WO2020034231A1 - 一种生理参数测量系统和方法 - Google Patents

一种生理参数测量系统和方法 Download PDF

Info

Publication number
WO2020034231A1
WO2020034231A1 PCT/CN2018/101243 CN2018101243W WO2020034231A1 WO 2020034231 A1 WO2020034231 A1 WO 2020034231A1 CN 2018101243 W CN2018101243 W CN 2018101243W WO 2020034231 A1 WO2020034231 A1 WO 2020034231A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
sensor array
sensor
lying
vibration
Prior art date
Application number
PCT/CN2018/101243
Other languages
English (en)
French (fr)
Inventor
施青峰
庄少春
Original Assignee
深圳市大耳马科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大耳马科技有限公司 filed Critical 深圳市大耳马科技有限公司
Publication of WO2020034231A1 publication Critical patent/WO2020034231A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • A61B5/02055Simultaneously evaluating both cardiovascular condition and temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1118Determining activity level
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6887Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
    • A61B5/6892Mats
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/746Alarms related to a physiological condition, e.g. details of setting alarm thresholds or avoiding false alarms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0247Pressure sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0271Thermal or temperature sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • A61B5/02125Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics of pulse wave propagation time

Definitions

  • the present application relates to a physiological parameter measurement system and method, and more particularly, to a physiological parameter measurement system and method capable of automatically identifying a body part.
  • PWV Pulse Wave Velocity
  • the subject For many professional measurements, the subject is usually required to lie down to a fixed position. If the measured object is displaced within the measurement area, the measurement device cannot automatically identify which part of the body the measured data belongs to, resulting in inaccurate measurements. This limitation is particularly prominent for home measurements. For example, there are some measurement equipment, such as professional medical mattresses, that monitor the subject while he or she is sleeping. The subject may easily cause inaccurate measurements due to the body movement after falling asleep. Therefore, a measurement device capable of automatically identifying a body part is required to meet a user's higher use requirements.
  • the technical problem to be solved by the embodiments of the present invention is to provide a physiological parameter measurement system and method for automatically identifying a body part in response to technical problems related to physiological parameter measurement in the prior art.
  • an embodiment of the present invention provides a method including: obtaining vibration information of a lying object from a first sensor array through one or more processors; and through the one or more processings A device that acquires the sensing information of the lying object from the second sensor array, and generates position information of the lying object according to the sensing information, wherein the position information is the body parts of the lying object and the first Correspondence information of each sensor in the two sensor arrays; and a correspondence relationship between each part of the body of the lying object and the vibration information is determined by the one or more processors according to the position information and the vibration information.
  • the sensing information includes at least one of pressure information, strain information, speed information, acceleration information, displacement information, temperature information, reflected light information, or infrared radiation information.
  • the first sensor array and / or the second sensor array includes a plurality of optical fiber sensors, and each of the optical fiber sensors includes: an optical fiber arranged in a structure substantially in a plane; a light source, and One end of the one or more optical fibers is coupled; a receiver coupled to the other end of the one optical fiber is configured to sense a change in light intensity passing through the optical fiber; and a grid layer is provided with an opening A mesh composition, wherein the mesh layer is in contact with the surface of the optical fiber.
  • the second sensor array includes a plurality of pressure sensors, and when the lying object is located on the second sensor array, pressure information is obtained from each pressure sensor through the one or more processors, A pressure distribution map is generated according to the pressure information, so as to obtain the position information of the lying object, and then determine the corresponding information of each part of the body and each sensor in the second sensor array.
  • the second sensor array includes a plurality of infrared sensors, and when the lying object is located on the second sensor array, infrared radiation information is obtained from each infrared sensor through the one or more processors. And generating position information of the lying object according to the infrared radiation information, and then determining the correspondence between each part of the body and each sensor in the second sensor array.
  • the second sensor array includes a plurality of temperature sensors, and when the lying object is located on the second sensor array, the temperature information is obtained from each temperature sensor through the one or more processors, And generating position information of the lying object according to the temperature information, and then determining a correspondence relationship between each part of the body and each sensor in the second sensor array.
  • the first and second sensor arrays are configured to be disposed on the same layer, the first sensor array includes a plurality of optical fiber sensors, and the second sensor array is distributed in a gap of the optical fibers.
  • the vibration information includes at least one of vibration caused by breathing, vibration caused by systolic and diastolic, vibration caused by pulse wave transmission, or human body motion.
  • the present invention also provides a system including: a first sensor array configured to be placed under a lying object to acquire vibration information of the lying object; and a second sensor array configured to place Under the lying object, the sensing information of the lying object is obtained; one or more processors; and one or more computer-readable storage media, where the one or more computer-readable storage media are stored with An instruction that, when the instruction is executed by the one or more processors, achieves the following operations: obtaining vibration information of the lying object from the first sensor array; obtaining the lying condition from the second sensor array
  • the sensing information of the subject generates position information of the lying subject according to the sensing information, wherein the position information is corresponding information of each part of the lying subject's body and each sensor in the second sensor array; and According to the position information and the vibration information, a correspondence relationship between each body part of the lying subject and the vibration information is determined.
  • the sensing information includes at least one of pressure information, strain information, speed information, acceleration information, displacement information, temperature information, reflected light information, or infrared radiation information.
  • the first sensor array and / or the second sensor array includes a plurality of optical fiber sensors, and each of the optical fiber sensors includes: an optical fiber arranged in a structure substantially in a plane; a light source, and One end of the one or more optical fibers is coupled; a receiver coupled to the other end of the one optical fiber is configured to sense a change in light intensity passing through the optical fiber; and a grid layer is provided with an opening A mesh composition, wherein the mesh layer is in contact with the surface of the optical fiber.
  • the second sensor array includes a plurality of pressure sensors, and when the lying object is located on the second sensor array, pressure information is obtained from each pressure sensor through the one or more processors, A pressure distribution map is generated according to the pressure information, so as to obtain position information of the lying object, and then determine corresponding information of each body part and each sensor in the second sensor array.
  • the second sensor array includes a plurality of infrared sensors, and when the lying object is located on the second sensor array, infrared radiation information is obtained from each infrared sensor through the one or more processors. And generating position information of the lying object according to the infrared radiation information, and then determining the correspondence between each part of the body and each sensor in the second sensor array.
  • the second sensor array includes a plurality of temperature sensors, and when the lying object is located on the second sensor array, the temperature information is obtained from each temperature sensor through the one or more processors, And generating position information of the lying object according to the temperature information, and then determining a correspondence relationship between each part of the body and each sensor in the second sensor array.
  • the first and second sensor arrays are configured to be disposed on the same layer, the first sensor array includes a plurality of optical fiber sensors, and the second sensor array is distributed in a gap of the optical fibers.
  • the vibration information includes at least one of vibration caused by breathing, vibration caused by systolic and diastolic, vibration caused by pulse wave transmission, or human body motion.
  • the present invention also provides a device, including: a body for lying on a lying object, the body includes an upper cover and a lower cover; a first sensor array, the first sensor array Configured to be placed under the lying object to obtain vibration information of the lying object; and a second sensor array configured to be placed under the lying object to obtain sensing information of the lying object; The upper cover and the lower cover cover the first sensor array and the second sensor array inside.
  • the sensing information includes at least one of pressure information, strain information, speed information, acceleration information, displacement information, temperature information, reflected light information, or infrared radiation information.
  • the first sensor array and / or the second sensor array includes a plurality of optical fiber sensors, and each of the optical fiber sensors includes: an optical fiber arranged in a structure substantially in a plane; a light source, and One end of the one or more optical fibers is coupled; a receiver coupled to the other end of the one optical fiber is configured to sense a change in light intensity passing through the optical fiber; and a grid layer is provided with an opening A mesh composition, wherein the mesh layer is in contact with the surface of the optical fiber.
  • the apparatus further includes one or more processors, and one or more computer-readable storage media.
  • the one or more computer-readable storage media store instructions, and when the instructions are executed by the one Or when multiple processors execute, the following operations are performed: acquiring vibration information of the lying object from the first sensor array; acquiring sensing information of the lying object from the second sensor array, and according to the sensing information Generating position information of the lying object, wherein the position information is corresponding information of each body part of the lying object and each sensor in the second sensor array; and according to the position information and the vibration information Determining a correspondence between each part of the body of the lying subject and the vibration information.
  • the second sensor array includes a plurality of pressure sensors, and when the lying object is located on the second sensor array, pressure information is obtained from each pressure sensor through the one or more processors, A pressure distribution map is generated according to the pressure information, so as to obtain position information of the lying object, and then determine corresponding information of each body part and each sensor in the second sensor array.
  • the second sensor array includes a plurality of infrared sensors, and when the lying object is located on the second sensor array, infrared radiation information is obtained from each infrared sensor through the one or more processors. And generating position information of the lying object according to the infrared radiation information, and then determining the correspondence between each part of the body and each sensor in the second sensor array.
  • the second sensor array includes a plurality of temperature sensors, and when the lying object is located on the second sensor array, the temperature information is obtained from each temperature sensor through the one or more processors, And generating position information of the lying object according to the temperature information, and then determining a correspondence relationship between each part of the body and each sensor in the second sensor array.
  • the first and second sensor arrays are configured to be disposed on the same layer, the first sensor array includes a plurality of optical fiber sensors, and the second sensor array is distributed in a gap of the optical fibers.
  • the vibration information includes at least one of vibration caused by breathing, vibration caused by systolic and diastolic, vibration caused by pulse wave transmission, or human body motion.
  • the present invention realizes automatic identification of a body part by combining a sensor that acquires vibration information and a positioning sensor, thereby automatically correlating the vibration information with the body part that generates the vibration information.
  • the measured object does not need to be fixed in a specific position, and can freely move on the measurement device, which greatly improves the user experience.
  • FIG. 1 is a schematic diagram of a physiological parameter measurement system for automatically identifying a body part according to some embodiments of the present application
  • FIG. 2 is a structural block diagram of a computing device according to some embodiments of the present application.
  • FIG. 3 is a schematic structural diagram of a sensing device according to some embodiments of the present application.
  • FIG. 4 is a schematic structural diagram of an optical fiber sensing device according to some embodiments of the present application.
  • FIG. 5 is a schematic structural diagram of a second sensor array according to some embodiments of the present application.
  • FIG. 6 is a schematic diagram of a sensing device according to some embodiments of the present application.
  • FIG. 7 is a flowchart of a method for automatically measuring a physiological parameter of a body part according to some embodiments of the present application.
  • FIG. 1 is a schematic diagram of a physiological parameter measurement system 100 according to some embodiments of the present application.
  • the physiological parameter measurement system 100 may include a sensing device 101, a network 103, a server 105, a storage device 107, and an output device 109.
  • the sensing device 101 may be configured to automatically recognize position information of various parts of the body of the object 102 and acquire vibration information of the parts.
  • the sensing device 101 may include a vibration-sensitive sensor, such as an acceleration sensor, a speed sensor, a displacement sensor, a pressure sensor, a strain sensor, a stress sensor, or a physical quantity based on acceleration, speed, displacement, or pressure.
  • a vibration-sensitive sensor such as an acceleration sensor, a speed sensor, a displacement sensor, a pressure sensor, a strain sensor, a stress sensor, or a physical quantity based on acceleration, speed, displacement, or pressure.
  • the equivalent conversion sensors such as electrostatic charge sensitive sensors, inflatable micro-motion sensors, radar sensors, etc.
  • the strain sensor may be a fiber optic strain sensor.
  • the sensing device 101 may further include an infrared sensor, a photoelectric sensor, and the like to acquire sensing information of the object.
  • the sensing device 101 may be configured to be placed on various types of beds such as a medical bed and a nursing bed in which the subject 102 is located.
  • the subject 102 may be a living body performing vital sign signal monitoring.
  • the subject 102 may be a hospital patient or a caretaker, such as an elderly person, a prisoner, or another person.
  • the sensing device 101 may transmit the acquired vibration information and sensing information of the object 102 to the server 105 via the network 103 for subsequent processing.
  • the vibration information obtained by the sensing device 101 can be processed to calculate the vital signs of the subject, such as heart rate, respiration rate, and body temperature.
  • the pulse wave transmission parameters of the subject can be calculated, such as the pulse wave transmission time (Pulse Wave Transit Time (PTT), pulse wave velocity PWV.
  • position information of the object can be obtained, such as corresponding information of various parts of the body of the object and the pressure sensor.
  • the sensing device 101 may also transmit the acquired vibration information and sensing information to the output device 109 for output, for example, use a display to display the waveform information of the vibration information and the sensing information.
  • the sensing device 101 may also transmit the acquired vibration information and sensing information of the object 102 to the storage device 107 via the network 103 for storage.
  • the system 100 may include multiple sensing devices.
  • the vibration information and sensing information of each object can be transmitted to the storage device 107 for storage as a part of the user data.
  • the network 103 can implement information exchange.
  • the components of the physiological parameter measurement system 100 (that is, the sensing device 101, the network 103, the server 105, the storage device 107, and the output device 109) can perform mutual information transmission and reception through the network 103.
  • the sensing device 101 may store the acquired vital sign related signals of the object 102 to the storage device 107 through the network 103.
  • the network 103 may be a single network, such as a wired network or a wireless network, or a combination of multiple networks.
  • the network 103 may include, but is not limited to, a local area network, a wide area network, a public network, a private network, and the like.
  • the network 103 may include various network access points, such as wireless or wired access points, base stations, or network access points. Through the above access points, other components of the physiological parameter measurement system 100 can be connected to the network 103 and transmit information through the network. .
  • the server 105 is configured to process information.
  • the server 105 may receive the vibration information and the sensing information of the subject 102 from the sensing device 101, and extract the vital sign signals of the subject, such as the heart rate, the breathing rate, and the like, from the vibration information and the sensing information.
  • the server 105 may be a single server or a server group.
  • the server group may be clustered or distributed (that is, the server 105 may be a distributed system).
  • the server 105 may be local or remote.
  • the server 105 can access data stored in the storage device 107, the sensing device 101, and / or the output device 109 through the network 103.
  • the server 105 may be directly connected to the sensing device 101, the storage device 107, and / or the output device 109 for data storage.
  • the server 105 may also be deployed on a cloud platform.
  • the cloud platform may include, but is not limited to, a public cloud, a private cloud, a hybrid cloud, and the like.
  • the server 105 may be implemented on the computing device 400 shown in FIG. 2.
  • the storage device 107 is configured to store data and instructions.
  • the storage device 107 may include, but is not limited to, a random access memory, a read-only memory, a programmable read-only memory, and the like.
  • the storage device 107 may be a device that stores information using an electric energy method, a magnetic energy method, an optical method, or the like, such as a hard disk, a floppy disk, a magnetic core memory, a CD, a DVD, and the like.
  • the storage devices mentioned above are just examples, and the storage devices used by the storage device 107 are not limited thereto.
  • the storage device 107 may store vibration information and / or induction information of the object 102 obtained by the sensing device 101, and may also store data processed by the server 105 on the vibration information and / or induction information, such as the vital sign information (breathing of the object 102) Rate, heart rate).
  • the storage device 107 may be an integral part of the server 105.
  • the output device 109 is configured to output data.
  • the output device 109 may output a vital sign signal generated after processing by the server 105, and the output method includes, but is not limited to, one or more of graphic display, digital display, voice broadcast, and braille display.
  • the output device 109 may be one or more of a display, a mobile phone, a tablet computer, a projector, a wearable device (watch, earphone, glasses, etc.), a braille display, and the like.
  • the output device 109 may display the vital sign signals (eg, breathing rate, heart rate, etc.) of the subject 102 in real time.
  • the output device 109 may display a report in non-real time, the report is the subject 102 Measurement results within a preset time period, such as the heart rate monitoring result per minute and the respiratory rate monitoring result per minute during the sleep period.
  • the output device 109 may also output an early warning prompt, and the prompting methods include, but are not limited to, a sound alarm, a vibration alarm, and a screen display alarm.
  • the object 102 may be a patient being monitored
  • the output device 109 may be a display screen in a nurse station
  • the result displayed by the output device 109 may be real-time heart rate, real-time respiration rate, and the like.
  • the output device 109 can issue an alarm sound to remind the medical staff, and the medical staff can rescue the patient in time.
  • the output device 109 may be a communication device (such as a mobile phone) carried by a doctor.
  • the vital signs of the subject 102 are abnormal, one or more output devices 109 carried by one or more doctors may receive an alert.
  • the information and warning information can be pushed according to the distance between the terminal device and the object 102.
  • the physiological parameter measurement system 100 can be used in a home scene, and the sensing device 101 can be placed on an ordinary family bed.
  • the sensing device 101 may continuously or in a predetermined or required manner obtain the vibration information and / or the sensing information of the object, and then send the vibration information and / or the sensing information of the object through the network 103 (can be sent in real time, or Send all the data of the previous night at the scheduled time (eg the next morning) to the cloud server 105 for processing.
  • the cloud server 105 can send the processed information (such as heart rate per minute, respiratory rate per minute, PWV of the aorta) to
  • the terminal 109 may be a computer of the family doctor of the subject 102, and the family doctor may evaluate the physical condition and rehabilitation status of the subject 102 according to the processed information of the subject 102.
  • the server 105, the storage device 107, and the output device 109 may be implemented as one device and implement respective functions.
  • the physiological parameter measurement system 100 may include a sensing device and a computer. Among them, the sensing device 101 can be directly connected to the computer through a cable, or can be connected to the computer through a network.
  • the computer can realize all the functions of the server 105, the storage device 107, and the output device 109, and perform data processing, storage, display, etc.
  • the physiological parameter measurement system 100 may include a sensing device and an integrated circuit.
  • the integrated circuit is integrated with the sensing device (for example, integrated in a mat), and the integrated circuit is connected to a display screen.
  • the functions of the server 105 and the storage device 107 are implemented, and the display screen is used as the output device 109 to implement functions such as data processing, storage, and display.
  • FIG. 2 is a structural block diagram of a computing device 200 according to some embodiments of the present application.
  • the server 105, the storage device 107, and / or the output device 109 of FIG. 1 may be implemented on the computing device 200.
  • server 105 may be implemented on computing device 200 and configured to perform the functions of server 105 described herein.
  • the computing device 200 may be a special-purpose computer. For convenience of description, only one server is described in FIG. 1. Those of ordinary skill in the art should understand that computing functions related to physiological parameter measurement may also be implemented in multiple A computing device with similar functions is used to spread the computing load.
  • the computing device 200 may include a communication port 201, a processor (Central Processing Unit, CPU) 203, a memory 205, and a bus 207.
  • the communication port 201 is configured to perform data exchange with other devices through a network.
  • the processor 203 is configured to perform data processing.
  • the memory 205 is configured to store data and instructions.
  • the memory 205 may be a read-only memory ROM, a random read memory RAM, a hard disk Disk, and other forms of memory.
  • the bus 207 is configured to perform data communication between the insides of the computing device 200.
  • the computing device 200 may further include an input-output port 209 configured to support data input and output. For example, other people may use an input device (such as a keyboard) to input data to the computing device 200 through the input-output port 209.
  • the computing device 200 may also output data to an output device such as a display or the like through the input-output port 209.
  • processor 203 may include multiple processors, and the operations or methods performed by one processor 203 may be combined by multiple processors or Perform separately.
  • processor 203 described in this application may perform steps A and B. It should be understood that steps A and B may be performed jointly or separately by multiple processors, for example, the first processor executes steps A and B The second processor executes step B, or step A and step B are performed jointly by the first processor and the second processor.
  • FIG. 3 is a schematic structural diagram of a sensing device 300 according to some embodiments of the present application.
  • the sensing device 300 in this embodiment may include two layers, and the first layer may be a first sensor array 301.
  • the first sensor array 301 may include a plurality of optical fiber sensors 3011 configured to be placed below a lying subject to obtain vibration information of the lying subject.
  • the outer shape of the optical fiber sensor 3011 can be in different shapes according to different requirements, such as a cuboid, a cube, a circle, and the like, and the distribution form can also be adjusted according to the requirements, which is not limited herein.
  • the vibration information includes at least one of a vibration caused by breathing, a vibration caused by systolic diastole, a vibration caused by pulse wave conduction, or a movement of a human body.
  • the second layer may be a second sensor array 303.
  • the second sensor array 303 may include a pressure sensor, a fiber optic sensor, a speed sensor, an acceleration sensor, a displacement sensor, a temperature sensor, a photoelectric sensor, and / or an infrared sensor 3031, and the like, and is configured to acquire sensing information of the lying object.
  • the sensing information includes pressure information, strain information, speed information, acceleration information, displacement information, temperature information, reflected light information, and / or infrared radiation information.
  • the shape of the sensor 3031 can be different according to different requirements, such as a cuboid, a cube, a circle, etc., and its distribution form can also be adjusted according to the requirements, which is not limited here.
  • the first sensor array 301 and the second sensor array 303 are at least partially overlapped, and may be established in the processor 203 according to the positional relationship between the sensors in the first sensor array 301 and the sensors in the second sensor array 303. The corresponding relationship between the first sensor array 301 and the second sensor truth 303, so that the position information acquired by the second sensor array 303 and the vibration information acquired by the first sensor array 301 are associated.
  • FIG. 4 is a schematic structural diagram of an optical fiber sensing device 400 according to some embodiments of the present application.
  • the optical fiber sensing device 400 is a strain sensor.
  • an external force is applied to the optical fiber sensing device 400, for example, when the optical fiber sensing device 400 is placed under a lying human body, the object is at rest. In the state, the human body ’s breathing, heartbeat, etc. may cause the human body to vibrate. The human body ’s vibration may cause the bending of the optical fiber 501.
  • the bending of the optical fiber changes the parameters of the light passing through the optical fiber, such as the change in light intensity. Changes in light intensity can be used to characterize the body's body vibrations after processing.
  • the optical fiber sensors 3011 and / or 3031 in the first sensor array 301 and / or the second sensor array 303 shown in FIG. 3 may adopt the structure of the optical fiber sensing device 400.
  • the optical fiber sensing device 400 may include an optical fiber 401, a grid layer 403, an upper cover 407, and a lower cover 405.
  • One end of the optical fiber 401 is connected to a light source 409.
  • the light source 409 may be an LED light source.
  • the light source 409 is connected to a light source driver 411.
  • the light source driver 411 is configured to control a light source switch and an energy level.
  • the other end of the optical fiber 401 is connected to a receiver 413.
  • the receiver 413 is configured to receive an optical signal transmitted through the optical fiber 401.
  • the receiver 413 is connected to an amplifier 415.
  • the amplifier 415 is connected to an analog-to-digital converter 417. The received optical signal is subjected to analog-to-digital conversion and converted into a digital signal.
  • the light source driver 411 and the analog-to-digital converter 417 are connected to the control processing module 419.
  • the control processing module 419 is configured to perform signal control and signal processing.
  • the control processing module 419 can control the light source driver 411 to work to drive the light source 409 to emit light.
  • the control processing module 419 can also receive data from the analog-to-digital converter 417 and perform After processing, the data is made to comply with various wireless or wired network data transmission requirements for transmission to other devices, such as the server 105, the storage device 107, and / or the output device 109 in FIG. 1, through the wireless or wired network.
  • the control processing module 419 can also control the sampling rate of the analog-to-digital converter 417 so that it has different sampling rates according to different needs.
  • the light source driver 411, the receiver 413, the amplifier 415, the analog-to-digital converter 417, and the control processing module 419 may be combined and implemented as one module to perform all functions.
  • the optical fiber 401 may be a multi-mode optical fiber or a single-mode optical fiber.
  • the arrangement of the optical fibers may be of different shapes, such as a serpentine structure, as shown in the shape 401 in FIG. 4.
  • the arrangement manner of the optical fibers 401 may also be a U-shaped structure.
  • the arrangement of the optical fibers 401 may also be a ring structure. As shown in 421, the ring structure is formed by a plurality of equal-sized rings arranged in a plane substantially in an optical fiber. Each ring within the structure overlaps partially with an adjacent ring and is laterally offset.
  • Each optical fiber loop can be formed into a parallelogram structure (such as a rectangle, a square, etc.) with a rounded edge, without sharp bending.
  • the ring-shaped optical fiber structure may include a circular or oval structure.
  • the annular structure may also be formed in an irregular shape without sharp bending.
  • the mesh layer 403 is composed of any suitable material with a repeating pattern of through-holes.
  • the mesh is composed of interwoven fibers, such as polymeric fibers, natural fabric fibers, composite fabric fibers, or other fibers.
  • the mesh layer 403 can disperse the external force that would have been applied to an action point on the optical fiber and distribute it around the action point. Fiber.
  • the microbending of the optical fiber 401 causes the parameters (such as light intensity) of the light transmitted by the optical fiber 401 to change.
  • the receiver 413 can receive the changed light, and the control processing module 419 processes and determines the light change amount.
  • the bending amount of the optical fiber 410 under the application of external force depends on the external force, the fiber diameter, the diameter of the mesh fiber, and the size of the mesh opening. By setting different combinations of the fiber diameter, mesh fiber diameter, and mesh opening size, the The bending amount of the optical fiber is different when the external force is applied, so that the optical fiber sensing device 500 has different sensitivity to external force.
  • the upper cover 407 and the lower cover 405 can be made of silicone material, and are configured to surround the periphery of the optical fiber 401 and the grid layer 403 to protect the optical fiber 401, and at the same time, external forces can be dispersed so that the external forces are dispersed along the point of force application.
  • the upper cover 407, the optical fiber 401, the mesh layer 403, and the lower cover 405 can be bonded together as a whole, for example, they are bonded together by using a silicone adhesive, so that the optical fiber sensing device 400 forms a sensing pad.
  • the width and / or length of the sensor pad can be changed according to different arrangements of the optical fiber.
  • the width of the sensor pad can be 6cm or other suitable widths, such as 8cm and 10cm. , 13cm or 15cm.
  • the length of the sensing pad can be changed according to different usage scenarios and the design of the first / second sensor array, for example, it can be changed according to the arrangement of the sensors in the first sensor array.
  • the thickness of the sensing pad may be 1 mm-50 mm, and preferably, the thickness is 3 mm.
  • the width and length of the sensing pad may be other sizes, and sensors of different sizes may be selected according to different test objects. For example, the test objects may be divided into groups according to age, height, and weight. Different groups Corresponding to different size sensors.
  • the width of the sensing pad may also be less than 6 cm, for example, it may be 1 cm, 2 cm, or 4 cm.
  • the optical fiber sensing device 400 may further include a jacket (not shown in FIG. 4).
  • the jacket covers the upper cover 407, the mesh layer 403, the optical fiber 401 and the lower cover 405.
  • the jacket may be waterproof and oil-proof.
  • the optical fiber sensing device 400 may further have a supporting structure (not shown in FIG. 4).
  • the supporting structure may be a rigid structure, such as cardboard, hard plastic board, wood board, etc.
  • the supporting structure may be placed on Between the optical fiber 401 and the lower cover 405, it provides support for the optical fiber 401. When external force is applied to the optical fiber 401, the support structure can make the fiber layer deform and rebound faster and the rebound time is shorter, so the fiber layer can capture more High-frequency signals.
  • FIG. 5 is a schematic structural diagram of a second sensor array according to some embodiments of the present application.
  • the second sensor array 500 may include, but is not limited to, a plurality of sensors 501.
  • the sensor 501 may be an infrared sensor.
  • Each infrared sensor may include an infrared radiation receiving unit.
  • the infrared radiation receiving unit is configured to receive infrared radiation of a measured object.
  • the infrared sensor array further includes a built-in processor configured to receive signals from each infrared sensor and generate position information of the measured object, wherein the position information is the lying object Correspondence information between each part of the body and each sensor in the second sensor array, and the position information is sent to the server 105 shown in FIG.
  • the built-in processor may be further configured to receive a signal from each infrared sensor and generate thermal information of the measured object, and send the thermal information to the location of FIG. 1 in a wired or wireless manner.
  • the server 105 shown in FIG. 1 or the computer device 200 shown in FIG. 2 may further determine the correspondence between each part and / or organ of the body and each infrared sensor according to the thermal information of the measured object.
  • the infrared sensor array does not have a built-in processor, and the infrared sensor array directly sends the sensed information to the server 105 shown in FIG. 1 or the computer device 200 shown in FIG. 2.
  • the server 105 shown in FIG. 1 or the computer device 200 shown in FIG. 2 is configured to receive the information of the infrared sensor array to obtain the position information of the measured object and determine the location of each part and / or organ of the body with each infrared sensor.
  • the infrared sensor array can also use other suitable infrared sensors in the prior art, as long as it can sense that a human body or other object is located on it, which is not limited herein.
  • the sensor 501 may also be a pressure sensor.
  • the pressure sensor may be one or more of piezoresistive, capacitive, resonant pressure sensors or optical pressure sensors, which is not limited herein.
  • Each pressure sensor may include a pressure sensing element, such as a diaphragm, for sensing a change in pressure and generating a corresponding deformation, and an electronic / optical element for generating a corresponding electrical signal / optical signal according to the deformation of the pressure sensing element.
  • the pressure sensor array further includes a built-in processor configured to receive a signal from each pressure sensor and generate position information of the measured object, and send the position information in a wired or wireless manner.
  • the pressure sensor array does not have a built-in processor, and the pressure sensor array directly sends the sensed information to the server 105 shown in FIG. 1 or the computer device 200 shown in FIG. 2.
  • the server 105 shown in FIG. 1 or the computer device 200 shown in FIG. 2 is configured to receive the information of the pressure sensor array to obtain the position information of the measured object and determine the correspondence between each part and / or organ of the body and each pressure sensor. relationship.
  • the sensor 501 may be a temperature sensor.
  • the temperature sensor can be a non-contact temperature sensor, which can be used to measure the surface temperature of a supine object, and can also be used to measure the temperature distribution of a temperature field.
  • the temperature sensor includes a temperature-sensitive element for sensing a change in temperature and generating a corresponding change, such as changing a resistance value, changing a size, changing a shape, changing a volume, changing a capacitance, and the like, which are not limited herein.
  • the temperature sensor array further includes a built-in processor configured to receive signals from each temperature sensor and generate position information of the measured object, and send the position information in a wired or wireless manner. To the server 105 shown in FIG.
  • the temperature sensor array does not have a built-in processor, and the temperature sensor array directly sends the sensed information to the server 105 shown in FIG. 1 or the computer device 200 shown in FIG. 2.
  • the server 105 shown in FIG. 1 or the computer device 200 shown in FIG. 2 is configured to receive the information of the temperature sensor array to obtain the position information of the measured object and determine the correspondence between each part and / or organ of the body and each temperature sensor. relationship.
  • the temperature sensor array may also use other suitable temperature sensors in the prior art, as long as it can sense that a human body or other object is located on it, which is not limited herein.
  • the sensor 501 may also be a photoelectric sensor.
  • Each photoelectric sensor may include a light emitting unit and a light receiving unit.
  • the light emitting unit is configured to emit light to the measured object, and the light receiving unit is configured to detect the amount of light reflected from the measured object.
  • the light emitting unit has a light emitting diode (ED) for emitting light
  • the light receiving unit has a photoresistor (PTR) or a photodiode (PD) for detecting the amount of emitted light.
  • ED light emitting diode
  • PTR photoresistor
  • PD photodiode
  • the photosensor array further includes a built-in processor configured to receive signals from each photosensor and generate position information of the measured object, and send the position information in a wired or wireless manner.
  • the built-in processor may be further configured to receive a signal from each photoelectric sensor and generate position information of the measured object, and send the position information to the location shown in FIG. 1 in a wired or wireless manner.
  • the server 105 shown in FIG. 1 or the computer device 200 shown in FIG. 2 may further determine the correspondence between each part and / or organ of the body and each photoelectric sensor according to the position information of the measured object.
  • the photoelectric sensor array does not have a built-in processor, and the photoelectric sensor array directly sends the sensed information to the server 105 shown in FIG. 1 or the computer device 200 shown in FIG. 2.
  • the server 105 shown in FIG. 1 or the computer device 200 shown in FIG. 2 is configured to receive the information of the photoelectric sensor to obtain the position information of the measured object and determine the correspondence between each part and / or organ of the body and each photoelectric sensor.
  • the photoelectric sensor array may also use other suitable photoelectric sensor arrays in the prior art, as long as it can sense that a human body or other object is positioned thereon, which is not limited herein.
  • FIG. 6 is a schematic structural diagram of a sensing device according to some embodiments of the present application.
  • the sensing device 600 may further include a body 601, a first sensor array 603, and a second sensor array 605.
  • the body is used for lying on the subject.
  • the body may be a cushion.
  • the mat includes an upper cover and a lower cover, and the upper cover and the lower cover are bonded together as a whole.
  • the cushion can be formed by covering the optical fiber sensor device 400 and the infrared sensor device or the optical fiber sensor device 400 and the pressure sensor device on the upper cover and the lower cover. The interior of the space, and its position is fixed.
  • the fiber optic sensor array forms a first sensor array 603 to obtain vibration information of a lying subject.
  • the infrared sensor array, pressure sensor array, temperature sensor, and / or photoelectric sensor array form a second sensor array 605 to acquire infrared, pressure, temperature information, and / or optical information of a lying object.
  • the first sensor array 603 and the second sensor array 605 are wrapped in the body.
  • the first sensor array 603 may be located above the second sensor array 605, and of course, it may be located below it, which is not limited herein.
  • Each sensor of the first sensor array 603 corresponds to the sensor position of the second sensor array 605.
  • the first sensor array 603 and the second sensor array 605 can be placed on top of each other and at least partially overlap, and each sensor of the first sensor array 603 Corresponds to the relative position of each sensor of the second sensor array 605.
  • the optical fiber sensor 603-1 in the first sensor array 603 may correspond to the temperature, pressure, or infrared sensors 605-1, 605-2, and 605-3 in the second sensor array 605.
  • the shape and size of the sensing device 600 may be selected according to actual needs.
  • the sensing device 600 may be a quadrangle, a circle, or other suitable shapes.
  • the sensing device 600 can be set to different sizes according to the height of a general crowd.
  • the size suitable for a population of 155cm-160cm is an S size
  • the size suitable for a population of 161cm-170cm may be an S size and a certain distance, such as 3cm.
  • the first sensor array 603 and the second sensor array 605 are wrapped inside the mat.
  • the first sensor array 603 and the second sensor array 605 may be disposed on the same layer, and the sensors are For the presence, a first sensor is used to obtain vibration information of the lying object and a second sensor is used to obtain light, pressure or infrared information of the lying object.
  • each sensor of the first sensor array 603 adopts the optical fiber sensor 400 in FIG. 4.
  • the optical fiber 401 may be a snake structure (as shown in 401), a ring structure (as shown in 421), or a U-shaped structure.
  • Each sensor of the second sensor array may be, for example, a photoelectric sensor. These photoelectric sensors may be arranged in the gaps between various structures of the optical fiber sensor. Such an arrangement does not affect the acquisition of vibration information.
  • the sensing device 101 may not be limited to the form of the sensors in the optical fiber sensing device 400 and the sensing device 600, and thus is applicable to other scenarios.
  • the sensing device 600 can be placed on a bed or directly on the floor. Therefore, the Z axis represents a direction perpendicular to the ground, and the direction away from the ground is a positive direction.
  • the XY plane is parallel to the horizontal plane.
  • the X axis is along the width direction of the sensing device 600.
  • the axis is along the length direction of the sensing device 600, and the origin O is located at the midpoint of the edge of one end point of the sensing device 600.
  • the YZ plane divides the sensing device 600 into left and right parts. Along the Z-axis direction, a relatively up-down direction can be expressed.
  • the main body 601 may include an upper cover 611 and a lower cover 613, and the upper cover 611 and the lower cover 613 cover the first sensor array 603 and the second layer of the sensor array 605 therein.
  • the agent is bonded together.
  • the size of the body 601 can be selected according to the size and height of the test subject. For example, its length (along the Y axis) can be 190cm and its width can be 85cm. This size is suitable for most people, and it can also be other suitable sizes. This is not limiting.
  • the upper cover 611 and the lower cover 613 can be made of various materials, such as leather, cotton, and the like.
  • the first sensor array 603 may be slightly smaller than the size of the main body 601 so as to be enclosed within the main body 601.
  • the first sensor array 603 may be an optical fiber sensor, and may adopt a structure as shown in FIG. 4.
  • the length (along the X axis) of the first sensor array 603 can be selected according to the test object, for example, it can be 180 cm, which is suitable for most people, and the width (along the Y axis) is also It can be selected according to the test object, for example, it can be 80cm, which is suitable for most people, and it can also be other suitable sizes, which is not limited here.
  • the first sensor array 603 is configured to acquire vibration information of an object.
  • the second sensor array 605 may be slightly smaller than the size of the main body 601 so as to be enclosed within the main body 601.
  • the second sensor array 605 may be a photoelectric sensor, a temperature sensor, an infrared sensor, or a pressure sensor, and may adopt a structure as shown in FIG. 5.
  • the length (along the X axis) of the second sensor array 605 may be selected according to the test object, for example, it may be 180 cm, which is suitable for most people, and the width (along the Y axis) is also It can be selected according to the test object, for example, it can be 80cm, which is suitable for most people, and it can also be other suitable sizes, which is not limited here.
  • the size of the second-layer sensor array 605 may be the same as that of the first-layer sensor array 603.
  • the left and right body parts are roughly symmetrical along the Y-axis.
  • the subject can lie on the sensing device 600 freely, change the comfortable posture, and perform certain operations on the sensing device 600.
  • the second sensor array 605 is configured to acquire sensing information of the object, such as light information, temperature information, infrared radiation information, or pressure information.
  • the sensing device 600 may further include a support plate (not shown in the figure).
  • the support plate is configured to provide support for the first sensor array 603 and the second optical fiber sensor array 605, and may be configured to be placed under the first sensor array 603 and the second sensor array 605, and the first fiber array 603 and the first fiber array
  • the two fiber-optic sensor arrays 605 are enclosed in the body 601 together.
  • the supporting plate may adopt a rigid structure, such as a wooden board, a PVC board, or the like.
  • FIG. 7 is a flowchart of a physiological parameter measurement method according to some embodiments of the present application.
  • the method 700 may be implemented by the physiological parameter measurement system 100 shown in FIG. 1.
  • the method 700 may be stored in the storage device 107 as a set of instructions and executed by the server 105, which may be implemented on the computing device 200.
  • the processor 203 may obtain vibration information of the lying subject from a first sensor array, and the first sensor array is configured to be placed under the body of the lying subject.
  • the lying subject can be a hospital patient or a caretaker, etc.
  • the lying subject can freely change the comfortable posture, such as lying on his back, lying on his side, lying on his stomach, etc.
  • the first sensor array may be a fiber-optic sensor 603 in the sensing device 600, and the fiber-optic sensor 603 may be distributed on the mat to monitor vibration information of any part of the body.
  • the vibration information of the lying subject may include one or more of human vibration information caused by breathing, human vibration information caused by systole and diastole, human vibration information caused by blood vessel deformation, and human body motion information.
  • the human body vibration caused by systolic diastole may include the human body vibration caused by systolic diastole itself, and also includes the human body vibration caused by blood flow caused by systolic diastole, for example, the human body vibration caused by the ejection of blood from the heart to the aorta.
  • the human body vibration caused by blood vessel deformation can be a pulse wave caused by the ejection of the heart and aortic wall expansion, and the human body vibration caused by the pulse wave conduction along the blood vessel.
  • the body motion information of the human body may include leg bending, leg raising, turning over, shaking, and the like. Specifically, when the human body breathes, it will cause the entire body, especially the main part of the thorax and abdomen to vibrate rhythmically. The human heart contraction and relaxation will also drive the whole body, especially the body around the heart, and the left ventricle will eject blood to the aorta. The blood will hit the aortic arch at an instant, and the heart itself and its connected large blood vessels as a whole will also undergo a series of movements.
  • the vibration information obtained by the sensors is the above-mentioned human vibration information detected at this position, and the human vibration information obtained when the positions are different is also different.
  • the processor 203 may obtain the sensing information of the lying object from the second sensor array, and generate position information of the lying object according to the sensing information, wherein the sensing information is the second sensor array according to the sensor
  • Different types of information that can be sensed such as pressure information and deformation information sensed by a pressure sensor, strain information sensed by a strain sensor, speed information sensed by a speed sensor, acceleration information sensed by an acceleration sensor, and sensed by a displacement sensor Displacement information, temperature information sensed by the temperature sensor, reflected light information sensed by the photoelectric sensor, and / or heat radiation information sensed by the infrared sensor.
  • the position information is corresponding information of each body part of the lying subject and each sensor in the second sensor array.
  • the position information may be a body contour map of the lying subject, wherein the body contour refers to an outer edge of the body, including at least limbs, a trunk, and a head.
  • the body contour map also changes accordingly.
  • the second sensor array is configured to be placed under the body of the lying subject.
  • the second sensor array may be a temperature sensor, a photoelectric sensor, an infrared sensor, or a pressure sensor in the sensing device 500.
  • the temperature sensor, the photoelectric sensor, the infrared sensor, or the pressure sensor may be distributed on the mat and can be identified. Body contours in different poses.
  • the processor 403 may determine the correspondence between each part of the body of the lying subject and the vibration information according to the position information and the oscillation information.
  • the processor 403 may first associate the first sensor array with the second sensor array one by one, and then automatically recognize vibration information of various parts of the body of the lying subject.
  • the first sensor array and the second sensor array are in a relative positional relationship, and the sensors located above may correspond to the sensors located below.
  • the processor 403 associates the sensors in the first sensor array with the sensors in the second sensor array one by one, thereby correlating the position information of the body parts with the vibration information, and automatically identifying the vibration information of each body part.
  • the first sensor array and the second sensor array are on the same plane. At any position on the plane, the sensors appear in pairs, and each pair of sensors includes a first sensor and a second sensor.
  • the processor 403 correlates the two sensors in each pair of sensors, thereby correlating the position information of each part of the body with the vibration information, and automatically identifying the vibration information of each body part.
  • the corresponding relationship between the sensors in the first sensor array and the sensors in the second sensor array may also be in a one-to-many manner.
  • the first sensor array and the second sensor array may be in a relative positional relationship.
  • One sensor located above or below may correspond to multiple sensors located below or above.
  • one sensor located above may correspond to a plurality of sensors located below.
  • the first sensor array and the second sensor array may be on the same plane, and may include a first sensor and a plurality of second sensors in any small area on the plane.
  • the correspondence between the sensors in the first sensor array and the sensors in the second sensor array may also be in a many-to-many manner.
  • the processor may comprehensively consider the vibration information of multiple sensors around the first sensor to determine the vibration information of the body / organ.
  • the processor may comprehensively consider the sensing information of multiple sensors around the second sensor, so as to determine the position information of the measured object here. Therefore, in this case, the first sensor array and the second sensor array are in a many-to-many correspondence relationship.
  • the second sensor array is an infrared sensor in the sensing device 500.
  • the processor 203 obtains thermal radiation information from each infrared sensor, and generates position information of the lying object according to the thermal radiation information, and further Determine the correspondence between parts of the body and the infrared sensor.
  • the second sensor array is a pressure sensor in the sensing device 500.
  • the processor 203 obtains pressure information from each pressure sensor, and generates a pressure distribution map according to the pressure information, so as to obtain the lying object
  • the position information further determines the correspondence between each part of the body and the pressure sensor.
  • the second sensor array is a temperature sensor in the sensing device 500.
  • the processor 203 obtains temperature information from each temperature sensor, and generates a temperature distribution map according to the temperature information, so as to obtain the lying object
  • the position information further determines the correspondence between each part of the body and the pressure sensor.
  • the second sensor array is a photosensor in the sensing device 500.
  • the processor 203 obtains reflected light information from each photoelectric sensor, and generates position information of the lying object according to the reflected light information, The corresponding relationship between each part of the body and the photoelectric sensor is determined.

Abstract

一种自动识别身体部位的生理参数测量系统(100)和方法,该方法包括:通过一个或多个处理器(203),从第一传感器阵列(301,603)获取躺卧对象(102)的振动信息;通过一个或多个处理器(203),从第二传感器阵列(303,605)获取躺卧对象(102)的感应信息,根据感应信息生成躺卧对象(102)的位置信息,其中位置信息是躺卧对象(102)身体各部位与第二传感器阵列(303,605)中各个传感器的对应信息;通过一个或多个处理器(203),依据位置信息和振动信息确定躺卧对象(102)的身体各部位与振动信息的对应关系。

Description

一种生理参数测量系统和方法 技术领域
本申请涉及一种生理参数测量系统和方法,尤其涉及一种能自动识别身体部位的生理参数测量系统和方法。
背景技术
此处的陈述仅提供与本申请有关的背景信息,而不必然地构成现有技术。
在日常生活中,我们经常需要通过专业的医疗设备,来测量自己的生理参数,例如,测量血压、心率、血糖含量等。在一些特殊情况下,例如生病了,通常在专业人员的帮助下测量自己的生理参数来判定病情,例如测量脉搏波传导速度(Pulse Wave Velocity, PWV)来评估动脉的弹性程度,测量肌肉震动信息来评估精神压力大小等。
对于很多的专业测量,通常需要被测对象躺卧到固定的位置。如果被测对象在测量区内发生位移,测量设备无法自动识别所测数据是属于身体的哪个部位的数据,从而导致测量不准确。这一限制对于居家测量显得尤其突出。例如,有一些测量设备,例如专业的医疗床垫,是在被测对象睡觉的时候进行监测,被测对象很容易因为睡着后的身体移动而导致测量不准确。因此,需要一种能自动识别身体部位的测量设备来满足用户更高的使用需求。
技术问题
本发明实施例所要解决的技术问题在于,针对现有技术中生理参数测量的相关技术难题,提供一种自动识别身体部位的生理参数测量系统和方法。
技术解决方案
为了解决上述技术问题,一方面,本发明实施例提供了一种方法,包括:通过一个或多个处理器,从第一传感器阵列获取躺卧对象的振动信息;通过所述一个或多个处理器,从第二传感器阵列获取所述躺卧对象的感应信息,根据所述感应信息生成所述躺卧对象的位置信息,其中所述位置信息是所述躺卧对象身体各部位与所述第二传感器阵列中各个传感器的对应信息;以及通过所述一个或多个处理器,依据所述位置信息和所述振动信息确定所述躺卧对象的身体各部位与所述振动信息的对应关系。
优选地,所述感应信息包括压力信息、应变信息、速度信息、加速度信息、位移信息、温度信息、反射光信息、或红外辐射信息中的至少一个。
优选地,所述第一传感器阵列和/或所述第二传感器阵列包括多个光纤传感器,每个所述光纤传感器包括:一根光纤,排列成基本上位于一个平面内的结构;光源,与所述一根或多根光纤的一端耦合;接收器,与所述一根光纤的另一端耦合,被配置为感知通过所述光纤的光强度的变化;和一个网格层,由设置有开口的网眼组成,其中,所述网格层与所述光纤表面接触。
优选地,所述第二传感器阵列包括多个压力传感器,当所述躺卧对象位于所述第二传感器阵列上时,通过所述一个或多个处理器,从各压力传感器上获取压力信息,并根据所述压力信息生成压力分布图,从而得到所述躺卧对象的所述位置信息,进而确定身体各部位与所述第二传感器阵列中各个传感器的对应信息。
优选地,所述第二传感器阵列包括多个红外传感器,当所述躺卧对象位于所述第二传感器阵列上时,通过所述一个或多个处理器,从各红外传感器上获取红外辐射信息,并根据所述红外辐射信息生成所述躺卧对象的位置信息,进而确定身体各部位与所述第二传感器阵列中各个传感器的对应关系。
优选地,所述第二传感器阵列包括多个温度传感器,当所述躺卧对象位于所述第二传感器阵列上时,通过所述一个或多个处理器,从各温度传感器上获取温度信息,并根据所述温度信息生成所述躺卧对象的位置信息,进而确定身体各部位与所述第二传感器阵列中各个传感器的对应关系。
优选地,所述第一和第二传感器阵列被配置为置于同一层,所述第一传感器阵列包括多个光纤传感器,所述第二传感器阵列分布在所述光纤的间隙中。
优选地,所述振动信息包括呼吸引起的振动、心脏收缩舒张引起的振动、脉搏波传导引起的振动、或者人体身体运动中的至少一种。
另一方面,本发明还提供了一种系统,包括:第一传感器阵列,被配置为置于躺卧对象的下方,获取所述躺卧对象的振动信息;第二传感器阵列,被配置为置于所述躺卧对象的下方,获取所述躺卧对象的感应信息;一个或多个处理器; 和一个或多个计算机可读存储介质,所述一个或多个计算机可读存储介质存储有指令,当所述指令被所述一个或多个处理器执行时实现以下操作:从所述第一传感器阵列获取所述躺卧对象的振动信息;从所述第二传感器阵列获取所述躺卧对象的感应信息,根据所述感应信息生成所述躺卧对象的位置信息,其中,所述位置信息是所述躺卧对象身体各部位与所述第二传感器阵列中各个传感器的对应信息;以及依据所述位置信息与所述振动信息进而确定所述躺卧对象的身体各部位与所述振动信息的对应关系。
优选地,所述感应信息包括压力信息、应变信息、速度信息、加速度信息、位移信息、温度信息、反射光信息、或红外辐射信息中的至少一个。
优选地,所述第一传感器阵列和/或所述第二传感器阵列包括多个光纤传感器,每个所述光纤传感器包括:一根光纤,排列成基本上位于一个平面内的结构;光源,与所述一根或多根光纤的一端耦合;接收器,与所述一根光纤的另一端耦合,被配置为感知通过所述光纤的光强度的变化;和一个网格层,由设置有开口的网眼组成,其中,所述网格层与所述光纤表面接触。
优选地,所述第二传感器阵列包括多个压力传感器,当所述躺卧对象位于所述第二传感器阵列上时,通过所述一个或多个处理器,从各压力传感器上获取压力信息,并根据所述压力信息生成压力分布图,从而得到所述躺卧对象的位置信息,进而确定身体各部位与所述第二传感器阵列中各个传感器的对应信息。
优选地,所述第二传感器阵列包括多个红外传感器,当所述躺卧对象位于所述第二传感器阵列上时,通过所述一个或多个处理器,从各红外传感器上获取红外辐射信息,并根据所述红外辐射信息生成所述躺卧对象的位置信息,进而确定身体各部位与所述第二传感器阵列中各个传感器的对应关系。
优选地,所述第二传感器阵列包括多个温度传感器,当所述躺卧对象位于所述第二传感器阵列上时,通过所述一个或多个处理器,从各温度传感器上获取温度信息,并根据所述温度信息生成所述躺卧对象的位置信息,进而确定身体各部位与所述第二传感器阵列中各个传感器的对应关系。
优选地,所述第一和第二传感器阵列被配置为置于同一层,所述第一传感器阵列包括多个光纤传感器,所述第二传感器阵列分布在所述光纤的间隙中。
优选地,所述振动信息包括呼吸引起的振动、心脏收缩舒张引起的振动、脉搏波传导引起的振动、或者人体身体运动中的至少一种。
又一方面,本发明还提供了一种装置,包括:本体,所述本体用于供躺卧对象躺卧,所述本体包括上盖和下盖;第一传感器阵列,所述第一传感器阵列被配置为置于躺卧对象的下方,获取所述躺卧对象的振动信息;和第二传感器阵列,被配置为置于所述躺卧对象的下方,获取所述躺卧对象的感应信息;其中,所述上盖和所述下盖将所述第一传感器阵列和所述第二传感器阵列包覆于内。
优选地,所述感应信息包括压力信息、应变信息、速度信息、加速度信息、位移信息、温度信息、反射光信息、或红外辐射信息中的至少一种。
优选地,所述第一传感器阵列和/或所述第二传感器阵列包括多个光纤传感器,每个所述光纤传感器包括:一根光纤,排列成基本上位于一个平面内的结构;光源,与所述一根或多根光纤的一端耦合;接收器,与所述一根光纤的另一端耦合,被配置为感知通过所述光纤的光强度的变化;和一个网格层,由设置有开口的网眼组成,其中,所述网格层与所述光纤表面接触。
优选地,所述的装置进一步包括一个或多个处理器,和一个或多个计算机可读存储介质,所述一个或多个计算机可读存储介质存储有指令,当所述指令被所述一个或多个处理器执行时实现以下操作:从所述第一传感器阵列获取所述躺卧对象的振动信息;从所述第二传感器阵列获取所述躺卧对象的感应信息,根据所述感应信息生成所述躺卧对象的位置信息,其中,所述位置信息是所述躺卧对象身体各部位与所述第二传感器阵列中各个传感器的对应信息;以及依据所述位置信息与所述振动信息确定所述躺卧对象的身体各部位与所述振动信息的对应关系。
优选地,所述第二传感器阵列包括多个压力传感器,当所述躺卧对象位于所述第二传感器阵列上时,通过所述一个或多个处理器,从各压力传感器上获取压力信息,并根据所述压力信息生成压力分布图,从而得到所述躺卧对象的位置信息,进而确定身体各部位与所述第二传感器阵列中各个传感器的对应信息。
优选地,所述第二传感器阵列包括多个红外传感器,当所述躺卧对象位于所述第二传感器阵列上时,通过所述一个或多个处理器,从各红外传感器上获取红外辐射信息,并根据所述红外辐射信息生成所述躺卧对象的位置信息,进而确定身体各部位与所述第二传感器阵列中各个传感器的对应关系。
优选地,所述第二传感器阵列包括多个温度传感器,当所述躺卧对象位于所述第二传感器阵列上时,通过所述一个或多个处理器,从各温度传感器上获取温度信息,并根据所述温度信息生成所述躺卧对象的位置信息,进而确定身体各部位与所述第二传感器阵列中各个传感器的对应关系。
优选地,所述第一和第二传感器阵列被配置为置于同一层,所述第一传感器阵列包括多个光纤传感器,所述第二传感器阵列分布在所述光纤的间隙中。
优选地,所述振动信息包括呼吸引起的振动、心脏收缩舒张引起的振动、脉搏波传导引起的振动、或者人体身体运动中的至少一种。
有益效果
本发明通过将获取振动信息的传感器与定位传感器相结合,实现身体部位的自动识别,从而将振动信息与产生该振动信息的身体部位自动关联起来。被测对象无需固定在特定的位置,可以在测量设备上自由活动,极大地提高了用户体验。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本发明应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构和操作。
图1是依据本申请一些实施例的一种自动识别身体部位的生理参数测量系统的示意图;
图2是依据本申请一些实施例的计算设备的结构框图;
图3是依据本申请一些实施例的传感装置的结构示意图;
图4是依据本申请一些实施例的光纤传感装置的结构示意图;
图5是依据本申请一些实施例的第二传感器阵列结构示意图;
图6是依据本申请一些实施例的传感装置的示意图;
图7是依据本申请一些实施例的自动识别身体部位的生理参数测量方法的流程图。
本发明的实施方式
如本申请和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。
图1是依据本申请一些实施例的一种生理参数测量系统100的示意图。如图1所示,生理参数测量系统100可以包括一个传感装置101,一个网络103,一个服务器105,一个存储装置107,和一个输出装置109。
传感装置101可以被配置为自动识别对象102的身体各部位位置信息并获取该部位的振动信息。在一些实施例中,传感装置101可以包括振动敏感传感器,例如加速度传感器、速度传感器、位移传感器、压力传感器、应变传感器、应力传感器、或者是以加速度、速度、位移、或压力为基础将物理量等效性转换的传感器(例如静电荷敏感传感器、充气式微动传感器、雷达传感器等)中的一种或多种。在一些实施例中,应变传感器可以是光纤应变传感器。在一些实施例中,传感装置101还可以包括红外传感器、光电传感器等来获取对象的感应信息。传感装置101可以配置为放置于对象102所在的医疗床、护理床等各种型号的床上。对象102可以是进行生命体征信号监测的生命体。在一些实施例中,对象102可以是医院患者也可以是被看护人员,例如年老者、被监禁者或其他人等。传感装置101可以将获取到的对象102的振动信息和感应信息通过网络103传输到服务器105进行后续处理。在一些实施例中,传感装置101获取的振动信息经过处理后可以计算得到对象的生命体征信号,例如心跳率、呼吸率、体温等。在一些实施例中,传感装置101获取的振动信息经过处理后,可以计算得到对象的脉搏波传导参数,例如脉搏波传导时间(Pulse Wave Transit Time, PTT)、脉搏波传导速度PWV。在一些实施例中,传感装置101获取的感应信息经过处理后可以得到对象的位置信息,例如对象的身体各部位与压力传感器的对应信息。传感装置101还可以将获取到的振动信息和感应信息传输到输出装置109进行输出,例如利用显示器显示振动信息和感应信息的波形图。传感装置101也可以将获取到的对象102的振动信息和感应信息通过网络103传输到存储装置107进行存储,例如,系统100中可以包括多个传感装置,多个传感装置获取的多个对象的振动信息和感应信息可以传输到存储装置107进行存储,作为用户数据的一部分。
网络103可以实现信息的交换。在一些实施例中,生理参数测量系统100的组成部分(即传感装置101,网络103,服务器105,存储装置107,输出装置109)可以通过网络103进行相互间的信息收发。例如,传感装置101可以通过网络103 将获取到的对象102的生命体征相关信号存储至存储装置107。在一些实施例中,网络103可以是单一网络,例如有线网络或无线网络,还可以是多种网络的组合。网络103可以包括但不限于局域网、广域网、共用网络、专用网络等。网络103可以包括多种网络接入点,例如无线或有线接入点、基站或网络接入点,通过以上接入点使生理参数测量系统100的其他组成部分可以连接网络103并通过网络传送信息。
服务器105被配置为处理信息。例如,服务器105可以从传感装置101接收对象102的振动信息和感应信息,并且从振动信息和感应信息中提取对象的生命体征信号,例如心率、呼吸率等。在一些实施例中,服务器105可以是单一服务器,也可以是一个服务器群组。服务器群组可以是集群式的,也可以是分布式的(也就是服务器105可以是一个分布式系统)。在一些实施例中,服务器105可以是本地的或者是远程的。例如,服务器105可以通过网络103存取存储在存储装置107、传感装置101、和/或输出装置109中的数据。再如,服务器105可以直接与传感装置101、存储装置107、和/或输出装置109连接来进行数据存储。在一些实施例中,服务器105还可以部署在云平台上,云平台可以包括但不限于公有云、私有云、混合云等。在一些实施例中,服务器105可以在图2所示的计算设备400上实施。
存储装置107被配置为存储数据和指令。在一些实施例中,存储装置107可以包括但不限于随机存储器、只读存储器、可编程只读存储器等。存储装置107可以是利用电能方式、磁能方式、光学方式等存储信息的设备,例如硬盘、软盘、磁芯存储器、CD、DVD等。以上提及的存储设备只是列举了一些例子,存储装置107使用的存储设备并不局限于此。存储装置107可以存储传感装置101获取的对象102的振动信息和/或感应信息,还可以存储服务器105对振动信息和/或感应信息经过处理后的数据,例如对象102的生命体征信息(呼吸率、心率)。在一些实施例中,存储装置107 可以是服务器105的一个组成部分。
输出装置109被配置为输出数据。在一些实施例中,输出装置109可以将服务器105处理后生成的生命体征信号进行输出,输出方式包括但不限于图形显示、数字显示、语音播报、盲文显示等中的一种或多种。输出装置109可以是显示器、手机、平板电脑、投影仪、可穿戴设备(手表、耳机、眼镜等)、盲文显示器等中的一种或多种。在一些实施例中,输出装置109可以实时显示对象102的生命体征信号(例如呼吸率、心率等),在另一些实施例中,输出装置109可以非实时显示一份报告,该报告是对象102在预设时间段内的测量结果,例如用户在入睡时间段内的每分钟心率监测结果和每分钟呼吸率监测结果。在一些实施例中,输出装置109还可以输出预警提示,提示方式包括但不限于声音警报、振动警报、画面显示警报等方式。例如,对象102可以是被监护的病人,输出装置109可以是护士站内的显示屏,输出装置109显示的结果可以是实时心率、实时呼吸率等,当心率呼吸率出现异常(例如超过阈值或者在预设时间段内发生大幅度变化)时,输出装置109可以发出警报声音来提示医护人员,医护人员可以对病人进行及时抢救等。在另一些实施例中,输出装置109可以是医生随身携带的通信设备(例如手机),当对象102的生命体征异常时,一个或多个医生携带的一个或多个输出装置109可以收到预警信息,预警信息的推送方式可以是按照终端设备与对象102间的距离远近来进行推送。
应当理解的是,本申请的系统及方法的应用场景仅仅是本申请的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本申请应用于其他类似情景。生理参数测量系统100可以在家庭场景中使用,传感装置101可以置于普通家庭床上,当对象102(例如年长的长辈、患有心血管疾病的人、术后康复期的人)在晚间处于睡眠状态时,传感装置101可以连续地或按预定或需要的方式获取对象的振动信息和/或感应信息,然后通过网络103发送对象的振动信息和/或感应信息(可以实时发送,也可以在预定时刻例如第二天早上发送前一晚的全部数据)到云服务器105上进行处理,云服务器105可以将处理后的信息(例如每分钟心率、每分钟呼吸率、主动脉PWV)发送到终端109,终端109可以是对象102的家庭医生的计算机,家庭医生可以依据对象102经过处理后的信息评估对象102的身体状况、康复情况等。
需要注意的是,以上的描述仅仅是本申请的具体实施例,不应被视为是唯一的实施例。显然,对于本领域的专业人员来说,在了解本发明的内容和原理后,都可能在不背离本发明原理、结构的情况下,进行形式和细节上的各种修正和改变,但是这些修正和改变仍在本发明的权利要求保护范围之内。在一些实施例中,服务器105,存储装置107和输出装置109可以被实施为一个设备并实现各自的功能。例如,生理参数测量系统100可以包括一个传感装置和一台计算机。其中,传感装置101可以通过线缆直接与计算机相连,也可以通过网络与计算机相连,该计算机可以实现上述服务器105、存储装置107和输出装置109的所有功能,执行数据处理、存储、显示等功能。在另一些实施例中,生理参数测量系统100可以包括一个传感装置和一个集成电路,该集成电路与传感装置集成为一体(例如集成在一个垫子内),该集成电路连接一个显示屏,实现上述服务器105、和存储装置107的功能,显示屏作为输出装置109,实现数据处理、存储和显示等功能。
图2是依据本申请一些实施例的计算设备200的结构框图。在一些实施例中,图1 的服务器105、存储装置107、和/或输出装置109可以在计算设备200上实施。例如,服务器105可以在计算设备200上实施并且被配置为执行本申请描述的服务器105的功能。在一些实施例中,计算设备200可以是专用计算机,为了描述方便,图1中只描述了一个服务器,本领域普通技术人员应当理解的是,与生理参数测量相关的计算功能也可以实施在多个具有相似功能的计算设备上以分散运算负载。
计算设备200可以包括一个通信端口201,一个处理器(Central Processing Unit, CPU)203,一个存储器205,和一个总线207。通信端口201被配置为通过网络与其他设备进行数据交换。处理器203被配置为进行数据处理。存储器205被配置为进行数据和指令存储,存储器205可以是只读存储器ROM,随机读取存储器RAM,硬盘Disk等各种形式的存储器。总线207被配置为进行计算设备200内部间的数据通信。在一些实施例中,计算设备200还可以包括输入输出端口209,输入输出端口209被配置为支持数据输入和输出。例如,其他人员可以利用输入设备(例如键盘)通过输入输出端口209输入数据至计算设备200。计算设备200也可以通过输入输出端口209将数据输出到输出设备例如显示器等。
应当理解的是,为了描述方便此处只描述了一个处理器203,应当理解的是计算设备200可以包括多个处理器,由一个处理器203执行的操作或方法可以由多个处理器联合或分别执行。例如,本申请描述的一个处理器203可以执行步骤A和步骤B,应当理解的是,步骤A和步骤B可以由多个处理器共同或分别执行,例如由第一处理器执行步骤A和由第二处理器执行步骤B,或者是由第一处理器和第二处理器共同执行步骤A和步骤B。
图3是依据本申请一些实施例的传感装置300的结构示意图。如图3所示,本实施例的传感装置300可包括两层,第一层可为第一传感器阵列301。第一传感器阵列301可包括多个光纤传感器3011,被配置为置于躺卧对象的下方,获取所述躺卧对象的振动信息。其中,光纤传感器3011的外形可以根据不同的需求呈不同的形状,例如长方体、正方体、圆形等,而且其分布形式也可以根据需求调整,在此并不限制。所述振动信息包括呼吸引起的振动、心脏收缩舒张引起的振动、脉搏波传导引起的振动、或者人体身体运动中的至少一种。第二层可为第二传感器阵列303。第二传感器阵列303可包括压力传感器、光纤传感器、速度传感器、加速度传感器、位移传感器、温度传感器、光电传感器和/或红外传感器3031等,被配置为获取所述躺卧对象的感应信息。所述感应信息包括压力信息、应变信息、速度信息、加速度信息、位移信息、温度信息、反射光信息和/或红外辐射信息。其中,传感器3031的外形可以根据不同的需求呈不同的形状,例如长方体、正方体、圆形等,且其分布形式也可以根据需求调整,在此并不限制。在本实施例中,第一传感器阵列301和第二传感器阵列303至少部分重叠,可根据第一传感器阵列301中的传感器与第二传感器阵列303中的传感器的位置关系,在处理器203中建立第一传感器阵列301与第二传感器真理303的对应关系,从而将第二传感器阵列303获取到的位置信息与第一传感器阵列301获取到的振动信息对应起来。
图4是依据本申请一些实施例的光纤传感装置400的结构示意图。如图4所示,光纤传感装置400是一种应变传感器,当外力施加于光纤传感装置400上时,例如将光纤传感装置400置于平躺的人体下方时,当对象处于静息状态时,人体的呼吸、心跳等会导致人体身体产生振动,人体的身体振动可以造成光纤501的弯曲,光纤弯曲使经过光纤的光的参数发生变化,例如光强度发生变化。光强度的变化经过处理后可以用来表征人体的身体振动。在一些实施例中,图3所示的第一传感器阵列301和/或第二传感器阵列303中的光纤传感器3011和/或3031可以采用光纤传感装置400的结构。
光纤传感装置400可以包括一根光纤401,一个网格层403,一个上盖407,和一个下盖405。其中,光纤401的一端连接光源409,光源409可以是LED光源,光源409与光源驱动器411连接,光源驱动器411被配置为控制光源的开关和能级。光纤401的另一端与接收器413连接,接收器413被配置为接收经过光纤401传输的光信号,接收器413与放大器415连接,放大器415与模数转换器417连接,模数转换器417可以将接收到的光信号进行模数转换,转换为数字信号。光源驱动器411、模数转换器417与控制处理模块419相连。控制处理模块419被配置为进行信号控制和信号处理,例如,控制处理模块419可以控制光源驱动器411工作以驱动光源409发光,控制处理模块419还可以从模数转换器417接收数据,对数据进行处理后使数据符合各种无线或有线网络数据传输的要求,以通过无线或有线网络传输给其他设备,例如图1中的服务器105、存储装置107、和/或输出装置109。控制处理模块419还可以控制模数转换器417的采样率使其根据不同需求具有不同的采样率。在一些实施例中,光源驱动器411、接收器413、放大器415、模数转换器417、和控制处理模块419可以合并实施为一个模块来执行所有功能。
光纤401可以是多模光纤,可以是单模光纤。光纤的排列方式可以是不同形状的,例如蛇形结构,如图4中401所示形状。在一些实施例中,光纤401的排列方式还可以是U形结构。在一些实施例中光纤401的排列方式还可以是环状结构,如421所示,该环状结构由一根光纤排列成基本上位于一个平面内的多个大小相等的环形成,其中,环状结构内的每个环与相邻环部分重叠且横向偏移。每一个光纤环可以形成基本上是具有圆形边缘的平行四边形的结构(例如长方形、正方形等),没有急剧的弯曲。在一些实施例中,环状光纤结构可以包括圆形或椭圆形结构。在另一些实施例中,所述环状结构也可形成没有急剧弯曲的不规则形状。
网格层403由具有贯通孔的重复图案的任何合适的材料构成,在一些实施例中,网格由交织的纤维构成,例如,聚合纤维、天然织物纤维、复合织物纤维或其他纤维。当光纤传感装置400置于对象身体下方,对象将对光纤传感装置400施加外力,网格层403可以使原本会施加于光纤上某一作用点的外力分散从而分布到该作用点周围的光纤上。光纤401发生微弯,导致光纤401传输的光的参数(如光强)发生变化,接收器413可以接收发生变化后的光,并且由控制处理模块419进行光变化量的处理和确定。光纤410在外力施加下产生的弯曲量依赖于外力、光纤直径、网格纤维的直径、网格开口尺寸,通过设置光纤直径、网格纤维直径、网格开口尺寸的不同参数组合,可以使得当外力施加时光纤的弯曲量不同,使光纤传感装置500具有对外力的不同的灵敏度。
上盖407和下盖405可以采用硅胶材质,被配置为围绕光纤401和网格层403的周围,可以保护光纤401,同时也可以分散外力使得外力沿力作用点分散。上盖407、光纤401、网格层403以及下盖405可以贴合为一个整体,例如利用硅胶粘合剂粘合为一体,从而使光纤传感装置400形成一片传感垫。传感垫的宽度和/或长度可以依据光纤不同的排列方式而改变,当采用环状结构排列时,传感垫的宽度可以是6cm或者6cm以上的其他合适的宽度,例如可以是8cm、10cm、13cm或15cm。传感垫的长度可以根据不同的使用场景和第一/二传感器阵列的设计而变化,例如,可以根据第一传感器阵列中传感器的排布而变化。在一些实施例中,传感垫的厚度可以为1mm-50mm,优选的,厚度为3mm。在一些实施例中,传感垫的宽度和长度可以是其他尺寸,可以根据不同的测试对象选取不同尺寸的传感器,例如测试对象可以按照年龄段、身高、体重来划分组别,不同的组别对应有不同尺寸的传感器。在一些实施例中,当光纤采用U形结构时,传感垫的宽度也可以小于6cm,例如可以是1cm、2cm或4cm。
在一些实施例中,光纤传感装置400还可以具有一个外套(图4中未示出),外套将上盖407、网格层403、光纤401以及下盖405包裹,外套可以采用防水防油材质,例如采用硬质塑料。在另一些实施例中,光纤传感装置400还可以具有一个支撑结构(图4中未示出),支撑结构可以是刚性结构,例如硬纸板、硬塑料板、木板等,支撑结构可以置于光纤401与下盖405之间,给光纤401提供支撑,当外力施加于光纤401之上时,支撑结构可以使光纤层的变形回弹更快,回弹时间更短,因此光纤层可以捕获更高频率的信号。
图5是依据本申请一些实施例的第二传感器阵列的结构示意图。如图5所示,第二传感器阵列500可以包括但不限于多个传感器501。传感器501可为红外传感器。每个红外传感器可包括红外辐射接收单元。红外辐射接收单元被配置为接收被测对象的红外辐射。在一些实施例中,红外传感器阵列还包括内置的处理器,该处理器被配置为从每个红外传感器接收信号并生成被测对象的位置信息,其中,所述位置信息是所述躺卧对象身体各部位与所述第二传感器阵列中各个传感器的对应信息,并将该位置信息以有线或无线的方式发送给图1所示的服务器105或图2所示的计算机设备200。在本发明的一些实施例中,内置的处理器还可被配置为从每个红外传感器接收信号并生成被测对象的热信息,并将该热信息以有线或无线的方式发送给图1所示的服务器105或图2所示的计算机设备200。图1所示的服务器105或图2所示的计算机设备200可进一步根据被测对象的热信息确定身体每个部位和/或器官与每个红外传感器的对应关系。在一些实施例中,红外传感器阵列并没有内置处理器,红外传感器阵列直接将感应的信息发送给图1所示的服务器105或图2所示的计算机设备200。图1所示的服务器105或图2所示的计算机设备200被配置为接收红外传感器阵列的信息进而获得被测对象的位置信息并确定身体每个部位和/或器官的与每个红外传感器的对应关系。当然,红外传感器阵列还可以采用现有技术中的其他合适的红外传感器,只要其能感应人体或其他对象位于其上即可,在此并不限制。
如图5所示,在本发明的一些实施例中,传感器501还可以为压力传感器。压力传感器可为压阻式、电容式、谐振式压力传感器或光学压力传感器种的一种或几种,在此并不限制。每个压力传感器可包括压力感应元件,例如膜片,用于感应压力的变化并产生相应的形变,以及电子/光学元件,用于根据压力感应元件的形变产生相应的电信号/光信号。在一些实施例中,压力传感器阵列还包括内置的处理器,该处理器被配置为从每个压力传感器接收信号并生成被测对象的位置信息,并将该位置信息以有线或无线的方式发送给图1所示的服务器105或图2所示的计算机设备200。在一些实施例中,压力传感器阵列并没有内置处理器,压力传感器阵列直接将感应的信息发送给图1所示的服务器105或图2所示的计算机设备200。图1所示的服务器105或图2所示的计算机设备200被配置为接收压力传感器阵列的信息进而获得被测对象的位置信息并确定身体每个部位和/或器官与每个压力传感器的对应关系。
如图5所示,传感器501可为温度传感器。温度传感器可为非接触式温度传感器,可用来测量仰卧对象的表面温度,也可用于测量温度场的温度分布。温度传感器内包括温度敏感元件,用于感应温度的变化并产生相应的变化,例如改变电阻值、改变尺寸、改变形状、改变体积、改变电容等等,在此并不限制。在一些实施例中,温度传感器阵列还包括内置的处理器,该处理器被配置为从每个温度传感器接收信号并生成被测对象的位置信息,并将该位置信息以有线或无线的方式发送给图1所示的服务器105或图2所示的计算机设备200。在一些实施例中,温度传感器阵列并没有内置处理器,温度传感器阵列直接将感应的信息发送给图1所示的服务器105或图2所示的计算机设备200。图1所示的服务器105或图2所示的计算机设备200被配置为接收温度传感器阵列的信息进而获得被测对象的位置信息并确定身体每个部位和/或器官与每个温度传感器的对应关系。当然,温度传感器阵列还可以采用现有技术中的其他合适的温度传感器,只要其能感应人体或其他对象位于其上即可,在此并不限制。
如图5所示,在本发明的一些实施例中,传感器501还可以为光电传感器。每个光电传感器可包括光发射单元和光接收单元。光发射单元被配置为将光发射到被测对象,光接收单元被配置为检测从被测对象反射光的量。在一些实施例中,光发射单元具有用于发射光的发光二极管(ED),光接收单元具有用于检测发射光的量的光敏电阻(PTR)或光敏二极管(PD)。在一些实施例中,光电传感器阵列还包括内置的处理器,该处理器被配置为从每个光电传感器接收信号并生成被测对象的位置信息,并将该位置信息以有线或无线的方式发送给图1所示的服务器105或图2所示的计算机设备200。在本发明的一些实施例中,内置的处理器还可被配置为从每个光电传感器接收信号并生成被测对象的位置信息,并将该位置信息以有线或无线的方式发送给图1所示的服务器105或图2所示的计算机设备200。图1所示的服务器105或图2所示的计算机设备200可进一步根据被测对象的位置信息确定身体每个部位和/或器官与每个光电传感器的对应关系。在一些实施例中,光电传感器阵列并没有内置处理器,光电传感器阵列直接将感应的信息发送给图1所示的服务器105或图2所示的计算机设备200。图1所示的服务器105或图2所示的计算机设备200被配置为接收光电传感器的信息进而获得被测对象的位置信息并确定身体每个部位和/或器官与每个光电传感器的对应关系。当然,光电传感器阵列还可以采用现有技术中的其他合适的光电传感器阵列,只要其能感应出人体或其他对象位于其上即可,在此并不限制。
图6是依据本申请一些实施例的传感装置的结构示意图。如图6所示,在一些实施例中,传感装置600还可以包括一个本体601,第一传感器阵列603第二传感器阵列605,该本体用于供对象躺卧,例如,本体可以是一个垫子,垫子包括上盖和下盖,上盖和下盖贴合为一体,垫子可以将光纤传感器装置400和红外传感器装置或将光纤传感器装置400和压力传感器装置包覆于上盖和下盖形成的空间内部,并且固定其位置。在一些实施例中,光纤传感器阵列形成第一传感器阵列603,获取躺卧对象的振动信息。红外传感器阵列、压力传感器阵列、温度传感器和/或光电传感器阵列形成第二传感器阵列605,获取躺卧对象的红外、压力、温度信息和/或光信息。第一传感器阵列603和第二传感器阵列605被包覆于本体内。其中,第一传感器阵列603可位于第二传感器阵列605的上方,当然也可以位于其下方,在此并不限制。第一传感器阵列603的各个传感器与第二传感器阵列605的传感器位置呈对应关系,例如,第一传感器阵列603与第二传感器阵列605可以上下放置且至少部分重叠,第一传感器阵列603的各个传感器与第二传感器阵列605的各个传感器的相对位置呈对应关系。如图6所示,第一传感器阵列603中的光纤传感器603-1可以与第二传感器阵列605中的温度、压力或红外传感器605-1、605-2、605-3对应。传感装置600形状和大小可以根据实际需求进行选择,例如,传感装置600可是四边形,还可以是圆形或者其他合适形状。传感装置600可以根据通常人群的身高设置不同的尺寸,例如适合身高155cm-160cm人群的尺寸为S号,适合身高161cm-170cm人群的尺寸可以是S号基础上再增加一定距离,例如3cm。在另一些实施例中,第一传感器阵列603和第二传感器阵列605被包覆在垫子内部,在一些实施例中,第一传感器阵列603和第二传感器阵列605可设置在同一层,传感器成对出现,包括一个第一传感器用于获取躺卧对象的振动信息和一个第二传感器用于获取躺卧对象的光、压力或红外信息。在一些实施例中,第一传感器阵列603的各个传感器采用图4中的光纤传感器400。光纤401可以是蛇形结构(如401所示)、环状结构(如421所示)或者是U形结构。第二传感器阵列的各个传感器,可为例如光电传感器,这些光电传感器可布置于光纤传感器各种结构的间隙内,这样的布置并不影响振动信息的获取。
应当理解的是,本申请的装置、系统及方法的应用场景仅仅是本申请的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本申请应用于其他类似情景。例如,传感装置101可以不局限于光纤传感装置400以及传感装置600中传感器的形态,从而适用于其他场景。
如图6所示,为了在本申请中清楚地说明第一传感器阵列603和第二传感器阵列605相互之间的位置关系以及与本体601的位置关系,此处引入对应的坐标进入描述。传感装置600可以置于床上或者直接放置于地板上,因此Z轴表示垂直于地面的方向,背离地面方向为正方向,XY平面平行于水平面,X轴沿传感装置600的宽度方向,Y轴沿传感装置600的长度方向,原点O位于传感装置600的一端点边缘的中点。YZ平面将传感装置600分为左右两部分。沿Z轴方向,可以表示相对而言的上下方向。
本体601可以包括上盖611和下盖613,上盖611和下盖613将第一传感器阵列603和第二层传感器阵列605包覆于内,上盖611和下盖613通过缝线或者粘合剂贴合为一体。本体601的尺寸可以根据测试对象的体型和身高进行选择,例如其长度(沿Y轴)可以是190cm,宽度可以是85cm,这一尺寸适用于大多数人,也可以是其他合适的尺寸,在此并不限制。上盖611和下盖613可以采用多种材质,例如皮质、棉质等。
第一传感器阵列603可略小于本体601的尺寸,从而包覆在本体601内。第一传感器阵列603可以是光纤传感器,可以采用如图4所示的结构。在一些实施例中,如图6所示,第一传感器阵列603的长度(沿X轴)可以是根据测试对象进行选择,例如可以是180cm,适用于大多数人,宽度(沿Y轴)也是可以根据测试对象进行选择,例如可以是80cm,适用于大多数人,也可以是其他合适的尺寸,在此并不限制。当对象仰卧在传感装置600上时,左右身体部分大致沿Y轴对称,然而,对象可自由地躺卧在传感装置600上,变换舒适的姿势,还可在传感装置600上进行一定的移动。第一传感器阵列603被配置为获取对象的振动信息。
第二传感器阵列605可略小于本体601的尺寸,从而包覆在本体601内。第二传感器阵列605可以是光电传感器、温度传感器、红外传感器或压力传感器,可采用如图5所示的结构。在一些实施例中,如图6所示,第二传感器阵列605的长度(沿X轴)可以是根据测试对象进行选择,例如可以是180cm,适用于大多数人,宽度(沿Y轴)也是可以根据测试对象进行选择,例如可以是80cm,适用于大多数人,也可以是其他合适的尺寸,在此并不限制。在一些实施例中,第二层传感器阵列605的尺寸可与第一层传感器阵列603的一致。当对象仰卧在传感装置600上时,左右身体部分大致沿Y轴对称,然而,对象可自由地躺卧在传感装置600上,变换舒适的姿势,还可在传感装置600上进行一定的移动。第二传感器阵列605被配置为获取对象的感应信息,如光信息、温度信息、红外辐射信息或压力信息等。
在一些实施例中,传感装置600还可以包括一个支撑板(图中未示出)。支撑板被配置为第一传感器阵列603和第二光纤传感器阵列605提供支撑,可以被配置为置于第一传感器阵列603与第二传感器阵列605之下,并与第一光纤传感器阵列603和第二光纤传感器阵列605一起被包覆于本体601内。支撑板可以采用硬质结构,例如木板、PVC板等。
图7是依据本申请一些实施例的生理参数测量方法的流程图。在一些实施例中,方法700可以由图1所示的生理参数测量系统100实施。例如,方法700可以存储在存储装置107中作为指令集,并且由服务器105执行,服务器105可以在计算设备200上实施。
步骤711,处理器203可以从第一传感器阵列获取躺卧对象的振动信息,所述第一传感器阵列被配置为置于所述躺卧对象的身体下方。在一些实施例中,躺卧对象可以是医院病人或被看护人员等,躺卧对象可以自由变换舒适的姿势,如仰卧、侧卧、俯卧等,可伸直双腿也可以蜷缩双腿,躺在传感装置300之上。第一传感器阵列可以是传感装置600中的光纤传感器603,光纤传感器603可分布于垫子上,可监测身体任何部位的振动信息。躺卧对象的振动信息可以包括:呼吸引起的人体振动信息、心脏收缩舒张引起的人体振动信息、血管形变引起的人体振动信息以及人体的体动信息的一种或几种。其中心脏收缩舒张引起的人体振动可以包括心脏收缩舒张本身引起的人体振动,还包括心脏收缩舒张导致的血流流动引起的人体振动,例如心脏射血导致血液冲击主动脉弓引起的人体振动。血管形变引起的人体振动可以是心脏射血导致主动脉壁扩张形成脉搏波,脉搏波沿血管传导引起的人体振动。人体的体动信息可以包括屈腿、抬腿、翻身、抖动等。具体来说,人体呼吸时会带动整个身体尤其是胸腔腹腔为主的身体部分进行有节律的振动,人体心脏收缩舒张也会带动整个身体尤其是心脏周围的身体振动,左心室向主动脉射血的瞬间血液会冲击主动脉弓,心脏本身及其连接的大血管部分作为一个整体也会发生一系列的运动,距离心脏越远的身体部分的振动会越弱,脉搏波沿血管传播会引起血管所在的身体部分振动,血管越细、离心脏越远则此处的身体振动越弱。因此,当传感器位于人体不同位置之下时,传感器获得的振动信息是此位置下探测的上述所述的人体振动信息,当位置不同时获得的人体振动信息也不同。
步骤713,处理器203可以从第二传感器阵列获取所述躺卧对象的感应信息,根据所述感应信息生成所述躺卧对象的位置信息,其中,所述感应信息是第二传感器阵列根据传感器种类的不同所能感应的不同信息,例如压力传感器感应到的压力信息、形变信息,应变传感器感应到的应变信息,速度传感器感应到的速度信息,加速度传感器感应到的加速度信息,位移传感器感应到的位移信息,温度传感器感应到的温度信息、光电传感器感应到的反射光信息和/或红外传感器感应到的热辐射信息等。所述位置信息是所述躺卧对象身体各部位与所述第二传感器阵列中各个传感器的对应信息。在一些实施例中,所述位置信息可以是所述躺卧对象的身体轮廓图,其中身体轮廓是指身体的外边缘,至少包括四肢、躯干和头部。当躺卧对象处于不同的躺卧姿势时,身体轮廓图也会发生相应的变化。所述第二传感器阵列被配置为置于所述躺卧对象的身体之下。在一些实施例中,第二传感器阵列可以是传感装置500中的温度传感器、光电传感器、红外传感器或压力传感器,温度传感器、光电传感器、红外传感器或压力传感器可分布于垫子上,可识别出处于不同姿势下的身体轮廓图。
步骤715,处理器403可以依据所述位置信息和所述振荡信息确定所述躺卧对象的身体各部位与所述振动信息的对应关系。在一些实施例中,处理器403可以先将所述第一传感器阵列与所述第二传感器阵列一一关联,进而自动识别出所述躺卧对象的身体各部位的振动信息。在本发明的一些实施例中,第一传感器阵列与第二传感器阵列处于上下的相对位置关系,位于上方的传感器与位于下方的传感器可以呈一一对应。处理器403将第一传感器阵列中的传感器与第二传感器阵列中的传感器一一关联,从而将身体各部位的位置信息与振动信息相互关联,自动识别出各身体部位的振动信息。在一些实施例中,第一传感器阵列和第二传感器阵列处于同一个平面,在平面上的任何一个位置,传感器成对出现,每对传感器包括一个第一传感器和一个第二传感器。处理器403将每对传感器中的两个传感器相互关联,从而将身体各部位的位置信息与振动信息相互关联,自动识别出各身体部位的振动信息。
在一些实施例中,第一传感器阵列中的传感器和第二传感器阵列中的传感器中的对应关系还可以是一对多的方式。第一传感器阵列与第二传感器阵列可处于上下的相对位置关系,位于上方或下方的一个传感器可对应位于下方或上方的多个传感器相对应。例如,位于上方的传感器体积和/或面积较大,而位于下方的传感器体积和/或面积较小时,位于上方的一个传感器可与位于下方的多个传感器对应。第一传感器阵列与第二传感器阵列可处于同一个平面,在平面上的任何一个小区域内,可能同时包括一个第一传感器和多个第二传感器。
在一些实施例中,第一传感器阵列中的传感器和第二传感器阵列中的传感器中的对应关系还可以是多对多的方式。例如,针对某个第一传感器的振动信息,处理器可能会综合考虑该第一传感器周围多个传感器的振动信息,从而确定该身体/器官的振动信息。同样,针对与该第一传感器对应的第二传感器的感应信息,处理器可能会综合考虑该第二传感器周围的多个传感器的感应信息,从而确定被测对象在此处的位置信息。因此,在此种情况下,第一传感器阵列与第二传感器阵列是一种多对多的对应关系。
在一些实施例中,第二传感器阵列是传感装置500中的红外传感器。当所述躺卧对象位于所述第二传感器阵列上时,所述处理器203,从各红外传感器上获取热辐射信息,并根据所述热辐射信息生成所述躺卧对象的位置信息,进而确定身体各部位与红外传感器的对应关系。
在一些实施例中,第二传感器阵列是传感装置500中的压力传感器。当所述躺卧对象位于所述第二传感器阵列上时,所述处理器203,从各压力传感器上获取压力信息,并根据所述压力信息生成压力分布图,从而得到所述躺卧对象的位置信息,进而确定身体各部位与压力传感器的对应关系。
在一些实施例中,第二传感器阵列是传感装置500中的温度传感器。当所述躺卧对象位于所述第二传感器阵列上时,所述处理器203,从各温度传感器上获取温度信息,并根据所述温度信息生成温度分布图,从而得到所述躺卧对象的位置信息,进而确定身体各部位与压力传感器的对应关系。
在一些实施例中,第二传感器阵列是传感装置500中的光电传感器。当所述躺卧对象位于所述第二传感器阵列上时,所述处理器203,从各光电传感器上获取反射光信息,并根据所述反射光信息生成得到所述躺卧对象的位置信息,进而确定身体各部位与光电传感器的对应关系。
需要注意的是,以上的描述仅仅是本申请的具体实施例,不应被视为是唯一的实施例。显然,对于本领域的专业人员来说,在了解本申请的内容和原理后,都可能在不背离本申请原理、结构的情况下,进行形式和细节上的各种修正和改变,但是这些修正和改变仍在本申请的权利要求保护范围之内。

Claims (20)

  1. 一种方法,包括:
    通过一个或多个处理器,从第一传感器阵列获取躺卧对象的振动信息;
    通过所述一个或多个处理器,从第二传感器阵列获取所述躺卧对象的感应信息,根据所述感应信息生成所述躺卧对象的位置信息,其中所述位置信息是所述躺卧对象身体各部位与所述第二传感器阵列中各个传感器的对应信息;以及
    通过所述一个或多个处理器,依据所述位置信息和所述振动信息确定所述躺卧对象的身体各部位与所述振动信息的对应关系。
  2. 根据权利要求1所述的方法,其中,所述感应信息包括压力信息、应变信息、速度信息、加速度信息、位移信息、温度信息、反射光信息、或红外辐射信息中的至少一个。
  3. 权利要求1所述的方法,其中,所述第一传感器阵列和/或所述第二传感器阵列包括多个光纤传感器,每个所述光纤传感器包括:
    一根光纤,排列成基本上位于一个平面内的结构;
    光源,与所述一根或多根光纤的一端耦合;
    接收器,与所述一根光纤的另一端耦合,被配置为感知通过所述光纤的光强度的变化;和
    一个网格层,由设置有开口的网眼组成,其中,所述网格层与所述光纤表面接触。
  4. 权利要求1所述的方法,其中,所述第二传感器阵列包括多个压力传感器,当所述躺卧对象位于所述第二传感器阵列上时,通过所述一个或多个处理器,从各压力传感器上获取压力信息,并根据所述压力信息生成压力分布图,从而得到所述躺卧对象的所述位置信息,进而确定身体各部位与所述第二传感器阵列中各个传感器的对应信息。
  5. 权利要求1所述的方法,其中,所述第二传感器阵列包括多个红外传感器,当所述躺卧对象位于所述第二传感器阵列上时,通过所述一个或多个处理器,从各红外传感器上获取红外辐射信息,并根据所述红外辐射信息生成所述躺卧对象的位置信息,进而确定身体各部位与所述第二传感器阵列中各个传感器的对应关系。
  6. 根据权利要求1所述的方法,其中,所述第二传感器阵列包括多个温度传感器,当所述躺卧对象位于所述第二传感器阵列上时,通过所述一个或多个处理器,从各温度传感器上获取温度信息,并根据所述温度信息生成所述躺卧对象的位置信息,进而确定身体各部位与所述第二传感器阵列中各个传感器的对应关系。
  7. 根据权利要求3所述的方法,其中,所述第一和第二传感器阵列被配置为置于同一层,所述第一传感器阵列包括多个光纤传感器,所述第二传感器阵列分布在所述光纤的间隙中。
  8. 根据权利要求1所述的方法,其中,所述振动信息包括呼吸引起的振动、心脏收缩舒张引起的振动、脉搏波传导引起的振动、或者人体身体运动中的至少一种。
  9. 一种系统,包括:
    第一传感器阵列,被配置为置于躺卧对象的下方,获取所述躺卧对象的振动信息;
    第二传感器阵列,被配置为置于所述躺卧对象的下方,获取所述躺卧对象的感应信息;
    一个或多个处理器; 和
    一个或多个计算机可读存储介质,所述一个或多个计算机可读存储介质存储有指令,当所述指令被所述一个或多个处理器执行时实现以下操作:
    从所述第一传感器阵列获取所述躺卧对象的振动信息;
    从所述第二传感器阵列获取所述躺卧对象的感应信息,根据所述感应信息生成所述躺卧对象的位置信息,其中,所述位置信息是所述躺卧对象身体各部位与所述第二传感器阵列中各个传感器的对应信息;以及
    依据所述位置信息与所述振动信息进而确定所述躺卧对象的身体各部位与所述振动信息的对应关系。
  10. 根据权利要求9所述的系统,其中,所述感应信息包括压力信息、应变信息、速度信息、加速度信息、位移信息、温度信息、反射光信息、或红外辐射信息中的至少一个。
  11. 权利要求9所述的系统,其中,所述第二传感器阵列包括多个压力传感器,当所述躺卧对象位于所述第二传感器阵列上时,通过所述一个或多个处理器,从各压力传感器上获取压力信息,并根据所述压力信息生成压力分布图,从而得到所述躺卧对象的位置信息,进而确定身体各部位与所述第二传感器阵列中各个传感器的对应信息。
  12. 权利要求9所述的系统,其中,所述第二传感器阵列包括多个红外传感器,当所述躺卧对象位于所述第二传感器阵列上时,通过所述一个或多个处理器,从各红外传感器上获取红外辐射信息,并根据所述红外辐射信息生成所述躺卧对象的位置信息,进而确定身体各部位与所述第二传感器阵列中各个传感器的对应关系。
  13. 根据权利要求9所述的系统,其中,所述第二传感器阵列包括多个温度传感器,当所述躺卧对象位于所述第二传感器阵列上时,通过所述一个或多个处理器,从各温度传感器上获取温度信息,并根据所述温度信息生成所述躺卧对象的位置信息,进而确定身体各部位与所述第二传感器阵列中各个传感器的对应关系。
  14. 根据权利要求9所述的系统,其中,所述振动信息包括呼吸引起的振动、心脏收缩舒张引起的振动、脉搏波传导引起的振动、或者人体身体运动中的至少一种。
  15. 一种装置,包括:
    本体,所述本体用于供躺卧对象躺卧,所述本体包括上盖和下盖;
    第一传感器阵列,所述第一传感器阵列被配置为置于躺卧对象的下方,获取所述躺卧对象的振动信息;和
    第二传感器阵列,被配置为置于所述躺卧对象的下方,获取所述躺卧对象的感应信息;
    其中,所述上盖和所述下盖将所述第一传感器阵列和所述第二传感器阵列包覆于内。
  16. 根据权利要求15所述的装置,其中,所述感应信息包括压力信息、应变信息、速度信息、加速度信息、位移信息、温度信息、反射光信息、或红外辐射信息中的至少一个。
  17. 权利要求15所述的装置,进一步包括一个或多个处理器,和一个或多个计算机可读存储介质,所述一个或多个计算机可读存储介质存储有指令,当所述指令被所述一个或多个处理器执行时实现以下操作:
    从所述第一传感器阵列获取所述躺卧对象的振动信息;
    从所述第二传感器阵列获取所述躺卧对象的感应信息,根据所述感应信息生成所述躺卧对象的位置信息,其中,所述位置信息是所述躺卧对象身体各部位与所述第二传感器阵列中各个传感器的对应信息;以及
    依据所述位置信息与所述振动信息确定所述躺卧对象的身体各部位与所述振动信息的对应关系。
  18. 权利要求15所述的装置,其中,所述第二传感器阵列包括多个压力传感器,当所述躺卧对象位于所述第二传感器阵列上时,通过所述一个或多个处理器,从各压力传感器上获取压力信息,并根据所述压力信息生成压力分布图,从而得到所述躺卧对象的位置信息,进而确定身体各部位与所述第二传感器阵列中各个传感器的对应信息。
  19. 权利要求15所述的装置,其中,所述第二传感器阵列包括多个红外传感器,当所述躺卧对象位于所述第二传感器阵列上时,通过所述一个或多个处理器,从各红外传感器上获取红外辐射信息,并根据所述红外辐射信息生成所述躺卧对象的位置信息,进而确定身体各部位与所述第二传感器阵列中各个传感器的对应关系。
  20. 根据权利要求15所述的装置,其中,所述第二传感器阵列包括多个温度传感器,当所述躺卧对象位于所述第二传感器阵列上时,通过所述一个或多个处理器,从各温度传感器上获取温度信息,并根据所述温度信息生成所述躺卧对象的位置信息,进而确定身体各部位与所述第二传感器阵列中各个传感器的对应关系。
PCT/CN2018/101243 2018-08-17 2018-08-20 一种生理参数测量系统和方法 WO2020034231A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810942802.2A CN110833402A (zh) 2018-08-17 2018-08-17 一种生理参数测量系统和方法
CN201810942802.2 2018-08-17

Publications (1)

Publication Number Publication Date
WO2020034231A1 true WO2020034231A1 (zh) 2020-02-20

Family

ID=69524581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/101243 WO2020034231A1 (zh) 2018-08-17 2018-08-20 一种生理参数测量系统和方法

Country Status (2)

Country Link
CN (1) CN110833402A (zh)
WO (1) WO2020034231A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113397528B (zh) * 2020-03-16 2023-07-21 深圳市大耳马科技有限公司 一种踝泵运动评估方法、设备和系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110264007A1 (en) * 2010-04-24 2011-10-27 Meyers Clarissa A Patient support interface pressure monitoring system
WO2012122002A1 (en) * 2011-03-04 2012-09-13 Stryker Corporation Sensing system for patient supports
CN103356198A (zh) * 2012-04-09 2013-10-23 英华达(上海)科技有限公司 多点感应测量系统及其测量方法
CN104622476A (zh) * 2015-01-28 2015-05-20 杨松 检测人体生理信号的床垫、分析器、方法和系统
CN106580295A (zh) * 2017-01-03 2017-04-26 泉州师范学院 空分复用多模光纤生命特征参数检测器
CN206403512U (zh) * 2016-10-09 2017-08-15 全普光电科技(上海)有限公司 健康床垫
CN107072565A (zh) * 2014-09-30 2017-08-18 深圳市大耳马科技有限公司 生命体征光纤传感器系统及方法
CN108209863A (zh) * 2016-12-21 2018-06-29 深圳市迈迪加科技发展有限公司 非穿戴式睡姿监测装置及其床品

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7666151B2 (en) * 2002-11-20 2010-02-23 Hoana Medical, Inc. Devices and methods for passive patient monitoring
JP6099422B2 (ja) * 2013-02-12 2017-03-22 住友理工株式会社 位置検出装置並びに呼吸計測装置及び心拍計測装置
CN105266779B (zh) * 2015-09-30 2018-04-17 纳智源科技(唐山)有限责任公司 医疗监测带以及医疗监测床垫
CN106617907A (zh) * 2016-10-09 2017-05-10 全普光电科技(上海)有限公司 健康床垫

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110264007A1 (en) * 2010-04-24 2011-10-27 Meyers Clarissa A Patient support interface pressure monitoring system
WO2012122002A1 (en) * 2011-03-04 2012-09-13 Stryker Corporation Sensing system for patient supports
CN103356198A (zh) * 2012-04-09 2013-10-23 英华达(上海)科技有限公司 多点感应测量系统及其测量方法
CN107072565A (zh) * 2014-09-30 2017-08-18 深圳市大耳马科技有限公司 生命体征光纤传感器系统及方法
CN104622476A (zh) * 2015-01-28 2015-05-20 杨松 检测人体生理信号的床垫、分析器、方法和系统
CN206403512U (zh) * 2016-10-09 2017-08-15 全普光电科技(上海)有限公司 健康床垫
CN108209863A (zh) * 2016-12-21 2018-06-29 深圳市迈迪加科技发展有限公司 非穿戴式睡姿监测装置及其床品
CN106580295A (zh) * 2017-01-03 2017-04-26 泉州师范学院 空分复用多模光纤生命特征参数检测器

Also Published As

Publication number Publication date
CN110833402A (zh) 2020-02-25

Similar Documents

Publication Publication Date Title
US20210361165A1 (en) Sensor network for measuring physiological parameters of mammal subject and applications of same
JP6599580B1 (ja) ユーザをモニタリングするシステム
JP7132853B2 (ja) 対象上のウェアラブル装置の位置及び向きの少なくとも一方を決定する方法及び装置
US8094013B1 (en) Baby monitoring system
US5853005A (en) Acoustic monitoring system
Kang et al. A wrist-worn integrated health monitoring instrument with a tele-reporting device for telemedicine and telecare
CN100518638C (zh) 被动式生理监视(p2m)系统
US9706950B2 (en) Accelerometer and wireless notification system
US20120299732A1 (en) Baby monitor for use by the deaf
WO1997040748A9 (en) Acoustic monitoring system
AU2003291808A1 (en) Device and method for passive patient monitoring
CN206026321U (zh) 穿戴式生理量测仪
CN110403580B (zh) 一种脉搏波传导参数测量方法和脉搏波传导参数处理设备
JPWO2020092786A5 (zh)
WO2020034231A1 (zh) 一种生理参数测量系统和方法
US20210022621A1 (en) Heart failure decompensation monitoring
JP3209577U (ja) 生理検出装置
CN110403579B (zh) 一种脉搏波传导参数测量系统和方法
JP7138363B2 (ja) 脈波伝導パラメータの測定システム、測定方法及び測定装置
WO2019205175A1 (zh) 一种脉搏波传导参数测量方法和脉搏波传导参数处理设备
KR101748672B1 (ko) 음성통신 및 유선통신을 이용하는 전자파 프리 기반 신체 및 거동정보 수집제공 시스템
KV et al. Development of Intelligent Cradle for Infant Monitoring System
TWM651030U (zh) 具有火災預警功能的智能看護系統及其熱源偵測裝置
KR20200139023A (ko) 생체 모니터링 장치, 생체 모니터링 시스템 및 이를 이용하는 생체 모니터링 방법
JP2019513457A (ja) 褥瘡検出方法、デバイスおよび技法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18930279

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24.06.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18930279

Country of ref document: EP

Kind code of ref document: A1