WO2020034382A1 - 一种高效资源回收低能耗的制药废水处理装置及其运行方法 - Google Patents

一种高效资源回收低能耗的制药废水处理装置及其运行方法 Download PDF

Info

Publication number
WO2020034382A1
WO2020034382A1 PCT/CN2018/110455 CN2018110455W WO2020034382A1 WO 2020034382 A1 WO2020034382 A1 WO 2020034382A1 CN 2018110455 W CN2018110455 W CN 2018110455W WO 2020034382 A1 WO2020034382 A1 WO 2020034382A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
efficiency
decontamination
treatment device
methanogenic
Prior art date
Application number
PCT/CN2018/110455
Other languages
English (en)
French (fr)
Inventor
胡海东
马思佳
任洪强
许柯
Original Assignee
南京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京大学 filed Critical 南京大学
Publication of WO2020034382A1 publication Critical patent/WO2020034382A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/04Bioreactors or fermenters specially adapted for specific uses for producing gas, e.g. biogas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/36Means for collection or storage of gas; Gas holders
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/14Scaffolds; Matrices
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/06Nozzles; Sprayers; Spargers; Diffusers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic
    • C12P5/023Methane
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/006Water distributors either inside a treatment tank or directing the water to several treatment tanks; Water treatment plants incorporating these distributors, with or without chemical or biological tanks
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/24Treatment of water, waste water, or sewage by flotation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F2001/007Processes including a sedimentation step
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/343Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the pharmaceutical industry, e.g. containing antibiotics
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/42Liquid level
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2826Anaerobic digestion processes using anaerobic filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/286Anaerobic digestion processes including two or more steps
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies

Definitions

  • the invention relates to the technical field of wastewater treatment, in particular to a pharmaceutical wastewater treatment device with high efficiency resource recovery and low energy consumption, and an operation method thereof.
  • Pharmaceutical wastewater has a complex composition, a large variety of organic pollutants, high concentrations, deep chroma, high solid suspended solids content, high COD concentration, and large fluctuations in the influent COD. It is one of the more difficult to treat industrial wastewater. .
  • the threat of pharmaceutical wastewater to the ecological environment and human health is becoming increasingly serious. With the state's strict control of the pharmaceutical industry's sewage discharge and the special emission standards required by different sensitive areas, various local governments have also issued a series of policies for energy conservation and emission reduction. And planning, there are higher requirements for the effluent after pharmaceutical wastewater treatment. Therefore, there is an urgent need to improve the efficiency of the pharmaceutical wastewater treatment process, and to improve the stability and economics of the treatment process.
  • the main process of "pretreatment + anaerobic + aerobic” is widely used in pharmaceutical wastewater for its advantages such as better treatment effect, convenient operation and management, low mud production, and certain impact load resistance.
  • the treatment principle is that the pharmaceutical wastewater is firstly pretreated to remove some oil, particulate matter and other difficult-to-degrade pollutants, and then after hydrolysis acidification / methane production, the organic matter in the inlet water is more removed, and subsequent aerobic treatment is reduced.
  • the load has a certain impact load capacity, and then organic matter and total nitrogen are further removed in the anoxic + aerobic section, and the pharmaceutical wastewater treatment process is completed.
  • Hydrolytic acidification can better alleviate the impact of the subsequent treatment stage, but often the lower pH value of the effluent exists, which affects the subsequent methanogenesis, and it is difficult to achieve the ideal conversion of particulate pollutants into dissolution when the hydraulic retention time is short.
  • organic matter although a certain amount of biogas is produced in the methanogenesis stage, the unit gas volume is low, the biogas quality is low, and the process of forming granular sludge is slow; and the subsequent denitrification process needs to add a carbon source to meet the emission standards Effluent quality.
  • the joint action of the appeal issues will lead to the instability of pharmaceutical wastewater treatment processes, low carbon resource recovery efficiency, and high energy consumption.
  • Chinese Patent No. 201711438146.4 discloses a pharmaceutical wastewater treatment method. After the pharmaceutical wastewater is evaporated and desalted, it enters a neutralization tank, passes through an anoxic tank, an aerobic tank, and is finally filtered by an MBR membrane group. This method does not consider wastewater in the wastewater. Recycling of resources, and evaporation of wastewater and filtration through MBR components lead to excessive actual operating costs.
  • Chinese Patent No. 201711438146.4 discloses a pharmaceutical wastewater treatment method. After the pharmaceutical wastewater is evaporated and desalted, it enters a neutralization tank, passes through an anoxic tank, an aerobic tank, and is finally filtered by an MBR membrane group. This method does not consider wastewater in the wastewater. Recycling of resources, and evaporation of wastewater and filtration through MBR components lead to excessive actual operating costs.
  • Chinese Patent No. 201711438146.4 discloses a pharmaceutical wastewater treatment method. After the pharmaceutical wastewater is evaporated and desalted, it enters a neutralization tank, passes through an anoxic tank, an aerobic tank, and is finally
  • 201010222306.3 discloses a method for the advanced treatment of pharmaceutical wastewater.
  • the electrolytic method is used for advanced treatment.
  • the power consumption is 40.47KW.h / m 3 , and the energy consumption of this process is relatively high.
  • the technical problem solved by the present invention is that for the existing pharmaceutical wastewater treatment process, the pH value of the hydrolyzed acidified effluent existing is low, which affects the subsequent methane production, the effect of converting particulate pollutants into dissolved organic matter is not ideal, and methane production In the stage, the unit gas volume is low, the biogas quality is poor, and the granular sludge formation process is slow.
  • the subsequent denitrification process needs to add a large number of carbon sources, which leads to the unstable operation of the pharmaceutical wastewater treatment process, low carbon resource recovery efficiency, and the current physical chemistry.
  • the resource recovery rate of the pharmaceutical wastewater treatment process reduces the energy consumption of the treatment process, facilitates operation and management, and stabilizes the process operation.
  • the technical scheme of the present invention is: a pharmaceutical waste water treatment device with high-efficiency resource recovery and low energy consumption, which mainly includes an air floatation tank, a regulating tank, an acid dosing tank, an alkali dosing tank, an enhanced hydrolysis acidification tank, and a micron-level calcium silicate dosing.
  • Tanks high-efficiency methanogenic tanks, anoxic tanks, aerobic tanks, biogas collection and processing devices, secondary sedimentation tanks, coagulation sedimentation tanks, PAC dosing tanks, control devices and power supplies; air flotation tanks, conditioning tanks, enhanced hydrolysis acidification tanks,
  • the high-efficiency methanogenic tank, anoxic tank, aerobic tank, secondary sedimentation tank, and coagulation sedimentation tank are connected in sequence.
  • the air floating tank is provided with a decontamination device; the acid dosing tank and the alkali dosing tank are connected to the regulating tank, respectively. All are equipped with solenoid valves, a pH meter is set on the regulating tank, and the measuring probe of the pH meter is located inside the regulating tank; a diversion tube is provided on the top of the enhanced hydrolysis acidification tank, and the diversion tube is connected to the hypoxic tank to strengthen the hydrolysis
  • the inner part of the acidification tank is provided with a fixed packing, and the bottom of the interior of the enhanced hydrolysis acidification tank is provided with a uniform water distributor.
  • the uniform water distributor includes a main pipe and an auxiliary pipe.
  • the auxiliary pipe is sleeved inside the main pipe, and the auxiliary pipe is provided with a communication pipe.
  • the through hole communicates with the inner cavity of the main pipe.
  • a rotary motor is provided at the bottom of the hydrolysis acidification tank. The rotary electric machine provides power for the main pipe.
  • the main pipe is connected to the main nozzle at the upper end of the main pipe and the auxiliary nozzle is connected to the upper end of the auxiliary pipe.
  • the control device includes a controller, a processor and a remote controller.
  • the controller is commercially available.
  • the controller It is connected to the decontamination device, rotating electric machine, pH measuring instrument and solenoid valve, and the processor and remote controller are respectively connected to the controller.
  • the power supply provides power for the decontaminating device, rotating electric machine, pH measuring instrument and solenoid valve.
  • the decontamination device includes a decontamination plate, a telescopic rod, a first motor, and a second motor.
  • the two telescopic rods are located at the front and rear ends of the air floatation tank, and the lower ends of the two telescopic rods are provided with slides.
  • the two sliding blocks are connected by connecting rods.
  • Hanging rings are provided on both sides of the connecting rods.
  • the upper ends of the two telescopic rods are provided with clamping plates.
  • the two ends of the decontamination plate are movable with the clamping plates through a rotating shaft. It is connected with sliding grooves at the bottom and front ends of the air floatation tank.
  • the telescopic rod and the air floatation pond are connected by sliding blocks and slide grooves. There are pulleys at the left and right ends of the bottom of the air floatation pond.
  • the first motor is set at the left end of the bottom of the air floatation pond.
  • the first motor is provided with a cable, and the cable is connected to the hanging ring on the left side of the connecting rod through a pulley on the left side of the bottom of the air floatation tank.
  • the second motor is provided at the right end of the bottom of the air floatation tank.
  • the cable passes through the pulley on the right side of the bottom of the air floatation tank and is connected to the hanging ring on the right side of the connecting rod.
  • the first and second motors pull the decontamination board to the left and right to move the pollutants on the surface of the air floatation tank. Adjust Dirty plate height.
  • a ball is arranged at the bottom of the sliding block to reduce the friction between the sliding block and the sliding groove and reduce energy loss.
  • a liquid level sensing device is provided on the air floatation tank, and a sensing probe of the liquid level sensing device is located inside the air floatation tank.
  • the liquid level sensing device is connected to the controller, and the height of the liquid level in the air floatation tank is sensed through the sensing probe of the liquid level sensing device.
  • the signal is passed to the processor, the processor sends instructions to the controller, and the controller controls the telescopic rod to adjust the height automatically as the liquid level changes, thereby improving the sewage effect.
  • the clamping plates are vertically provided with fixed columns, and the fixed columns and the five decontamination plates are movably disposed. There are electric push rods to improve the drainage effect.
  • the decontamination board is placed vertically, the pollutants can be scraped off.
  • the decontamination board is placed obliquely, it will not affect the treatment effect of the air flotation tank.
  • the specific surface area of the fixed filler is 300-410m 2 / m 3
  • the density is 1.6-2.1g / cm 3
  • the diameter is 150-250mm. It can trap microorganisms and suspended particles in the water stream, ensuring stable and efficient hydrolytic acidification function. .
  • the particle size of the micron-sized calcium silicate added to the micron-sized calcium silicate dosing tank is 10-100 ⁇ m, and the density is 2.9-3.1 g / cm 3.
  • the calcium silicate particles are adsorbed on the surface of the sludge floc and dissociate rapidly.
  • the formed volatile fatty acids enhance the acid-producing ability of microorganisms, and the calcium ions formed after dissolution help to increase the stability of sludge floes.
  • the specific surface area of the combined filler is 350-460m 2 / m 3 , the density is 1.2-1.8g / cm 3 , and the diameter is 150-250mm; the density of the fixed soft filler is 1.02-1.1g / cm 3 , and the fiber bundle length It is 60-100mm, the distance between beams is 30-45mm, and the porosity is more than 99%, which further improves the biogas production capacity and stability of high-efficiency methanogenic tanks.
  • An operating method of an efficient resource recovery and low energy consumption pharmaceutical wastewater treatment device mainly includes the following steps:
  • S1 First pass the pharmaceutical wastewater into the air floatation tank, remove some oil and suspended particles, scrape the pollutants from the upper layer of the air floatation tank through the decontamination device, then enter the adjustment tank, measure the pH of the inlet water with a pH meter, and control the The device controls the opening of the solenoid valve on the acid dosing tank or the alkali dosing tank, and adjusts the pH value of the inlet water to 6.5-8.5;
  • the wastewater treated by the adjustment tank enters the enhanced hydrolytic acidification tank through a uniform water distributor.
  • micron-sized calcium silicate is added, and the dosage is based on the content of volatile fatty acids in the effluent of the hydrolytic acidification tank to make calcium silicate particles.
  • the mass ratio of the mass to the mass of volatile fatty acids is 0.06-0.12.
  • the calcium silicate particles are adsorbed on the surface of the sludge floc, and the volatile fatty acids formed are rapidly dissociated to enhance the acid-producing ability of the microorganisms.
  • the calcium ions formed after dissolution have Helps increase the stability of sludge floc.
  • the hydraulic retention time of wastewater is 6-8h.
  • the fixed filler in the middle of the tank can trap microorganisms and suspended particles in the water stream, ensuring stable and efficient hydrolysis and acidification function;
  • the fixed soft filler on the upper part of the tank can trap the methanogens that are washed out, further improving the biogas production capacity and stability of the efficient methanogenic tank.
  • S4 The sewage digested by the high-efficiency methanogen tank enters the anoxic tank, and the effluent from the secondary sedimentation tank also returns to the anoxic tank.
  • the anoxic tank is charged with a density of 0.93-0.96g / cm 3 and a specific surface area of 400-460m 2. / m 3 , 10-15mm diameter suspended filler, used to enrich denitrifying bacteria, reduce nitrate nitrogen to nitrogen under the action of denitrifying bacteria, and then enter the aerobic pond to further remove COD and ammonia nitrogen.
  • the mud-water separation is completed in the pond, and PAC is added to the coagulation sedimentation tank to complete the coagulation sedimentation to obtain the final effluent.
  • Micron-sized calcium silicate particles are added to the bottom of the enhanced hydrolysis acidification tank of the present invention.
  • the calcium silicate particles are adsorbed on the surface of the sludge floc, which can effectively increase the stability of the sludge floc and the volatility of microorganisms.
  • Fatty acids can be rapidly dissociated on the surface of sludge floc, reducing the adverse effect of pH drop caused by the accumulation of volatile fatty acids on microorganisms, while improving the acid production capacity of sludge, and ensuring that the pH value of the effluent does not decrease to the stage of methanogenesis.
  • Adverse effects, the combined filler in the middle of the tank can effectively ensure that microorganisms are not washed out of the tank and play a role in trapping some suspended solids.
  • the present invention adopts a high-efficiency methanogen tank.
  • the calcium ions contained in the effluent of the hydrolytic acidification tank are beneficial to the formation of granular sludge in the methanogen tank.
  • the middle and upper parts of the tank are provided with a combination of fillers and softeners.
  • Methogens can be fixed in the middle of the tank to form a fixed combination of fillers to form a biofilm mainly composed of methanogens. The impact load resistance is greatly improved.
  • the fixed soft filler in the upper part of the tank can intercept the washed out products. Methanogens further increase the biogas production capacity of high-efficiency methanogenic tanks and achieve efficient carbon resource recovery.
  • the effluent from the enhanced hydrolysis acidification tank is used as an external carbon source for denitrification in the anoxic tank, which greatly reduces the amount of added carbon source.
  • Suspended filler is added to the anoxic tank to enrich the reaction.
  • Nitrifying bacteria to improve the impact load capacity of the hypoxic pool.
  • the calcium silicate added in the present invention is inexpensive and easy to obtain.
  • the device has a simple structure and convenient operation. The method can effectively improve the efficiency and stability of the treatment process, the carbon resource recovery rate is high, the energy consumption is low, and the excellent effect of stable, efficient and low energy consumption of the pharmaceutical wastewater treatment process is achieved.
  • FIG. 1 is a schematic structural diagram of a device of the present invention
  • FIG. 2 is a schematic structural diagram of an air floating pond according to the present invention.
  • FIG. 3 is a schematic structural diagram of a connection between a scraper and a telescopic rod according to the present invention
  • FIG. 5 is a schematic structural diagram of the scraper of the present invention when it is placed obliquely;
  • FIG. 6 is a schematic structural diagram of a uniform water distributor of the present invention.
  • FIG. 7 is a plan view of a uniform water distributor of the present invention.
  • This embodiment uses a set of small-scale test device.
  • the treated pharmaceutical wastewater is taken from the effluent of a fermentation pharmaceutical company.
  • the wastewater is orange, and there are many types of organic matter.
  • the water intake is 30L / d, and the water intake is COD14500-17000mg / L, pH6.2. -6.9, turbidity 179-226mg / L.
  • the structure of the small-scale test device shown in FIG. 1 is a pharmaceutical waste water treatment device with high-efficiency resource recovery and low energy consumption, which mainly includes an air floatation tank 1, a regulating tank 2, an acid dosing tank 3, an alkali dosing tank 4, Enhanced hydrolysis acidification tank 5, micron-scale calcium silicate dosing tank 6, high-efficiency methanogenic tank 8, hypoxic tank 11, aerobic tank 12, biogas collection and processing device 13, secondary sedimentation tank 14, coagulation sedimentation tank 15, PAC Dosing tank 16, control device 19 and power supply; air flotation tank 1, regulating tank 2, enhanced hydrolysis acidification tank 5, high-efficiency methanogenic tank 8, anoxic tank 11, aerobic tank 12, secondary sedimentation tank 14, coagulation sedimentation tank 15 Connect in turn,
  • the air floatation tank 1 is provided with a liquid level sensing device 101.
  • the sensing probe of the liquid level sensing device 101 is located inside the air floatation tank 1.
  • the liquid level sensing device 101 is connected to the controller 191;
  • the floating pond 1 is provided with a decontamination device 17, which includes a decontamination plate 170, a telescopic rod 171, a first motor 172, and a second motor 173.
  • There are two telescopic rods 171, and two telescopic rods 171 are located in the air floating pond 1.
  • sliding blocks 174 are provided at the lower ends of the two telescopic rods 171.
  • the two sliding blocks 174 are connected by connecting rods.
  • Hanging rings are provided on both sides of the connecting rods.
  • a clamping plate 175 is provided.
  • Five decontamination plates 170 are provided.
  • the five decontamination plates 170 are arranged side by side on the clamping plate 175.
  • the clamping plate 175 is provided with a fixed column 178 vertically.
  • Electric push rods 179 are movably arranged between the five decontamination plates 170; slide grooves 176 are provided at the bottom and front and bottom ends of the air floatation pool 1, and the telescopic rod 171 and the air floatation pool 1 are connected by a slide block 174 and a slide groove 176.
  • Pulleys 177 are provided at the left and right ends of the bottom of the air floating pond 1, and the first motor 172 is provided at the bottom of the air floating pond 1.
  • a cable is provided on the first motor 172 at the left end of the first motor.
  • the cable passes through a pulley 177 on the left side of the bottom of the air flotation tank 1 and is connected to a hanging ring on the left side of the connecting rod.
  • the motor 173 is provided with the above-mentioned cable, and the cable passes through the pulley 177 on the right side of the bottom of the air float tank 1 to be connected to the hanging ring on the right side of the connecting rod, and the bottom of the sliding block 174 is provided with a ball;
  • the acid dosing tank 3 and the alkali dosing tank 4 are connected to the regulating tank 2, respectively, and the connection is provided with a solenoid valve.
  • the regulating tank 2 is provided with a pH measuring instrument 21 and a pH measuring instrument.
  • a measuring probe of 21 is located inside the regulating tank 2.
  • a diversion tube is provided on the top of the enhanced hydrolysis acidification tank 5. The diversion tube is connected to the hypoxic tank 11, and a fixed filler 7 and a fixed filler 7 are arranged in the middle of the enhanced hydrolysis acidification tank 5.
  • the specific surface area is 300m 2 / m 3 , the density is 2.1g / cm 3 , and the diameter is 150mm;
  • the inside of the enhanced hydrolysis acidification tank 5 is provided with a uniform water distributor 18, which includes a main pipe 180 and an auxiliary pipe 181
  • the auxiliary pipe 181 is sleeved inside the main pipe 180.
  • a through hole is provided on the auxiliary pipe 181, and the through hole communicates with the inner cavity of the main pipe 180.
  • a rotary motor 182 is provided at the bottom of the hydrolysis acidification tank 5, and the rotary motor 182 provides power to the main pipe 180.
  • the main nozzle 180 is connected to the main nozzle 183 at the upper end, and the auxiliary nozzle 184 is connected to the upper end of the auxiliary pipe 181;
  • the micron-sized calcium silicate dosing tank 6 is connected to the bottom of the enhanced hydrolysis and acidification tank 5 through a conduit, and the micron-sized calcium silicate dosing tank 6
  • the added micron-sized calcium silicate has a particle size of 10 ⁇ m and a density of 2.9 g / cm 3 ;
  • a uniform water distributor 18 is provided at the bottom end of the high-efficiency methanogen tank 8
  • a combined filler 9 is provided at a middle position inside the high-efficiency methanogen tank 8
  • a fixed soft filler is provided at the upper inner end of the high-efficiency methanogen tank 8.
  • control device 19 includes a controller 190, processor 191, and remote control 192.
  • Controller 190 is commercially available. Controller 190 is connected to decontamination device 17, rotary motor 182, pH measuring instrument 21, and solenoid valve. Processor 191 and remote control 192 are connected to the control, respectively.
  • the device 190 is connected, and the power supply provides power for the decontamination device 17, the rotating electric machine 182, the pH measuring instrument 21, and the solenoid valve.
  • the operation method of using the device for pharmaceutical wastewater treatment mainly includes the following steps:
  • S1 First pass the pharmaceutical wastewater into the air floatation tank 1 to remove some oil and suspended particles, scrape the pollutants from the upper layer of the air floatation tank 1 through the decontamination device 17, and then enter the adjustment tank 2 and measure the pH value through the pH meter 21. Water pH.
  • the controller 190 controls the opening of the solenoid valve on the alkali dosing tank 4 to adjust the pH of the incoming water to 6.5.
  • the wastewater treated by the regulating tank 2 enters the enhanced hydrolysis acidification tank 5 through the uniform water distributor 18, and at this time, the micron-sized calcium silicate is added, and the dosage is based on the volatile fatty acid content in the effluent of the hydrolysis acidification tank, so that the silicon
  • the mass ratio of the mass of calcium acid particles to the mass of volatile fatty acids is 0.06.
  • the calcium silicate particles are adsorbed on the surface of the sludge floc, and the volatile fatty acids formed are rapidly dissociated to enhance the acid production ability of the microorganisms.
  • the calcium ions formed after dissolution helps to increase the stability of the sludge floc.
  • the hydraulic retention time of the wastewater is 6h.
  • the fixed filler 7 in the middle of the tank can trap microorganisms and suspended particles in the water stream, ensuring a stable and efficient hydrolytic acidification function.
  • the methanogenic bacteria can be adsorbed on the combined filler in the middle of the tank9
  • the fixed soft filler 10 on the upper part of the tank can trap the methanogens being washed out, further improving the biogas production capacity and stability of the efficient methanogenic tank 8, and the biogas produced passes through After the biogas collection and processing device 13 is processed, it is used as energy for the sewage plant;
  • anoxic tank 11 After producing high methane digestion of sewage tank 8 into the anoxic tank 11, while the secondary clarifier effluent 14 is also returned to the anoxic tank 11, anoxic tank 11 has a density in adding 0.93g / cm 3, specific surface area of 400m 2 / m 3 , 10mm diameter suspended filler, used to enrich denitrifying bacteria, reduce nitrate nitrogen to nitrogen under the action of denitrifying bacteria, and then enter the aerobic pond 12 to further remove COD and ammonia nitrogen.
  • the COD removal rate of the oxygen treatment process is maintained at 82.3% to 86.7%, the effluent COD is 2154-2932mg / L, and the methane output of the high-efficiency methanogenic tank is 261-296ml / gCOD.
  • the mud-water separation is completed in the secondary sedimentation tank 14, PAC is added to the coagulation sedimentation tank 15 to complete the coagulation and precipitation to obtain the final effluent;
  • the effluent COD is 167-342mg / L, the TN concentration is 18-31mg / L, SS ⁇ 31mg / L, and the chroma is 5-9.
  • Example 1 The difference from Example 1 is that the treated pharmaceutical wastewater is taken from the mixed effluent of a pharmaceutical company's workshop.
  • the wastewater is orange-red, there are many types of organic matter, the water intake is 50L / d, the water intake is COD12000-13900mg / L, pH6.7-7.2 , Turbidity 148-169mg / L.
  • the structure of the small-scale test device shown in FIG. 1 is a pharmaceutical waste water treatment device with high-efficiency resource recovery and low energy consumption, which mainly includes an air floatation tank 1, a regulating tank 2, an acid dosing tank 3, an alkali dosing tank 4, Enhanced hydrolysis acidification tank 5, micron-scale calcium silicate dosing tank 6, high-efficiency methanogenic tank 8, hypoxic tank 11, aerobic tank 12, biogas collection and processing device 13, secondary sedimentation tank 14, coagulation sedimentation tank 15, PAC Dosing tank 16, control device 19 and power supply; air flotation tank 1, regulating tank 2, enhanced hydrolysis acidification tank 5, high-efficiency methanogenic tank 8, anoxic tank 11, aerobic tank 12, secondary sedimentation tank 14, coagulation sedimentation tank 15 Connect in turn,
  • the air floatation tank 1 is provided with a liquid level sensing device 101.
  • the sensing probe of the liquid level sensing device 101 is located inside the air floatation tank 1.
  • the liquid level sensing device 101 is connected to the controller 191;
  • the floating pond 1 is provided with a decontamination device 17, which includes a decontamination plate 170, a telescopic rod 171, a first motor 172, and a second motor 173.
  • There are two telescopic rods 171, and two telescopic rods 171 are located in the air floating pond 1.
  • sliding blocks 174 are provided at the lower ends of the two telescopic rods 171.
  • the two sliding blocks 174 are connected by connecting rods.
  • Hanging rings are provided on both sides of the connecting rods.
  • a clamping plate 175 is provided.
  • Five decontamination plates 170 are provided.
  • the five decontamination plates 170 are arranged side by side on the clamping plate 175.
  • the clamping plate 175 is provided with a fixed column 178 vertically.
  • Electric push rods 179 are movably arranged between the five decontamination plates 170; slide grooves 176 are provided at the bottom and front and bottom ends of the air floatation pool 1, and the telescopic rod 171 and the air floatation pool 1 are connected by a slide block 174 and a slide groove 176.
  • a cable is provided on the first motor 172 at the left end of the first motor.
  • the cable passes through a pulley 177 on the left side of the bottom of the air flotation tank 1 and is connected to a hanging ring on the left side of the connecting rod.
  • the motor 173 is provided with the above-mentioned cable, and the cable passes through the pulley 177 on the right side of the bottom of the air float tank 1 to be connected to the hanging ring on the right side of the connecting rod, and the bottom of the sliding block 174 is provided with a ball;
  • the acid dosing tank 3 and the alkali dosing tank 4 are connected to the regulating tank 2, respectively, and the connection is provided with a solenoid valve.
  • the regulating tank 2 is provided with a pH measuring instrument 21 and a pH measuring instrument.
  • a measuring probe of 21 is located inside the regulating tank 2.
  • a diversion tube is provided on the top of the enhanced hydrolysis acidification tank 5. The diversion tube is connected to the hypoxic tank 11, and a fixed filler 7 and a fixed filler 7 are arranged in the middle of the enhanced hydrolysis acidification tank 5.
  • the specific surface area is 350 m 2 / m 3 , the density is 2 g / cm 3 , and the diameter is 200 mm;
  • the inner end of the enhanced hydrolysis acidification tank 5 is provided with a uniform water distributor 18, which includes a main pipe 180 and an auxiliary pipe 181,
  • the auxiliary pipe 181 is sleeved inside the main pipe 180.
  • the auxiliary pipe 181 is provided with a through hole, which communicates with the inner cavity of the main pipe 180.
  • a rotary motor 182 is provided at the bottom of the hydrolysis acidification tank 5, and the rotary motor 182 provides power to the main pipe 180.
  • the main spray head 183 is connected to the upper end of 180, and the auxiliary spray head 184 is connected to the upper end of the auxiliary tube 181.
  • the micron-sized calcium silicate dosing tank 6 is connected to the bottom of the enhanced hydrolysis and acidification tank 5 through a conduit.
  • the micron-sized calcium silicate dosing tank 6 is added
  • the particle size of the micron-sized calcium silicate is 50 ⁇ m, and the density is 3 g / cm 3 ;
  • a uniform water distributor 18 is provided at the bottom end of the high-efficiency methanogen tank 8
  • a combined filler 9 is provided at a middle position inside the high-efficiency methanogen tank 8
  • a fixed soft filler is provided at the upper inner end of the high-efficiency methanogen tank 8.
  • control device 19 includes a controller 190, processor 191, and remote control 192.
  • Controller 190 is commercially available. Controller 190 is connected to decontamination device 17, rotary motor 182, pH measuring instrument 21, and solenoid valve. Processor 191 and remote control 192 are connected to the control, respectively.
  • the device 190 is connected, and the power supply provides power for the decontamination device 17, the rotating electric machine 182, the pH measuring instrument 21, and the solenoid valve.
  • the operation method of using the device for pharmaceutical wastewater treatment mainly includes the following steps:
  • S1 First pass the pharmaceutical wastewater into the air floatation tank 1 to remove some oil and suspended particles, scrape the pollutants from the upper layer of the air floatation tank 1 through the decontamination device 17, and then enter the adjustment tank 2 and measure the pH value through the pH meter 21. Water pH.
  • the controller 190 controls the opening of the solenoid valve on the alkali dosing tank 4 to adjust the pH of the incoming water to 6.5.
  • the wastewater treated by the regulating tank 2 enters the enhanced hydrolysis acidification tank 5 through the uniform water distributor 18, and at this time, the micron-sized calcium silicate is added, and the dosage is based on the volatile fatty acid content in the effluent of the hydrolysis acidification tank, so that the silicon
  • the ratio of the mass of calcium acid particles to the mass of volatile fatty acids is 0.09.
  • the calcium silicate particles are adsorbed on the surface of the sludge floc, and the volatile fatty acids formed are rapidly dissociated to enhance the acid-producing ability of the microorganisms.
  • the calcium ions formed after dissolution helps to increase the stability of sludge floc.
  • the hydraulic retention time of wastewater is 7h.
  • the fixed filler 7 in the middle of the tank can trap microorganisms and suspended particles in the water stream, ensuring stable and efficient hydrolysis and acidification function;
  • the methanogenic bacteria can be adsorbed on the combined filler in the middle of the tank9
  • the fixed soft filler 10 on the upper part of the tank can trap the methanogens being washed out, further improving the biogas production capacity and stability of the efficient methanogenic tank 8, and the biogas produced passes through After the biogas collection and processing device 13 is processed, it is used as energy for the sewage plant;
  • the COD removal rate of the process is maintained at 81.1% -84.3%, the effluent COD is 1884-2627mg / L, and the methane output of the high-efficiency methanogenic tank is 268-304ml / gCOD.
  • the mud-water separation is completed in the secondary sedimentation tank 14, and the coagulation sedimentation PAC was added to the pond 15 to complete the coagulation and precipitation to obtain the final effluent.
  • the effluent COD was 203-412 mg / L, the TN concentration was 26-43 mg / L, SS ⁇ 37 mg / L, and the chroma was 4-11.
  • a pilot test device is used.
  • the pharmaceutical wastewater to be treated is fermentation wastewater of an anticancer drug
  • the inlet water is COD18500-21900mg / L, pH6.4-6.7, SS764-1128mg / L, and the inlet water volume is 4m3 / d.
  • FIG. 1 is a pharmaceutical waste water treatment device with efficient resource recovery and low energy consumption. It mainly includes an air floatation tank 1, a conditioning tank 2, an acid dosing tank 3, an alkali dosing tank 4, Enhanced hydrolysis acidification tank 5, micron-scale calcium silicate dosing tank 6, high-efficiency methanogenic tank 8, hypoxic tank 11, aerobic tank 12, biogas collection and processing device 13, secondary sedimentation tank 14, coagulation sedimentation tank 15, PAC Dosing tank 16, control device 19 and power supply; air flotation tank 1, regulating tank 2, enhanced hydrolysis acidification tank 5, high-efficiency methanogenic tank 8, anoxic tank 11, aerobic tank 12, secondary sedimentation tank 14, coagulation sedimentation tank 15 Connect in turn,
  • the air floatation tank 1 is provided with a liquid level sensing device 101.
  • the sensing probe of the liquid level sensing device 101 is located inside the air floatation tank 1.
  • the liquid level sensing device 101 is connected to the controller 191;
  • the floating pond 1 is provided with a decontamination device 17, which includes a decontamination plate 170, a telescopic rod 171, a first motor 172, and a second motor 173.
  • There are two telescopic rods 171, and two telescopic rods 171 are located in the air floating pond 1.
  • sliding blocks 174 are provided at the lower ends of the two telescopic rods 171.
  • the two sliding blocks 174 are connected by connecting rods.
  • Hanging rings are provided on both sides of the connecting rods.
  • a clamping plate 175 is provided.
  • Five decontamination plates 170 are provided.
  • the five decontamination plates 170 are arranged side by side on the clamping plate 175.
  • the clamping plate 175 is provided with a fixed column 178 vertically.
  • Electric push rods 179 are movably arranged between the five decontamination plates 170; slide grooves 176 are provided at the bottom and front and bottom ends of the air floatation pool 1, and the telescopic rod 171 and the air floatation pool 1 are connected by a slide block 174 and a slide groove 176.
  • Pulleys 177 are provided at the left and right ends of the bottom of the air floating pond 1, and the first motor 172 is provided at the bottom of the air floating pond 1.
  • a cable is provided on the first motor 172 at the left end of the first motor.
  • the cable passes through a pulley 177 on the left side of the bottom of the air flotation tank 1 and is connected to a hanging ring on the left side of the connecting rod.
  • the motor 173 is provided with the above-mentioned cable, and the cable passes through the pulley 177 on the right side of the bottom of the air float tank 1 to be connected to the hanging ring on the right side of the connecting rod, and the bottom of the sliding block 174 is provided with a ball;
  • the acid dosing tank 3 and the alkali dosing tank 4 are connected to the regulating tank 2, respectively, and the connection is provided with a solenoid valve.
  • the regulating tank 2 is provided with a pH measuring instrument 21 and a pH measuring instrument.
  • a measuring probe of 21 is located inside the regulating tank 2.
  • a diversion tube is provided on the top of the enhanced hydrolysis acidification tank 5. The diversion tube is connected to the hypoxic tank 11, and a fixed filler 7 and a fixed filler 7 are arranged in the middle of the enhanced hydrolysis acidification tank 5.
  • the specific surface area is 410m 2 / m 3 , the density is 1.6g / cm 3 , and the diameter is 250mm;
  • the inner end of the enhanced hydrolysis acidification tank 5 is provided with a uniform water distributor 18, which includes a main pipe 180 and an auxiliary pipe 181
  • the auxiliary pipe 181 is sleeved inside the main pipe 180.
  • a through hole is provided on the auxiliary pipe 181, and the through hole communicates with the inner cavity of the main pipe 180.
  • a rotary motor 182 is provided at the bottom of the hydrolysis acidification tank 5, and the rotary motor 182 provides power to the main pipe 180.
  • the main nozzle 180 is connected to the main nozzle 183 at the upper end, and the auxiliary nozzle 184 is connected to the upper end of the auxiliary pipe 181;
  • the micron-sized calcium silicate dosing tank 6 is connected to the bottom of the enhanced hydrolysis and acidification tank 5 through a conduit, and the micron-sized calcium silicate dosing tank 6
  • the particle size of the added micro-scale calcium silicate is 80 ⁇ m, and the density is 2.9 g / cm 3 ;
  • a uniform water distributor 18 is provided at the bottom end of the high-efficiency methanogen tank 8
  • a combined filler 9 is provided at a middle position inside the high-efficiency methanogen tank 8
  • a fixed soft filler is provided at the upper inner end of the high-efficiency methanogen tank 8.
  • control device 19 includes a controller 190, processor 191, and remote control 192.
  • Controller 190 is commercially available. Controller 190 is connected to decontamination device 17, rotary motor 182, pH measuring instrument 21, and solenoid valve. Processor 191 and remote control 192 are connected to the control, respectively.
  • the device 190 is connected, and the power supply provides power for the decontamination device 17, the rotating electric machine 182, the pH measuring instrument 21, and the solenoid valve.
  • the operation method of using the device for pharmaceutical wastewater treatment mainly includes the following steps:
  • S1 First pass the pharmaceutical wastewater into the air floatation tank 1 to remove some oil and suspended particles, scrape the pollutants from the upper layer of the air floatation tank 1 through the decontamination device 17, and then enter the adjustment tank 2 and measure the pH value through the pH meter 21.
  • Water pH the opening of the solenoid valve on the alkali dosing tank 4 is controlled by the controller 190, the pH value of the inlet water is adjusted to 7.5, and the pH of the wastewater is raised to above 7.5 by adding an alkali solution;
  • the wastewater treated by the adjustment tank 2 enters the enhanced hydrolysis acidification tank 5 through the uniform water distributor 18, and at this time, the micron-sized calcium silicate is added, and the dosage is based on the content of volatile fatty acids in the effluent of the hydrolysis acidification tank, so that the silicon
  • the mass ratio of calcium acid particles to the mass of volatile fatty acids is 0.12.
  • the calcium silicate particles are adsorbed on the surface of the sludge floc, quickly dissociating the volatile fatty acids formed, enhancing the acid-producing ability of the microorganisms, and the calcium ions formed after dissolution. It helps to increase the stability of the sludge floc.
  • the hydraulic retention time of the wastewater is 8 hours.
  • the fixed filler 7 in the middle of the tank can trap microorganisms and suspended particles in the water stream, ensuring a stable and efficient hydrolytic acidification function.
  • the methanogen bacteria can be adsorbed on the combined filler in the middle of the tank9
  • the fixed soft filler 10 on the upper part of the tank can trap the methanogens being washed out, further improving the biogas production capacity and stability of the efficient methanogenic tank 8, and the biogas produced passes through After the biogas collection and processing device 13 is processed, it is used as energy for the sewage plant;
  • anoxic tank 11 After producing high methane digestion of sewage tank 8 into the anoxic tank 11, while the secondary clarifier effluent 14 is also returned to the anoxic tank 11, anoxic tank 11 has a density in adding 0.96g / cm 3, specific surface area of 460m 2 / m 3 , 15mm diameter suspended filler, used to enrich denitrifying bacteria, reduce nitrate nitrogen to nitrogen under the action of denitrifying bacteria, and then enter the aerobic pond 12 to further remove COD and ammonia nitrogen.
  • the COD removal rate of the oxygen treatment process is maintained at 76.7% -84.2%, and the COD of the effluent is 2981-4629mg / L.
  • the hydraulic retention time of the wastewater in the anoxic tank 11 and the aerobic tank 12 is respectively the above two embodiments.
  • 1.5 times the methane output of the high-efficiency methanogenic tank is 279-318ml / gCOD.
  • the mud-water separation is completed in the secondary sedimentation tank 14, and the PAC is added to the coagulation sedimentation tank 15 to complete the coagulation sedimentation to obtain the final effluent.
  • the COD of the effluent is 327-482mg / L, TN concentration 34-53mg / L, SS ⁇ 42mg / L, chroma 16-31.

Abstract

一种制药废水处理装置,该装置包括依次连接的气浮池(1)、调节池(2)、强化水解酸化罐(5)、高效产甲烷罐(8)、缺氧池(11)、好氧池(12)、混凝沉淀池(15),还设有酸加药罐(3)、碱加药罐(5)、微米级硅酸钙加药罐(6),还包括控制装置(19)和电源;强化水解酸化罐(5)顶部设有导流管,中部设有固定填料(7),底部设有微米级硅酸钙加药导管和均匀布水器(18),高效产甲烷罐(8)中部设置有组合填料(9),上部设有固定软性填料(10),底部设置有均匀布水器(18)。还公开了一种制药废水处理装置的运行方法。

Description

一种高效资源回收低能耗的制药废水处理装置及其运行方法 技术领域
本发明涉及废水处理技术领域,具体涉及一种高效资源回收低能耗的制药废水处理装置及其运行方法。
背景技术
制药废水组成成分复杂、有机污染物种类繁多、浓度高、色度深、固体悬浮物含量高,COD浓度高且进水COD往往存在较大的波动、是一种较难处理的工业废水之一。制药废水对生态环境、人类健康的威胁日益严重,随着国家对制药行业排污的严格把控,以及不同敏感区域所需的特殊排放标准,各地方政府也相继出台了一系列节能减排的政策和规划,对制药废水处理后出水有了更高的要求。因此,迫切的需要提高制药废水处理工艺的效率,提高处理工艺的稳定性和经济性。
目前以“预处理+厌氧+好氧”为主体的工艺,以其处理效果较好、运行管理方便、产泥量低、具有一定的抗冲击负荷能力等优点,被广泛的应用到制药废水的处理过程。其处理原理为,制药废水首先经过预处理去除部分油类、颗粒态物质等难降解污染物,而后经水解酸化/产甲烷作用,进水中的有机物得到较多的去除,减少后续好氧处理的负荷,具有一定的抗冲击负荷能力,而后在缺氧+好氧段有机物和总氮被进一步去除,完成制药废水的处理过程。水解酸化可较好的缓解后续处理阶段受到的冲击,但往往存在出水pH值较低,影响后续产甲烷的进行,且当水力停留时间较短时难以达到理想的将颗粒态污染物转化为溶解态有机物的效果;产甲烷阶段虽有一定量的沼气产生,但单位体积产气量较低,沼气质量低,颗粒污泥形成过程缓慢;且后续的反硝化过程需投加碳源以达到满足排放标准的出水水质。上诉问题的共同作用下,将导致制药废水处理工艺运行不稳定、碳资源回收效率低、耗能高等缺点。
国内外学者对制药废水处理工艺的优化进行了大量研究,多种物理、化学方法得到了广泛的应用,如微电解法、光催化氧化法及膜分离等技术。但这些处理技术或工艺均存在运行费用高、操作管理复杂、对设备要求高、资源回 收效率低等问题。如中国专利号201711438146.4,公开了一种制药废水处理方法,将制药废水蒸发脱盐后,进入中和池,依次经缺氧池、好氧池,最后采用MBR膜组过滤,该方法未考虑废水中的资源回收,且将废水蒸发及经MBR组件过滤导致实际运行成本过高。中国专利号201010222306.3,公开了一种用于深度处理制药废水的方法,采用电解法进行深度处理,电耗为40.47KW.h/m 3,该工艺能耗较高。这些处理技术往往较少考虑对制药废水中的资源进行回收,采用的技术手段能耗高、操作管理复杂,其实际工程适用性较差,因此有必要对制药废水处理工艺进行优化探索。
发明内容
本发明解决的技术问题是:针对现有制药废水处理工艺中,存在的水解酸化出水pH值较低,影响后续产甲烷的进行,颗粒态污染物转化为溶解态有机物的效果不理想,产甲烷阶段单位体积产气量低,沼气质量差,颗粒污泥形成过程缓慢,后续的反硝化过程需投加大量碳源,导致制药废水处理工艺运行不稳定、碳资源回收效率低,且现行的物理化学技术手段能耗高、操作管理复杂,际工程适用性较差等缺点,提供一种高效资源回收低能耗的制药废水处理装置及其运行方法,在保证废水处理效率提升的基础上,能有效提高制药废水处理工艺的资源回收率,降低处理过程能耗,操作管理方便,工艺运行稳定。
本发明的技术方案为:一种高效资源回收低能耗的制药废水处理装置,主要包括气浮池、调节池、酸加药罐、碱加药罐、强化水解酸化罐、微米级硅酸钙加药罐、高效产甲烷罐、缺氧池、好氧池、沼气收集处理装置、二沉池、混凝沉淀池、PAC加药罐、控制装置和电源;气浮池、调节池、强化水解酸化罐、高效产甲烷罐、缺氧池、好氧池、二沉池、混凝沉淀池依次连接,气浮池内部设置有除污装置;酸加药罐和碱加药罐分别和调节池连接,连接处均设置有电磁阀,调节池上设置有pH值测定仪,pH值测定仪的测量探头位于调节池内部;强化水解酸化罐的顶部设置有导流管,导流管与缺氧池连接,强化水解酸化罐内部中部位置设置有固定填料,强化水解酸化罐内部底端设置有均匀布水器,均匀布水器包括主管和副管,副管套设在主管内部,副管上设置有通孔,通孔与主管的内腔相通,水解酸化罐底部设置有旋转电机,旋转电机为主管提 供动力,主管上端连接有主喷头,副管上端连接有副喷头;微米级硅酸钙加药罐通过导管与强化水解酸化罐的底部连接;高效产甲烷罐内部底端设置有均匀布水器,高效产甲烷罐内部中部位置设置有组合填料,高效产甲烷罐内部上端设置有固定软性填料;缺氧池内添加有悬浮填料;二沉池通过导管与缺氧池连接;PAC加药罐与混凝沉淀池连接;控制装置包括控制器、处理器和遥控器,控制器为市售,控制器和除污装置、旋转电机、pH值测定仪、电磁阀连接,处理器和遥控器分别和控制器连接,电源为除污装置、旋转电机、pH值测定仪、电磁阀提供电源。
进一步地,除污装置包括除污板、伸缩杆、第一电机和第二电机,伸缩杆有两个,两个伸缩杆位于气浮池内部前后两端,两个伸缩杆的下端均设置有滑动块,两个滑动块之间通过连接杆连接,连接杆的两侧均设置有挂环,两个伸缩杆的上端均设置有夹持板,除污板的两端通过转轴与夹持板活动连接,气浮池底部前后两端均设置有滑槽,伸缩杆与气浮池之间通过滑动块、滑槽连接,气浮池底部左右两端均设置有滑轮,第一电机设置在气浮池底部左端,第一电机上设置有拉索,拉索穿过气浮池底部左侧的滑轮与连接杆左侧的挂环连接,第二电机设置在气浮池底部右端,第二电机的设置有上述拉索,拉索穿过气浮池底部右侧的滑轮与连接杆右侧的挂环连接,通过第一电机和第二电机左右拉动除污板移动,对气浮池表面的污染物进行刮除,通过伸缩杆调节除污板的高度。
进一步地,滑动块底部设置有滚珠,减小滑动块与滑槽之间的摩擦力,减少能量损耗。
进一步地,气浮池上设置有液位感应装置,液位感应装置的感应探头位于气浮池内部,液位感应装置与控制器连接,通过液位感应装置的感应探头感应气浮池中液位高度,并将信号传递给处理器,处理器发送指令给控制器,控制器控制伸缩杆随着液位变化的自行调节高度,提高排污效果。
进一步地,除污板设置有5个,5个除污板上下并列活动设置在夹持板上,夹持板上竖直设置有固定柱,固定柱与5个除污板之间均活动设置有电动 推杆,提高排污效果,当除污板竖直放置时,可以对污染物进行刮除,当除污板倾斜放置时,又不会影响气浮池的处理效果。
进一步地,固定填料的比表面积为300-410m 2/m 3,密度为1.6-2.1g/cm 3,直径为150-250mm,可截留水流中的微生物和悬浮颗粒,保证稳定高效的水解酸化功能。
进一步地,微米级硅酸钙加药罐中添加的微米级硅酸钙粒径为10-100μm,密度2.9-3.1g/cm 3,硅酸钙颗粒吸附至污泥絮体表面,快速解离形成的挥发性脂肪酸,增强微生物的产酸能力,同时溶解后形成的钙离子有助于增加污泥絮体的稳定性。
进一步地,组合填料的比表面积为350-460m 2/m 3,密度为1.2-1.8g/cm 3,直径150-250mm;固定软性填料的密度为1.02-1.1g/cm 3,纤维束长度为60-100mm,束间距离为30-45mm,孔隙率>99%,进一步提高高效产甲烷罐的产沼气能力和稳定性
一种高效资源回收低能耗的制药废水处理装置的运行方法,主要包括以下步骤:
S1:首先将制药废水通入气浮池,去除部分油、悬浮颗粒,通过除污装置对气浮池上层的污染物进行刮除,然后进入调节池,通过pH值测定仪测定进水pH,通过控制器控制酸加药罐或碱加药罐上的电磁阀的开启,调节进水pH值至6.5-8.5;
S2:经过调节池处理后的废水经均匀布水器进入强化水解酸化罐,此时投加微米级硅酸钙,投加量按照水解酸化罐出水中挥发性脂肪酸的含量,使得硅酸钙颗粒的质量与挥发性脂肪酸的质量比为0.06-0.12,硅酸钙颗粒吸附至污泥絮体表面,快速解离形成的挥发性脂肪酸,增强微生物的产酸能力,同时溶解后形成的钙离子有助于增加污泥絮体的稳定性,废水水力停留时间为6-8h,罐体中部的固定填料可截留水流中的微生物和悬浮颗粒,保证稳定高效的水解酸化功能;
S3:经过强化水解酸化罐处理后的5-10%的水解酸化液进入缺氧池作为反硝化所需碳源,剩余水解酸化液进入高效产甲烷罐,高效产甲烷罐水力停留时间为15-20h,污泥停留时间为20-30d,强化水解酸化罐出水中含有的钙离子有利于产甲烷罐中颗粒污泥的形成,此外产甲烷菌可吸附于罐体中部的组合填料,形成以产甲烷菌为主的生物膜,罐体上部的固定软性填料可截留被冲洗出的产甲烷菌,进一步提高高效产甲烷罐的产沼气能力和稳定性,产生的沼气经过沼气收集处理装置处理后作为能源供污水厂使用;
S4:经过高效产甲烷罐消化后的污水进入缺氧池,同时二沉池出水也回流至缺氧池,缺氧池中投加有密度0.93-0.96g/cm 3,比表面积400-460m 2/m 3,直径10-15mm的悬浮填料,用于富集反硝化菌,在反硝化菌的作用下将硝态氮还原为氮气,而后进入好氧池,进一步去除COD和氨氮,在二沉池中完成泥水分离,在混凝沉淀池中加入PAC,完成混凝沉淀,得到最终出水。
与现有技术相比,本发明的有益效果体现在以下几点:
(1)本发明的强化水解酸化罐底部投加有微米级硅酸钙颗粒,硅酸钙颗粒吸附至污泥絮体的表面,可有效增加污泥絮体的稳定性,微生物产生的挥发性脂肪酸可在污泥絮体表面快速的解离,降低挥发性脂肪酸积累造成的pH下降对微生物的不利影响,提高污泥产酸能力的同时,保证出水的pH值不降低至对产甲烷阶段产生不利影响,罐体中部的组合填料可以有效保证微生物不被冲洗出罐体且起到截留部分悬浮固体的作用。
(2)本发明采用高效产甲烷罐,首先强化水解酸化罐出水中含有的钙离子有利于产甲烷罐中颗粒污泥的形成,此外并在罐体的中部和上部分别设有组合填料和软性填料,产甲烷菌可吸附于罐体中部的固定组合填料,形成以产甲烷菌为主的生物膜,抗冲击负荷能力大大提高,罐体上部的固定软性填料可截留被冲洗出的产甲烷菌,进一步提高高效产甲烷罐的产沼气能力,实现碳资源的高效回收。
(3)本发明采用强化水解酸化罐的出水作为缺氧池反硝化所需的外加碳源,大大减少了外加碳源的投加量,在缺氧池中投加悬浮填料,可富集反硝化菌,提高缺氧池的抗冲击负荷能力。本发明中投加的硅酸钙价格低廉,易获 取。该装置结构简单,操作方便,该方法可有效提高处理工艺的效率和稳定性,碳资源回收率高,耗能低,达到制药废水处理过程稳定、高效和低能耗的优异效果。
附图说明
图1是本发明的装置的结构示意图;
图2是本发明的气浮池的结构示意图;
图3是本发明的刮板与伸缩杆的连接结构示意图;
图4是本发明的刮板竖直放置时的结构示意图;
图5是本发明的刮板倾斜放置时的结构示意图;
图6是本发明的均匀布水器的结构示意图;
图7是本发明的均匀布水器的俯视图;
其中,1-气浮池、101-液位感应装置、2-调节池、3-酸加药罐、4-碱加药罐、5-强化水解酸化罐、6-微米级硅酸钙加药罐、7-固定填料、8-高效产甲烷罐、9-组合填料、10-固定软性填料、11-缺氧池、12-好氧池、13-沼气收集处理装置、14-二沉池、15-混凝沉淀池、16-PAC加药罐、17-除污装置、170-除污板、171-伸缩杆、172-第一电机、173-第二电机、174-滑动块、175-夹持板、176-滑槽、177-滑轮、178-固定柱、179-电动推杆、18-均匀布水器、180-主管、181-副管、182-旋转电机、183-主喷头、184-副喷头、19-控制装置、190-控制器、191-处理器、192-遥控器、21-pH值测定仪。
具体实施方式
实施例1
本实施例采用一套小试试验装置,所处理制药废水取自某发酵类制药企业车间出水,废水呈现橙色,有机物种类繁多,进水量30L/d,进水COD14500-17000mg/L,pH6.2-6.9,浊度179-226mg/L。
所述的小试试验装置结构如图1所示,是一种高效资源回收低能耗的制药废水处理装置,主要包括气浮池1、调节池2、酸加药罐3、碱加药罐4、强化水解酸化罐5、微米级硅酸钙加药罐6、高效产甲烷罐8、缺氧池11、好氧池12、沼气收集处理装置13、二沉池14、混凝沉淀池15、PAC加药罐16、控制装置19和电源;气浮池1、调节池2、强化水解酸化罐5、高效产甲烷罐8、缺氧池11、好氧池12、二沉池14、混凝沉淀池15依次连接,
如图2、3、4、5所示,气浮池1上设置有液位感应装置101,液位感应装置101的感应探头位于气浮池1内部,液位感应装置101与控制器191连接;气浮池1内部设置有除污装置17,除污装置17包括除污板170、伸缩杆171、第一电机172和第二电机173,伸缩杆171有两个,两个伸缩杆171位于气浮池1内部前后两端,两个伸缩杆171的下端均设置有滑动块174,两个滑动块174之间通过连接杆连接,连接杆的两侧均设置有挂环,两个伸缩杆171的上端均设置有夹持板175,除污板170设置有5个,5个除污板170上下并列活动设置在夹持板175上,夹持板175上竖直设置有固定柱178,固定柱178与5个除污板170之间均活动设置有电动推杆179;气浮池1底部前后两端均设置有滑槽176,伸缩杆171与气浮池1之间通过滑动块174、滑槽176连接,气浮池1底部左右两端均设置有滑轮177,第一电机172设置在气浮池1底部左端,第一电机172上设置有拉索,拉索穿过气浮池1底部左侧的滑轮177与连接杆左侧的挂环连接,第二电机173设置在气浮池1底部右端,第二电机173的设置有上述拉索,拉索穿过气浮池1底部右侧的滑轮177与连接杆右侧的挂环连接,滑动块174底部设置有滚珠;
如图6、7所示,酸加药罐3和碱加药罐4分别和调节池2连接,连接处均设置有电磁阀,调节池2上设置有pH值测定仪21,pH值测定仪21的测量探头位于调节池2内部;强化水解酸化罐5的顶部设置有导流管,导流管与缺氧池11连接,强化水解酸化罐5内部中部位置设置有固定填料7,固定填料7的比表面积为300m 2/m 3,密度为2.1g/cm 3,直径为150mm;强化水解酸化罐5内部底端设置有均匀布水器18,均匀布水器18包括主管180和副管181,副管181套设在主管180内部,副管181上设置有通孔,通孔与主管180的内腔相通,水解酸化罐5底部设置有旋转电机182,旋转电机182为主管180提供动 力,主管180上端连接有主喷头183,副管181上端连接有副喷头184;微米级硅酸钙加药罐6通过导管与强化水解酸化罐5的底部连接,微米级硅酸钙加药罐6中添加的微米级硅酸钙粒径为10μm,密度2.9g/cm 3
如图1所示,高效产甲烷罐8内部底端设置有均匀布水器18,高效产甲烷罐8内部中部位置设置有组合填料9,高效产甲烷罐8内部内部上端设置有固定软性填料10,组合填料9的比表面积为350m 2/m 3,密度为1.8g/cm 3,直径150mm;固定软性填料10的密度为1.1g/cm 3,纤维束长度为100mm,束间距离为45mm,孔隙率>99%;缺氧池11内添加有悬浮填料;二沉池14通过导管与缺氧池11连接;PAC加药罐16与混凝沉淀池15连接;控制装置19包括控制器190、处理器191和遥控器192,控制器190为市售,控制器190和除污装置17、旋转电机182、pH值测定仪21、电磁阀连接,处理器191和遥控器192分别与控制器190连接,电源为除污装置17、旋转电机182、pH值测定仪21、电磁阀提供电源。
利用该装置进行制药废水处理的运行方法,主要包括以下步骤:
S1:首先将制药废水通入气浮池1,去除部分油、悬浮颗粒,通过除污装置17对气浮池1上层的污染物进行刮除,然后进入调节池2,通过pH值测定仪21测定进水pH,通过控制器190控制碱加药罐4上的电磁阀的开启,调节进水pH值至6.5;
S2:经过调节池2处理后的废水经均匀布水器18进入强化水解酸化罐5,此时投加微米级硅酸钙,投加量按照水解酸化罐出水中挥发性脂肪酸的含量,使得硅酸钙颗粒的质量与挥发性脂肪酸的质量比为0.06,硅酸钙颗粒吸附至污泥絮体表面,快速解离形成的挥发性脂肪酸,增强微生物的产酸能力,同时溶解后形成的钙离子有助于增加污泥絮体的稳定性,废水水力停留时间为6h,罐体中部的固定填料7可截留水流中的微生物和悬浮颗粒,保证稳定高效的水解酸化功能;
S3:经过强化水解酸化罐5处理后的6%的水解酸化液进入缺氧池11作为反硝化所需碳源,剩余水解酸化液进入高效产甲烷罐8,高效产甲烷罐8水力停留时间为15h,污泥停留时间为20d,运行90天,强化水解酸化罐5出水 中含有的钙离子有利于产甲烷罐中颗粒污泥的形成,此外产甲烷菌可吸附于罐体中部的组合填料9,形成以产甲烷菌为主的生物膜,罐体上部的固定软性填料10可截留被冲洗出的产甲烷菌,进一步提高高效产甲烷罐8的产沼气能力和稳定性,产生的沼气经过沼气收集处理装置13处理后作为能源供污水厂使用;
S4:经过高效产甲烷罐8消化后的污水进入缺氧池11,同时二沉池14出水也回流至缺氧池11,缺氧池11中投加有密度0.93g/cm 3,比表面积400m 2/m 3,直径10mm的悬浮填料,用于富集反硝化菌,在反硝化菌的作用下将硝态氮还原为氮气,而后进入好氧池12,进一步去除COD和氨氮,两相厌氧处理工艺的COD去除率维持在82.3%-86.7%,出水COD在2154-2932mg/L,高效产甲烷罐的甲烷产量为261-296ml/gCOD,在二沉池14中完成泥水分离,在混凝沉淀池15中加入PAC,完成混凝沉淀,得到最终出水;出水COD为167-342mg/L,TN浓度18-31mg/L,SS<31mg/L,色度5-9。
实施例2
同实施例1所不同的是,所处理制药废水取自某制药企业车间混合出水,废水呈现橘红色,有机物种类繁多,进水量50L/d,进水COD12000-13900mg/L,pH6.7-7.2,浊度148-169mg/L。
所述的小试试验装置结构如图1所示,是一种高效资源回收低能耗的制药废水处理装置,主要包括气浮池1、调节池2、酸加药罐3、碱加药罐4、强化水解酸化罐5、微米级硅酸钙加药罐6、高效产甲烷罐8、缺氧池11、好氧池12、沼气收集处理装置13、二沉池14、混凝沉淀池15、PAC加药罐16、控制装置19和电源;气浮池1、调节池2、强化水解酸化罐5、高效产甲烷罐8、缺氧池11、好氧池12、二沉池14、混凝沉淀池15依次连接,
如图2、3、4、5所示,气浮池1上设置有液位感应装置101,液位感应装置101的感应探头位于气浮池1内部,液位感应装置101与控制器191连接;气浮池1内部设置有除污装置17,除污装置17包括除污板170、伸缩杆171、第一电机172和第二电机173,伸缩杆171有两个,两个伸缩杆171位于 气浮池1内部前后两端,两个伸缩杆171的下端均设置有滑动块174,两个滑动块174之间通过连接杆连接,连接杆的两侧均设置有挂环,两个伸缩杆171的上端均设置有夹持板175,除污板170设置有5个,5个除污板170上下并列活动设置在夹持板175上,夹持板175上竖直设置有固定柱178,固定柱178与5个除污板170之间均活动设置有电动推杆179;气浮池1底部前后两端均设置有滑槽176,伸缩杆171与气浮池1之间通过滑动块174、滑槽176连接,气浮池1底部左右两端均设置有滑轮177,第一电机172设置在气浮池1底部左端,第一电机172上设置有拉索,拉索穿过气浮池1底部左侧的滑轮177与连接杆左侧的挂环连接,第二电机173设置在气浮池1底部右端,第二电机173的设置有上述拉索,拉索穿过气浮池1底部右侧的滑轮177与连接杆右侧的挂环连接,滑动块174底部设置有滚珠;
如图6、7所示,酸加药罐3和碱加药罐4分别和调节池2连接,连接处均设置有电磁阀,调节池2上设置有pH值测定仪21,pH值测定仪21的测量探头位于调节池2内部;强化水解酸化罐5的顶部设置有导流管,导流管与缺氧池11连接,强化水解酸化罐5内部中部位置设置有固定填料7,固定填料7的比表面积为350m 2/m 3,密度为2g/cm 3,直径为200mm;强化水解酸化罐5内部底端设置有均匀布水器18,均匀布水器18包括主管180和副管181,副管181套设在主管180内部,副管181上设置有通孔,通孔与主管180的内腔相通,水解酸化罐5底部设置有旋转电机182,旋转电机182为主管180提供动力,主管180上端连接有主喷头183,副管181上端连接有副喷头184;微米级硅酸钙加药罐6通过导管与强化水解酸化罐5的底部连接,微米级硅酸钙加药罐6中添加的微米级硅酸钙粒径为50μm,密度3g/cm 3
如图1所示,高效产甲烷罐8内部底端设置有均匀布水器18,高效产甲烷罐8内部中部位置设置有组合填料9,高效产甲烷罐8内部内部上端设置有固定软性填料10,组合填料9的比表面积为380m 2/m 3,密度为1.7g/cm 3,直径200mm;固定软性填料10的密度为1.05g/cm 3,纤维束长度为80mm,束间距离为35mm,孔隙率>99%;缺氧池11内添加有悬浮填料;二沉池14通过导管与缺氧池11连接;PAC加药罐16与混凝沉淀池15连接;控制装置19包括控制器190、处理器191和遥控器192,控制器190为市售,控制器190和除污装 置17、旋转电机182、pH值测定仪21、电磁阀连接,处理器191和遥控器192分别与控制器190连接,电源为除污装置17、旋转电机182、pH值测定仪21、电磁阀提供电源。
利用该装置进行制药废水处理的运行方法,主要包括以下步骤:
S1:首先将制药废水通入气浮池1,去除部分油、悬浮颗粒,通过除污装置17对气浮池1上层的污染物进行刮除,然后进入调节池2,通过pH值测定仪21测定进水pH,通过控制器190控制碱加药罐4上的电磁阀的开启,调节进水pH值至6.5;
S2:经过调节池2处理后的废水经均匀布水器18进入强化水解酸化罐5,此时投加微米级硅酸钙,投加量按照水解酸化罐出水中挥发性脂肪酸的含量,使得硅酸钙颗粒的质量与挥发性脂肪酸的质量比为0.09,硅酸钙颗粒吸附至污泥絮体表面,快速解离形成的挥发性脂肪酸,增强微生物的产酸能力,同时溶解后形成的钙离子有助于增加污泥絮体的稳定性,废水水力停留时间为7h,罐体中部的固定填料7可截留水流中的微生物和悬浮颗粒,保证稳定高效的水解酸化功能;
S3:经过强化水解酸化罐5处理后的7%的水解酸化液进入缺氧池11作为反硝化所需碳源,剩余水解酸化液进入高效产甲烷罐8,高效产甲烷罐8水力停留时间为15h,污泥停留时间为25d,运行70天,强化水解酸化罐5出水中含有的钙离子有利于产甲烷罐中颗粒污泥的形成,此外产甲烷菌可吸附于罐体中部的组合填料9,形成以产甲烷菌为主的生物膜,罐体上部的固定软性填料10可截留被冲洗出的产甲烷菌,进一步提高高效产甲烷罐8的产沼气能力和稳定性,产生的沼气经过沼气收集处理装置13处理后作为能源供污水厂使用;
S4:经过高效产甲烷罐8消化后的污水进入缺氧池11,同时二沉池14出水也回流至缺氧池11,缺氧池11中投加有密度0.95g/cm 3,比表面积420m 2/m 3,直径12mm的悬浮填料,用于富集反硝化菌,在反硝化菌的作用下将硝态氮还原为氮气,而后进入好氧池12,进一步去除COD和氨氮,厌氧处理工艺的COD去除率维持在81.1%-84.3%,出水COD在1884-2627mg/L,高效产甲烷罐的甲烷产量为268-304ml/gCOD,在二沉池14中完成泥水分离,在混凝沉淀 池15中加入PAC,完成混凝沉淀,得到最终出水,出水COD为203-412mg/L,TN浓度26-43mg/L,SS<37mg/L,色度4-11。
实施例3
本实施例采用中试试验装置,所处理制药废水为某抗癌药发酵废水,进水COD18500-21900mg/L,pH6.4-6.7,SS764-1128mg/L,进水量4m3/d。
所述的中试试验装置结构如图1所示,是一种高效资源回收低能耗的制药废水处理装置,主要包括气浮池1、调节池2、酸加药罐3、碱加药罐4、强化水解酸化罐5、微米级硅酸钙加药罐6、高效产甲烷罐8、缺氧池11、好氧池12、沼气收集处理装置13、二沉池14、混凝沉淀池15、PAC加药罐16、控制装置19和电源;气浮池1、调节池2、强化水解酸化罐5、高效产甲烷罐8、缺氧池11、好氧池12、二沉池14、混凝沉淀池15依次连接,
如图2、3、4、5所示,气浮池1上设置有液位感应装置101,液位感应装置101的感应探头位于气浮池1内部,液位感应装置101与控制器191连接;气浮池1内部设置有除污装置17,除污装置17包括除污板170、伸缩杆171、第一电机172和第二电机173,伸缩杆171有两个,两个伸缩杆171位于气浮池1内部前后两端,两个伸缩杆171的下端均设置有滑动块174,两个滑动块174之间通过连接杆连接,连接杆的两侧均设置有挂环,两个伸缩杆171的上端均设置有夹持板175,除污板170设置有5个,5个除污板170上下并列活动设置在夹持板175上,夹持板175上竖直设置有固定柱178,固定柱178与5个除污板170之间均活动设置有电动推杆179;气浮池1底部前后两端均设置有滑槽176,伸缩杆171与气浮池1之间通过滑动块174、滑槽176连接,气浮池1底部左右两端均设置有滑轮177,第一电机172设置在气浮池1底部左端,第一电机172上设置有拉索,拉索穿过气浮池1底部左侧的滑轮177与连接杆左侧的挂环连接,第二电机173设置在气浮池1底部右端,第二电机173的设置有上述拉索,拉索穿过气浮池1底部右侧的滑轮177与连接杆右侧的挂环连接,滑动块174底部设置有滚珠;
如图6、7所示,酸加药罐3和碱加药罐4分别和调节池2连接,连接处均设置有电磁阀,调节池2上设置有pH值测定仪21,pH值测定仪21的测量探头位于调节池2内部;强化水解酸化罐5的顶部设置有导流管,导流管与缺氧池11连接,强化水解酸化罐5内部中部位置设置有固定填料7,固定填料7的比表面积为410m 2/m 3,密度为1.6g/cm 3,直径为250mm;强化水解酸化罐5内部底端设置有均匀布水器18,均匀布水器18包括主管180和副管181,副管181套设在主管180内部,副管181上设置有通孔,通孔与主管180的内腔相通,水解酸化罐5底部设置有旋转电机182,旋转电机182为主管180提供动力,主管180上端连接有主喷头183,副管181上端连接有副喷头184;微米级硅酸钙加药罐6通过导管与强化水解酸化罐5的底部连接,微米级硅酸钙加药罐6中添加的微米级硅酸钙粒径为80μm,密度2.9g/cm 3
如图1所示,高效产甲烷罐8内部底端设置有均匀布水器18,高效产甲烷罐8内部中部位置设置有组合填料9,高效产甲烷罐8内部内部上端设置有固定软性填料10,组合填料9的比表面积为460m 2/m 3,密度为1.2g/cm 3,直径250mm;固定软性填料10的密度为1.02g/cm 3,纤维束长度为100mm,束间距离为30mm,孔隙率>99%;缺氧池11内添加有悬浮填料;二沉池14通过导管与缺氧池11连接;PAC加药罐16与混凝沉淀池15连接;控制装置19包括控制器190、处理器191和遥控器192,控制器190为市售,控制器190和除污装置17、旋转电机182、pH值测定仪21、电磁阀连接,处理器191和遥控器192分别与控制器190连接,电源为除污装置17、旋转电机182、pH值测定仪21、电磁阀提供电源。
利用该装置进行制药废水处理的运行方法,主要包括以下步骤:
S1:首先将制药废水通入气浮池1,去除部分油、悬浮颗粒,通过除污装置17对气浮池1上层的污染物进行刮除,然后进入调节池2,通过pH值测定仪21测定进水pH,通过控制器190控制碱加药罐4上的电磁阀的开启,调节进水pH值至7.5,后续通过加入碱液使得废水的pH升高至7.5以上;
S2:经过调节池2处理后的废水经均匀布水器18进入强化水解酸化罐5,此时投加微米级硅酸钙,投加量按照水解酸化罐出水中挥发性脂肪酸的含量, 使得硅酸钙颗粒的质量与挥发性脂肪酸的质量比为0.12,硅酸钙颗粒吸附至污泥絮体表面,快速解离形成的挥发性脂肪酸,增强微生物的产酸能力,同时溶解后形成的钙离子有助于增加污泥絮体的稳定性,废水水力停留时间为8h,罐体中部的固定填料7可截留水流中的微生物和悬浮颗粒,保证稳定高效的水解酸化功能;
S3:经过强化水解酸化罐5处理后的8%的水解酸化液进入缺氧池11作为反硝化所需碳源,剩余水解酸化液进入高效产甲烷罐8,高效产甲烷罐8水力停留时间为20h,污泥停留时间为20d,运行155天,强化水解酸化罐5出水中含有的钙离子有利于产甲烷罐中颗粒污泥的形成,此外产甲烷菌可吸附于罐体中部的组合填料9,形成以产甲烷菌为主的生物膜,罐体上部的固定软性填料10可截留被冲洗出的产甲烷菌,进一步提高高效产甲烷罐8的产沼气能力和稳定性,产生的沼气经过沼气收集处理装置13处理后作为能源供污水厂使用;
S4:经过高效产甲烷罐8消化后的污水进入缺氧池11,同时二沉池14出水也回流至缺氧池11,缺氧池11中投加有密度0.96g/cm 3,比表面积460m 2/m 3,直径15mm的悬浮填料,用于富集反硝化菌,在反硝化菌的作用下将硝态氮还原为氮气,而后进入好氧池12,进一步去除COD和氨氮,两相厌氧处理工艺的COD去除率维持在76.7%-84.2%,出水COD在2981-4629mg/L,本实施例中废水在缺氧池11和好氧池12的水力停留时间分别为上述两个实施例的1.5倍,高效产甲烷罐的甲烷产量为279-318ml/gCOD,在二沉池14中完成泥水分离,在混凝沉淀池15中加入PAC,完成混凝沉淀,得到最终出水,出水COD为327-482mg/L,TN浓度34-53mg/L,SS<42mg/L,色度16-31。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明实施例技术方案的精神和范围。

Claims (8)

  1. 一种高效资源回收低能耗的制药废水处理装置,其特征在于,主要包括气浮池(1)、调节池(2)、酸加药罐(3)、碱加药罐(4)、强化水解酸化罐(5)、微米级硅酸钙加药罐(6)、高效产甲烷罐(8)、缺氧池(11)、好氧池(12)、沼气收集处理装置(13)、二沉池(14)、混凝沉淀池(15)、PAC加药罐(16)、控制装置(19)和电源;所述气浮池(1)、调节池(2)、强化水解酸化罐(5)、高效产甲烷罐(8)、缺氧池(11)、好氧池(12)、二沉池(14)、混凝沉淀池(15)依次连接,气浮池(1)内部设置有除污装置(17);所述酸加药罐(3)和碱加药罐(4)分别和调节池(2)连接,连接处均设置有电磁阀,所述调节池(2)上设置有pH值测定仪(21),所述pH值测定仪(21)的测量探头位于调节池(2)内部;所述强化水解酸化罐(5)的顶部设置有导流管,所述导流管与缺氧池(11)连接,强化水解酸化罐(5)内部中部位置设置有固定填料(7),强化水解酸化罐(5)内部底端设置有均匀布水器(18),所述均匀布水器(18)包括主管(180)和副管(181),所述副管(181)套设在主管(180)内部,副管(181)上设置有通孔,所述通孔与主管(180)的内腔相通,水解酸化罐(5)底部设置有旋转电机(182),所述旋转电机(182)为主管(180)提供动力,主管(180)上端连接有主喷头(183),副管(181)上端连接有副喷头(184);所述微米级硅酸钙加药罐(6)通过导管与强化水解酸化罐(5)的底部连接;所述高效产甲烷罐(8)内部底端设置有均匀布水器(18),高效产甲烷罐(8)内部中部位置设置有组合填料(9),高效产甲烷罐(8)内部上端设置有固定软性填料(10);所述缺氧池(11)内添加有悬浮填料;所述二沉池(14)通过导管与缺氧池(11)连接;所述PAC加药罐(16)与混凝沉淀池(15)连接;所述控制装置(19)包括控制器(190)、处理器(191)和遥控器(192),所述控制器(190)和除污装置(17)、旋转电机(182)、pH值测定仪(21)、电磁阀连接,所述处理器(191)和遥控器(192)分别与控制器(190)连接,所述电源为除污装置(17)、旋转电机(182)、pH值测定仪(21)、电磁阀提供电源。
  2. 根据权利要求1所述的一种高效资源回收低能耗的制药废水处理装置,其特征在于,所述除污装置(17)包括除污板(170)、伸缩杆(171)、第一电机(172)和第二电机(173),所述伸缩杆(171)有两个,两个伸缩杆 (171)位于气浮池(1)内部前后两端,两个伸缩杆(171)的下端均设置有滑动块(174),两个所述滑动块(174)之间通过连接杆连接,所述连接杆的两侧均设置有挂环,两个伸缩杆(171)的上端均设置有夹持板(175),所述除污板(170)的两端通过转轴与所述夹持板(175)活动连接,气浮池(1)底部前后两端均设置有滑槽(176),伸缩杆(171)与气浮池(1)之间通过所述滑动块(174)、滑槽(176)连接,气浮池(1)底部左右两端均设置有滑轮(177),所述第一电机(172)设置在气浮池(1)底部左端,第一电机(172)上设置有拉索,所述拉索穿过气浮池(1)底部左侧的滑轮(177)与连接杆左侧的挂环连接,所述第二电机(173)设置在气浮池(1)底部右端,第二电机(173)的设置有上述拉索,拉索穿过气浮池(1)底部右侧的滑轮(177)与连接杆右侧的挂环连接。
  3. 根据权利要求2所述的一种高效资源回收低能耗的制药废水处理装置,其特征在于,所述滑动块(174)底部设置有滚珠。
  4. 根据权利要求2所述的一种高效资源回收低能耗的制药废水处理装置,其特征在于,所述除污板(170)设置有5个,5个除污板(170)上下并列活动设置在夹持板(175)上,夹持板(175)上竖直设置有固定柱(178),所述固定柱(178)与5个除污板(170)之间均活动设置有电动推杆(179)。
  5. 根据权利要求1所述的一种高效资源回收低能耗的制药废水处理装置,其特征在于,所述固定填料(7)的比表面积为300-410m 2/m 3,密度为1.6-2.1g/cm 3,直径为150-250mm。
  6. 根据权利要求1所述的一种高效资源回收低能耗的制药废水处理装置,其特征在于,所述微米级硅酸钙加药罐(6)中添加的微米级硅酸钙粒径为10-100μm,密度2.9-3.1g/cm 3
  7. 根据权利要求1所述的一种高效资源回收低能耗的制药废水处理装置,其特征在于,所述组合填料(9)的比表面积为350-460m 2/m 3,密度为1.2-1.8g/cm 3,直径150-250mm;所述固定软性填料(10)的密度为1.02-1.1g/cm 3,纤维束长度为60-100mm,束间距离为30-45mm,孔隙率>99%。
  8. 根据权利要求1-7任意一项所述的一种高效资源回收低能耗的制药废水处理装置的运行方法,其特征在于,主要包括以下步骤:
    S1:首先将制药废水通入气浮池(1),去除部分油、悬浮颗粒,通过除污装置(17)对气浮池(1)上层的污染物进行刮除,然后进入调节池(2),通过pH值测定仪(21)测定进水pH,通过控制器(190)控制酸加药罐(3)或碱加药罐(4)上的电磁阀的开启,调节进水pH值至6.5-8.5;
    S2:经过调节池(2)处理后的废水经均匀布水器(18)进入强化水解酸化罐(5),此时投加微米级硅酸钙,投加量按照水解酸化罐出水中挥发性脂肪酸的含量,使得硅酸钙颗粒的质量与挥发性脂肪酸的质量比为0.06-0.12,硅酸钙颗粒吸附至污泥絮体表面,快速解离形成的挥发性脂肪酸,增强微生物的产酸能力,同时溶解后形成的钙离子有助于增加污泥絮体的稳定性,废水水力停留时间为6-8h,罐体中部的固定填料(7)可截留水流中的微生物和悬浮颗粒,保证稳定高效的水解酸化功能;
    S3:经过强化水解酸化罐(5)处理后的5-10%的水解酸化液进入缺氧池(11)作为反硝化所需碳源,剩余水解酸化液进入高效产甲烷罐(8),高效产甲烷罐(8)水力停留时间为15-20h,污泥停留时间为20-30d,强化水解酸化罐(5)出水中含有的钙离子有利于产甲烷罐中颗粒污泥的形成,此外产甲烷菌可吸附于罐体中部的组合填料(9),形成以产甲烷菌为主的生物膜,罐体上部的固定软性填料(10)可截留被冲洗出的产甲烷菌,进一步提高高效产甲烷罐(8)的产沼气能力和稳定性,产生的沼气经过沼气收集处理装置(13)处理后作为能源供污水厂使用;
    S4:经过高效产甲烷罐(8)消化后的污水进入缺氧池(11),同时二沉池(14)出水也回流至缺氧池(11),所述缺氧池(11)中投加有密度0.93-0.96g/cm 3,比表面积400-460m 2/m 3,直径10-15mm的悬浮填料,用于富集反硝化菌,在反硝化菌的作用下将硝态氮还原为氮气,而后进入好氧池(12),进一步去除COD和氨氮,在二沉池(14)中完成泥水分离,在混凝沉淀池(15)中加入PAC,完成混凝沉淀,得到最终出水。
PCT/CN2018/110455 2018-08-15 2018-10-16 一种高效资源回收低能耗的制药废水处理装置及其运行方法 WO2020034382A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810930132.2 2018-08-15
CN201810930132.2A CN109052821B (zh) 2018-08-15 2018-08-15 一种高效资源回收低能耗的制药废水处理装置及其运行方法

Publications (1)

Publication Number Publication Date
WO2020034382A1 true WO2020034382A1 (zh) 2020-02-20

Family

ID=63878317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/110455 WO2020034382A1 (zh) 2018-08-15 2018-10-16 一种高效资源回收低能耗的制药废水处理装置及其运行方法

Country Status (3)

Country Link
EP (1) EP3611135B1 (zh)
CN (1) CN109052821B (zh)
WO (1) WO2020034382A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113023852A (zh) * 2021-03-29 2021-06-25 王兴文 旋转填料自清洗油泥渣水分离池

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109987800A (zh) * 2019-04-30 2019-07-09 江苏环保产业技术研究院股份公司 一种低能耗高效强化处理印染废水的装置及其运行方法
CN111533222B (zh) * 2020-05-11 2022-03-15 运城学院 一种用于化工废水处理的过滤净化装置
WO2022266937A1 (zh) * 2021-06-24 2022-12-29 鹏辰新材料科技股份有限公司 一种均苯四甲酸二酐氧化废水回收利用装置
CN114162968A (zh) * 2021-11-17 2022-03-11 西安理工大学 用于印染废水水解酸化的微氧流化床生物膜装置及方法
CN114873855A (zh) * 2022-05-16 2022-08-09 常州大学 一种处理含强的松的废水的一体化装置
CN114890632A (zh) * 2022-06-10 2022-08-12 九江赛恩斯环保科技发展有限公司 一种脂肪酸生产废水处理工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120005857A (ko) * 2010-07-09 2012-01-17 (주) 에코데이 수처리 장치 및 방법
CN102351377A (zh) * 2011-07-08 2012-02-15 郑州大学 发酵类制药废水集成处理方法
CN106277596A (zh) * 2016-08-29 2017-01-04 湖州至美生物科技有限公司 一种功能菌强化处理的高浓度制药废水处理设备和工艺
CN106830544A (zh) * 2017-03-02 2017-06-13 南昌大学 微电解‑芬顿‑egsb‑a/o‑bco‑baf‑混凝处理制药废水系统
CN106927628A (zh) * 2017-03-02 2017-07-07 南昌大学 微电解—芬顿—egsb—a/o—bco—baf—混凝处理制药废水工艺
CN108275835A (zh) * 2018-01-30 2018-07-13 中交天津港航勘察设计研究院有限公司 一种严于一级a标准的制药废水深度处理工艺及处理设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102276117A (zh) * 2011-07-21 2011-12-14 波鹰(厦门)科技有限公司 垃圾渗滤液的处理装置及其处理方法
KR20160048501A (ko) * 2014-10-24 2016-05-04 두산중공업 주식회사 부유식 스컴제거장치 및 이를 포함하는 용존공기부상형 수처리장치
CN106145349B (zh) * 2016-04-21 2019-04-05 内蒙古科技大学 向a-a-o系统中添加硅酸钙改善污水处理效果的方法
CN106698856A (zh) * 2017-02-25 2017-05-24 郑州碧水环保科技有限公司 一种发酵类抗生素制药废水综合处理系统
CN108033649A (zh) * 2017-12-26 2018-05-15 湖南千幻科技有限公司 一种制药废水处理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120005857A (ko) * 2010-07-09 2012-01-17 (주) 에코데이 수처리 장치 및 방법
CN102351377A (zh) * 2011-07-08 2012-02-15 郑州大学 发酵类制药废水集成处理方法
CN106277596A (zh) * 2016-08-29 2017-01-04 湖州至美生物科技有限公司 一种功能菌强化处理的高浓度制药废水处理设备和工艺
CN106830544A (zh) * 2017-03-02 2017-06-13 南昌大学 微电解‑芬顿‑egsb‑a/o‑bco‑baf‑混凝处理制药废水系统
CN106927628A (zh) * 2017-03-02 2017-07-07 南昌大学 微电解—芬顿—egsb—a/o—bco—baf—混凝处理制药废水工艺
CN108275835A (zh) * 2018-01-30 2018-07-13 中交天津港航勘察设计研究院有限公司 一种严于一级a标准的制药废水深度处理工艺及处理设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113023852A (zh) * 2021-03-29 2021-06-25 王兴文 旋转填料自清洗油泥渣水分离池

Also Published As

Publication number Publication date
CN109052821B (zh) 2019-07-26
CN109052821A (zh) 2018-12-21
EP3611135A1 (en) 2020-02-19
EP3611135B1 (en) 2021-06-16

Similar Documents

Publication Publication Date Title
WO2020034382A1 (zh) 一种高效资源回收低能耗的制药废水处理装置及其运行方法
CN201908018U (zh) 污水处理装置
CN103880248B (zh) 一种焦化废水处理系统及处理方法
WO2009124426A1 (zh) 一种制药化工园区混合废水的处理方法
AU2020100706A4 (en) A membrane bioreactor system for rural decentralized wastewater
CN103641281B (zh) 一种高盐份有机工业废水处理工艺方法
EA024803B1 (ru) Способ предварительной очистки сточных вод и способ очистки бытовых сточных вод с использованием способа предварительной очистки
CN101073715A (zh) 一种高效澄清水处理装置和工艺
CN101704608B (zh) 一种集污泥处置的分散式污水深度处理装置及方法
CN202519137U (zh) 一种垃圾焚烧场渗滤液的组合处理装置
CN201598224U (zh) 一种脱氮除磷生物处理与过滤一体化的污水处理系统
CN101746931A (zh) 一种脱氮除磷生物处理与过滤一体化的污水处理系统及其方法
CN204981513U (zh) 一种农药废水处理装置
CN204185292U (zh) 立体渐变曝气污水处理好氧反应器
CN208732864U (zh) 一种专用于生活污水处理的装置
CN208829505U (zh) 精细化工废水经mvr蒸馏后的后处理系统
CN107973399B (zh) 一种高效三相分离系统
WO2020000214A1 (zh) 一种污水资源化处理装置
CN115784439A (zh) 竖流式在低温下通过颗粒污泥实现村镇生活污水同步脱氮除磷的装置
CN215208707U (zh) 一种muasb改良muct处理高浓度有机废水的装置
CN202054668U (zh) 处理含乳化液废水的厌氧反应器
CN105502811B (zh) 基于厌氧氨氧化的垃圾渗滤液处理装置及其使用方法
CN211056798U (zh) 一种同心套筒式mfbr农村污水处理装置
CN210393887U (zh) 一种小型污水处理一体化设备
CN108439579B (zh) 一种提高废水处理能力的环保系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18929854

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18929854

Country of ref document: EP

Kind code of ref document: A1