WO2020026384A1 - Elevator apparatus - Google Patents

Elevator apparatus Download PDF

Info

Publication number
WO2020026384A1
WO2020026384A1 PCT/JP2018/028905 JP2018028905W WO2020026384A1 WO 2020026384 A1 WO2020026384 A1 WO 2020026384A1 JP 2018028905 W JP2018028905 W JP 2018028905W WO 2020026384 A1 WO2020026384 A1 WO 2020026384A1
Authority
WO
WIPO (PCT)
Prior art keywords
earthquake
building
floor
car
response acceleration
Prior art date
Application number
PCT/JP2018/028905
Other languages
French (fr)
Japanese (ja)
Inventor
大樹 福井
健 宮川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201880095699.0A priority Critical patent/CN112469656B/en
Priority to PCT/JP2018/028905 priority patent/WO2020026384A1/en
Priority to JP2020533972A priority patent/JP7080326B2/en
Publication of WO2020026384A1 publication Critical patent/WO2020026384A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions

Definitions

  • the present invention relates to an elevator apparatus, and more particularly to control at the time of occurrence of an earthquake.
  • a e a i ⁇ m
  • a i a g ⁇ ⁇ i
  • a e the acceleration generated in the elevator equipment.
  • a i the building response acceleration on the i-th floor where the elevator equipment is located.
  • M the response magnification between the building and the elevator equipment, that is, the resonance magnification.
  • a g is the seismic acceleration input to the building.
  • ⁇ i the acceleration response magnification of the i-th floor of the building.
  • the acceleration response magnification varies depending on the floor, so the required equipment strength also varies depending on the floor.
  • elevator equipment especially cars and counterweights, does not know at which floor they are located when an earthquake occurs. For this reason, the strength design of the car and the counterweight is performed on the assumption that the car and the counterweight are located on the floor where the floor response acceleration is maximum.
  • the automatic diagnosis operation is an operation for automatically diagnosing whether normal operation of the elevator can be resumed after the earthquake.
  • the evaluation data which is the output data of the earthquake sensor
  • the management department transmits the evaluation data from a plurality of specific elevators to the management department.
  • the corresponding evaluation data is re-evaluated based on the installation condition of each specific elevator or each earthquake sensor, and the seismic intensity level at the place where each specific elevator is installed is estimated.
  • the present invention has been made to solve the above-described problems, and has as its object to obtain an elevator apparatus capable of selecting a more efficient driving method when an earthquake occurs.
  • An elevator device is a control device that determines whether at least one of an automatic diagnosis operation and a traffic control operation is possible based on a device response acceleration generated in a monitored device that is at least one elevator device when an earthquake occurs. It has. Further, the elevator apparatus according to the present invention determines whether or not an earthquake-responsive operation, which is at least one of the automatic diagnosis operation and the control operation, based on a signal from an earthquake sensor set in a building when an earthquake occurs. And a control device for changing a criterion for determining whether or not to operate in response to the earthquake in accordance with the position of the hoisting body that moves up and down the hoistway.
  • a more efficient driving method can be selected when an earthquake occurs.
  • FIG. 1 is a configuration diagram showing an elevator apparatus according to Embodiment 1 of the present invention. It is a block diagram which shows the principal part of the elevator apparatus of FIG.
  • FIG. 3 is a block diagram illustrating an example of a configuration of a control device in FIG. 2. 3 is a flowchart illustrating an operation of the control device in FIG. 2.
  • FIG. 5 is a configuration diagram illustrating an elevator apparatus according to Embodiment 2 of the present invention. It is a block diagram which shows the principal part of the elevator apparatus of FIG.
  • FIG. 10 is a block diagram showing a main part of an elevator apparatus according to Embodiment 3 of the present invention.
  • FIG. 14 is a block diagram showing a main part of an elevator apparatus according to Embodiment 4 of the present invention.
  • FIG. 13 is a configuration diagram showing an elevator apparatus according to Embodiment 6 of the present invention.
  • 14 is a graph illustrating a method of estimating a floor response acceleration by the building shake estimation device in FIG. 13. It is a block diagram which shows the principal part of the elevator apparatus of FIG.
  • FIG. 14 is a configuration diagram illustrating an elevator apparatus according to Embodiment 7 of the present invention.
  • FIG. 17 is a block diagram illustrating a main part of the elevator device of FIG. 16.
  • FIG. 16 is a configuration diagram showing an elevator apparatus according to Embodiment 8 of the present invention.
  • FIG. 19 is a block diagram illustrating a main part of the elevator device of FIG. 18.
  • FIG. 15 is a configuration diagram showing an elevator apparatus according to Embodiment 9 of the present invention. It is a graph which shows an example of the relation between the response acceleration of a car to an earthquake, and the position of a car. It is a graph which shows an example of the relation between the response acceleration of the counterweight to the earthquake, and the position of the counterweight.
  • 23 is a graph in which FIG. 21 and FIG. 22 are superimposed.
  • 24 is a graph showing a magnification calculated based on FIG. 23.
  • FIG. 9 is a graph showing the relationship between the response acceleration of a car and a counterweight to various input seismic waves, and the positions of the car and the counterweight.
  • FIG. 21 is a block diagram showing a main part of the elevator apparatus of FIG. 20.
  • FIG. 27 is an explanatory diagram illustrating a determination operation of a determination unit in FIG. 26. 27 is a flowchart showing the operation of the control device in FIG. 26.
  • FIG. 22 is a graph in which the response acceleration of the counterweight obtained by inverting the response acceleration of the car in FIG. 21 is superimposed on the response acceleration of the car.
  • 30 is a graph showing a magnification calculated based on FIG. 29. It is a graph which shows the magnification obtained by linearly approximating three points.
  • FIG. 1 is a configuration diagram showing an elevator apparatus according to Embodiment 1 of the present invention.
  • a building 1 is provided with a hoistway 2 and a machine room 3.
  • the machine room 3 is provided above the hoistway 2.
  • a car 4 and a counterweight 5 are provided in the hoistway 2.
  • a pair of car guide rails 6 and a pair of counterweight guide rails 7 are installed in the hoistway 2.
  • the car 4 moves up and down in the hoistway 2 along a pair of car guide rails 6.
  • the counterweight 5 moves up and down in the hoistway 2 along a pair of counterweight guide rails 7.
  • the machine room 3 is provided with a hoisting machine 8.
  • the hoist 8 has a drive sheave 9, a motor (not shown), and a brake (not shown).
  • the motor rotates the drive sheave 9.
  • the brake keeps the drive sheave 9 stationary or brakes the rotation of the drive sheave 9.
  • the machine room 3 is provided with a deflector wheel 10.
  • the deflecting wheel 10 is arranged at a distance from the drive sheave 9.
  • a suspension 11 is wound around the drive sheave 9 and the deflector wheel 10.
  • the car 4 is suspended by a suspension 11 on one side of the drive sheave 9.
  • the counterweight 5 is suspended by a suspension 11 on the other side of the drive sheave 9. The car 4 and the counterweight 5 move up and down in the hoistway 2 by rotating the drive sheave 9.
  • the control unit 12 is installed in the machine room 3.
  • the control device 12 controls the operation of the car 4 by controlling the hoisting machine 8.
  • the devices installed in the car 4, the counterweight 5, and the machine room 3 are elevator devices. In these elevator devices, device response accelerations are generated when an earthquake occurs.
  • the car 4 is provided with a car sensor 13.
  • the counterweight 5 is provided with a counterweight sensor 14.
  • a machine room sensor 15 is provided on the floor of the machine room 3.
  • An acceleration sensor is used as each of the car sensor 13, the counterweight sensor 14, and the machine room sensor 15.
  • the car sensor 13 generates a signal corresponding to the equipment response acceleration generated in the car 4 when an earthquake occurs.
  • the counterweight sensor 14 generates a signal corresponding to the device response acceleration generated in the counterweight 5 when an earthquake occurs.
  • the monitoring target devices of the first embodiment are a car 4 and a counterweight 5.
  • the machine room sensor 15 generates a signal according to the response acceleration generated on the floor of the machine room 3 when an earthquake occurs.
  • FIG. 2 is a block diagram showing a main part of the elevator apparatus of FIG.
  • the control device 12 includes, as functional blocks, an operation control unit 16, an acceleration detection unit 17, a determination unit 18, a control operation control unit 19, and a diagnostic operation control unit 20.
  • the operation control unit 16 controls the operation of the car 4.
  • the acceleration detecting unit 17 detects the device response acceleration generated in the car 4 based on a signal from the car sensor 13 when an earthquake occurs. In addition, the acceleration detecting unit 17 detects the device response acceleration generated in the counterweight 5 based on a signal from the counterweight sensor 14 when an earthquake occurs. In addition, the acceleration detecting unit 17 detects a response acceleration generated in the machine room 3 based on a signal from the machine room sensor 15 when an earthquake occurs.
  • the determination unit 18 performs an automatic diagnosis operation and a control operation based on the device response acceleration generated in the car 4 when the earthquake occurs, the device response acceleration generated in the counterweight 5, and the response acceleration generated in the machine room 3. Is determined.
  • the control device 12 is set with a plurality of thresholds serving as a criterion for determination by the determination unit 18.
  • the thresholds include three thresholds related to the automatic diagnosis operation and three thresholds related to the control operation.
  • the three thresholds related to the automatic diagnosis operation include a threshold of the car 4, a threshold of the counterweight 5, and a threshold of the machine room 3.
  • the three thresholds related to the control operation include the threshold of the car 4, the threshold of the counterweight 5, and the threshold of the machine room 3.
  • the determination unit 18 can perform the automatic diagnosis operation when all of the device response acceleration of the car 4, the device response acceleration of the counterweight 5, and the response acceleration of the machine room 3 are equal to or less than the corresponding threshold value of the automatic diagnosis operation. Is determined. The determining unit 18 determines that at least one of the device response acceleration of the car 4, the device response acceleration of the counterweight 5, and the response acceleration of the machine room 3 is higher than the corresponding threshold value of the automatic diagnosis operation. It is determined that the automatic diagnosis operation cannot be performed.
  • the determining unit 18 can perform the control operation when all of the device response acceleration of the car 4, the device response acceleration of the counterweight 5, and the response acceleration of the machine room 3 are equal to or less than the corresponding threshold value of the control operation. Is determined. In addition, when any one or more of the device response acceleration of the car 4, the device response acceleration of the counterweight 5, and the response acceleration of the machine room 3 are higher than the corresponding threshold value of the control operation, It is determined that the control operation is impossible.
  • the control operation control unit 19 performs the control operation when the control unit 19 determines that the control operation is possible when the earthquake occurs.
  • the control operation is an operation in which, when an earthquake occurs, the car 4 is safely stopped at the nearest floor and the door is opened.
  • the diagnostic operation control unit 20 performs the automatic diagnostic operation when the determination unit 18 determines that the automatic diagnostic operation is possible after the occurrence of the earthquake.
  • the automatic diagnosis operation is an operation for automatically diagnosing whether normal operation of the elevator can be resumed after the earthquake.
  • the automatic diagnosis operation and the control operation are operation corresponding to an earthquake.
  • the control device 12 keeps the operation of the elevator device stopped.
  • FIG. 3 is a block diagram showing an example of the configuration of the control device 12 of FIG.
  • the control device 12 includes a communication device 101, a processor 102, and a memory 103.
  • the functions of the control device 12 are realized by the computer shown in FIG.
  • the memory 103 stores a program for executing the function of the control device 12 and a plurality of thresholds serving as determination criteria in the determination unit 18.
  • the processor 102 performs arithmetic processing according to a program stored in the memory 103.
  • FIG. 4 is a flowchart showing the operation of the control device 12 of FIG.
  • the control device 12 starts the operation in FIG.
  • the control device 12 first detects a device response acceleration of the monitored device in step S1.
  • step S2 the control device 12 determines whether or not the control operation can be performed.
  • step S2 If it is determined in step S2 that the control operation is not possible, the control device 12 stops the car 4 suddenly in step S3. When the car 4 is stopped, the control device 12 keeps the car 4 stopped. Thereafter, in step S4, control device 12 notifies the management room that the control operation has not been performed.
  • step S2 If it is determined in step S2 that the control operation is possible, the control device 12 performs the control operation in step S5.
  • the control device 12 determines whether or not the earthquake continues in step S6. That is, the control device 12 determines whether or not the shaking of the earthquake continues based on a signal from an earthquake sensor or the like provided inside or outside the building 1, and waits until the shaking stops.
  • step S7 determines whether or not the automatic diagnosis operation is possible.
  • step S7 If it is determined in step S7 that the automatic diagnosis operation is not possible, the control device 12 notifies the management room that the automatic diagnosis operation has not been performed in step S4.
  • step S7 If it is determined in step S7 that the automatic diagnosis operation is possible, the control device 12 performs the automatic diagnosis operation in step S8, and ends the process.
  • the description of the operation after the execution of the automatic diagnosis operation is omitted.
  • the control device 12 determines whether or not the automatic diagnosis operation and the control operation are possible based on the device response acceleration generated in the monitored device. Therefore, the state of the elevator equipment at the time of the occurrence of an earthquake can be more accurately determined, and a more efficient driving method can be selected at the time of the occurrence of an earthquake.
  • the control device 12 Based on the signals from the car sensor 13 and the counterweight sensor 14, the control device 12 detects the corresponding device response acceleration. For this reason, more accurate device response acceleration can be detected.
  • Control device 12 detects response acceleration generated in machine room 3 based on a signal from machine room sensor 15. Therefore, it is possible to more accurately estimate the device response acceleration generated in the hoisting machine 8, the control device 12, and the like.
  • the car sensor 13 and the counterweight sensor 14 are used, but only one of them may be used.
  • the monitoring target device is not limited to the car 4 and the counterweight 5, but may be the car guide rail 6, the counterweight guide rail 7, the hoisting machine 8, and the like.
  • FIG. 5 is a configuration diagram showing an elevator apparatus according to Embodiment 2 of the present invention.
  • the control device 12 estimates the equipment response acceleration generated in the monitoring target equipment at the time of the occurrence of the earthquake, based on the building shaking information that is information on the shaking of the building 1 and the position information of the monitoring target equipment.
  • the earthquake detector 21 is installed on each floor of the building 1.
  • An acceleration sensor is used as each earthquake sensor 21.
  • the earthquake detectors 21 are installed on all floors within a range where the car 4 moves up and down, including the floor where the car 4 does not stop.
  • the control device 12 uses a signal from each earthquake sensor 21 as building shake information.
  • the monitoring target device of the second embodiment includes the car 4 and the counterweight 5.
  • the car 4 and the counterweight 5 are elevating bodies that move up and down the hoistway 2.
  • the control device 12 uses the position information of the car 4 to estimate the device response acceleration of the car 4.
  • the control device 12 uses the position information of the counterweight 5 to estimate the device response acceleration of the counterweight 5.
  • FIG. 6 is a block diagram showing a main part of the elevator apparatus of FIG.
  • the control device 12 includes, as functional blocks, an operation control unit 16, an acceleration estimation unit 22, a determination unit 18, a control operation control unit 19, and a diagnostic operation control unit 20. That is, the control device 12 of the second embodiment has an acceleration estimating unit 22 instead of the acceleration detecting unit 17 of the first embodiment.
  • the acceleration estimating unit 22 generates the equipment generated in the car 4 and the counterweight 5 based on the signal from each of the earthquake sensors 21, the position information of the car 4, and the position information of the counterweight 5 when the earthquake occurs. Estimate the response acceleration.
  • the position information of the car 4 can be received from the operation control unit 16.
  • the position information of the counterweight 5 can be calculated from the position of the car 4.
  • the acceleration estimation unit 22 estimates the device response acceleration generated in the car 4 based on a signal from the earthquake sensor 21 on the floor where the car 4 is located when an earthquake occurs. In addition, the acceleration estimating unit 22 estimates the device response acceleration generated in the counterweight 5 based on a signal from the earthquake sensor 21 on the floor where the counterweight 5 is located when an earthquake occurs.
  • the determining unit 18 uses the estimated value of the device response acceleration instead of the detected value of the device response acceleration in the first embodiment to determine whether the control operation and the automatic diagnosis operation are possible. That is, the control device 12 of the second embodiment estimates the device response acceleration in step S1 of FIG. Other configurations and operations are the same as those of the first embodiment.
  • the state of the elevator equipment at the time of the occurrence of an earthquake can be more accurately determined using the building shake information and the position information of the monitoring target equipment without directly mounting the sensors on the car 4 and the counterweight 5. Can be determined. Thereby, when an earthquake occurs, a more efficient driving method can be selected.
  • control device 12 uses the signal from each earthquake sensor 21 as building shake information, it is possible to more accurately detect the shake of the building 1.
  • control device 12 uses the position information of the car 4 and the counterweight 5 to estimate the device response acceleration, it is possible to more accurately estimate the device response acceleration of the car 4 and the counterweight 5. .
  • FIG. 7 is a block diagram showing a main part of an elevator apparatus according to Embodiment 3 of the present invention.
  • the control device 12 according to the third embodiment includes, as functional blocks, an operation control unit 16, an acceleration estimation unit 22, an equipment response magnification storage unit 23, a determination unit 18, a control operation control unit 19, and a diagnostic operation control unit 20. ing.
  • the device response magnification storage unit 23 stores the value of the device response magnification for each monitored device in the memory 103.
  • the device response magnification is set according to the floor of the building 1 and the natural frequency of the monitored device.
  • the device response magnification is also described in, for example, the document "Building Standards Act and related laws / regulations ⁇ Explanation of elevator technical standards / 2016 version" ".
  • the control device 12 uses the value of the device response magnification to estimate the device response acceleration of the monitored device.
  • the shaking of the monitored equipment such as the car 4 and the counterweight 5 due to the earthquake is actually different from the shaking of the building 1 due to the earthquake.
  • the factors include reduction of the swing of the car 4 by a car guide device (not shown), deformation of the car guide rail 6 receiving the swing of the car 4, deformation of the counterweight guide rail 7 receiving the swing of the counterweight 5, and the like.
  • the building response to the earthquake can be more accurately converted to the elevator response to the earthquake.
  • the control device 12 calculates a signal from the earthquake sensor 21 on the floor closest to the position of the car 4 and a device response magnification of the car 4 on the floor closest to the position of the car 4. Based on this, the device response acceleration of the car 4 is estimated.
  • the control device 12 estimates the device response acceleration of the counterweight 5 in the same manner as the car 4.
  • the control device 12 transmits a signal from the earthquake detector 21 on the floor closest to the position of the monitoring target device and a device of the monitoring target device.
  • the device response acceleration is estimated based on the response magnification.
  • Other configurations and operations are the same as those of the second embodiment.
  • the value of the device response magnification is used to estimate the device response acceleration of the monitored device, so that the device response acceleration can be more accurately estimated.
  • the acceleration estimating unit 22 may obtain the equipment response accelerations of all floors from the signals from the earthquake sensors 21 of all floors and the equipment response magnifications of all floors, and send the accelerations to the determination unit 18.
  • the determination unit 18 may select the device response acceleration corresponding to the position of the monitoring target device and compare it with the corresponding threshold.
  • FIG. 8 is a block diagram showing a main part of an elevator apparatus according to Embodiment 4 of the present invention.
  • the control device 12 according to the fourth embodiment includes, as functional blocks, an operation control unit 16, an acceleration estimation unit 22, an equipment vibration model storage unit 24, a determination unit 18, a control operation control unit 19, and a diagnostic operation control unit 20. ing.
  • the device vibration model storage unit 24 stores a vibration model for each monitored device in the memory 103.
  • the control device 12 estimates the device response acceleration using the vibration model of the monitored device with the building shake information as an input.
  • the control device 12 receives the signal from the earthquake sensor 21 on the floor closest to the position of the car 4 as an input, and uses the vibration model of the car 4 to generate the device of the car 4. Estimate the response acceleration.
  • the control device 12 estimates the device response acceleration of the counterweight 5 in the same manner as the car 4.
  • the control device 12 inputs a signal from the earthquake sensor 21 on the floor closest to the position of the monitored device, and The device response acceleration is estimated using the vibration model of the device.
  • Other configurations and operations are the same as those of the second embodiment.
  • the vibration model is used to estimate the device response acceleration of the monitored device, the device response acceleration can be more accurately estimated.
  • signals from the earthquake sensors 21 on all floors are input to the acceleration estimation unit 22.
  • the acceleration estimating unit 22 may selectively acquire only the signal from the earthquake sensor 21 on the required floor. Thereby, the amount of information handled by the control device 12 can be reduced.
  • FIG. 9 is a configuration diagram showing an elevator apparatus according to Embodiment 5 of the present invention.
  • the earthquake detectors 21 are installed on some floors of the building 1 instead of all floors.
  • the control device 12 obtains a floor response acceleration that is a response acceleration to an earthquake on the floor where the earthquake sensor 21 is installed, based on a signal from the earthquake sensor 21.
  • the control device 12 uses the floor response acceleration as the building shake information.
  • the control device 12 detects the acceleration detected by the corresponding earthquake sensor 21 as the floor response acceleration.
  • the control device 12 estimates the floor response acceleration of the floor where the monitored device is installed from the detected floor response acceleration. .
  • the building 1 is divided into a plurality of zones in the vertical direction, here, zones 1 to 3.
  • Each of the zones 1 to 3 includes one floor where the earthquake sensor 21 is installed.
  • FIG. 10 is a block diagram showing a main part of the elevator apparatus of FIG. 9, which is the same as FIG. 6 except for the number of earthquake sensors 21.
  • the control device 12 uses a signal from the earthquake detector 21 as building shake information.
  • the acceleration estimating unit 22 of the fifth embodiment assumes that the same building shake occurs in each of the zones 1 to 3 as shown in FIG. Thereby, the acceleration estimating unit 22 estimates the floor response acceleration of the floor where the earthquake sensor 21 is not installed.
  • Other configurations and operations are the same as those of the second embodiment.
  • the elevator device even when the earthquake sensor 21 is installed only on some floors, the elevator device at the time of the occurrence of an earthquake using the signal from the earthquake sensor 21 and the position information of the monitoring target device. Can be determined more accurately. Thereby, when an earthquake occurs, a more efficient driving method can be selected.
  • the configuration of the fifth embodiment is effective.
  • FIG. 12 is a graph illustrating an example of the relationship between the floor response acceleration and the floor number in a high-rise building.
  • a square indicates a location where the earthquake sensor 21 is installed.
  • the seismic detector 21 is installed at the lowest floor of each of the zones 1 to 3.
  • the floor where the earthquake detector 21 is installed in each of the zones 1 to 3 is not limited to the lowest floor.
  • one earthquake sensor 21 is installed in each of zones 1 to 3.
  • two or more earthquake sensors 21 may be installed in each of the zones 1 to 3 in order to improve detection accuracy.
  • the number of zones may be two or four or more.
  • the output of the earthquake sensor 21 is directly input to the acceleration estimating unit 22.
  • the acceleration estimating unit 22 may estimate the device response acceleration using the value of the device response magnification, as in the third embodiment. Further, the acceleration estimating unit 22 may estimate the device response acceleration using the vibration model of the monitored device, as in the fourth embodiment.
  • FIG. 13 is a configuration diagram showing an elevator apparatus according to Embodiment 6 of the present invention.
  • the earthquake detectors 21 are installed on two or more floors of the building 1, here on three floors.
  • a control device main body 12A is installed in the machine room 3.
  • the control device main body 12A is the same as the control device 12 of the third embodiment.
  • a building swing estimating unit 25 is installed.
  • the building shake estimation unit 25 is configured separately from the control device main body 12A.
  • the building shake estimation unit 25 is configured by, for example, a computer.
  • the control device 12 includes a control device main body 12A and a building shake estimation unit 25.
  • the building shake estimation unit 25 calculates the floor response acceleration of the floor where the monitoring target device is installed, based on the signal from the earthquake sensor 21.
  • the control device 12 estimates the floor response acceleration of the floor where the monitored device is installed from the detected floor response acceleration. .
  • FIG. 14 is a graph showing a method of estimating the floor response acceleration by the building shake estimating unit 25 of FIG.
  • a square indicates a location where the earthquake sensor 21 is installed.
  • the building shake estimating unit 25 interpolates between the values of the floor response acceleration detected by the earthquake sensor 21 with a straight line.
  • FIG. 15 is a block diagram showing a main part of the elevator apparatus of FIG.
  • the signal from each earthquake sensor 21 is input to the building shake estimation unit 25.
  • the building swing estimation unit 25 obtains floor response accelerations of all floors of the building 1 using an estimation method as shown in FIG.
  • the floor response acceleration of all floors is estimated by the building shake estimating unit 25 based on signals from two or more earthquake sensors 21 set in the building 1.
  • the state of the elevator equipment at the time of the earthquake can be further improved using the signal from the earthquake sensor 21 and the position information of the monitored device. It can be determined accurately. Thereby, when an earthquake occurs, a more efficient driving method can be selected.
  • the floor response accelerations of all floors are input from the building shake estimation unit 25 to the acceleration estimation unit 22.
  • the monitoring target device is the car 4 and the counterweight 5
  • the position information of the car 4 and the counterweight 5 is input to the building swing estimation unit 25, and only the floor response acceleration of the floor corresponding to the position information is calculated. It may be input to the acceleration estimation unit 22.
  • the position information of the car 4 may be obtained from the control device 12 or from another position sensor.
  • the position information of the counterweight 5 may be calculated by the building swing estimating unit 25 from the position information of the car 4 or may be acquired from another position sensor.
  • the position information of the monitoring target device may be set in the building shake estimation unit 25 in advance, and only the required floor response acceleration may be input to the acceleration estimation unit 22.
  • the acceleration estimating unit 22 may determine the equipment response accelerations of all floors from the floor response accelerations of all floors and the equipment response magnifications of all floors, and send the accelerations to the determination unit 18.
  • the determination unit 18 may select the device response acceleration corresponding to the position of the monitoring target device and compare it with the corresponding threshold.
  • the acceleration estimating unit 22 estimates the device response acceleration using the device response magnification.
  • the acceleration estimating unit 22 may estimate the device response acceleration using the vibration model of the monitored device, as in the fourth embodiment.
  • FIG. 16 is a configuration diagram showing an elevator apparatus according to Embodiment 7 of the present invention.
  • FIG. 17 is a block diagram showing a main part of the elevator apparatus of FIG. In Embodiment 7, the earthquake detector 21 is installed only on one floor of the building 1.
  • the building shake estimation unit 25 has a building vibration model storage unit 26 as a functional block.
  • the building vibration model storage unit 26 stores the vibration model of the building 1 in the memory of the building shake estimation unit 25.
  • the building shake estimating unit 25 obtains floor response accelerations of all floors based on the signal from the earthquake sensor 21.
  • the earthquake sensor 21 is installed only on one floor, but the building shake estimation unit 25 receives the signal from the earthquake sensor 21 as an input, and uses the vibration model of the building 1 to detect all floors.
  • the floor response acceleration of is calculated. Then, the information on the floor response acceleration is output to the control device main body 12A.
  • the acceleration estimation unit 22 estimates the device response acceleration generated in the monitored device based on the input floor response acceleration and the position information of the monitored device when an earthquake occurs. Other configurations and operations are the same as in the sixth embodiment.
  • the floor response acceleration of each floor is estimated using the vibration model of the building 1. Therefore, the floor response acceleration of each floor can be estimated from the signal from at least one earthquake sensor 21.
  • the building shake estimating unit 25 of the seventh embodiment may use signals from two or more earthquake sensors 21.
  • the floor response accelerations of all floors are input from the building shake estimation unit 25 to the acceleration estimation unit 22.
  • the monitoring target device is the car 4 and the counterweight 5
  • the position information of the car 4 and the counterweight 5 is input to the building swing estimation unit 25, and only the floor response acceleration of the floor corresponding to the position information is calculated. It may be input to the acceleration estimation unit 22.
  • the position information of the car 4 may be obtained from the control device 12 or from another position sensor.
  • the position information of the counterweight 5 may be calculated by the building swing estimating unit 25 from the position information of the car 4 or may be acquired from another position sensor.
  • the position information of the monitoring target device may be set in the building shake estimation unit 25 in advance, and only the required floor response acceleration may be input to the acceleration estimation unit 22.
  • FIG. 18 is a configuration diagram showing an elevator apparatus according to Embodiment 8 of the present invention.
  • FIG. 19 is a block diagram showing a main part of the elevator apparatus of FIG.
  • the car sensor 13 is provided on the car 4 as the first elevating body.
  • the counterweight 5 serving as the second elevating body is not provided with the counterweight sensor 14.
  • a machine room sensor 15 is provided in the machine room 3.
  • the building shake estimation unit 25 obtains the floor response acceleration of all floors using the vibration model of the building 1 with the signal from the earthquake sensor 21 as an input, as in the seventh embodiment. Signals from the car sensor 13 and the machine room sensor 15 are input to the control device main body 12A.
  • the acceleration estimation unit 22 detects the device response acceleration of the car 4 as the monitoring target device based on the signal from the car sensor 13. Further, the acceleration estimating unit 22 estimates the device response acceleration of the monitoring target device installed in the machine room 3 based on the signal from the machine room sensor 15.
  • the acceleration estimating unit 22 estimates the device response acceleration of the counterweight 5 that is the monitoring target device based on the building shake information from the building shake estimating unit 25 and the position information of the counterweight 5.
  • Other configurations and operations are the same as those of the first embodiment.
  • the counterweight 5 has no wiring, but the car 4 and the machine room 3 have wiring already installed. For this reason, the car 4 is provided with a car sensor 13 to directly detect the device response acceleration of the car 4. Further, a machine room sensor 15 is provided in the machine room 3, and the device response acceleration of the monitoring target device installed in the machine room 3 is more accurately estimated.
  • the counterweight 5 estimates the device response acceleration by the same method as in the seventh embodiment. This eliminates the need to install new wiring on the counterweight 5 and can suppress an increase in cost.
  • the device response acceleration of the counterweight 5 is estimated by the same method as in the seventh embodiment, but may be estimated by the methods of the second to sixth embodiments.
  • the counterweight sensor 5 is provided on the counterweight 5 and the car sensor 13 is not provided on the car 4. That is, the counterweight 5 may be a first elevating body, and the car 4 may be a second elevating body.
  • the installation location of the building shake estimation unit 25 of the sixth to eighth embodiments is not particularly limited.
  • the building shake estimating unit 25 of the sixth to eighth embodiments may be integrated with the control device 12. That is, the function of the building shake estimation unit 25 may be provided to the control device 12.
  • FIG. 20 is a configuration diagram showing an elevator apparatus according to Embodiment 9 of the present invention.
  • the control device 31 of the ninth embodiment determines whether or not the control operation and the automatic diagnosis operation are possible based on a signal from the earthquake sensor 21 when an earthquake occurs.
  • the control device 31 changes the criterion for determining whether or not the control operation and the automatic diagnosis operation are possible, in accordance with the position of the car 4 as the lifting body and the position of the counterweight 5 as the lifting body.
  • the control device 31 changes the magnification by which a value used for determining whether or not the control operation and the automatic diagnosis operation are possible is determined according to the position of the car 4 and the position of the counterweight 5.
  • the sway of the building 1 when an earthquake occurs differs depending on the floor, and the sway of the elevator equipment also differs depending on the floor where the equipment is located. Therefore, the swing of the car 4 at the time of the occurrence of the earthquake, that is, the response acceleration also differs depending on the floor where the car 4 is located at the time of the occurrence of the earthquake, for example, as shown in FIG.
  • the strength of the car 4 is designed for the maximum shaking.
  • the response acceleration that is used in the strength design and does not break the car 4 is an allowable value.
  • the response acceleration at the lowest floor is an allowable value.
  • the car 4 when the car 4 is located on the middle floor, the car 4 can withstand a larger earthquake stronger than the case where the car 4 is located on the lowest floor. Can be.
  • magnification that changes depending on the floor can be calculated as shown in FIG. In FIG. 24, the magnification is higher when the car 4 is located on the middle floor than when the car 4 is located at the same height as the ground surface.
  • the response acceleration of the car 4 and the counterweight 5 to various input seismic waves is calculated. Then, the maximum value of the calculation result is set as the response acceleration of the car 4 and the counterweight 5, and the magnification is calculated from the response acceleration.
  • magnification is calculated in advance in accordance with the building 1 and the elevator device when the elevator device is installed.
  • FIG. 26 is a block diagram showing a main part of the elevator apparatus of FIG.
  • the control device 31 includes, as functional blocks, an operation control unit 16, a magnification storage unit 32, a determination unit 33, a traffic control operation control unit 19, and a diagnostic operation control unit 20.
  • the operation control unit 16, the control operation control unit 19, and the diagnostic operation control unit 20 are the same as those in the first embodiment.
  • the magnification storage unit 32 stores the magnification calculated as described above in the memory 103 of the control device 31.
  • the determining unit 33 determines whether the control operation and the automatic diagnosis operation are possible based on the signal from the earthquake sensor 21, the position of the car 4, and the magnification.
  • FIG. 27 is an explanatory diagram illustrating the determination operation of the determination unit 33 in FIG. An allowable value for the control operation and an allowable value for the automatic diagnosis operation are set in the determination unit.
  • the determination unit 33 selects a magnification according to the position of the car 4 when an earthquake occurs.
  • the determination unit 33 multiplies the permissible value for the traffic control operation by the selected magnification to obtain a first threshold value for the propriety of the traffic control operation. In addition, when an earthquake occurs, the determination unit 33 multiplies the allowable value for the automatic diagnosis operation by the selected magnification to obtain a second threshold value regarding whether or not the automatic diagnosis operation is possible.
  • the threshold value when the car 4 is located at the same height as the ground surface is different from the threshold value when the car 4 is located on the middle floor. ing. Specifically, the threshold value when the car 4 is located on the middle floor is higher than the threshold value when the car 4 is located at the same height as the ground surface.
  • the determining unit 33 compares the output value from the earthquake sensor 21 with the first threshold value, and determines that the control operation is possible when the output value is equal to or less than the first threshold value. In addition, when the output value exceeds the first threshold, the determination unit 33 determines that the control operation is not possible.
  • the determining unit 33 compares the output value from the earthquake sensor 21 with the second threshold value, and determines that the automatic diagnosis operation is possible when the output value is equal to or less than the second threshold value. In addition, when the output value exceeds the second threshold, the determination unit 33 determines that the automatic diagnosis operation is not possible.
  • FIG. 28 is a flowchart showing the operation of the control device 31 of FIG.
  • control device 31 starts the operation in FIG.
  • the control device 31 first detects the position of the car 4 in step S11.
  • step S12 the control device 31 selects a magnification corresponding to the position of the car 4. Then, the control device 31 determines in step S2 whether or not the control operation is possible.
  • step S2 If it is determined in step S2 that the control operation is not possible, the control device 31 stops the car 4 suddenly in step S3. Thereafter, in step S4, control device 31 notifies the control room that the control operation has not been performed.
  • step S2 If it is determined in step S2 that the control operation is possible, the control device 31 performs the control operation in step S5.
  • step S6 the control device 31 determines whether or not the earthquake continues. That is, the control device 31 determines whether or not the shaking of the earthquake continues based on the signal from the earthquake sensor 21 and waits until the shaking stops.
  • control device 31 determines in step S7 whether or not the automatic diagnosis operation can be performed.
  • step S7 If it is determined in step S7 that the automatic diagnosis operation is not allowed, the control device 31 notifies the management room that the automatic diagnosis operation has not been performed in step S4.
  • step S7 If it is determined in step S7 that the automatic diagnosis operation is possible, the control device 31 performs the automatic diagnosis operation in step S8, and ends the process.
  • the description of the operation after the execution of the automatic diagnosis operation is omitted.
  • Other configurations and operations are the same as those in the first embodiment.
  • the control device 31 changes the first threshold value regarding the availability of the control operation and the second threshold value regarding the availability of the automatic diagnosis operation according to the position of the car 4. Therefore, when an earthquake occurs, it is possible to select a more efficient operation method of the elevator apparatus.
  • the threshold value when the car 4 is located at the same height as the ground surface is different from the threshold value when the car 4 is located on the middle floor. Therefore, when an earthquake occurs, it is possible to select a more efficient operation method of the elevator apparatus.
  • control device 31 sets a threshold value based on the maximum value of each floor among the plurality of response accelerations of the car 4 and the counterweight 5 on each floor calculated for a plurality of different input seismic waves. Therefore, it is possible to select a more efficient operation method of the elevator apparatus for any earthquake.
  • the response acceleration of the car 4 and the response acceleration of the counterweight 5 were separately calculated.
  • the car 4 and the counterweight 5 have a reversed positional relationship. Therefore, the response acceleration of the car 4 as shown in FIG. 21 is inverted upside down and used as the response acceleration of the counterweight 5.
  • the response acceleration of the counterweight 5 is superimposed on the response acceleration of the car 4 as shown in FIG. 29, whereby the response acceleration of the car 4 and the counterweight 5 is obtained.
  • the magnification can be calculated as shown in FIG.
  • the magnification shown in FIG. 30 is symmetrical in the height direction with the middle floor as the center.
  • the magnification is vertically symmetric as shown in FIG. Therefore, as shown in FIG. 31, the magnification can be obtained by linear approximation based on the values of three points.
  • the three points are a magnification corresponding to the response acceleration of the car 4 on the lowest floor, a magnification corresponding to the response acceleration of the car 4 on the intermediate floor to be turned back, and a magnification corresponding to the response acceleration of the car 4 on the top floor. It is.
  • the shaking of the building 1 during the earthquake usually changes according to the height of the building 1.
  • the maximum acceleration occurs on the top floor as shown in FIG.
  • the acceleration decreases from the ground to the top floor.
  • the magnification is calculated on the basis of the detailed building shake. However, especially when the building 1 is 60 m or less, data on the building shake may not be available. In this case, the magnification can be set based on the response acceleration of the building 1 to the earthquake set according to the height of the building 1. That is, when the building 1 is 60 m or less, the magnification can be set based on the general building shake data shown in FIG.
  • the magnification may be set based on the data of the building shake shown in FIG. 33 or the data obtained by approximating the straight line in FIG.
  • the allowable value is multiplied by the magnification.
  • the same effect can be obtained by multiplying the signal from the seismic sensor 21, that is, the sensor output, by the magnification according to the position of the car 4. Is obtained.
  • the magnification in this case has a shape obtained by inverting the magnification shown in FIG. 27 from side to side.
  • magnification is changed according to the position of the car 4, but the magnification may be changed according to the position of the counterweight 5.
  • the value used for determining the possibility of the earthquake response operation is multiplied by the magnification.
  • the method of changing the determination standard of the possibility of the earthquake response operation according to the position of the car 4 is a method of multiplying the magnification. Not limited.
  • whether the automatic diagnosis operation and the control operation are permitted or not is determined. However, only one of the two may be determined.
  • control device that determines whether or not to operate in response to an earthquake may be separated from a device that controls normal operation of the elevator device.
  • the present invention can also be applied to a case where a plurality of elevator devices are installed in the same building. In this case, by determining whether or not the earthquake-compatible operation can be performed for each elevator device, a more efficient operation method of the elevator device can be selected for the entire building 1 when an earthquake occurs.
  • the layout of the entire elevator apparatus is not limited to the layout shown in FIG.
  • the present invention can be applied to a 2: 1 roping type elevator apparatus.
  • the present invention can be applied to various types of elevators.
  • the present invention can be applied to a machine roomless elevator, a double deck elevator, or a one-shaft multi-car system.
  • the one-shaft multi-car system is a system in which an upper car and a lower car disposed directly below an upper car independently move up and down a common hoistway.

Abstract

This elevator apparatus has a control device. During the occurrence of an earthquake, the control device determines the possibility of an autonomous diagnosis operation and/or a management operation on the basis of machine response acceleration occurring in a monitored machine, which is at least one elevator machine.

Description

エレベータ装置Elevator equipment
 この発明は、エレベータ装置に関し、特に地震発生時の制御に関するものである。 The present invention relates to an elevator apparatus, and more particularly to control at the time of occurrence of an earthquake.
 従来、地震に対するエレベータ機器の強度は、次式に基づいて設計される。
 ae=ai×m
 ai=ag×βi
 但し、aeは、エレベータ機器に発生する加速度である。また、aiは、エレベータ機器があるi階の建物応答加速度である。また、mは、建物とエレベータ機器との応答倍率、即ち共振倍率である。また、agは、建物に入力される地震加速度である。また、βiは、建物のi階の加速度応答倍率である。
Conventionally, the strength of elevator equipment against earthquakes is designed based on the following equation.
a e = a i × m
a i = a g × β i
Here, a e is the acceleration generated in the elevator equipment. A i is the building response acceleration on the i-th floor where the elevator equipment is located. M is the response magnification between the building and the elevator equipment, that is, the resonance magnification. A g is the seismic acceleration input to the building. Β i is the acceleration response magnification of the i-th floor of the building.
 上式において、加速度応答倍率は階によって変わるため、必要な機器強度も階によって変わる。しかし、エレベータ機器、特にかご及び釣合おもりは、地震発生時にどの階に位置しているか分からない。このため、かご及び釣合おもりの強度設計は、階応答加速度が最大となる階に位置している場合を想定して実施されている。 に お い て In the above equation, the acceleration response magnification varies depending on the floor, so the required equipment strength also varies depending on the floor. However, elevator equipment, especially cars and counterweights, does not know at which floor they are located when an earthquake occurs. For this reason, the strength design of the car and the counterweight is performed on the assumption that the car and the counterweight are located on the floor where the floor response acceleration is maximum.
 また、地震感知器は、昇降路、又は建物内の他の場所に設置されている。そして、地震時には、地震感知器の出力が基準値を超えたかどうかで、自動診断運転の可否が判定されている。自動診断運転は、地震後にエレベータの通常運転を再開させることができるかどうかを、自動的に診断する運転である。 地震 Earthquake detectors are installed on the hoistway or other places in the building. Then, at the time of an earthquake, whether or not automatic diagnosis operation is possible is determined based on whether or not the output of the earthquake sensor has exceeded a reference value. The automatic diagnosis operation is an operation for automatically diagnosing whether normal operation of the elevator can be resumed after the earthquake.
 このため、地震感知器の出力が基準値を超えた場合、かごの位置によっては、強度限界までに余裕があるにも拘わらず、自動診断運転が不可であると判定されることがある。これにより、エレベータの通常運転の再開までに時間がかかってしまう。 Therefore, when the output of the earthquake sensor exceeds the reference value, it may be determined that the automatic diagnosis operation is not possible depending on the position of the car even though there is a margin before the strength limit. As a result, it takes time to resume normal operation of the elevator.
 これに対して、従来のエレベータの地震管制運転からの復旧方法では、複数の特定エレベータから、地震感知器の出力データである評価データを、管理部署に伝送する。また、従来の復旧方法では、各特定エレベータ又は各地震感知器の設置条件に基づいて、対応する評価データを評価しなおし、各特定エレベータが設置された場所における震度レベルを推定する。そして、従来の復旧方法では、推定した震度レベルに基づいて、一般エレベータの復旧運転の可否を判定する(例えば、特許文献1参照)。 On the other hand, in the conventional method of restoring the elevator from the earthquake control operation, the evaluation data, which is the output data of the earthquake sensor, is transmitted from a plurality of specific elevators to the management department. In the conventional restoration method, the corresponding evaluation data is re-evaluated based on the installation condition of each specific elevator or each earthquake sensor, and the seismic intensity level at the place where each specific elevator is installed is estimated. Then, in the conventional restoration method, it is determined based on the estimated seismic intensity level whether or not the restoration operation of the general elevator is possible (for example, see Patent Document 1).
特許第2596452号公報Japanese Patent No. 2596452
 上記のような従来の地震管制運転からの復旧方法では、震度レベルに基づいて復旧運転の可否を判定するので、かごの位置による強度の余裕を活用することはできず、強度限界までに余裕があるにも拘わらず、自動診断運転が不可であると判定されることがある。 In the above-mentioned conventional method of restoring from seismic control operation, whether or not restoration operation is possible is determined based on the seismic intensity level. Despite this, it may be determined that the automatic diagnosis operation is not possible.
 この発明は、上記のような課題を解決するためになされたものであり、地震発生時に、より効率的な運転方法を選択することができるエレベータ装置を得ることを目的とする。 The present invention has been made to solve the above-described problems, and has as its object to obtain an elevator apparatus capable of selecting a more efficient driving method when an earthquake occurs.
 この発明に係るエレベータ装置は、地震発生時に、少なくとも1つのエレベータ機器である監視対象機器に発生した機器応答加速度に基づいて、自動診断運転及び管制運転の少なくともいずれか一方の可否を判定する制御装置を備えている。
 また、この発明に係るエレベータ装置は、地震発生時に、建物に設定されている地震感知器からの信号に基づいて、自動診断運転及び管制運転の少なくともいずれか一方である地震対応運転の可否を判定するとともに、昇降路を昇降する昇降体の位置に応じて、地震対応運転の可否の判定基準を変更する制御装置を備えている。
An elevator device according to the present invention is a control device that determines whether at least one of an automatic diagnosis operation and a traffic control operation is possible based on a device response acceleration generated in a monitored device that is at least one elevator device when an earthquake occurs. It has.
Further, the elevator apparatus according to the present invention determines whether or not an earthquake-responsive operation, which is at least one of the automatic diagnosis operation and the control operation, based on a signal from an earthquake sensor set in a building when an earthquake occurs. And a control device for changing a criterion for determining whether or not to operate in response to the earthquake in accordance with the position of the hoisting body that moves up and down the hoistway.
 この発明のエレベータ装置によれば、地震発生時に、より効率的な運転方法を選択することができる。 According to the elevator apparatus of the present invention, a more efficient driving method can be selected when an earthquake occurs.
この発明の実施の形態1によるエレベータ装置を示す構成図である。1 is a configuration diagram showing an elevator apparatus according to Embodiment 1 of the present invention. 図1のエレベータ装置の要部を示すブロック図である。It is a block diagram which shows the principal part of the elevator apparatus of FIG. 図2の制御装置の構成の一例を示すブロック図である。FIG. 3 is a block diagram illustrating an example of a configuration of a control device in FIG. 2. 図2の制御装置の動作を示すフローチャートである。3 is a flowchart illustrating an operation of the control device in FIG. 2. この発明の実施の形態2によるエレベータ装置を示す構成図である。FIG. 5 is a configuration diagram illustrating an elevator apparatus according to Embodiment 2 of the present invention. 図5のエレベータ装置の要部を示すブロック図である。It is a block diagram which shows the principal part of the elevator apparatus of FIG. この発明の実施の形態3によるエレベータ装置の要部を示すブロック図である。FIG. 10 is a block diagram showing a main part of an elevator apparatus according to Embodiment 3 of the present invention. この発明の実施の形態4によるエレベータ装置の要部を示すブロック図である。FIG. 14 is a block diagram showing a main part of an elevator apparatus according to Embodiment 4 of the present invention. この発明の実施の形態5によるエレベータ装置を示す構成図である。It is a block diagram which shows the elevator apparatus by Embodiment 5 of this invention. 図9のエレベータ装置の要部を示すブロック図である。It is a block diagram which shows the principal part of the elevator apparatus of FIG. 図10の加速度推定部における階応答加速度の設定状態の一例を示すグラフである。It is a graph which shows an example of the setting state of the floor response acceleration in the acceleration estimation part of FIG. 高層ビルにおける階数と階応答加速度との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the number of floors and the floor response acceleration in a high-rise building. この発明の実施の形態6によるエレベータ装置を示す構成図である。FIG. 13 is a configuration diagram showing an elevator apparatus according to Embodiment 6 of the present invention. 図13の建物揺れ推定装置による階応答加速度の推定方法を示すグラフである。14 is a graph illustrating a method of estimating a floor response acceleration by the building shake estimation device in FIG. 13. 図13のエレベータ装置の要部を示すブロック図である。It is a block diagram which shows the principal part of the elevator apparatus of FIG. この発明の実施の形態7によるエレベータ装置を示す構成図である。FIG. 14 is a configuration diagram illustrating an elevator apparatus according to Embodiment 7 of the present invention. 図16のエレベータ装置の要部を示すブロック図である。FIG. 17 is a block diagram illustrating a main part of the elevator device of FIG. 16. この発明の実施の形態8によるエレベータ装置を示す構成図である。FIG. 16 is a configuration diagram showing an elevator apparatus according to Embodiment 8 of the present invention. 図18のエレベータ装置の要部を示すブロック図である。FIG. 19 is a block diagram illustrating a main part of the elevator device of FIG. 18. この発明の実施の形態9によるエレベータ装置を示す構成図である。FIG. 15 is a configuration diagram showing an elevator apparatus according to Embodiment 9 of the present invention. 地震に対するかごの応答加速度と、かごの位置との関係の一例を示すグラフである。It is a graph which shows an example of the relation between the response acceleration of a car to an earthquake, and the position of a car. 地震に対する釣合おもりの応答加速度と、釣合おもりの位置との関係の一例を示すグラフである。It is a graph which shows an example of the relation between the response acceleration of the counterweight to the earthquake, and the position of the counterweight. 図21と図22とを重ね合わせたグラフである。23 is a graph in which FIG. 21 and FIG. 22 are superimposed. 図23に基づいて計算した倍率を示すグラフである。24 is a graph showing a magnification calculated based on FIG. 23. 様々な入力地震波に対するかご及び釣合おもりの応答加速度と、かご及び釣合おもりの位置との関係を示すグラフである。9 is a graph showing the relationship between the response acceleration of a car and a counterweight to various input seismic waves, and the positions of the car and the counterweight. 図20のエレベータ装置の要部を示すブロック図である。FIG. 21 is a block diagram showing a main part of the elevator apparatus of FIG. 20. 図26の判定部の判定動作を説明する説明図である。FIG. 27 is an explanatory diagram illustrating a determination operation of a determination unit in FIG. 26. 図26の制御装置の動作を示すフローチャートである。27 is a flowchart showing the operation of the control device in FIG. 26. 図21のかごの応答加速度を上下逆転した釣合おもりの応答加速度を、かごの応答加速度に重ね合わせたグラフである。FIG. 22 is a graph in which the response acceleration of the counterweight obtained by inverting the response acceleration of the car in FIG. 21 is superimposed on the response acceleration of the car. 図29に基づいて計算した倍率を示すグラフである。30 is a graph showing a magnification calculated based on FIG. 29. 3点を直線近似して得た倍率を示すグラフである。It is a graph which shows the magnification obtained by linearly approximating three points. 60m以下の建物の一般的な応答加速度を示すグラフである。It is a graph which shows the general response acceleration of a building of 60 m or less. 60mを超える高層建物の一般的な応答加速度を示すグラフである。It is a graph which shows the general response acceleration of a high-rise building exceeding 60m. 図32の応答加速度を直線で近似して示すグラフである。33 is a graph showing the response acceleration of FIG. 32 approximated by a straight line. 図26の判定部の他の判定動作を示すフローチャートである。27 is a flowchart illustrating another determination operation of the determination unit in FIG. 26. 図35の判定動作で用いる倍率を示すグラフである。36 is a graph illustrating a magnification used in the determination operation in FIG. 35.
 以下、この発明を実施するための形態について、図面を参照して説明する。
 実施の形態1.
 図1は、この発明の実施の形態1によるエレベータ装置を示す構成図である。図において、建物1には、昇降路2及び機械室3が設けられている。機械室3は、昇降路2の上部に設けられている。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 is a configuration diagram showing an elevator apparatus according to Embodiment 1 of the present invention. In the figure, a building 1 is provided with a hoistway 2 and a machine room 3. The machine room 3 is provided above the hoistway 2.
 昇降路2内には、かご4及び釣合おもり5が設けられている。また、昇降路2内には、一対のかごガイドレール6及び一対の釣合おもりガイドレール7が設置されている。かご4は、一対のかごガイドレール6に沿って昇降路2内を昇降する。釣合おもり5は、一対の釣合おもりガイドレール7に沿って昇降路2内を昇降する。 か A car 4 and a counterweight 5 are provided in the hoistway 2. A pair of car guide rails 6 and a pair of counterweight guide rails 7 are installed in the hoistway 2. The car 4 moves up and down in the hoistway 2 along a pair of car guide rails 6. The counterweight 5 moves up and down in the hoistway 2 along a pair of counterweight guide rails 7.
 機械室3には、巻上機8が設置されている。巻上機8は、駆動シーブ9、図示しないモータ、及び図示しないブレーキを有している。モータは、駆動シーブ9を回転させる。ブレーキは、駆動シーブ9の静止状態を保持、又は駆動シーブ9の回転を制動する。 巻 The machine room 3 is provided with a hoisting machine 8. The hoist 8 has a drive sheave 9, a motor (not shown), and a brake (not shown). The motor rotates the drive sheave 9. The brake keeps the drive sheave 9 stationary or brakes the rotation of the drive sheave 9.
 機械室3には、そらせ車10が設けられている。そらせ車10は、駆動シーブ9に対して間隔をおいて配置されている。 The machine room 3 is provided with a deflector wheel 10. The deflecting wheel 10 is arranged at a distance from the drive sheave 9.
 駆動シーブ9及びそらせ車10には、懸架体11が巻き掛けられている。懸架体11としては、複数本のロープ又は複数本のベルトが用いられている。 A suspension 11 is wound around the drive sheave 9 and the deflector wheel 10. As the suspension body 11, a plurality of ropes or a plurality of belts are used.
 かご4は、駆動シーブ9の一側で、懸架体11により吊り下げられている。釣合おもり5は、駆動シーブ9の他側で、懸架体11により吊り下げられている。かご4及び釣合おもり5は、駆動シーブ9を回転させることにより、昇降路2内を昇降する。 The car 4 is suspended by a suspension 11 on one side of the drive sheave 9. The counterweight 5 is suspended by a suspension 11 on the other side of the drive sheave 9. The car 4 and the counterweight 5 move up and down in the hoistway 2 by rotating the drive sheave 9.
 機械室3には、制御装置12が設置されている。制御装置12は、巻上機8を制御することにより、かご4の運行を制御する。 制 御 The control unit 12 is installed in the machine room 3. The control device 12 controls the operation of the car 4 by controlling the hoisting machine 8.
 かご4、釣合おもり5、及び機械室3に設置された機器は、エレベータ機器である。これらのエレベータ機器には、地震発生時に、それぞれ機器応答加速度が発生する。 The devices installed in the car 4, the counterweight 5, and the machine room 3 are elevator devices. In these elevator devices, device response accelerations are generated when an earthquake occurs.
 かご4には、かごセンサ13が設けられている。釣合おもり5には、釣合おもりセンサ14が設けられている。機械室3の床部には、機械室センサ15が設けられている。かごセンサ13、釣合おもりセンサ14、及び機械室センサ15としては、それぞれ加速度センサが用いられている。 The car 4 is provided with a car sensor 13. The counterweight 5 is provided with a counterweight sensor 14. A machine room sensor 15 is provided on the floor of the machine room 3. An acceleration sensor is used as each of the car sensor 13, the counterweight sensor 14, and the machine room sensor 15.
 かごセンサ13は、地震発生時に、かご4に発生する機器応答加速度に応じた信号を発生する。釣合おもりセンサ14は、地震発生時に、釣合おもり5に発生する機器応答加速度に応じた信号を発生する。実施の形態1の監視対象機器は、かご4及び釣合おもり5である。 The car sensor 13 generates a signal corresponding to the equipment response acceleration generated in the car 4 when an earthquake occurs. The counterweight sensor 14 generates a signal corresponding to the device response acceleration generated in the counterweight 5 when an earthquake occurs. The monitoring target devices of the first embodiment are a car 4 and a counterweight 5.
 機械室センサ15は、地震発生時に、機械室3の床部に発生する応答加速度に応じた信号を発生する。 The machine room sensor 15 generates a signal according to the response acceleration generated on the floor of the machine room 3 when an earthquake occurs.
 図2は、図1のエレベータ装置の要部を示すブロック図である。制御装置12は、機能ブロックとして、運行制御部16、加速度検出部17、判定部18、管制運転制御部19、及び診断運転制御部20を有している。運行制御部16は、かご4の運行を制御する。 FIG. 2 is a block diagram showing a main part of the elevator apparatus of FIG. The control device 12 includes, as functional blocks, an operation control unit 16, an acceleration detection unit 17, a determination unit 18, a control operation control unit 19, and a diagnostic operation control unit 20. The operation control unit 16 controls the operation of the car 4.
 加速度検出部17は、地震発生時に、かごセンサ13からの信号に基づいて、かご4に発生した機器応答加速度を検出する。また、加速度検出部17は、地震発生時に、釣合おもりセンサ14からの信号に基づいて、釣合おもり5に発生した機器応答加速度を検出する。また、加速度検出部17は、地震発生時に、機械室センサ15からの信号に基づいて、機械室3に発生した応答加速度を検出する。 The acceleration detecting unit 17 detects the device response acceleration generated in the car 4 based on a signal from the car sensor 13 when an earthquake occurs. In addition, the acceleration detecting unit 17 detects the device response acceleration generated in the counterweight 5 based on a signal from the counterweight sensor 14 when an earthquake occurs. In addition, the acceleration detecting unit 17 detects a response acceleration generated in the machine room 3 based on a signal from the machine room sensor 15 when an earthquake occurs.
 判定部18は、地震発生時に、かご4に発生した機器応答加速度と、釣合おもり5に発生した機器応答加速度と、機械室3に発生した応答加速度とに基づいて、自動診断運転及び管制運転の可否を判定する。 The determination unit 18 performs an automatic diagnosis operation and a control operation based on the device response acceleration generated in the car 4 when the earthquake occurs, the device response acceleration generated in the counterweight 5, and the response acceleration generated in the machine room 3. Is determined.
 制御装置12には、判定部18での判定基準となる複数の閾値が設定されている。閾値には、自動診断運転に関する3つの閾値と、管制運転に関する3つの閾値とが含まれている。自動診断運転に関する3つの閾値には、かご4の閾値、釣合おもり5の閾値、及び機械室3の閾値が含まれている。管制運転に関する3つの閾値には、かご4の閾値、釣合おもり5の閾値、及び機械室3の閾値が含まれている。 The control device 12 is set with a plurality of thresholds serving as a criterion for determination by the determination unit 18. The thresholds include three thresholds related to the automatic diagnosis operation and three thresholds related to the control operation. The three thresholds related to the automatic diagnosis operation include a threshold of the car 4, a threshold of the counterweight 5, and a threshold of the machine room 3. The three thresholds related to the control operation include the threshold of the car 4, the threshold of the counterweight 5, and the threshold of the machine room 3.
 判定部18は、かご4の機器応答加速度、釣合おもり5の機器応答加速度、及び機械室3の応答加速度の全てが、対応する自動診断運転の閾値以下である場合に、自動診断運転が可能であると判定する。また、判定部18は、かご4の機器応答加速度、釣合おもり5の機器応答加速度、及び機械室3の応答加速度のいずれか1つ以上が、対応する自動診断運転の閾値よりも高い場合に、自動診断運転が不可であると判定する。 The determination unit 18 can perform the automatic diagnosis operation when all of the device response acceleration of the car 4, the device response acceleration of the counterweight 5, and the response acceleration of the machine room 3 are equal to or less than the corresponding threshold value of the automatic diagnosis operation. Is determined. The determining unit 18 determines that at least one of the device response acceleration of the car 4, the device response acceleration of the counterweight 5, and the response acceleration of the machine room 3 is higher than the corresponding threshold value of the automatic diagnosis operation. It is determined that the automatic diagnosis operation cannot be performed.
 判定部18は、かご4の機器応答加速度、釣合おもり5の機器応答加速度、及び機械室3の応答加速度の全てが、対応する管制運転の閾値以下である場合に、管制運転が可能であると判定する。また、判定部18は、かご4の機器応答加速度、釣合おもり5の機器応答加速度、及び機械室3の応答加速度のいずれか1つ以上が、対応する管制運転の閾値よりも高い場合に、管制運転が不可であると判定する。 The determining unit 18 can perform the control operation when all of the device response acceleration of the car 4, the device response acceleration of the counterweight 5, and the response acceleration of the machine room 3 are equal to or less than the corresponding threshold value of the control operation. Is determined. In addition, when any one or more of the device response acceleration of the car 4, the device response acceleration of the counterweight 5, and the response acceleration of the machine room 3 are higher than the corresponding threshold value of the control operation, It is determined that the control operation is impossible.
 管制運転制御部19は、地震発生時に、判定部18により管制運転が可能であると判定されると、管制運転を実施する。管制運転は、地震発生時に、かご4を最寄り階に安全に停止させ、戸開させる運転である。 The control operation control unit 19 performs the control operation when the control unit 19 determines that the control operation is possible when the earthquake occurs. The control operation is an operation in which, when an earthquake occurs, the car 4 is safely stopped at the nearest floor and the door is opened.
 診断運転制御部20は、地震発生後、判定部18により自動診断運転が可能であると判定されると、自動診断運転を実施する。自動診断運転は、地震後にエレベータの通常運転を再開させることができるかどうかを、自動的に診断する運転である。自動診断運転及び管制運転は、地震対応運転である。 The diagnostic operation control unit 20 performs the automatic diagnostic operation when the determination unit 18 determines that the automatic diagnostic operation is possible after the occurrence of the earthquake. The automatic diagnosis operation is an operation for automatically diagnosing whether normal operation of the elevator can be resumed after the earthquake. The automatic diagnosis operation and the control operation are operation corresponding to an earthquake.
 制御装置12は、自動診断運転が不可であると判定された場合、エレベータ装置を運転休止のままとする。 (4) When it is determined that the automatic diagnosis operation cannot be performed, the control device 12 keeps the operation of the elevator device stopped.
 図3は、図2の制御装置12の構成の一例を示すブロック図である。制御装置12は、通信装置101、プロセッサ102、及びメモリ103を有している。制御装置12の機能は、図3に示すコンピュータにより実現される。メモリ103には、制御装置12の機能を実行するプログラムと、判定部18での判定基準となる複数の閾値とが格納されている。プロセッサ102は、メモリ103に格納されたプログラムに従って演算処理を実行する。 FIG. 3 is a block diagram showing an example of the configuration of the control device 12 of FIG. The control device 12 includes a communication device 101, a processor 102, and a memory 103. The functions of the control device 12 are realized by the computer shown in FIG. The memory 103 stores a program for executing the function of the control device 12 and a plurality of thresholds serving as determination criteria in the determination unit 18. The processor 102 performs arithmetic processing according to a program stored in the memory 103.
 図4は、図2の制御装置12の動作を示すフローチャートである。制御装置12は、設定震度以上の震度が検出されると、図4の動作を開始する。図4の動作が開始されると、制御装置12は、まずステップS1において、監視対象機器の機器応答加速度を検出する。 FIG. 4 is a flowchart showing the operation of the control device 12 of FIG. When a seismic intensity equal to or higher than the set seismic intensity is detected, the control device 12 starts the operation in FIG. When the operation in FIG. 4 is started, the control device 12 first detects a device response acceleration of the monitored device in step S1.
 続いて、制御装置12は、ステップS2において、管制運転の可否を判定する。 Subsequently, in step S2, the control device 12 determines whether or not the control operation can be performed.
 ステップS2において管制運転が不可と判定された場合、制御装置12は、ステップS3においてかご4を急停止させる。かご4が停止中である場合、制御装置12は、かご4を停止させたままとする。この後、制御装置12は、ステップS4において、管制運転が実施されなかった旨を、管理室に報知する。 場合 If it is determined in step S2 that the control operation is not possible, the control device 12 stops the car 4 suddenly in step S3. When the car 4 is stopped, the control device 12 keeps the car 4 stopped. Thereafter, in step S4, control device 12 notifies the management room that the control operation has not been performed.
 ステップS2において管制運転が可能と判定された場合、制御装置12は、ステップS5において、管制運転を実施する。 場合 If it is determined in step S2 that the control operation is possible, the control device 12 performs the control operation in step S5.
 この後、制御装置12は、ステップS6において、地震が継続しているかどうかを判定する。即ち、制御装置12は、建物1の内部又は外部に設けられた地震感知器等からの信号に基づいて、地震の揺れが継続しているかどうかを判定し、揺れが収まるまで待機する。 After that, the control device 12 determines whether or not the earthquake continues in step S6. That is, the control device 12 determines whether or not the shaking of the earthquake continues based on a signal from an earthquake sensor or the like provided inside or outside the building 1, and waits until the shaking stops.
 地震の揺れが収まると、制御装置12は、ステップS7において、自動診断運転の可否を判定する。 (4) When the shaking of the earthquake stops, the control device 12 determines in step S7 whether or not the automatic diagnosis operation is possible.
 ステップS7において自動診断運転が不可と判定された場合、制御装置12は、ステップS4において、自動診断運転が実施されなかった旨を、管理室に報知する。 If it is determined in step S7 that the automatic diagnosis operation is not possible, the control device 12 notifies the management room that the automatic diagnosis operation has not been performed in step S4.
 ステップS7において自動診断運転が可能と判定された場合、制御装置12は、ステップS8において、自動診断運転を実施し、処理を終了する。なお、自動診断運転実施後の動作の説明は、省略する。 If it is determined in step S7 that the automatic diagnosis operation is possible, the control device 12 performs the automatic diagnosis operation in step S8, and ends the process. The description of the operation after the execution of the automatic diagnosis operation is omitted.
 このようなエレベータ装置では、制御装置12は、監視対象機器に発生した機器応答加速度に基づいて、自動診断運転及び管制運転の可否を判定する。このため、地震発生時のエレベータ機器の状態をより正確に判定し、地震発生時に、より効率的な運転方法を選択することができる。 で は In such an elevator device, the control device 12 determines whether or not the automatic diagnosis operation and the control operation are possible based on the device response acceleration generated in the monitored device. Therefore, the state of the elevator equipment at the time of the occurrence of an earthquake can be more accurately determined, and a more efficient driving method can be selected at the time of the occurrence of an earthquake.
 また、制御装置12は、かごセンサ13及び釣合おもりセンサ14からの信号に基づいて、対応する機器応答加速度を検出する。このため、より正確な機器応答加速度を検出することができる。 {Circle around (5)} Based on the signals from the car sensor 13 and the counterweight sensor 14, the control device 12 detects the corresponding device response acceleration. For this reason, more accurate device response acceleration can be detected.
 また、制御装置12は、機械室センサ15からの信号に基づいて、機械室3に発生した応答加速度を検出する。このため、巻上機8、制御装置12等に発生した機器応答加速度をより正確に推定することができる。 制 御 Control device 12 detects response acceleration generated in machine room 3 based on a signal from machine room sensor 15. Therefore, it is possible to more accurately estimate the device response acceleration generated in the hoisting machine 8, the control device 12, and the like.
 なお、実施の形態1では、かごセンサ13及び釣合おもりセンサ14を用いたが、いずれか一方のみであってもよい。 In the first embodiment, the car sensor 13 and the counterweight sensor 14 are used, but only one of them may be used.
 また、監視対象機器は、かご4及び釣合おもり5に限定されるものではなく、かごガイドレール6、釣合おもりガイドレール7、巻上機8等であってもよい。 The monitoring target device is not limited to the car 4 and the counterweight 5, but may be the car guide rail 6, the counterweight guide rail 7, the hoisting machine 8, and the like.
 実施の形態2.
 次に、図5は、この発明の実施の形態2によるエレベータ装置を示す構成図である。実施の形態2の制御装置12は、建物1の揺れに関する情報である建物揺れ情報と、監視対象機器の位置情報とに基づいて、地震発生時に監視対象機器に発生した機器応答加速度を推定する。
Embodiment 2 FIG.
Next, FIG. 5 is a configuration diagram showing an elevator apparatus according to Embodiment 2 of the present invention. The control device 12 according to the second embodiment estimates the equipment response acceleration generated in the monitoring target equipment at the time of the occurrence of the earthquake, based on the building shaking information that is information on the shaking of the building 1 and the position information of the monitoring target equipment.
 また、実施の形態2では、建物1の各階に地震感知器21が設置されている。各地震感知器21としては、加速度センサが用いられている。また、地震感知器21は、かご4が停止しない階を含めて、かご4が昇降する範囲内の全階に設置されている。制御装置12は、各地震感知器21からの信号を建物揺れ情報として使用する。 In addition, in the second embodiment, the earthquake detector 21 is installed on each floor of the building 1. An acceleration sensor is used as each earthquake sensor 21. In addition, the earthquake detectors 21 are installed on all floors within a range where the car 4 moves up and down, including the floor where the car 4 does not stop. The control device 12 uses a signal from each earthquake sensor 21 as building shake information.
 実施の形態2の監視対象機器には、かご4及び釣合おもり5が含まれている。かご4及び釣合おもり5は、昇降路2を昇降する昇降体である。制御装置12は、かご4の機器応答加速度を推定するために、かご4の位置情報を用いる。また、制御装置12は、釣合おもり5の機器応答加速度を推定するために、釣合おもり5の位置情報を用いる。 監視 The monitoring target device of the second embodiment includes the car 4 and the counterweight 5. The car 4 and the counterweight 5 are elevating bodies that move up and down the hoistway 2. The control device 12 uses the position information of the car 4 to estimate the device response acceleration of the car 4. The control device 12 uses the position information of the counterweight 5 to estimate the device response acceleration of the counterweight 5.
 図6は、図5のエレベータ装置の要部を示すブロック図である。制御装置12は、機能ブロックとして、運行制御部16、加速度推定部22、判定部18、管制運転制御部19、及び診断運転制御部20を有している。即ち、実施の形態2の制御装置12は、実施の形態1の加速度検出部17の代わりに、加速度推定部22を有している。 FIG. 6 is a block diagram showing a main part of the elevator apparatus of FIG. The control device 12 includes, as functional blocks, an operation control unit 16, an acceleration estimation unit 22, a determination unit 18, a control operation control unit 19, and a diagnostic operation control unit 20. That is, the control device 12 of the second embodiment has an acceleration estimating unit 22 instead of the acceleration detecting unit 17 of the first embodiment.
 加速度推定部22は、地震発生時に、各地震感知器21からの信号と、かご4の位置情報と、釣合おもり5の位置情報とに基づいて、かご4及び釣合おもり5に発生した機器応答加速度を推定する。 The acceleration estimating unit 22 generates the equipment generated in the car 4 and the counterweight 5 based on the signal from each of the earthquake sensors 21, the position information of the car 4, and the position information of the counterweight 5 when the earthquake occurs. Estimate the response acceleration.
 かご4の位置情報は、運行制御部16から受けることができる。また、釣合おもり5の位置情報は、かご4の位置から計算することができる。 位置 The position information of the car 4 can be received from the operation control unit 16. The position information of the counterweight 5 can be calculated from the position of the car 4.
 加速度推定部22は、地震発生時に、かご4が位置している階の地震感知器21からの信号に基づいて、かご4に発生した機器応答加速度を推定する。また、加速度推定部22は、地震発生時に、釣合おもり5が位置している階の地震感知器21からの信号に基づいて、釣合おもり5に発生した機器応答加速度を推定する。 The acceleration estimation unit 22 estimates the device response acceleration generated in the car 4 based on a signal from the earthquake sensor 21 on the floor where the car 4 is located when an earthquake occurs. In addition, the acceleration estimating unit 22 estimates the device response acceleration generated in the counterweight 5 based on a signal from the earthquake sensor 21 on the floor where the counterweight 5 is located when an earthquake occurs.
 判定部18は、実施の形態1の機器応答加速度の検出値の代わりに、機器応答加速度の推定値を用いて、管制運転及び自動診断運転の可否を判定する。即ち、実施の形態2の制御装置12は、図4のステップS1において、機器応答加速度を推定する。他の構成及び動作は、実施の形態1と同様である。 The determining unit 18 uses the estimated value of the device response acceleration instead of the detected value of the device response acceleration in the first embodiment to determine whether the control operation and the automatic diagnosis operation are possible. That is, the control device 12 of the second embodiment estimates the device response acceleration in step S1 of FIG. Other configurations and operations are the same as those of the first embodiment.
 このようなエレベータ装置では、かご4及び釣合おもり5にセンサを直接搭載しなくても、建物揺れ情報と監視対象機器の位置情報とを用いて、地震発生時のエレベータ機器の状態をより正確に判定することができる。これにより、地震発生時に、より効率的な運転方法を選択することができる。 In such an elevator apparatus, the state of the elevator equipment at the time of the occurrence of an earthquake can be more accurately determined using the building shake information and the position information of the monitoring target equipment without directly mounting the sensors on the car 4 and the counterweight 5. Can be determined. Thereby, when an earthquake occurs, a more efficient driving method can be selected.
 また、制御装置12は、各地震感知器21からの信号を建物揺れ情報として使用するので、建物1の揺れをより正確に検出することができる。 制 御 Moreover, since the control device 12 uses the signal from each earthquake sensor 21 as building shake information, it is possible to more accurately detect the shake of the building 1.
 また、制御装置12は、機器応答加速度を推定するために、かご4及び釣合おもり5の位置情報を用いるので、かご4及び釣合おもり5の機器応答加速度をより正確に推定することができる。 In addition, since the control device 12 uses the position information of the car 4 and the counterweight 5 to estimate the device response acceleration, it is possible to more accurately estimate the device response acceleration of the car 4 and the counterweight 5. .
 実施の形態3.
 次に、図7は、この発明の実施の形態3によるエレベータ装置の要部を示すブロック図である。実施の形態3の制御装置12は、機能ブロックとして、運行制御部16、加速度推定部22、機器応答倍率記憶部23、判定部18、管制運転制御部19、及び診断運転制御部20を有している。機器応答倍率記憶部23は、監視対象機器毎の機器応答倍率の値をメモリ103に記憶する。
Embodiment 3 FIG.
Next, FIG. 7 is a block diagram showing a main part of an elevator apparatus according to Embodiment 3 of the present invention. The control device 12 according to the third embodiment includes, as functional blocks, an operation control unit 16, an acceleration estimation unit 22, an equipment response magnification storage unit 23, a determination unit 18, a control operation control unit 19, and a diagnostic operation control unit 20. ing. The device response magnification storage unit 23 stores the value of the device response magnification for each monitored device in the memory 103.
 機器応答倍率は、建物1の階と監視対象機器の固有振動数とに応じて設定されている。また、機器応答倍率については、例えば、文献「建築基準法及び同法関連法令 昇降機技術基準の解説 2016年度版」にも示されている。 The device response magnification is set according to the floor of the building 1 and the natural frequency of the monitored device. The device response magnification is also described in, for example, the document "Building Standards Act and related laws / regulations {Explanation of elevator technical standards / 2016 version" ".
 また、制御装置12は、監視対象機器の機器応答加速度を推定するために、機器応答倍率の値を用いる。 The control device 12 uses the value of the device response magnification to estimate the device response acceleration of the monitored device.
 ここで、かご4及び釣合おもり5等の監視対象機器の地震による揺れは、実際には、地震による建物1の揺れとは異なる。その要因としては、図示しないかごガイド装置によるかご4の揺れの低減、かご4の揺れを受けるかごガイドレール6の変形、釣合おもり5の揺れを受ける釣合おもりガイドレール7の変形等が挙げられる。 Here, the shaking of the monitored equipment such as the car 4 and the counterweight 5 due to the earthquake is actually different from the shaking of the building 1 due to the earthquake. The factors include reduction of the swing of the car 4 by a car guide device (not shown), deformation of the car guide rail 6 receiving the swing of the car 4, deformation of the counterweight guide rail 7 receiving the swing of the counterweight 5, and the like. Can be
 これに対して、機器応答倍率の値を用いることで、地震に対する建物応答を、地震に対するエレベータ応答に、より正確に変換することができる。 On the other hand, by using the value of the equipment response magnification, the building response to the earthquake can be more accurately converted to the elevator response to the earthquake.
 制御装置12は、監視対象機器がかご4である場合、かご4の位置に最も近い階の地震感知器21からの信号と、かご4の位置に最も近い階におけるかご4の機器応答倍率とに基づいて、かご4の機器応答加速度を推定する。 When the monitoring target device is the car 4, the control device 12 calculates a signal from the earthquake sensor 21 on the floor closest to the position of the car 4 and a device response magnification of the car 4 on the floor closest to the position of the car 4. Based on this, the device response acceleration of the car 4 is estimated.
 また、制御装置12は、監視対象機器が釣合おもり5である場合、かご4と同様にして、釣合おもり5の機器応答加速度を推定する。 {Circle around (5)} When the monitoring target device is the counterweight 5, the control device 12 estimates the device response acceleration of the counterweight 5 in the same manner as the car 4.
 また、制御装置12は、監視対象機器が建物1に対して固定されているエレベータ機器である場合、監視対象機器の位置に最も近い階の地震感知器21からの信号と、監視対象機器の機器応答倍率とに基づいて、機器応答加速度を推定する。他の構成及び動作は、実施の形態2と同様である。 When the monitoring target device is an elevator device fixed to the building 1, the control device 12 transmits a signal from the earthquake detector 21 on the floor closest to the position of the monitoring target device and a device of the monitoring target device. The device response acceleration is estimated based on the response magnification. Other configurations and operations are the same as those of the second embodiment.
 このようなエレベータ装置では、監視対象機器の機器応答加速度を推定するために、機器応答倍率の値を用いるので、機器応答加速度をより正確に推定することができる。 In such an elevator apparatus, the value of the device response magnification is used to estimate the device response acceleration of the monitored device, so that the device response acceleration can be more accurately estimated.
 なお、加速度推定部22は、全ての階の地震感知器21からの信号と、全ての階の機器応答倍率とから、全ての階の機器応答加速度を求め、判定部18に送ってもよい。この場合、判定部18は、監視対象機器の位置に対応する機器応答加速度を選択して、対応する閾値と比較すればよい。 Note that the acceleration estimating unit 22 may obtain the equipment response accelerations of all floors from the signals from the earthquake sensors 21 of all floors and the equipment response magnifications of all floors, and send the accelerations to the determination unit 18. In this case, the determination unit 18 may select the device response acceleration corresponding to the position of the monitoring target device and compare it with the corresponding threshold.
 実施の形態4.
 次に、図8は、この発明の実施の形態4によるエレベータ装置の要部を示すブロック図である。実施の形態4の制御装置12は、機能ブロックとして、運行制御部16、加速度推定部22、機器振動モデル記憶部24、判定部18、管制運転制御部19、及び診断運転制御部20を有している。機器振動モデル記憶部24は、監視対象機器毎の振動モデルをメモリ103に記憶する。
Embodiment 4 FIG.
Next, FIG. 8 is a block diagram showing a main part of an elevator apparatus according to Embodiment 4 of the present invention. The control device 12 according to the fourth embodiment includes, as functional blocks, an operation control unit 16, an acceleration estimation unit 22, an equipment vibration model storage unit 24, a determination unit 18, a control operation control unit 19, and a diagnostic operation control unit 20. ing. The device vibration model storage unit 24 stores a vibration model for each monitored device in the memory 103.
 また、制御装置12は、建物揺れ情報を入力として、監視対象機器の振動モデルを用いて、機器応答加速度を推定する。 {Circle around (1)} The control device 12 estimates the device response acceleration using the vibration model of the monitored device with the building shake information as an input.
 また、制御装置12は、監視対象機器がかご4である場合、かご4の位置に最も近い階の地震感知器21からの信号を入力として、かご4の振動モデルを用いて、かご4の機器応答加速度を推定する。 When the monitoring target device is the car 4, the control device 12 receives the signal from the earthquake sensor 21 on the floor closest to the position of the car 4 as an input, and uses the vibration model of the car 4 to generate the device of the car 4. Estimate the response acceleration.
 また、制御装置12は、監視対象機器が釣合おもり5である場合、かご4と同様にして、釣合おもり5の機器応答加速度を推定する。 {Circle around (5)} When the monitoring target device is the counterweight 5, the control device 12 estimates the device response acceleration of the counterweight 5 in the same manner as the car 4.
 また、制御装置12は、監視対象機器が建物1に対して固定されているエレベータ機器である場合、監視対象機器の位置に最も近い階の地震感知器21からの信号を入力して、監視対象機器の振動モデルを用いて、機器応答加速度を推定する。他の構成及び動作は、実施の形態2と同様である。 When the monitored device is an elevator device fixed to the building 1, the control device 12 inputs a signal from the earthquake sensor 21 on the floor closest to the position of the monitored device, and The device response acceleration is estimated using the vibration model of the device. Other configurations and operations are the same as those of the second embodiment.
 このようなエレベータ装置では、監視対象機器の機器応答加速度を推定するために、振動モデルを用いるので、機器応答加速度をより正確に推定することができる。 In such an elevator apparatus, since the vibration model is used to estimate the device response acceleration of the monitored device, the device response acceleration can be more accurately estimated.
 なお、実施の形態2~4では、全ての階の地震感知器21からの信号を加速度推定部22に入力している。しかし、加速度推定部22は、かご4の位置及び釣合おもり5の位置を取得した後、必要な階の地震感知器21からの信号のみを選択的に取得してもよい。これにより、制御装置12が取り扱う情報の量を減らすことができる。 In the second to fourth embodiments, signals from the earthquake sensors 21 on all floors are input to the acceleration estimation unit 22. However, after acquiring the position of the car 4 and the position of the counterweight 5, the acceleration estimating unit 22 may selectively acquire only the signal from the earthquake sensor 21 on the required floor. Thereby, the amount of information handled by the control device 12 can be reduced.
 実施の形態5.
 次に、図9は、この発明の実施の形態5によるエレベータ装置を示す構成図である。実施の形態5では、建物1の全ての階ではなく、一部の階に地震感知器21が設置されている。制御装置12は、地震感知器21からの信号に基づいて、地震感知器21が設置されている階の地震に対する応答加速度である階応答加速度を求める。また、制御装置12は、階応答加速度を建物揺れ情報として使用する。
Embodiment 5 FIG.
Next, FIG. 9 is a configuration diagram showing an elevator apparatus according to Embodiment 5 of the present invention. In the fifth embodiment, the earthquake detectors 21 are installed on some floors of the building 1 instead of all floors. The control device 12 obtains a floor response acceleration that is a response acceleration to an earthquake on the floor where the earthquake sensor 21 is installed, based on a signal from the earthquake sensor 21. In addition, the control device 12 uses the floor response acceleration as the building shake information.
 地震感知器21が設置されている階に監視対象機器が位置している場合、制御装置12は、対応する地震感知器21により検出された加速度を、階応答加速度として検出する。 When the monitoring target device is located on the floor where the earthquake sensor 21 is installed, the control device 12 detects the acceleration detected by the corresponding earthquake sensor 21 as the floor response acceleration.
 地震感知器21が設置されている階に監視対象機器が設置されていない場合、制御装置12は、監視対象機器が設置されている階の階応答加速度を、検出された階応答加速度から推定する。 When the monitored device is not installed on the floor where the earthquake sensor 21 is installed, the control device 12 estimates the floor response acceleration of the floor where the monitored device is installed from the detected floor response acceleration. .
 また、建物1は、上下方向に複数のゾーン、ここではゾーン1~3に分割されている。各ゾーン1~3は、地震感知器21が設置された1つの階を含んでいる。 The building 1 is divided into a plurality of zones in the vertical direction, here, zones 1 to 3. Each of the zones 1 to 3 includes one floor where the earthquake sensor 21 is installed.
 図10は、図9のエレベータ装置の要部を示すブロック図であり、地震感知器21の数以外は図6と同様である。制御装置12は、地震感知器21からの信号を建物揺れ情報として使用する。 FIG. 10 is a block diagram showing a main part of the elevator apparatus of FIG. 9, which is the same as FIG. 6 except for the number of earthquake sensors 21. The control device 12 uses a signal from the earthquake detector 21 as building shake information.
 但し、実施の形態5の加速度推定部22は、図11に示すように、各ゾーン1~3内では同じ建物揺れが発生すると仮定する。これにより、加速度推定部22は、地震感知器21が設置されていない階の階応答加速度を推定する。他の構成及び動作は、実施の形態2と同様である。 However, the acceleration estimating unit 22 of the fifth embodiment assumes that the same building shake occurs in each of the zones 1 to 3 as shown in FIG. Thereby, the acceleration estimating unit 22 estimates the floor response acceleration of the floor where the earthquake sensor 21 is not installed. Other configurations and operations are the same as those of the second embodiment.
 このようなエレベータ装置では、地震感知器21が一部の階のみに設置されている場合でも、地震感知器21からの信号と監視対象機器の位置情報とを用いて、地震発生時のエレベータ機器の状態をより正確に判定することができる。これにより、地震発生時に、より効率的な運転方法を選択することができる。 In such an elevator device, even when the earthquake sensor 21 is installed only on some floors, the elevator device at the time of the occurrence of an earthquake using the signal from the earthquake sensor 21 and the position information of the monitoring target device. Can be determined more accurately. Thereby, when an earthquake occurs, a more efficient driving method can be selected.
 特に、建物1が高層ビルである場合、全ての階に地震感知器21を設置するのは難しいため、実施の形態5の構成は有効である。 Especially, when the building 1 is a high-rise building, it is difficult to install the earthquake detectors 21 on all floors, so the configuration of the fifth embodiment is effective.
 なお、60m以上の高層ビルでは、地震に対する建物の応答、即ち階応答加速度は、建物を設計する際に予め計算されている。図12は、高層ビルにおける階応答加速度と階数との関係の一例を示すグラフである。図12において、四角形は、地震感知器21の設置箇所を示している。 高 In a high-rise building of 60 m or more, the response of the building to the earthquake, that is, the floor response acceleration is calculated in advance when designing the building. FIG. 12 is a graph illustrating an example of the relationship between the floor response acceleration and the floor number in a high-rise building. In FIG. 12, a square indicates a location where the earthquake sensor 21 is installed.
 図12に示すような計算結果に基づいて、各ゾーン内で最も階応答加速度が大きい階に地震感知器21を設置することが好適である。これにより、建物1及びエレベータ機器に生じる最大の揺れを、より確実に検出することができる。 、 Based on the calculation results as shown in FIG. 12, it is preferable to install the earthquake sensor 21 on the floor where the floor response acceleration is highest in each zone. This makes it possible to more reliably detect the maximum swing occurring in the building 1 and the elevator equipment.
 また、図9では、各ゾーン1~3の最下階に地震感知器21が設置されている。しかし、各ゾーン1~3内での地震感知器21の設置階は、最下階に限定されない。 In FIG. 9, the seismic detector 21 is installed at the lowest floor of each of the zones 1 to 3. However, the floor where the earthquake detector 21 is installed in each of the zones 1 to 3 is not limited to the lowest floor.
 また、図9では、各ゾーン1~3内に1個の地震感知器21が設置されている。しかし、検出精度向上のため、各ゾーン1~3内に2個以上の地震感知器21を設置してもよい。 In FIG. 9, one earthquake sensor 21 is installed in each of zones 1 to 3. However, two or more earthquake sensors 21 may be installed in each of the zones 1 to 3 in order to improve detection accuracy.
 また、ゾーンの数は、2つ又は4つ以上であってもよい。 The number of zones may be two or four or more.
 また、図10では、地震感知器21の出力が加速度推定部22に直接入力されている。しかし、加速度推定部22は、実施の形態3と同様に、機器応答倍率の値を用いて、機器応答加速度を推定してもよい。また、加速度推定部22は、実施の形態4と同様に、監視対象機器の振動モデルを用いて、機器応答加速度を推定してもよい。 In FIG. 10, the output of the earthquake sensor 21 is directly input to the acceleration estimating unit 22. However, the acceleration estimating unit 22 may estimate the device response acceleration using the value of the device response magnification, as in the third embodiment. Further, the acceleration estimating unit 22 may estimate the device response acceleration using the vibration model of the monitored device, as in the fourth embodiment.
 実施の形態6.
 次に、図13は、この発明の実施の形態6によるエレベータ装置を示す構成図である。実施の形態6では、建物1の2以上の階、ここでは3つの階に、地震感知器21が設置されている。また、機械室3には、制御装置本体12Aが設置されている。制御装置本体12Aは、実施の形態3の制御装置12と同様のものである。
Embodiment 6 FIG.
Next, FIG. 13 is a configuration diagram showing an elevator apparatus according to Embodiment 6 of the present invention. In the sixth embodiment, the earthquake detectors 21 are installed on two or more floors of the building 1, here on three floors. In the machine room 3, a control device main body 12A is installed. The control device main body 12A is the same as the control device 12 of the third embodiment.
 建物1の最下階には、建物揺れ推定部25が設置されている。建物揺れ推定部25は、制御装置本体12Aとは別体で構成されている。また、建物揺れ推定部25は、例えばコンピュータにより構成されている。 建 物 On the lowest floor of the building 1, a building swing estimating unit 25 is installed. The building shake estimation unit 25 is configured separately from the control device main body 12A. The building shake estimation unit 25 is configured by, for example, a computer.
 実施の形態6の制御装置12は、制御装置本体12Aと建物揺れ推定部25とを有している。 The control device 12 according to the sixth embodiment includes a control device main body 12A and a building shake estimation unit 25.
 また、建物揺れ推定部25は、地震発生時に、地震感知器21からの信号に基づいて、監視対象機器が設置されている階の階応答加速度を求める。 {Circle around (5)} In the event of an earthquake, the building shake estimation unit 25 calculates the floor response acceleration of the floor where the monitoring target device is installed, based on the signal from the earthquake sensor 21.
 地震感知器21が設置されている階に監視対象機器が設置されていない場合、制御装置12は、監視対象機器が設置されている階の階応答加速度を、検出された階応答加速度から推定する。 When the monitored device is not installed on the floor where the earthquake sensor 21 is installed, the control device 12 estimates the floor response acceleration of the floor where the monitored device is installed from the detected floor response acceleration. .
 図14は、図13の建物揺れ推定部25による階応答加速度の推定方法を示すグラフである。図14において、四角形は、地震感知器21の設置箇所を示している。実施の形態6では、建物揺れ推定部25は、地震感知器21で検出された階応答加速度の値の間を、直線で補間する。 FIG. 14 is a graph showing a method of estimating the floor response acceleration by the building shake estimating unit 25 of FIG. In FIG. 14, a square indicates a location where the earthquake sensor 21 is installed. In the sixth embodiment, the building shake estimating unit 25 interpolates between the values of the floor response acceleration detected by the earthquake sensor 21 with a straight line.
 図15は、図13のエレベータ装置の要部を示すブロック図である。各地震感知器21からの信号は、建物揺れ推定部25に入力される。建物揺れ推定部25は、図14に示すような推定方法を用いて、建物1の全ての階の階応答加速度を求める。 FIG. 15 is a block diagram showing a main part of the elevator apparatus of FIG. The signal from each earthquake sensor 21 is input to the building shake estimation unit 25. The building swing estimation unit 25 obtains floor response accelerations of all floors of the building 1 using an estimation method as shown in FIG.
 全ての階の階応答加速度の情報は、加速度推定部22に入力される。他の構成及び動作は、実施の形態3と同様である。 情報 Information on the floor response acceleration of all floors is input to the acceleration estimating unit 22. Other configurations and operations are the same as those of the third embodiment.
 このようなエレベータ装置では、建物1に2個以上設定されている地震感知器21からの信号に基づいて、建物揺れ推定部25により、全ての階の階応答加速度が推定される。 で は In such an elevator device, the floor response acceleration of all floors is estimated by the building shake estimating unit 25 based on signals from two or more earthquake sensors 21 set in the building 1.
 このため、地震感知器21が一部の階のみに設置されている場合でも、地震感知器21からの信号と監視対象機器の位置情報とを用いて、地震発生時のエレベータ機器の状態をより正確に判定することができる。これにより、地震発生時に、より効率的な運転方法を選択することができる。 For this reason, even when the earthquake sensor 21 is installed only on some floors, the state of the elevator equipment at the time of the earthquake can be further improved using the signal from the earthquake sensor 21 and the position information of the monitored device. It can be determined accurately. Thereby, when an earthquake occurs, a more efficient driving method can be selected.
 なお、実施の形態6では、全ての階の階応答加速度を建物揺れ推定部25から加速度推定部22に入力した。しかし、監視対象機器がかご4及び釣合おもり5である場合、かご4及び釣合おもり5の位置情報を建物揺れ推定部25に入力し、位置情報に対応する階の階応答加速度のみを、加速度推定部22に入力してもよい。 In the sixth embodiment, the floor response accelerations of all floors are input from the building shake estimation unit 25 to the acceleration estimation unit 22. However, when the monitoring target device is the car 4 and the counterweight 5, the position information of the car 4 and the counterweight 5 is input to the building swing estimation unit 25, and only the floor response acceleration of the floor corresponding to the position information is calculated. It may be input to the acceleration estimation unit 22.
 この場合、かご4の位置情報は、制御装置12から取得しても、他の位置センサから取得してもよい。また、釣合おもり5の位置情報は、かご4の位置情報から建物揺れ推定部25で演算しても、他の位置センサから取得してもよい。 In this case, the position information of the car 4 may be obtained from the control device 12 or from another position sensor. The position information of the counterweight 5 may be calculated by the building swing estimating unit 25 from the position information of the car 4 or may be acquired from another position sensor.
 また、監視対象機器が昇降体ではない場合、監視対象機器の位置情報を建物揺れ推定部25に予め設定しておき、必要な階応答加速度のみを、加速度推定部22に入力してもよい。 If the monitoring target device is not an elevating body, the position information of the monitoring target device may be set in the building shake estimation unit 25 in advance, and only the required floor response acceleration may be input to the acceleration estimation unit 22.
 また、加速度推定部22は、全ての階の階応答加速度と、全ての階の機器応答倍率とから、全ての階の機器応答加速度を求め、判定部18に送ってもよい。この場合、判定部18は、監視対象機器の位置に対応する機器応答加速度を選択して、対応する閾値と比較すればよい。 The acceleration estimating unit 22 may determine the equipment response accelerations of all floors from the floor response accelerations of all floors and the equipment response magnifications of all floors, and send the accelerations to the determination unit 18. In this case, the determination unit 18 may select the device response acceleration corresponding to the position of the monitoring target device and compare it with the corresponding threshold.
 また、実施の形態6では、加速度推定部22は、機器応答倍率を使用して、機器応答加速度を推定した。しかし、加速度推定部22は、実施の形態4と同様に、監視対象機器の振動モデルを用いて、機器応答加速度を推定してもよい。 In the sixth embodiment, the acceleration estimating unit 22 estimates the device response acceleration using the device response magnification. However, the acceleration estimating unit 22 may estimate the device response acceleration using the vibration model of the monitored device, as in the fourth embodiment.
 実施の形態7.
 次に、図16は、この発明の実施の形態7によるエレベータ装置を示す構成図である。また、図17は、図16のエレベータ装置の要部を示すブロック図である。実施の形態7では、建物1の1つの階のみに地震感知器21が設置されている。
Embodiment 7 FIG.
Next, FIG. 16 is a configuration diagram showing an elevator apparatus according to Embodiment 7 of the present invention. FIG. 17 is a block diagram showing a main part of the elevator apparatus of FIG. In Embodiment 7, the earthquake detector 21 is installed only on one floor of the building 1.
 建物揺れ推定部25は、機能ブロックとして、建物振動モデル記憶部26を有している。建物振動モデル記憶部26は、建物1の振動モデルを、建物揺れ推定部25のメモリに記憶する。 The building shake estimation unit 25 has a building vibration model storage unit 26 as a functional block. The building vibration model storage unit 26 stores the vibration model of the building 1 in the memory of the building shake estimation unit 25.
 また、建物揺れ推定部25は、地震感知器21からの信号に基づいて、全ての階の階応答加速度を求める。このとき、地震感知器21は、1つの階にしか設置されていないが、建物揺れ推定部25は、地震感知器21からの信号を入力として、建物1の振動モデルを用いて、全ての階の階応答加速度を求める。そして、階応答加速度の情報は、制御装置本体12Aに出力される。 {Circle around (5)} The building shake estimating unit 25 obtains floor response accelerations of all floors based on the signal from the earthquake sensor 21. At this time, the earthquake sensor 21 is installed only on one floor, but the building shake estimation unit 25 receives the signal from the earthquake sensor 21 as an input, and uses the vibration model of the building 1 to detect all floors. The floor response acceleration of is calculated. Then, the information on the floor response acceleration is output to the control device main body 12A.
 加速度推定部22は、地震発生時に、入力された階応答加速度と、監視対象機器の位置情報とに基づいて、監視対象機器に発生した機器応答加速度を推定する。他の構成及び動作は、実施の形態6と同様である。 The acceleration estimation unit 22 estimates the device response acceleration generated in the monitored device based on the input floor response acceleration and the position information of the monitored device when an earthquake occurs. Other configurations and operations are the same as in the sixth embodiment.
 このようなエレベータ装置では、建物1の振動モデルを用いて、各階の階応答加速度を推定する。このため、最低1個の地震感知器21からの信号により、各階の階応答加速度を推定することができる。 In such an elevator apparatus, the floor response acceleration of each floor is estimated using the vibration model of the building 1. Therefore, the floor response acceleration of each floor can be estimated from the signal from at least one earthquake sensor 21.
 なお、実施の形態7の建物揺れ推定部25は、2個以上の地震感知器21からの信号を用いてもよい。 The building shake estimating unit 25 of the seventh embodiment may use signals from two or more earthquake sensors 21.
 また、実施の形態7では、全ての階の階応答加速度を建物揺れ推定部25から加速度推定部22に入力した。しかし、監視対象機器がかご4及び釣合おもり5である場合、かご4及び釣合おもり5の位置情報を建物揺れ推定部25に入力し、位置情報に対応する階の階応答加速度のみを、加速度推定部22に入力してもよい。 In the seventh embodiment, the floor response accelerations of all floors are input from the building shake estimation unit 25 to the acceleration estimation unit 22. However, when the monitoring target device is the car 4 and the counterweight 5, the position information of the car 4 and the counterweight 5 is input to the building swing estimation unit 25, and only the floor response acceleration of the floor corresponding to the position information is calculated. It may be input to the acceleration estimation unit 22.
 この場合、かご4の位置情報は、制御装置12から取得しても、他の位置センサから取得してもよい。また、釣合おもり5の位置情報は、かご4の位置情報から建物揺れ推定部25で演算しても、他の位置センサから取得してもよい。 In this case, the position information of the car 4 may be obtained from the control device 12 or from another position sensor. The position information of the counterweight 5 may be calculated by the building swing estimating unit 25 from the position information of the car 4 or may be acquired from another position sensor.
 また、監視対象機器が昇降体ではない場合、監視対象機器の位置情報を建物揺れ推定部25に予め設定しておき、必要な階応答加速度のみを、加速度推定部22に入力してもよい。 If the monitoring target device is not an elevating body, the position information of the monitoring target device may be set in the building shake estimation unit 25 in advance, and only the required floor response acceleration may be input to the acceleration estimation unit 22.
 実施の形態8.
 次に、図18は、この発明の実施の形態8によるエレベータ装置を示す構成図である。また、図19は、図18のエレベータ装置の要部を示すブロック図である。実施の形態8では、第1の昇降体であるかご4に、かごセンサ13が設けられている。しかし、第2の昇降体である釣合おもり5には、釣合おもりセンサ14が設けられていない。また、機械室3に、機械室センサ15が設けられている。
Embodiment 8 FIG.
Next, FIG. 18 is a configuration diagram showing an elevator apparatus according to Embodiment 8 of the present invention. FIG. 19 is a block diagram showing a main part of the elevator apparatus of FIG. In the eighth embodiment, the car sensor 13 is provided on the car 4 as the first elevating body. However, the counterweight 5 serving as the second elevating body is not provided with the counterweight sensor 14. Further, a machine room sensor 15 is provided in the machine room 3.
 建物揺れ推定部25は、実施の形態7と同様に、地震感知器21からの信号を入力として、建物1の振動モデルを用いて、全ての階の階応答加速度を求める。かごセンサ13及び機械室センサ15からの信号は、制御装置本体12Aに入力される。 The building shake estimation unit 25 obtains the floor response acceleration of all floors using the vibration model of the building 1 with the signal from the earthquake sensor 21 as an input, as in the seventh embodiment. Signals from the car sensor 13 and the machine room sensor 15 are input to the control device main body 12A.
 加速度推定部22は、かごセンサ13からの信号に基づいて、監視対象機器であるかご4の機器応答加速度を検出する。また、加速度推定部22は、機械室センサ15からの信号に基づいて、機械室3に設置された監視対象機器の機器応答加速度を推定する。 The acceleration estimation unit 22 detects the device response acceleration of the car 4 as the monitoring target device based on the signal from the car sensor 13. Further, the acceleration estimating unit 22 estimates the device response acceleration of the monitoring target device installed in the machine room 3 based on the signal from the machine room sensor 15.
 また、加速度推定部22は、建物揺れ推定部25からの建物揺れ情報と、釣合おもり5の位置情報とに基づいて、監視対象機器である釣合おもり5の機器応答加速度を推定する。他の構成及び動作は、実施の形態1と同様である。 {Circle around (2)} The acceleration estimating unit 22 estimates the device response acceleration of the counterweight 5 that is the monitoring target device based on the building shake information from the building shake estimating unit 25 and the position information of the counterweight 5. Other configurations and operations are the same as those of the first embodiment.
 このような構成によっても、地震発生時のエレベータ機器の状態をより正確に判定し、地震発生時に、より効率的な運転方法を選択することができる。 に よ っ て With such a configuration as well, it is possible to more accurately determine the state of elevator equipment at the time of an earthquake and to select a more efficient driving method at the time of an earthquake.
 通常、釣合おもり5には配線がないが、かご4及び機械室3には配線が既に設置されている。このため、かご4にはかごセンサ13を設け、かご4の機器応答加速度を直接検出する。また、機械室3には機械室センサ15を設け、機械室3に設置された監視対象機器の機器応答加速度を、より正確に推定する。 Normally, the counterweight 5 has no wiring, but the car 4 and the machine room 3 have wiring already installed. For this reason, the car 4 is provided with a car sensor 13 to directly detect the device response acceleration of the car 4. Further, a machine room sensor 15 is provided in the machine room 3, and the device response acceleration of the monitoring target device installed in the machine room 3 is more accurately estimated.
 一方、釣合おもり5は、実施の形態7と同様の方法により、機器応答加速度を推定する。これにより、釣合おもり5に新たな配線を設置する必要がなく、コストの増加を抑えることができる。 On the other hand, the counterweight 5 estimates the device response acceleration by the same method as in the seventh embodiment. This eliminates the need to install new wiring on the counterweight 5 and can suppress an increase in cost.
 なお、実施の形態8では、実施の形態7と同様の方法で釣合おもり5の機器応答加速度を推定したが、実施の形態2~6の方法により推定してもよい。 In the eighth embodiment, the device response acceleration of the counterweight 5 is estimated by the same method as in the seventh embodiment, but may be estimated by the methods of the second to sixth embodiments.
 また、釣合おもり5に釣合おもりセンサ14を設け、かご4にかごセンサ13を設けないことも可能である。即ち、釣合おもり5が第1の昇降体であり、かご4が第2の昇降体であってもよい。 It is also possible that the counterweight sensor 5 is provided on the counterweight 5 and the car sensor 13 is not provided on the car 4. That is, the counterweight 5 may be a first elevating body, and the car 4 may be a second elevating body.
 また、実施の形態6~8の建物揺れ推定部25の設置場所は、特に限定されない。 設置 Further, the installation location of the building shake estimation unit 25 of the sixth to eighth embodiments is not particularly limited.
 また、実施の形態6~8の建物揺れ推定部25は、制御装置12と一体化してもよい。即ち、建物揺れ推定部25の機能を制御装置12に持たせてもよい。 In addition, the building shake estimating unit 25 of the sixth to eighth embodiments may be integrated with the control device 12. That is, the function of the building shake estimation unit 25 may be provided to the control device 12.
 実施の形態9.
 次に、図20は、この発明の実施の形態9によるエレベータ装置を示す構成図である。実施の形態9の制御装置31は、地震発生時に、地震感知器21からの信号に基づいて、管制運転及び自動診断運転の可否を判定する。また、制御装置31は、昇降体であるかご4の位置、及び昇降体である釣合おもり5の位置に応じて、管制運転及び自動診断運転の可否の判定基準を変更する。
Embodiment 9 FIG.
Next, FIG. 20 is a configuration diagram showing an elevator apparatus according to Embodiment 9 of the present invention. The control device 31 of the ninth embodiment determines whether or not the control operation and the automatic diagnosis operation are possible based on a signal from the earthquake sensor 21 when an earthquake occurs. In addition, the control device 31 changes the criterion for determining whether or not the control operation and the automatic diagnosis operation are possible, in accordance with the position of the car 4 as the lifting body and the position of the counterweight 5 as the lifting body.
 また、制御装置31は、管制運転及び自動診断運転の可否の判定に用いる値に乗ずる倍率を、かご4の位置及び釣合おもり5の位置に応じて変更する。 {Circle around (4)} The control device 31 changes the magnification by which a value used for determining whether or not the control operation and the automatic diagnosis operation are possible is determined according to the position of the car 4 and the position of the counterweight 5.
 ここで、地震が発生した際の建物1の揺れは、階によって異なるため、エレベータ機器の揺れも機器がある階によって異なる。このため、地震発生時のかご4の揺れ、即ち応答加速度も、例えば図21で示すように、地震発生時にかご4が位置している階によって異なる。 た め Here, the sway of the building 1 when an earthquake occurs differs depending on the floor, and the sway of the elevator equipment also differs depending on the floor where the equipment is located. Therefore, the swing of the car 4 at the time of the occurrence of the earthquake, that is, the response acceleration also differs depending on the floor where the car 4 is located at the time of the occurrence of the earthquake, for example, as shown in FIG.
 しかし、かご4がどの階に位置しているときに地震が発生するかは分からないため、かご4の強度は、最大の揺れに合わせて設計されている。ここでは、強度設計で使用されている、かご4が壊れない応答加速度を許容値と仮定する。例えば、図21では、最下階での応答加速度が許容値となる。 However, since it is not known at which floor the car 4 is located at which floor the earthquake occurs, the strength of the car 4 is designed for the maximum shaking. Here, it is assumed that the response acceleration that is used in the strength design and does not break the car 4 is an allowable value. For example, in FIG. 21, the response acceleration at the lowest floor is an allowable value.
 このように、かご4が許容できる応答加速度は一定の値であるのに対して、実際のかご4の揺れ方は、かご4が位置している階に依存する。このため、地震が発生したときのかご4の位置によって、かご4が耐えられる地震の大きさが変わることになる。 応 答 Thus, while the response acceleration that the car 4 can tolerate is a fixed value, the actual swing of the car 4 depends on the floor on which the car 4 is located. For this reason, the magnitude of the earthquake that the car 4 can withstand changes depending on the position of the car 4 when the earthquake occurs.
 例えば、図21では、かご4が最下階に位置している場合に比べて、かご4が中間階に位置している場合に、より大きな地震に対して、かご4は強度的に耐えることができる。 For example, in FIG. 21, when the car 4 is located on the middle floor, the car 4 can withstand a larger earthquake stronger than the case where the car 4 is located on the lowest floor. Can be.
 このことは、釣合おもり5でも同様となる。そこで、図21で示すかご4の応答加速度と、図22で示す釣合おもり5の応答加速度とを重ね合わせると、図23となる。図23に示すように、かご4が中間階に位置している場合、かご4及び釣合おもり5の両方の応答加速度が小さくなるため、かご4及び釣合おもり5は、より大きな地震にも耐えることができる。 This is the same for the counterweight 5. Then, when the response acceleration of the car 4 shown in FIG. 21 and the response acceleration of the counterweight 5 shown in FIG. As shown in FIG. 23, when the car 4 is located on the middle floor, the response accelerations of both the car 4 and the counterweight 5 are small, so that the car 4 and the counterweight 5 are not affected by a larger earthquake. Can withstand.
 以上から、図23の最大応答加速度を最小応答加速度で除算すると、図24のように階によって変化する倍率が計算できる。図24では、かご4が地表と同じ高さに位置しているときよりも、中間階に位置しているときに、倍率が高くなっている。 From the above, if the maximum response acceleration in FIG. 23 is divided by the minimum response acceleration, a magnification that changes depending on the floor can be calculated as shown in FIG. In FIG. 24, the magnification is higher when the car 4 is located on the middle floor than when the car 4 is located at the same height as the ground surface.
 但し、地震発生時の建物1の揺れは、実際には、入力される地震波の種類及び大きさによって異なる。そのため、かご4及び釣合おもり5の揺れも、実際には、地震波によって異なり、図21及び図22に示す揺れになるとは限らない。 However, the shaking of the building 1 at the time of the earthquake actually varies depending on the type and magnitude of the input seismic wave. Therefore, the swings of the car 4 and the counterweight 5 actually differ depending on the seismic wave, and do not always become the swings shown in FIGS. 21 and 22.
 そこで、実際の設計では、図25に示すように、様々な入力地震波に対するかご4及び釣合おもり5の応答加速度を計算する。そして、計算結果の最大値を、かご4及び釣合おもり5の応答加速度とし、この応答加速度から倍率を計算する。 Therefore, in an actual design, as shown in FIG. 25, the response acceleration of the car 4 and the counterweight 5 to various input seismic waves is calculated. Then, the maximum value of the calculation result is set as the response acceleration of the car 4 and the counterweight 5, and the magnification is calculated from the response acceleration.
 なお、倍率は、エレベータ装置を据え付ける際に、建物1及びエレベータ装置に合わせて予め計算しておくものとする。 Note that the magnification is calculated in advance in accordance with the building 1 and the elevator device when the elevator device is installed.
 図26は、図20のエレベータ装置の要部を示すブロック図である。制御装置31は、機能ブロックとして、運行制御部16、倍率記憶部32、判定部33、管制運転制御部19、及び診断運転制御部20を有している。運行制御部16、管制運転制御部19、及び診断運転制御部20は、実施の形態1と同様である。 FIG. 26 is a block diagram showing a main part of the elevator apparatus of FIG. The control device 31 includes, as functional blocks, an operation control unit 16, a magnification storage unit 32, a determination unit 33, a traffic control operation control unit 19, and a diagnostic operation control unit 20. The operation control unit 16, the control operation control unit 19, and the diagnostic operation control unit 20 are the same as those in the first embodiment.
 倍率記憶部32は、上記のように計算した倍率を、制御装置31のメモリ103に記憶する。判定部33は、地震感知器21からの信号と、かご4の位置と、倍率とに基づいて、管制運転及び自動診断運転の可否を判定する。 The magnification storage unit 32 stores the magnification calculated as described above in the memory 103 of the control device 31. The determining unit 33 determines whether the control operation and the automatic diagnosis operation are possible based on the signal from the earthquake sensor 21, the position of the car 4, and the magnification.
 図27は、図26の判定部33の判定動作を説明する説明図である。判定部には、管制運転に関する許容値と、自動診断運転に関する許容値とが設定されている。判定部33は、地震発生時に、かご4の位置に応じた倍率を選択する。 FIG. 27 is an explanatory diagram illustrating the determination operation of the determination unit 33 in FIG. An allowable value for the control operation and an allowable value for the automatic diagnosis operation are set in the determination unit. The determination unit 33 selects a magnification according to the position of the car 4 when an earthquake occurs.
 また、判定部33は、地震発生時に、管制運転に関する許容値に、選択した倍率を乗算して、管制運転の可否に関する第1の閾値を得る。また、判定部33は、地震発生時に、自動診断運転に関する許容値に、選択した倍率を乗算して、自動診断運転の可否に関する第2の閾値を得る。 {Circle around (4)} When the earthquake occurs, the determination unit 33 multiplies the permissible value for the traffic control operation by the selected magnification to obtain a first threshold value for the propriety of the traffic control operation. In addition, when an earthquake occurs, the determination unit 33 multiplies the allowable value for the automatic diagnosis operation by the selected magnification to obtain a second threshold value regarding whether or not the automatic diagnosis operation is possible.
 例えば、倍率が図24に示すように変化している場合、かご4が地表と同じ高さに位置している場合の閾値と、かご4が中間階に位置している場合の閾値とは異なっている。具体的には、かご4が地表と同じ高さに位置している場合の閾値よりも、かご4が中間階に位置している場合の閾値の方が高い。 For example, when the magnification changes as shown in FIG. 24, the threshold value when the car 4 is located at the same height as the ground surface is different from the threshold value when the car 4 is located on the middle floor. ing. Specifically, the threshold value when the car 4 is located on the middle floor is higher than the threshold value when the car 4 is located at the same height as the ground surface.
 また、判定部33は、地震感知器21からの出力値と第1の閾値とを比較し、出力値が第1の閾値以下である場合に、管制運転が可能であると判定する。また、判定部33は、出力値が第1の閾値を超えている場合に、管制運転が不可であると判定する。 (4) The determining unit 33 compares the output value from the earthquake sensor 21 with the first threshold value, and determines that the control operation is possible when the output value is equal to or less than the first threshold value. In addition, when the output value exceeds the first threshold, the determination unit 33 determines that the control operation is not possible.
 また、判定部33は、地震感知器21からの出力値と第2の閾値とを比較し、出力値が第2の閾値以下である場合に、自動診断運転が可能であると判定する。また、判定部33は、出力値が第2の閾値を超えている場合に、自動診断運転が不可であると判定する。 (4) The determining unit 33 compares the output value from the earthquake sensor 21 with the second threshold value, and determines that the automatic diagnosis operation is possible when the output value is equal to or less than the second threshold value. In addition, when the output value exceeds the second threshold, the determination unit 33 determines that the automatic diagnosis operation is not possible.
 図28は、図26の制御装置31の動作を示すフローチャートである。制御装置31は、設定震度以上の震度が検出されると、図28の動作を開始する。図28の動作が開始されると、制御装置31は、まずステップS11において、かご4の位置を検出する。 FIG. 28 is a flowchart showing the operation of the control device 31 of FIG. When a seismic intensity equal to or higher than the set seismic intensity is detected, control device 31 starts the operation in FIG. When the operation in FIG. 28 is started, the control device 31 first detects the position of the car 4 in step S11.
 続いて、制御装置31は、ステップS12において、かご4の位置に対応する倍率を選択する。そして、制御装置31は、ステップS2において、管制運転の可否を判定する。 Subsequently, in step S12, the control device 31 selects a magnification corresponding to the position of the car 4. Then, the control device 31 determines in step S2 whether or not the control operation is possible.
 ステップS2において管制運転が不可と判定された場合、制御装置31は、ステップS3においてかご4を急停止させる。この後、制御装置31は、ステップS4において、管制運転が実施されなかった旨を、管理室に報知する。 場合 If it is determined in step S2 that the control operation is not possible, the control device 31 stops the car 4 suddenly in step S3. Thereafter, in step S4, control device 31 notifies the control room that the control operation has not been performed.
 ステップS2において管制運転が可能と判定された場合、制御装置31は、ステップS5において、管制運転を実施する。 場合 If it is determined in step S2 that the control operation is possible, the control device 31 performs the control operation in step S5.
 この後、制御装置31は、ステップS6において、地震が継続しているかどうかを判定する。即ち、制御装置31は、地震感知器21からの信号に基づいて、地震の揺れが継続しているかどうかを判定し、揺れが収まるまで待機する。 After that, in step S6, the control device 31 determines whether or not the earthquake continues. That is, the control device 31 determines whether or not the shaking of the earthquake continues based on the signal from the earthquake sensor 21 and waits until the shaking stops.
 地震の揺れが収まると、制御装置31は、ステップS7において、自動診断運転の可否を判定する。 When the shaking of the earthquake has subsided, the control device 31 determines in step S7 whether or not the automatic diagnosis operation can be performed.
 ステップS7において自動診断運転が不可と判定された場合、制御装置31は、ステップS4において、自動診断運転が実施されなかった旨を、管理室に報知する。 If it is determined in step S7 that the automatic diagnosis operation is not allowed, the control device 31 notifies the management room that the automatic diagnosis operation has not been performed in step S4.
 ステップS7において自動診断運転が可能と判定された場合、制御装置31は、ステップS8において、自動診断運転を実施し、処理を終了する。なお、自動診断運転実施後の動作の説明は、省略する。また、他の構成及び動作は、実施の形態1と同様である。 If it is determined in step S7 that the automatic diagnosis operation is possible, the control device 31 performs the automatic diagnosis operation in step S8, and ends the process. The description of the operation after the execution of the automatic diagnosis operation is omitted. Other configurations and operations are the same as those in the first embodiment.
 このようなエレベータ装置では、制御装置31は、かご4の位置に応じて、管制運転の可否に関する第1の閾値と、自動診断運転の可否に関する第2の閾値とを変更する。このため、地震発生時に、より効率的なエレベータ装置の運転方法を選択することができる。 で は In such an elevator device, the control device 31 changes the first threshold value regarding the availability of the control operation and the second threshold value regarding the availability of the automatic diagnosis operation according to the position of the car 4. Therefore, when an earthquake occurs, it is possible to select a more efficient operation method of the elevator apparatus.
 また、かご4が地表と同じ高さに位置している場合の閾値と、かご4が中間階に位置している場合の閾値とは異なっている。このため、地震発生時に、より効率的なエレベータ装置の運転方法を選択することができる。 閾 値 Also, the threshold value when the car 4 is located at the same height as the ground surface is different from the threshold value when the car 4 is located on the middle floor. Therefore, when an earthquake occurs, it is possible to select a more efficient operation method of the elevator apparatus.
 また、制御装置31は、異なる複数の入力地震波に対して計算された、各階におけるかご4及び釣合おもり5の複数の応答加速度のうち、各階の最大値に基づいて、閾値を設定する。このため、あらゆる地震に対して、より効率的なエレベータ装置の運転方法を選択することができる。 制 御 In addition, the control device 31 sets a threshold value based on the maximum value of each floor among the plurality of response accelerations of the car 4 and the counterweight 5 on each floor calculated for a plurality of different input seismic waves. Therefore, it is possible to select a more efficient operation method of the elevator apparatus for any earthquake.
 なお、上記の例では、かご4の応答加速度と釣合おもり5の応答加速度とをそれぞれ別々に計算した。しかし、一般的なエレベータ装置では、かご4と釣合おもり5とは、ちょうど逆転した位置関係となる。そこで、図21で示すようなかご4の応答加速度を上下逆転し、釣合おもり5の応答加速度として利用する。 In the above example, the response acceleration of the car 4 and the response acceleration of the counterweight 5 were separately calculated. However, in a general elevator apparatus, the car 4 and the counterweight 5 have a reversed positional relationship. Therefore, the response acceleration of the car 4 as shown in FIG. 21 is inverted upside down and used as the response acceleration of the counterweight 5.
 そして、この釣合おもり5の応答加速度を、図29に示すように、かご4の応答加速度と重ね合わせることで、かご4及び釣合おもり5の応答加速度する。この応答加速度に基づいて、図30に示すように倍率を算出することができる。 Then, the response acceleration of the counterweight 5 is superimposed on the response acceleration of the car 4 as shown in FIG. 29, whereby the response acceleration of the car 4 and the counterweight 5 is obtained. Based on the response acceleration, the magnification can be calculated as shown in FIG.
 図30に示す倍率は、中間階を中心に、高さ方向に対称な形状となる。 倍率 The magnification shown in FIG. 30 is symmetrical in the height direction with the middle floor as the center.
 また、かご4の揺れと釣合おもり5の揺れとがほぼ等しいと仮定すると、図30で示したように、倍率は上下対称の形状となる。よって、図31で示すように、3点の値をもとに直線近似することで、倍率とすることもできる。3点とは、最下階におけるかご4の応答加速度に対応する倍率と、折り返しとなる中間階におけるかご4の応答加速度に対応する倍率と、最上階におけるかご4の応答加速度に対応する倍率とである。 Assuming that the swing of the car 4 and the swing of the counterweight 5 are substantially equal, the magnification is vertically symmetric as shown in FIG. Therefore, as shown in FIG. 31, the magnification can be obtained by linear approximation based on the values of three points. The three points are a magnification corresponding to the response acceleration of the car 4 on the lowest floor, a magnification corresponding to the response acceleration of the car 4 on the intermediate floor to be turned back, and a magnification corresponding to the response acceleration of the car 4 on the top floor. It is.
 また、地震時の建物1の揺れは、通常、建物1の高さに応じて変化する。一般的には、60m以下の建物では、図32に示すように、最上階で最大加速度が発生する。一方、60mを超える高層建物では、図33に示すように、地上から最上階へ向かうほど、加速度が小さくなる。 In addition, the shaking of the building 1 during the earthquake usually changes according to the height of the building 1. Generally, in a building of 60 m or less, the maximum acceleration occurs on the top floor as shown in FIG. On the other hand, in a high-rise building exceeding 60 m, as shown in FIG. 33, the acceleration decreases from the ground to the top floor.
 図25では、詳細な建物揺れをもとに倍率を計算したが、特に建物1が60m以下である場合、建物揺れのデータを入手できない場合もある。この場合、建物1の高さに応じて設定された地震に対する建物1の応答加速度に基づいて、倍率を設定することもできる。即ち、建物1が60m以下である場合、図32に示した一般的な建物揺れのデータに基づいて、倍率を設定することもできる。 In FIG. 25, the magnification is calculated on the basis of the detailed building shake. However, especially when the building 1 is 60 m or less, data on the building shake may not be available. In this case, the magnification can be set based on the response acceleration of the building 1 to the earthquake set according to the height of the building 1. That is, when the building 1 is 60 m or less, the magnification can be set based on the general building shake data shown in FIG.
 また、図32に示した建物揺れのデータを、図34に示すように、直線で近似することで、倍率を容易に計算することができる。 倍率 Further, by approximating the data of the building shaking shown in FIG. 32 with a straight line as shown in FIG. 34, the magnification can be easily calculated.
 このように、詳細な建物揺れのデータがない場合でも、一般的な建物揺れのデータを用いて、汎用的な倍率を得ることができる。 Thus, even when there is no detailed data on building shaking, a general-purpose magnification can be obtained using general building shaking data.
 なお、60mを超える高層建物について、図33に示した建物揺れのデータ、又は図33を直線で近似したデータに基づいて、倍率を設定してもよい。 For a high-rise building exceeding 60 m, the magnification may be set based on the data of the building shake shown in FIG. 33 or the data obtained by approximating the straight line in FIG.
 また、図27では、許容値に倍率を乗じていたが、図35に示すように、かご4の位置に応じて地震感知器21からの信号、即ちセンサ出力に倍率を乗じても同様の効果が得られる。この場合の倍率は、図36に示すように、図27で示した倍率を左右反転した形状となる。 In FIG. 27, the allowable value is multiplied by the magnification. However, as shown in FIG. 35, the same effect can be obtained by multiplying the signal from the seismic sensor 21, that is, the sensor output, by the magnification according to the position of the car 4. Is obtained. As shown in FIG. 36, the magnification in this case has a shape obtained by inverting the magnification shown in FIG. 27 from side to side.
 また、上記の例では、かご4の位置に応じて倍率を変更したが、釣合おもり5の位置に応じて倍率を変更してもよい。 In the above example, the magnification is changed according to the position of the car 4, but the magnification may be changed according to the position of the counterweight 5.
 また、上記の例では、地震対応運転の可否の判定に用いる値に倍率を乗じたが、地震対応運転の可否の判定基準をかご4の位置に応じて変更する方法は、倍率を乗ずる方法に限定されない。 Further, in the above example, the value used for determining the possibility of the earthquake response operation is multiplied by the magnification. However, the method of changing the determination standard of the possibility of the earthquake response operation according to the position of the car 4 is a method of multiplying the magnification. Not limited.
 また、実施の形態1~9では、自動診断運転及び管制運転の可否を判定したが、どちらか一方のみの可否を判定してもよい。 In the first to ninth embodiments, whether the automatic diagnosis operation and the control operation are permitted or not is determined. However, only one of the two may be determined.
 また、地震対応運転の可否を判定する制御装置は、エレベータ装置の通常運転を制御する装置から切り離してもよい。 制 御 Also, the control device that determines whether or not to operate in response to an earthquake may be separated from a device that controls normal operation of the elevator device.
 また、この発明は、同じ建物内に複数のエレベータ装置が設置されている場合にも適用できる。この場合、エレベータ装置毎に地震対応運転の可否を判定することで、地震発生時に、建物1全体として、より効率的なエレベータ装置の運転方法を選択することができる。 The present invention can also be applied to a case where a plurality of elevator devices are installed in the same building. In this case, by determining whether or not the earthquake-compatible operation can be performed for each elevator device, a more efficient operation method of the elevator device can be selected for the entire building 1 when an earthquake occurs.
 また、エレベータ装置全体のレイアウトは、図1等に示したレイアウトに限定されるものではない。例えば2:1ローピング方式のエレベータ装置にもこの発明は適用できる。 The layout of the entire elevator apparatus is not limited to the layout shown in FIG. For example, the present invention can be applied to a 2: 1 roping type elevator apparatus.
 また、この発明は、種々のタイプのエレベータに適用できる。例えば、この発明は、機械室レスエレベータ、ダブルデッキエレベータ、又はワンシャフトマルチカー方式にも適用できる。ワンシャフトマルチカー方式は、上かごと、上かごの真下に配置された下かごとが、それぞれ独立して共通の昇降路を昇降する方式である。 The present invention can be applied to various types of elevators. For example, the present invention can be applied to a machine roomless elevator, a double deck elevator, or a one-shaft multi-car system. The one-shaft multi-car system is a system in which an upper car and a lower car disposed directly below an upper car independently move up and down a common hoistway.
 1 建物、2 昇降路、4 かご(監視対象機器、第1の昇降体)、5 釣合おもり(監視対象機器、第2の昇降体)、12,31 制御装置、13 かごセンサ、14 釣合おもりセンサ、15 機械室センサ、21 地震感知器。 1 building, 2 hoistway, 4 car (monitoring equipment, first hoisting body), 5 counterweight (monitoring equipment, second hoisting body), 12, 31 control device, 13 car sensor, 14 balancing Weight sensor, 15 machine room sensor, 21 earthquake detector.

Claims (17)

  1.  地震発生時に、少なくとも1つのエレベータ機器である監視対象機器に発生した機器応答加速度に基づいて、自動診断運転及び管制運転の少なくともいずれか一方の可否を判定する制御装置
     を備えているエレベータ装置。
    An elevator apparatus comprising: a control device that determines whether or not at least one of an automatic diagnosis operation and a control operation is performed based on a device response acceleration generated in a monitored device that is at least one elevator device when an earthquake occurs.
  2.  前記監視対象機器に設置されており、前記機器応答加速度に応じた信号を発生するセンサ
     をさらに備え、
     前記制御装置は、前記センサからの信号に基づいて、前記機器応答加速度を検出する請求項1記載のエレベータ装置。
    A sensor installed on the monitored device and generating a signal corresponding to the device response acceleration;
    The elevator apparatus according to claim 1, wherein the control device detects the device response acceleration based on a signal from the sensor.
  3.  前記制御装置は、前記監視対象機器が設置されている建物の揺れに関する情報である建物揺れ情報と、前記監視対象機器の位置情報とに基づいて、前記機器応答加速度を推定する請求項1記載のエレベータ装置。 2. The control device according to claim 1, wherein the control device estimates the device response acceleration based on building shaking information that is information on a shaking of a building where the monitoring target device is installed, and position information of the monitoring target device. 3. Elevator equipment.
  4.  前記制御装置は、前記建物揺れ情報として、前記建物に設置されている地震感知器からの信号を使用する請求項3記載のエレベータ装置。 The elevator apparatus according to claim 3, wherein the control device uses a signal from an earthquake detector installed in the building as the building shake information.
  5.  前記制御装置は、前記機器応答加速度を推定するために、前記建物の階と前記監視対象機器の固有振動数とに応じて設定されている機器応答倍率の値を用いる請求項3又は請求項4に記載のエレベータ装置。 5. The controller according to claim 3, wherein the controller uses a value of a device response magnification set according to a floor of the building and a natural frequency of the monitored device to estimate the device response acceleration. 6. An elevator apparatus according to claim 1.
  6.  前記制御装置は、前記建物揺れ情報を入力として、前記監視対象機器の振動モデルを用いて、前記機器応答加速度を推定する請求項3又は請求項4に記載のエレベータ装置。 5. The elevator device according to claim 3, wherein the control device estimates the device response acceleration using the building shake information as an input and using a vibration model of the monitored device. 6.
  7.  前記制御装置は、前記地震感知器からの信号に基づいて、前記地震感知器が設置されている階の地震に対する応答加速度である階応答加速度を求め、前記階応答加速度を前記建物揺れ情報として使用する請求項4記載のエレベータ装置。 The control device obtains a floor response acceleration that is a response acceleration to an earthquake at a floor where the earthquake sensor is installed, based on a signal from the earthquake sensor, and uses the floor response acceleration as the building shake information. The elevator apparatus according to claim 4, wherein
  8.  前記制御装置は、前記地震感知器からの信号を入力として、前記建物の振動モデルを用いて、前記階応答加速度を求める請求項7記載のエレベータ装置。 The elevator apparatus according to claim 7, wherein the control device obtains the floor response acceleration by using a signal from the earthquake sensor as an input and using a vibration model of the building.
  9.  前記監視対象機器は、昇降路を昇降する第1の昇降体と第2の昇降体とを含み、
     前記第1の昇降体には、前記第1の昇降体の前記機器応答加速度に応じた信号を発生するセンサが設けられており、
     前記制御装置は、
     前記センサからの信号に基づいて、前記第1の昇降体の前記機器応答加速度を検出し、
     前記監視対象機器が設置されている建物の揺れに関する情報である建物揺れ情報と、前記第2の昇降体の位置とに基づいて、前記第2の昇降体の前記機器応答加速度を推定する請求項1記載のエレベータ装置。
    The monitoring target device includes a first elevating body and a second elevating body that move up and down the hoistway,
    The first elevating body is provided with a sensor that generates a signal corresponding to the device response acceleration of the first elevating body,
    The control device includes:
    Based on the signal from the sensor, the device response acceleration of the first lifting body is detected,
    The device response acceleration of the second lifting body is estimated based on building swing information that is information on a swing of a building in which the monitoring target device is installed and a position of the second lifting body. 2. The elevator apparatus according to claim 1.
  10.  地震発生時に、建物に設定されている地震感知器からの信号に基づいて、自動診断運転及び管制運転の少なくともいずれか一方である地震対応運転の可否を判定するとともに、昇降路を昇降する昇降体の位置に応じて、前記地震対応運転の可否の判定基準を変更する制御装置
     を備えているエレベータ装置。
    At the time of an earthquake, based on a signal from an earthquake detector set in the building, the elevating body that determines whether or not to perform an earthquake-response operation, which is at least one of automatic diagnosis operation and control operation, and moves up and down the hoistway An elevator apparatus, comprising: a control device that changes a criterion for determining whether or not the earthquake-response operation is possible according to the position of the elevator.
  11.  前記制御装置は、前記地震対応運転の可否の判定に用いる値に乗ずる倍率を、前記昇降体の位置に応じて変更する請求項10記載のエレベータ装置。 11. The elevator apparatus according to claim 10, wherein the control device changes a magnification by which a value used for determining whether or not the earthquake-response operation is permitted is multiplied according to a position of the elevator.
  12.  前記昇降体が地表と同じ高さに位置している場合の前記倍率と、前記昇降体が中間階に位置している場合の前記倍率とが異なっている請求項11記載のエレベータ装置。 The elevator apparatus according to claim 11, wherein the magnification when the elevating body is located at the same height as the ground surface is different from the magnification when the elevating body is located on an intermediate floor.
  13.  前記倍率は、異なる複数の入力地震波に対して計算された、各階における前記昇降体の複数の応答加速度のうち、各階の最大値に基づいて設定される請求項11又は請求項12に記載のエレベータ装置。 The elevator according to claim 11 or 12, wherein the magnification is set based on a maximum value of each floor among a plurality of response accelerations of the elevator on each floor calculated for a plurality of different input seismic waves. apparatus.
  14.  前記昇降体は、かご及び釣合おもりを含み、
     各階における前記倍率は、地震に対する前記かごの応答加速度と前記釣合おもりの応答加速度との最大値を用いて設定される請求項11から請求項13までのいずれか1項に記載のエレベータ装置。
    The elevating body includes a car and a counterweight,
    The elevator apparatus according to any one of claims 11 to 13, wherein the magnification at each floor is set using a maximum value of a response acceleration of the car to an earthquake and a response acceleration of the counterweight.
  15.  前記釣合おもりの応答加速度として、前記かごの応答加速度を高さ方向に反転したものが利用されている請求項14記載のエレベータ装置。 The elevator apparatus according to claim 14, wherein the response acceleration of the counterweight is obtained by inverting the response acceleration of the car in the height direction.
  16.  前記倍率は、前記昇降体が前記建物の最下階、中間階、及び最上階に位置しているときの前記倍率を直線で近似して設定される請求項11記載のエレベータ装置。 The elevator apparatus according to claim 11, wherein the magnification is set by linearly approximating the magnification when the elevating body is located on the lowest floor, the middle floor, and the top floor of the building.
  17.  前記倍率は、前記建物の高さに応じて設定された地震に対する前記建物の応答加速度に基づいて設定される請求項11記載のエレベータ装置。 The elevator apparatus according to claim 11, wherein the magnification is set based on a response acceleration of the building to an earthquake set according to a height of the building.
PCT/JP2018/028905 2018-08-01 2018-08-01 Elevator apparatus WO2020026384A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880095699.0A CN112469656B (en) 2018-08-01 2018-08-01 Elevator device
PCT/JP2018/028905 WO2020026384A1 (en) 2018-08-01 2018-08-01 Elevator apparatus
JP2020533972A JP7080326B2 (en) 2018-08-01 2018-08-01 Elevator equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/028905 WO2020026384A1 (en) 2018-08-01 2018-08-01 Elevator apparatus

Publications (1)

Publication Number Publication Date
WO2020026384A1 true WO2020026384A1 (en) 2020-02-06

Family

ID=69230600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028905 WO2020026384A1 (en) 2018-08-01 2018-08-01 Elevator apparatus

Country Status (3)

Country Link
JP (1) JP7080326B2 (en)
CN (1) CN112469656B (en)
WO (1) WO2020026384A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7239026B1 (en) 2022-01-17 2023-03-14 三菱電機株式会社 elevator equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155042A (en) * 2007-12-26 2009-07-16 Toshiba Elevator Co Ltd Group supervisory elevator performance assessment device
JP2010215410A (en) * 2009-02-20 2010-09-30 Mitsubishi Electric Corp Rope swing detecting device for elevator, and method of automatically controlling restoration operation after earthquake using the same
JP2013216456A (en) * 2012-04-10 2013-10-24 Toshiba Elevator Co Ltd Elevator control device
JP2013237547A (en) * 2012-05-16 2013-11-28 Hitachi Building Systems Co Ltd Controller for elevator
US20150246791A1 (en) * 2014-02-28 2015-09-03 Thyssenkrupp Elevator Ag Elevator System
JP2015174706A (en) * 2014-03-13 2015-10-05 フジテック株式会社 Elevator device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4867813B2 (en) * 2007-06-20 2012-02-01 三菱電機株式会社 Elevator seismic control operation system
JP4597174B2 (en) * 2007-09-19 2010-12-15 株式会社日立製作所 Elevator equipment
CN101407294B (en) * 2007-10-11 2010-09-29 株式会社日立制作所 Control apparatus for elevator and installation construction method for elevator
JP2009120337A (en) * 2007-11-15 2009-06-04 Toshiba Elevator Co Ltd Elevator temporary restoration operation system
JP4675390B2 (en) * 2008-03-18 2011-04-20 三菱電機株式会社 Elevator earthquake recovery equipment
JP5224933B2 (en) * 2008-06-25 2013-07-03 株式会社日立製作所 Elevator restoration operation method and apparatus
CN101811635B (en) * 2009-02-20 2012-09-26 三菱电机株式会社 Rope swing detecting device for the elevator and control method for operation automaticlly recovering after earthquake
JP6082358B2 (en) * 2014-03-17 2017-02-15 株式会社日立ビルシステム Earthquake recovery diagnosis operation device
JP2016069112A (en) * 2014-09-29 2016-05-09 株式会社日立製作所 Elevator device and earthquake temporary-restoration operation device of elevator device
CN109863106B (en) * 2017-01-17 2020-09-18 三菱电机大楼技术服务株式会社 Automatic recovery system of elevator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155042A (en) * 2007-12-26 2009-07-16 Toshiba Elevator Co Ltd Group supervisory elevator performance assessment device
JP2010215410A (en) * 2009-02-20 2010-09-30 Mitsubishi Electric Corp Rope swing detecting device for elevator, and method of automatically controlling restoration operation after earthquake using the same
JP2013216456A (en) * 2012-04-10 2013-10-24 Toshiba Elevator Co Ltd Elevator control device
JP2013237547A (en) * 2012-05-16 2013-11-28 Hitachi Building Systems Co Ltd Controller for elevator
US20150246791A1 (en) * 2014-02-28 2015-09-03 Thyssenkrupp Elevator Ag Elevator System
JP2015174706A (en) * 2014-03-13 2015-10-05 フジテック株式会社 Elevator device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7239026B1 (en) 2022-01-17 2023-03-14 三菱電機株式会社 elevator equipment
JP2023104138A (en) * 2022-01-17 2023-07-28 三菱電機株式会社 Elevator apparatus

Also Published As

Publication number Publication date
CN112469656A (en) 2021-03-09
CN112469656B (en) 2022-05-10
JP7080326B2 (en) 2022-06-03
JPWO2020026384A1 (en) 2021-01-07

Similar Documents

Publication Publication Date Title
JP4849397B2 (en) Elevator abnormality detection device
JP4994633B2 (en) Elevator automatic inspection device
JP7333455B2 (en) Elevator control method and control system
JPWO2015068322A1 (en) Elevator diagnostic equipment
WO2015047221A1 (en) Rope sway mitigation through control of access to elevators
JP2010006496A (en) Method and device for restoring operation of elevator
JP6987255B2 (en) Elevator diagnostic system
JP2017088280A (en) Elevator control device and method for controlling elevator device
JP2010052924A (en) Control device of elevator
JPH0637269B2 (en) Elevator control operation device
JP6717390B2 (en) Elevator automatic recovery system
JPWO2004028947A1 (en) Elevator safety system
WO2020026384A1 (en) Elevator apparatus
JP2008044701A (en) Earthquake emergency operation device for elevator
JP2007197150A (en) Earthquake restoration operating method for elevator
JP2011051739A (en) Control device of elevator
JP6480840B2 (en) Elevator and control method of elevator
JP5535441B2 (en) Elevator control operation device
JPH05319720A (en) Strong wind control operation method for elevator
JP6975108B2 (en) Elevator diagnostic system and elevator diagnostic method
WO2019077645A1 (en) Device and method for controlling elevator
JP5896888B2 (en) Elevator control system and elevator control method
JP7395065B2 (en) elevator system
JP6648864B1 (en) Elevator equipment
WO2019058510A1 (en) Control device of elevator, and car position detection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18928947

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020533972

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18928947

Country of ref document: EP

Kind code of ref document: A1