WO2020022800A1 - 접착제 조성물 - Google Patents

접착제 조성물 Download PDF

Info

Publication number
WO2020022800A1
WO2020022800A1 PCT/KR2019/009235 KR2019009235W WO2020022800A1 WO 2020022800 A1 WO2020022800 A1 WO 2020022800A1 KR 2019009235 W KR2019009235 W KR 2019009235W WO 2020022800 A1 WO2020022800 A1 WO 2020022800A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
adhesive composition
less
parts
epoxy resin
Prior art date
Application number
PCT/KR2019/009235
Other languages
English (en)
French (fr)
Inventor
고민진
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP19840550.8A priority Critical patent/EP3825377B1/en
Priority to US17/262,836 priority patent/US20210269686A1/en
Priority to JP2021502970A priority patent/JP7238092B2/ja
Priority to CN201980049049.7A priority patent/CN112534017B/zh
Publication of WO2020022800A1 publication Critical patent/WO2020022800A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]

Definitions

  • the present application relates to an adhesive composition.
  • Adhesives comprising epoxy resins, ie epoxy resin-based adhesives, are used to bond or bond various kinds of substrates because they have high heat resistance and excellent adhesive strength.
  • epoxy resin adhesives have been used for metal-metal joining and metal-plastic joining.
  • the epoxy resin adhesive is used in the automotive industry, the number of welds required for manufacturing the vehicle body frame is reduced, thereby reducing the cost and reducing the weight of the vehicle body.
  • an epoxy resin adhesive used in automobiles requires not only excellent adhesive strength but also impact resistance. And this property must be maintained uniformly over a wide range of temperatures in which the motor vehicle is actually used, for example about -40 to 80 ° C.
  • the epoxy resin adhesive according to the prior art has a problem that it does not provide sufficient strength for low temperature conditions such as -40 °C.
  • One object of the present application is to provide an epoxy resin adhesive composition.
  • Another object of the present application is to provide an adhesive composition that provides excellent adhesive strength, impact strength and shear strength over a wide temperature range.
  • the present application relates to an adhesive composition comprising an epoxy-based resin.
  • the adhesive composition may be used to bond homogeneous or heterogeneous substrates after curing.
  • the substrate may comprise a metal component or a plastic component, such that the adhesive composition may be used for metal-metal bonding, metal-plastic bonding, plastic-plastic bonding, or the like.
  • the conjugate of such a substrate (hereinafter may be referred to as a composite or a structure) can be used as a component of, for example, an automobile.
  • the adhesive composition comprises (a) at least one epoxy resin, (b) a modified epoxy resin having a polyether structure, and (c) a core in the form of secondary particles in which at least two core shell rubbers in the form of primary particles are aggregated. Shell rubber, and (d) one or more epoxy curing agents.
  • the adhesive composition of the present application including all of these configurations has excellent adhesive strength, impact resistance and shear strength for a structure formed using the cured product of the adhesive composition from a low temperature such as -40 ° C to a high temperature such as 80 ° C. It can provide uniformly.
  • the specific structure of the epoxy resin used for the adhesive composition of this application is not specifically limited.
  • the epoxy resin may be an epoxy resin having a saturated or unsaturated group, and may be an epoxy resin including a cyclic structure or an acyclic structure.
  • the specific kind of epoxy resin used in the present application is also not particularly limited.
  • the epoxy resin may be a bisphenol epoxy resin such as bisphenol A or bisphenol F; Novolac epoxy resins; Or an oxazolidone-containing epoxy resin.
  • the epoxy resin (a) may be used to mean an epoxy resin that does not have the properties of the modified epoxy resin (b) described below.
  • the epoxy resin may include a bisphenol A-based epoxy resin and / or a bisphenol F-based resin.
  • a bisphenol A-based epoxy resin for example, trade names YD-128, YDF-170, YD-011, etc. of Kukdo Chemical may be used.
  • the epoxy resin (a) may include a bisphenol A-based epoxy resin and / or bisphenol F-based resin having an epoxy equivalent of less than 300.
  • the epoxy equivalent of the epoxy resin used within the said range is not limited.
  • the epoxy equivalent of the epoxy resin may be 280 or less, 260 or less, 240 or less, 220 or less, or 200 or less.
  • the lower epoxy equivalent of the epoxy resin may be 100 or more, 110 or more, 120 or more, 130 or more, 140 or more or 150 or more.
  • the adhesive adhesive composition may include two or more epoxy resins different from each other by one or more features selected from epoxy equivalent weight, molecular weight or viscosity.
  • the adhesive composition may include two or more resins having different epoxy equivalents from each other.
  • the adhesive may include an epoxy resin mixture (a) in which two or more resins having different equivalent weights are mixed.
  • the epoxy resin mixture (a) may further include one or more epoxy resins having an epoxy equivalent of 300 or more.
  • the epoxy equivalent of the epoxy resin is 320 or more, 340 or more, 360 or more, 380 or more, 400 or more, 420 or more, 440 or more, 460 or more, 480 or more, 500 or more, 520 or more, 540 or more, 560 or more, 580 or greater, or 600 or greater.
  • the upper limit of the epoxy equivalent of the resin may be 650 or less, 640 or less, 630 or less, or 620 or less.
  • the epoxy resin mixture (a) may include at least one epoxy resin having an epoxy equivalent of 300 or more and at least one epoxy resin having an epoxy equivalent of 300 or less.
  • the adhesive composition may include a bisphenol-based A resin as an epoxy resin having an epoxy equivalent of less than 300.
  • the adhesive composition may further include a bisphenol-based A resin as an epoxy resin having an epoxy equivalent of 300 or more.
  • the adhesive composition may include a bisphenol-based F-based resin as an epoxy resin having an epoxy equivalent of less than 300.
  • the adhesive composition may further include a bisphenol-based F-based resin as an epoxy resin having an epoxy equivalent of 300 or more.
  • the adhesive composition may include both a bisphenol A resin and an F resin that satisfy the equivalent weight.
  • the crosslink density may generally decrease with increasing viscosity, and the strength observed after the composition has cured may also be somewhat poor.
  • epoxy equivalent becomes low, there exists a problem that the effect of using an epoxy adhesive cannot fully be expected.
  • the adhesive composition may include an epoxy resin having an epoxy equivalent of less than 300, 15 parts by weight or more, based on the total content of the adhesive composition.
  • the adhesive composition may include 20 parts by weight, 25 parts by weight or 30 parts by weight or more of an epoxy resin having an epoxy equivalent of less than 300.
  • the upper limit of the epoxy resin content having an epoxy equivalent of less than 300 is not particularly limited, but may be, for example, 55 parts by weight or less, 50 parts by weight or less, 45 parts by weight or less, or 40 parts by weight or less.
  • the adhesive composition may include an epoxy resin having an epoxy equivalent of 300 or more, based on the total content of the adhesive composition, 1 part by weight or more.
  • the adhesive composition may include 2 parts by weight, 3 parts by weight, 4 parts by weight or 5 parts by weight or more of an epoxy resin having an epoxy equivalent of 300 or more.
  • the upper limit of the content of the epoxy resin having an epoxy equivalent of 300 or more is not particularly limited, but may be, for example, 15 parts by weight or less or 10 parts by weight or less.
  • the epoxy resin or the epoxy resin mixture is at least 15 parts by weight, at least 20 parts by weight, at least 25 parts by weight, 30 parts by weight, at least 35 parts by weight, at least 40 parts by weight, and 45 parts by weight, based on the content of the total adhesive composition. At least 50 parts by weight or at least 55 parts by weight may be used.
  • the upper limit is not particularly limited, but for example, 80 parts by weight or less, 75 parts by weight or less, 70 parts by weight or less, 65 parts by weight or less, 60 parts by weight or less, 55 parts by weight or less, 50 parts by weight or less or 45 parts by weight. Or less.
  • the adhesive composition may include a mono epoxy resin.
  • Mono epoxy resin in the present application may mean a resin having one epoxy functional group in the molecule.
  • the mono epoxy resin can lower the viscosity of the adhesive and is advantageous in controlling the crosslinking density to improve wetting, impact properties or adhesion (peeling) properties.
  • the mono epoxy resin may be called a diluent.
  • the mono epoxy resin may be used in an amount of 10 parts by weight or less, based on the total content of the adhesive composition.
  • the mono epoxy resin content may be, for example, 9 parts by weight or less, 8 parts by weight or less, 7 parts by weight or less, 6 parts by weight or less, or 5 parts by weight or less.
  • the lower limit is not particularly limited, but may be, for example, 0.5 parts by weight or more.
  • the polyether modified epoxy resin may be an epoxy resin terminated at both ends of a (poly) propylene epoxy group.
  • the modified epoxy resin may be obtained by reacting an epoxy resin with a (poly) propylene oxide.
  • bisphenol-based epoxy resins satisfying the equivalents described above may be used as the epoxy resin used in the reaction.
  • the modified epoxy resin may be a reactant of a polypropylene oxide and a bisphenol-based compound.
  • polyether modified epoxy resin may be represented by the following formula (1).
  • n and m are each independently an integer between 1 and 20.
  • Ar is a divalent aromatic hydrocarbon group containing a divalent aromatic group as a main skeleton, it may be represented by the formula
  • Me is a methyl group.
  • the weight average molecular weight (Mw) of the polypropylene oxide used to form the modified epoxy resin may range from 100 to 500.
  • the weight average molecular weight may be a polystyrene reduced molecular weight measured by GPC. When satisfying the above range, it is advantageous to improve the mechanical strength, shear strength and impact resistance.
  • the modified epoxy resin the equivalent of the epoxy resin may be 300 to 5,000. More specifically, the equivalent may range from 300 to 4,000, 300 to 3,000, 300 to 2,000, 300 to 1,000 or 300 to 600.
  • the adhesive composition may include 35 parts by weight or less of a modified epoxy resin having the polyether structure based on the content of the entire adhesive composition.
  • the modified epoxy resin having the polyether structure may be 1 part by weight, 2 parts by weight, 3 parts by weight, 4 parts by weight, 5 parts by weight, 6 parts by weight, 7 parts by weight, 8 parts by weight, or 8 parts by weight. It may comprise at least 9 parts by weight, at least 9 parts by weight, or at least 10 parts by weight.
  • an upper limit of the content of the modified epoxy resin may be, for example, 30 parts by weight or less, 29 parts by weight or less, 28 parts by weight or less, 27 parts by weight or less, 26 parts by weight or less, or 25 parts by weight or less. . When used in the above content range, it may be advantageous to simultaneously improve the shear strength and impact strength.
  • the adhesive composition includes a core shell rubber in the form of secondary particles in which two or more core shell rubbers in the form of primary particles are aggregated.
  • core shell rubber may mean a particulate (solid) material having a rubber component in a core portion and having a structure in which a shell material is grafted or crosslinked to the core.
  • core shell rubber in the form of primary particles means each unit having the core shell structure
  • core shell rubber in the form of secondary particles refers to core shell rubber (particles) in the form of primary particles. May mean an aggregate (or aggregate) formed by aggregation of two or more.
  • the coreshell rubber may be present dispersed in the adhesive composition.
  • the coreshell rubber particles of the primary form and the coreshell rubber particles of the secondary form may be prepared according to the method described in the following examples.
  • the flocculated rubber of the secondary type produced by the polymerization can be separated into a smaller sized flocculated rubber through a kneader such as a plantary mixer.
  • all of the aggregated particles may not be separated in the form of complete primary particles, and some of the secondary particles may be separated into primary particles and present in a mixed form of primary and secondary particles.
  • the weight ratio of the primary particles to the total content of the core shell rubber is 50 wt% or less, 40 wt% or less, 30 wt% or less, 20 wt% or less, 10 wt% or less, 5 wt% or less, 4 wt% or less. , 3 wt% or less, 2 wt% or less, 1 wt% or less, or 0.5 wt% or less.
  • the weight ratio of the primary particles may be substantially 0 wt%.
  • the weight ratio of the primary particles may be, for example, 0.01 wt% or more, 0.1 wt% or more, or 1 wt% or more.
  • the core shell rubber particles of the primary form and the core shell rubber particles of the secondary form may be prepared through a separate process.
  • the core may comprise a polymer of diene-based monomers, or may comprise a copolymer of a diene-based monomer and a heterogeneous monomer component (not a diene-based).
  • a polymer of diene-based monomers or may comprise a copolymer of a diene-based monomer and a heterogeneous monomer component (not a diene-based).
  • a diene-based monomers may be used as the diene monomer.
  • the core may be a butadiene-based core.
  • the core may comprise a polymer of butadiene.
  • the core may include a copolymer of butadiene and other ethylenically unsaturated monomers.
  • the ethylenically unsaturated monomer used in the core formation may be exemplified by a vinyl aromatic monomer, (methyl) acrylonitrile, alkyl (meth) acrylate, and the like, but is not particularly limited thereto.
  • alkyl (meth) acrylates when alkyl (meth) acrylates are additionally used in core formation, a different kind of alkyl (meth) acrylates from the alkyl (meth) acrylates used for shell formation described below will be used in the cores. Can be.
  • the shell that is grafted or crosslinked to the core may include alkyl (meth) acrylate units.
  • the fact that the shell contains alkyl (meth) acrylate units means that alkyl (meth) acrylate monomers can be used in forming the shell polymer that is crosslinked or grafted to the core.
  • the alkyl (meth) acrylate is lower alkyl (meth) acrylate having an alkyl group having 1 to 6 carbon atoms, such as methyl methacrylate, ethyl methacrylate, or t-butyl methacrylate. May be used, but is not limited to the monomers listed above.
  • the shell may further comprise vinylidene-based monomer units.
  • it may further include a unit of an aromatic vinyl monomer such as styrene, vinyl acetate or vinyl chloride.
  • the shell may include alkyl (meth) acrylate units and aromatic vinyl monomer units.
  • the core and the shell may have a predetermined glass transition temperature (Tg).
  • Tg glass transition temperature
  • the lower limit of glass ion (Tg) of the core is -60 ° C or higher, -50 ° C or higher, or -40 ° C. It may be abnormal.
  • the upper limit of the glass transition temperature of the core may be -20 ° C or less, -25 ° C or less, -30 ° C or less, or -35 ° C or less.
  • the shell for example, may have a glass transition temperature (Tg) of 50 °C or more, 60 °C or more or 70 °C or more.
  • the upper limit of the glass transition temperature of the shell may be 120 ° C. or less.
  • the glass transition temperature can be measured in a known manner, for example using differential scanning calorimetry (DSC).
  • particle diameter may be used to mean a core shell rubber having a particle shape (for example, a spherical shape or an ellipsoid shape) or a diameter thereof, and is most suitable when the shape of the core shell rubber is not completely spherical or ellipsoidal. It can mean the length of a long dimension.
  • the particle size-related features may be measured using known equipment, and for example, dynamic lighting scattering or laser diffraction equipment may be used to identify the particle size-related features. Unless specifically defined, the particle size or particle size of the particles may be used in the sense of the average particle diameter described below.
  • the particle diameter ratio of the core to the total particle diameter of the core shell may be 0.81 or more, 0.82 or more, 0.83 or more, 0.84 or more, 0.85 or more, 0.86 or more, 0.87 or more, 0.88 or more, 0.89 or more, or 0.90 or more.
  • the upper limit of the ratio may be, for example, 0.99, specifically, 0.98 or less, 0.97 or less, 0.96 or less, 0.95 or less, 0.94 or less, 0.93 or less, or 0.92 or less.
  • the above range is often not satisfied, so the shock absorbing function by the rubber is not sufficient, but the core shell rubber satisfying the range can sufficiently absorb the impact applied to the structure.
  • the ratio of the core exceeds 0.99, the thickness of the shell becomes thin, making it difficult to enclose the core portion, which may cause a decrease in compatibility or dispersibility with the epoxy resin.
  • the ratio of the core is less than 0.8, the effect of improving the impact strength is insufficient.
  • the core shell rubber in the form of primary particles has an average particle diameter of 250 nm or more, 260 nm or more, 270 nm or more, 280 nm or more, 290 nm or more or 300 nm or more, for example, the upper limit thereof is 600 nm. Less than or equal to or less than 500 nm, specifically less than or equal to 450 nm, less than or equal to 440 nm, less than or equal to 430 nm, less than or equal to 420 nm, less than or equal to 410 nm, or less than or equal to 400 nm It may have a size that satisfies.
  • the 'average particle diameter' refers to a diameter of the cumulative weight (mass) 50% particles (passes) in the particle size distribution curve.
  • the core of the primary particle form coreshell rubber may have an average particle diameter of at least 180 nm, at least 200 nm, at least 220 nm, at least 240 nm, at least 260 nm, at least 280 nm, or at least 300 nm.
  • the upper limit may be, for example, 500 nm or less, 495 nm or less, 490 nm or less, specifically 450 nm or less, 400 nm or 350 nm or less.
  • the shock absorbing function by the rubber is not sufficient.
  • the core shell rubber in the form of primary particles may have an average particle diameter of 250 nm or less.
  • the lower limit may be, for example, 10 nm or more, 20 nm or more, or 30 nm or more.
  • the particle size ratio R of the core to the total particle diameter of the core shell may satisfy the above range. In the case of commercialized core shell products, since the size of the corresponding particle size does not satisfy the above range, the shock absorbing function by the rubber is not sufficient.
  • the core shell rubber may have a predetermined particle size distribution.
  • the core shell rubber in the form of primary particles has a diameter of D 10 of the particle size distribution, that is, a cumulative 10% particle diameter based on weight (mass), from the smaller of the particle diameters measured by the particle size distribution measurement. nm range.
  • the core-shell rubber in the form of primary particles has a diameter of D 50 of the particle size distribution, that is, a cumulative diameter of 50% particles from the smaller to the cumulative weight (mass), based on the particle size distribution measurement. May be in the 350 nm range.
  • the core-shell rubber in the form of primary particles may have a diameter of D 90 of the particle size distribution, that is, a cumulative 90% particle diameter based on weight (mass), from the smaller of the particle diameters measured by the particle size distribution measurement. May range from 510 nm.
  • the core shell rubber in the form of primary particles may have a particle size distribution width obtained by Equation 1 below 2.0 or below 1.5.
  • the lower limit thereof is not particularly limited and may be, for example, 0.5 or more, 0.6 or more, 0.7 or more, 0.8 or more, 0.9 or more, or 1.0 or more.
  • the core-shell rubber having a narrow particle size distribution width is used, it is advantageous to uniformly secure excellent adhesive strength, peel strength and impact resistance at a wide temperature range.
  • Such particle size characteristics include, for example, a method of appropriately adjusting the type or content of monomers used in core or shell formation, or by dividing the monomer into several stages, or the polymerization time or other polymerization conditions of the core or shell. It can be obtained through a method such as adjusting appropriately.
  • the number of primary particles aggregated for secondary particle formation is not particularly limited, for example, the coreshell rubber aggregate (aggregate), ie, the diameter of the secondary particles may range from 0.1 to 10 ⁇ m.
  • Primary particles may aggregate to form secondary particles.
  • the core shell rubber (agglomerated particles) in the form of secondary particles which have been subjected to a kneading process such as a plantary mixer after polymerization, has a size of 2 ⁇ m or less, 1.5 ⁇ m or less, 1 ⁇ m or less, or 0.5 ⁇ m or less. Can have.
  • the size may be used to mean the particle size described above or the size of the longest dimension.
  • the average particle diameter of the core-shell rubber in the form of secondary particles may be 1.5 ⁇ m or less or 1 ⁇ m or less.
  • the average particle diameter of the core shell rubber may be 900 nm or less, 800 nm or less, 700 nm or less, or 600 nm or less.
  • the lower limit of the average particle diameter of the secondary particle type core shell rubber is 100 nm or more, 200 nm or more, 300 nm or more, 400 nm or more, or It may be 500 nm or more.
  • the core shell rubber in the form of secondary particles satisfying the above-described characteristics may be 5 parts by weight or more based on the total content of the adhesive composition.
  • the lower limit of the content may be 6 parts by weight or more, 7 parts by weight or more, 8 parts by weight or more, 9 parts by weight or more, or 10 parts by weight or more.
  • the content of the core shell rubber aggregate may be 35 parts by weight or less.
  • the upper limit of the content may be 34 parts by weight or less, 33 parts by weight or less, 32 parts by weight or less, 31 parts by weight or less, or 30 parts by weight or less, and more specifically 25 parts by weight or less. .
  • the adhesive composition may further include a liquid rubber.
  • the liquid rubber may be a configuration having an epoxy group at the end of the liquid rubber, which is a homopolymer of a diene monomer or a copolymer of a diene monomer and a heterogeneous monomer. That is, the liquid rubber may be an epoxy terminated liquid rubber.
  • the liquid rubber may comprise a homopolymer or copolymer having repeating units derived from butadiene or isobutadiene.
  • Liquid rubbers may include, for example, butadiene or isobutadiene and copolymers of acrylates and / or acrylonitriles.
  • the content of liquid rubber may be the same as that of the coreshell rubber described above.
  • the adhesive composition may include at least 5 parts by weight or at least 10 parts by weight of rubber (coreshell rubber and / or liquid rubber) based on the total content of the adhesive composition.
  • the adhesive composition may include at least 5 parts by weight or at least 10 parts by weight of coreshell rubber based on the total content of the adhesive composition.
  • the adhesive composition may include both the core shell rubber and the liquid rubber, the adhesive composition may include at least 5 parts by weight or 10 parts by weight of the core shell rubber and the liquid rubber based on the total content of the adhesive composition.
  • the rubber component may be used in an amount of 35 parts by weight or less.
  • the adhesive composition has at least 10 parts by weight, at least 12 parts by weight, or at least 14 parts by weight, and at most 30 parts by weight, at most 25 parts by weight, or at most 22 parts by weight, based on the total content of the adhesive composition. (Coreshell rubber and / or liquid rubber).
  • the adhesive composition may include a predetermined curing agent to be cured at a temperature of about 80 ° C. or higher or about 100 ° C. or higher. If curing can occur in the above temperature range, the type of curing agent is not particularly limited.
  • the curing agent may be dicyandiamide, melamine, diallyl melamine, guanamine (eg, acetoguanamine, benzoguanamine), aminotriazole (3-amino-1,2,4 triazole), high Dragizide (adipic acid dihydride, stearic acid dihydrazide, isophthalic acid dihydrazide), cyanoacetamide or aromatic polyamines such as diaminodiphenylsulfone can be used.
  • the curing agent may be, for example, 1 part by weight, 2 parts by weight, 3 parts by weight or 4 parts by weight or more based on the total content of the adhesive composition.
  • the upper limit of the content of the curing agent may be 15 parts by weight or less, 14 parts by weight or less, 13 parts by weight or less, 12 parts by weight or less, 11 parts by weight or less, or 10 parts by weight or less.
  • the adhesive composition may further include a urethane resin.
  • the urethane resin may be a urethane resin in which isocyanate ends are blocked.
  • the urethane resin may be a urethane resin having a polyether structure.
  • at least one of the isocyanate groups which are terminals of the urethane resin has a structure (capping structure) terminated with a predetermined compound.
  • the urethane resin may include an isocyanate unit and a polyether polyol unit.
  • the urethane resin includes a predetermined unit may mean a state in which a unit derived from the compound is contained in the resin structure while the compound is polymerized in a resin structure (backbone or side chain) formed by reaction of one or more compounds. have.
  • the specific kind of isocyanate used in the urethane resin is not particularly limited, and known aromatic or non-aromatic isocyanates may be used.
  • the isocyanates can be nonaromatic. That is, aliphatic or alicyclic isocyanates may be used when forming the modified urethane resin.
  • non-aromatic isocyanates impact resistance or viscosity characteristics of the adhesive composition may be improved.
  • non-aromatic isocyanate that can be used is not particularly limited.
  • aliphatic polyisocyanates or their modifications can be used.
  • aliphatic polyisocyanate such as hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate, norbornane diisocyanate methyl, ethylene diisocyanate, propylene diisocyanate or tetramethylene diisocyanate
  • Aliphatic cyclic polyisocyanates such as transcyclohexane-1,4-diisocyanate, isophorone diisocyanate, bis (isocyanatemethyl) cyclohexane diisocyanate or dicyclohexylmethane diisocyanate;
  • at least one of the above carbodiimide-modified polyisocyanates or isocyanurate-modified polyisocyanates; And the like can be used.
  • the polyol may be a polyol having an OH equivalent of 300 or more.
  • the lower limit of OH equivalent of the polyol may be 400 or more, 500 or more, 600 or more, 700 or more, 800 or more, or 900 or more.
  • the upper limit of the OH equivalent of the polyol is not particularly limited, but may be, for example, 2,000 or less, 1,900 or less, 1,800 or less, 1,700 or less, 1,600 or less, 1,500 or less, 1,400 or less, 1,300 or less, 1,200 or less, or 1,100 or less. When the equivalent range is satisfied, it is advantageous to improve the impact resistance property, the adhesive strength property and the peeling property of the adhesive.
  • polyol is not particularly limited as long as the equivalent is satisfied. Tetrafunctional polyols such as, for example, pentaerythritol; Trifunctional polyols such as glycerin or trimethylolpropane; Or bifunctional polyols such as glycols may be used.
  • polyalkylene glycol may be used as the polyol, but is not particularly limited thereto.
  • polypropylene glycol may be used as the polyalkylene glycol.
  • the urethane resin may include branched polyether polyol units, and units of non-aromatic isocyanates.
  • the polyol may be branched polypropylene glycol.
  • Branched polypropylene means that the polypropylene backbone is configured to have side chains, which can be distinguished from linear, ie where the polypropylene repeat units do not have side chains.
  • branched polypropylenes have branches in which the polypropylene backbone incorporates (copolymerized) a-olefins such as ethylene, 1-butene, 1-hexene or 4-methyl-1pentene. That is, in one example of the present application, the polyol may have a branched polypropylene unit. When branched polypropylene glycol is used, it is advantageous for improving the strength.
  • the urethane resin may have a structure in which one or more of its isocyanate ends are terminated by a predetermined compound.
  • the so-called capping method of the isocyanate end of the urethane resin is not particularly limited. Known techniques can be used. For example, a polymer or prepolymer having a urethane group in an urethane chain derived from an etheric polyol and having an isocyanate group at its end is prepared, and capping the isocyanate end of the urethane through a compound having an active hydrogen group at all or part of the isocyanate group. can do.
  • a method of adding a compound capable of capping an isocyanate terminal together and capping simultaneously with polymerization may be used.
  • the kind of compound which can cap an isocyanate terminal is not specifically limited, For example, an amine compound, a phenol type compound, an oxime type compound, or a bisphenol type compound can be used.
  • the weight average molecular weight (Mw) of the urethane resin may range from 3,000 to 40,000.
  • the weight average molecular weight may be a polystyrene reduced molecular weight measured by GPC. More specifically, the lower limit of the weight average molecular weight of the urethane resin is 3,000 or more, 3,500 or more, 4,000 or more, 4,500 or more, 5,000 or more, 5,500 or more, 6,000 or more, 6,500 or more, 7,000 or more, 7,500 or more, 8,000 or more 8,500 or more, 9,000 It may be abnormal.
  • the upper limit of the weight average molecular weight of the urethane resin may be 35,000 or less or 30,000 or less.
  • the urethane resin may have a molecular weight adjusted using a branching agent, a chain extender, or the like in its preparation, and may also have a linear structure or a branched structure. In the case of branched structures it is suitable to polymerize the urethane without the use of chain extenders, which is advantageous for obtaining an appropriate molecular weight.
  • polypropylene glycol is used as the polyol, the contribution to improving the impact strength of the urethane resin having a branched structure may be higher.
  • the adhesive composition may include 5 parts by weight or more of the modified urethane resin based on the content of the entire adhesive composition.
  • the content of the modified urethane resin may be 6 parts by weight or more, 7 parts by weight or more, 8 parts by weight or more, 9 parts by weight or more, or 10 parts by weight or more.
  • the upper limit of the content of the urethane resin may be, for example, 25 parts by weight or less. More specifically, the urethane resin may be used in 20 parts by weight or less, 19 parts by weight or less, 18 parts by weight or less, 17 parts by weight or less, 16 parts by weight or less, or 15 parts by weight or less.
  • the urethane resin is a modified urethane resin having a unit derived from polytetrahydrofuran, in which at least one of the isocyanate groups which are terminal of the urethane resin terminates with a predetermined compound as described below. It can have a structure (capping structure).
  • the urethane resin may include an isocyanate unit, a polyol unit, and a polytetrahydrofuran unit.
  • the urethane resin includes a predetermined unit may mean a state in which a unit derived from the compound is contained in the resin structure while the compound is polymerized in a resin structure (backbone or side chain) formed by reaction of one or more compounds. have.
  • the specific kind of isocyanate used in the urethane resin is not particularly limited, and known aromatic or non-aromatic isocyanates may be used.
  • the isocyanates can be nonaromatic. That is, aliphatic or alicyclic isocyanates may be used when forming the modified urethane resin.
  • non-aromatic isocyanates impact resistance or viscosity characteristics of the adhesive composition may be improved.
  • non-aromatic isocyanate that can be used is not particularly limited.
  • aliphatic polyisocyanates or their modifications can be used.
  • aliphatic polyisocyanate such as hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate, norbornane diisocyanate methyl, ethylene diisocyanate, propylene diisocyanate or tetramethylene diisocyanate
  • Aliphatic cyclic polyisocyanates such as transcyclohexane-1,4-diisocyanate, isophorone diisocyanate, bis (isocyanatemethyl) cyclohexane diisocyanate or dicyclohexylmethane diisocyanate;
  • at least one of the above carbodiimide-modified polyisocyanates or isocyanurate-modified polyisocyanates; And the like can be used.
  • the kind of the polyol used at the time of forming the urethane resin is not particularly limited. Tetrafunctional polyols such as, for example, pentaerythritol; Trifunctional polyols such as glycerin or trimethylolpropane; Or bifunctional polyols such as glycols may be used.
  • the glycol may be a polyalkylene glycol such as polypropylene glycol.
  • a linear polyol may be used as the polyol.
  • a straight chain such as polypropylene glycol can be used.
  • a linear polyol is a polyol having two hydroxyl groups in a molecule, and can usually mean having a hydroxyl group at both ends of the molecule.
  • polyols having three or more hydroxyl groups in the molecule can be said to be branched polyols.
  • the case of using a linear polyol is easy to adjust the molecular weight of the urethane resin to the range described below, and may be advantageous for improving the impact resistance properties of the adhesive.
  • the polyol may be a polyol having an OH equivalent of 300 or more.
  • the lower limit of OH equivalent of the polyol may be 400 or more, 500 or more, 600 or more, 700 or more, 800 or more, or 900 or more.
  • the upper limit of the polyol OH equivalent is not particularly limited, but may be, for example, 2,000 or less, 1,900 or less, 1,800 or less, 1,700 or less, 1,600 or less, 1,500 or less, 1,400 or less, 1,300 or less, 1,200 or less, or 1,100 or less. When the equivalent range is satisfied, it is advantageous to improve the impact resistance property, the adhesive strength property and the peeling property of the adhesive.
  • the urethane resin may have a structure in which one or more of its isocyanate ends are terminated by a predetermined compound.
  • the so-called capping method of the isocyanate end of the urethane resin is not particularly limited. Known techniques can be used. For example, in the preparation of the modified urethane resin, a method of adding and polymerizing a compound capable of capping an isocyanate end may be used.
  • the kind of compound which can cap an isocyanate terminal is not specifically limited, For example, an amine compound, a phenol type compound, an oxime type compound, or a bisphenol type compound can be used.
  • the urethane resin may include a unit in which the terminal of the isocyanate is terminated by polytetrahydrofuran. Since polytetra hydrofuran also has an OH group, when synthesizing the urethane resin by so-called one-pot synthesis, the urethane resin is a unit in which the terminal of the isocyanate terminated by polytetrahydrofuran. It may further include.
  • the weight average molecular weight (Mw) of the polytetrahydrofuran may be 500 or more.
  • the "weight average molecular weight (Mw)" may be a polystyrene reduced molecular weight measured by GPC.
  • the weight average molecular weight of the polytetrahydrofuran may be 550 or more, 600 or more, 650 or more, 700 or more, 750 or more, 800 or more or 850 or more.
  • the upper limit of the polytetrahydrofuran weight average molecular weight may be 4,000 or less.
  • the polytetrahydrofuran weight average molecular weight may be 3,000 or less or 2,000, or more specifically 1,500 or less, 1,400 or less, 1,300 or less, or 1,200 or less.
  • the polytetra hydrofuran may have an OH equivalent of 400 to 2,200.
  • the OH equivalent is out of the above range, the impact resistance property of the adhesive may be lowered.
  • the polytetra hydrofuran may have, for example, OH equivalent of 450 or more and 500 or more, and OH equivalent of 1,100 or less or 1,000 or less.
  • the weight average molecular weight of the urethane resin having the above configuration may be in the range of 5,000 to 30,000. When satisfying the above range, it is possible to provide suitable physical properties for the adhesive application of the present application.
  • the adhesive composition may include 5 parts by weight or more of the modified urethane resin based on the content of the entire adhesive composition.
  • the content of the modified urethane resin may be 6 parts by weight or more, 7 parts by weight or more, 8 parts by weight or more, 9 parts by weight or more, or 10 parts by weight or more.
  • the upper limit of the content of the urethane resin may be, for example, 25 parts by weight or less. More specifically, the urethane resin may be used in 20 parts by weight or less, 19 parts by weight or less, 18 parts by weight or less, 17 parts by weight or less, 16 parts by weight or less, or 15 parts by weight or less.
  • the adhesive composition may include a catalyst to control the rate and temperature of the curing reaction by the curing agent.
  • the type of catalyst is not particularly limited, and various kinds of known catalysts may be appropriately used.
  • the catalyst includes p-chlorophenyl-N, N-dimethylurea, 3-phenyl-1,1-dimethyl urea, 3,4-dichlorophenyl-N, N-dimethylurea Ureas, such as; Tertiary acrylics; Amines such as benzyldimethylamine; Piperidine or derivatives thereof; Or imidazole derivatives may be used.
  • the catalyst may be used, for example, based on the total content of the adhesive composition, at least 0.1 part by weight, at least 0.2 part by weight, at least 0.3 part by weight, or at least 0.4 part by weight.
  • the upper limit of the catalyst content may be 2 parts by weight or less.
  • the adhesive composition may further include a particulate inorganic filler, that is, inorganic particles.
  • a particulate inorganic filler that is, inorganic particles.
  • the form of the inorganic filler may be rectangular, spherical, plate-like, or needle-shaped and is not particularly limited.
  • inorganic filler for example, calcium oxide, quartz powder, alumina, calcium carbonate, calcium oxide, aluminum hydroxide, magnesium calcium carbonate, barite, hydrophilic or hydrophobic silica particles, or aluminum magnesium calcium silicate can be used.
  • silica particles hydrophobicity is more preferable.
  • the inorganic filler may be, for example, 1 part by weight, 2 parts by weight, 3 parts by weight or 4 parts by weight or more based on the total content of the adhesive composition.
  • the upper limit of the inorganic filler content may be 15 parts by weight or less or 10 parts by weight or less.
  • the composition may further include various kinds of additives.
  • additives for example, drones, known plasticizers, reactive or non-reactive diluents, coupling agents, flow control agents, thixotropic agents, colorants, and the like may further be included in the adhesive composition.
  • the specific kind of the additive is not particularly limited, and known materials or commercial products may be used without limitation.
  • the additive may be used, for example, based on the total content of the adhesive composition, 0.1 part by weight, 1 part by weight, 2 parts by weight or 3 parts by weight or more.
  • the upper limit of the additive content may be 15 parts by weight or less, 14 parts by weight or less, 13 parts by weight or less, 12 parts by weight or less, 11 parts by weight or less, or 10 parts by weight or less.
  • the present application relates to a structure comprising a cured product of the adhesive composition.
  • the structure may comprise a substrate and a cured product of the adhesive composition cured after being applied on the substrate.
  • the substrate may include a metal component, a plastic component, wood, a glass fiber-containing substrate, and the like.
  • the structure may have a form in which two or more substrates are bonded through a cured product.
  • the structure may have a form in which metals and metals are bonded through hardened materials, metals and plastics are bonded through hardened materials, or plastics and plastics are bonded through hardened materials.
  • the structures can be used as structural materials for aerospace, wind power, ships or automobiles.
  • the present application relates to a method of making a structure.
  • the method may include applying a composition of the above-described composition on the surface of the substrate, and curing the composition applied to the surface of the substrate.
  • the application can be carried out such that physical contact of the substrate with the adhesive composition occurs.
  • the manner of applying the adhesive composition to the surface of the structure is not particularly limited.
  • jet spraying such as mechanical coating, swirling or streaming by extrusion may be used.
  • the application may be made to one or more substrates to be bonded.
  • the curing temperature is not particularly limited.
  • curing may be at 80 ° C. or higher or 100 ° C. or higher.
  • an adhesive composition may be provided that provides excellent adhesive strength, peel strength and impact resistance uniformly over a wide temperature range.
  • FIG. 1 shows a particle size distribution of a coreshell rubber (primary particle form) prepared according to one embodiment of the present application.
  • the horizontal axis represents particle diameter, and the vertical axis represents relative number of rubbers.
  • Figure 2 is an image taken to the core shell rubber prepared according to an embodiment of the present application dispersed in the epoxy resin.
  • Second step 70 parts by weight of the prepared rubber latex was put into a closed reactor, and the temperature of the reactor filled with nitrogen was raised to 75 ° C. Thereafter, 0.1 parts by weight of sodium pyrophosphate, 0.2 parts by weight of dextrose, and 0.002 parts by weight of ferrous sulfide were added to the reactor.
  • a monomer emulsion was prepared by mixing 25.5 parts by weight of methyl methacrylate, 4.5 parts by weight of styrene, 0.5 parts by weight of sodium dodecylbenzene sulfonate as an emulsifier, 0.1 part by weight of cumene hydroperoxide and 20 parts by weight of ion-exchanged water in a separate mixing device. It was.
  • the emulsion was continuously added over 3 hours, and then 0.03 parts by weight of hydroperoxide was added after 30 minutes, and aged at the same temperature for 1 hour to react at a polymerization conversion rate of 98%. Finished.
  • the average particle diameter of the core measured by Nicomp N300 dynamic light scattering equipment at a suitable point in the process was 320 nm, the average particle diameter of the core shell rubber resin latex was 345 nm.
  • compositions of Examples and Comparative Examples containing a predetermined amount (weight ratio: parts by weight) of the components shown in Table 1 were prepared as an adhesive material. Specifically, the core shell rubber aggregate and the epoxy resin were placed in a planetary mixer and mixed at 80 ° C. for 5 hours. The core shell rubber is dispersed in the epoxy resin as shown in FIG. 2. Thereafter, the remaining components excluding the urethane resin, the curing agent and the catalyst were placed in a planetary mixer and stirred at 80 ° C. for 3 hours.
  • Example 1 Example 2 Example 3 Comparative Example 1 Comparative Example 2 Comparative Example 3 1st epoxy resin 1) 34 34 19 54 34 29 2nd epoxy resin 2) 5 - - 5 5 5 3rd epoxy resin 2) - - 20 - - - Modified epoxy resin 4) 20 5 20 - 20 - Modified epoxy resin 5) - 15 - - - - Core Shell Rubber 6 ) 15 15 15 15 - - Core Shell Rubber 7 ) - 5 - - 15 - Liquid rubber 8 ) - - - - - 40 Urethane Resin 9 ) 5 5 5 5 5 5 5 Mono epoxy resin 10) 1.75 1.75 1.75 1.75 1.75 1.75 Colorants 11 ) 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 Hardener 12 ) 5 5 5 5 5 5 5 Catalyst 13 ) One One One One One One One One One One One One One One One One One One One One One One One One One One
  • First epoxy resin 1 Bisphenol A epoxy resin (YD128) having an epoxy equivalent of less than 300
  • Third epoxy resin 2 Bisphenol F-based epoxy resin (YD170) having an epoxy equivalent of less than 300
  • Modified epoxy resin 4 Adeka EP-4000 (Epoxy equivalent 320)
  • Modified epoxy resin 5 Adeka EP-4005 (epoxy equivalent 510)
  • Liquid rubber 8 Struktol polydis 3604
  • silane coupling agent 15 silane coupling agent 15 ) : GE Advanced material A-187
  • Example 1 Example 2 Example 3 Comparative Example 1 Comparative Example 2 Comparative Example 3 Impact Strength (-40 °C) 35 35 37 8 X 5 Impact Strength (23 °C) 44 42 46 37 32 30 Impact Strength (80 °C) 40 48 39 36 34 25 Shear strength (23 °C) 35 34 35 36 35 25 X: When a stable measured value is not obtained because the measured value is very low

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

본 출원은 에폭시계 접착제 조성물에 관한 것이다. 본 출원은 우수한 접착 강도, 박리 강도 및 내충격 강도를, 넓은 온도 범위에서 균일하게 제공할 수 있다.

Description

접착제 조성물
관련출원과의 상호인용
본 출원은 2018년 7월 25일 자 한국 특허 출원 제10-2018-0086343호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 출원은 접착제 조성물에 관한 것이다.
에폭시 수지를 포함하는 접착제, 즉 에폭시 수지계 접착제는 높은 내열성 및 우수한 접착 강도를 갖기 때문에 다양한 종류의 기재를 접착 또는 접합하는데 사용된다. 예를 들어, 최근에는 금속-금속 접합이나 금속-플라스틱 접합 등에 에폭시 수지계 접착제가 사용되고 있다. 특히, 에폭시 수지계 접착제를 자동차 산업에 사용할 경우에는 차체 프레임 제작에 필요한 용접 수를 감소시켜 비용을 절감하며, 차체의 무게를 감소시킬 수 있는 장점이 있다. 그로 인해, 우주 항공이나 풍력 발전 분야에서도 에폭시 수지계 접착제를 적용하는 것에 대한 기대가 증가하고 있다.
충돌 등의 사고를 고려하면, 자동차에 사용되는 에폭시 수지계 접착제에는 우수한 접착 강도뿐 아니라 내충격 강도 등이 요구된다. 그리고, 이러한 특성은 자동차가 실제 사용되는 넓은 범위의 온도, 예를 들어, 약 - 40 내지 80 ℃ 에서도 균일하게 유지되어야 한다. 그러나 종래 기술에 따른 에폭시 수지계 접착제는 - 40 ℃ 와 같은 저온 조건에 대하여 충분한 강도를 제공하지 못하는 문제가 있다.
본 출원의 일 목적은, 에폭시 수지계 접착제 조성물을 제공하는 것이다.
본 출원의 다른 목적은, 넓은 온도 범위에 걸쳐 우수한 접착 강도, 충격 강도 및 전단 강도를 제공하는 접착제 조성물을 제공하는 것이다.
본 출원의 상기 목적 및 기타 그 밖의 목적은 하기 상세히 설명되는 본 출원에 의해 모두 해결될 수 있다.
본 출원에 관한 일례에서, 본 출원은 에폭시계 수지를 포함하는 접착제 조성물에 관한 것이다. 상기 접착제 조성물은 경화 후에, 동종 또는 이종의 기재를 접착하는데 사용될 수 있다. 예를 들어, 상기 기재는 금속 성분 또는 플라스틱 성분을 포함할 수 있고, 그에 따라 상기 접착제 조성물은 금속-금속 접합, 금속-플라스틱 접합, 또는 플라스틱-플라스틱 접합 등에 사용될 수 있다. 이와 같은 기재의 접합체(이하, 복합체 또는 구조체라고 호칭할 수 있다)는, 예를 들어 자동차 등의 부품으로 사용될 수 있다.
본 출원에서, 상기 접착제 조성물은 (a) 하나 이상의 에폭시 수지, (b) 폴리에테르 구조를 갖는 변성 에폭시 수지, (c) 1차 입자 형태의 코어쉘 러버가 2 이상 응집된 2차 입자 형태의 코어쉘 러버, 및 (d) 하나 이상의 에폭시 경화제를 포함할 수 있다. 이들 구성을 모두 포함하는 본 출원의 접착제 조성물은, 상기 접착제 조성물의 경화물을 이용하여 형성된 구조체에 대하여, 우수한 접착강도, 내충격 강도 및 전단 강도를 - 40 ℃ 와 같은 저온에서부터 80 ℃ 와 같은 고온에 이르기까지 균일하게 제공할 수 있다.
(a) 에폭시 수지
상기 (a) 내지 (d) 구성을 모두 포함하는 경우, 본 출원의 접착제 조성물에 사용되는 에폭시 수지의 구체적인 구조는 특별히 제한되지 않는다. 예를 들어, 상기 에폭시 수지는 포화 또는 불포화기를 갖는 에폭시 수지일 수 있고, 환형 구조 또는 비환형 구조를 포함하는 에폭시 수지일 수 있다. 또한, 본 출원에 사용되는 에폭시 수지의 구체적인 종류 역시 특별히 제한되지 않는다. 예를 들어, 상기 에폭시 수지는 비스페놀 A계나 비스페놀 F계와 같은 비스페놀계 에폭시 수지; 노볼락계 에폭시 수지; 또는 옥사졸리돈 함유 에폭시 수지 등을 포함할 수 있다.
본 출원에서 에폭시 수지(a)는 하기 설명되는 변성 에폭시 수지(b)의 특성을 갖지 않는 에폭시 수지를 총칭하는 의미로 사용될 수 있다.
하나의 예시에서, 상기 에폭시 수지는 비스페놀 A계 에폭시 수지 및/또는 비스페놀 F계 수지를 포함할 수 있다. 예를 들어, 국도화학의 상품명 YD-128, YDF-170 또는 YD-011 등이 사용될 수 있다.
하나의 예시에서, 상기 에폭시 수지(a)는 에폭시 당량이 300 미만인 비스페놀 A계 에폭시 수지 및/또는 비스페놀 F계 수지를 포함할 수 있다. 상기 범위 내에서 사용되는 에폭시 수지의 에폭시 당량은 한정되지 않는다. 예를 들어, 에폭시 수지의 에폭시 당량은 280 이하, 260 이하, 240 이하, 220 이하 또는 200 이하일 수 있다. 특별히 제한되지는 않으나, 상기 에폭시 수지의 에폭시 당량 하한은 100 이상, 110 이상, 120 이상, 130 이상, 140 이상 또는 150 이상일 수 있다.
하나의 예시에서, 상기 접착착제 조성물은 에폭시 당량, 분자량 또는 점도 중에서 선택되는 하나 이상의 특징이 서로 상이한 에폭시 수지를 2 이상 포함할 수 있다.
하나의 예시에서, 상기 접착제 조성물은 에폭시 당량이 서로 상이한 2 이상의 수지를 포함할 수 있다. 예를 들어, 120 내지 700 범위의 에폭시 당량 범위 내에서, 서로 당량이 상이한 2 이상의 에폭시 수지가 사용될 수 있다. 즉, 상기 접착제는 서로 당량이 상이한 2 이상의 수지가 혼합된 에폭시 수지 혼합물(a)을 포함할 수 있다.
하나의 예시에서, 상기 에폭시 수지 혼합물(a)은 에폭시 당량이 300 이상인 1 이상의 에폭시 수지를 더 포함할 수 있다. 예를 들어, 상기 에폭시 수지의 에폭시 당량은 320 이상, 340 이상, 360 이상, 380 이상, 400 이상, 420 이상, 440 이상, 460 이상, 480 이상, 500 이상, 520 이상, 540 이상, 560 이상, 580 이상, 또는 600 이상일 수 있다. 특별히 제한되지는 않으나, 상기 수지의 에폭시 당량 상한은 650 이하, 640 이하, 630 이하 또는 620 이하일 수 있다.
하나의 예시에서, 상기 에폭시 수지 혼합물(a)은 에폭시 당량이 300 이상인 1 이상의 에폭시 수지 및 에폭시 당량이 300 이하인 1 이상의 에폭시 수지를 포함할 수 있다.
하나의 예시에서, 상기 접착제 조성물은 에폭시 당량이 300 미만인 에폭시 수지로서 비스페놀계 A 수지를 포함할 수 있다.
또 하나의 예시에서, 상기 접착제 조성물은 에폭시 당량이 300 이상인 에폭시 수지로서 비스페놀계 A 수지를 더 포함할 수 있다.
하나의 예시에서, 상기 접착제 조성물은 에폭시 당량이 300 미만인 에폭시 수지로서 비스페놀계 F계 수지를 포함할 수 있다.
또 하나의 예시에서, 상기 접착제 조성물은 에폭시 당량이 300 이상인 에폭시 수지로서 비스페놀계 F계 수지를 더 포함할 수 있다.
하나의 예시에서, 상기 접착제 조성물은 상기 당량을 만족하는 비스페놀 A계 수지 및 F계 수지를 모두 포함할 수 있다.
에폭시 당량이 높아지는 경우, 일반적으로 점도가 증가하게 되면서 가교 밀도는 감소할 수 있고, 조성물이 경화된 후 관찰되는 강도도 다소 불량해질 수 있다. 또한, 에폭시 당량이 낮아지는 경우에는 에폭시계 접착제 사용의 효과를 충분히 기대할 수 없는 문제가 있다. 그러나 상기와 같이 소정의 에폭시 당량을 갖는 수지를 혼합 사용하는 경우에는 상기와 같은 문제를 해소할 수 있는 이점이 있다.
하나의 예시에서, 상기 접착제 조성물은 에폭시 당량이 300 미만인 에폭시 수지를, 접착제 조성물 전체 함량 대비, 15 중량부 이상 포함할 수 있다. 구체적으로, 상기 접착제 조성물은 에폭시 당량이 300 미만인 에폭시 수지를 20 중량부 이상, 25 중량부 이상 또는 30 중량부 이상 포함할 수 있다. 에폭시 당량이 300 미만인 에폭시 수지 함량의 상한은 특별히 제한되지 않으나, 예를 들어, 55 중량부 이하, 50 중량부 이하, 45 중량부 이하 또는 40 중량부 이하일 수 있다.
하나의 예시에서, 상기 접착제 조성물은 에폭시 당량이 300 이상인 에폭시 수지를, 접착제 조성물 전체 함량 대비, 1 중량부 이상 포함할 수 있다. 구체적으로, 상기 접착제 조성물은 에폭시 당량이 300 이상인 에폭시 수지를 2 중량부 이상, 3 중량부 이상, 4 중량부 이상 또는 5 중량부 이상 포함할 수 있다. 에폭시 당량이 300 이상인 에폭시 수지의 함량 상한은 특별히 제한되지 않으나, 예를 들어, 15 중량부 이하 또는 10 중량부 이하일 수 있다.
하나의 예시에서, 에폭시 수지 또는 에폭시 수지 혼합물은 접착제 전체 조성물의 함량 대비, 15 중량부 이상, 20 중량부 이상, 25 중량부 이상, 30 중량부, 35 중량부 이상, 40 중량부 이상, 45 중량부 이상, 50 중량부 이상 또는 55 중량부 이상 사용될 수 있다. 그 상한은 특별히 제한되지는 않으나, 예를 들어, 80 중량부 이하, 75 중량부 이하, 70 중량부 이하, 65 중량부 이하, 60 중량부 이하, 55 중량부 이하, 50 중량부 이하 또는 45 중량부 이하일 수 있다.
본 출원에서, 상기 접착제 조성물은 모노 에폭시 수지를 포함할 수 있다. 본 출원에서 모노 에폭시 수지란 분자 내에 하나의 에폭시 관능기를 갖는 수지를 의미할 수 있다. 상기 모노 에폭시 수지는 접착제의 점도를 낮출 수 있고, 가교 밀도를 조절하여 젖음성(wetting), 충격 특성 또는 접착(박리)특성을 개선하는데 유리하다. 상기 모노 에폭시 수지는 소위 희석제라고 호칭될 수 있다.
하나의 예시에서, 상기 모노 에폭시 수지는, 접착제 전체 조성물의 함량 대비, 10 중량부 이하로 사용될 수 있다. 구체적으로, 상기 모노 에폭시 수지의 함량은, 예를 들어, 9 중량부 이하, 8 중량부 이하, 7 중량부 이하, 6 중량부 이하 또는 5 중량부 이하 사용될 수 있다. 그 하한은 특별히 제한되지는 않으나, 예를 들어, 0.5 중량부 이상일 수 있다.
(b) 변성 에폭시 수지
상기 폴리에테르 변성 에폭시 수지는 양 말단이 (폴리)프로필렌 에폭시기로 종결된 에폭시 수지일 수 있다. 예를 들어, 상기 변성 에폭시 수지는 (폴리)프로필렌 옥사이드와 에폭시 수지를 반응시켜 얻어질 수 있다.
하나의 예시에서, 상기 반응에 사용되는 에폭시 수지로는 상기 설명된 당량을 만족하는 비스페놀계 에폭시 수지가 사용될 수 있다. 예를 들어, 상기 변성 에폭시 수지는 폴리프로필렌옥사이드와 비스페놀계 화합물의 반응물일 수 있다.
예를 들어, 상기 폴리에테르 변성 에폭시 수지는 하기 화학식 1로 표시될 수 있다.
[화학식 1]
Figure PCTKR2019009235-appb-I000001
상기 식에서 n 및 m은 각각 독립적으로 1 내지 20 사이의 정수이다. 또한, 상기 식에서 Ar은 2가의 방향족기를 주골격으로 포함하는 2가의 방향족 탄화수소기이고, 하기 화학식 2-1 또는 2-2 일 수 있다.
[화학식 2-1]
Figure PCTKR2019009235-appb-I000002
상기 화학식 2-1에서, Me는 메틸기이다.
[화학식 2-2]
Figure PCTKR2019009235-appb-I000003
하나의 예시에서, 상기 변성 에폭시 수지 형성에 사용되는 폴리프로필렌 옥사이드의 중량평균분자량(Mw)은 100 내지 500 범위일 수 있다. 본 출원에서, 중량평균분자량은 GPC로 측정한 폴리스티렌 환산 분자량일 수 있다. 상기 범위를 만족하는 경우, 기계적 강도, 전단강도 및 내충격성 등을 개선하는데 유리하다.
하나의 예시에서, 상기 변성 에폭시 수지는, 에폭시 수지의 당량이 300 내지 5,000 일 수 있다. 보다 구체적으로, 상기 당량은 300 내지 4,000, 300 내지 3,000, 300 내지 2,000, 300 내지 1,000 또는 300 내지 600 범위일 수 있다.
상기 접착제 조성물은, 전체 접착제 조성물의 함량을 기준으로, 상기 폴리에테르 구조를 갖는 변성 에폭시 수지를 35 중량부 이하로 포함할 수 있다. 예를 들어, 상기 폴리에테르 구조를 갖는 변성 에폭시 수지는 1 중량부 이상, 2 중량부 이상, 3 중량부 이상, 4 중량부 이상, 5 중량부 이상, 6 중량부 이상, 7 중량부 이상, 8 중량부 이상, 9 중량부 이상, 또는 10 중량부 이상 포함할 수 있다. 특별히 제한되지는 않으나, 상기 변성 에폭시 수지의 함량의 상한은, 예를 들어 30 중량부 이하, 29 중량부 이하, 28 중량부 이하, 27 중량부 이하, 26 중량부 이하 또는 25 중량부 이하일 수 있다. 상기 함량 범위로 사용할 경우, 전단 강도 및 충격강도를 동시 개선하는데 유리할 수 있다.
(c) 러버
상기 접착제 조성물은 1차 입자 형태의 코어쉘 러버가 2 이상 응집된 2차 입자 형태의 코어쉘 러버를 포함한다.
본 출원에서 「코어쉘 러버」는 코어 부분에 고무 성분을 갖고, 쉘 물질이 상기 코어에 그라프트되거나 가교 결합된 구조를 갖는 입자상(고체상) 물질을 의미할 수 있다.
그리고 본 출원에서 「1차 입자 형태의 코어쉘 러버」란 상기 코어쉘 구조를 갖는 각 단위체를 의미하고, 「2차 입자 형태의 코어쉘 러버」란 상기 1 차 입자 형태의 코어쉘 러버(입자)가 2개 이상 응집하여 형성된 응집체(또는 집합체)를 의미할 수 있다. 상기 코어쉘 러버는 접착제 조성물 내에서 분산되어 존재할 수 있다.
하나의 예시에서, 1차 형태의 코어쉘 러버 입자와 2차 형태의 코어쉘 러버 입자는 하기 실시에에서 설명되는 방법에 따라 제조될 수 있다. 이 경우, 중합반응에 의해 제조되는 2차 형태의 응집 러버는 plantary mixer와 같은 혼련기를 통하여 더 작은 크기의 응집 러버로 분리될 수 있다. 일 예시에서, 응집 입자 모두가 완전한 1차 입자 형태로 분리되지 않을 수 있고, 2차 입자 중 일부 입자가 1차 입자로 분리되어 1차 및 2차 입자들이 혼합된 형태로 존재할 수 있다. 예를 들어 코어쉘 러버 전체 함량 대비 1차 입자의 중량비율은 50 wt% 이하, 40 wt% 이하, 30 wt% 이하, 20 wt% 이하, 10 wt% 이하, 5 wt% 이하, 4 wt% 이하, 3 wt% 이하, 2 wt% 이하, 1 wt% 이하, 또는 0.5 wt% 이하일 수 있다. 일 예시에서, 상기 1차 입자의 중량비율은 실질적으로 0 wt% 일 수 있다. 또는, 상기 1차 입자의 중량비율은 예를 들어, 0.01 wt% 이상, 0.1 wt% 이상 또는 1 wt% 이상일 수 있다.
또 하나의 예시에서, 1차 형태의 코어쉘 러버 입자와 2차 형태의 코어쉘 러버 입자는 별도의 과정을 거쳐 제조될 수 있다.
상기 코어는 디엔계 단량체의 중합체를 포함할 수 있고, 또는 디엔계 단량체와 (디엔계가 아닌) 이종 단량체 성분의 공중합체를 포함할 수 있다. 특별히 제한되는 것은 아니나, 예를 들어 디엔계 단량체로는 부타디엔 또는 이소프렌이 사용될 수 있다.
하나의 예시에서, 상기 코어는 부타디엔계 코어일 수 있다. 예를 들어, 상기 코어는 부타디엔의 중합체를 포함할 수 있다. 또한, 상기 코어는, 부타디엔 및 그 외 에틸렌성 불포화 단량체의 공중합체를 포함할 수 있다. 코어 형성시에 사용되는 에틸렌성 불포화 단량체로는 비닐계 방향족 단량체, (메틸)아크릴로니트릴, 알킬(메타)아크릴레이트 등이 예시될 수 있으나, 이에 특별히 제한되는 것은 아니다.
하나의 예시에서, 알킬(메타)아크릴레이트가 코어 형성시에 추가적으로 사용되는 경우, 하기 설명되는 쉘 형성에 사용되는 알킬(메타)아크릴레이트와는 상이한 종류의 알킬(메타)아크릴레이트가 코어에 사용될 수 있다.
상기 코어에 그라프트 또는 가교되는 쉘은 알킬(메타)아크릴레이트 단위를 포함할 수 있다. 쉘이 알킬(메타)아크릴레이트 단위를 포함한다는 것은, 코어에 가교 또는 그라프트 되는 쉘 중합체 형성시 알킬(메타)아크릴레이트 단량체가 사용될 수 있음을 의미한다. 하나의 예시에서, 상기 알킬(메타)아크릴레이트로는 메틸 메타크릴레이트, 에틸 메타크릴레이트, 또는 t-부틸 메타크릴레이트와 같이, 탄소수가 1 내지 6 인 알킬기를 갖는 저급 알킬(메타)아크릴레이트가 사용될 수 있으나, 상기 나열된 단량체에 제한되는 것은 아니다.
상기 쉘은 비닐리덴계 단량체 단위를 추가로 포함할 수 있다. 예를 들어, 스티렌과 같은 방향족 비닐 단량체, 비닐 아세테이트 또는 비닐 클로라이드의 단위를 더 포함할 수 있다. 특별히 제한되는 것은 아니나, 하나의 예시에서, 상기 쉘은 알킬(메타)아크릴레이트 단위 및 방향족 비닐 단량체 단위를 포함할 수 있다.
하나의 예시에서, 상기 코어 및 쉘은 소정의 유리전이온도(Tg)를 가질 수 있다. 예를 들어, 상기 코어의 유리전이온(Tg)도 하한은 - 60 ℃ 이상, - 50 ℃ 이상또는 - 40 ℃ 이상일 수 있다. 특별히 제한되는 것은 아니나, 상기 코어의 유리전이온도 상한은 - 20 ℃ 이하, - 25 ℃ 이하, - 30 ℃ 이하 또는 - 35 ℃ 이하일 수 있다. 또한, 상기 쉘은, 예를 들어, 50 ℃ 이상, 60 ℃ 이상 또는 70 ℃ 이상의 유리전이온도(Tg)를 가질 수 있다. 특별히 제한되는 것은 아니나, 상기 쉘의 유리전이온도 상한은 120 ℃ 이하일 수 있다. 상기 유리전이온도는 공지된 방식에 따라 측정될 수 있으며, 예를 들어 시차주사형 열량 분석(DSC)을 이용하여 측정될 수 있다.
하나의 예시에서, 상기 1차 입자 형태의 코어쉘 러버는 코어쉘 전체 입경에 대한 코어의 입경 비율(= 코어쉘 중 코어의 두께 비율, R)이 0.80 이상일 수 있다.
본 출원에서 「입경」은 입자 형상(예: 구형 또는 타원구형)인 코어쉘 러버 또는 그 구성의 직경을 의미하는 것으로 사용될 수 있으며, 코어쉘 러버의 형상이 완전한 구형이나 타원구형이 아닌 경우에는 가장 긴 차원의 길이를 의미할 수 있다. 입경과 관련된 특징은 공지된 장비를 이용하여 측정될 수 있으며, 예를 들어, dynamic lighting scattering 또는 laser diffraction 장비 등이 입경 관련 특징을 확인하는데 사용될 수 있다. 특별히 정의하지 않는 이상, 입자의 입경 또는 입자의 크기는 하기 설명되는 평균 입경의 의미로 사용될 수 있다.
예를 들어, 상기 코어쉘 전체 입경에 대한 코어의 입경 비율은 0.81 이상, 0.82 이상, 0.83 이상, 0.84 이상, 0.85 이상, 0.86 이상, 0.87 이상, 0.88 이상, 0.89 이상, 0.90 이상일 수 있다. 상기 비율의 상한은 예를 들어, 0.99 일 수 있고, 구체적으로는 0.98 이하, 0.97 이하, 0.96 이하, 0.95 이하, 0.94 이하, 0.93 이하 또는 0.92 이하일 수 있다. 상용화된 코어쉘 제품의 경우 상기 범위를 만족하지 못하는 경우가 많기 때문에 러버에 의한 충격 흡수 기능이 충분하지 못하지만, 상기 범위를 만족하는 상기 코어쉘 러버는 구조체에 가해지는 충격을 충분히 흡수할 수 있다. 특히, 코어의 비율이 0.99를 초과할 경우에는 쉘의 두께가 얇아지면서 코어 부분을 둘러싸기 어려워지고, 그에 따라 에폭시 수지와의 상용성 저하나 분산성 저하가 발생할 수 있다. 또한, 코어의 비율이 0.8 미만일 경우에는 충격강도 개선 효과가 미비하다.
예를 들어, 상기 1차 입자 형태의 코어쉘 러버가 250 nm 이상, 260 nm 이상, 270 nm 이상, 280 nm 이상, 290 nm 이상 또는 300 nm 이상의 평균 입경을 갖고, 예를 들어 그 상한이 600 nm 이하 또는 500 nm 이하, 구체적으로는 450 nm 이하, 440 nm 이하, 430 nm 이하, 420 nm 이하, 410 nm 이하 또는 400 nm 이하인 경우, 상기 1차 입자 형태 코어쉘 러버의 코어는 상기 비율(R)을 만족할 수 있는 크기를 가질 수 있다. 이때, '평균 입경'이란 입도 분포 곡선에서 누적 중량(질량) 50% 입자가 갖는(통과하는) 직경을 의미한다. 예를 들어, 상기 1차 입자 형태 코어쉘 러버의 코어는 180 nm 이상, 200 nm 이상, 220 nm 이상, 240 nm 이상, 260 nm 이상, 280 nm 이상 또는 300 nm 이상의 평균 입경을 가질 수 있고, 그 상한은 예를 들어, 500 nm 이하, 495 nm 이하, 490 nm 이하, 구체적으로는 450 nm 이하, 400 nm 또는 350 nm 이하일 수 있다. 상용화된 코어쉘 제품의 경우, 대응하는 입경의 크기와 비율(R)이 상기 범위를 만족하지 못하는 경우가 많기 때문에, 러버에 의한 충격 흡수 기능이 충분하지 못하다.
또 하나의 예시에서, 상기 1차 입자 형태의 코어쉘 러버는 250 nm 이하의 평균 입경을 가질 수 있다. 이 경우 그 하한은 예를 들어 10 nm 이상, 20 nm 이상, 또는 30 nm 이상일 수 있다. 이러한 입경을 갖는 경우에도 상기 1차 입자 형태의 코어쉘 러버는 코어쉘 전체 입경에 대한 코어의 입경 비율(R)이 상기 범위를 만족할 수 있다. 상용화된 코어쉘 제품의 경우, 대응하는 입경의 크기가 상기 범위를 만족하지 못하는 경우가 많기 때문에, 러버에 의한 충격 흡수 기능이 충분하지 못하다.
또한, 본 출원에서 상기 코어쉘 러버는 소정의 입도 분포를 가질 수 있다.
하나의 예시에서, 상기 1차 입자 형태의 코어쉘 러버는 입경 분포의 D10, 즉 입도 분포 측정에 의한 입경 중, 작은 쪽으로부터 중량(질량) 기준으로 누적 10 % 입자까지의 직경이 180 내지 220 nm 범위일 수 있다.
또 하나의 예시에서, 상기 1차 입자 형태의 코어쉘 러버는 입경 분포의 D50, 즉 입도 분포 측정에 의한 입경 중, 작은 쪽으로부터 중량(질량) 기준으로 누적 50 % 입자까지의 직경이 250 내지 350 nm 범위일 수 있다.
또 하나의 예시에서, 상기 1차 입자 형태의 코어쉘 러버는 입경 분포의 D90, 즉 입도 분포 측정에 의한 입경 중, 작은 쪽으로부터 중량(질량) 기준으로 누적 90 % 입자까지의 직경이 450 내지 510 nm 범위일 수 있다.
하나의 예시에서, 상기 1차 입자 형태의 코어쉘 러버는 하기 식 1에 의해 구해지는 입도 분포 폭이 2.0 이하 또는 1.5 이하일 수 있다. 그 하한은 특별히 제한되지 않고, 예를 들어, 0.5 이상, 0.6 이상, 0.7 이상, 0.8 이상, 0.9 이상 또는1.0 이상 일 수 있다.
[식 1]
(D90-D10)/(D50)
상기와 같이, 입도 분포 폭이 좁은 1차 입자 형태의 코어쉘 러버를 사용하는 경우, 우수한 접착 강도, 박리강도 및 내충격 강도를 넓은 온도 범위에서 균일하게 확보하는데 유리하다.
상기와 같은 입경 특성은, 예를 들어, 코어 또는 쉘 형성시에 사용되는 단량체의 종류나 함량을 적절히 조절하는 방법, 또는 단량체를 여러 단계로 나누어 투입하거나 코어나 쉘의 중합 시간이나 그 외 중합 조건을 적절히 조절하는 등의 방법을 통해 얻어질 수 있다.
하나의 예시에서, 2차 입자 형성을 위해 응집되는 1 차 입자의 개수는 특별히 제한되지 않는다, 예를 들어, 상기 코어쉘 러버 집합체(응집체), 즉 2차 입자의 직경이 0.1 내지 10 ㎛ 범위일 수 있도록 1차 입자가 응집되어 2차 입자가 형성될 수 있다. 하나의 예시에서, 중합 후 plantary mixer와 같은 혼련기를 통해 혼련 과정을 거친 2차 입자 형태의 코어쉘 러버(응집 입자)는 2 ㎛ 이하, 1.5 ㎛ 이하, 1 ㎛ 이하, 또는 0.5 ㎛ 이하의 크기를 가질 수 있다. 2차 입자와 관련하여 크기라 함은, 상기 설명한 입경 또는 가장 긴 차원의 크기에 상응하는 의미로 사용될 수 있다.
하나의 예시에서, 상기 2차 입자 형태의 코어쉘 러버가 갖는 평균 입경은 1.5 ㎛ 이하 또는 1 ㎛ 이하일 수 있다. 구체적으로, 상기 코어쉘 러버의 평균 입경은 900 nm 이하, 800 nm 이하, 700 nm 이하 또는 600 nm 이하일 수 있다. 특별히 제한되는 것은 아니나, 상기 2차 입자 형태 코어쉘 러버의 평균 입경 하한은 100 nm 이상, 200 nm 이상, 300 nm 이상, 400 nm 이상, 또는 500 nm 이상 이상일 수 있다.
상기 설명된 특성을 만족하는 2차 입자 형태의 코어쉘 러버는 접착제 조성물 전체 함량을 기준으로 5 중량부 이상일 수 있다. 구체적으로, 그 함량의 하한은 6 중량부 이상, 7 중량부 이상, 8 중량부 이상, 9 중량부 이상 또는 10 중량부 이상 일 수 있다. 또한, 상기 코어쉘 러버 집합체의 함량은 35 중량부 이하일 수 있다. 구체적으로, 그 함량의 상한은 34 중량부 이하, 33 중량부 이하, 32 중량부 이하, 31 중량부 이하 또는 30 중량부 이하일 수 있고, 보다 구체적으로는 25 중량부 이하 또는 20 중량부 이하일 수 있다. 상기 함량 보다 적게 사용되는 경우에는 충격 강도 개선 효과가 충분치 못하고, 상기 범위를 초과하여 사용되는 경우에는 전단강도 및 고온 충격강도가 저하될 수 있어 바람직하지 못하다.
하나의 예시에서, 상기 접착제 조성물은 액상 러버를 더 포함할 수 있다.
하나의 예시에서, 상기 액상 러버는, 디엔계 단량체의 단독 중합체 또는 디엔계 단량체와 이종 단량체의 공중합체인 액상 러버 말단에 에폭시기를 갖는 구성일 수 있다. 즉, 상기 액상 러버는 에폭시 종결된 액상 러버일 수 있다.
예를 들어, 상기 액상 러버는 부타다이엔 또는 아이소부타다이엔으로부터 유도되는 반복 단위를 갖는 단일중합체 또는 공중합체를 포함할 수 있다. 액상 러버에는, 예를 들어 부타다이엔 또는 아이소부타다이엔과 아크릴레이트 및/또는 아크릴로니트릴의 공중합체가 포함될 수 있다.
하나의 예시에서, 액상 러버의 함량은, 상기 설명된 코어쉘 러버의 그것과 동일할 수 있다.
하나의 예시에서, 상기 접착제 조성물은 접착제 조성물 전체 함량을 기준으로, 적어도 5 중량부 또는 10 중량부 이상의 러버(코어쉘 러버 및/또는 액상 러버)를 포함할 수 있다. 예를 들어, 상기 접착제 조성물이 코어쉘 러버만을 포함하는 경우, 상기 접착제 조성물은 접착제 조성물 전체 함량을 기준으로, 적어도 5 중량부 또는 10 중량부 이상의 코어쉘 러버를 포함할 수 있다. 또는 상기 접착제 조성물이 코어쉘 러버와 액상 러버를 모두 포함하는 경우, 상기 접착제 조성물은 접착제 조성물 전체 함량을 기준으로 코어쉘 러버와 액상 러버를 5 중량부 이상 또는 10 중량부 포함할 수 있다. 상기와 같은 경우에도 전단강도 및 고온 충격강도를 고려하여, 러버 성분은 35 중량부 이하로 사용될 수 있다. 하나의 예시에서, 상기 접착제 조성물은 접착제 조성물 전체 함량을 기준으로, 10 중량부 이상, 12 중량부 이상 또는 14 중량부 이상, 그리고 30 중량부 이하, 25 중량부 이하, 또는 22 중량부 이하의 러버(코어쉘 러버 및/또는 액상 러버)를 포함할 수 있다.
(d) 에폭시 경화제
상기 접착제 조성물은, 약 80 ℃ 이상 또는 약 100 ℃ 이상의 온도에서 경화될 수 있도록 소정의 경화제를 포함할 수 있다. 상기 온도 범위에서 경화가 일어날 수 있다면, 경화제의 종류는 특별히 제한되지 않는다. 예를 들어, 경화제로는 다이시안다이아미드, 멜라민, 다이알릴멜라민, 구안아민(예: 아세토구안아민, 벤조구안아민), 아미노트라이아졸(3-아미노-1,2,4 트라이아졸), 하이드라지드(아디프산 다이하이드라이드, 스테아르산 다이하이드라지드, 아이소프탈산 다이하이드라지드), 시아노아세트아미드 또는 방향족 폴리아민(예: 다이아미노다이페닐설폰) 등이 사용될 수 있다.
특별히 제한되지는 않으나, 상기 경화제는 예를 들어, 접착제 조성물 전체 함량을 기준으로, 1 중량부 이상, 2 중량부 이상, 3 중량부 이상 또는 4 중량부 이상 사용할 수 있다. 특별히 제한되지 않으나, 경화제의 함량 상한은 15 중량부 이하, 14 중량부 이하, 13 중량부 이하, 12 중량부 이하, 11 중량부 이하 또는 10 중량부 이하일 수 있다.
(e) 추가 성분
하나의 예시에서, 상기 접착제 조성물은 우레탄 수지를 더 포함할 수 있다. 상기 우레탄 수지는 이소시아네이트 말단이 블록된 우레탄 수지일 수 있다.
(e-1) 하나의 예시에서, 상기 우레탄 수지는 폴리에테르 구조를 갖는 우레탄 수지일 수 있다. 또한, 우레탄 수지의 말단인 이소시아네이트기 중 적어도 하나가 소정의 화합물로 종결된 구조(캐핑 구조)를 갖는다.
상기 우레탄 수지는 이소시아네이트 단위 및 폴리에테르 폴리올 단위를 포함할 수 있다. 본 출원에서 우레탄 수지가 소정의 단위를 포함한다는 것은, 하나 이상의 화합물이 반응하여 형성된 수지 구조(주쇄나 측쇄)에 상기 화합물이 중합되면서 그로부터 유래하는 단위가 수지 구조 내에 포함되어 있는 상태를 의미할 수 있다.
상기 우레탄 수지에 사용되는 이소시아네이트의 구체적인 종류는 특별히 제한되지 않으며, 공지된 방향족 또는 비방향족 이소시아네이트가 사용될 수 있다. 비제한적인 예시에서, 상기 이소시아네이트는 비방향족일 수 있다. 즉, 상기 변성 우레탄 수지 형성시 지방족 또는 지환족 계열의 이소시아네이트가 사용될 수 있다. 비방향족 이소시아네이트를 사용하는 경우, 내충격성이나 접착제 조성물의 점도 특성이 개선될 수 있다.
사용 가능한 비방향족 이소시아네이트의 종류는 특별히 제한되지 않는다. 예를 들어, 지방족 폴리이소시아네이트 또는 그 변성물이 사용될 수 있다. 구체적으로, 헥사메틸렌 디이소시아네이트, 트리메틸헥사메틸렌 디이소시아네이트, 리신 디이소시아네이트, 노르보르난 디이소시아네이트 메틸, 에틸렌 디이소시아네이트, 프로필렌 디이소시아네이트 또는 테트라메틸렌 디이소시아네이트 등의 지방족 폴리이소시아네이트; 트랜스사이클로헥산-1,4-디이소시아네이트, 이소포론 디이소시아네이트, 비스(이소시아네이트메틸)사이클로헥산 디이소시아네이트 또는 디사이클로헥실메탄 디이소시아네이트 등의 지방족 고리식 폴리이소시아네이트; 또는 상기 중 어느 하나 이상의 카르보디이미드 변성 폴리이소시아네이트나 이소시아누레이트 변성 폴리이소시아네이트; 등이 사용될 수 있다. 또한, 상기 나열된 화합물 중 2 이상의 혼합물이 사용될 수 있다.
하나의 예시에서, 상기 폴리올은 OH 당량이 300 이상인 폴리올일 수 있다. 예를 들어, 상기 폴리올의 OH 당량 하한은 400 이상, 500 이상, 600 이상, 700 이상, 800 이상, 또는 900 이상일 수 있다. 폴리올의 OH 당량의 상한은 특별히 제한되지 않으나, 예를 들어, 2,000 이하, 1,900 이하, 1,800 이하, 1,700 이하, 1,600 이하, 1,500 이하, 1,400 이하, 1,300 이하, 1,200 이하 또는 1,100 이하 일 수 있다. 상기 당량 범위를 만족하는 경우, 접착제의 내충격 특성, 접착강도 특성 및 박리특성 개선에 유리하다.
상기 당량을 만족한다면 폴리올의 종류는 특별히 제한되지 않는다. 예를 들어, 펜타에리스리톨과 같은 4 관능 폴리올; 글리세린이나 트리메틸올프로판과 같은 3 관능 폴리올; 또는 글리콜과 같은 2 관능 폴리올이 사용될 수 있다. 하나의 예시에서, 폴리올로는 폴리알킬렌 글리콜이 사용될 수 있으나, 이에 특별히 제한되는 것은 아니다. 구체적으로, 상기 폴리알킬렌 글리콜로는 예를 들어 폴리프로필렌글리콜이 사용될 수 있다.
하나의 예시에서, 상기 우레탄 수지는 분지형 폴리에테르 폴리올 단위, 및 비방향족 이소시아네이트의 단위를 포함할 수 있다.
하나의 예시에서, 상기 폴리올은 분지형 폴리프로필렌 글리콜일 수 있다. 분지형 폴리프로필렌은 폴리프로필렌 백본이 측쇄를 갖도록 구성된 것을 의미하는 것으로, 선형, 즉 폴리프로필렌 반복단위가 측쇄를 갖지 않는 경우와 구별될 수 있다. 예를 들어, 분지형 폴리프로필렌은 폴리프로필렌 골격에 에틸렌, 1-부텐, 1-헥센 또는 4-메틸-1펜텐과 같은 a-올레핀이 혼입된(공중합된) 분지를 갖는다. 즉, 본 출원에 관한 일례에서, 상기 폴리올은 분지형 폴리프로필렌 단위를 가질 수 있다. 분지형 폴리프로필렌 글리콜을 사용하는 경우, 강도 개선에 유리하다.
상기 언급한 바와 같이, 상기 우레탄 수지는 그 이소시아네이트 말단 중 하나 이상이 소정 화합물에 의해 종결된 구조를 가질 수 있다. 우레탄 수지의 이소시아네이트 말단을 소위 캐핑하는 방법은 특별히 제한되지 않는다. 공지된 기술이 사용될 수 있다. 예를 들어, 에테르계 폴리올로부터 유래하여 우레탄 사슬중에 우레탄기를 갖고, 그 말단에 이소시아네이트기를 갖는 중합체 또는 프리폴리머를 제조하고, 이소시아네이트기의 전부 또는 일부에 활성 수소기를 갖는 화합물을 통해 우레탄의 이소시아네이트 말단을 캐핑할 수 있다. 또 다른 예시에서는, 상기 우레탄 수지 제조시에, 이소시아네이트 말단을 캐핑할 수 있는 화합물을 함께 투입하여 중합과 동시에 캐핑하는 방법이 사용될 수 있다. 이소시아네이트 말단을 캐핑할 수 있는 화합물의 종류는 특별히 제한되지 않으며, 예를 들어, 아민계 화합물, 페놀계 화합물, 옥심계 화합물, 또는 비스페놀계 화합물이 사용될 수 있다.
하나의 예시에서, 상기 우레탄 수지의 중량평균분자량(Mw)은 3,000 내지 40,000 범위일 수 있다. 상기 중량평균분자량은 GPC로 측정한 폴리스티렌 환산 분자량일 수 있다. 보다 구체적으로, 상기 우레탄 수지의 중량평균 분자량의 하한은 3,000 이상, 3,500 이상, 4,000 이상, 4,500 이상, 5,000 이상, 5,500 이상, 6,000 이상, 6,500 이상, 7,000 이상, 7,500 이상, 8,000 이상 8,500 이상, 9,000 이상일 수 있다. 특별히 제한되지 않으나, 우레탄 수지의 중량평균 분자량의 상한은 35,000 이하 또는 30,000 이하일 수 있다. 상기 범위를 만족하는 경우, 접착제에 유리한 물성을 제공할 수 있다. 우레탄 수지는, 그 제조시에 분지화제, 체인 익스텐더(chain extender) 등을 사용하여 분자량이 조절될 수 있고, 또한 선형구조 또는 분지형 구조를 가질 수 있다. 분지 구조의 경우 체인 익스텐더를 사용하지 않고 우레탄을 중합하는 것이 적당하며, 적절한 분자량을 얻는데 유리하다. 폴리올로서 폴리프로필렌글리콜이 사용되는 경우, 분지형 구조를 갖는 우레탄 수지의 충격강도 개선에 대한 기여도가 더 높을 수 있다.
하나의 예시에서, 상기 접착제 조성물은, 접착제 전체 조성물의 함량을 기준으로, 상기 변성 우레탄 수지를 5 중량부 이상 포함할 수 있다. 구체적으로, 상기 변성 우레탄 수지의 함량은 6 중량부 이상, 7 중량부 이상, 8 중량부 이상, 9 중량부 이상, 또는 10 중량부 이상일 수 있다. 특별히 제한되지는 않으나, 상기 우레탄 수지의 함량 상한은, 예를 들어 25 중량부 이하일 수 있다. 보다 구체적으로, 상기 우레탄 수지는 20 중량부 이하, 19 중량부 이하, 18 중량부 이하, 17 중량부 이하, 16 중량부 이하 또는 15 중량부 이하로 사용될 수 있다. 우레탄 수지가 상기 범위보다 적게 사용되는 경우 충격 강도 개선이 충분치 못하고, 상기 범위를 초과하여 사용되는 경우에는 전단 강도가 낮아지고 고온 충격 강도가 저하되는 문제가 있다.
(e-2) 또 하나의 예시에서, 상기 우레탄 수지는 폴리테트라 하이드로 퓨란 유래의 단위를 갖는 변성 우레탄 수지로서, 하기 설명되는 바와 같이 우레탄 수지의 말단인 이소시아네이트기 중 적어도 하나가 소정의 화합물로 종결된 구조(캐핑 구조)를 가질 수 있다.
상기 우레탄 수지는 이소시아네이트 단위, 폴리올 단위, 폴리테트라하이드로퓨란 단위를 포함할 수 있다. 본 출원에서 우레탄 수지가 소정의 단위를 포함한다는 것은, 하나 이상의 화합물이 반응하여 형성된 수지 구조(주쇄나 측쇄)에 상기 화합물이 중합되면서 그로부터 유래하는 단위가 수지 구조 내에 포함되어 있는 상태를 의미할 수 있다.
상기 우레탄 수지에 사용되는 이소시아네이트의 구체적인 종류는 특별히 제한되지 않으며, 공지된 방향족 또는 비방향족 이소시아네이트가 사용될 수 있다. 비제한적인 예시에서, 상기 이소시아네이트는 비방향족일 수 있다. 즉, 상기 변성 우레탄 수지 형성시 지방족 또는 지환족 계열의 이소시아네이트가 사용될 수 있다. 비방향족 이소시아네이트를 사용하는 경우, 내충격성이나 접착제 조성물의 점도 특성이 개선될 수 있다.
사용 가능한 비방향족 이소시아네이트의 종류는 특별히 제한되지 않는다. 예를 들어, 지방족 폴리이소시아네이트 또는 그 변성물이 사용될 수 있다. 구체적으로, 헥사메틸렌 디이소시아네이트, 트리메틸헥사메틸렌 디이소시아네이트, 리신 디이소시아네이트, 노르보르난 디이소시아네이트 메틸, 에틸렌 디이소시아네이트, 프로필렌 디이소시아네이트 또는 테트라메틸렌 디이소시아네이트 등의 지방족 폴리이소시아네이트; 트랜스사이클로헥산-1,4-디이소시아네이트, 이소포론 디이소시아네이트, 비스(이소시아네이트메틸)사이클로헥산 디이소시아네이트 또는 디사이클로헥실메탄 디이소시아네이트 등의 지방족 고리식 폴리이소시아네이트; 또는 상기 중 어느 하나 이상의 카르보디이미드 변성 폴리이소시아네이트나 이소시아누레이트 변성 폴리이소시아네이트; 등이 사용될 수 있다. 또한, 상기 나열된 화합물 중 2 이상의 혼합물이 사용될 수 있다.
상기 우레탄 수지 형성시에 사용되는 폴리올의 종류는 특별히 제한되지 않는다. 예를 들어, 펜타에리스리톨과 같은 4 관능 폴리올; 글리세린이나 트리메틸올프로판과 같은 3 관능 폴리올; 또는 글리콜과 같은 2 관능 폴리올이 사용될 수 있다. 하나의 예시에서, 글리콜로는 폴리프로필렌 글리콜과 같은 폴리알킬렌 글리콜이 사용될 수 있다.
하나의 예시에서, 상기 폴리올로는 직쇄형 폴리올이 사용될 수 있다. 예를 들어, 폴리프로필렌글리콜과 같은 직쇄형이 사용될 수 있다. 직쇄형 폴리올이란, 분자 중에 2 개의 수산기를 갖는 폴리올로서, 통상적으로는 분자의 양쪽 말단에 수산기를 갖는 것을 의미할 수 있다. 반대로 분자 중에 3 개 이상의 수산기를 갖는 폴리올은 분지형 폴리올이라고 할 수 있다. 분지쇄형을 사용하는 경우와 비교할 때, 직쇄형 폴리올을 사용하는 경우가 우레탄 수지의 분자량을 하기 설명되는 범위로 조절하기 용이하고, 접착제의 내충격 특성 개선에 유리할 수 있다.
하나의 예시에서, 상기 폴리올은 OH 당량이 300 이상인 폴리올일 수 있다. 예를 들어, 상기 폴리올의 OH 당량 하한은 400 이상, 500 이상, 600 이상, 700 이상, 800 이상, 또는 900 이상일 수 있다. 폴리올 OH 당량의 상한은 특별히 제한되지 않으나, 예를 들어, 2,000 이하, 1,900 이하, 1,800 이하, 1,700 이하, 1,600 이하, 1,500 이하, 1,400 이하, 1,300 이하, 1,200 이하 또는 1,100 이하 일 수 있다. 상기 당량 범위를 만족하는 경우, 접착제의 내충격 특성, 접착강도 특성 및 박리특성 개선에 유리하다.
상기 설명한 바와 같이, 상기 우레탄 수지는 그 이소시아네이트 말단 중 하나 이상이 소정 화합물에 의해 종결된 구조를 가질 수 있다. 우레탄 수지의 이소시아네이트 말단을 소위 캐핑하는 방법은 특별히 제한되지 않는다. 공지된 기술이 사용될 수 있다. 예를 들어, 상기 변성 우레탄 수지 제조시에, 이소시아네이트 말단을 캐핑할 수 있는 화합물을 함께 투입하여 중합하는 방법이 사용될 수 있다. 이소시아네이트 말단을 캐핑할 수 있는 화합물의 종류는 특별히 제한되지 않으며, 예를 들어, 아민계 화합물, 페놀계 화합물, 옥심계 화합물, 또는 비스페놀계 화합물이 사용될 수 있다.
하나의 예시에서, 상기 우레탄 수지는 이소시아네이트의 말단이 폴리테트라하이드로퓨란에 의해 종결된 단위를 포함할 수 있다. 폴리테트라 하이드로퓨란 역시 OH기를 갖기 때문에, 소위 원-포트 합성(one-pot synthesis)에 의해 본건의 우레탄 수지를 합성할 경우, 상기 우레탄 수지는 이소시아네이트의 말단이 폴리테트라하이드로퓨란에 의해 종결된 단위를 더 포함할 수 있다.
하나의 예시에서, 상기 폴리테트라하이드로퓨란의 중량평균분자량(Mw)은 500 이상 일 수 있다. 본 출원에서 「중량평균분자량(Mw)」은 GPC로 측정한 폴리스티렌 환산 분자량일 수 있다. 예를 들어, 상기 폴리테트라하이드로퓨란의 중량평균분자량은 550 이상, 600 이상, 650 이상, 700 이상, 750 이상, 800 이상 또는 850 이상일 수 있다. 하나의 예시에서, 상기 폴리테트라하이드로 퓨란 중량평균 분자량의 상한은 4,000 이하 일수 있다. 구체적으로, 상기 상기 폴리테트라하이드로퓨란 중량평균분자량은 3,000 이하 또는 2,000 이하일 수 있고, 보다 구체적으로는 1,500 이하, 1,400 이하, 1,300 이하 또는 1,200 이하일 수 있다.
하나의 예시에서, 폴리테트라 하이드로퓨란은 그 OH 당량이 400 내지 2,200 일 수 있다. OH 당량이 상기 범위를 벗어나는 경우 접착제의 내충격 특성이 저하될 수 있다. 내충격 특성을 고려할 때, 상기 폴리테트라 하이드로퓨란은 예를 들어, 450 이상 또는 500 이상의 OH 당량을 가질 수 있고, 그리고 1,100 이하 또는 1,000 이하의 OH 당량을 가질 수 있다.
하나의 예시에서, 상기 구성을 갖는 우레탄 수지의 중량평균분자량은 5,000 내지 30,000 범위 내일 수 있다. 상기 범위를 만족하는 경우, 본 출원 접착제 용도에 적합한 물성을 제공할 수 있다.
하나의 예시에서, 상기 접착제 조성물은, 접착제 전체 조성물의 함량을 기준으로, 상기 변성 우레탄 수지를 5 중량부 이상 포함할 수 있다. 구체적으로, 상기 변성 우레탄 수지의 함량은 6 중량부 이상, 7 중량부 이상, 8 중량부 이상, 9 중량부 이상, 또는 10 중량부 이상일 수 있다. 특별히 제한되지는 않으나, 상기 우레탄 수지의 함량 상한은, 예를 들어 25 중량부 이하일 수 있다. 보다 구체적으로, 상기 우레탄 수지는 20 중량부 이하, 19 중량부 이하, 18 중량부 이하, 17 중량부 이하, 16 중량부 이하 또는 15 중량부 이하로 사용될 수 있다. 우레탄 수지가 상기 범위보다 적게 사용되는 경우 충격 강도 개선이 충분치 못하고, 상기 범위를 초과하여 사용되는 경우에는 전단 강도가 낮아지고 고온 충격 강도가 저하되는 문제가 있다.
(f) 기타 성분
상기 접착제 조성물은 경화제에 의한 경화 반응의 속도 및 온도를 조절하기 위하여 촉매를 포함할 수 있다. 촉매의 종류는 특별히 제한되지 않으며, 공지된 다양한 종류의 촉매가 적절히 사용될 수 있다.
비제한적인 일례에서, 상기 촉매로는 p-클로로페닐-N,N-다이메틸우레아, 3-페닐-1,1-다이메틸 우레아, 3,4-다이클로로페닐-N,N-다이메틸우레아와 같은 우레아류; 3급 아크릴류; 벤질다이메틸아민과 같은 아민류; 피페리딘 또는 이들의 유도체; 또는 이미다졸 유도체가 사용될 수 있다.
특별히 제한되지는 않으나, 상기 촉매는 예를 들어, 접착제 조성물 전체 함량을 기준으로, 0.1 중량부 이상, 0.2 중량부 이상, 0.3 중량부 이상 또는 0.4 중량부 이상 사용할 수 있다. 특별히 제한되지 않으나, 촉매 함량의 상한은 2 중량부 이하일 수 있다.
하나의 예시에서, 상기 접착제 조성물은, 입자형의 무기충진제, 즉 무기입자를 더 포함할 수 있다. 무기충전제를 사용할 경우, 접착제의 기계적 특성, 레올로지 특성 등을 조절할 수 있다. 무기 충전제의 형태는 각상, 구상, 판상, 또는 침상일 수 있으며 특별히 제한되지 않는다.
무기충전제로는 예를 들어, 산화 칼슘, 석영 분말, 알루미나, 칼슘카보네이트, 칼슘 옥사이드, 알루미늄하이드록사이드, 탄산마그네슘칼슘, 바라이트, 친수성 또는 소수성 실리카 입자, 또는 알루미늄마그네슘칼슘 실리케이트를 사용할 수 있다. 실리카 입자 사용시에는 소수성이 더 바람직하다.
특별히 제한되지는 않으나, 상기 무기충전제는 예를 들어, 접착제 조성물 전체 함량을 기준으로, 1 중량부 이상, 2 중량부 이상, 3 중량부 이상 또는 4 중량부 이상 사용할 수 있다. 특별히 제한되지 않으나, 무기충전제 함량의 상한은 15 중량부 이하 또는 10 중량부 이하일 수 있다.
하나의 예시에서, 상기 조성물은, 다양한 종류의 첨가제를 더 포함할 수 있다. 예를 드렁, 공지된 가소제, 반응성 또는 비반응성 희석제, 커플링제, 유동성 조절제, 요변성 부여제, 착색제 등이 접착제 조성물에 더 포함될 수 있다. 상기 첨가제의 구체적인 종류는 특별히 제한되지 않으며, 공지된 물질 또는 시판 제품이 제한없이 사용될 수 있다.
특별히 제한되지는 않으나, 상기 첨가제는 예를 들어, 접착제 조성물 전체 함량을 기준으로, 0.1 중량부 이상, 1 중량부 이상, 2 중량부 이상 또는 3 중량부 이상 사용될 수 있다. 특별히 제한되지 않으나, 첨가제 함량의 상한은 15 중량부 이하, 14 중량부 이하, 13 중량부 이하, 12 중량부 이하, 11 중량부 이하 또는 10 중량부 이하일 수 있다.
본 출원에 관한 다른 일례에서, 본 출원은 상기 접착제 조성물의 경화물을 포함하는 구조체에 관한 것이다. 상기 구조체는 기재 및 상기 기재 상에 도포된 후 경화된 접착제 조성물의 경화물을 포함할 수 있다. 상기 기재는 금속 성분, 플라스틱 성분, 목재, 유리 섬유 함유 기재 등을 포함할 수 있다.
하나의 예시에서, 상기 구조체는 경화물을 매개로 2 이상의 기재가 접합된 형태를 가질 수 있다. 예를 들어, 상기 구조체는 금속과 금속이 경화물을 매개로 접합된 형태, 금속과 플라스틱이 경화물을 매개로 접합된 형태, 또는 플라스틱과 플라스틱이 경화물을 매개로 접합된 형태를 가질 수 있다. 상기 구조체는 우주 항공, 풍력 발전, 선박 또는 자동차용 구조 재료로서 사용될 수 있다.
본 출원에 관한 다른 일례에서, 본 출원은 구조체의 제조방법에 관한 것이다. 상기 방법은 상기 설명된 구성의 조성물을 기재 표면 상에 도포하는 단계, 및 기재의 표면에 도포된 상기 조성물을 경화하는 단계를 포함할 수 있다. 상기 도포는 기재와 접착 조성물의 물리적인 접촉이 일어나도록 수행될 수 있다.
상기 접착 조성물을 구조체의 표면에 도포하는 방식은 특별히 제한되지 않는다. 예를 들어, 압출 방식에 의한 기계적 도포, 스월(swirl) 또는 스트리밍(streaming)과 같은 제트 분무법이 이용될 수 있다. 상기 도포는, 접합하고자 하는 하나 이상의 기재에 대하여 이루어질 수 있다.
경화 온도는 특별히 제한되지 않는다. 예를 들어, 80 ℃ 이상 또는 100 ℃ 이상에서 경화가 이루어질 수 있다. 특별히 제한되지는 않으나, 내열 안정성을 고려할 때 220 ℃ 이하의 온도에서 경화를 수행하는 것이 바람직하다.
본 출원의 일례에 따르면, 우수한 접착 강도, 박리강도 및 내충격 강도를, 넓은 온도 범위에서 균일하게 제공하는 접착제 조성물이 제공될 수 있다.
도 1은 본 출원의 일 구체예에 따라 제조된 코어쉘 러버(1차 입자 형태)의 입도 분포를 도시한다. 가로축은 입경을, 세로축은 상대적인 러버의 개수를 의미한다.
도 2는 본 출원의 일 구체예에 따라 제조된 코어쉘 러버가 에폭시 수지 내에서 분산된 모습을 촬영한 이미지이다.
이하, 실시예 및 비교예를 통해 본 출원을 설명한다. 그러나, 본 출원의 범위가 하기 제시된 범위에 의해 제한되는 것은 아니다.
제조예
* 제조예 1: 코어쉘 러버 집합체의 제조
제 1 단계(Core의 제조): 이온 교환수 70 중량부, 단량체인 1,3 부타디엔 60 중량부, 유화제인 나트륨 도데실벤젠 설포네이트 1.0 중량부, 탄산칼슘 0.85 중량부, 3급 도데실 머캡탄 0.28 중량부, 개시제인 과황상 칼륨 0.28 중량부를 질소 치환된 중합 반응기에 투입하고, 75 ℃에서 중합 전환율이 30 내지 40 %인 시점까지 반응시켰다. 이후 나트륨도데실벤젠 설포네이트 0.3 중량부를 투입하고, 1.3 부타디엔 20 중량부를 추가 투입하고, 80 ℃까지 승온하여 중합 전환율이 95 % 인 시점에서 반응을 종료하였다. 제조된 중합체의 라텍스 겔 함량은 73% 이었다. 이때, 라텍스 겔 함량은, 고무 라텍스를 묽은 산이나 금속염을 이용하여 응고시킨 후 세척하고, 60 ℃의 진공 오븐에서 24시간 동안 건조시키고, 얻어진 고무 1g을 톨루엔 100 g에 넣어 48 시간 동안 실온의 암실에서 보관 한 후 졸과 겔을 분리하여 측정하였다.
제 2 단계: 제조된 고무 라텍스 70 중량부를 밀폐된 반응기에 투입하고, 질소로 충진된 반응기의 온도를 75 ℃로 승온하였다. 이후, 상기 반응기에 피로인산 나트륨 0.1 중량부, 덱스트로스 0.2 중량부 및 황화 제 1 철 0.002 중량부를 일괄 투입하였다.
별도의 혼합 장치에서 메틸메타크릴레이트 25.5 중량부, 스티렌 4.5 중량부, 유화제로 나트륨 도데실벤젠 설포네이트 0.5 중량부, 큐멘 하이드로퍼옥사이드 0.1 중량부, 이온교환수 20 중량부를 혼합하여 단량체 유화액을 제조하였다.
고무라텍스가 투입된 반응기에, 상기 유화액을 3 시간에 걸쳐 연속적으로 투입한 다음, 30분 후에 하이드로퍼옥사이드 0.03 중량부를 투입하고, 동일 온도에서 1 시간 동안 숙성시켜 중합 전환율이 98%인 시점에서 반응을 종료하였다.
상기 과정 중 적당한 시점에 Nicomp N300 dynamic light scattering 장비를 통해 측정된 코어의 평균 입경은 320 nm 이고, 코어 쉘 러버 수지 라텍스의 평균 입경은 345 nm 이었다.
또한, 제조된 1차 입자 형태의 코어쉘 러버의 입도 분포를 측정하고, 그 결과는 도 1에 기재하였다.
이후, 상기 반응물에 산화 방지제를 투입하고, 마그네슘 설페이트로 응집시킨 다음, 탈수 및 건조하여 응집 형태의 코어쉘 러버를 제조하였다.
* 제조예 2: 구조용 접착제의 제조
하기 표 1과 같은 성분을 소정 함량(중량비율: 중량부) 포함하는 실시예 및 비교예의 조성물을 접착제 재료로서 준비하였다. 구체적으로, 코어쉘 러버 집합체와 에폭시 수지를 planetary mixer 에 넣고, 80 ℃에서 5시간 혼합하였다. 코어쉘 러버가 에폭시 수지 내에서 분산된 모습은 도 2와 같다. 이후, '우레탄 수지, 경화제 및 촉매를 제외'한 나머지 성분을 planetary mixer 에 넣고 80 ℃에서 3 시간 교반하였다. 마지막으로, 온도를 40 ℃로 낮추고, '우레탄 수지, 경화제 및 촉매'를 planetary mixer 에 넣고, 1시간 동안 혼합한 후, 상온(약 23 ℃)으로 낮추어 혼련을 종료하였다.
물성 측정 방법
* 충격 박리 강도
실시예 및 비교예에 대하여 각각 5개의 시편을 제작하고, DIN ISO 11343 에 준하여 45kg 무게의 물체를 1.5 m 높이에서 2m/s의 속도로 자유낙하시키고, 80 ℃, 23 ℃, 및 - 40 ℃ 각각에서 충격 박리 강도(단위: N/mm)를 측정하고, 그 평균 값을 취하였다.
시편의 경우, 90 mm x 25 mm x 1.6 mm (길이 x 폭 x 두께)의 크기를 갖고, 강도가 440 MPa인 냉연 압연강을 2개 준비하고, 상기 냉연 압연강의 접착 면적이 25 mm x 30 mm가 되도록 접착제를 냉연 압연강의 소정 영역에 도포하고, 180 ℃에서 20 분 간 경화하였다. 글라스 비드를 이용하여, 접착층의 두께를 0.2 mm로 균일하게 유지하였다. 측정 결과는 표 2에 기재하였다.
* 전단 강도 실험
실시예 및 비교예와 관련하여 제조된 시편에 대하여, DIN EN 1465에 준하여 5회의 전단 강도 측정을 수행하고, 그 평균값을 취하였다. 이때, 전단 강도(단위: Mpa) 측정은 10 mm/분 및 23 ℃ 조건에서 이루어졌다.
시편의 경우, 100 mm x 25 mm x 1.6 mm (길이 x 폭 x 두께)의 크기를 갖고, 강도가 440 MPa 인 냉연 압연강판을 2개 준비하고, 상기 냉연 압연강판의 접착 면적이 25 mm x 10 mm가 되도록 접착제를 냉연 압연강의 소정 영역에 도포하고, 180 ℃ 에서 20분간 경화하였다. 글라스 비드를 이용하여, 접착층의 두께를 0.2 mm로 균일하게 유지하였다. 측정 결과는 표 2에 기재하였다.
실험 결과
실시예 1 실시예 2 실시예 3 비교예 1 비교예 2 비교예 3
제 1 에폭시 수지1) 34 34 19 54 34 29
제 2 에폭시 수지2) 5 - - 5 5 5
제 3 에폭시 수지2) - - 20 - - -
변성 에폭시 수지4) 20 5 20 - 20 -
변성 에폭시 수지5) - 15 - - - -
코어쉘 러버6 ) 15 15 15 15 - -
코어쉘 러버7 ) - 5 - - 15 -
액상러버8 ) - - - - - 40
우레탄 수지9 ) 5 5 5 5 5 5
모노 에폭시 수지10) 1.75 1.75 1.75 1.75 1.75 1.75
착색제11 ) 0.05 0.05 0.05 0.05 0.05 0.05
경화제12 ) 5 5 5 5 5 5
촉매13 ) 1 1 1 1 1 1
CaCO3 5 5 5 5 5 5
Wollastonite 5 5 5 5 5 5
Fumed silica14) 3 3 3 3 3 3
실란 커플링제15 ) 0.2 0.2 0.2 0.2 0.2 0.2
1. 제 1 에폭시 수지1 ): 에폭시 당량이 300 미만인 비스페놀 A계 에폭시 수지(YD128)
2. 제 2 에폭시 수지2 ): 에폭시 당량이 300 이상인 비스페놀 A계 에폭시 수지(YD011)
3. 제 3 에폭시 수지2 ): 에폭시 당량이 300 미만인 비스페놀 F계 에폭시 수지(YD170)
4. 변성 에폭시 수지4 ): Adeka EP-4000 (에폭시 당량이 320)
5. 변성 에폭시 수지5 ): Adeka EP-4005 (에폭시 당량이 510)
6. 코어쉘 러버6 ): 제조예 1의 코어쉘 러버
7. 코어쉘 러버7 ): DOW paralloid EXL 2600
8. 액상러버8 ): Struktol polydis 3604
9. 우레탄 수지9 ): Huntzman DY965
10. 모노 에폭시 수지10 ): Epotech RD114LE
11. 착색제11 ): Pigment violet 23
12: 경화제12 ): Airproduct 1200G
13: 촉매13 ): Evonik Amicure UR7/10
14: Fumed silica14 ): Cabo TS720
15: 실란 커플링제15 ): GE Advanced material A-187
실시예 1 실시예 2 실시예 3 비교예 1 비교예 2 비교예 3
충격강도(-40℃) 35 35 37 8 X 5
충격강도(23℃) 44 42 46 37 32 30
충격강도(80℃) 40 48 39 36 34 25
전단강도(23℃) 35 34 35 36 35 25
X: 측정값이 매우 낮기 때문에 안정적인 측정값을 구하지 못한 경우

Claims (16)

  1. (a) 하나 이상의 에폭시 수지;
    (b) 폴리에테르 구조를 갖는 변성 에폭시 수지;
    (c) 1차 입자 형태의 코어쉘 러버가 2 이상 응집된 2차 입자 형태의 코어쉘 러버; 및
    (d) 하나 이상의 에폭시 경화제를 포함하는 접착제 조성물.
  2. 제1항에 있어서, 비스페놀 A계 에폭시 수지를 포함하는 접착제 조성물.
  3. 제1항 또는 제2항에 있어서, 비스페놀 F계 에폭시 수지를 포함하는 접착제 조성물.
  4. 제3항에 있어서, 에폭시 당량이 300 미만인 에폭시 수지 및 에폭시 당량이 300 이상인 에폭시 수지를 포함하는 접착제 조성물.
  5. 제1항에 있어서, 상기 폴리에테르 구조를 갖는 변성 에폭시 수지는 말단이 폴리프로필렌 에폭시기로 종결된 접착제 조성물.
  6. 제1항에 있어서, 상기 폴리에테르 구조는 갖는 변성 에폭시 수지는 에폭시 당량이 300 내지 5,000 범위인 접착제 조성물.
  7. 제1항에 있어서, 전체 접착제 조성물의 함량을 기준으로, 상기 폴리에테르 구조를 갖는 변성 에폭시 수지를 35 중량부 이하로 포함하는 접착제 조성물.
  8. 제1항에 있어서, 상기 1차 입자 형태의 코어쉘 러버는 250 nm 내지 500 nm 의 평균 입경을 갖는 접착제 조성물.
  9. 제1항에 있어서, 상기 1차 입자 형태 코어쉘 러버의 코어는 180 내지 495 nm 의 평균 입경을 갖는 접착제 조성물.
  10. 제9항에 있어서, 상기 1차 입자 형태의 코어쉘 러버는 코어쉘 전체 입경에 대한 코어의 입경 비율이 0.8 내지 0.99를 만족하는 접착제 조성물.
  11. 제1항에 있어서, 상기 2차 입자 형태의 코어쉘 러버(c)는 1 ㎛ 이하의 평균 입경을 갖는 접착제 조성물.
  12. 제1항에 있어서, 접착제 조성물의 전체 함량을 기준으로 상기 코어쉘 러버(c)를 5 내지 35 중량부를 포함하는 접착제 조성물.
  13. 제1항에 있어서, 폴리에테르 폴리올 단위; 및 비방향족 이소시아네이트 단위를 포함하는 폴리에테르 구조를 갖는 우레탄 수지를 더 포함하고,
    상기 우레탄 수지는 이소시아네이트 말단 중 적어도 하나가 아민계 화합물, 페놀계 화합물, 옥심계 화합물, 또는 비스페놀계 화합물로 종결된 접착제 조성물.
  14. 제13항에 있어서, 상기 폴리에테르 폴리올의 OH 당량은 300 내지 2,000 범위 내인 접착제 조성물.
  15. 제1항 내지 제14항 중 어느 한 항에 따른 접착제 조성물의 경화물을 포함하는 구조체.
  16. 제1항 내지 제14항 중 어느 한 항에 따른 조성물을 기재 표면에 접촉하는 단계; 및 기재의 표면과 접촉한 상기 조성물을 경화하는 단계를 포함하는 구조체의 제조방법.
PCT/KR2019/009235 2018-07-25 2019-07-25 접착제 조성물 WO2020022800A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19840550.8A EP3825377B1 (en) 2018-07-25 2019-07-25 Adhesive composition
US17/262,836 US20210269686A1 (en) 2018-07-25 2019-07-25 Adhesive Composition
JP2021502970A JP7238092B2 (ja) 2018-07-25 2019-07-25 接着剤組成物
CN201980049049.7A CN112534017B (zh) 2018-07-25 2019-07-25 粘合剂组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0086343 2018-07-25
KR20180086343 2018-07-25

Publications (1)

Publication Number Publication Date
WO2020022800A1 true WO2020022800A1 (ko) 2020-01-30

Family

ID=69182359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/009235 WO2020022800A1 (ko) 2018-07-25 2019-07-25 접착제 조성물

Country Status (6)

Country Link
US (1) US20210269686A1 (ko)
EP (1) EP3825377B1 (ko)
JP (1) JP7238092B2 (ko)
KR (1) KR102230947B1 (ko)
CN (1) CN112534017B (ko)
WO (1) WO2020022800A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112449650B (zh) * 2018-07-25 2023-03-28 株式会社Lg化学 粘合剂组合物

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08109362A (ja) * 1994-10-11 1996-04-30 Nissan Motor Co Ltd 接着性エポキシ樹脂組成物
KR20080046194A (ko) * 2005-08-24 2008-05-26 헨켈 코만디트게젤샤프트 아우프 악티엔 개선된 내충격성을 갖는 에폭시 조성물
KR20100059818A (ko) * 2007-07-26 2010-06-04 헨켈 코포레이션 경화성 에폭시 수지계 접착제 조성물
KR20100067560A (ko) * 2008-12-11 2010-06-21 제일모직주식회사 저온 속경화형 이방 전도성 필름용 조성물 및 이를 이용한 저온 속경화형 이방 전도성 필름
JP2015108077A (ja) * 2013-12-05 2015-06-11 アイシン化工株式会社 構造用接着剤組成物

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0753853B2 (ja) * 1992-01-31 1995-06-07 日産自動車株式会社 エポキシ樹脂系接着性組成物
US6861475B2 (en) 2002-10-16 2005-03-01 Rohm And Haas Company Smooth, flexible powder coatings
CN101691418B (zh) * 2003-07-07 2012-10-03 陶氏环球技术有限责任公司 粘合剂环氧组合物及其施用方法
KR101352811B1 (ko) 2006-07-31 2014-02-17 헨켈 아게 운트 코. 카게아아 경화성 에폭시 수지-기재 접착성 조성물
JP2010077305A (ja) * 2008-09-26 2010-04-08 Yokohama Rubber Co Ltd:The エポキシ樹脂組成物
KR101692106B1 (ko) * 2014-06-12 2017-01-02 주식회사 엘지화학 코어-쉘 구조의 아크릴계 충격보강제 및 이를 포함하는 아크릴계 수지 조성물
JP2018090651A (ja) * 2015-03-31 2018-06-14 株式会社カネカ 貯蔵安定性に優れる硬化性エポキシ樹脂組成物
EP3281965B1 (en) * 2015-04-09 2019-10-02 Kaneka Corporation Polymer fine particle-containing curable resin composition having improved bonding strength against impact peeling
JP6632401B2 (ja) * 2016-01-29 2020-01-22 アイシン化工株式会社 構造用接着剤組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08109362A (ja) * 1994-10-11 1996-04-30 Nissan Motor Co Ltd 接着性エポキシ樹脂組成物
KR20080046194A (ko) * 2005-08-24 2008-05-26 헨켈 코만디트게젤샤프트 아우프 악티엔 개선된 내충격성을 갖는 에폭시 조성물
KR20100059818A (ko) * 2007-07-26 2010-06-04 헨켈 코포레이션 경화성 에폭시 수지계 접착제 조성물
KR20100067560A (ko) * 2008-12-11 2010-06-21 제일모직주식회사 저온 속경화형 이방 전도성 필름용 조성물 및 이를 이용한 저온 속경화형 이방 전도성 필름
JP2015108077A (ja) * 2013-12-05 2015-06-11 アイシン化工株式会社 構造用接着剤組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3825377A4 *

Also Published As

Publication number Publication date
CN112534017B (zh) 2023-06-30
CN112534017A (zh) 2021-03-19
KR20200011909A (ko) 2020-02-04
EP3825377A4 (en) 2021-09-01
JP2021531385A (ja) 2021-11-18
EP3825377A1 (en) 2021-05-26
JP7238092B2 (ja) 2023-03-13
US20210269686A1 (en) 2021-09-02
KR102230947B1 (ko) 2021-03-23
EP3825377B1 (en) 2022-11-02

Similar Documents

Publication Publication Date Title
KR102183703B1 (ko) 접착제 조성물
WO2020022798A1 (ko) 접착제 조성물
WO2020022800A1 (ko) 접착제 조성물
WO2020022797A1 (ko) 접착제 조성물
WO2020022799A1 (ko) 접착제 조성물
WO2020022801A1 (ko) 접착제 조성물
WO2020022795A1 (ko) 접착제 조성물
WO2020022796A1 (ko) 접착제 조성물
KR102230949B1 (ko) 접착제 조성물
KR20210052086A (ko) 열 경화성 접착제 조성물과, 접착층을 포함한 구조체 및 이의 제조 방법
KR20210052807A (ko) 열 경화성 접착제 조성물과, 접착층을 포함한 구조체 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19840550

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021502970

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019840550

Country of ref document: EP

Effective date: 20210222