WO2020032074A1 - 積層体の製造方法 - Google Patents

積層体の製造方法 Download PDF

Info

Publication number
WO2020032074A1
WO2020032074A1 PCT/JP2019/031006 JP2019031006W WO2020032074A1 WO 2020032074 A1 WO2020032074 A1 WO 2020032074A1 JP 2019031006 W JP2019031006 W JP 2019031006W WO 2020032074 A1 WO2020032074 A1 WO 2020032074A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
laminate
pretreatment
metal film
powder
Prior art date
Application number
PCT/JP2019/031006
Other languages
English (en)
French (fr)
Inventor
智資 平野
Original Assignee
日本発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本発條株式会社 filed Critical 日本発條株式会社
Priority to CN201980051612.4A priority Critical patent/CN112513329A/zh
Priority to KR1020217002450A priority patent/KR102559148B1/ko
Priority to JP2020535818A priority patent/JPWO2020032074A1/ja
Priority to US17/263,573 priority patent/US11512395B2/en
Priority to EP19848727.4A priority patent/EP3835454A4/en
Publication of WO2020032074A1 publication Critical patent/WO2020032074A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/082Coating starting from inorganic powder by application of heat or pressure and heat without intermediate formation of a liquid in the layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/082Coating starting from inorganic powder by application of heat or pressure and heat without intermediate formation of a liquid in the layer
    • C23C24/085Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • C23C24/087Coating with metal alloys or metal elements only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings

Definitions

  • the present invention relates to a method for producing a laminate in which a metal film is laminated on a substrate.
  • a thermal spraying method or a cold spraying method can be used as a method for producing a laminate in which a metal film is formed on a substrate.
  • the thermal spraying method is a method of forming a coating by spraying a material (sprayed material) heated to a state of melting or close to the molten state onto a base material.
  • a powder of a material is sprayed from a Laval nozzle together with an inert gas having a melting point or a softening point or lower, and collides with the substrate in a solid state to form a film on the surface of the substrate.
  • the metal film has a function of radiating the heat of the base material to the outside. It is generally known that heat can be efficiently dissipated by making the surface for dissipating heat uneven (for example, see Patent Document 2).
  • the present invention has been made in view of the above, and an object of the present invention is to provide a method of manufacturing a laminate having high adhesion strength and capable of efficiently dissipating heat.
  • a method for manufacturing a laminate according to the present invention is directed to a method for manufacturing a laminate in which a film formed using a material powder is laminated on a surface of an insulating base material.
  • the material powder further includes an additive for binding the material powders, and the additive is brazing material or magnesium.
  • the film forming step is characterized in that the pretreatment film is heated at 300 ° C. or more and 650 ° C. or less.
  • FIG. 1 is a cross-sectional view showing a structure of a laminate according to one embodiment of the present invention.
  • FIG. 2 is an enlarged sectional view of a part of the laminate shown in FIG.
  • FIG. 3 is a schematic diagram showing an outline of a cold spray device used for forming a metal film of a laminate according to one embodiment of the present invention.
  • FIG. 4 is an SEM image showing an example of the laminate according to one embodiment of the present invention, and is a diagram showing an SEM image showing a cross section of the laminate.
  • FIG. 5 is an SEM image showing an example of the laminate according to one embodiment of the present invention, and is a diagram showing an SEM image showing a cross section of the laminate.
  • FIG. 6 is an SEM image showing an example of the laminate according to one embodiment of the present invention, and is a diagram showing an SEM image showing a cross section of the laminate.
  • FIG. 7 is an SEM image showing an example of the laminate according to one embodiment of the present invention, and is a diagram showing an SEM image showing a cross section of the laminate.
  • FIG. 8 is an SEM image showing an example of the laminate according to one embodiment of the present invention, and is a diagram showing an SEM image showing a cross section of the laminate.
  • FIG. 1 is a cross-sectional view showing a structure of a laminate according to one embodiment of the present invention.
  • FIG. 2 is an enlarged sectional view of a part of the laminate shown in FIG.
  • the laminate 1 shown in FIG. 1 includes a substrate 10 and a metal film 20 formed on one surface of the substrate 10.
  • the base material 10 is a substantially plate-shaped member.
  • the material of the base material 10 include nitride ceramics such as aluminum, aluminum nitride, and silicon nitride, and oxide ceramics such as alumina, magnesia, zirconia, steatite, forsterite, mullite, titania, silica, and sialon.
  • a resin layer containing an inorganic filler For example, a chip configured by a semiconductor element such as a diode, a transistor, or an IGBT (insulated gate bipolar transistor) may be mounted on the base 10.
  • the metal film 20 is mainly composed of a metal or an alloy having good thermal conductivity, such as aluminum or an aluminum alloy.
  • the metal film 20 is formed by a cold spray method described later.
  • the metal film 20 causes heat to enter the base material 10 or release heat stored in the base material 10 to the outside.
  • the metal film 20 is formed at a low temperature by the cold spray method, the influence of thermal stress is reduced. Therefore, it is possible to obtain a metal film having no phase transformation and suppressed oxidation.
  • the material powder collides with the base material 10
  • plastic deformation occurs between the material powder and the material of the base material 10, thereby obtaining an anchor effect. Therefore, a laminate having high adhesion strength can be obtained.
  • the surface of the metal film 20 opposite to the side in contact with the base material 10 has an uneven shape.
  • This surface has irregular irregularities that are repeated irregularly, and has a larger surface area as compared with a case where the surface is flat.
  • the surface of the metal film 20 is formed by randomly stacking particles (here, the material constituting the metal film 20).
  • FIG. 3 is a schematic diagram showing an outline of a cold spray device used for forming a metal film of a laminate according to one embodiment of the present invention.
  • the above-described base material 10 is prepared.
  • the above-described chip may be mounted on the base material 10.
  • the side opposite to the mounting surface is the film forming surface.
  • a powder of a material for forming the metal film 20 is accelerated together with the gas on the substrate 10 by a cold spray device 30 shown in FIG. 3 and sprayed and deposited on the surface of the substrate 10 in a solid state.
  • a pretreatment film 200 is formed (pretreatment step).
  • the cold spray device 30 includes a gas heater 31 that heats the compressed gas, a powder supply device 32 that contains powder of a material for forming the metal film 20 and supplies the powder to a spray gun 33, It is provided with a gas nozzle 34 for injecting the supplied material powder onto the base material, and valves 35 and 36 for adjusting the amount of compressed gas supplied to the gas heater 31 and the powder supply device 32, respectively.
  • the material for forming the metal film 20 is a powder material comprising aluminum or an aluminum alloy, which is a main component of the metal film 20, and an additive for bonding aluminum or aluminum alloy.
  • the mixing ratio of the main component and the additive is 1 to 1.5 when the main component is 1.
  • the “main component of the metal film 20” means a component having the highest content in the components (elements or alloys remaining after the film is formed) constituting the metal film 20.
  • the additive examples include a material having a reducing effect on an aluminum oxide film and a brazing material.
  • the material having a high reducing action examples include magnesium and zinc, and magnesium is preferable from the viewpoint of a high reducing action on aluminum.
  • the brazing material is aluminum brazing material containing aluminum as a main component, magnesium, copper, etc., silver as a main component, silver containing at least one of copper and tin, and containing titanium which is an active metal. Brazing material can be used.
  • Helium, nitrogen, air, etc. are used as the compressed gas.
  • the compressed gas supplied to the gas heater 31 is heated to, for example, 50 ° C. or higher and lower than the melting point of the powder of the material for forming the metal film 20, and then supplied to the spray gun 33. Is done.
  • the heating temperature of the compressed gas is preferably 300 ° C. or more and 650 ° C. or less.
  • the compressed gas supplied to the powder supply device 32 supplies the powder in the powder supply device 32 to the spray gun 33 so as to have a predetermined discharge amount.
  • the heated compressed gas is made into a supersonic flow (about 340 m / s or more) by the gas nozzle 34 having a divergent shape.
  • the gas pressure of the compressed gas is preferably about 1 to 5 MPa.
  • the pressure is more preferably about 2 to 4 MPa, particularly preferably about 1.5 to 2.5 MPa.
  • the powder of the material supplied to the spray gun 33 is accelerated by the introduction of the compressed gas into the supersonic flow, collides with the base material 10 at a high speed in a solid state, and is deposited.
  • the apparatus is not limited to the cold spray apparatus 30 shown in FIG. 3 as long as the apparatus can form a film by colliding the material powder toward the substrate 10 in a solid state.
  • the pretreatment film 200 formed by the cold spray device 30 includes a main component (aluminum or an aluminum alloy) and an additive, and has a gap or a minute space.
  • the pre-treatment film 200 is subjected to a heat treatment to form the metal film 20 by combining the main components, the additives, and the main component and the additive (film forming step).
  • the temperature of this heat treatment is 300 ° C. or more and 650 ° C. or less, preferably 500 ° C. or more and 600 ° C. or less. By doing so, the bonding strength of the metal film 20 can be increased.
  • the additive in the metal film 20 is partially evaporated, melted, or partially left as it is in the pretreatment film 200.
  • magnesium as an additive is preferable because it reduces the oxide film of the aluminum powder and promotes bonding between the aluminum powders.
  • FIGS. 4 and 5 are SEM images showing an example of the laminate according to one embodiment of the present invention, and are diagrams showing SEM images showing a cross section of the laminate. 4 and 5 show examples in which aluminum is the main component and a brazing filler metal is used as an additive.
  • FIG. 4 shows a cross section after film formation (pretreatment film 200) by the cold spray device 30.
  • FIG. 5 shows a cross section of a metal film (metal film 20) formed by performing heat treatment after film formation. After the film formation, there are many gaps and the like, and there are many portions where the powders are not bonded (see FIG. 4). However, after the heat treatment (see FIG. 5), many gaps are filled and the film is formed. The bonding strength is improved as compared with the later.
  • FIGS. 6 to 8 are SEM images showing an example of the laminated body according to one embodiment of the present invention, and are diagrams showing SEM images showing a cross section of the laminated body. 6 to 8 show examples using aluminum as a main component and magnesium as an additive.
  • FIG. 6 shows a cross section after film formation by the cold spray device 30 (pretreatment film 200).
  • FIG. 7 shows a cross section of a metal film (metal film 20) formed by performing heat treatment after film formation.
  • FIG. 8 shows the surface of the metal film in a state where a heat treatment has been performed after the film formation.
  • the powder of the material for forming the metal film 20 and the powder of the material including the main component made of aluminum or the aluminum alloy and the additive that binds the powder are combined with the gas. It is accelerated and sprayed and deposited on the surface of the substrate 10 in a solid state to form a pretreatment film 200 having an uneven surface, and heat treatment is performed on the pretreatment film 200 to improve the bonding strength. I did it. According to the above-described embodiment, heat radiation can be efficiently performed with high adhesion strength.
  • the metal film 20 is formed using a powder of a material including a main component made of aluminum or an aluminum alloy and an additive that binds the powder to each other has been described.
  • the metal film 20 may be formed using a single material powder.
  • the present invention can include various embodiments and the like which are not described herein, and can perform various design changes and the like without departing from the technical idea specified by the claims. Is possible.
  • the method for manufacturing a laminate according to the present invention has high adhesion strength and is suitable for efficiently dissipating heat.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Laminated Bodies (AREA)
  • Powder Metallurgy (AREA)

Abstract

本発明にかかる積層体の製造方法は、絶縁性を有する基材表面に材料粉末を用いて形成される皮膜を積層した積層体の製造方法であって、アルミニウム又はアルミニウム合金を主成分とする材料粉末をガスとともに加速し、基材表面に固相状態のままで吹き付け、基材表面に前処理皮膜を形成する前処理工程と、基材表面に前処理皮膜を形成した前処理積層体を加熱して、表面が不規則な凹凸形状をなす熱処理皮膜を形成する皮膜形成工程と、を含む。

Description

積層体の製造方法
 本発明は、基材に金属皮膜を積層してなる積層体の製造方法に関するものである。
 従来、基材に金属皮膜を形成した積層体の作製方法としては、例えば、溶射法やコールドスプレー法が挙げられる。溶射法は、溶融又はそれに近い状態に加熱された材料(溶射材)を基材に吹き付けることによって皮膜を形成する方法である。コールドスプレー法は、材料の粉末を、融点又は軟化点以下の状態の不活性ガスとともに末広(ラバル)ノズルから噴射し、固相状態のまま基材に衝突させることにより、基材の表面に皮膜を形成する方法である(例えば、特許文献1参照)。コールドスプレー法においては、溶射法と比較して低い温度で加工が行われるので、熱応力の影響が緩和される。そのため、相変態がなく酸化も抑制された金属皮膜を得ることができる。特に、基材及び皮膜となる材料がともに金属である場合、金属材料の粉末が基材(又は先に形成された皮膜)に衝突した際に粉末と基材との間で塑性変形が生じてアンカー効果が得られると共に、互いの酸化皮膜が破壊されて新生面同士による金属結合が生じるので、密着強度の高い積層体を得ることができる。
 ところで、金属皮膜が、基材が有する熱を外部に放熱する機能を担う場合がある。一般的に、放熱を行う表面を凹凸にすることによって効率的に放熱できることが知られている(例えば、特許文献2参照)。
特許第5548167号公報 特開2016-183390号公報
 上述したようなことから、基材に対する密着強度が高く、効率的に放熱できる金属皮膜をコールドスプレー法で作製する技術が求められている。
 本発明は、上記に鑑みてなされたものであって、密着強度が高く、かつ効率的に放熱を行うことができる積層体の製造方法を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明にかかる積層体の製造方法は、絶縁性を有する基材表面に材料粉末を用いて形成される皮膜を積層した積層体の製造方法であって、アルミニウム又はアルミニウム合金を主成分とする前記材料粉末をガスとともに加速し、前記基材表面に固相状態のままで吹き付け、前記基材表面に前処理皮膜を形成する前処理工程と、前記基材表面に前記前処理皮膜を形成した前処理積層体を加熱して、表面が不規則な凹凸形状をなす熱処理皮膜を形成する皮膜形成工程と、を含むことを特徴とする。
 また、本発明にかかる積層体の製造方法は、上記の発明において、前記材料粉末は、当該材料粉末同士を結合させる添加剤をさらに含み、前記添加剤は、ろう材またはマグネシウムであることを特徴とする。
 また、本発明にかかる積層体の製造方法は、上記の発明において、前記皮膜形成工程は、300℃以上650℃以下で前記前処理皮膜を加熱することを特徴とする。
 本発明によれば、密着強度が高く、かつ効率的に放熱を行うことができるという効果を奏する。
図1は、本発明の一実施の形態にかかる積層体の構造を示す断面図である。 図2は、図1に示す積層体の一部を拡大した断面図である。 図3は、本発明の一実施の形態にかかる積層体の金属皮膜の形成に使用されるコールドスプレー装置の概要を示す模式図である。 図4は、本発明の一実施の形態にかかる積層体の一例を示すSEM画像であって、この積層体の断面を示すSEM画像を示す図である。 図5は、本発明の一実施の形態にかかる積層体の一例を示すSEM画像であって、この積層体の断面を示すSEM画像を示す図である。 図6は、本発明の一実施の形態にかかる積層体の一例を示すSEM画像であって、この積層体の断面を示すSEM画像を示す図である。 図7は、本発明の一実施の形態にかかる積層体の一例を示すSEM画像であって、この積層体の断面を示すSEM画像を示す図である。 図8は、本発明の一実施の形態にかかる積層体の一例を示すSEM画像であって、この積層体の断面を示すSEM画像を示す図である。
 以下、本発明を実施するための形態を図面と共に詳細に説明する。なお、以下の実施の形態により本発明が限定されるものではない。また、以下の説明において参照する各図は、本発明の内容を理解し得る程度に形状、大きさ、および位置関係を概略的に示してあるに過ぎない。すなわち、本発明は各図で例示された形状、大きさ、および位置関係のみに限定されるものではない。
 図1は、本発明の一実施の形態にかかる積層体の構造を示す断面図である。図2は、図1に示す積層体の一部を拡大した断面図である。図1に示す積層体1は、基材10と、基材10の一方の面に形成された金属皮膜20とを備える。
 基材10は、略板状の部材である。基材10の材料としては、例えば、アルミニウム、窒化アルミニウム、窒化珪素等の窒化物系セラミックスや、アルミナ、マグネシア、ジルコニア、ステアタイト、フォルステライト、ムライト、チタニア、シリカ、サイアロン等の酸化物系セラミックス、無機フィラーを配合した樹脂層等が用いられる。基材10には、例えば、ダイオード、トランジスタ、IGBT(絶縁ゲートバイポーラトランジスタ)等の半導体素子によって構成されるチップを実装してもよい。
 金属皮膜20は、アルミニウム、アルミニウム合金等の良好な熱伝導性を有する金属又は合金を主成分とする。金属皮膜20は、後述するコールドスプレー法によって形成される。金属皮膜20は、基材10に入熱、または基材10が蓄熱している熱を外部に放出させる。
 また、金属皮膜20は、コールドスプレー法によって低い温度で成膜が行われるので、熱応力の影響が緩和される。そのため、相変態がなく酸化も抑制された金属皮膜を得ることができる。特に、材料粉末が基材10に衝突した際に材料粉末と基材10の材料との間で塑性変形が生じてアンカー効果が得られると共に、互いの酸化皮膜が破壊されて新生面同士による金属結合が生じるので、密着強度の高い積層体を得ることができる。
 図2に示すように、金属皮膜20は、基材10に接する側と反対側の表面が、凹凸形状をなしている。この表面は、不規則に凹凸を繰り返しており、平面状をなす場合と比して、表面積が大きい。具体的には、金属皮膜20では、粒子(ここでは金属皮膜20を構成する材料)が不規則に積層されることによって表面が形成される。
 次に、積層体1の作製における金属皮膜20の形成方法について説明する。図3は、本発明の一実施の形態にかかる積層体の金属皮膜の形成に使用されるコールドスプレー装置の概要を示す模式図である。
 まず、上述した基材10を用意する。この基材10には、上述したチップが実装されていてもよい。チップが実装されている場合は、実装面と反対側が皮膜形成面となる。
 この基材10に、図3に示すコールドスプレー装置30により、金属皮膜20を形成するための材料の粉末をガスと共に加速し、基材10の表面に固相状態のままで吹き付けて堆積させて前処理皮膜200を形成する(前処理工程)。
 コールドスプレー装置30は、圧縮ガスを加熱するガス加熱器31と、金属皮膜20を形成するための材料の粉末を収容し、スプレーガン33に供給する粉末供給装置32と、加熱された圧縮ガス及びそこに供給された材料粉末を基材に噴射するガスノズル34と、ガス加熱器31及び粉末供給装置32に対する圧縮ガスの供給量をそれぞれ調節するバルブ35、36とを備える。
 金属皮膜20を形成するための材料としては、金属皮膜20の主成分であるアルミニウム又はアルミニウム合金と、アルミニウム同士、又はアルミニウム合金同士を結合させるための添加剤とからなる粉末の材料である。主成分と添加剤との混合比率(主成分:添加剤)は、主成分を1としたときに、添加剤が1以上1.5以下である。なお、ここでいう「金属皮膜20の主成分」とは、金属皮膜20を構成する成分(皮膜形成後に残存する元素又は合金)において含有率が最も高い成分のことをいう。
 添加剤としては、アルミニウムの酸化皮膜に対して還元作用のある材料や、ろう材が挙げられる。還元作用の高い材料としては、マグネシウムや亜鉛が挙げられ、アルミニウムに対する還元作用の高さの観点でマグネシウムが好ましい。ろう材は、アルミニウムを主成分とし、マグネシウムや銅等を含有するアルミニウムろう材、銀を主成分とし、銅、スズのうち少なくとも1種を含有し、かつ、活性金属であるチタンを含有する銀ろう材を用いることができる。
 圧縮ガスとしては、ヘリウム、窒素、空気などが使用される。ガス加熱器31に供給された圧縮ガスは、例えば50℃以上であって、金属皮膜20を形成するための材料の粉末の融点よりも低い範囲の温度に加熱された後、スプレーガン33に供給される。圧縮ガスの加熱温度は、好ましくは300℃以上650℃以下である。一方、粉末供給装置32に供給された圧縮ガスは、粉末供給装置32内の粉末をスプレーガン33に所定の吐出量となるように供給する。
 加熱された圧縮ガスは末広形状をなすガスノズル34により超音速流(約340m/s以上)にされる。この際の圧縮ガスのガス圧力は、1~5MPa程度とすることが好ましい。圧縮ガスの圧力をこの程度に調整することにより、基材10に対する金属皮膜20の密着強度の向上を図ることができるからである。より好ましくは2~4MPa程度であり、特に好ましくは1.5~2.5MPa程度の圧力で処理するとよい。スプレーガン33に供給された材料の粉末は、この圧縮ガスの超音速流の中への投入により加速され、固相状態のまま、基材10に高速で衝突して堆積し、前処理皮膜200を形成する。なお、材料粉末を基材10に向けて固相状態で衝突させて皮膜を形成できる装置であれば、図3に示すコールドスプレー装置30に限定されるものではない。
 上述したコールドスプレー装置30により成膜された前処理皮膜200は、主成分(アルミニウム又はアルミニウム合金)と、添加剤とを含み、隙間や微小な空間が形成されている。この前処理皮膜200に対し、熱処理を施して、主成分同士、添加剤同士、主成分と添加剤とを結合させて金属皮膜20を形成する(皮膜形成工程)。この熱処理の温度は、300℃以上650℃以下であり、好ましくは500℃以上600℃以下である。このようにすることで、金属皮膜20の結合強度を高くすることができる。この際、添加剤の性質や熱処理の条件によって、金属皮膜20中の添加物は、一部が蒸発したり、溶融していたり、一部が前処理皮膜200における状態のまま残留したりする。この際、添加剤としてのマグネシウムは、アルミニウム粉末の酸化膜を還元して、アルミニウム粉末同士の結合を促進するため好ましい。
 図4及び図5は、本発明の一実施の形態にかかる積層体の一例を示すSEM画像であって、この積層体の断面を示すSEM画像を示す図である。図4及び図5は、アルミニウムを主成分とし、添加剤としてろう材を用いた例を示している。図4は、コールドスプレー装置30による成膜後(前処理皮膜200)の断面を示す。図5は、成膜後に熱処理を施して形成した金属皮膜(金属皮膜20)の断面を示す。成膜後は、隙間等が多く、粉末同士が結合していない部分が多い状態(図4参照)となっているが、熱処理後(図5参照)は、多くの隙間が埋められ、成膜後と比して結合強度が向上している。
 さらに、添加剤としてマグネシウムを用いた例を、図6~図8を参照して説明する。図6~図8は、本発明の一実施の形態にかかる積層体の一例を示すSEM画像であって、この積層体の断面を示すSEM画像を示す図である。図6~図8は、アルミニウムを主成分とし、添加剤としてマグネシウムを用いた例を示している。図6は、コールドスプレー装置30による成膜後(前処理皮膜200)の断面を示す。図7は、成膜後に熱処理を施して形成した金属皮膜(金属皮膜20)の断面を示す。図8は、成膜後に熱処理を施した状態の金属皮膜の表面を示す。ろう材と同様、成膜後は、隙間等が多く、粉末同士が結合していない部分が多い状態(図6参照)となっているが、熱処理後(図7参照)は、多くの隙間が埋められ、成膜後と比して結合強度が向上している。また、図8に示すように、熱処理後の表面は、不規則な凹凸形状をなしているのが分かる。
 上述した実施の形態では、金属皮膜20を形成するための材料の粉末であって、アルミニウム又はアルミニウム合金からなる主成分と、当該粉末同士を結合する添加剤とを含む材料の粉末を、ガスと共に加速し、基材10の表面に固相状態のままで吹き付けて堆積させて、凹凸形状の表面を有する前処理皮膜200を形成し、この前処理皮膜200に熱処理を施して結合強度を向上するようにした。上述した実施の形態によれば、密着強度が高く、かつ効率的に放熱を行うことができる。
 なお、上述した実施の形態では、アルミニウム又はアルミニウム合金からなる主成分と、当該粉末同士を結合する添加剤とを含む材料の粉末を用いて金属皮膜20を形成する例を説明したが、主成分単体の材料粉末を用いて金属皮膜20を形成するようにしてもよい。
 このように、本発明はここでは記載していない様々な実施の形態等を含みうるものであり、請求の範囲により特定される技術的思想を逸脱しない範囲内において種々の設計変更等を施すことが可能である。
 以上説明したように、本発明に係る積層体の製造方法は、密着強度が高く、かつ効率的に放熱を行うのに好適である。
 1 積層体
 10 基材
 20 金属皮膜
 30 コールドスプレー装置
 31 ガス加熱器
 32 粉末供給装置
 33 スプレーガン
 34 ガスノズル
 35、36 バルブ
 200 前処理皮膜

Claims (3)

  1.  絶縁性を有する基材表面に材料粉末を用いて形成される皮膜を積層した積層体の製造方法であって、
     アルミニウム又はアルミニウム合金を主成分とする前記材料粉末をガスとともに加速し、前記基材表面に固相状態のままで吹き付け、前記基材表面に前処理皮膜を形成する前処理工程と、
     前記基材表面に前記前処理皮膜を形成した前処理積層体を加熱して、表面が不規則な凹凸形状をなす熱処理皮膜を形成する皮膜形成工程と、
     を含むことを特徴とする積層体の製造方法。
  2.  前記材料粉末は、当該材料粉末同士を結合させる添加剤をさらに含み、
     前記添加剤は、ろう材またはマグネシウムであることを特徴とする請求項1に記載の積層体の製造方法。
  3.  前記皮膜形成工程は、300℃以上650℃以下で前記前処理皮膜を加熱することを特徴とする請求項1または2に記載の積層体の製造方法。
PCT/JP2019/031006 2018-08-10 2019-08-06 積層体の製造方法 WO2020032074A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980051612.4A CN112513329A (zh) 2018-08-10 2019-08-06 层叠体的制造方法
KR1020217002450A KR102559148B1 (ko) 2018-08-10 2019-08-06 적층체의 제조 방법
JP2020535818A JPWO2020032074A1 (ja) 2018-08-10 2019-08-06 積層体の製造方法
US17/263,573 US11512395B2 (en) 2018-08-10 2019-08-06 Method of manufacturing laminate
EP19848727.4A EP3835454A4 (en) 2018-08-10 2019-08-06 PROCESS FOR MAKING A MULTI-LAYER BODY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-151941 2018-08-10
JP2018151941 2018-08-10

Publications (1)

Publication Number Publication Date
WO2020032074A1 true WO2020032074A1 (ja) 2020-02-13

Family

ID=69413510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031006 WO2020032074A1 (ja) 2018-08-10 2019-08-06 積層体の製造方法

Country Status (7)

Country Link
US (1) US11512395B2 (ja)
EP (1) EP3835454A4 (ja)
JP (1) JPWO2020032074A1 (ja)
KR (1) KR102559148B1 (ja)
CN (1) CN112513329A (ja)
TW (1) TWI710465B (ja)
WO (1) WO2020032074A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5548167B2 (ja) 1973-11-13 1980-12-04
JP2008538385A (ja) * 2005-04-15 2008-10-23 エスエヌティー・カンパニー・リミテッド 金属マトリックス複合体形成方法およびこれを用いて製造されたコーティング層およびバルク
JP2011208166A (ja) * 2010-03-27 2011-10-20 Iwate Industrial Research Center 皮膜形成方法及び皮膜形成部材
JP2016183390A (ja) 2015-03-26 2016-10-20 日立化成株式会社 金属多孔質体
WO2018135490A1 (ja) * 2017-01-17 2018-07-26 デンカ株式会社 セラミックス回路基板の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5548167U (ja) 1978-09-27 1980-03-29
US6468669B1 (en) * 1999-05-03 2002-10-22 General Electric Company Article having turbulation and method of providing turbulation on an article
KR20050081252A (ko) * 2004-02-13 2005-08-18 고경현 다공성 금속 코팅 부재 및 저온 분사법을 이용한 그의제조 방법
JP5548167B2 (ja) 2011-07-11 2014-07-16 日本発條株式会社 積層体及び積層体の製造方法
JP5941818B2 (ja) 2012-10-10 2016-06-29 日本発條株式会社 成膜方法及び成膜装置
JP6109281B1 (ja) 2015-11-26 2017-04-05 日本発條株式会社 積層体の製造方法
CN107236949A (zh) * 2016-12-26 2017-10-10 北京理工大学 一种Al基含能活性金属药型罩的近净成型制备方法
CN110168140B (zh) * 2017-01-17 2021-07-30 国立大学法人信州大学 陶瓷电路基板的制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5548167B2 (ja) 1973-11-13 1980-12-04
JP2008538385A (ja) * 2005-04-15 2008-10-23 エスエヌティー・カンパニー・リミテッド 金属マトリックス複合体形成方法およびこれを用いて製造されたコーティング層およびバルク
JP2011208166A (ja) * 2010-03-27 2011-10-20 Iwate Industrial Research Center 皮膜形成方法及び皮膜形成部材
JP2016183390A (ja) 2015-03-26 2016-10-20 日立化成株式会社 金属多孔質体
WO2018135490A1 (ja) * 2017-01-17 2018-07-26 デンカ株式会社 セラミックス回路基板の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3835454A4

Also Published As

Publication number Publication date
US20210301404A1 (en) 2021-09-30
KR20210024103A (ko) 2021-03-04
EP3835454A4 (en) 2022-04-27
JPWO2020032074A1 (ja) 2021-08-26
KR102559148B1 (ko) 2023-07-24
CN112513329A (zh) 2021-03-16
TW202014308A (zh) 2020-04-16
US11512395B2 (en) 2022-11-29
EP3835454A1 (en) 2021-06-16
TWI710465B (zh) 2020-11-21

Similar Documents

Publication Publication Date Title
KR101572586B1 (ko) 적층체 및 적층체의 제조 방법
KR102084339B1 (ko) 적층체 및 적층체의 제조 방법
WO2015064430A1 (ja) 積層体、絶縁性冷却板、パワーモジュールおよび積層体の製造方法
US20190363033A1 (en) Igbt heat dissipation structure
TWI566344B (zh) 散熱板、功率模組及散熱板的製造方法
TW201324701A (zh) 接合體
WO2016021561A1 (ja) 複合基板及びパワーモジュール
US10329670B2 (en) Apparatus and method for cold spraying and coating processing
WO2020032074A1 (ja) 積層体の製造方法
JP2009127086A (ja) 伝熱部材及びその製造方法
KR101172815B1 (ko) 인쇄회로기판 및 저온분사 방식을 이용한 인쇄회로기판의 제조방법
WO2016056567A1 (ja) 放熱部材用積層体、ヒートシンク付き基板、および放熱部材用積層体の製造方法
JP6378247B2 (ja) 積層体、パワーモジュールおよび積層体の製造方法
KR101258598B1 (ko) 방열핀이 접합된 인쇄회로기판 및 방열핀 접합방법
JP2015002306A (ja) 絶縁基板およびその製造方法
KR101260493B1 (ko) 인쇄회로기판 및 이의 제조방법
JP5940589B2 (ja) 積層体、及びパワーモジュール
KR20240131921A (ko) 저온분사 적층을 포함한 방열판
KR101242610B1 (ko) 전자부품 방열용 냉각기판 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19848727

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020535818

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217002450

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019848727

Country of ref document: EP

Effective date: 20210310