in the cache of the RLC entity as an example, the stored data may be RLC SDU, a segment of RLC SDU, or RLC PDU.
  • the data cached in the first entity may include data that is not sent to the source node among the data received from the lower-level nodes. At this time, the discard operation of the data cached in the first entity will cause these Loss of data sent to the source node. Therefore, compared with the prior art, the communication method of the present application can avoid packet loss caused by switching or changing the backhaul link as much as possible.
  • the data cached in the first node includes the terminal equipment served by the first node, or the terminal equipment served by the subordinate nodes of the first node, or even all the terminal equipment for data forwarding through the first node.
  • S520 may be executed by the first node after receiving the indication information.
  • the indication information is used to instruct the first node to save data buffered in at least one first entity.
  • the indication information may be sent by the host base station. It should be understood that the instruction information is not necessary. If the first node receives a switching command, or determines to switch to the target node, or if it needs to switch to the target node due to a link, it should be configured according to its own cache of the RLC layer or the adaptation layer. The status is determined by the line.
  • both the adaptation layer and the RLC layer may store cached data, or only one of the layers may have cached data, that is, the adaptation layer or the RLC layer caches data. If both the adaptation layer and the RLC layer hold data, the first node may choose to retain the cached data of one layer, or both of them. According to the protocol definition or implementation determination, this application does not make any restrictions. If there is only the adaptation layer Or one of the RLC layers holds cached data, so when switching, the cached data should not be reset or cleared. For the case where the adaptation layer is below the RLC layer, the same selection is followed, and at least one layer of cached data is not cleared, and will not be described again.
  • the first node may also determine that the cached data needs to be retained according to the deployment mode of the adaptation layer, so that no indication information is required.
  • the RLC entity usually targets the UE.
  • the buffered data For configuration (for example, configuring a one-to-one corresponding RLC entity on the backhaul link for the UE bearer), the buffered data needs to be retained.
  • the first node may also determine that the cached data needs to be retained according to the configuration mode of the ARQ, so that no indication information is required. For example, if end-to-end ARQ is configured, the cached data needs to be retained.
  • the data cached in the first entity may be data not sent to the source node in the cache, or all data in the cache.
  • the data is data received from a lower node or a UE served by a first node.
  • the first node may include the MT and the DU
  • the buffered data may include the data of the MT or the DU.
  • the data in the DU buffer may not have been sent on the backhaul link, but it also needs to be sent to the superior node, and the data in the MT may have been partially transmitted but did not receive feedback from the superior node (such as hop-by-hop ARQ Feedback), and data that does not receive feedback needs to be retransmitted, and data that is not transmitted needs to be transmitted.
  • the DU or MT here is only a distinction between the functions of the first node, that is, whether the data packet is generated by the first node itself or a node served by the first node, and the node served by the first node Including terminal equipment or subordinate nodes.
  • the first node refers to a node supporting a relay function.
  • the DU or MT here is only a distinction between the functions of the first node, that is, whether the data packet is generated by the first node itself or a node served by the first node, and the node served by the first node Including terminal equipment or subordinate nodes.
  • the first node refers to a node supporting a relay function.
  • the operations performed by the first node on the state variables in the at least one first entity and the operations performed by the target node are described below.
  • the following description uses the first entity as an RLC entity as an example.
  • state variables in this application may be state variables maintained by the RLC entity for sending operations, receiving operations, retransmissions, and polling, such as the sequence number TX_Next of the next transmitted data, the number of un-polled PDUs PDU_WITHOUT_POLL, and so on.
  • the processing when the first node receives the handover command and the wireless link fails may be slightly different, which are described separately below.
  • the first node receives a handover command
  • Operation 1 While the first node saves the data cached in the RLC entity, it can also save the state variables of the RLC entity.
  • the first node When the first node performs a handover, if the RLC entity itself does not maintain state variables (for example, in an end-to-end ARQ scenario), it may not perform any processing on the state variables of the RLC entity; if the RLC entity itself needs to maintain state variables (for example, In the hop-by-hop ARQ scenario), the first node may save or not release the state variables of the RLC entity.
  • the first node may not release a timer related to the RLC entity, which includes but is not limited to t-Reassembly related to SDU reassembly and t-PollRetransmit related to polling.
  • the target node can establish a corresponding RLC entity and synchronize the above state variables of the RLC entity, that is, migrate the complete RLC state of the source node to the target node.
  • the target node may establish an RLC entity after receiving the radio bearer establishment command sent by the host base station.
  • the host base station may send the radio bearer establishment or radio bearer reestablishment command through F1-AP signaling, and the present application does not restrict specific signaling.
  • the state variable may be sent by the host base station to the target base station through F1-AP signaling, or may be sent by the source node to the target base station through adaptation layer signaling.
  • the host base station needs to query the source node for the state variable, or the source node reports the state variable to the host base station.
  • the above is only an example. Because there are many state variables, especially timer-related variables are difficult to control, they can also be simplified state variables. For example, only the sequence number of the data packet in the buffer can be sent to the target base station, such as the RLC SDU sequence number, which can be the sequence number of all RLC SDUs, or the smallest sequence number among all RLC SDU sequence numbers, or it can be Largest serial number among all RLC SDU serial numbers
  • Operation 2 While the first node saves the data cached in the RLC entity, it can reset the state variables of the RLC entity.
  • the first node may perform a reset operation on the state variables of the sending end and the receiving end of the RLC entity. Further, the first node may renumber the data packets buffered by the sending end and the receiving end of the RLC entity, for example, the renumbering may be performed from a preset initial value. Alternatively, the first node may renumber only the data buffered by the sender of the RLC entity, and the receiver of the RLC entity may submit the buffered data to the upper layer.
  • the target node For the target node, it can establish a corresponding RLC entity and initialize the state variables of the RLC entity. Regarding how the target node establishes a corresponding RLC entity, reference may be made to the description of related content above, which is not repeated here.
  • the target node can initialize the state variables of the receiving and sending ends of these RLC entities. Since the first node resets the state variables of the peer entities of these RLC entities, the value of the state variables of the receiving end of these RLC entities on the target node is the same as that of their peer RLC entities on the first node. The values of the state variables at the sending end are the same, and the values of the state variables at the sending end of these RLC entities on the target node are the same as the values of the state variables at the receiving end of their peer RLC entities on the first node.
  • the state variable can be synchronized by using operation 1 when the first node executes the handover command, or by using operation 2 when the first node executes the handover command to renumber the data packets. As mentioned above, it will not be repeated here.
  • the first node retains at least one RLC entity or data cached by the at least one RLC entity, and the host base station maintains radio bearer configuration information of the first node.
  • the host base station may send the bearer activation or reuse instruction information to the first node, where the activation instruction or reuse information includes the at least one RLC identifier (such as the RLC bearer identifier, RLC channel identifier) or the UE bearer. Identification to activate or reuse the at least one RLC entity.
  • the source node releases a radio bearer corresponding to the at least one RLC entity.
  • the source node may release the corresponding radio bearer after receiving a command to release the radio bearer sent by the host base station.
  • the command may be, for example, F1-AP signaling, but this embodiment is not limited thereto.
  • FIG. 6 is a schematic flowchart of a communication method 600 according to another embodiment of the present application. It should be understood that this application can be applied to the scenario of end-to-end ARQ, and also to the scenario of hop-by-hop ARQ. In addition, this application can be applied to the scenario where the adaptation layer above and the RLC are deployed, and it can also be applied to the scenario where the adaptation layer above and the MAC are deployed.
  • S610 The first node determines a trigger event.
  • the trigger event is used by a first node to trigger a terminal device that performs data transmission through the first node to perform PDCP data retransmission.
  • the triggering event includes the first node receiving the first instruction information sent by the superior node, or the first node determines to switch from the source node to the target node.
  • the first instruction information is used to instruct a terminal device connected to the first node to perform data retransmission.
  • the first instruction information is radio resource control RRC signaling, adaptation layer signaling, or F1 control plane signaling.
  • the upper node includes Host base station and integrated access and backhaul IAB nodes.
  • the host base station receives a radio link failure notification from one or more third nodes, and the third node is an upper node of the first node.
  • the host base station determines at least one node device connected to the network through the first node.
  • the node device includes at least one of a terminal device connected to the first node and a second node.
  • the second node is a lower node of the first node.
  • the host base station sends first instruction information to at least one node device.
  • the first instruction information is used for terminal device connected to the first node or terminal device connected to the second node for PDCP data retransmission.
  • the first instruction information is wireless. Resource control RRC signaling, adaptation layer signaling, or F1-AP control plane signaling.
  • the at least one node device accessing the network through the first node includes a node device accessing the network through the first node through multi-hop transmission.
  • the first indication information is sent by the host base station to the first node, and the first node sends a PDCP data retransmission instruction to the terminal device that has entered the first node.
  • the first indication information may also be sent by the host base station to the second node, and the second node sends a PDCP data retransmission indication to the terminal device connected to the second node.
  • the first instruction information may also be sent by the host base station to a terminal device connected to the first node or a terminal device connected to the second node, and the first instruction information is used to indicate the terminal device connected to the first node or the terminal device.
  • PDCP data retransmission is performed on the terminal device that has entered the second node.
  • the host base station can directly control the terminal device that transmits data through the first node to perform PDCP retransmission.
  • Direct control refers to the host base station directly sending control messages to these terminal devices, so that the terminal device performs PDCP. Retransmission.
  • the terminal device includes not only a terminal device connected to the first node, but also a terminal device connected to the second node.
  • the host base station may also send a control message to the relay node, that is, the first indication information, instead of directly sending a control message to each terminal device connected to the relay node, so as to save the air interface. Signaling overhead.
  • the relay nodes After receiving the first instruction information from the host base station, the relay nodes, such as the first node and the second node, send a PDCP data retransmission instruction to all terminal devices that forward data through the first node, so as to access the first node.
  • the node and / or the terminal device connected to the second node perform PDCP data retransmission.
  • the host base station directly sends the control message for PDCP data retransmission to the terminal device and the relay node sends the control message for PDCP data retransmission to the terminal device connected to the relay node, because the host base station can pass RRC
  • the message or PDCP control signaling directly controls the terminal device for PDCP retransmission, and the relay node may not support the RRC and / or PDCP layer on the DU, so it cannot send RRC messages or PDCP control signaling, and can only be controlled through the adaptation layer
  • the signaling or MAC, CE, or RLC control signaling is used to notify the terminal equipment connected to the relay node to perform PDCP retransmission.
  • the host base station may receive the handover completion signaling (for example, an RRC connection reconfiguration complete message) sent by the first node, or receive the first node due to RLF.
  • the handover completion signaling for example, an RRC connection reconfiguration complete message
  • the PDCP data retransmission of at least one terminal device may be triggered through RRC signaling, adaptation layer signaling, or F1-AP signaling.
  • the first node sends second instruction information to the at least one terminal device or a subordinate node of the first node.
  • the first node sends second instruction information to at least one terminal device connected to the first node or the second node, and the second instruction information is used to indicate the terminal device connected to the first node or the second node.
  • the terminal device performs PDCP data retransmission, and the second node is a subordinate node of the first node.
  • the second node is a generalized lower-level node, that is, the second node may be a relay node that accesses the network through the first node through multi-hop transmission.
  • the content of the second instruction information includes at least the content of the second instruction information.
  • the first node transparently transmits the content of the first instruction information to the access device. The terminal device of the first node.
  • the host base station sends a control message to the first node or the second node, the contents of the first instruction information and the second instruction information are different.
  • the first instruction information mainly includes the identifier of the first node or the second node. Instructions.
  • the first node and / or the second node further send the second instruction information to the terminal device connected to the first node or the second node according to the first instruction information, and the second instruction information indicates the access to the first node or the second node.
  • the terminal device of the node performs PDCP data retransmission.
  • the second indication information includes an identifier of the terminal device, an identifier of at least one radio bearer of the terminal device, at least one QoS flow identifier or QoS identifier of the terminal device, and At least one of the logos. It should be understood that not all bearers or data flows of a terminal device are transmitted by the first node, and the PDCP data retransmission at this time is only used to indicate those bearers or data flows that are transmitted by the first node.
  • the first node may send the second node to the terminal device that needs to perform PDCP retransmission through the RRC signaling, the adaptation layer signaling, or the F1 control plane signaling.
  • the indication information triggers the at least one terminal device to perform PDCP data retransmission.
  • the first node may send second instruction information to a lower node of the first node through adaptation layer signaling, so that the lower node triggers the at least one terminal device to perform PDCP data re- pass.
  • the communication method in the embodiment of the present application is beneficial to recovering the data lost when the backhaul link is switched. Further, the upper node of the access terminal device sends signaling to the node of the access terminal device through the backhaul link, which avoids transmitting signaling for each wireless bearer of each terminal device directly on the backhaul link, thereby Can reduce signaling overhead.
  • the first node may determine a radio bearer of a UE that meets a specific QoS requirement to perform PDCP data retransmission.
  • the first indication information includes the QoS identifier corresponding to the specific QoS, or a QoS parameter, such as a delay and a transmission rate.
  • the first indication information may further include a QoS identifier or a QoS parameter of at least one terminal and a QoS corresponding to the terminal.
  • the second node may identify the terminal device that needs to send the second indication information, or the terminal equipment according to the first indication information and the pre-configured bearer mapping information or the bearer QoS parameter. Wireless bearer, or QoS flow for end devices.
  • the second node may add a QoS identifier or a QoS parameter to the second indication information, and the terminal identifies the corresponding radio bearer or QoS flow.
  • the first indication information may include at least one of the following information:
  • An identifier of the at least one terminal device an identifier of at least one radio bearer of the at least one terminal device; at least one quality of service QoS flow identifier or QoS identifier of the at least one terminal device.
  • the terminal equipment identification includes, but is not limited to, international mobile subscriber identity (IMSI), temporary mobile subscriber identity (TMSI), C-RNTI (cell radio network temporary network identifier), MAC Address, IP address, etc.
  • IMSI international mobile subscriber identity
  • TMSI temporary mobile subscriber identity
  • C-RNTI cell radio network temporary network identifier
  • MAC Address IP address
  • the first instruction information is described in detail below by taking the at least one terminal device as the terminal device 1 and the terminal device 2 as an example.
  • Terminal equipment 1 and terminal equipment 2 are all terminal equipment accessing the second node, and all radio bearers of terminal equipment 1 and terminal equipment 2 need to perform PDCP data retransmission.
  • the first indication information may be a newly defined field, and the field may be 1 bit. For example, when the bit is set to 1, it may indicate that all radio bearers of all terminal devices that need to be triggered to access the second node need to perform PDCP data retransmission.
  • Terminal equipment 1 and terminal equipment 2 are part of the terminal equipment accessing the second node, and all radio bearers of terminal equipment 1 and terminal equipment 2 need to perform PDCP data retransmission.
  • the first indication information may include an identification of the terminal device 1 and an identification of the terminal device 2.
  • Terminal equipment 1 and terminal equipment 2 are part of the terminal equipment accessing the second node, and part of the radio bearer of terminal equipment 1 needs to perform PDCP data retransmission.
  • the first indication information may include an identifier of the terminal device 1 and an identifier of the radio bearer of the part of the terminal device 1, or the first indication information may include an identifier of the terminal device 1 and a QoS flow corresponding to the radio bearer of the part of the terminal device 1. Identification or QoS identification.
  • the first indication information may further include the identity of the terminal device 2 or the identity of the terminal device 2 and all of its radio bearers or the identity of the terminal device 2 And the QoS flow identifiers or QoS identifiers corresponding to all its radio bearers. If PDCP data retransmission is required for a part of the radio bearer of the terminal device 2, the first indication information may further include the identifier of the terminal device 2 and the identifier of the radio bearer of the terminal device 2, or the identifier of the terminal device 2 and the terminal device 2. The QoS flow identifier or QoS identifier corresponding to this part of the radio bearer.
  • the second indication information may be transmitted through a PDCP control PDU, an RLC control PDU, or an RLC data PDU.
  • control PDU or data PDU may be sent through a radio bearer that needs to perform PDCP data retransmission.
  • the control PDU or data PDU may carry a QoS flow identifier or a QoS identifier that needs to be retransmitted with PDCP data.
  • the second indication information may also be transmitted through the MAC CE.
  • the at least one terminal device is a terminal device 1 and a terminal device 2 as an example. If all radio bearers of the terminal device 1 and the terminal device 2 need to perform PDCP data retransmission, a MAC CE can be sent to the terminal device 1, and a MAC CE can be sent to the terminal device 2.
  • the MAC sub-header corresponding to each MAC CE carries a specific LCID, which is used to identify the newly added MAC CE type. This type of MAC CE indicates that PDCP data retransmission needs to be triggered.
  • the MAC CE may carry the identifier of the radio bearer that needs to be retransmitted for PDCP data or the corresponding QoS flow identifier or QoS identifier.
  • the terminal device may perform PDCP data retransmission on a specific radio bearer or perform PDCP data retransmission on all radio bearers according to the second indication information.
  • FIG. 7 is a schematic flowchart of a communication method 700 according to another embodiment of the present application. This method is applicable to a scenario where the at least one terminal device accesses a first node.
  • the first node may be an IAB node 4
  • the at least one terminal device is the terminal device 3 and the terminal device 4 or one of the two connected to the IAB node 4.
  • the first node determines to trigger at least one terminal device to perform PDCP data retransmission.
  • the at least one terminal device is a part or all of the terminal devices accessing the first node.
  • the first node determining to trigger at least one terminal device to perform PDCP data retransmission is equivalent to the first node determining triggering event described in method 600.
  • the first node sends indication information # 1 (that is, an example of the second indication information) to the at least one terminal device.
  • the indication information # 1 is used to trigger PDCP data retransmission of the at least one terminal device.
  • the method may further include:
  • the at least one terminal device sends retransmission data.
  • the retransmitted data may be sent to the host base station after multiple retransmissions.
  • the terminal device After receiving the indication information # 1, the terminal device can recover the data lost when the link is switched back by sending retransmission data.
  • FIG. 8 is a schematic flowchart of a communication method 800 according to another embodiment of the present application.
  • a case where the at least one terminal device accesses a lower node (that is, a second node) of the first node will be described.
  • the first node is IAB node 4
  • the second node is IAB node 3
  • the at least one terminal device is terminal device 1 and terminal device 2 or one or both of which are connected to IAB node 3.
  • the first node determines to trigger at least one terminal device to perform PDCP data retransmission.
  • the first node determining to trigger at least one terminal device to perform PDCP data retransmission is equivalent to the first node determining triggering event described in method 600.
  • S820 The first node sends indication information # 2 (that is, an example of the second indication information) to the second node. Accordingly, the second node receives the indication information # 2.
  • indication information # 2 that is, an example of the second indication information
  • the first node does not perform any processing on the indication information # 2 that it receives, it just forwards the indication information # 3.
  • the first node may send indication information # 2 to the second node through adaptation layer signaling, but the embodiment of the present application is not limited thereto.
  • the second node sends indication information # 3 to the at least one terminal device.
  • the indication information # 3 is used to instruct the at least one terminal device to perform PDCP data retransmission.
  • the indication information # 3 is equivalent to the indication information # 1 in the method 700.
  • the method may further include:
  • the at least one terminal device sends retransmission data.
  • the retransmitted data may be sent to the host base station after multiple retransmissions.
  • This application also provides a communication method in which a node performing a backhaul link replacement triggers a subordinate node to retransmit an adaptation layer PDU.
  • a node performing a backhaul link replacement triggers a subordinate node to retransmit an adaptation layer PDU.
  • IAB node 4 can trigger IAB node 3 to retransmit the adaptation layer PDU.
  • the IAB node 4 may instruct the IAB node 3 to retransmit the adaptation layer PDU through the adaptation layer signaling. After IAB node 3 receives the adaptation layer signaling, it can retransmit the adaptation layer PDU. By retransmitting the PDUs at the adaptation layer, it is beneficial to recover the data lost when the link is switched back.
  • FIG. 9 is a schematic flowchart of a communication method 900 according to another embodiment of the present application. It should be understood that this application can be applied to the scenario of end-to-end ARQ, and also to the scenario of hop-by-hop ARQ. In addition, this application can be applied to the scenario where the adaptation layer above and the RLC are deployed, and it can also be applied to the scenario where the adaptation layer above and the MAC are deployed.
  • the terminal device determines whether RLF occurs on the access link.
  • the first operation includes at least one of the following:
  • the terminal device can autonomously determine whether RLF occurs on the access link. For example, the terminal device can determine whether RLF occurs on the access link by means of radio link monitoring (radio link monitoring) or whether random access has reached the maximum number of inputs.
  • radio link monitoring radio link monitoring
  • the terminal device may determine that RLF occurs on the backhaul link by receiving the indication information sent by the first node or the access section, so as to determine that RLF does not occur on the access link. For example, when RLF occurs on the first node, a wireless link failure notification may be sent to the node served by the first node through adaptation layer signaling, MAC CE, or RLC signaling, etc.
  • the node served by the first node may be a terminal device. It may also be a relay node. If it is a terminal device, the first node notifies the UE through MAC, CE, or RLC layer signaling instruction information.
  • the first node if the node served by the first node is a relay node, the first node notifies the relay node through adaptation layer signaling or MAC CE or RLC layer signaling indication information; the relay node continues to inform it The serving node sends an RLF notification, which is not repeated here. Further, a method of autonomous determination and a method of receiving instruction information may be used in combination.
  • the link change indication information can also be sent back to the node served by the first node; the terminal node receives After the indication information, it can be determined that no RLF has occurred on the access link, because operations such as handover will cause a change in the backhaul link to introduce packet loss on the backhaul link, and may cause the RLC to be retransmitted to the maximum number of times. It can be understood that if the RLC of the terminal has not reached the maximum number of retransmissions but receives the above indication information, the first operation may also be performed.
  • FIG. 10 is a schematic block diagram of a communication device 1000 according to an embodiment of the present application.
  • the communication device may be an IAB node, or may be a chip or a circuit, such as a chip or a circuit provided at the IAB node.
  • the communication device 1000 includes: a determining unit 1010 and a saving unit 1020.
  • a determining unit 1010 configured to determine to switch from the source node to the target node
  • the storage unit 1020 is configured to store data buffered in at least one first entity, where the first entity is a radio link control RLC entity or an adaptation layer entity.
  • the apparatus 1000 may correspond to the first node in the communication method 500 according to the embodiment of the present application, and the apparatus 1000 may include a unit for executing a method performed by the first node of the communication method 500 in FIG. 5.
  • each unit in the device 1000 and the other operations and / or functions described above are respectively used to implement a corresponding process of the communication method 500 in FIG. 5.
  • the determining unit 1010 is configured to execute S510 in the method 500
  • the saving unit 1020 is configured to S520 in method 500 is performed, and the specific process for each unit to execute the corresponding steps described above has been described in detail in method 500. For brevity, details are not described herein again.
  • FIG. 11 is a schematic block diagram of a communication device 1100 according to an embodiment of the present application.
  • the communication device may be an IAB node or a chip applied to the IAB node.
  • the communication device 1100 includes: a determining unit 1110 and a sending unit 1120.
  • a determining unit 1110 is configured to determine a trigger event, where the trigger event is used by the communication device to trigger a terminal device for data transmission through the communication device to perform packet data convergence protocol PDCP data retransmission, and the trigger event includes the communication
  • the device receives first instruction information sent by a higher-level node, or the communication device determines to switch from a source node to a target node, and the first instruction information is used to instruct at least one terminal device connected to the communication device to perform PDCP data retransmission.
  • the first indication information is radio resource control RRC signaling, adaptation layer signaling, or F1 control plane signaling, and the upper node includes a host base station and an integrated access and backhaul IAB node;
  • the sending unit 1120 is configured to send second instruction information to at least one terminal device or a second node that accesses the communication device, where the second instruction information is used to indicate the terminal device or the access device that is connected to the communication device.
  • the terminal device entering the second node performs PDCP data retransmission, and the second node is a lower node of the communication device.
  • the apparatus 1100 may correspond to the first node in the communication methods 600 to 800 according to the embodiment of the present application, and the apparatus 1100 may include a unit for executing a method performed by the first node of the methods 600 to 800.
  • each unit in the device 1100 and the other operations and / or functions described above are respectively used to implement the corresponding processes of methods 600 to 800.
  • the determining unit 1110 is configured to perform S610 in method 600, S710 in method 700, and method S810 in 800
  • the sending unit 1120 is used to execute S620 in method 600, S720 in method 700, and S820 in method 800.
  • the specific processes for each unit to perform the above corresponding steps have been described in detail in methods 500 to 800. For the sake of brevity , Will not repeat them here.
  • FIG. 12 is a schematic block diagram of a communication device 1200 according to an embodiment of the present application.
  • the communication device may be a host base station or a chip applied to the host base station.
  • the communication device 1200 includes a receiving unit 1210, a determining unit 1220, and a sending unit 1230.
  • the receiving unit 1210 is configured to receive a wireless link failure notification of one or more third nodes, where the third node is an upper node of the first node;
  • a determining unit 1220 configured to determine at least one node device connected to the network through the first node, where the node device includes at least one of a terminal device and a second node connected to the first node, and The second node is a lower node of the first node;
  • a sending unit 1230 is configured to send first instruction information to the at least one node device, where the first instruction information is used by the terminal device connected to the first node or the terminal device connected to the second node to perform PDCP.
  • the first indication information is radio resource control RRC signaling, adaptation layer signaling, or F1-AP control plane signaling.
  • the apparatus 1200 may correspond to the host node in the communication methods 600 to 800 according to the embodiment of the present application, and the apparatus 1200 may include a unit for executing the method performed by the host node of the methods 600 to 800.
  • each unit in the device 1200 and the other operations and / or functions described above are respectively used to implement the corresponding processes of the methods 600 to 800.
  • the specific process of each unit performing the above corresponding steps has been described in detail in the methods 500 to 800, and for the sake of brevity, it will not be repeated here.
  • FIG. 13 is a schematic block diagram of a communication device 1300 according to an embodiment of the present application.
  • the communication device may be a terminal device or a chip applied to the terminal device.
  • the communication device 1300 includes a determining unit 1310 and a processing unit 1320.
  • a determining unit 1310 configured to determine whether a radio link failure RLF occurs in the access link when the radio link control RLC is retransmitted to the maximum number of times;
  • the processing unit 1320 is configured to not report the RLC retransmission to the maximum number of times when the RLF does not occur on the access link. It should be understood that the apparatus 1300 may include a unit for performing the method 900. In addition, each unit in the device 1300 and the other operations and / or functions described above are used to implement a corresponding process of the method 900. Specifically, the determining unit 1310 is configured to execute S910 in the method 900, and the processing unit 1320 is configured to execute the method 900. S920, the specific process for each unit to execute the above corresponding steps has been described in detail in method 900. For brevity, it will not be repeated here.
  • each unit in each device described above may be implemented in software and / or hardware, which is not specifically limited.
  • the devices described above are presented in the form of functional units.
  • the "unit” herein may refer to an application-specific integrated circuit ASIC, a circuit, a processor and a memory executing one or more software or firmware programs, an integrated logic circuit, and / or other devices that can provide the above functions.
  • ASIC application-specific integrated circuit
  • processor and a memory
  • FIG. 14 shows a schematic structural diagram of a communication device 1400 according to an embodiment of the present application.
  • the communication device 1400 includes a processor 1420.
  • the communication device 1400 further includes a transceiver 1410 and a memory 1430.
  • the transceiver 1410, the processor 1420, and the memory 1430 communicate with each other through an internal connection path, and transfer control and / or data signals.
  • the transceiver 1410 may be implemented by means of a transceiver circuit.
  • the processor 1420 and the memory 1430 may be combined into a processing device.
  • the processor 1420 is configured to execute program codes stored in the memory 1430 to implement the foregoing functions.
  • the memory 1430 may also be integrated in the processor 1420 or independent of the processor 1420.
  • the processor 1420, the memory 1430, and the transceiver 1410 may be implemented by a chip, and the processor 1420, the memory 1430, and the transceiver 1410 may be implemented in the same chip, or may be implemented in different chips, respectively. Or any two of them can be combined in one chip.
  • the memory 1430 can store program codes, and the processor 1420 calls the program codes stored in the memory 1030 to implement the corresponding functions of any one of the devices 1000 to 1200.
  • the processor 1420 is configured to call an interface to perform the following actions: determining to switch from the source node to the target node; and storing data buffered in at least one first entity, where the first entity is a wireless chain The control RLC entity or the adaptation layer entity.
  • the communication device 1400 may also be used to implement the functions implemented by the communication device 1000 described above. Specifically, when the processor 1420 calls and runs the computer program from the memory, the processor 1420 may be configured to perform functions such as determining and saving the first node in each of the methods described above, and control the transceiver 1410 to perform corresponding information sending and receiving functions. It should be understood that the processor 1420 of the communication device 1400 may correspond to the determination unit 1010 and the storage unit 1020 in the communication device 1000. It should be understood that the communication device 1000 may further include a transceiver unit, and the transceiver 1410 of the communication device 1400 may correspond to the transceiver unit.
  • the processor 1420 is configured to call an interface to perform the following actions: determine a trigger event, and the trigger event is used by the communication device to trigger a terminal device for data transmission through the communication device to perform a packet data convergence protocol PDCP data retransmission, the trigger event includes the communication device receiving the first instruction information sent by an upper node, or the communication device determines to switch from the source node to the target node, the first instruction information is used to indicate access Perform PDCP data retransmission to at least one terminal device of the communication device, the first indication information is radio resource control RRC signaling, adaptation layer signaling, or F1 control plane signaling, and the upper node includes a host base station and an integrated access point Incoming and returning IAB nodes; sending second instruction information to at least one terminal device or a second node accessing the communication device, the second instruction information is used to indicate the terminal device accessing the communication device or The terminal device connected to the second node performs PDCP data retransmission, and the second node is a lower node
  • the communication device 1400 may also be used to implement the functions implemented by the communication device 1100. Specifically, when the processor 1420 calls and runs the computer program from the memory, the processor 1420 may be used to control the transceiver 1410 to complete a corresponding information sending and receiving function. It should be understood that the transceiver 1410 of the communication device 1400 may correspond to the sending unit 1120 in the communication device 1100. The processor 1420 of the communication device 1400 may correspond to the determination unit 1110 in the communication device 1100.
  • the processor 1420 is configured to call an interface to perform the following actions: receiving a wireless link failure notification from one or more third nodes, where the third node is an upper node of the first node;
  • the first node is connected to at least one node device of the network, the node device includes at least one of a terminal device and a second node connected to the first node, and the second node is the first node.
  • a subordinate node of the node sending first instruction information to the at least one node device, the first instruction information being used by the terminal device connected to the first node or the terminal device connected to the second node to perform PDCP data
  • the first indication information is radio resource control RRC signaling, adaptation layer signaling, or F1-AP control plane signaling.
  • the communication device 1400 may also be used to implement the functions implemented by the foregoing communication device 1200. Specifically, when the processor 1420 calls and runs the computer program from the memory, the processor 1420 may be used to control the transceiver 1410 to complete a corresponding information sending and receiving function. It should be understood that the transceiver 1410 of the communication device 1400 may correspond to the sending unit 1230 and the receiving unit 1210 in the communication device 1200. The processor 1420 of the communication device 1400 may correspond to a determination unit 1220 in the communication device 1200.
  • the processor 1420 is configured to call the interface to perform the following actions: used to determine whether a radio link failure RLF occurs in the access link under the condition that the radio link control RLC is retransmitted to the maximum number of times; When RLF does not occur on the access link, the RLC is not reported to the upper layer and retransmitted to the maximum number of times.
  • the communication device 1400 may also be used to implement the functions implemented by the communication device 1300. Specifically, when the processor 1420 calls and runs the computer program from the memory, the processor 1420 may be used to perform functions such as determination and processing of the terminal device in the foregoing methods, and control the transceiver 1410 to perform corresponding information sending and receiving functions. It should be understood that the processor 1420 of the communication device 1400 may correspond to the determination unit 1310 and the processing unit 1320 in the communication device 1300. It should be understood that the communication device 1300 may further include a transceiver unit, and the transceiver 1410 of the communication device 1400 may correspond to the transceiver unit.
  • the communication device 1400 further includes a transceiver 1410 and a memory 1430.
  • the transceiver 1410, the processor 1420, and the memory 1430 communicate with each other through an internal connection path to transfer control and / or data signals.
  • the memory 1430 is used to store a computer program, and the processor 1420 is used to call from the memory 1430.
  • the computer program is run to control the transceiver 1410 to send and receive signals.
  • the embodiments of the present application may be applied to a processor, or implemented by a processor.
  • the processor can be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiment may be completed by using an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a central processing unit (CPU), the processor may also be other general-purpose processors, digital signal processors (DSPs), and application-specific integrated circuits (ASICs) ), Ready-made programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSPs digital signal processors
  • ASICs application-specific integrated circuits
  • FPGA field programmable gate array
  • Various methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly implemented by a hardware decoding processor, or may be performed by using a combination of hardware and software in the decoding processor.
  • the software device may be located in a mature storage medium such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in a memory, and the processor reads the information in the memory and completes the steps of the foregoing method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrical memory Erase programmable read-only memory (EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double SDRAM double SDRAM
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • enhanced SDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory
  • direct RAMbus RAM direct RAMbus RAM
  • a and B can be understood as the association between A and B, or A and B have an association relationship.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of this application is essentially a part that contributes to the existing technology or a part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in the embodiments of the present application.
  • the aforementioned storage media include: U disks, mobile hard disks, read-only memories (ROMs), random access memories (RAMs), magnetic disks or compact discs and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法和通信装置,通过第一实体缓存数据,能够尽可能避免回传链路或无线链路失败的切换造成的丢包。所述通信方法应用于中继系统,所述中继系统包括第一节点、源节点和目标节点,所述源节点为所述第一节点提供服务,其特征在于,包括:所述第一节点确定从所述源节点切换至所述目标节点;所述第一节点保存至少一个第一实体中缓存的数据,所述第一实体为无线链路控制RLC实体或者适配层实体。

Description

通信方法和通信装置
本申请要求于2018年08月11日提交中国专利局、申请号为201810958271.6、申请名称为“通信方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种通信方法和通信装置。
背景技术
在长期演进(long term evolution,LTE)系统中,中继节点主要用于实现扩展覆盖或者盲区覆盖,或者用于提升系统容量。在第五代通信系统(5th generation mobile networks or5th generation wireless systems,5G)中,中继节点又被称为集成接入和回传(integrated access and backhaul,IAB)节点,IAB节点在5G系统中主要用于增强覆盖,提升系统容量。
在5G中,IAB系统支持支持多跳无线中继和多连接场景。IAB系统支持的多连接是指一个中继节点可以连接到多个上级节点,同时,IAB系统支持多跳中继。
由于中继系统是通过无线实现回传,在支持多跳的IAB系统中,当无线回传链路发生变化时,可能会造成某个IAB节点的回传链路中断,如何解决回传链路中断造成的问题是实现高质量的IAB系统的一个亟需解决的问题。
发明内容
本申请提供一种通信方法,能够尽可能避免回传链路的切换造成的丢包。
第一方面,提供了一种通信方法,该方法应用于中继系统,所述中继系统包括第一节点、源节点和目标节点,所述源节点为所述第一节点提供服务。所述方法包括:所述第一节点确定从所述源节点切换至所述目标节点;所述第一节点保存至少一个第一实体中缓存的数据,所述第一实体为无线链路控制RLC实体或者适配层实体。
具体地,第一节点确定从源节点切换至目标节点时,例如,接收到切换命令或者检测到无线链路失败(radio link failure,RLF)时,可以保存至少一个第一实体中缓存的数据,或者说,第一节点不释放至少一个第一实体中缓存的数据。其中,第一实体为无线链路控制(radio link control,RLC)实体或者适配层实体。这样,第一节点在切换至(或者说连接到)目标节点后,可以将至少一个实体中缓存的数据发送给目标节点。
现有技术中,第一实体中缓存的数据可能包括其从下级节点接收到的数据中未发送给源节点的数据,这时对第一实体中缓存的数据的丢弃操作就会造成这些还未发送给源节点的数据的丢失。因此,相比与现有技术,本申请的通信方法能够尽可能避免回传链路的切换造成的丢包。
可选地,第一实体中缓存的数据可以是从其下级节点接收到的数据中未发送给源节点 的数据(比如,RLC服务数据单元(service data unit,SDU),RLC SDU的分片,RLC协议数据单元(protocol data unit,PDU)等),也可以是从其下级节点接收到的数据中的全部数据。
应理解,所述第一实体具体可以是第一实体的发送端,或者是第一实体的接收端。
可选地,所述方法还包括:第一节点在保存至少一个第一实体中缓存的数据时,还可以保存或者重置所述至少一个第一实体的状态变量,例如RLC SDU的序列号。
结合第一方面,在第一方面的某些实现方式中,所述第一节点确定将其父节点从所述源节点切换至所述目标节点,包括:所述第一节点在接收到切换命令或者检测到无线链路失败RLF的情况下,确定将其父节点从所述源节点切换至所述目标节点,所述切换命令用于指示所述第一节点切换至所述目标节点。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:所述第一节点重建、重置、或者释放所述第一实体的下层协议实体。所述下层协议实体可以是媒体接入控制(media access control,MAC)。
结合第一方面,在第一方面的某些实现方式中,在所述第一节点至少一个第一实体中缓存的数据之前,所述方法还包括:所述第一节点接收指示信息,所述指示信息用于指示所述第一节点保存所述至少一个第一实体中缓存的数据。
该指示信息可以是宿主基站发送的,但本申请对此不作限定。
第二方面,提供了一种通信方法,包括:第一节点确定触发事件,所述触发事件用于所述第一节点触发通过所述第一节点进行数据传输的终端设备进行分组数据汇聚协议
(packet data convergence protocol,PDCP)数据重传,所述触发事件包括所述第一节点接收到上级节点发送的第一指示信息,或者所述第一节点确定从源节点切换到目标节点,所述第一指示信息用于指示接入到第一节点的至少一个终端设备进行PDCP数据重传,所述第一指示信息为无线资源控制(radio resource control,RRC)信令、适配层信令或者F1-AP控制面信令,所述上级节点包括宿主基站和集成接入和回传IAB节点;
所述第一节点向所述接入到第一节点的至少一个终端设备或者第二节点发送第二指示信息,所述第二指示信息用于指示所述接入到第一节点的至少一个终端设备或者接入到第二节点的终端设备进行PDCP数据重传,所述第二节点为所述第一节点的下级节点。
具体地,第一节点在确定发生触发事件的情况下,可以通过RRC信令、适配层信令或者F1控制面信令向接入第一节点的需要进行PDCP重传的终端设备发送第二指示信息,触发所述至少一个终端设备进行PDCP数据重传。或者,第一节点在确定发生触发事件的情况下,可以通过适配层信令向第一节点的下级节点发送第二指示信息,以使该下级节点触发所述至少一个终端设备进行PDCP数据重传。
因此,本申请实施例的通信方法,有利于恢复回传链路切换时所丢失的数据。进一步地,接入终端设备的上级节点通过回传链路向接入终端设备的节点发送信令,避免了直接在回传链路上针对每个终端设备的每个无线承载传送信令,从而能够减小信令开销。
应理解,F1为集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)之间的接口。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:所述第一节点接收来自所述接入到第一节点的终端设备或者所述接入到第二节点的终端设备的重传数据。
从而,通过终端设备进行数据重传,能够恢复回传链路切换时所丢失的数据。
结合第二方面,在第二方面的某些实现方式中,所述第二指示信息通过分组数据汇聚协议PDCP控制协议数据单元PDU、无线链路控制RLC控制PDU、RLC数据PDU、媒体接入控制控制单元媒体接入控制控制单元(media access control control element,MAC CE)或者适配层信令发送。
结合第二方面,在第二方面的某些实现方式中,所述第一指示信息包括下述信息中的至少一种:
所述至少一个终端设备的标识;
所述至少一个终端设备的至少一个无线承载的标识;
所述至少一个终端设备的至少一个服务质量(quality of service,QoS)流标识或QoS标识。
所述第一节点的标识;
所述PDCP数据重传的指示;
所述第一节点的下级节点的标识。
第三方面,提供了一种通信方法,该方法包括:宿主基站接收一个或多个第三节点的无线链路失败通知,所述第三节点为第一节点的上级节点;
所述宿主基站确定通过所述第一节点接入到网络的至少一个节点设备,所述节点设备包括接入到所述第一节点的终端设备和第二节点中的至少一种,所述第二节点为所述第一节点的下级节点;
所述宿主基站向所述至少一个节点设备发送第一指示信息,所述第一指示信息用于所述接入到第一节点的终端设备或者接入到第二节点的终端设备进行PDCP数据重传,所述第一指示信息为无线资源控制RRC信令、适配层信令或者F1-AP控制面信令。
结合第三方面,在第三方面的某些实现方式中,所述方法还包括:
所述宿主基站接收来自所述接入到第一节点终端设备或者所述接入到第二节点的终端设备的重传数据。
结合第三方面,在第三方面的某些实现方式中,所述通过所述第一节点接入到网络的至少一个节点设备包括经过多跳传输而经过所述第一节点接入到网络的节点设备。
结合第三方面,在第三方面的某些实现方式中,所述第一指示信息是所述宿主基站发送给所述第一节点的,所述第一节点向所述接入到第一节点的终端设备发送PDCP数据重传指示。
结合第三方面,在第三方面的某些实现方式中,所述第一指示信息是所述宿主基站发送给所述第二节点的,所述第二节点向所述接入到第二节点的终端设备发送PDCP数据重传指示。
结合第三方面,在第三方面的某些实现方式中,所述第一指示信息是所述宿主基站发送给所述接入到第一节点的终端设备或所述接入到第二节点的终端设备的,所述第一指示信息用于指示所述接入到第一节点的终端设备或所述接入到第二节点的终端设备的进行PDCP数据重传。
结合第三方面,在第三方面的某些实现方式中,所述第一指示信息包括下述信息中的至少一种:
所述至少一个终端设备的标识;
所述至少一个终端设备的至少一个无线承载的标识;
所述至少一个终端设备的至少一个服务质量QoS流标识或QoS标识;
所述第一节点的标识;
所述第二节点的标识;
所述PDCP数据重传的指示。
第四方面,提供了一种通信方法,包括:在无线链路控制RLC重传达到最大次数的情况下,终端设备确定接入链路是否发生无线链路失败RLF;在所述接入链路未发生RLF的情况下,所述终端设备不向上层上报RLC重传达到最大次数。
本申请实施例的方法,在接入链路未发生RLF时,即使RLC重传达到最大次数也不向上层上报RLC重传达到最大次数,从而能够避免无效的RLF。
结合第四方面,在第四方面的某些实现方式中,所述终端设备确定接入链路是否发生无线链路失败RLF,包括:所述终端设备接收指示信息,所述指示信息用于指示回传链路发生RLF或者回传链路发生改变;所述终端设备根据所述指示信息,确定所述接入链路未发送RLF。
第五方面,提供了一种通信装置,该通信装置包括用于执行第一方面或第一方面的任意一种可能的实现方式中的单元。该通信装置包括的单元可以通过软件和/或硬件方式实现。
第六方面,提供了一种通信装置,该通信装置包括用于执行第二方面或第二方面的任意一种可能的实现方式中的单元。该通信装置包括的单元可以通过软件和/或硬件方式实现。
第七方面,提供了一种通信装置,该通信装置包括用于执行第三方面或第三方面的任意一种可能的实现方式中的单元。实现方式中的方法的单元。该通信装置包括的单元可以通过软件和/或硬件方式实现。
第八方面,提供了一种通信装置,该通信装置包括用于执行第四方面或第四方面的任意一种可能的实现方式中的单元。该通信装置包括的单元可以通过软件和/或硬件方式实现。
第九方面,提供了一种通信设备,包括,处理器和存储器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得所述装置执行第一方面至第四方面或第一方面至第四方面中任一种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
可选地,所述通信设备还包括,收发器或收发电路,用于完成对信息的收发功能。
第十方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,当该计算机程序被执行时,实现上述第一方面至第四方面或上述第一方面至第四方面中任意一种可能的实现方式中的方法。
第十一方面,本申请提供了一种包含计算机程序的计算机程序产品。当该计算机程序被运行时,实现上述第一方面至第四方面或上述第一方面至第四方面中任意一种可能的实 现方式中的方法。
第十二方面,本申请提供了一种芯片系统,该芯片系统包括输入输出接口和至少一个处理器,该至少一个处理器用于调用存储器中的指令,以进行上述第一方面至第四方面或上述第一方面至第四方面中任意一种可能的实现方式中的方法的操作。
可选地,该系统芯片还可以包括至少一个存储器和总线,该至少一个存储器用于存储处理器执行的指令。
可选的,该输入输出接口以接口电路的方式实现。
附图说明
图1是本申请实施例的方法和装置的应用场景的示意图,
图2是是协议栈部署的一个示意图。
图3是是协议栈部署的一个示意图。
图4是本申请实施例的方法和装置的另一应用场景的示意图。
图5是本申请另一个实施例的方法的示意性流程图。
图6是本申请另一个实施例的方法的示意性流程图。
图7是本申请另一个实施例的方法的示意性流程图。
图8是本申请另一个实施例的方法的示意性流程图。
图9是本申请另一个实施例的方法的示意性流程图。
图10是本申请一个通信装置的示意性结构图。
图11是本申请另一个通信装置的示意性结构图。
图12是本申请一个通信装置的示意性结构图。
图13是本申请另一个通信装置的示意性结构图。
图14是本申请另一个通信装置的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
参见图1,图1示出了IAB网络中的多跳组网的场景示意图。多跳的一种定义方式为:终端设备与宿主基站(donor gNodeB,DgNB)之间的数据传输,如果经过了两个中继节点(relay node,RN),则称之为两跳,经过了三个RN则称之为三跳,以此类推。
如图1所示,该IAB网络包括终端设备101、IAB节点102、IAB节点103、宿主基站104以及5G核心网(5G core,5GC)105。其中,IAB节点102是终端设备101的接入节点,可以为终端设备101提供无线接入服务,IAB节点102与终端设备101之间的无线链路称为接入链路(access link,AC)。IAB节点103位于IAB节点102和宿主基站104之间,可称为中间(IAB)节点,IAB节点102与IAB节点103之间的无线链路称为回传链路(backhaul link,BH)或者无线回传链路(wireless backhaul link)。IAB节点103通过回传链路连接到宿主基站104传输终端设备101的业务数据,IAB节点103与宿主基站104之间的无线链路为回传链路。宿主基站104可以是一个完整的实体,还可以是集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)分离的形态,宿主基站通过有线链路连接到5G核心网105。
每个IAB节点将为其提供回传服务的节点视为上级节点(或者称为父节点);相应地,所述IAB节点可视为其上级节点的下级节点(或者称为子节点)。例如,IAB节点103是IAB节点102的上级节点,而IAB节点102是IAB节点103下级节点。宿主基站104是IAB节点103的上级节点,而IAB节点103是宿主基站104的下级节点。在本申请中,下级节点也被称为第二节点,应理解,第二节点是指的广义上的下级节点。
此外,从广义上理解,宿主基站10也是IAB节点102的上级节点,IAB节点102是宿主基站104的下级节点。
进一步地,如图1所示,IAB节点面向上级节点和面向下级节点的功能有所差异。
IAB节点接入上级节点的部分/功能称为移动终端(mobile-termination,MT),该部分可以执行类似NR中终端设备的功能,例如通过测量来选择上级节点,或者执行无线资源控制(radio resource control,RRC)连接建立过程与上级节点建立连接,并执行RRC测量来获取与上级节点之间的链路质量。宿主基站104可以通过RRC信令对MT进行配置和管理。
IAB节点为下级IAB节点或终端设备提供接入的部分/功能,称为分布式单元(distributed unit,DU)。这部分执行与NR DU类似的功能。宿主基站104可通过F1-AP(application)信令对IAB节点的DU部分进行配置和管理。
结合图2和图3,对图1所示各节点上的协议栈部署进行简要介绍。
参见图2和图3,终端设备与IAB节点之间的接口为Uu,IAB与IAB节点之间的接口为Un,IAB节点与宿主基站之间的接口为F1,宿主基站与用户面功能(user plane function,UPF)之间的接口为N3。应理解,这里列举的接口名称仅是示例性说明,本申请并不对接口名称进行任何限定。
参见图2和图3,用户面的协议栈引入了1a架构,将IAB节点作为宿主基站或CU的DU来为终端设备提供服务。其主要思想是:
(1)仅通过适配层(adapt),或通过通用分组无线协议(general packet radio service,GPRS)用户面隧道协议(GPRS Tunneling Protocol for User Plane,GTP-U)结合适配层为F1-U(F1-User plane,CU/DU之间的数据面)提供回传。
(2)通过适配层来提供逐跳的IAB节点间的数据转发。
1a架构下,终端设备的分组数据汇聚协议(packet data convergence protocol,PDCP)部署在宿主基站或宿主基站的CU,而适配层的部署有下述两种方式:
方式一:Above-RLC部署,即适配层部署在无线链路控制(radio link control,RLC)之上。
方式二:Above-MAC部署,即适配层部署在媒体接入控制(medium access control,MAC)之上(MAC和RLC之间)。
其中,适配层可以是独立的协议层,也可以是现有协议层的子层或子模块。例如,可以是RLC层的子层,或者是MAC层的子层。
对应不同的适配层部署方式,如果RLC层配置了确认模式(acknowledged mode,AM)可以进一步的区分端到端的自动重传请求(Automatic Repeat-request,ARQ)和逐跳的ARQ。
1、逐跳(Hop-by-Hop)的ARQ
接入链路和回传链路上的每个节点每个RLC实体都维护RLC所需的(收、发窗口)变量,计时器等;
每一跳的节点RLC实体都能检测到是否发生了丢包并触发当前链路的RLC重传;
每一跳节点的RLC实体都能执行RLC业务数据单元(service data unit,SDU)的分段或重组;本申请中的RLC SDU是指RLC接收到的来自上层的数据包,RLC协议数据单元(protocol data unit,PDU)是指经过RLC层处理,例如,添加RLC包头,或者经过RLC层分段后再添加RLC包头的数据包。其他层的数据包类似的,如PDCP SDU是指PDCP层接收到的来自上层的数据包,PDCP PDU是指经过PDCP层处理过的数据包,以下不再赘述。
适配层above RLC部署时,由于回传链路上的RLC实体由多个终端设备无线承载复用,而接入链路的RLC实体针对终端设备,即接入链路和回传链路处理的粒度不一样,可以考虑逐跳的ARQ,避免各跳间的协同。
2、端到端(End-to-End)的ARQ
只在路径的端节点,如终端设备和宿主基站的RLC实体维护RLC的(收、发窗口)变量,计时器等;
重传的管理在端节点RLC实体——如果任意链路有丢包,则会由端节点检测到丢包并触发重传;数据会从发送端RLC实体经过多跳传递到接收端RLC实体。
可选的,中间IAB节点的RLC实体/功能可以执行RLC SDU的分段或重分段,以便适应链路质量。可选的,中间IAB节点的RLC实体/功能只需转发数据。
适配层above MAC部署时,由于回传链路上的RLC实体针对每个终端设备无线承载,所以可以考虑配置端到端的ARQ以便减小时延。
应理解,图2和图3中所涉及的业务数据适应协议(service data adaptation protocol,SDAP)层、物理(PHY)层、隧道协议(GPRS Tunneling Protocol,GTP)层、用户数据报协议(user datagram protocol,UDP)/网络协议(internet protocol,IP)层、UDP层、IP层、层1(L1)/层2(L2)等协议层的具体功能可以参见现有技术,本申请不作赘述。
在IAB网络中,回传链路能够会发生质量变化,如果回传链路的质量下降,可能触发中继节点的切换操作或者无线链路失败(radio link failure,RLF)恢复操作,以重新选择新的回传链路。
为便于理解,以图4所示的通信系统为例进行说明。如图4所示,该系统可以包括终端设备1、IAB节点1至IAB节点5以及宿主基站。可选地,该系统还可以包括终端设备2、终端设备3和终端设备4中的一个或多个。
在IAB节点4切换回传链路前,IAB节点1为IAB节点4提供回传服务。若IAB节点1与IAB节点4之间的回传链路的质量下降,宿主基站或者IAB节点1可触发IAB节点4切换回传链路,例如,可将IAB节点1切换至由IAB节点5为其提供回传服务。或者,若IAB节点4检测到与IAB节点1之间的回传链路发生RLF,IAB节点4可执行RLF恢复操作,例如,可建立与IAB节点5之间的回传链路。
但是,IAB节点4在进行回传链路的切换或者执行RLF等操作时,如果按照传统的方法进行操作,会造成丢包。比如,IAB节点4可能会将RLC实体缓存中的数据包(如,RLC协议数据单元(protocol data unit,PDU)、RLC SDU、RLC SDU的分片等)丢弃, 从而造成数据损坏。因此,尽可能避免因为回传链路的切换或者执行RLF等操作造成的丢包,或者在发生丢包的情况下进行数据的恢复,成为一个亟需解决的技术问题。
为解决此问题,本申请提供了一种通信方法。该方法可以应用于中继系统中,该中继系统可以包括第一节点、源节点和目标节点。以该方法应用于图5所示的网络拓扑为例,第一节点可以是IAB节点4,源节点可以是IAB节点1,目标节点可以是IAB节点5。
本申请提供的一种通信方法包括:第一节点确定从所述源节点切换至所述目标节点;所述第一节点保存至少一个第一实体中缓存的数据,所述第一实体为无线链路控制RLC实体或者适配层实体。
在一些可能的实现方式中,所述第一节点确定将其父节点从所述源节点切换至所述目标节点,包括:
所述第一节点在接收到切换命令或者检测到无线链路失败RLF的情况下,确定将其父节点从所述源节点切换至所述目标节点,所述切换命令用于指示所述第一节点切换至所述目标节点。
在一些可能的实现方式中,所述方法还包括:所述第一节点重建、重置、或者释放所述第一实体的下层协议实体。
应理解,本申请还可以用于其他的通信系统中。例如,全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代移动通信技术(5th-generation,5G)通信系统或者5G新空口(new radio,NR)通信系统等。
在本申请实施例中,宿主基站可以是用于与移动台通信的设备,具体可以是无线局域网(wireless local Area networks,WLAN)中的接入点(access point,AP)、全球移动通信系统(global system for mobile communication,GSM)或码分多址(code division multiple access,CDMA)中的基站收发信台(base transceiver station,BTS)、宽带码分多址(wideband code division multiple access,WCDMA)中的基站(nodeB,NB)、LTE系统中的演进型基站(evolutional node B,eNB)、中继站或接入点、车载设备、可穿戴设备、未来5G网络中的接入网设备以及未来演进的公共陆地移动网络(public land mobile network,PLMN)中的接入网设备等中的任意一种。
本申请实施例中的终端设备可以指用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、远方站、远程终端、移动设备、终端、无线通信设备、用户代理或用户装置等,其具体可以是WLAN中的站点(station,ST)、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备、连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的移动台以及未来演进的PLMN网络中的终端设备等中的任意一种。
以下,对本申请提供的通信方法进行详细说明。
图5是本申请一个实施例的通信方法500的示意性流程图。应理解,本申请可以应用于端到端的ARQ的场景下,也可以应用于逐跳的ARQ的场景下。另外,本申请可以应用于适配层above RLC部署的场景中,也可以应用于适配层above MAC部署或者适配层作为MAC层子层的场景中。
S510,第一节点确定从源节点切换至目标节点。
第一节点确定需要从源节点切换至目标节点,至少有两种可能,一是网络指示第一节点从源节点切换至目标节点,相应的,回传链路发生切换,另一种是由于链路质量不能满足业务需求,例如,第一节点检测到RLF的情况下,确定需要通过小区选择或小区重选接入目标节点,相应的,回传链路发生变更。
第一节点根据网络指示确定需要从源节点切换至目标节点包含接收宿主基站的指示,或者源节点的指示,确定需要从源节点切换至目标节点。例如,源节点由于容量不能满足第一节点的链路质量要求,或者由于源节点的回传链路发生链路失败,或者其他原因而导致源节点主动要求第一节点进行切换以更好满足第一节点的业务要求等。通常,源节点或宿主基站通过切换命令,如RRC信令中的同步重配置(ReconfigurationwithSync)来控制第一节点切换到目标节点。宿主基站也可以直接控制第一节点切换到某个目标节点,例如,通过F1-AP接口控制第一节点切换到某个目标节点。
如果第一节点检测到RLF失败,或者检测到源节点不能满足通信要求,如传输速率低于某个阈值,第一节点可以主动发起节点重选过程。
S520,第一节点保存至少一个第一实体中缓存的数据。具体地,第一节点确定从源节点切换至目标节点时,例如,接收到切换命令或者检测到RLF时,可以保存至少一个第一实体中缓存的数据,或者说,第一节点不释放至少一个第一实体中缓存的数据。其中,第一实体为RLC实体或者适配层实体。这样,第一节点在切换至(或者说连接到)目标节点后,可以将至少一个实体中缓存的数据发送给目标节点。以RLC实体保存缓存中的数据为例,保存的数据可以是RLC SDU,RLC SDU的分段,或RLC PDU。
现有技术中,第一实体中缓存的数据可能包括其从下级节点接收到的数据中未发送给源节点的数据,这时对第一实体中缓存的数据的丢弃操作就会造成这些还未发送给源节点的数据的丢失。因此,相比与现有技术,本申请的通信方法能够尽可能避免回传链路的切换或变更造成的丢包。
应理解,第一节点中缓存的数据包括第一节点所服务的终端设备,或者第一节点的下级节点所服务的终端设备,甚至所有通过第一节点进行数据转发的终端设备的数据。
可选地,作为本申请一个实施例,S520可以是第一节点在接收到指示信息后执行的。其中,该指示信息用于指示第一节点保存至少一个第一实体中缓存的数据。该指示信息可以是宿主基站发送的。应理解,指示信息不是必须的,如果第一节点收到切换命令,或者确定切换到目标节点,或者由于链路原因而要切换到目标节点,根据自己的RLC层或者适配层的缓存配置的状态来自行确定。具体地,如果适配层在RLC层之上,可能适配层和RLC层都保存有缓存的数据,也可能只有其中的一个层有缓存的数据,即适配层或RLC层缓存数据。如果适配层和RLC层都保持存有数据,那么第一节点可以选择保留一个层的缓存的数据,也可以都保留,根据协议定义或实现确定,本申请不做约束,如果只有适 配层或RLC层中的某一个层保持有缓存的数据,那么在切换的时候,缓存的数据不应该被重置或清除。对适配层在RLC层之下的情况,遵循同样的选择,至少保留一个层的缓存的数据不被清除,不再赘述。可以理解的,第一节点还可以根据适配层的部署方式来确定需要保留缓存的数据,从而不需要指示信息,例如,对于适配层部署在MAC层之上情况,RLC实体通常针对UE承载进行配置(例如为UE承载在回传链路上配置一个一一对应的RLC实体)则需要保留缓存的数据。可以理解的,第一节点还可以根据ARQ的配置方式来确定需要保留缓存的数据,从而不需要指示信息,例如,如果配置了端到端的ARQ,则需要保留缓存的数据。
可选地,第一实体中缓存的数据可以是缓存中未发送给源节点的数据,也可以是缓存中的全部数据。所述数据是从下级节点或者从第一节点服务的UE接收到的数据。
需要说明是,在方法500中,第一节点可以包括MT和DU,缓存的数据可以包括MT或DU的数据。处于DU缓存中的数据可能还没有在回传链路上进行发送,但是也是需要发送给上级节点的,而MT中的数据可能部分已经传输了但是没有收到上级节点的反馈(例如逐跳ARQ反馈),而没有收到反馈的数据就需要重传,而没有传输的数据是需要传输的。应理解,这里的DU或MT仅仅是对第一节点功能上的区分,即,区分数据包是第一节点自己产生的还是由第一节点所服务的节点产生的,第一节点所服务的节点包括终端设备或下级节点。当对第一节点不区分DU或MT的时候,第一节点是指支持中继功能的节点。
应理解,这里的DU或MT仅仅是对第一节点功能上的区分,即,区分数据包是第一节点自己产生的还是由第一节点所服务的节点产生的,第一节点所服务的节点包括终端设备或下级节点。当对第一节点不区分DU或MT的时候,第一节点是指支持中继功能的节点。
以下,对第一节点对至少一个第一实体中的状态变量所作的操作以及目标节点所执行的操作进行说明。为便于理解,下述中均以第一实体为RLC实体为例进行说明。
应理解,本申请中的状态变量可以是RLC实体维护的发送操作、接收操作、重传和轮询的状态变量,例如下一个发送数据的序列号TX_Next,未轮询的PDU数目PDU_WITHOUT_POLL等。
第一节点接收到切换命令和无线链路失败时的处理可能稍有不同,以下分别说明。
第一节点接收到切换命令
操作1、第一节点在保存RLC实体中缓存的数据的同时,还可以保存该RLC实体的状态变量。
第一节点在执行切换时,若RLC实体本身不维护状态变量(例如,在端到端的ARQ场景下),可以不对RLC实体的状态变量进行任何处理;若RLC实体本身需要维护状态变量(例如,在逐跳的ARQ场景下),第一节点可以保存或者不释放RLC实体的状态变量。
此外,第一节点还可以不释放与RLC实体相关的计时器,该计时器包括但不限于与SDU重组相关的t-Reassembly和轮询相关的t-PollRetransmit等。
对于目标节点,其可以建立对应的RLC实体,并且同步RLC实体的上述状态变量,即将源节点完整的RLC状态迁移到目标节点。
比如,目标节点可以在接收到宿主基站发送的无线承载建立命令后建立RLC实体。宿主基站可以通过F1-AP信令发送所述无线承载建立或无线承载重建命令,本申请不约束具体的信令。
所述状态变量可以是宿主基站通过F1-AP信令发送给目标基站的,也可以是源节点通过适配层信令发送给目标基站的。对于状态变量由宿主基站通过F1-AP信令发送给目标基站的方式,宿主基站需要向源节点查询所述状态变量,或者源节点将所述状态变量报告给宿主基站。
应理解,上述仅是一个示例。由于状态变量较多,尤其是定时器相关的变量难以控制,也可以是简化的状态变量。例如,可以仅将缓存中数据包的序列号发送给目标基站,例如RLC SDU的序列号,可以是所有RLC SDU的序列号,也可以是所有RLC SDU序列号中最小的序列号,也可以是所有RLC SDU序列号中最大的序列号
操作2、第一节点在保存RLC实体中缓存的数据的同时,可以重置该RLC实体的状态变量。
具体地,第一节点可以对RLC实体的发送端和接收端的状态变量都进行重置操作。进一步地,第一节点可以分别对RLC实体的发送端和接收端缓存的数据包重新编号,例如可以从预设的初始值开始进行重新编号。或者,第一节点可以只对其RLC实体的发送端缓存的数据的重新编号,对于RLC实体的接收端,可以向上层递交所缓存的数据。
对于目标节点,其可以建立对应的RLC实体,并且初始化RLC实体的状态变量。关于目标节点如何建立对应的RLC实体可以参照上文对相关内容所作的说明,这里不再赘述。
目标节点在建立对应的RLC实体的同时,可以初始化这些RLC实体的接收端和发送端的状态变量。由于第一节点对这些RLC实体的对等实体的状态变量进行了重置操作,因此,目标节点上的这些RLC实体的接收端的状态变量的取值与其在第一节点上的对等RLC实体的发送端的状态变量的取值相同,以及,目标节点上的这些RLC实体的发送端的状态变量的取值与其在第一节点上的对等RLC实体的接收端的状态变量的取值相同。
第一节点检测到RLF
可以采用第一节点执行切换命令时的操作1进行状态变量的同步,或者采用第一节点执行切换命令时的操作2对数据包进行重新编号。如上所述,不再赘述。
进一步地,区别于第一节点执行切换的情况,由于第一节点保留了至少一个RLC实体或者保留了至少一个RLC实体缓存的数据,且宿主基站维护有第一节点的无线承载配置信息,第一节点在接入目标节点后,宿主基站可以向第一节点发送承载激活或者重用指示信息,该激活指示或者重用信息包括所述至少一个RLC的标识(例如RLC承载标识,RLC信道标识)或者UE承载标识,以激活或者重用所述至少一个RLC实体。
无论是对于第一节点接收到切换命令还是第一节点检测到RLF,源节点都会释放与所述至少一个RLC实体对应的无线承载。比如,源节点可以在接收到宿主基站发送的释放无线承载的命令后释放相应的无线承载,该命令例如可以是F1-AP信令,但本申请实施例对此不作限定。
图6是本申请另一实施例的通信方法600的示意性流程图。应理解,本申请可以应用于端到端的ARQ的场景下,也可以应用于逐跳的ARQ的场景下。另外,本申请可以应用 于适配层above RLC部署的场景中,也可以应用于适配层above MAC部署的场景中。
S610,第一节点确定触发事件。
触发事件用于第一节点触发通过第一节点进行数据传输的终端设备进行PDCP数据重传。触发事件包括第一节点接收到上级节点发送的第一指示信息,或者第一节点确定从源节点切换到目标节点。其中,第一指示信息用于指示接入到第一节点的终端设备进行数据重传,第一指示信息为无线资源控制RRC信令、适配层信令或者F1控制面信令,上级节点包括宿主基站和集成接入和回传IAB节点。
在一种可能的实现中,宿主基站接收一个或多个第三节点的无线链路失败通知,第三节点为第一节点的上级节点。宿主基站确定通过第一节点接入到网络的至少一个节点设备,节点设备包括接入到第一节点的终端设备和第二节点中的至少一种,第二节点为第一节点的下级节点。宿主基站向至少一个节点设备发送第一指示信息,第一指示信息用于接入到第一节点的终端设备或者接入到第二节点的终端设备进行PDCP数据重传,第一指示信息为无线资源控制RRC信令、适配层信令或者F1-AP控制面信令。
上述通过第一节点接入到网络的至少一个节点设备包括经过多跳传输而经过第一节点接入到网络的节点设备。第一指示信息是宿主基站发送给第一节点的,第一节点向所入到第一节点的终端设备发送PDCP数据重传指示。第一指示信息还可以是宿主基站发送给第二节点的,第二节点向接入到第二节点的终端设备发送PDCP数据重传指示。第一指示信息还可以是宿主基站发送给接入到第一节点的终端设备或接入到第二节点的终端设备的,第一指示信息用于指示接入到第一节点的终端设备或接入到第二节点的终端设备的进行PDCP数据重传。
应理解,上述可能的实现中,宿主基站可以直接控制经过第一节点传输数据的终端设备进行PDCP的重传,直接控制是指宿主基站直接给这些终端设备发送控制消息,使得终端设备进行PDCP的重传。终端设备不仅包括接入到第一节点的终端设备,还包括接入到第二节点的终端设备。
在一种可能的实现中,宿主基站也可以给中继节点发一个控制消息,即第一指示信息,而不是给接入到中继节点的每个终端设备直接发送控制消息,以便于节省空口信令开销。中继节点,如第一节点、第二节点等在收到宿主基站的第一指示信息后,向所有通过第一节点进行数据转发的终端设备发送PDCP数据重传指示,使得接入到第一节点和/或接入到第二节点的终端设备进行PDCP数据重传。
应理解,宿主基站向终端设备直接发送PDCP数据重传的控制消息和中继节点向接入到中继节点的终端设备发送PDCP数据重传的控制消息会稍有不同,因为宿主基站可以通过RRC消息或者PDCP控制信令直接控制终端设备进行PDCP重传,而中继节点在DU上可能不支持RRC和/或PDCP层,因此不能发送RRC消息或者PDCP控制信令,只能通过适配层控制信令或者MAC CE或者RLC控制信令来通知接入到中继节点的终端设备进行PDCP的重传。
针对上述实施方式,示例性的,宿主基站可以在接收到所述第一节点发送的切换完成信令(例如,RRC连接重配置完成消息)的情况下,或者在接收到第一节点由于RLF而发送的RRC连接重建立完成消息的情况下,可以通过RRC信令、适配层信令或者F1-AP信令触发至少一个终端设备的PDCP数据重传。
S620,所述第一节点向所述至少一个终端设备或者所述第一节点的下级节点发送第二指示信息。
第一节点向至少一个接入到第一节点的终端设备或者第二节点发送第二指示信息,第二指示信息用于指示所述接入到第一节点的终端设备或者接入到第二节点的终端设备进行PDCP数据重传,第二节点为第一节点的下级节点。
应理解,第二节点为广义的下级节点,即,第二节点可以是经过多跳传输而通过第一节点接入到网络的中继节点。
应理解,如果宿主基站直接控制终端设备进行PDCP数据重传,第二指示信息的内容至少包括第二指示信息的内容,此时,第一节点将第一指示信息的内容透明传输给接入到第一节点的终端设备。
如果宿主基站向第一节点或第二节点发送控制消息,第一指示信息和第二指示信息的内容不同,此时,第一指示信息主要包括第一节点或第二节点的标识,PDCP数据重传的指示。第一节点和/或第二节点根据第一指示信息,进一步向接入到第一节点或第二节点的终端设备发送第二指示信息,第二指示信息指示接入到第一节点或第二节点的终端设备进行PDCP数据重传,此时第二指示信息包括终端设备的标识,终端设备的至少一个无线承载的标识,终端设备的至少一个服务质量QoS流标识或QoS标识,第一节点的标识中的至少一种。应理解,一个终端设备可能不是所有的承载或数据流都是经过第一节点进行传输的,此时的PDCP数据重传仅用于指示那些通过第一节点进行数据传输的承载或数据流。
具体地,第一节点在确定发生触发事件的情况下,可以通过RRC信令、适配层信令或者F1控制面信令向接入第一节点的需要进行PDCP重传的终端设备发送第二指示信息,触发所述至少一个终端设备进行PDCP数据重传。或者,第一节点在确定发生触发事件的情况下,可以通过适配层信令向第一节点的下级节点发送第二指示信息,以使该下级节点触发所述至少一个终端设备进行PDCP数据重传。
因此,本申请实施例的通信方法,有利于恢复回传链路切换时所丢失的数据。进一步地,接入终端设备的上级节点通过回传链路向接入终端设备的节点发送信令,避免了直接在回传链路上针对每个终端设备的每个无线承载传送信令,从而能够减小信令开销。
本申请中,第一节点可以确定满足特定QoS需求的UE的无线承载进行PDCP数据重传。此时第一指示信息包含所述的特定的QoS对应的QoS标识,或者QoS参数,如时延,传输速率等。第一指示信息还可以包含至少一个终端和该终端对应的QoS的QoS标识或QoS参数。
如果第一指示信息包含了QoS标识或QoS参数,第二节点可以根据第一指示信息和预先配置的承载映射信息或者承载的QoS参数识别出需要发送第二指示信息的终端设备,或终端设备的无线承载,或终端设备的QoS流。
可选的,第二节点可以将QoS标识或QoS参数添加在第二指示信息,由终端识别对对应的无线承载或QoS流。
可选地,第一指示信息可以包括下述信息中的至少一种:
所述至少一个终端设备的标识;所述至少一个终端设备的至少一个无线承载的标识;所述至少一个终端设备的至少一个服务质量QoS流标识或QoS标识。
其中,终端设备的标识包括但不限于国际移动用户识别码(international mobile subscriber identity,IMSI),临时移动用户识别码(temporary mobile subscriber identity,TMSI),C-RNTI(cell radio network temporary identifier),MAC地址,IP地址等。
为使本领域技术人员更好的理解本申请,以下,以所述至少一个终端设备为终端设备1和终端设备2为例,对第一指示信息进行详细说明。
(1)终端设备1和终端设备2为接入第二节点的所有终端设备,并且终端设备1和终端设备2的所有无线承载都需要进行PDCP数据重传。
第一指示信息可以是新定义的一个字段,该字段可以是1比特(bit)。比如,当该比特置为1时,可以表示需要触发接入第二节点的所有终端设备的所有无线承载都需要进行PDCP数据重传。
(2)终端设备1和终端设备2为接入第二节点的部分终端设备,并且终端设备1和终端设备2的所有无线承载都需要进行PDCP数据重传。
第一指示信息可以包括终端设备1的标识和终端设备2的标识。
(3)终端设备1和终端设备2为接入第二节点的部分终端设备,并且终端设备1的部分无线承载需要进行PDCP数据重传。
第一指示信息可以包括终端设备1的标识和终端设备1的该部分无线承载的标识,或者,第一指示信息可以包括终端设备1的标识和终端设备1的该部分无线承载所对应的QoS流标识或QoS标识。
若终端设备2的所有无线承载需要进行PDCP数据重传,第一指示信息还可以包括终端设备2的标识,或者包括终端设备2的标识和其所有无线承载的标识,或者包括终端设备2的标识和其所有无线承载所对应的QoS流标识或QoS标识。若终端设备2的部分无线承载需要进行PDCP数据重传,第一指示信息还可以包括终端设备2的标识和终端设备2的该部分无线承载的标识,或者包括终端设备2的标识和终端设备2的该部分无线承载所对应的QoS流标识或QoS标识。
可选地,第二指示信息可以通过PDCP控制PDU、RLC控制PDU或者RLC数据PDU传输。
具体地,上述控制PDU或者数据PDU可以通过需要进行PDCP数据重传的无线承载发送。或者,上述控制PDU或者数据PDU可以携带需要进行PDCP数据重传的QoS流标识或QoS标识。
可选地,第二指示信息也可以通过MAC CE传输。
类似地,以所述至少一个终端设备为终端设备1和终端设备2为例。若终端设备1和终端设备2的所有无线承载都需要进行PDCP数据重传,则可以向终端设备1发送一个MAC CE,向终端设备2发送一个MAC CE。每个MAC CE对应的MAC sub-header携带特定LCID,用于识别新增的MAC CE类型,该类型的MAC CE指示需要触发PDCP数据重传。若终端设备1的部分无线承载需要进行PDCP数据重传,MAC CE可以携带需要进行PDCP数据重传的无线承载的标识或者对应的QoS流标识或QoS标识。
应理解,终端设备接收到第二指示信息后,根据第二指示信息,可以对特定的无线承载进行PDCP数据重传,或者对所有无线承载进行PDCP数据重传。
以下,结合图7和图8,分别对所述至少一个终端设备接入第一节点和所述至少一个 终端设备接入第一节点的下级节点的情况进行说明。
图7是本申请另一实施例的通信方法700的示意性流程图。该方法适用于所述至少一个终端设备接入第一节点的场景。以图4为例,第一节点可以是IAB节点4,所述至少一个终端设备为接入IAB节点4的终端设备3和终端设备4或者二者之一。
S710,第一节点确定触发至少一个终端设备进行PDCP数据重传。所述至少一个终端设备为接入所述第一节点的部分或全部终端设备。
应理解,第一节点确定触发至少一个终端设备进行PDCP数据重传相当于方法600中所描述的第一节点确定触发事件。
S720,第一节点向所述至少一个终端设备发送指示信息#1(即,第二指示信息的一例)。指示信息#1用于触发所述至少一个终端设备的PDCP数据重传。
可选地,该方法还可以包括:
S730,该至少一个终端设备发送重传数据。
应理解,该重传数据经过多跳转发,可以发送给宿主基站。
终端设备在接收到指示信息#1后,通过发送重传数据,能够恢复回传链路切换时所丢失的数据。
图8是本申请另一实施例的通信方法800的示意性流程图。所述至少一个终端设备接入第一节点的下级节点(即,第二节点)的情况进行说明。以图4为例,第一节点为IAB节点4,第二节点为IAB节点3,所述至少一个终端设备为接入IAB节点3的终端设备1和终端设备2或者二者之一。
S810,第一节点确定触发至少一个终端设备进行PDCP数据重传。
应理解,第一节点确定触发至少一个终端设备进行PDCP数据重传相当于方法600中所描述的第一节点确定触发事件。
S820,第一节点向第二节点发送指示信息#2(即,第二指示信息的一例)。相应地,第二节点接收指示信息#2。
应理解,第一节点不对其接收到的指示信息#2进行任何处理,其只是转发该指示信息#3。
可选地,第一节点可以通过适配层信令向第二节点发送指示信息#2,但本申请实施例并不限于此。
S830,第二节点向该至少一个终端设备发送指示信息#3。指示信息#3用于指示所述至少一个终端设备进行PDCP数据重传。
应理解,指示信息#3相等于方法700中的指示信息#1。
可选地,该方法还可以包括:
S840,该至少一个终端设备发送重传数据。
应理解,该重传数据经过多跳转发,可以发送给宿主基站。
本申请还提供了一种通信方法,该通信方法中由执行回传链路更换的节点触发其下级节点重传适配层PDU。以图4为例,也就是说,IAB节点4可以触发IAB节点3重传适配层PDU。
具体地,以图4为例,IAB节点4可以通过适配层信令指示IAB节点3重传适配层PDU。IAB节点3接收到该适配层信令后,可以重新传输适配层PDU。通过重新传输适配 层PDU,有利于恢复回传链路切换时所丢失的数据。
图9是本申请另一实施例的通信方法900的示意性流程图。应理解,本申请可以应用于端到端的ARQ的场景下,也可以应用于逐跳的ARQ的场景下。另外,本申请可以应用于适配层above RLC部署的场景中,也可以应用于适配层above MAC部署的场景中。
S910,在RLC重传达到最大次数的情况下,终端设备确定接入链路是否发生RLF。
S920,在接入链路未发生RLF的情况下,终端设备执行第一操作。
其中,第一操作包括下述中的至少一种:
(1)不向上层(RRC层)上报RLC重传达到最大次数,或者禁用RLC重传达到最大次数次触发RLF的功能;
(2)停止RLC传输/重传;
(4)重置RLC重传次数RETX_COUNT为0;
(5)将RLC的最大重传次数maxRetxThreshold置为另一个预设值,例如,该值可以大于当前使用的最大重传次数。
作为S910的一种可能的实现方式,终端设备可以自主确定接入链路是否发生RLF。比如,终端设备可以通过无线链路监测(radio link monitoring,RLM)或者随机接入是否达到最大输次数等方式来确定接入链路是否发生RLF。
作为S910的一种可能的实现方式,终端设备可以通过接收第一节点或接入节发送的指示信息确定回传链路发生RLF,从而确定接入链路未发生RLF。比如,第一节点发生RLF时,可以通过适配层信令或MAC CE或者RLC信令等向第一节点所服务的节点发送无线链路失败通知,第一节点所服务的节点可能是终端设备也可能是中继节点,如果是终端设备,第一节点通过MAC CE或RLC层信令指示信息通知给UE。类似地,如果第一节点所服务的节点是中继节点,那么第一节点通过适配层信令或MAC CE或RLC层信令指示信息通知给中继节点;该中继节点继续向它所服务的节点发送RLF通知,不再赘述。进一步的,自主确定方式和接收指示信息的方式可以结合使用。类似的,如果第一节点执行切换操作,或者激活备份链路,或执行拓扑更新,或路由更新等操作也可以向第一节点所服务的节点发送回传链路改变指示信息;终端节点收到所述指示信息后能确定接入链路未发生RLF,因为切换等操作会造成回传链路改变从而引入回传链路的丢包,并可能导致RLC重传达到最大次数。可以理解的,如果终端的RLC尚未达到最大重传次数但收到了上述指示信息,也可以执行第一操作。
图10是根据本申请实施例的通信装置1000的示意性框图,该通信装置可以为IAB节点,也可以为芯片或电路,比如为设置于IAB节点的芯片或电路。如图10所示,该通信装置1000包括:确定单元1010和保存单元1020。
确定单元1010,用于确定从所述源节点切换至所述目标节点;
保存单元1020,用于保存至少一个第一实体中缓存的数据,所述第一实体为无线链路控制RLC实体或者适配层实体。
应理解,该装置1000可以对应于根据本申请实施例的通信方法500中的第一节点,该装置1000可以包括用于执行图5中通信方法500的第一节点执行的方法的单元。并且,该装置1000中的各单元和上述其他操作和/或功能分别为了实现图5中通信方法500的相应流程,具体地,确定单元1010用于执行方法500中的S510,保存单元1020用于执行 方法500中的S520,各单元执行上述相应步骤的具体过程在方法500中已经详细说明,为了简洁,在此不再赘述。
图11是根据本申请实施例的通信装置1100的示意性框图,该通信装置可以为IAB节点也可以为应用于IAB节点的芯片。如图11所示,该通信装置1100包括:确定单元1110和发送单元1120。
确定单元1110,用于确定触发事件,所述触发事件用于所述通信装置触发通过所述通信装置进行数据传输的终端设备进行分组数据汇聚协议PDCP数据重传,所述触发事件包括所述通信装置接收到上级节点发送的第一指示信息,或者所述通信装置确定从源节点切换到目标节点,所述第一指示信息用于指示接入到通信装置的至少一个终端设备进行PDCP数据重传,所述第一指示信息为无线资源控制RRC信令、适配层信令或者F1控制面信令,所述上级节点包括宿主基站和集成接入和回传IAB节点;
发送单元1120,用于向所述接入到通信装置的至少一个终端设备或者第二节点发送第二指示信息,所述第二指示信息用于指示所述接入到通信装置的终端设备或者接入到第二节点的终端设备进行PDCP数据重传,所述第二节点为所述通信装置的下级节点。
应理解,该装置1100可以对应于根据本申请实施例的通信方法600至800中的第一节点,该装置1100可以包括用于执行方法600至800的第一节点执行的方法的单元。并且,该装置1100中的各单元和上述其他操作和/或功能分别为了实现方法600至800的相应流程,具体地,确定单元1110用于执行方法600中的S610、方法700中的S710以及方法800中的S810,发送单元1120用于执行方法600中的S620、方法700中的S720以及方法800中的S820,各单元执行上述相应步骤的具体过程在方法500至800中已经详细说明,为了简洁,在此不再赘述。
图12是根据本申请实施例的通信装置1200的示意性框图,该通信装置可以为宿主基站也可以为应用于宿主基站的芯片。如图12所示,该通信装置1200包括:接收单元1210、确定单元1220和发送单元1230。
接收单元1210,用于接收一个或多个第三节点的无线链路失败通知,所述第三节点为第一节点的上级节点;
确定单元1220,用于确定通过所述第一节点接入到网络的至少一个节点设备,所述节点设备包括接入到所述第一节点的终端设备和第二节点中的至少一种,所述第二节点为所述第一节点的下级节点;
发送单元1230,用于向所述至少一个节点设备发送第一指示信息,所述第一指示信息用于所述接入到第一节点的终端设备或者接入到第二节点的终端设备进行PDCP数据重传,所述第一指示信息为无线资源控制RRC信令、适配层信令或者F1-AP控制面信令。
应理解,该装置1200可以对应于根据本申请实施例的通信方法600至800中的宿主节点,该装置1200可以包括用于执行方法600至800的宿主节点执行的方法的单元。并且,该装置1200中的各单元和上述其他操作和/或功能分别为了实现方法600至800的相应流程。各单元执行上述相应步骤的具体过程在方法500至800中已经详细说明,为了简洁,在此不再赘述。
图13是根据本申请实施例的通信装置1300的示意性框图,该通信装置可以为终端设备也可以为应用于终端设备的芯片。如图13所示,该通信装置1300包括:确定单元1310 和处理单元1320。
确定单元1310,用于在无线链路控制RLC重传达到最大次数的情况下,确定接入链路是否发生无线链路失败RLF;
处理单元1320,用于在所述接入链路未发生RLF的情况下,不向上层上报RLC重传达到最大次数。应理解,该装置1300可以包括用于执行方法900的单元。并且,该装置1300中的各单元和上述其他操作和/或功能分别为了实现方法900的相应流程,具体地,确定单元1310用于执行方法900中的S910,处理单元1320用于执行方法900中的S920,各单元执行上述相应步骤的具体过程在方法900中已经详细说明,为了简洁,在此不再赘述。
应理解,以上所述各装置中的各个单元可以通过软件和/或硬件形式实现,对此不作具体限定。换言之,以上所述各装置是以功能单元的形式来呈现。这里的“单元”可以指特定应用集成电路ASIC、电路、执行一个或多个软件或固件程序的处理器和存储器、集成逻辑电路,和/或其他可以提供上述功能的器件。可选地,在一个简单的实施例中,本领域的技术人员可以想到以上所述各装置可以采用图14所示的形式。
图14示出了根据本申请实施例的通信装置1400的示意性结构图。如图14所示,该通信装置1400包括处理器1420。
可选的,通信装置1400还包括收发器1410和存储器1430。其中,收发器1410、处理器1420和存储器1430之间通过内部连接通路互相通信,传递控制和/或数据信号。收发器1410可以通过收发电路的方式来实现。
上述处理器1420和存储器1430可以合成一个处理装置,处理器1420用于执行存储器1430中存储的程序代码来实现上述功能。具体实现时,该存储器1430也可以集成在处理器1420中,或者独立于处理器1420。
在一个可能的设计中,处理器1420、存储器1430和收发器1410可以通过芯片实现,处理器1420、存储器1430和收发器1410可以是在同一个芯片中实现,也可能分别在不同的芯片实现,或者其中任意两个功能组合在一个芯片中实现。该存储器1430可以存储程序代码,处理器1420调用存储器1030存储的程序代码,以实现装置1000至装置1200中任一项装置的相应功能。
在一种实现方式中,处理器1420用于调用接口执行以下动作:确定从所述源节点切换至所述目标节点;保存至少一个第一实体中缓存的数据,所述第一实体为无线链路控制RLC实体或者适配层实体。
应理解,在该实现方式中,通信装置1400还可以用于实现上述通信装置1000所实现的功能。具体地,在该处理器1420从存储器中调用并运行该计算机程序时,处理器1420可用于执行上述各方法中第一节点的确定、保存等功能,并控制收发器1410完成相应信息收发功能。应理解,通信装置1400的处理器1420可以对应于通信装置1000中的确定单元1010和保存单元1020。应理解,通信装置1000还可以包括收发单元,通信装置1400的收发器1410可以对应于该收发单元。
在另一种实现方式中,处理器1420用于调用接口执行以下动作:确定触发事件,所述触发事件用于所述通信装置触发通过所述通信装置进行数据传输的终端设备进行分组数据汇聚协议PDCP数据重传,所述触发事件包括所述通信装置接收到上级节点发送的第 一指示信息,或者所述通信装置确定从源节点切换到目标节点,所述第一指示信息用于指示接入到通信装置的至少一个终端设备进行PDCP数据重传,所述第一指示信息为无线资源控制RRC信令、适配层信令或者F1控制面信令,所述上级节点包括宿主基站和集成接入和回传IAB节点;向所述接入到通信装置的至少一个终端设备或者第二节点发送第二指示信息,所述第二指示信息用于指示所述接入到通信装置的终端设备或者接入到第二节点的终端设备进行PDCP数据重传,所述第二节点为所述通信装置的下级节点。
应理解,在该实现方式中,通信装置1400还可以用于实现上述通信装置1100所实现的功能。具体地,在该处理器1420从存储器中调用并运行该计算机程序时,处理器1420可用于控制收发器1410完成相应信息收发功能。应理解,通信装置1400的收发器1410可以对应于通信装置1100中的发送单元1120。通信装置1400的处理器1420可以对应于通信装置1100中的确定单元1110。
在另一种实现方式中,处理器1420用于调用接口执行以下动作:接收一个或多个第三节点的无线链路失败通知,所述第三节点为第一节点的上级节点;确定通过所述第一节点接入到网络的至少一个节点设备,所述节点设备包括接入到所述第一节点的终端设备和第二节点中的至少一种,所述第二节点为所述第一节点的下级节点;向所述至少一个节点设备发送第一指示信息,所述第一指示信息用于所述接入到第一节点的终端设备或者接入到第二节点的终端设备进行PDCP数据重传,所述第一指示信息为无线资源控制RRC信令、适配层信令或者F1-AP控制面信令。
应理解,在该实现方式中,通信装置1400还可以用于实现上述通信装置1200所实现的功能。具体地,在该处理器1420从存储器中调用并运行该计算机程序时,处理器1420可用于控制收发器1410完成相应信息收发功能。应理解,通信装置1400的收发器1410可以对应于通信装置1200中的发送单元1230和接收单元1210。通信装置1400的处理器1420可以对应于通信装置1200中的确定单元1220。
在又一种实现方式中,处理器1420用于调用接口执行以下动作:用在无线链路控制RLC重传达到最大次数的情况下,确定接入链路是否发生无线链路失败RLF;在所述接入链路未发生RLF的情况下,不向上层上报RLC重传达到最大次数。
应理解,在该实现方式中,该通信装置1400还可以用于实现上述通信装置1300所实现的功能。具体地,在该处理器1420从存储器中调用并运行该计算机程序时,处理器1420可用于执行上述各方法中终端设备的确定、处理等功能,并控制收发器1410完成相应信息收发功能。应理解,通信装置1400的处理器1420可以对应于通信装置1300中的确定单元1310和处理单元1320。应理解,通信装置1300还可以包括收发单元,通信装置1400的收发器1410可以对应于该收发单元。
可选的,通信装置1400还包括收发器1410和存储器1430。其中,收发器1410、处理器1420和存储器1430之间通过内部连接通路互相通信,传递控制和/或数据信号,该存储器1430用于存储计算机程序,该处理器1420用于从该存储器1430中调用并运行该计算机程序,以控制该收发器1410收发信号。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请实施例可以应用于处理器中,或者由处理器实现。处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是中央处理单元(central processing unit,CPU)、该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件器组合执行完成。软件器可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DRRAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请中,A与B对应可以理解为A与B关联,或者A与B具有关联关系。
应理解,本申请实施例中的方式、情况、类别以及实施例的划分仅是为了描述的方便,不应构成特别的限定,各种方式、类别、情况以及实施例中的特征在不矛盾的情况下可以相结合。
还应理解,申请实施例中的“第一”和“第二”仅为了区分,不应对本申请构成任何限定。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (58)

  1. 一种通信方法,所述通信方法应用于中继系统,所述中继系统包括第一节点、源节点和目标节点,所述源节点为所述第一节点提供服务,其特征在于,包括:
    所述第一节点确定从所述源节点切换至所述目标节点;
    所述第一节点保存至少一个第一实体中缓存的数据,所述第一实体为无线链路控制RLC实体或者适配层实体。
  2. 如权利要求1所述的方法,其特征在于,所述第一节点确定将其父节点从所述源节点切换至所述目标节点,包括:
    所述第一节点在接收到切换命令或者检测到无线链路失败RLF的情况下,确定将其父节点从所述源节点切换至所述目标节点,所述切换命令用于指示所述第一节点切换至所述目标节点。
  3. 如权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述第一节点重建、重置、或者释放所述第一实体的下层协议实体。
  4. 如权利要求1至3中任一项所述的方法,其特征在于,在所述第一节点至少一个第一实体中缓存的数据之前,所述方法还包括:
    所述第一节点接收指示信息,所述指示信息用于指示所述第一节点保存所述至少一个第一实体中缓存的数据。
  5. 一种通信方法,其特征在于,包括:
    第一节点确定触发事件,所述触发事件用于所述第一节点触发通过所述第一节点进行数据传输的终端设备进行分组数据汇聚协议PDCP数据重传,所述触发事件包括所述第一节点接收到上级节点发送的第一指示信息,或者所述第一节点确定从源节点切换到目标节点,所述第一指示信息用于指示接入到所述第一节点的至少一个终端设备进行PDCP数据重传,所述第一指示信息为无线资源控制RRC信令、适配层信令或者F1-AP控制面信令,所述上级节点包括宿主基站和集成接入和回传IAB节点;
    所述第一节点向所述接入到所述第一节点的至少一个终端设备或者第二节点发送第二指示信息,所述第二指示信息用于指示所述接入到第一节点的至少一个终端设备或者接入到第二节点的终端设备进行PDCP数据重传,所述第二节点为所述第一节点的下级节点。
  6. 如权利要求5所述的方法,其特征在于,所述方法还包括:
    所述第一节点接收来自所述接入到所述第一节点的至少一个终端设备或者所述接入到第二节点的终端设备的重传数据。
  7. 如权利要求5或6所述的方法,其特征在于,所述第一指示信息包括下述信息中的至少一种:
    所述至少一个终端设备的标识;
    所述至少一个终端设备的至少一个无线承载的标识;
    所述至少一个终端设备的至少一个服务质量QoS流标识或QoS标识。
  8. 如权利要求5至7中任一项所述的方法,其特征在于,所述第二指示信息通过分 组数据汇聚协议PDCP控制协议数据单元PDU,或无线链路控制RLC控制PDU,或RLC数据PDU或者媒体接入控制控制单元MAC CE,或者适配层控制信令发送。
  9. 如权利要求5至8中任一项所述的方法,其特征在于,所述第二指示信息包括下述信息中的至少一项:
    所述至少一个终端设备的标识;
    所述至少一个终端设备的至少一个无线承载的标识;
    所述至少一个终端设备的至少一个服务质量QoS流标识或QoS标识;
    所述第一节点的标识;
    所述PDCP数据重传的指示;
    所述第一节点的下级节点的标识。
  10. 一种通信方法,其特征在于,包括:
    宿主基站接收一个或多个第三节点的无线链路失败通知,所述第三节点为第一节点的上级节点;
    所述宿主基站确定通过所述第一节点接入到网络的至少一个节点设备,所述节点设备包括接入到所述第一节点的终端设备和第二节点中的至少一种,所述第二节点为所述第一节点的下级节点;
    所述宿主基站向所述至少一个节点设备发送第一指示信息,所述第一指示信息用于所述接入到第一节点的终端设备或者接入到第二节点的终端设备进行PDCP数据重传,所述第一指示信息为无线资源控制RRC信令、适配层信令或者F1-AP控制面信令。
  11. 如权利要求10所述的方法,其特征在于,所述方法还包括:
    所述宿主基站接收来自所述接入到第一节点终端设备或者所述接入到第二节点的终端设备的重传数据。
  12. 如权利要求10或11所述的方法,其特征在于,所述通过所述第一节点接入到网络的至少一个节点设备包括经过多跳传输而经过所述第一节点接入到网络的节点设备。
  13. 如权利要求10至12中任一项所述的方法,其特征在于,所述第一指示信息是所述宿主基站发送给所述第一节点的,所述第一节点向所述接入到第一节点的终端设备发送PDCP数据重传指示。
  14. 如权利要求10至13中任一项所述的方法,其特征在于,所述第一指示信息是所述宿主基站发送给所述第二节点的,所述第二节点向所述接入到第二节点的终端设备发送PDCP数据重传指示。
  15. 如权利要求10至12中任一项所述的方法,其特征在于,所述第一指示信息是所述宿主基站发送给所述接入到第一节点的终端设备或所述接入到第二节点的终端设备的,所述第一指示信息用于指示所述接入到第一节点的终端设备或所述接入到第二节点的终端设备的进行PDCP数据重传。
  16. 如权利要求10至15中任一项所述的方法,其特征在于,所述第一指示信息包括下述信息中的至少一种:
    所述至少一个终端设备的标识;
    所述至少一个终端设备的至少一个无线承载的标识;
    所述至少一个终端设备的至少一个服务质量QoS流标识或QoS标识;
    所述第一节点的标识;
    所述第二节点的标识;
    所述PDCP数据重传的指示。
  17. 一种PDCP重传的方法,包括:
    在无线链路控制RLC重传达到最大次数的情况下,终端设备确定接入链路是否发生无线链路失败RLF;
    在所述接入链路未发生RLF的情况下,所述终端设备不向上层上报RLC重传达到最大次数。
  18. 如权利要求17所述的方法,其特征在于,所述终端设备确定接入链路是否发生无线链路失败RLF,包括:
    所述终端设备接收指示信息,所述指示信息用于指示回传链路发生RLF或者回传链路发生改变;
    所述终端设备根据所述指示信息,确定所述接入链路未发送RLF。
  19. 一种通信装置,所述装置应用于中继系统,所述中继系统包括所述装置、源节点和目标节点,所述源节点为所述装置提供服务,其特征在于,包括:
    确定单元,用于确定从所述源节点切换至所述目标节点;
    保存单元,用于保存至少一个第一实体中缓存的数据,所述第一实体为无线链路控制RLC实体或者适配层实体。
  20. 如权利要求19所述的装置,其特征在于,所述确定单元还用于:
    在接收到切换命令或者检测到无线链路失败RLF的情况下,确定将其父节点从所述源节点切换至所述目标节点,所述切换命令用于指示所述装置切换至所述目标节点。
  21. 如权利要求19或20所述的装置,其特征在于,所述装置还包括:
    处理单元,用于重建、重置、或者释放所述第一实体的下层协议实体。
  22. 如权利要求19至21中任一项所述的装置,其特征在于,所述装置还包括:
    接收单元,用于接收指示信息,所述指示信息用于指示所述装置保存所述至少一个第一实体中缓存的数据。
  23. 一种通信装置,其特征在于,包括:
    确定单元,用于确定触发事件,所述触发事件用于所述装置触发通过所述装置进行数据传输的终端设备进行分组数据汇聚协议PDCP数据重传,所述触发事件包括所述装置接收到上级节点发送的第一指示信息,或者所述装置确定从源节点切换到目标节点,所述第一指示信息用于指示接入到装置的至少一个终端设备进行PDCP数据重传,所述第一指示信息为无线资源控制RRC信令、适配层信令或者F1-AP控制面信令,所述上级节点包括宿主基站和集成接入和回传IAB节点;
    发送单元,用于向所述接入到所述装置的至少一个终端设备或者第二节点发送第二指示信息,所述第二指示信息用于指示所述接入到所述装置的至少一个终端设备或者接入到第二节点的终端设备进行PDCP数据重传,所述第二节点为所述装置的下级节点。
  24. 如权利要求23所述的装置,其特征在于,所述装置还包括:
    接收单元,用于接收来自所述接入到所述装置的至少一个终端设备或者所述接入到第二节点的终端设备的重传数据。
  25. 如权利要求23或24所述的装置,其特征在于,所述第一指示信息包括下述信息中的至少一种:
    所述至少一个终端设备的标识;
    所述至少一个终端设备的至少一个无线承载的标识;
    所述至少一个终端设备的至少一个服务质量QoS流标识或QoS标识。
  26. 如权利要求23至25中任一项所述的装置,其特征在于,所述第二指示信息通过分组数据汇聚协议PDCP控制协议数据单元PDU,或无线链路控制RLC控制PDU,或RLC数据PDU或者媒体接入控制控制单元MAC CE,或者适配层控制信令发送。
  27. 如权利要求23至26中任一项所述的装置,其特征在于,所述第二指示信息包括下述信息中的至少一项:
    所述至少一个终端设备的标识;
    所述至少一个终端设备的至少一个无线承载的标识;
    所述至少一个终端设备的至少一个服务质量QoS流标识或QoS标识;
    所述装置的标识;
    所述PDCP数据重传的指示;
    所述装置的下级节点的标识。
  28. 一种通信装置,其特征在于,包括:
    接收单元,用于接收一个或多个第三节点的无线链路失败通知,所述第三节点为第一节点的上级节点;
    确定单元,用于确定通过所述第一节点接入到网络的至少一个节点设备,所述节点设备包括接入到所述第一节点的终端设备和第二节点中的至少一种,所述第二节点为所述第一节点的下级节点;
    发送单元,用于向所述至少一个节点设备发送第一指示信息,所述第一指示信息用于所述接入到第一节点的终端设备或者接入到第二节点的终端设备进行PDCP数据重传,所述第一指示信息为无线资源控制RRC信令、适配层信令或者F1-AP控制面信令。
  29. 如权利要求28所述的装置,其特征在于,所述接收单元还用于:
    接收来自所述接入到第一节点终端设备或者所述接入到第二节点的终端设备的重传数据。
  30. 如权利要求28或29所述的装置,其特征在于,所述通过所述第一节点接入到网络的至少一个节点设备包括经过多跳传输而经过所述第一节点接入到网络的节点设备。
  31. 如权利要求28至30中任一项所述的装置,其特征在于,所述第一指示信息是所述装置发送给所述第一节点的,所述第一节点向所述接入到第一节点的终端设备发送
    PDCP数据重传指示。
  32. 如权利要求28至31中任一项所述的装置,其特征在于,所述第一指示信息是所述装置发送给所述第二节点的,所述第二节点向所述接入到第二节点的终端设备发送
    PDCP数据重传指示。
  33. 如权利要求28至30中任一项所述的装置,其特征在于,所述第一指示信息是所述装置发送给所述接入到第一节点的终端设备或所述接入到第二节点的终端设备的,所述第一指示信息用于指示所述接入到第一节点的终端设备或所述接入到第二节点的终端设 备的进行PDCP数据重传。
  34. 如权利要求28至33中任一项所述的装置,其特征在于,所述第一指示信息包括下述信息中的至少一种:
    所述至少一个终端设备的标识;
    所述至少一个终端设备的至少一个无线承载的标识;
    所述至少一个终端设备的至少一个服务质量QoS流标识或QoS标识;
    所述第一节点的标识;
    所述第二节点的标识;
    所述PDCP数据重传的指示。
  35. 一种通信装置,包括:
    确定单元,用于在无线链路控制RLC重传达到最大次数的情况下,确定接入链路是否发生无线链路失败RLF;
    处理单元,用于在所述接入链路未发生RLF的情况下,不向上层上报RLC重传达到最大次数。
  36. 如权利要求35所述的装置,其特征在于,所述装置还包括:
    接收单元,用于接收指示信息,所述指示信息用于指示回传链路发生RLF或者回传链路发生改变;
    其中,所述确定单元具体用于:
    根据所述指示信息,确定所述接入链路未发送RLF。
  37. 一种通信装置,所述装置应用于中继系统,所述中继系统包括所述装置、源节点和目标节点,所述源节点为所述装置提供服务,其特征在于,包括:
    处理器,用于确定从所述源节点切换至所述目标节点;
    所述处理器,还用于保存至少一个第一实体中缓存的数据,所述第一实体为无线链路控制RLC实体或者适配层实体。
  38. 如权利要求37所述的装置,其特征在于,所述装置还包括收发器;
    其中,所述处理器还用于:
    在所述收发器接收到切换命令或者检测到无线链路失败RLF的情况下,确定将其父节点从所述源节点切换至所述目标节点,所述切换命令用于指示所述装置切换至所述目标节点。
  39. 如权利要求37或38所述的装置,其特征在于,所述处理器,还用于:
    重建、重置、或者释放所述第一实体的下层协议实体。
  40. 如权利要求37至39中任一项所述的装置,其特征在于,所述装置还包括:
    收发器,用于接收指示信息,所述指示信息用于指示所述装置保存所述至少一个第一实体中缓存的数据。
  41. 一种通信装置,其特征在于,包括:
    处理器,用于确定触发事件,所述触发事件用于所述装置触发通过所述装置进行数据传输的终端设备进行分组数据汇聚协议PDCP数据重传,所述触发事件包括所述装置接收到上级节点发送的第一指示信息,或者所述装置确定从源节点切换到目标节点,所述第一指示信息用于指示接入到装置的至少一个终端设备进行PDCP数据重传,所述第一指示信 息为无线资源控制RRC信令、适配层信令或者F1-AP控制面信令,所述上级节点包括宿主基站和集成接入和回传IAB节点;
    收发器,用于向所述接入到所述装置的至少一个终端设备或者第二节点发送第二指示信息,所述第二指示信息用于指示所述接入到所述装置的至少一个终端设备或者接入到第二节点的终端设备进行PDCP数据重传,所述第二节点为所述装置的下级节点。
  42. 如权利要求41所述的装置,其特征在于,所述收发器还用于:
    接收来自所述接入到所述装置或者所述接入到第二节点的终端设备的重传数据。
  43. 如权利要求41或42所述的装置,其特征在于,所述第一指示信息包括下述信息中的至少一种:
    所述至少一个终端设备的标识;
    所述至少一个终端设备的至少一个无线承载的标识;
    所述至少一个终端设备的至少一个服务质量QoS流标识或QoS标识。
  44. 如权利要求41至43中任一项所述的装置,其特征在于,所述第二指示信息通过分组数据汇聚协议PDCP控制协议数据单元PDU,或无线链路控制RLC控制PDU,或RLC数据PDU或者媒体接入控制控制单元MAC CE,或者适配层控制信令发送。
  45. 如权利要求41至44中任一项所述的装置,其特征在于,所述第二指示信息包括下述信息中的至少一项:
    所述至少一个终端设备的标识;
    所述至少一个终端设备的至少一个无线承载的标识;
    所述至少一个终端设备的至少一个服务质量QoS流标识或QoS标识;
    所述装置的标识;
    所述PDCP数据重传的指示;
    所述装置的下级节点的标识。
  46. 一种通信装置,其特征在于,包括:
    收发器,用于接收一个或多个第三节点的无线链路失败通知,所述第三节点为第一节点的上级节点;
    处理器,用于确定通过所述第一节点接入到网络的至少一个节点设备,所述节点设备包括接入到所述第一节点的终端设备和第二节点中的至少一种,所述第二节点为所述第一节点的下级节点;
    所述收发器,还用于向所述至少一个节点设备发送第一指示信息,所述第一指示信息用于所述接入到第一节点的终端设备或者接入到第二节点的终端设备进行PDCP数据重传,所述第一指示信息为无线资源控制RRC信令、适配层信令或者F1-AP控制面信令。
  47. 如权利要求46所述的装置,其特征在于,所述收发器还用于:
    接收来自所述接入到第一节点终端设备或者所述接入到第二节点的终端设备的重传数据。
  48. 如权利要求46或47所述的装置,其特征在于,所述通过所述第一节点接入到网络的至少一个节点设备包括经过多跳传输而经过所述第一节点接入到网络的节点设备。
  49. 如权利要求46至48中任一项所述的装置,其特征在于,所述第一指示信息是所述装置发送给所述第一节点的,所述第一节点向所述接入到第一节点的终端设备发送 PDCP数据重传指示。
  50. 如权利要求46至49中任一项所述的装置,其特征在于,所述第一指示信息是所述装置发送给所述第二节点的,所述第二节点向所述接入到第二节点的终端设备发送
    PDCP数据重传指示。
  51. 如权利要求46至48中任一项所述的装置,其特征在于,所述第一指示信息是所述装置发送给所述接入到第一节点的终端设备或所述接入到第二节点的终端设备的,所述第一指示信息用于指示所述接入到第一节点的终端设备或所述接入到第二节点的终端设备的进行PDCP数据重传。
  52. 如权利要求46至51中任一项所述的装置,其特征在于,所述第一指示信息包括下述信息中的至少一种:
    所述至少一个终端设备的标识;
    所述至少一个终端设备的至少一个无线承载的标识;
    所述至少一个终端设备的至少一个服务质量QoS流标识或QoS标识;
    所述第一节点的标识;
    所述第二节点的标识;
    所述PDCP数据重传的指示。
  53. 一种通信装置,包括:
    处理器,用于在无线链路控制RLC重传达到最大次数的情况下,确定接入链路是否发生无线链路失败RLF;
    所述处理器,还用于在所述接入链路未发生RLF的情况下,不向上层上报RLC重传达到最大次数。
  54. 如权利要求53所述的装置,其特征在于,所述装置还包括:
    收发器,用于接收指示信息,所述指示信息用于指示回传链路发生RLF或者回传链路发生改变;
    其中,所述处理器具体用于:
    根据所述指示信息,确定所述接入链路未发送RLF。
  55. 一种通信装置,包括处理器,所述处理器与存储器相连,所述存储器用于存储计算机程序,所述处理器用于执行所述存储器中存储的计算机程序,以使得所述装置执行如权利要求1至18中任一项所述的方法。
  56. 一种通信装置,包括:存储器和处理器,所述存储器中存储代码和数据,所述存储器与所述处理器耦合,所述处理器运行所述存储器中的代码使得所述装置执行如权利要求1至4中任一项所述的方法,或者执行如权利要求5至9中任一项所述的方法,或者执行如权利要求10-16中任一项所述的方法,或者执行如权利要求17或18所述的方法。
  57. 一种计算机可读存储介质,存储有计算机程序,当所述计算机程序被执行时,实现如权利要求1至4中任意一项所述的方法,或者实现如权利要求5至9中任一项所述的方法,或者实现如权利要求10至16中任一项所述的方法,或者实现如权利要求17或18所述的方法。
  58. 一种计算机程序产品,包括计算机程序,当所述计算机程序被运行时,使得计算机执行如权利要求1至4中任一项所述的方法,或者执行如权利要求5至9中任一项所述 的方法,或者执行如权利要求10至16中任一项所述的方法,或者执行如权利要求17或18所述的方法。
PCT/CN2019/100044 2018-08-11 2019-08-09 通信方法和通信装置 WO2020034909A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19850138.9A EP3820189A4 (en) 2018-08-11 2019-08-09 COMMUNICATION PROCESS AND COMMUNICATION DEVICE
US17/172,249 US20210168666A1 (en) 2018-08-11 2021-02-10 Communication method and communications apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810958271.6 2018-08-11
CN201810958271.6A CN110831095B (zh) 2018-08-11 2018-08-11 通信方法和通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/172,249 Continuation US20210168666A1 (en) 2018-08-11 2021-02-10 Communication method and communications apparatus

Publications (1)

Publication Number Publication Date
WO2020034909A1 true WO2020034909A1 (zh) 2020-02-20

Family

ID=69525213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100044 WO2020034909A1 (zh) 2018-08-11 2019-08-09 通信方法和通信装置

Country Status (4)

Country Link
US (1) US20210168666A1 (zh)
EP (1) EP3820189A4 (zh)
CN (1) CN110831095B (zh)
WO (1) WO2020034909A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210410031A1 (en) * 2020-06-29 2021-12-30 Qualcomm Incorporated Techniques for associating integrated access and backhaul (iab) nodes with different upstream nodes
EP4114072A4 (en) * 2020-03-09 2023-08-30 ZTE Corporation DATA PACKET TRANSMISSION METHOD AND DEVICE, COMMUNICATION NODE AND STORAGE MEDIUM
CN117527151A (zh) * 2023-12-29 2024-02-06 合肥奎芯集成电路设计有限公司 基于ucie的数据重传方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110366206A (zh) * 2018-03-26 2019-10-22 华为技术有限公司 一种信息传输方法和装置
US11419021B2 (en) * 2018-08-31 2022-08-16 Industrial Technology Research Institute Connection re-direction method for UE and remote access node, UE using the same and remote access node using the same
WO2021196197A1 (zh) * 2020-04-03 2021-10-07 华为技术有限公司 无线链路失败rlf通知方法及装置
CN113556794B (zh) * 2020-04-23 2022-10-28 华为技术有限公司 通信方法、装置及系统
EP4140182A4 (en) * 2020-04-24 2024-01-17 Lenovo Beijing Ltd METHOD AND APPARATUS FOR DYNAMIC FDM BETWEEN PARENT CONNECTION AND CHILD CONNECTION IN IAB NETWORK
CN113766582B (zh) * 2020-06-03 2023-03-14 维沃移动通信有限公司 网络切换方法、装置、通信设备及系统
CN113905421B (zh) * 2020-06-22 2023-05-26 大唐移动通信设备有限公司 一种小区选择的方法及设备
WO2022016473A1 (zh) * 2020-07-23 2022-01-27 华为技术有限公司 一种用于接入回传一体化iab系统中的通信方法和通信装置
CN114071613A (zh) * 2020-08-07 2022-02-18 华为技术有限公司 一种iab节点的配置方法及通信装置
CN114079993B (zh) * 2020-08-12 2023-07-18 维沃移动通信有限公司 保护间隔确定方法、装置、网络节点和存储介质
EP4213536A4 (en) * 2020-09-30 2024-03-13 Huawei Tech Co Ltd COMMUNICATION METHOD AND ASSOCIATED DEVICE
WO2022067781A1 (zh) * 2020-09-30 2022-04-07 华为技术有限公司 一种通信方法及相关设备
CN114390622A (zh) * 2020-10-22 2022-04-22 大唐移动通信设备有限公司 一种信息传输方法、装置及通信设备
US20240107391A1 (en) * 2021-01-29 2024-03-28 Qualcomm Incorporated Fast retransmission during handover
CN113114325B (zh) * 2021-03-19 2022-05-17 中国联合网络通信集团有限公司 一种通信方法及装置
CN116962157A (zh) * 2022-04-20 2023-10-27 华为技术有限公司 一种通信方法、装置及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101114992A (zh) * 2006-07-27 2008-01-30 华为技术有限公司 切换方法、发送端设备和接收端设备
CN102104892A (zh) * 2009-12-22 2011-06-22 中兴通讯股份有限公司 检测无线链路失败的方法
CN106162764A (zh) * 2015-04-03 2016-11-23 电信科学技术研究院 一种路径选择方法及装置
US20170359106A1 (en) * 2016-06-10 2017-12-14 Qualcomm Incorporated Sensor based beam tracking for wireless communication

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101986592A (zh) * 2009-07-29 2011-03-16 普天信息技术研究院有限公司 一种反馈确认消息的方法
CN102056226B (zh) * 2009-11-10 2016-03-02 中兴通讯股份有限公司 Pdcp状态报告的获取方法和pdcp实体
CN101742601B (zh) * 2009-12-24 2012-03-14 中国科学技术大学 一种在中继系统中保证业务服务质量的切换方法
KR101887062B1 (ko) * 2010-04-01 2018-08-09 엘지전자 주식회사 무선 통신 시스템에서 신호 처리 방법 및 이를 위한 장치
CN102244937A (zh) * 2010-05-11 2011-11-16 电信科学技术研究院 一种承载建立方法、中继节点及基站
CN102469536B (zh) * 2010-11-05 2015-12-09 大唐移动通信设备有限公司 类型信息上报及中继节点类型确定方法、系统和设备
WO2015139259A1 (en) * 2014-03-20 2015-09-24 Qualcomm Incorporated Methods and apparatus for improving packet switched call performance when the rlc entity is released
CN107979444B (zh) * 2016-10-25 2021-03-09 上海诺基亚贝尔股份有限公司 用于两跳分组传输的方法和设备
CN108282825B (zh) * 2017-01-05 2019-12-20 电信科学技术研究院 一种信息处理方法及装置
EP4068856A3 (en) * 2018-06-01 2022-11-09 IPCom GmbH & Co. KG Integrated access and backhaul mobility

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101114992A (zh) * 2006-07-27 2008-01-30 华为技术有限公司 切换方法、发送端设备和接收端设备
CN102104892A (zh) * 2009-12-22 2011-06-22 中兴通讯股份有限公司 检测无线链路失败的方法
CN106162764A (zh) * 2015-04-03 2016-11-23 电信科学技术研究院 一种路径选择方法及装置
US20170359106A1 (en) * 2016-06-10 2017-12-14 Qualcomm Incorporated Sensor based beam tracking for wireless communication

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Intra-Donor CU Topology Adaptation", 3GPP TSG-RAN WG3 MEETING #103 R3-190495, 15 February 2018 (2018-02-15), XP051604435 *
See also references of EP3820189A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4114072A4 (en) * 2020-03-09 2023-08-30 ZTE Corporation DATA PACKET TRANSMISSION METHOD AND DEVICE, COMMUNICATION NODE AND STORAGE MEDIUM
US20210410031A1 (en) * 2020-06-29 2021-12-30 Qualcomm Incorporated Techniques for associating integrated access and backhaul (iab) nodes with different upstream nodes
US11968578B2 (en) * 2020-06-29 2024-04-23 Qualcomm Incorporated Techniques for associating integrated access and backhaul (IAB) nodes with different upstream nodes
CN117527151A (zh) * 2023-12-29 2024-02-06 合肥奎芯集成电路设计有限公司 基于ucie的数据重传方法
CN117527151B (zh) * 2023-12-29 2024-03-26 合肥奎芯集成电路设计有限公司 基于ucie的数据重传方法

Also Published As

Publication number Publication date
US20210168666A1 (en) 2021-06-03
CN110831095A (zh) 2020-02-21
EP3820189A1 (en) 2021-05-12
CN110831095B (zh) 2021-11-19
EP3820189A4 (en) 2021-09-08

Similar Documents

Publication Publication Date Title
WO2020034909A1 (zh) 通信方法和通信装置
US11751112B2 (en) Handover method and device
US11425600B2 (en) Wireless backhaul data transmission method and apparatus
EP3614736B1 (en) Handover control method and apparatus
CN110636562B (zh) 一种无线回程路径的数据处理方法和设备
WO2016138798A1 (zh) 一种在切换程序中传输数据的方法、装置和系统
WO2015027719A1 (zh) 一种协作多流传输数据的方法及基站
WO2020088472A1 (zh) 通信方法及装置
US20210274395A1 (en) Data communication method and apparatus
TWI807527B (zh) 降低多分支傳輸中封包延遲的方法和裝置
WO2022067592A1 (zh) 一种数据无损传输的通信方法、装置及系统
US20230328607A1 (en) Communication control method
US20230328629A1 (en) Communication control method
WO2020029414A1 (zh) 无线通信方法、通信设备、芯片和通信系统
US20240121686A1 (en) Handover technique for time-sensitive networking
WO2022082543A1 (zh) Iab节点的移植方法及装置
EP3618500B1 (en) Path switching method and base station
WO2022082683A1 (zh) 一种用于接入回传一体化iab系统中的通信方法及相关设备
WO2022205253A1 (zh) 发送和接收信号的方法、装置和通信系统
WO2024011462A1 (zh) 一种通信方法及装置、通信设备、接入网架构
WO2022030517A1 (ja) 通信制御方法
WO2023197105A1 (zh) 配置信息的方法、装置和通信系统
WO2023150975A1 (zh) Iab宿主设备以及传输迁移回退方法
WO2022036507A1 (zh) 数据传输方法、终端设备和网络节点
WO2023184542A1 (zh) 配置信息的方法、装置和通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19850138

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019850138

Country of ref document: EP

Effective date: 20210205