WO2020029704A1 - 一种直筒式浮式平台的减动结构 - Google Patents

一种直筒式浮式平台的减动结构 Download PDF

Info

Publication number
WO2020029704A1
WO2020029704A1 PCT/CN2019/093408 CN2019093408W WO2020029704A1 WO 2020029704 A1 WO2020029704 A1 WO 2020029704A1 CN 2019093408 W CN2019093408 W CN 2019093408W WO 2020029704 A1 WO2020029704 A1 WO 2020029704A1
Authority
WO
WIPO (PCT)
Prior art keywords
horizontal
plate
edge
line
wing
Prior art date
Application number
PCT/CN2019/093408
Other languages
English (en)
French (fr)
Inventor
吴植融
Original Assignee
吴植融
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吴植融 filed Critical 吴植融
Priority to CN201980002235.5A priority Critical patent/CN110972470B/zh
Priority to AU2019317324A priority patent/AU2019317324B2/en
Priority to NO20201399A priority patent/NO20201399A1/en
Priority to GB2102172.0A priority patent/GB2590840B/en
Publication of WO2020029704A1 publication Critical patent/WO2020029704A1/zh
Priority to US17/139,501 priority patent/US20210122446A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B39/00Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B39/00Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude
    • B63B39/005Equipment to decrease ship's vibrations produced externally to the ship, e.g. wave-induced vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B39/00Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude
    • B63B39/06Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude to decrease vessel movements by using foils acting on ambient water
    • B63B2039/067Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude to decrease vessel movements by using foils acting on ambient water effecting motion dampening by means of fixed or movable resistance bodies, e.g. by bilge keels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B2241/00Design characteristics
    • B63B2241/02Design characterised by particular shapes
    • B63B2241/04Design characterised by particular shapes by particular cross sections
    • B63B2241/06Design characterised by particular shapes by particular cross sections circular

Definitions

  • the invention relates to the technical field of offshore engineering, and in particular to a damping structure of a straight floating platform.
  • the bottom damping structure or damping plate (moving structure) of the straight floating platform is a ring structure that surrounds the outer periphery of the bottom of the straight floating floating platform or the bottom extension of the floating body.
  • Some straight floating platforms such as SEVAN's cylindrical FPSO, are used to install the mooring leg fairleads (usually 3 groups), and the annular damping structure is partially provided with a fracture to become an intermittent annular structure.
  • the function of the damping structure is to increase the mass of water attached to the straight floating platform structure, thereby increasing the natural period of the platform, and increasing the viscous damping of the platform's movement, and ultimately reducing the platform's motion response and improving the platform's motion performance. Therefore, it is called "reduction structure".
  • the damping structure is a very important structural component of the straight floating platform.
  • the current damping structure can be divided into three categories: The first type is represented by SEVAN's current cylindrical floating platform, and the damping structure is a relatively small closed enclosure. Box structure as an integral part of the platform seawater ballast tank.
  • the second category is the U-shaped and inverted U-shaped structures of the open plate structure proposed by the inventors.
  • the third type is a high-height closed box structure proposed by the inventors.
  • the top and bottom plates are provided with opening / closing damping holes.
  • the damping holes are closed, and the damping structure becomes a closed floating cabin, or the top damping holes are closed and the bottom damping holes are opened to form an air floating cabin, both of which can provide buoyancy and Stability.
  • the platform is in place, the damping holes are open, and the interior is filled with water that passes through the sea, forming water attached to the structure without increasing the displacement of the platform (see International Application No. PCT / CN2017 / 085052).
  • the worst performance of the above three types of damping structures is the first.
  • the third category also has disadvantages in how to increase viscous damping, and there is still much room for improvement.
  • an example that is difficult to explain by conventional cognition is that the inventor found through repeated analysis and calculations and experimental studies that in order to increase the attached water inside the damping structure, under the condition that the outer diameter of the damping structure does not change, a moderate increase is required.
  • the inventor of the present application improved and optimized the third type of damping structure mentioned above, and proposed a new concept of "winger structure".
  • the viscous damping of the platform was significantly increased. It is beneficial to increase the quality of the attached water outside the structure.
  • the cable guide groove is used to replace the fracture to form a new type of reduction structure, which finally overcomes the shortcomings of the existing reduction structure and further improves the platform's motion performance.
  • the invention discloses a damping structure of a straight floating platform, which is a ring structure that surrounds the outer periphery of the bottom of the straight floating platform or the bottom extension of the floating cylinder (collectively referred to as the "cylinder"). With or without an annular radial gap between the two.
  • the radial vertical cross section of the annular structure is a rectangular or trapezoidal box.
  • the box is formed by a horizontal top plate, a horizontal bottom plate, an outer ring vertical plate and an inner ring vertical plate.
  • the box is separated by a plurality of radial vertical partitions.
  • the plate is divided into a plurality of watertight tanks; at least one of the horizontal top plate and the horizontal bottom plate protrudes outward from the intersection (that is, the "outside box corner line") with the outer ring vertical plate to form an outer winger.
  • an inner wing can also be provided.
  • a fairlead groove is provided inside the damping structure; the U-shaped fairlead is concave After the tank is opened, the watertightness of the watertight tank in which it is located must not be damaged.
  • FIG. 1 is a schematic front view and a partial cross-sectional view of a reduction structure of a straight floating platform according to the present invention, showing a basic structure of the reduced structure and a connection manner with the cylinder of the straight floating platform;
  • FIG. 2 is an enlarged view at I in FIG. 1, showing a schematic diagram of a first type of winger
  • FIG. 3 is a schematic diagram of a radial partial cross-section of a damping structure, showing a schematic diagram of a second type of outer winger;
  • FIG. 4 is a schematic diagram of a radial partial cross-section of a damping structure, showing a schematic diagram of a third type of outer winger;
  • FIG. 5 is a schematic diagram of a radial partial cross-section of a damping structure, showing a schematic diagram of a fourth type of outer winger
  • FIG. 6 is a schematic diagram of a radial partial cross-section of a damping structure, showing a fifth type of outside wing structure
  • FIG. 7 is a schematic radial partial cross-sectional view of another damping structure according to the present invention, which is an enlarged view of the same portion as FIG. 2.
  • the invention discloses a damping structure of a straight-type floating platform.
  • the straight-type floating platform 1 is positioned on the water surface 2 in a floating manner;
  • the platform body includes an upper facility 11, a lower cylinder 12 and a damping structure 13;
  • the cylinder 12 is a pontoon or pontoon and a lower extension cylinder thereof.
  • the extension cylinder is a fixed extension cylinder or a slidable extension cylinder;
  • the reduction structure 13 is an annular structure that is arranged around the outer periphery of the bottom of the cylinder 12 with or without an annular radial gap 14 therebetween.
  • the damping structure 13 includes a horizontal top plate 131, a horizontal bottom plate 133 spaced below the horizontal top plate 131, an outer ring stand plate 132, and a space between the outer ring stand plate 132 and the barrel 12.
  • the inner ring vertical plate 134, the horizontal top plate 131, the horizontal bottom plate 133, the outer ring vertical plate 132, and the inner ring vertical plate 134 are watertightly connected to each other to form a ring-shaped box with a rectangular or trapezoidal shape in the radial vertical section (shown in FIGS. 1-7). (Rectangular sections, trapezoidal sections are not shown).
  • the horizontal top plate 131 and the horizontal bottom plate 133 intersect with the outer ring stand plate 132 to form a top outer box corner line (located outside the top of the box body) and a bottom outer box corner line (located outside the bottom of the box body).
  • the horizontal bottom plate 133 intersects the inner ring vertical plate 134 to form a top inner box corner line (located inside the top of the box body) and a bottom inner box corner line (located inside the bottom of the box body), forming a total of four closed box corner lines.
  • the radial vertical cross section of the box of the damping structure 13 shown in FIGS. 1 to 7 is rectangular, and the vertices of the four corners of the rectangle are points on the closed box corner line, respectively.
  • the different geometrical forms of the damping structure 13 result in different box corner plane geometric shapes; however, the centroid of the plane geometric figure surrounded by each box corner line is located on the vertical center axis of the cylinder 12,
  • the box is rotationally symmetrical to the centroid (such as a circle and a regular polygon box corner line), or the box is symmetrical to the axis of the rectangular coordinate system with the centroid as the origin (that is, the vertical center axis of the cylinder 12).
  • the box corner line of the box body is enclosed in an oval shape, and for example, the box corner line of the box body is a closed geometric figure surrounded by straight lines parallel to each other on the left and right sides, and arcs or fold lines on the front and back sides.
  • the damping structure 13 is connected to the cylinder 12 of the straight floating platform 1 through a plurality of radial vertical brackets (not shown in the drawings).
  • the box is divided into multiple watertight tanks by multiple radial vertical partitions (not shown in the drawings); the horizontal top plate 131 and / or the horizontal bottom plate 133 of each watertight tank are provided with damping holes that can be opened and closed.
  • the opening or closing of the damping hole can meet the requirements of the above floating platform 1 under different working conditions: the platform is in a floating and wet towing state, the damping holes are all closed, and the water-tight tank of the damping structure 13 becomes a closed floating tank, or horizontal
  • the damping holes of the top plate 131 are closed, the damping holes of the horizontal bottom plate 133 are opened, and the interior is filled with air.
  • the watertight compartment of the damping structure 13 becomes a closed air floatation tank.
  • Both types of floatation tanks can provide buoyancy and Stability; the platform is in place, the damping holes are open (the best state is that all damping holes are all open), and the watertight compartment of the damping structure 13 is filled with water that passes through the sea, forming a structure with attached water, but the platform is not added as a result Displacement.
  • the fundamental difference between the present invention and PCT / CN2017 / 085052 is that: on at least one of the horizontal top plate 131 and the horizontal bottom plate 133 of the damping structure 13 without the annular radial gap 14, an outer edge is respectively set; Corresponding to the top outer wing 135 and the bottom outer wing 136. 1 to 7, on at least one of the horizontal top plate 131 and the horizontal bottom plate 133 of the damping structure 13 provided with the annular radial gap 14, an outer wing and an inner wing are separately or simultaneously set, and the outer wing is corresponding to The top winger 135 and the bottom winger 136, the inner wingers correspond to the top winger and the bottom winger, respectively.
  • the outer wing is a plate structure that protrudes outward and / or upward from the top outer box corner line and the bottom outer box corner line, respectively.
  • a top outer wing 135 is formed on the horizontal top plate 131 and a horizontal bottom plate 133 is formed.
  • a bottom outer edge 136 is formed on the surface correspondingly; the inner edge is a plate structure, which extends from the top inner box corner line and the bottom inner box corner line to the cylinder 12 in a horizontal direction, and forms a horizontal top plate inside the horizontal top plate 131.
  • the winger corresponds to the inner winger of the horizontal base plate formed on the horizontal base plate 133. The inner winger must not close the annular radial gap 14 (see FIG. 7).
  • the reduction structure 13 of the present invention is a circular ring or a regular polygonal ring structure, and the four box corner lines correspond to a circle or a regular polygon.
  • the shape of the inner side wall (that is, the inner ring stand plate 134) and the outer side wall (that is, the outer ring stand plate 132) of the ring structure of the damping structure 13 of the present invention are different, and the inner side wall is a ring Shape or regular polygon ring, whose top inner box corner line and bottom inner box corner line correspond to a circle or regular polygon; its outer side wall is oval, and its top outer box corner line and bottom outer box corner line are oval, or
  • the outer side wall is a polygonal profile, and the top and bottom box corner lines are closed geometric shapes surrounded by straight lines parallel to the left and right sides, and arcs or fold lines on the front and back sides. Dimensions in the direction; its advantage is that the dock width of the dock where the platform is built can be reduced.
  • top outer winger 135 and the bottom outer winger 136 have a horizontal annular plate structure, and the edges of the top outer winger 135 and the bottom outer winger 136 form a circle of a top outer edge line and a circle of a bottom outer edge line, respectively;
  • the line and bottom outer edge line plane geometry have the same centroids as the top and bottom box corners and bottom box corners, respectively, and are rotationally symmetric to the centroid, or front-to-back, left-right, and left-right to the cylinder (12 ) 'S vertical center axis.
  • top outer winger 135 and the bottom outer winger 136 are cylindrical wall structures protruding upwards and downwards respectively, and the top and bottom surfaces of the protruding cylindrical wall structures form a closed top edge line and bottom edge, respectively.
  • the top and bottom edge line plane geometric centroids are located on the vertical center axis of the barrel 12 and are all equal to or similar to the plane geometry of the top outer box corner line and the bottom outer box corner line, respectively.
  • top outer wing 135 and bottom outer wing 136 are horizontal circular plate structure and then connected with the cylindrical wall structure protruding upward, and horizontal circular plate structure and then connected with the cylindrical wall structure protruding downward, among which the top outer wing 135 and The bottom edge 136 corresponds to the top and bottom surfaces of the protruding tube wall structure to form a closed top edge line and bottom edge line respectively; the centroids of the plane geometric figures formed by the top edge line and the bottom edge line are located at The vertical center axis of the barrel 12 is similar to the plane geometry of the top outer box corner line and the bottom outer box corner line, respectively; or, the top outer edge 135 and / or the bottom outer edge 136 are horizontal annular plate structures.
  • the outer vertical wall structure that is, the top outer wing 135 and the bottom outer wing 136 form a circle of top outer edge line plus a circle of top edge line and a circle of bottom outer edge line and a circle of bottom edge line, respectively.
  • Each of the outer wing 135 and the bottom outer wing 136 has two edge lines.
  • both the top outer wing 135 and the bottom outer wing 136 are single-layer plate structures (see FIGS. 1 to 7).
  • the plate thickness of the winger structure is very small, the plate thickness is ignored in the following description of the present invention, and it is regarded as "paper”. Therefore, when the outer wing structure is a protruding structure with upward and downward extensions as shown in Figs. 3 to 6, the structures of the top outer wing 135 and the bottom outer wing 136 protruding upward and downward will respectively form upright boss cone walls. Or an upright cylindrical wall (see Figs. 3 and 5), or a horizontal annular plate structure connected to an upwardly and downwardly protruding wall structure (see Figs.
  • the top surface of the protruding wall structure and The bottom surface forms a circle of closed top surface edge line and bottom surface edge line, respectively, and the centroids of the planar geometrical figures formed by the top surface edge line and the bottom surface edge line are all located on the vertical center axis of the cylinder 12 and are all equal to , Or a plane geometry similar to the top and bottom box corners where they are located.
  • the outer wing structure is shown in Fig. 1/2/7, and the horizontal top plate 131 and the horizontal bottom plate 133 extend horizontally outwardly, the top outer wing 135 and the bottom outer wing 136 are horizontal annular plate structures, each of which has only one closed structure. Outer edge line (inner edge line and outer box corner line are combined into one).
  • a plurality of damping holes are provided on the top outer wing 135 and the bottom outer wing 136, respectively.
  • the outer winger of the present invention (that is, the top winger 135 and the bottom winger 136) includes 6 structural forms.
  • the top outer winger 135 and the bottom outer winger 136 are horizontal annular plate structures, which extend horizontally outward of the horizontal top plate 131 and the horizontal bottom plate 133, respectively.
  • the geometry of the edge line has the same centroid as that of the top and bottom box corners, respectively, and is rotationally symmetrical to the centroid, or front-to-back, left-right, and left-to-right symmetrical to the centroid-based origin.
  • the axes of the Cartesian coordinate system are shown in Figures 1, 2 and 7.
  • the top outer wing 135 is an inverted convex truncated cylindrical wall structure with a top surface larger than the bottom surface.
  • the bottom edge of the inverted convex truncated cylindrical wall structure coincides with the top outer box angle, and the bottom outer wing 136 is the top.
  • a positive boss-shaped cylindrical wall structure with a face size smaller than that of the bottom face, and the top edge line of the positive boss-shaped cylindrical wall structure coincides with the bottom outer box corner line, see FIG. 3.
  • top outer wing 135 and the bottom outer wing 136 are horizontal top plate 131 and horizontal bottom plate 133, respectively, which extend horizontally outward for a distance (the distance is small), and then become inverted convex-shaped cylinders whose top surface size is larger than the bottom surface size.
  • the top outer winger 135 and the bottom outer winger 136 are a horizontal top plate 131 and a horizontal bottom plate 133, respectively, which are turned 90 ° upwards and downwards at the corners of the top outer box and the bottom outer box, respectively, and extend upward and downward to form an upright cylinder wall. Shape structure, the bottom edge line of the upright tube wall structure of the top outer wing 135 coincides with the top outer box corner line, and the top edge line of the upright tube wall structure of the bottom outer wing 136 coincides with the bottom outer box corner line, see figure 5.
  • the top outer wing 135 and bottom outer wing 136 are the horizontal top plate 131 and the horizontal bottom plate 133, respectively, which extend horizontally outward for a distance (the distance is very small), and then turn 90 ° upwards and downwards to form upright cylinders, respectively.
  • Wall structure, the size of the bottom edge line pattern of the upright tube wall structure of the top outer wing 135 is larger than the size of the top box corner line, the two are geometrically similar to the same concentric shape, and the upright tube wall structure of the bottom outer wing 136
  • the size of the top edge line graphic is larger than the size of the bottom box corner line, and the two are geometrically similar shapes with the same concentric center, see FIG. 6.
  • the top outer wing 135 and the bottom outer wing 136 are horizontal annular plate structures, which extend horizontally outward of the horizontal top plate 131 and the horizontal bottom plate 133, respectively, and correspond to The top outer box corner line and the bottom outer box corner line are turned 90 ° upwards and downwards to form an upright cylinder wall structure, respectively.
  • the top outer edge 135 and the bottom outer edge 136 form a circle of top outer edge lines at the same time. Add a circle of top edge line and a circle of bottom outer edge line and a circle of bottom edge line (not shown).
  • a ring-shaped damping structure (a rectangular cross section in the radial direction) using the third type of winger structure is described here as an example:
  • the four box corners are all circular, and the centers of the four circles are located on the vertical center axis of the barrel 12, and the top outer edge 135 and the bottom outer edge 136 are the horizontal top plate 131 and the horizontal bottom plate 133, respectively, outward in the horizontal direction.
  • Extending a distance (the distance is small), and then becoming a rounded truncated cylindrical wall structure with a top diameter larger than the bottom diameter and a rounded truncated cylindrical wall structure with a top diameter smaller than the bottom diameter.
  • the diameter of the bottom surface is larger than the diameter of the top outer box corner line with the same circle center, and the diameter of the top surface of the perfect circular truncated cylindrical wall structure is larger than the diameter of the bottom outer box corner line circle with the same circle center.
  • FIGS. 1 to 6 show the same combination of the structural forms of the top outer winger 135 and the bottom outer winger 136, in fact, the combination of the top outer winger 135 and the bottom outer winger 136 can be selected according to different needs.
  • the top outer wing 135 is the second structural form (shown in FIG. 3)
  • the bottom outer wing 136 is the first structural form (shown in FIG. 2), and so on.
  • the size of the wingers (top outer wing 135 and bottom outer wing 136) protruding is very small.
  • the specific size of the wing of the plate structure, whether damping holes are provided on the wing plate, and the number and diameter of the damping holes need to be determined and optimized through experiments or calculations.
  • At least one portion of the annular portion on the outer wall of the cylinder 12 having the same elevation as the horizontal top plate 131 and the horizontal top plate 133 is additionally provided with a
  • the horizontal annular plate forms an upper flying edge 121 and a lower flying edge 122 as shown in FIG. 7. There is a gap between the upper flying edge 121 and the inner edge of the horizontal top plate, and there is a gap between the lower flying edge 122 and the inner edge of the horizontal bottom plate.
  • the damping structure 13 provided with the annular radial gap 14
  • at least one of the horizontal top plate 131 and the horizontal bottom plate 133 is respectively from the top inner box angle and the bottom inner box.
  • the angle line extends horizontally in the direction of the cylinder (12) until it connects the cylinder 12 and closes the annular radial gap 14, and damping holes (not shown) are respectively opened in the closed parts.
  • damping holes are respectively opened in the closed parts.
  • a plurality of uniformly distributed openings are opened. Damping holes.
  • the upper gap existing between the inner edge of the horizontal top plate and the upper flying edge 121 and the lower gap existing between the inner edge of the horizontal bottom plate and the lower flying edge 122 should be as high as possible. Misalignment, for example, the upper gap is closer to the cylinder 12 and the lower gap is closer to the inner ring plate 134; or, further, a horizontal inner layer is added at the midpoint between the inner edge of the horizontal top plate and the inner edge of the horizontal bottom plate A spacer plate is installed on the inner ring stand plate 134 and maintains a gap with the outer wall of the cylinder 12 (referred to as a "medium gap"), or is installed on the outer wall of the cylinder 12 and stands with the inner ring.
  • a spacer plate is installed on the inner ring stand plate 134 and maintains a gap with the outer wall of the cylinder 12 (referred to as a "medium gap"), or is installed on the outer wall of the cylinder 12 and stands with the inner ring.
  • the plate 134 maintains a gap (also referred to as a "middle gap”) such that the upper gap, the lower gap, and the middle gap are offset from each other.
  • a gap also referred to as a "middle gap”
  • the above-mentioned gap misalignment, especially the horizontal inner partition plate, can not only increase the viscous damping, but also reduce the quality of the attached water, which is reduced due to the gap between the damping structure 13 and the cylinder 12.
  • the outer edge line uses a zigzag line to replace the flat straight line or smooth arc outer line, that is, a zigzag edge with a convex and concave tooth is used to replace a straight or smooth arc.
  • Edge, the convex and concave teeth have the same or different geometrical figures. That is, when the top outer wing 135 and the bottom outer wing 136 are both horizontal annular plate structures, at least one of the top outer edge line and the bottom outer edge line is a continuous zigzag line, and / or the edge of the horizontal top plate inner wing At least one of the line and the edge line of the winger in the horizontal floor is a continuous zigzag line.
  • Each tooth on the jagged edge is usually a regular geometric figure, such as a triangular tooth, a rectangular tooth, or a trapezoidal tooth.
  • the convex and concave shapes of the triangular teeth are triangular, and the convex and concave shapes of the rectangular teeth are
  • the shapes of the convex and concave teeth of the rectangular and trapezoidal teeth are trapezoidal, and the convex and concave shapes of the rectangular teeth are a combination of a triangle, a rectangle, or a trapezoid, respectively; or an irregular geometric figure whose convexity and concaveness are respectively
  • each of the damping holes is communicated from a respective edge slot to form a convex tooth And tooth concave.
  • the top edge line and the bottom edge line are replaced by a zigzag line to the outer edge line of the flat straight line or smooth arc, that is, a zigzag edge with a convex and concave tooth is replaced.
  • Straight or smooth arc-shaped edges, the convex and concave teeth have the same or different geometrical figures. That is, when the top and bottom surfaces of the tube wall structure protruding from the top outer winger 135 and the bottom outer winger 136 form a closed top edge line and bottom edge line, respectively, the top edge line and At least one of the bottom edge lines is a continuous zigzag line.
  • Each tooth on the jagged edge is usually a regular geometric figure, such as a triangular tooth, a rectangular tooth, or a trapezoidal tooth, etc., wherein the convex and concave shapes of the triangular tooth are triangular, and the convexity of the rectangular tooth
  • the shapes of the teeth and the concave teeth are rectangular, and the shapes of the convex and concave teeth of the trapezoidal teeth are both trapezoidal, and the shapes of the convex and concave teeth of the rectangular teeth are a combination of a triangle, a rectangle, or a trapezoid; or an irregular geometry
  • the shapes of the teeth convex and concave are different from triangles, rectangles or trapezoids.
  • the grooves are connected from the respective edges. Each damping hole is described to form a convex tooth and a concave tooth.
  • the edge of the winger structure adopts a zigzag edge compared to a straight or smooth arc edge, which will further increase the viscous damping of the platform movement.
  • a horizontal ring plate damping structure is used for the top outer wing 135 and / or the bottom outer wing 136.
  • a middle and outer winger is provided on the outer ring stand plate 132 at an equidistant position from the top outer box corner line and the bottom outer box corner line.
  • the middle and outer wing is a horizontal annular plate structure, and its outer edge is a straight or smooth arc edge. The function of the middle and outer wingers is to reduce the loss of heave attached water caused by the jagged edges and / or damping holes of the top and bottom wingers 135 and 136.
  • the invention relates to a drum connected to the damping structure 13
  • a U-shaped cable guide groove (not shown) is provided horizontally and vertically through the body 12 adjacent to the portion corresponding to the cable guide.
  • the structure of the U-shaped cable guide groove is: the inner ring riser 134 of the covering portion corresponding to the U-shaped cable guide groove is translated outward (translated in a horizontal direction away from the barrel 12), and the U-shaped cable guide Vertical partitions are installed on both sides of the groove of the guide; the surface of the horizontal top plate 131 and the horizontal bottom plate 133 covered by the groove of the U-shaped cable guide except for retaining the U-shaped edge to form a U-shaped flat edge.
  • Pre-cutting; the inner ring riser of the translation part, the vertical partitions on both sides of the groove, and the horizontal top plate 131 and the horizontal bottom plate 133 after cutting the groove are totally connected to each other in a watertight manner, and are located in the U-shaped cable guide.
  • the radial vertical cross sections of the damping structure 13 and the damping structure 13 on both sides are still a watertight box structure.
  • the so-called U-shaped flat wing front refers to the U-shaped edges of the horizontal top plate 131 and the horizontal bottom plate 133 protruding from the inner ring vertical plate and the vertical partitions on both sides of the groove.
  • the U-shaped flat winger is beneficial to increase the sag viscosity damping.
  • the space of the groove must be able to accommodate the cable guide installed on the outer and lower part of the cylinder 12 and ensure necessary maintenance requirements.
  • the reduction structure 13 at the groove portion of the fairlead is a fracture at the initial stage of construction. After the fairlead is installed to the cylinder 12, a watertight box structure at the groove portion of the U-shaped fairlead is installed. Fill up the fracture.
  • the invention overcomes the shortcomings of the current reduction structure of the straight platform, not only increases the quality of the attached water, but also increases the damping of the movement, especially the sloshing movement, while ensuring the integrity of the reduction structure, and finally Greatly improved the motion performance of the straight floating platform.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Vibration Dampers (AREA)

Abstract

一种直筒式浮式平台的减动结构,其为环绕在平台的筒体(12)底部外周边的环形结构,两者之间设置或不设置环形径向间隙(14);减动结构(13)通过水平顶板(131)、水平底板(133)、外环立板(132)和内环立板(134)连接形成箱体,箱体被分为多个水密舱;每个水密舱对应的水平顶板和/或水平底板上设有可开启和关闭的阻尼孔,通过水平顶板和水平底板上阻尼孔的开启和关闭,舱内充满通海的水体、或者形成密闭的浮舱、或者形成密闭的气浮舱,以适应不同工况下的要求;水平顶板和水平底板中的至少一个从交接处延伸凸出,分别形成顶外边锋(135)和/或底外边锋(136);顶外边锋和/或底外边锋上开设或不开设阻尼孔。该减动结构既增加了附连水质量,又加大了平台运动的粘性阻尼,从而改善平台的运动性能。

Description

一种直筒式浮式平台的减动结构
相关申请
本发明申请要求2018年8月6日提出的申请号为201810882470.3、名称为“一种直筒式浮式平台的减动结构”的优先权,并对其作了部分修改和调整。
技术领域
本发明涉及海洋工程技术领域,特别涉及一种直筒式浮式平台的减动结构。
背景技术
直筒式浮式平台的底部阻尼结构或阻尼板(减动结构),为环形结构,环绕设置在直筒式浮式平台的浮筒或浮筒下部延伸筒体的底部外周边。有些直筒式浮式平台,如SEVAN的圆筒形FPSO,为了安装系泊腿的导缆器(通常为3组),将环形减动结构局部设置断口,成为断续的环形结构。减动结构功能在于增加直筒式浮式平台结构附连水质量、从而加大平台的固有周期,以及增大平台运动的粘性阻尼,最终减小平台的运动响应、改善平台的运动性能。因此,称之为“减动结构”。总之,减动结构是直筒式浮式平台十分重要的结构部件。根据环形减动结构的径向截面的结构形式的不同,现行减动结构可分为3类:第一类以SEVAN现行圆筒形浮式平台为代表,其减动结构为高度比较小的密闭箱形结构、作为平台海水压载舱的一个组成部分。第二类为本发明人提出的开放式板结构的U形和倒U形结构。第三类为本发明人提出的高度较高的密闭箱形结构,其顶板和底板上设置可开/闭的阻尼孔。平台在漂浮和湿拖状态,阻尼孔关闭,减动结构成为密闭的浮舱,或者顶部阻尼孔关闭、底部阻尼孔打开形成气浮舱,二者均可为平台的漂浮和湿拖提供浮力和稳性。平台在在位状态,阻尼孔打开,内部充满通海的水体,形成结构内附连水、但不增加平台的排水量(参见国际申请号PCT/CN2017/085052)。由于垂荡运动性能是直筒式浮式平台必须特别予以关注的重点,从垂荡运动附连水质量和粘性阻尼的大小的角度比较,上述3类减动结构的性能最差的是第一类,特别是,由于安装导缆器的断口,减动结构不仅整体性受到破坏,而且由于水平投影面积减小,造成垂荡运动的附连水质量相应减小;其次为第二类;最优的是第三类。但是,所述第三类在如何增加粘性阻尼方面也存在不足,仍然有很大的改进空间。其中,一个常规认知 难以解释的实例是,本发明人经反复分析计算和实验研究发现,为了增加减动结构内部的附连水,在减动结构外径不变的条件下,需要适度加大密闭箱形结构的高度,但是平台垂荡粘性阻尼却因箱形结构高度增加而减小。如何能够既适度加大密闭箱形结构的高度,又增加粘性阻尼?还有什么措施可以增加粘性阻尼?因为粘性阻尼对于有效降低圆筒形浮式平台在百年一遇环境条件下的运动响应,改善平台运动性能,具有十分重要的意义。
鉴此,本申请发明人基于深入研究的结果,对上述第三类减动结构加以改进和优化,提出了“边锋结构”这一新概念,借助边锋结构效应明显增加平台的粘性阻尼,也有利于加大结构外的附连水质量,同时,采用导缆器凹槽取代断口,形成了新的减动结构形式,最终克服现有减动结构缺点,进一步改善了平台运动性能。
发明内容
本发明公开了一种直筒式浮式平台的减动结构,其为环绕设置在直筒式浮式平台的浮筒或浮筒下部延伸筒体(合称“筒体”)的底部外周边的环形结构,二者之间设置或不设置环形径向间隙。所述环形结构的径向垂直截面为矩形或梯形箱体,箱体由水平顶板、水平底板、外环立板和内环立板水密连接而成,所述箱体被多个径向垂直隔板分为多个水密舱;所述水平顶板和水平底板之中的至少一个从其与外环立板交接处(即“外侧箱角线”)向外凸出、形成外边锋。类似地,对于设置环形径向间隙的减动结构,还可设置内边锋。为了在浮式平台筒体的下部安装系泊腿的导缆器,同时又不破坏减动结构的完整性,在减动结构的内侧设置导缆器凹槽;所述U形导缆器凹槽开设后必须保证而不得破坏其所在的水密舱的水密性。
水池模型实验和计算机模型实验均证明,本发明平台在运动过程中,在所述水平顶板和水平底板板面设置的内、外边锋结构改变了局部流场、加剧了局部水体的湍流、耗散能量,从而显著加大了平台运动的粘性阻尼,同时增加了结构外部的附连水质量。采用导缆器凹槽取代现行断续的减动结构,有利于增加平台运动的附连水质量,并保证环形结构的完整性。和现行减动结构相比,本发明减动结构的粘性阻尼和附连水质量均有所加大,从而进一步改善平台的运动性能。
附图说明
在此描述的附图仅用于解释目的,而不意图以任何方式来限制本发明公开的范围。
图1为本发明一种直筒式浮式平台的减动结构主视示意图和局部剖视图,显示减动结构的基本构造、以及和所述直筒式浮式平台筒体的连接方式;
图2为图1的I处的放大图,显示第一种外边锋结构示意图;
图3为减动结构的径向局部剖面示意图,显示第二种外边锋结构示意图;
图4为减动结构的径向局部剖面示意图,显示第三种外边锋结构示意图;
图5为减动结构的径向局部剖面示意图,显示第四种外边锋结构示意图;
图6为减动结构的径向局部剖面示意图,显示第五种外边锋结构示意图;
图7为本发明的另一种减动结构的径向局部剖面示意图,为与图2所在部位相同的放大图。
具体实施方式
结合附图和本发明具体实施方式的描述,能够更加清楚地了解本发明的细节。但是,在此描述的本发明的具体实施方式,仅用于解释本发明的目的,而不能以任何方式理解成是对本发明的限制。
本发明公开了一种直筒式浮式平台的减动结构。参见图1,所述直筒式浮式平台1漂浮定位于水面2上;平台本体包括上部设施11、下部的筒体12和减动结构13;筒体12为浮筒或浮筒及其下部延伸筒体,延伸筒体为固定延伸筒体或可滑移延伸筒体;减动结构13为环绕设置在筒体12的底部外周边的环形结构,二者之间设置或不设置环形径向间隙14。参见图2和图3,减动结构13包括水平顶板131、间隔设于水平顶板131下方的水平底板133、外环立板132、及间隔设于外环立板132与筒体12之间的内环立板134,水平顶板131、水平底板133、外环立板132和内环立板134彼此水密连接,形成径向垂直截面为矩形或梯形的环状箱体(图1~7所示均为矩形截面,梯形截面没有图示)。其中,水平顶板131、水平底板133分别与外环立板132相交形成顶外箱角线(位于箱体的顶部外侧)和底外箱角线(位于箱体的底部外侧),水平顶板131、水平底板133分别与内环立板134相交形成顶内箱角线(位于箱体的顶部内侧)和底内箱角线(位于箱体的底部内侧),共形成四条闭合的箱角线。图1~7所示减动结构13的箱体的径向垂直截面为矩形,矩形的四个角的顶点分别为所述闭合的箱角线上的点。减动结构13的结构形式不同,所形成的箱角线平面几何图形也相应不同;但无论如何,各箱角线围成的平面几何图形的形心均位于筒体12的垂直中心轴线上,箱体旋转对称于所述形心 (如圆形和正多边形箱角线)、或者箱体前后左右对称于以所述形心为原点的直角坐标系的轴线(即筒体12的垂直中心轴线),例如箱体的箱角线围成椭圆形,再例如箱体的箱角线为左右两边为相互平行的直线、前后两边为圆弧线或折线所围成的封闭几何图形。减动结构13通过多个径向垂直肘板与直筒式浮式平台1的筒体12相连接(附图没有显示)。箱体被多个径向垂直隔板分为多个水密舱(附图没有显示);每个水密舱的水平顶板131和/或水平底板133上均开设有可以开启和关闭的阻尼孔,通过阻尼孔的打开或关闭,可适应上述浮式平台1在不同工况下的要求:平台在漂浮和湿拖状态,阻尼孔全部关闭,减动结构13的水密舱成为密闭的浮舱,或水平顶板131的阻尼孔关闭、水平底板133的阻尼孔开启,内部充满空气,减动结构13的水密舱成为密闭的气浮舱,两种浮舱均可为平台的漂浮和湿式拖航提供浮力和稳性;平台在在位状态,阻尼孔打开(最佳状态为所有阻尼孔全部打开),减动结构13的水密舱的内部充满通海的水体,形成结构内附连水,但不因此增加平台的排水量。
本发明和PCT/CN2017/085052的根本不同在于:在不设置环形径向间隙14的减动结构13的水平顶板131和水平底板133中的至少一个板面上,分别设置外边锋;外边锋分别对应为顶外边锋135和底外边锋136。参见图1~7,在设置环形径向间隙14的减动结构13的水平顶板131和水平底板133中的至少一个板面上,分别单独或同时设置外边锋和内边锋,外边锋分别对应为顶外边锋135和底外边锋136,内边锋分别对应为顶内边锋和底内边锋。外边锋为板结构、分别从顶外箱角线和底外箱角线向外和/或向上下方向延伸凸出,在水平顶板131板面上对应形成顶外边锋135,在水平底板133板面上对应形成底外边锋136;内边锋为板结构、分别从顶内箱角线和底内箱角线向筒体12方向水平延伸凸出,在水平顶板131板面上对应形成水平顶板内边锋,在水平底板133板面上对应形成水平底板内边锋,内边锋不得封闭环形径向间隙14(参见图7)。
作为一种可实施的方式,本发明减动结构13为圆环形或正多边环形结构,四条箱角线对应为圆形或正多边形。作为另一种可实施的方式,本发明减动结构13的环形结构的内侧壁(即内环立板134)和外侧壁(即外环立板132)的形状不同,其内侧壁为圆环形或正多边环形,其顶内箱角线和底内箱角线对应为圆形或正多边形;其外侧壁为椭圆形,其顶外箱角线和底外箱角线为椭圆形,或者外侧壁为多边异形,其顶外箱角线和底外箱角线为左右两边为相互平行的直线、前后两边为圆弧线或折线所围成的封闭几何图形,其左右方向的尺寸小于前后方向的尺寸;其优点是对建造平台的船坞的坞宽可以降低要求。
进一步地,顶外边锋135和底外边锋136为水平环形板结构,顶外边锋135的边缘和底外边锋136的边缘分别形成一圈顶外边缘线和一圈底外边缘线;顶外边缘线和底外边缘线平面几何图形分别与其所在的顶外箱角线和底外箱角线几何图形具有相同的形心,且旋转对称于所述形心、或前后左右对称于筒体(12)的垂直中心轴线。或者,顶外边锋135和底外边锋136分别为向上和向下凸出的筒壁结构,所述凸出的筒壁结构的顶面和底面分别形成一圈封闭的顶面边缘线和底面边缘线;顶面边缘线和底面边缘线平面几何图形形心均位于筒体12的垂直中心轴线上、均分别全等于或相似于其所在的顶外箱角线和底外箱角线的平面几何图形;或者顶外边锋135和底外边锋136分别为水平环形板结构再连接向上凸出的筒壁结构、和水平环形板结构再连接向下凸出的筒壁结构,其中顶外边锋135和底外边锋136对应凸出的筒壁结构的顶面和底面分别形成一圈封闭的顶面边缘线和底面边缘线;顶面边缘线和底面边缘线所形成的平面几何图形的形心均位于筒体12的垂直中心轴线上、均分别相似于其所在的顶外箱角线和底外箱角线的平面几何图形;或者,顶外边锋135和/或底外边锋136为水平环形板结构加向下凸出的垂直筒壁结构,即,顶外边锋135和底外边锋136同时分别形成一圈顶外边缘线加一圈顶面边缘线和一圈底外边缘线加一圈底面边缘线,即顶外边锋135和底外边锋136分别都具有两圈边缘线。
更进一步地,顶外边锋135和底外边锋136均为单层板结构(参见图1~7)。为了便于描述和易于理解,由于边锋结构的板厚很小,本发明以下描述中均忽略板厚、将其视为“纸张”。因此,当外边锋结构为如图3~6所示的带有向上下延伸凸出结构时,顶外边锋135和底外边锋136向上下凸出的结构就分别会形成直立凸台锥筒壁或直立筒形筒壁(参见图3和图5)、或水平环形板结构再连接向上下凸出的筒壁结构(参见图4和图6),所述凸出筒壁结构的顶面和底面分别形成一圈封闭的顶面边缘线和底面边缘线,所述顶面边缘线和底面边缘线形成的平面几何图形的形心均位于筒体12的垂直中心轴线上,均分别为全等于、或相似于其所在的顶外箱角线和底外箱角线的平面几何图形。当外边锋结构如图1/2/7所示、为水平顶板131和水平底板133水平向外延伸结构时,顶外边锋135和底外边锋136均为水平环形板结构,均只有一条闭合的外边缘线(内边缘线与所在的外箱角线合二为一)。
可选地,顶外边锋135上和底外边锋136上分别开设或不开设多个阻尼孔。
本发明外边锋(即顶外边锋135和底外边锋136)包括6种结构形式。
(1)顶外边锋135和底外边锋136为水平环形板结构,分别为水平顶板131和水平底板133的水平向外延伸,顶外边锋135和底外边锋136的顶外边缘线和底外边缘线的几何图形分别与其所在的顶外箱角线和底外箱角线几何图形具有相同的形心、且旋转对称于所述形心、或前后左右对称于以所述形心为原点的直角坐标系的轴线,如图1、图2和图7所示。
(2)顶外边锋135为顶面尺寸大于底面尺寸的倒凸台形筒壁结构、所述倒凸台形筒壁结构的底面边缘线与所述顶外箱角线重合,底外边锋136为顶面尺寸小于底面尺寸的正凸台形筒壁结构、所述正凸台形筒壁结构的顶面边缘线与所述底外箱角线重合,参见图3。
(3)顶外边锋135和底外边锋136分别为水平顶板131和水平底板133沿水平方向向外延伸一段距离(该距离很小),再分别成为顶面尺寸大于底面尺寸的倒凸台形筒壁结构和顶面尺寸小于底面尺寸的正凸台形筒壁结构;所述倒凸台形筒壁结构的底面边缘线图形的尺寸大于所述顶外箱角线的尺寸、二者为同形心的几何相似形,所述正凸台形筒壁结构的顶面边缘线图形的尺寸大于所述底外箱角线的尺寸、二者为同形心的几何相似形,参见图4。
(4)顶外边锋135和底外边锋136分别为水平顶板131和水平底板133对应在所述顶外箱角线和底外箱角线处折转90°向上和向下延伸成为直立筒壁形结构,顶外边锋135的直立筒壁形结构的底面边缘线与顶外箱角线重合,底外边锋136的直立筒壁形结构的顶面边缘线与底外箱角线重合,参见图5。
(5)顶外边锋135和底外边锋136分别为水平顶板131和水平底板133沿水平方向向外延伸一段距离(该距离很小),再分别折转90°向上和向下延伸成为直立筒壁形结构,顶外边锋135的直立筒壁形结构的底面边缘线图形的尺寸大于顶外箱角线的尺寸、二者为同形心的几何相似形,底外边锋136的直立筒壁形结构的顶面边缘线图形的尺寸大于底外箱角线的尺寸、二者为同形心的几何相似形,参见图6。
(6)上述(1)和(4)两种结构形式的组合:顶外边锋135和底外边锋136为水平环形板结构,分别为水平顶板131和水平底板133的水平向外延伸,同时对应在所述顶外箱角线和底外箱角线处折转90°分别向上和向下延伸成为直立筒壁形结构,顶外边锋135和底外边锋136同时分别形成一圈顶外边缘线加一圈顶面边缘线和一圈底外边缘线加一圈底面边缘线(无图示)。
为了便于更清楚地理解凸台型边锋结构,现以采用上述第3种边锋结构的圆环形减动结构(径向截面为矩形)为例,加以说明:上述条件下所述减动结构的4个箱角线均为圆形、4个圆的圆心均位于筒体12的垂直中心轴线上,其顶外边锋135和底外边锋136分别为水平顶板131和水平底板133沿水平方向向外延伸一段距离(该距离很小)、再分别成为顶面直径大于底面直径的倒圆台形筒壁结构和顶面直径小于底面直径的正圆台形筒壁结构,所述倒圆台形筒壁结构的底面直径大于与之同圆心的顶外箱角线圆直径、所述正圆台形筒壁结构的顶面直径大于与之同圆心的底外箱角线圆直径。
虽然图1~图6所示为顶外边锋135和底外边锋136的结构形式相同的组合,但事实上顶外边锋135和底外边锋136可根据需要选择不同的结构形式的组合。例如,顶外边锋135为第二种结构形式(图3所示),而底外边锋136为第一种结构形式(图2所示),等等。和减动结构13的尺寸相比,边锋(顶外边锋135和底外边锋136)凸出的尺寸非常小。板结构边锋的具体尺寸、边锋板上是否开设阻尼孔、以及阻尼孔的数量和直径,均需通过实验或计算确定和优选。
对于存在环形径向间隙14的减动结构13,作为本发明的一个优化实施例,在筒体12外壁上与水平顶板131、水平顶板133标高相同的环形部位上的至少一个部位,加设一层水平的环形板,形成如图7所示的上飞边121和下飞边122,上飞边121与水平顶板内边锋之间存在间隙,下飞边122与水平底板内边锋之间存在间隙,以进一步加大垂荡运动阻尼。作为加大垂荡运动阻尼的另一个实施例,设置环形径向间隙14的减动结构13中,水平顶板131和水平底板133中的至少一个分别从所述顶内箱角线和底内箱角线向筒体(12)方向水平延伸,直至连接筒体12、封闭环形径向间隙14,在所述封闭的部位上分别开设阻尼孔(没有图示),通常会开设多个均匀分布的阻尼孔。为了进一步加大阻尼,作为优化实施例,所述水平顶板内边锋与上飞边121之间存在的上间隙和所述水平底板内边锋与下飞边122之间存在的下间隙应尽可能上下错位,例如上间隙更靠近筒体12、下间隙更靠近内立环板134;或者更进一步,在所述水平顶板内边锋与所述水平底板内边锋之间的中点加设一层水平内间隔板,安装在所述内环立板134上并与所述筒体12外壁保持间隙(称之为“中间隙”)、或安装在所述筒体12外壁上并与所述内环立板134保持间隙(同样称之为“中间隙”),使得所述上间隙、所述下间隙和所述中间隙彼此错位。上述间隙错位、特别是水平内间隔板既可增加粘性阻尼,又能降低因减动结构13和筒体12之间的间隙而减少的附连水质量。
作为进一步优化的实施方案,所述外边缘线采用锯齿线取代所述平直线或光滑的弧线的外边缘线,即采用具有齿凸和齿凹的锯齿状边缘取代平直或光滑弧线形边缘,所述齿凸和齿凹具有相同或不相同的几何图形。也就是说,当顶外边锋135和底外边锋136均为水平环形板结构时,顶外边缘线和底外边缘线的其中至少一个为连续的锯齿线,和/或水平顶板内边锋的边缘线和水平底板内边锋的边缘线的其中至少一个为连续的锯齿线。所述锯齿状边缘上的各个齿通常为规则的几何图形,如三角形齿、矩形齿或梯形齿等,其中三角形齿的齿凸和齿凹形状为三角形,矩形齿的齿凸和齿凹形状为矩形,梯形齿的齿凸和齿凹形状为梯形,所述矩形齿的齿凸和齿凹形状分别为三角形、矩形或梯形的组合;或者为不规则的几何图形,其齿凸和齿凹分别为不同于三角、矩形或梯形的其它图形,例如,对于开设多个阻尼孔的顶外边锋135上和底外边锋136,从各自的边缘开槽口连通所述每个阻尼孔,形成齿凸和齿凹。
作为另一个进一步优化的实施方案,所述顶面边缘线和底面边缘线采用锯齿线取代所述平直线或光滑的弧线的外边缘线,即采用具有齿凸和齿凹的锯齿状边缘取代平直或光滑弧线形边缘,所述齿凸和齿凹具有相同或不相同的几何图形。也就是说,当所述顶外边锋135和底外边锋136凸出的筒壁结构的顶面和底面分别形成一圈封闭的顶面边缘线和底面边缘线时,所述顶面边缘线和底面边缘线的其中至少一个为连续的锯齿线。所述锯齿状边缘上的各个齿通常为规则的几何图形,如三角形齿、矩形齿或梯形齿等,其中所述三角形齿的齿凸和齿凹形状均为三角形,所述矩形齿的齿凸和齿凹形状均为矩形,所述梯形齿的齿凸和齿凹形状均为梯形,所述矩形齿的齿凸和齿凹形状分别为三角形、矩形或梯形的组合;或者为不规则的几何图形,其齿凸和齿凹分别为不同于三角、矩形或梯形的其它图形,例如,对于开设多个阻尼孔的顶外边锋135上和底外边锋136,从各自的边缘开槽口连通所述每个阻尼孔,形成齿凸和齿凹。
所述边锋结构的边缘采用锯齿形边缘相较于平直或光滑弧线形边缘,将进一步加大平台运动的粘性阻尼。
作为一个优化的实施方案,对于顶外边锋135和/或底外边锋136采用水平环形板结构的减动结构,当所述顶外边缘线和底外边缘线均采用锯齿线、或者当所述顶外边锋135和底外边锋136上均设置阻尼孔时,在外环立板132上与所述顶外箱角线和所述底外箱角线等距的位置设置一个中外边锋,所述中外边锋为水平环形板结构,其外边缘为平直或光滑弧线形的边缘。中外边锋的功能在于降低因顶外边锋135和底外边锋136的 锯齿状边缘和/或阻尼孔所造成的垂荡附连水的损失。
为了在浮式平台筒体12筒外壁的下部安装系泊腿的导缆器,同时不破坏减动结构的完整性、增加结构附连水的质量,本发明在减动结构13与其连接的筒体12相邻的内侧、对应于导缆器的部位,水平设置上下贯通的U形导缆器凹槽(没有图示)。所述U形导缆器凹槽的结构为:U形导缆器凹槽部位所对应覆盖部分的内环立板134向外平移(向远离筒体12的水平方向平移),U形导缆器凹槽两侧加设垂直隔板;U形导缆器凹槽部位所覆盖部分的水平顶板131和水平底板133的板面除保留U形的边缘以形成U形平板边锋外、其余部分均予切除;所述平移部分的内环立板、凹槽两侧所加设垂直隔板和切除凹槽后的水平顶板131和水平底板133共5块板彼此水密连接,位于U形导缆器凹槽部位、以及两侧部位的减动结构13的径向垂直截面仍然为水密的箱形结构。换言之,所述U形导缆器凹槽开设后必须保证而不得破坏其所在的所述水密舱的水密性。所谓U形平板边锋是指,水平顶板131和水平底板133的U形边缘凸出位于二者之间的平移部分的内环立板和凹槽两侧的垂直隔板。U形平板边锋有利于增加垂荡粘性阻尼。所述凹槽的空间必须能够容纳安装于筒体12筒外下部的导缆器,并保证必要的维修要求。作为一种实施例,导缆器凹槽部位的减动结构13在建造初期为断口,待导缆器安装至筒体12后,再安装U形导缆器凹槽部位的水密箱体结构,将断口补齐。
本发明克服了现行的直筒式平台的减动结构的缺点,既增加了附连水的质量,又加大了运动、尤其是垂荡运动的阻尼,同时保证了减动结构的完整性,最终大大改善了直筒式浮式平台的运动性能。

Claims (13)

  1. 一种直筒式浮式平台的减动结构,其为环绕设置在直筒式浮式平台的筒体(12)的底部外周边的环形结构,减动结构(13)包括水平顶板(131)、间隔设于水平顶板(131)下方的水平底板(133)、外环立板(132)、及间隔设于外环立板(132)与筒体(12)之间的内环立板(134),水平顶板(131)、水平底板(133)、外环立板(132)和内环立板(134)彼此水密连接,形成径向垂直截面为矩形或梯形的箱体,所述箱体的四个顶角分别沿周向形成顶外箱角线、底外箱角线和顶内箱角线、底内箱角线共四条箱角线,各所述箱角线围成的平面几何图形的形心均位于筒体(12)的垂直中心轴线上,所述箱体旋转对称于所述形心、或所述箱体前后左右对称于筒体(12)的垂直中心轴线;减动结构(13)与筒体(12)之间设置或不设置环形径向间隙(14);
    减动结构(13)通过多个径向垂直肘板与筒体(12)相连接,所述箱体被多个径向垂直隔板分为多个水密舱;每个所述水密舱对应的水平顶板(131)和/或水平底板(133)上均开设有可以开启和关闭的阻尼孔,通过水平顶板(131)和水平底板(133)上所述阻尼孔的开启,舱内充满通海的水体,或者通过水平顶板(131)和水平底板(133)上所述阻尼孔的关闭,形成密闭的浮舱,或者通过水平顶板(131)上所述阻尼孔的关闭和水平底板(133)上所述阻尼孔的开启,形成密闭的气浮舱,以适应直筒式浮式平台(1)在不同工况下的要求;
    其特征在于,在不设置环形径向间隙(14)的减动结构(13)的水平顶板(131)和水平底板(133)中的至少一个板面上,分别设置外边锋;所述外边锋分别对应为顶外边锋(135)和底外边锋(136);在设置环形径向间隙(14)的减动结构(13)的水平顶板(131)和水平底板(133)中的至少一个板面上,分别单独或同时设置外边锋和内边锋,所述外边锋分别对应为顶外边锋(135)和底外边锋(136),所述内边锋分别对应为顶内边锋和底内边锋;
    所述外边锋为板结构,分别从所述顶外箱角线和底外箱角线向外和/或向上下方向延伸凸出,在水平顶板(131)板面上对应形成顶外边锋(135),在水平底板(133)板面上对应形成底外边锋(136);所述内边锋为板结构,分别从所述顶内箱角线和底内箱角线向筒体(12)方向水平延伸凸出,在水平顶板(131)板面上对应形成水平顶板内边锋,在水平底板(133)板面上对应形成水平底板内边锋,所述内边锋不得封闭所述环形径向间隙(14)。
  2. 根据权利要求1所述的直筒式浮式平台的减动结构,其特征在于,减动结构(13)为圆环形或正多边环形结构、四条箱角线对应为圆形或正多边形;
    或者所述减动结构(13)的内侧壁和外侧壁的形状不同,所述内侧壁为圆环形或正多边环形、其所述顶内箱角线和底内箱角线对应为圆形或正多边形,所述外侧壁为椭圆形、其所述顶外箱角线和底外箱角线为椭圆形,或者所述外侧壁为多边异形、其所述顶外箱角线和底外箱角线为左右两边为相互平行的直线、前后两边为圆弧线或折线所围成的封闭几何图形、其左右方向的尺寸小于前后方向的尺寸。
  3. 根据权利要求2所述的直筒式浮式平台的减动结构,其特征在于,顶外边锋(135)和底外边锋(136)为水平环形板结构,顶外边锋(135)的边缘和底外边锋(136)的边缘分别形成顶外边缘线和底外边缘线;所述顶外边缘线和底外边缘线平面几何图形分别与其所在的所述顶外箱角线和底外箱角线几何图形具有相同的形心,且旋转对称于所述形心、或前后左右对称于筒体(12)的垂直中心轴线;或者顶外边锋(135)和底外边锋(136)分别为向上和向下凸出的筒壁结构,所述凸出的筒壁结构的顶面和底面分别形成一圈封闭的顶面边缘线和底面边缘线;所述顶面边缘线和底面边缘线平面几何图形形心均位于筒体(12)的垂直中心轴线上、均分别全等于或相似于其所在的顶外箱角线和底外箱角线的平面几何图形;
    或者顶外边锋(135)和底外边锋(136)分别为水平环形板结构再连接向上凸出的筒壁结构、和水平环形板结构再连接向下凸出的筒壁结构,其中顶外边锋(135)和底外边锋(136)对应凸出的筒壁结构的顶面和底面分别形成一圈封闭的顶面边缘线和底面边缘线;所述顶面边缘线和底面边缘线所形成的平面几何图形的形心均位于筒体(12)的垂直中心轴线上、均分别相似于其所在的顶外箱角线和底外箱角线的平面几何图形。
  4. 根据权利要求3所述的直筒式浮式平台的减动结构,其特征在于,顶外边锋(135)和底外边锋(136)为水平环形板结构,分别为水平顶板(131)和水平底板(133)的水平向外延伸;
    或者顶外边锋(135)为顶面尺寸大于底面尺寸的倒凸台形筒壁结构,所述倒凸台形筒壁结构的底面边缘线与所述顶外箱角线重合,底外边锋(136)为顶面尺寸小于底面尺寸的正凸台形筒壁结构,所述正凸台形筒壁结构的顶面边缘线与所述底外箱角线重合;或者顶外边锋(135)和底外边锋(136)分别为水平顶板(131)和水平底板(133)沿水平方向向外延伸一段距离,再分别连接顶面尺寸大于底面尺寸的倒凸台形筒壁结构 和顶面尺寸小于底面尺寸的正凸台形筒壁结构,所述倒凸台形筒壁结构的底面边缘线的尺寸大于所述顶外箱角线的尺寸、二者为同形心的几何相似形,所述正凸台形筒壁结构的顶面边缘线的尺寸大于所述底外箱角线的尺寸、二者为同形心的几何相似形;
    或者顶外边锋(135)和底外边锋(136)分别为水平顶板(131)和水平底板(133)对应在所述顶外箱角线和底外箱角线处折转90°向上和向下延伸成为直立筒壁形结构,顶外边锋(135)的直立筒壁形结构的底面边缘线与所述顶外箱角线重合,底外边锋(136)的直立筒壁形结构的顶面边缘线与所述底外箱角线重合;或者顶外边锋(135)和底外边锋(136)分别为所述水平顶板(131)和水平底板(133)沿水平方向向外延伸一段距离,再分别折转90°向上和向下延伸成为直立筒壁形结构,顶外边锋(135)的直立筒壁形结构的底面边缘线图形的尺寸大于所述顶外箱角线的尺寸、二者为同形心的几何相似形,底外边锋(136)的直立筒壁形结构的顶面边缘线的尺寸大于所述底外箱角线的尺寸、二者为同形心的几何相似形。
  5. 根据权利要求1所述的直筒式浮式平台的减动结构,其特征在于,顶外边锋(135)和/或底外边锋(136)上开设或不开设阻尼孔。
  6. 根据权利要求5所述的直筒式浮式平台的减动结构,其特征在于,在所述直筒式浮式平台的筒体(12)外壁上与水平顶板(131)、水平顶板(133)标高相同的环形部位的至少一个部位,加设一层水平的环形板,分别形成上飞边(121)和下飞边(122),上飞边(121)与所述水平顶板内边锋之间存在间隙,下飞边(122)与所述水平底板内边锋之间存在间隙。
  7. 根据权利要求5所述的直筒式浮式平台的减动结构,其特征在于,设置环形径向间隙(14)的减动结构(13)的水平顶板(131)和水平底板(133)中的至少一个分别从所述顶内箱角线和底内箱角线向筒体(12)方向水平延伸,直至连接筒体(12),将环形径向间隙(14)封闭,在所封闭的部位开设阻尼孔。
  8. 根据权利要求1所述的直筒式浮式平台的减动结构,其特征在于,在减动结构(13)与筒体(12)相邻的内侧对应导缆器的部位,水平设置上下贯通的U形导缆器凹槽;所述U形导缆器凹槽应能够容纳安装于筒体(12)筒外壁下部的导缆器并方便其维修;所述U形导缆器凹槽的结构为:所述U形导缆器凹槽部位所覆盖部位的内环立板(134)向外平移,所述U形导缆器凹槽两侧加设垂直隔板;所述U形导缆器凹槽所覆盖部位的水平顶板(131)和水平底板(133)的板面除保留U形的边缘以形成U形平板边锋外、 其余部分均予切除;所述平移部分的内环立板、凹槽两侧加设垂直隔板和切除凹槽后的的水平顶板(131)和水平底板(133)彼此水密连接,所述U形导缆器凹槽开设后必须保证而不得破坏其所在的所述水密舱的水密性。
  9. 根据权利要求3所述的直筒式浮式平台的减动结构,其特征在于,当所述顶外边锋(135)和底外边锋(136)为水平环形板结构时,所述顶外边缘线和底外边缘线的其中至少一个为连续的锯齿线、形成锯齿状边缘,和/或所述水平顶板内边锋的边缘线和所述水平底板内边锋的边缘线的其中至少一个为连续的锯齿线、形成锯齿状边缘;当所述顶外边锋(135)和底外边锋(136)凸出的筒壁结构的顶面和底面分别形成一圈封闭的顶面边缘线和底面边缘线时,所述顶面边缘线和底面边缘线的其中至少一个为连续的锯齿线、形成锯齿状边缘;所述锯齿状边缘具有齿凸和齿凹,所述齿凸和齿凹具有相同或不同的几何图形。
  10. 根据权利要求9所述的直筒式浮式平台的减动结构,其特征在于,所述锯齿状边缘的锯齿线上的各个齿为三角形齿、矩形齿或梯形齿,其中所述三角形齿的齿凸和齿凹形状均为三角形,所述矩形齿的齿凸和齿凹形状均为矩形,所述梯形齿的齿凸和齿凹形状均为梯形,所述矩形齿的齿凸和齿凹形状分别为三角形、矩形或梯形的组合。
  11. 根据权利要求3所述的直筒式浮式平台的减动结构,其特征在于,顶外边锋(135)和底外边锋(136)为水平环形板结构,分别为水平顶板(131)和水平底板(133)的水平向外延伸,同时对应在所述顶外箱角线和底外箱角线处折转90°分别向上和向下延伸成为直立筒壁形结构;顶外边锋(135)和底外边锋(136)同时分别形成一圈顶外边缘线加一圈顶面边缘线和一圈底外边缘线加一圈底面边缘线。
  12. 根据权利要求4和5任一项所述的直筒式浮式平台的减动结构,其特征在于,对于顶外边锋(135)和/或底外边锋(136)采用水平环形板结构的减动结构,当所述顶外边缘线和底外边缘线均采用锯齿线、或者当所述顶外边锋(135)和底外边锋(136)上均设置阻尼孔时,在外环立板(132)上与所述顶外箱角线和所述底外箱角线等距的位置设置一个中外边锋,所述中外边锋为水平环形板结构,其外边缘为平直或光滑弧线形的边缘。
  13. 根据权利要求6所述的直筒式浮式平台的减动结构,其特征在于,所述水平顶板内边锋与上飞边(121)之间存在的上间隙和所述水平底板内边锋与下飞边(122)之间存在的下间隙应尽可能上下错位;或者,在所述水平顶板内边锋与所述水平底板内边 锋之间的中点加设一层水平内间隔板,安装在所述内环立板(134)上并所述筒体(12)外壁之间存在中间隙、或安装在所述筒体(12)外壁上并与所述内环立板(134)间存在中间隙,使得所述上间隙、所述下间隙和所述中间隙彼此错位。
PCT/CN2019/093408 2018-08-06 2019-06-27 一种直筒式浮式平台的减动结构 WO2020029704A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980002235.5A CN110972470B (zh) 2018-08-06 2019-06-27 一种直筒式浮式平台的减动结构
AU2019317324A AU2019317324B2 (en) 2018-08-06 2019-06-27 Damping structure of straight cylinder type floating platform
NO20201399A NO20201399A1 (en) 2018-08-06 2019-06-27 Damping structure of straight cylinder type floating platform
GB2102172.0A GB2590840B (en) 2018-08-06 2019-06-27 Anti-motion structure of column floater
US17/139,501 US20210122446A1 (en) 2018-08-06 2020-12-31 Anti-motion Structure of Column Floater

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810882470.3 2018-08-06
CN201810882470.3A CN110803263A (zh) 2018-08-06 2018-08-06 一种直筒式浮式平台的减动结构

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/139,501 Continuation US20210122446A1 (en) 2018-08-06 2020-12-31 Anti-motion Structure of Column Floater

Publications (1)

Publication Number Publication Date
WO2020029704A1 true WO2020029704A1 (zh) 2020-02-13

Family

ID=69414469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/093408 WO2020029704A1 (zh) 2018-08-06 2019-06-27 一种直筒式浮式平台的减动结构

Country Status (6)

Country Link
US (1) US20210122446A1 (zh)
CN (2) CN110803263A (zh)
AU (1) AU2019317324B2 (zh)
GB (1) GB2590840B (zh)
NO (1) NO20201399A1 (zh)
WO (1) WO2020029704A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2779235C1 (ru) * 2022-06-16 2022-09-05 Публичное акционерное общество "НОВАТЭК" Морской производственный комплекс по добыче, подготовке и переработке сырьевого газа c целью производства сжиженного природного газа, широкой фракции легких углеводородов и стабильного газового конденсата на основании гравитационного типа (ОГТ)
WO2023244134A1 (ru) * 2022-06-16 2023-12-21 Публичное акционерное общество "НОВАТЭК" Морской производственный комплекс по добыче, подготовке и переработке сырьевого газа

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114454998B (zh) * 2022-02-22 2023-03-21 江苏科技大学 一种用于海上浮体的自主式电磁阻尼减动装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2008051A (en) * 1977-11-22 1979-05-31 Iceberg Transport Int Self-stabilising multi-column floating tower
US6652192B1 (en) * 2000-10-10 2003-11-25 Cso Aker Maritime, Inc. Heave suppressed offshore drilling and production platform and method of installation
CN1922072A (zh) * 2004-02-24 2007-02-28 三菱重工业株式会社 用于海工结构的移动抑止装置
CN201580543U (zh) * 2009-12-02 2010-09-15 中国海洋大学 一种管束式立柱平台
CN101918270A (zh) * 2008-02-27 2010-12-15 三菱重工业株式会社 浮体结构物
CN104321247A (zh) * 2013-01-22 2015-01-28 吴植融 一种环翼式浮式平台
CN106428446A (zh) * 2016-09-30 2017-02-22 吴植融 带延伸筒体的直筒式浮式平台
CN106458305A (zh) * 2014-07-07 2017-02-22 吴植融 直筒式浮式平台

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO300884B1 (no) * 1995-12-06 1997-08-11 Fred Olsen Bölgedemper for flytende konstruksjoner
US7958835B2 (en) * 2007-01-01 2011-06-14 Nagan Srinivasan Offshore floating production, storage, and off-loading vessel for use in ice-covered and clear water applications
US9180941B1 (en) * 2009-11-08 2015-11-10 Jurong Shipyard Pte Ltd. Method using a floatable offshore depot

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2008051A (en) * 1977-11-22 1979-05-31 Iceberg Transport Int Self-stabilising multi-column floating tower
US6652192B1 (en) * 2000-10-10 2003-11-25 Cso Aker Maritime, Inc. Heave suppressed offshore drilling and production platform and method of installation
CN1922072A (zh) * 2004-02-24 2007-02-28 三菱重工业株式会社 用于海工结构的移动抑止装置
CN101918270A (zh) * 2008-02-27 2010-12-15 三菱重工业株式会社 浮体结构物
CN201580543U (zh) * 2009-12-02 2010-09-15 中国海洋大学 一种管束式立柱平台
CN104321247A (zh) * 2013-01-22 2015-01-28 吴植融 一种环翼式浮式平台
CN106458305A (zh) * 2014-07-07 2017-02-22 吴植融 直筒式浮式平台
CN106428446A (zh) * 2016-09-30 2017-02-22 吴植融 带延伸筒体的直筒式浮式平台

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2779235C1 (ru) * 2022-06-16 2022-09-05 Публичное акционерное общество "НОВАТЭК" Морской производственный комплекс по добыче, подготовке и переработке сырьевого газа c целью производства сжиженного природного газа, широкой фракции легких углеводородов и стабильного газового конденсата на основании гравитационного типа (ОГТ)
WO2023244134A1 (ru) * 2022-06-16 2023-12-21 Публичное акционерное общество "НОВАТЭК" Морской производственный комплекс по добыче, подготовке и переработке сырьевого газа

Also Published As

Publication number Publication date
CN110972470B (zh) 2022-01-07
AU2019317324A1 (en) 2021-01-21
NO20201399A1 (en) 2020-12-18
AU2019317324B2 (en) 2021-12-23
US20210122446A1 (en) 2021-04-29
GB202102172D0 (en) 2021-03-31
CN110972470A (zh) 2020-04-07
CN110803263A (zh) 2020-02-18
GB2590840A (en) 2021-07-07
GB2590840B (en) 2022-12-14

Similar Documents

Publication Publication Date Title
AU2017333180B2 (en) Straight cylinder type floating platform with extension cylinder body, and swim ring type buoy group
KR101119854B1 (ko) 탄화수소의 시추 또는 생산을 위한 해양 플랫폼
CN100526153C (zh) 用于浮动海工结构的移动抑止装置
WO2020029704A1 (zh) 一种直筒式浮式平台的减动结构
JP6366124B2 (ja) 浮体構造物
WO2016004847A1 (zh) 直筒式浮式平台
USH611H (en) Semi-submersible vessel
CN207281280U (zh) 一种用于船底嵌入式声呐的低应力集中内凹基座结构
KR950011771A (ko) 방파제 케이슨
CN1193912C (zh) 使波浪产生的运动减小的浮动结构
US20180127060A1 (en) Floating Offshore Structures with Round Pontoons
KR101860115B1 (ko) 돌출부재를 가진 부유식 해양 구조물용 플랫폼 및 이를 포함하는 반잠수식 해양 구조물
KR102117387B1 (ko) 반잠수식 시추선의 거주구 배치구조
KR102624042B1 (ko) 부유식 해양 구조물 및 이를 구비하는 부유식 해양 발전 장치
CN106080973A (zh) 一种船舶侧板嵌入式单柱带缆结构及其组装方法
CN205770046U (zh) 半潜式生活平台
CN213535010U (zh) 船舶燃油的透气装置及其防溅组件
CN108749998A (zh) 潜水月池及船舶
CA3215846A1 (en) Floating structure
JPH068767U (ja) 波力発電ブイ
KR20190047833A (ko) 해양구조물
KR20240007706A (ko) 부유식 해양 구조물 및 이를 구비하는 부유식 해양 발전 장치
KR20150086540A (ko) 선박 탱크 시스템
KR200219567Y1 (ko) 해수교환 방파제
KR20180051971A (ko) 부유식 해양구조물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19847297

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019317324

Country of ref document: AU

Date of ref document: 20190627

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 202102172

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20190627

122 Ep: pct application non-entry in european phase

Ref document number: 19847297

Country of ref document: EP

Kind code of ref document: A1