WO2020022087A1 - Battery temperature adjustment device - Google Patents

Battery temperature adjustment device Download PDF

Info

Publication number
WO2020022087A1
WO2020022087A1 PCT/JP2019/027549 JP2019027549W WO2020022087A1 WO 2020022087 A1 WO2020022087 A1 WO 2020022087A1 JP 2019027549 W JP2019027549 W JP 2019027549W WO 2020022087 A1 WO2020022087 A1 WO 2020022087A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
temperature
cell
potential
heat transfer
Prior art date
Application number
PCT/JP2019/027549
Other languages
French (fr)
Japanese (ja)
Inventor
知隆 杉下
基正 飯塚
鈴木 聡
横山 直樹
康介 白鳥
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2020022087A1 publication Critical patent/WO2020022087A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6552Closed pipes transferring heat by thermal conductivity or phase transition, e.g. heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6571Resistive heaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to a battery temperature control device applied to at least one battery module in which a plurality of chargeable / dischargeable battery cells are electrically connected in series.
  • Patent Document 1 describes that a coolant bypass for introducing a coolant is provided in the middle of a coolant channel in order to suppress a temperature difference between a coolant inlet side and a coolant outlet side of a housing.
  • the present inventors investigated the temperature distribution in the battery module in order to perform appropriate temperature management of the battery module.
  • the battery module tends to have a temperature variation between the battery cells during charging and discharging.
  • the temperature of a battery cell having a higher potential is likely to be higher in a battery module during charging or discharging than in a battery cell having a lower potential.
  • Such a temperature variation between the battery cells is not preferable because it causes a decrease in output and a decrease in capacity.
  • An object of the present disclosure is to provide a battery temperature control device capable of suppressing temperature variation between battery cells constituting a battery module during charging and discharging.
  • the battery module has a configuration in which, during charging or discharging, a high-potential cell having a higher potential than a low-potential cell among the plurality of battery cells has a higher temperature during heat generation than a low-potential cell.
  • the temperature control member has a plurality of heat transfer portions set corresponding to the plurality of battery cells, and among the plurality of heat transfer portions, the temperature of the heat transfer portion corresponding to the high potential cell is lower than the low potential cell. Is configured to be lower than the temperature of the heat transfer portion corresponding to
  • the heat transfer portions having different temperatures correspond to the high-potential cells and the low-potential cells in consideration of the temperature characteristics of the battery cells at the time of charging or discharging. Can be suppressed. That is, a high-potential cell having a high temperature at the time of heat generation corresponds to a heat transfer portion having a low temperature, and a low-potential cell having a low temperature at the time of heat generation corresponds to a heat transfer portion having a high temperature. Temperature variation with the potential cell can be suppressed. As a result, it is possible to avoid a decrease in output and a decrease in capacity due to temperature variations between the battery cells.
  • FIG. 1 is a schematic configuration diagram of a system including a battery module according to a first embodiment. It is a schematic circuit diagram which shows the connection aspect of each battery cell in a battery module. It is a typical perspective view of a battery cell. It is a schematic structure figure of a battery temperature control device concerning a 1st embodiment.
  • FIG. 4 is an explanatory diagram for explaining temperature characteristics of a battery cell included in a battery module.
  • FIG. 4 is an explanatory diagram for explaining a temperature change of a refrigerant that cools a battery module.
  • It is a schematic diagram showing a battery module according to a second embodiment. It is a schematic structure figure of a battery temperature control device concerning a 2nd embodiment.
  • a vehicle on which the battery temperature control device 1 is mounted for example, an electric vehicle, a hybrid vehicle, and the like that can be driven by a motor generator MG that uses at least one battery module M as a power source are exemplified.
  • the battery module M is a series connection body in which a plurality of chargeable / dischargeable battery cells C are electrically connected in series. In the battery module M, twelve battery cells C are electrically connected in series. Specifically, the battery module M has an arrangement in which two stacked bodies in which six battery cells C are stacked are arranged in two rows so as to be adjacent to each other.
  • a number from 1 to 12 may be assigned to the battery cells C in ascending order of potential. For example, in the battery module M, “1” may be assigned to the battery cell C having the lowest potential, and “12” may be assigned to the battery cell C having the highest potential.
  • Each of the plurality of battery cells C1 to C12 is formed of a chargeable / dischargeable secondary battery.
  • the battery cells C1 to C12 are constituted by lithium ion batteries.
  • the plurality of battery cells C1 to C12 constituting the battery module M are electrically connected to each other.
  • the positive terminal 21 of the low potential battery cell C is electrically connected to the negative terminal 22 of the high potential battery cell C via the bus bar BB.
  • the plurality of battery cells C1 to C12 of the present embodiment are electrically connected in series via a bus bar BB. Details of the battery cell C will be described later.
  • the battery module M is connected to the motor generator MG via the voltage conversion device 3.
  • Motor generator MG is configured to be able to transmit power to driving wheels (not shown).
  • Motor generator MG serves as a driving power source for the vehicle, and has a power generation function by regenerative drive control.
  • the motor generator MG forms a target device to which the battery module M supplies power.
  • the voltage converter 3 includes a boost converter 3a that boosts the output voltage of the battery module M up to a predetermined voltage as an upper limit, an inverter 3b that performs DC-AC power conversion, and the like.
  • the voltage conversion device 3 configures a power conversion device that supplies necessary power to a target device to which power is to be supplied.
  • the inverter 3b includes a plurality of semiconductor switching elements, and performs DC-AC power conversion by switching control of the semiconductor switching elements. Inverter 3b converts AC power generated by power generation at the time of power generation by motor generator MG into DC power. Then, the DC power converted by the inverter 3b is charged in the battery module M. Further, inverter 3b converts DC power from battery module M into AC power when the vehicle is driven by motor generator MG. Then, the AC power converted by inverter 3b is supplied to motor generator MG.
  • the vehicle is equipped with a charger 6 for charging the battery module M with the commercial power supply 4.
  • the charger 6 is configured to be connectable to the commercial power supply 4 via a charging cable (not shown). Thereby, the battery module M can be charged by the electric power supplied from the commercial power supply 4 via the charger 6.
  • FIG. 3 is a schematic perspective view of the battery cell C.
  • the internal configuration of the battery cell C is illustrated by a dotted line to explain the internal configuration of the battery cell C.
  • the battery cell C is configured to include a case portion 20 forming an outer shell, a positive electrode terminal 21, and a negative electrode terminal 22.
  • the positive electrode terminal 21 and the negative electrode terminal 22 constitute a pair of electrode terminals that protrude outside the case 20.
  • the case portion 20 is an exterior body in which at least a portion exposed to the outside is made of a material having an insulating property.
  • An electrolytic solution (not shown) is injected into the case portion 20, and a stacked electrode body 23, a positive electrode current collector 24, and a negative electrode current collector 25 are housed as power generation elements.
  • the laminated electrode body 23 has a plurality of separators 231, a plurality of positive plates 232, and a plurality of negative plates 233.
  • the laminated electrode body 23 is configured as a laminated body in which positive electrodes 232 and negative electrodes 233 are alternately laminated while being insulated by the separator 231.
  • the positive electrode plate 232 is made of, for example, a material containing lithium.
  • the negative electrode plate 233 is made of, for example, a carbon material.
  • the plurality of positive electrode plates 232 have respective side ends electrically connected to the positive electrode current collector 24.
  • the positive electrode current collector 24 is electrically connected to a portion of the positive electrode terminal 21 located inside the case 20.
  • Each of the plurality of negative electrode plates 233 has a side end electrically connected to the negative electrode current collector 25.
  • the negative electrode current collector 25 is electrically connected to a portion of the negative electrode terminal 22 located inside the case 20.
  • the positive electrode current collector 24 is made of a material having a higher electric resistance value than the negative electrode current collector 25.
  • the positive electrode current collector 24 is made of aluminum or an aluminum alloy having excellent electrolytic solution resistance and oxidation resistance.
  • the negative electrode current collector 25 is made of copper or a copper alloy having excellent electrolytic solution resistance and oxidation resistance.
  • the formation potential of the alloy of lithium and aluminum is outside the range of the operating potential of the positive electrode current collector 24. For this reason, if the positive electrode current collector 24 is made of aluminum or an aluminum alloy, an alloy of lithium and aluminum is unlikely to be formed on the positive electrode current collector 24.
  • the formation potential of the alloy of lithium and copper is outside the range of the operating potential of the negative electrode current collector 25. For this reason, if the negative electrode current collector 25 is made of copper or a copper alloy, an alloy of lithium and copper is unlikely to be formed on the negative electrode current collector 25.
  • the negative electrode current collector 25 it is conceivable to use aluminum or an aluminum alloy as the negative electrode current collector 25, similarly to the positive electrode current collector 24.
  • the operating potential of the negative electrode current collector 25 includes the formation potential of the alloy of lithium and aluminum, there is a possibility that an alloy of lithium and aluminum may be formed when the battery cell C is charged or discharged. The formation of an alloy of lithium and aluminum is not preferable because lithium is consumed, which leads to a rapid decrease in capacity.
  • the positive electrode terminal 21 and the negative electrode terminal 22 are made of a rod-shaped conductive material, a part of which is positioned inside the case part 20, and the remaining part protrudes outward.
  • the positive electrode terminal 21 and the negative electrode terminal 22 protrude outward from the same end surface of the case portion 20 at a predetermined interval.
  • the portion of the positive electrode terminal 21 located inside the case portion 20 is electrically connected to the positive electrode current collector 24. Further, a portion of the positive electrode terminal 21 located outside the case portion 20 is connected to the bus bar BB.
  • the portion of the negative electrode terminal 22 located inside the case portion 20 is electrically connected to the negative electrode current collector 25. Further, the portion of the negative electrode terminal 22 located outside the case portion 20 is connected to the bus bar BB.
  • the battery module M configured as described above may generate an excessively high temperature due to self-heating during charging or discharging. If the temperature of the battery module M becomes excessively high, the deterioration of the battery cell C is promoted. Therefore, a temperature control means for adjusting the temperature to a predetermined temperature or lower is required.
  • the vehicle is provided with a battery temperature controller 1 for adjusting the temperature of the battery module M.
  • the battery temperature controller 1 is configured to cool the battery module M with a refrigerant having a lower temperature than the battery module M.
  • the battery temperature control device 1 is configured to include a vapor compression refrigeration cycle 10 including a compressor 11, a radiator 12, an expansion valve 13, and an evaporator 14. .
  • the compressor 11 compresses and discharges the refrigerant.
  • the compressor 11 for example, an electric compressor in which a compression mechanism is driven by an electric motor that uses a battery module M or an auxiliary battery (not shown) as a power source can be employed.
  • the radiator 12 is a heat exchanger that exchanges heat of the refrigerant discharged from the compressor 11 with the outside air and radiates heat. Although not shown, the radiator 12 is provided with an outdoor fan for introducing outside air.
  • the expansion valve 13 is a pressure reducing device that reduces the pressure of the refrigerant that has passed through the radiator 12 to a predetermined pressure.
  • a temperature-type expansion valve that adjusts the throttle opening degree so that the degree of superheat on the refrigerant outlet side of the evaporator 14 is maintained at a predetermined value can be adopted.
  • the evaporator 14 is a heat exchanger that evaporates the refrigerant by exchanging heat with the low-temperature and low-pressure refrigerant depressurized by the expansion valve 13 with the battery module M. That is, the evaporator 14 is a cooling heat exchanger that cools the battery module M by supplying a coolant having a lower temperature than the battery module M to the heat medium passage 150. The battery module M is cooled by an endothermic effect when the refrigerant evaporates in the evaporator 14.
  • the evaporator 14 includes a refrigerant tube 15 that forms a heat medium flow path 150 through which a refrigerant as a heat medium flows.
  • the refrigerant tube 15 constitutes a temperature control member for adjusting the temperature of the battery module M, and a flow path forming section for forming the heat medium flow path 150.
  • the refrigerant tube 15 is connected to a refrigerant inlet 16 for introducing a low-temperature and low-pressure refrigerant depressurized by the expansion valve 13 to the upstream side of the refrigerant flow. Further, the refrigerant tube 15 is provided with a refrigerant outlet 17 for leading the refrigerant having passed through the refrigerant tube 15 to the refrigerant suction side of the compressor 11 with respect to the refrigerant flow downstream side.
  • the refrigerant tube 15 is disposed at a position close to the bottom surface of the battery module M so as to thermally contact each of the plurality of battery cells C constituting the battery module M. Specifically, the refrigerant tube 15 is disposed so as to abut on a portion of the plurality of battery cells C opposite to the portion on which the positive electrode terminal 21 and the negative electrode terminal 22 are provided. It is desirable that the evaporator 14 has a configuration in which the refrigerant tube 15 and the plurality of battery cells C are indirectly in contact with each other via an insulator.
  • the refrigerant tube 15 has a plurality of heat transfer portions HT1 to HT12 set corresponding to the plurality of battery cells C1 to C12. That is, the refrigerant tube 15 has a plurality of heat transfer portions HT1 to HT12 that are in thermal contact with the plurality of battery cells C1 to C12 to exchange heat.
  • the heat transfer part HT1 is a part of the refrigerant tube 15 that is in thermal contact with the battery cell C1 having the lowest potential in the battery module M.
  • the heat transfer section HT12 is a section of the refrigerant tube 15 that is in thermal contact with the battery cell C1 having the highest potential in the battery module M.
  • the present inventors investigated the temperature distribution in the battery module M in order to appropriately manage the temperature of the battery module M.
  • the battery module M it has been newly found that temperature variation easily occurs between the battery cells C during charging and discharging. Specifically, it was found that in the battery module M, the temperature of the battery cell C having a higher potential tends to be higher during charging or discharging than the battery cell C having a lower potential.
  • FIG. 5 shows measurement results obtained by measuring temperature changes of the battery cells C2, C4, and C9 from when charging of the battery module M is started until a predetermined time elapses.
  • the temperature change of the battery cell C9 having a high potential is indicated by a solid line
  • the temperature change of the battery cell C2 having a low potential is indicated by a two-dot chain line.
  • a change in temperature of the battery cell C4 having an intermediate potential between the battery cell C9 and the battery cell C2 is indicated by a chain line.
  • the positive electrode current collector 24 is made of a material (eg, aluminum or the like) having a higher electric resistance value than the material (eg, copper or the like) forming the negative electrode current collector 25. ing.
  • the positive electrode current collector 24 of the battery cell C is made of a material having a higher electric resistance value than the negative electrode current collector 25, the positive electrode current collector 24 has a higher positive electrode current during charging or discharging than the calorific value on the negative electrode side of the battery cell C. The calorific value on the side increases.
  • the battery cell C in which the heat on the positive electrode side of the battery cell C having a low potential becomes a high potential via the bus bar BB. It moves to the negative electrode side of C. Thereby, the temperature on the negative electrode side of the battery cell C, which becomes a high potential, rises. When the temperature on the negative electrode side of the battery cell C on the high potential side rises, the temperature on the positive electrode side of the battery cell C on the high potential side rises in conjunction therewith. It is considered that due to such heat transfer, in the battery module M, during charging or discharging, the temperature of the battery cell having a higher potential is higher than that of the battery cell having a lower potential.
  • the battery module M if the temperature of each battery cell C varies, the degree of progress of the deterioration of each battery cell C is biased, and the output characteristics of the entire battery module M deteriorate. This is because the battery module M includes a series connection of the battery cells C, and the output characteristics of the entire battery module M according to the battery characteristics of the battery cell C that has deteriorated the most among the battery cells C. Because it is decided. For this reason, in order for the battery module M to exhibit desired performance for a long period of time, it is important to equalize the temperature to reduce the temperature variation of each battery cell C.
  • the high-potential cell having a high temperature at the time of heat generation is associated with the heat transfer portion HT having a low temperature, and the temperature at the time of heat generation is reduced.
  • a high-temperature heat transfer portion HT is made to correspond to a low low-potential cell.
  • a battery cell C having a higher potential among a pair of battery cells C connected via a bus bar BB is a high potential cell, and a battery cell C having a lower potential is a low potential cell. .
  • the temperature of the refrigerant flowing through the refrigerant tube 15 changes due to heat exchange with the battery cell C. Specifically, as shown in FIG. 6, the temperature of the refrigerant flowing through the refrigerant tube 15 increases from the upstream side to the downstream side of the refrigerant flow due to the heat received from the battery cells C when the battery module M is cooled.
  • the refrigerant tube 15 of the present embodiment allows the refrigerant to flow from the heat transfer portion HT that is in thermal contact with the high potential cell to the heat transfer portion HT that is in thermal contact with the low potential cell.
  • the heat medium flow path 150 is set in the. Specifically, in the refrigerant tube 15, the refrigerant flows from the heat transfer portion HT12 corresponding to the battery cell C12 having the highest potential in the battery module M to the heat transfer portion HT1 corresponding to the battery cell C1 having the lowest potential.
  • the heat medium passage 150 is set as described above.
  • the refrigerant tube 15 is configured such that the temperature of the heat transfer portion HT corresponding to the high-potential cell among the plurality of heat transfer portions HT is lower than the temperature of the heat transfer portion HT corresponding to the low-potential cell. It will be.
  • the battery temperature control device 1 of the present embodiment when the temperature of the battery module M becomes higher than a predetermined temperature during charging or discharging, the compressor 11 and the outdoor fan are driven by a control device (not shown).
  • the refrigerant discharged from the compressor 11 is radiated to the outside air by the radiator 12, and then reduced to a predetermined pressure by the expansion valve 13. Then, the low-temperature and low-pressure refrigerant reduced in pressure by the expansion valve 13 flows into the refrigerant tube 15 of the evaporator 14.
  • a heat transfer portion HT having a different temperature in the refrigerant tube 15 is associated with each battery cell C in consideration of the temperature characteristics of the battery cell C during charging or discharging. . That is, in the battery temperature controller 1, the high-potential cells having a high temperature at the time of heat generation correspond to the heat transfer portions HT having a low temperature, and the low-potential cells having a low temperature at heat generation correspond to the heat transfer portions HT having a high temperature. ing. According to this, the temperature variation between the battery cells C at the time of charging and discharging, that is, the temperature variation between the high potential cell and the low potential cell can be suppressed. As a result, it is possible to suppress a decrease in output and a decrease in capacity due to temperature variation between the battery cells C.
  • the evaporator 14 which is a temperature control member, heats the refrigerant tube 15 so that the refrigerant flows from a part thermally contacting the high-potential cell to a part thermally contacting the low-potential cell.
  • a medium flow path 150 is set.
  • the temperature of the plurality of heat transfer portions HT can be individually adjusted. Equipment is unnecessary. For this reason, the temperature variation between the battery cells C can be suppressed by a simple method.
  • the arrangement mode of the battery modules M a stacked body in which six battery cells C are stacked is arranged in two rows, but the arrangement mode of the battery modules M is not limited to this. .
  • the arrangement mode of the battery modules M can be appropriately changed according to the size of the space in which the battery modules M are arranged.
  • the battery module M has an arrangement in which a stacked body in which four battery cells C are stacked is arranged in three rows, or an arrangement in which a stacked body in which two battery cells C are stacked is arranged in six rows. You may. This is the same in the following embodiments.
  • the vapor compression refrigeration cycle 10 is exemplified as the battery temperature control device 1, but the battery temperature control device 1 is not limited to this.
  • the battery temperature controller 1 may be configured with a cooling circuit other than the refrigeration cycle 10 as long as the battery module M can be cooled by a refrigerant having a lower temperature than the battery module M.
  • the battery temperature control device 1 may be configured by a cold heat generating device (for example, a Peltier module) provided for each battery cell C. These are the same in the following embodiments.
  • the refrigerant tube 15 is arranged at a position close to the bottom surface of the battery module M, but the arrangement of the refrigerant tube 15 is not limited to this.
  • the refrigerant tube 15 may be arranged, for example, at a position close to the side surface of the battery module M. This is the same in the following embodiments.
  • the amount of heat generated on the positive electrode side is larger than that on the negative electrode side during charging or discharging.
  • the heat medium flow path 150 is set in the refrigerant tube 15 so that the refrigerant flows from the positive electrode side to the negative electrode side of the battery cell C. That is, in the temperature control member, the temperature of the heat transfer portion HT in thermal contact with a higher potential portion in the battery cell C is lower than the temperature of the heat transfer portion HT in thermal contact with a lower potential portion. It is desirable to be constituted as follows. This is the same in the following embodiments.
  • the battery module M has an arrangement in which 12 battery cells C are stacked in a line. That is, the battery module M is configured by a stacked body in which 12 battery cells C are stacked in a line.
  • the refrigerant inlet 16 of the refrigerant tube 15 of the evaporator 14 is provided near the battery cell C12 having the highest potential in the battery module M, and the refrigerant outlet 17 is provided in the battery module M. It is provided close to the battery cell C1 having the lowest potential among M.
  • the heat medium flow path 150 is set so that the refrigerant flows from the heat transfer portion HT thermally in contact with the high potential cell to the heat transfer portion HT in thermal contact with the low potential cell. Is done. Specifically, in the refrigerant tube 15, the refrigerant flows from the heat transfer portion HT12 corresponding to the battery cell C12 having the highest potential in the battery module M to the heat transfer portion HT1 corresponding to the battery cell C1 having the lowest potential.
  • the heat medium passage 150 is set as described above.
  • the battery temperature controller 1 of the present embodiment associates a low-temperature heat transfer section HT with a high-potential cell having a high temperature at the time of heat generation, and associates a high-temperature heat transfer section HT with a low-potential cell at a low temperature during heat generation. I correspond. Therefore, similarly to the first embodiment, it is possible to suppress temperature variations between the high potential cell and the low potential cell.
  • FIGS. 1 to M8 a third embodiment will be described with reference to FIGS.
  • This embodiment is different from the first embodiment in that a battery pack P having a plurality of battery modules M1 to M8 is mounted on a vehicle.
  • portions different from the first embodiment will be mainly described, and description of the same portions as the first embodiment may be omitted.
  • the vehicle is equipped with a battery pack P having a plurality of battery modules M1 to M8 as a power source for the motor generator MG and the like.
  • the battery pack P includes eight battery modules M1 to M8.
  • the battery modules M1 to M8 have the same arrangement as in the first embodiment.
  • the battery pack P has battery modules M5 to M8 having a relatively high potential and battery modules M1 to M4 having a relatively low potential arranged in two rows.
  • Each of the battery modules M1 to M8 constituting the battery pack P is electrically connected in series via a connection member CM including an electric wiring and a connector.
  • connection member CM electrically connects the battery modules M1 to M8.
  • the connecting member CM has a larger conductive path cross-sectional area than the bus bar BB connecting the adjacent battery cells C in order to suppress electric resistance.
  • the connecting member CM has a larger heat capacity than the bus bar BB because the cross-sectional area of the conductive path is larger than that of the bus bar BB.
  • the heat capacity is the amount of heat required to raise the temperature of an object by one degree.
  • the evaporator 14 includes a plurality of refrigerant tubes 15 provided corresponding to the plurality of battery modules M1 to M8, a distribution pipe portion 18 for distributing the refrigerant to each refrigerant tube 15, and each refrigerant tube. It is configured to include a collecting pipe portion 19 for collecting the refrigerant from No. 15.
  • Each of the plurality of refrigerant tubes 15 is disposed so as to be in thermal contact with the corresponding battery module M.
  • a refrigerant tube 15 is provided for each of the plurality of battery modules M1 to M8.
  • the refrigerant tube 15 constitutes a temperature control member for adjusting the temperature of the battery module M, and a flow path forming section for forming the heat medium flow path 150.
  • each of the plurality of refrigerant tubes 15 has an upstream pipe 151, a downstream pipe 152, and a connection pipe 153 that connects the upstream pipe 151 and the downstream pipe 152. .
  • the upstream pipe 151 is a part of the refrigerant tube 15 located on the upstream side of the refrigerant flow.
  • the upstream tube 151 is arranged so as to be in thermal contact with the battery cells C7 to C12 having a relatively high potential in the battery module M.
  • the upstream tube portion 151 is provided with heat transfer portions HT7 to HT12 that are in thermal contact with the battery cells C7 to C12.
  • tube part 151 is comprised so that a refrigerant
  • the downstream pipe 152 is a part of the refrigerant tube 15 located on the downstream side of the refrigerant flow.
  • the downstream tube section 152 is disposed so as to be in thermal contact with the battery cells C1 to C6 having a relatively low potential in the battery module M.
  • the downstream tube portion 152 is provided with heat transfer portions HT1 to HT6 that are in thermal contact with the battery cells C1 to C6.
  • the downstream side pipe part 152 is comprised so that a refrigerant
  • coolant may flow from the heat transfer part HT6 corresponding to the battery cell C6 with a high electric potential to the heat transfer part HT1 corresponding to the battery cell C1 with a low electric potential.
  • the distribution pipe section 18 distributes the refrigerant to the upstream pipe sections 151 provided corresponding to the respective battery modules M1 to M8.
  • the refrigerant inlet 16 is connected to the refrigerant flow upstream of the distribution pipe 18.
  • the collecting pipe section 19 collects the refrigerant from the downstream pipe section 152 provided corresponding to each of the battery modules M1 to M8.
  • the refrigerant outlet 17 is connected to the refrigerant flow downstream of the collecting pipe 19.
  • the low-temperature and low-pressure refrigerant decompressed by the expansion valve 13 flows into the evaporator 14 configured as described above.
  • the refrigerant flowing into the evaporator 14 is distributed to each refrigerant tube 15 by the distribution pipe section 18.
  • the refrigerant distributed to each of the refrigerant tubes 15 flows from the heat transfer portion HT that is in thermal contact with the high potential cell to the heat transfer portion HT that is in thermal contact with the low potential cell.
  • each battery cell C is cooled to an appropriate temperature by an endothermic reaction accompanying the evaporation of the refrigerant.
  • the refrigerant that has passed through each refrigerant tube 15 is collected in the collecting pipe part 19, and then is led out from the refrigerant outlet part 17 to the refrigerant outlet side of the compressor 11.
  • the battery temperature controller 1 of the present embodiment associates a low-temperature heat transfer section HT with a high-potential cell having a high temperature at the time of heat generation, and associates a high-temperature heat transfer section HT with a low-potential cell at a low temperature during heat generation. I correspond. Therefore, similarly to the first embodiment, it is possible to suppress temperature variations between the high potential cell and the low potential cell.
  • the refrigerant tube 15 which is a temperature control member is provided for each of the plurality of battery modules M1 to M8, the temperature variation between the battery cells C in each of the plurality of battery modules M1 to M8. Can be suppressed.
  • the battery modules M1 to M8 are electrically connected in series, there is a concern that a temperature distribution similar to that of the battery cell C may occur. That is, with respect to the battery modules M1 to M8, there is a concern that the calorific value of the battery module M having a higher potential is larger than that of the battery module M having a lower potential.
  • a battery pack P in which eight battery modules M are electrically connected in series has been illustrated, but the number of battery packs P is not limited to this.
  • the number of battery modules M constituting the battery pack P can be appropriately changed according to the output required for the battery pack P.
  • a battery pack P in which the battery modules M5 to M8 and the battery modules M1 to M4 are arranged in two rows is illustrated, but the arrangement of the battery pack P is not limited to this. Not limited.
  • the arrangement mode of the battery pack P can be appropriately changed according to the size of the space in which the battery pack P is arranged.
  • each of the battery modules M1 to M8 has an arrangement mode in which 12 battery cells C are stacked in a line. That is, each of the battery modules M1 to M8 is configured by a stacked body in which 12 battery cells C are stacked in a line.
  • the battery pack P has battery modules M5 to M8 having a relatively high potential and battery modules M1 to M4 having a relatively low potential arranged in two rows. Specifically, the battery modules M5 to M8 are arranged such that the negative terminal 22 having the lowest potential in the battery module M8 and the positive terminal 21 having the highest potential in the battery module M5 are located at the corners of the battery pack P. ing. Further, the battery modules M1 to M4 are arranged such that the positive terminal 21 having the highest potential in the battery module M1 and the negative terminal 22 having the lowest potential in the battery module M4 are located at the corners of the battery pack P.
  • the evaporator 14 has a configuration in which one refrigerant tube 15 is allocated to two adjacent battery modules M1 to M8. Specifically, the refrigerant tube 15 is disposed such that the upstream tube portion 151 is in thermal contact with the battery module M having a high potential among the two battery modules M adjacent to each other, and the battery module having a low potential is provided. M is arranged so that the downstream side pipe portion 152 is in thermal contact with M.
  • the upstream tube section 151 is provided with heat transfer portions HT1 to HT12 that are in thermal contact with the battery cells C1 to C12 of the battery module M having a high potential.
  • tube part 151 is comprised so that a refrigerant
  • the downstream tube portion 152 is provided with heat transfer portions HT1 to HT12 that are in thermal contact with the battery cells C1 to C12 of the battery module M having a low potential. And the downstream side pipe
  • the low-temperature and low-pressure refrigerant decompressed by the expansion valve 13 flows into the evaporator 14 configured as described above.
  • the refrigerant flowing into the evaporator 14 is distributed to the upstream pipes 151 of the plurality of refrigerant tubes 15 by the distribution pipe 18.
  • the refrigerant distributed to each upstream side pipe portion 151 is transferred from the heat transfer portion HT thermally contacting the high potential cell of the battery module M having a high potential to the heat transfer portion HT thermally contacting the low potential cell.
  • the refrigerant flows toward.
  • each battery cell C of the battery module M which has a high potential due to an endothermic reaction accompanying the evaporation of the refrigerant, is cooled until it reaches an appropriate temperature.
  • each upstream pipe 151 is distributed to each downstream pipe 152 via the connection pipe 153. Then, the refrigerant distributed to each of the downstream pipe portions 152 is transferred from the heat transfer portion HT that is in thermal contact with the high potential cell of the battery module M having a low potential to the heat transfer portion HT that is in thermal contact with the low potential cell. The refrigerant flows toward. At this time, each battery cell C of the battery module M, which has a low potential due to an endothermic reaction accompanying the evaporation of the refrigerant, is cooled until it reaches an appropriate temperature. Then, the refrigerant that has passed through each downstream pipe portion 152 is collected in the collecting pipe portion 19, and then is drawn out from the refrigerant outlet portion 17 to the refrigerant outlet side of the compressor 11.
  • the refrigerant tubes 15 are shared by the adjacent battery modules M1 to M8, the refrigerant tubes 15 correspond to the low potential cells from the heat transfer portion HT corresponding to the high potential cells.
  • the refrigerant flows toward the heat transfer portion HT. For this reason, it is possible to suppress temperature variations among the battery cells C in the plurality of battery modules M1 to M8.
  • the battery pack P has battery modules M5 to M8 having a relatively high potential and battery modules M1 to M4 having a relatively low potential arranged in two rows.
  • the battery modules M5 to M8 are arranged such that the lowest potential positive terminal 21 of the battery module M8 and the lowest potential positive terminal 21 of the battery module M5 are located at the corners of the battery pack P.
  • the battery modules M1 to M4 are arranged so that the positive terminal 21 having the lowest potential in the battery module M1 and the positive terminal 21 having the lowest potential in the battery module M4 are located at the corners of the battery pack P.
  • the evaporator 14 has a configuration in which one refrigerant tube 15 is allocated to two adjacent battery modules M1 to M8. Specifically, the refrigerant tube 15 is disposed such that the upstream tube portion 151 is in thermal contact with the battery module M having a high potential among the two battery modules M adjacent to each other, and the battery module M having a low potential is provided. And the downstream side pipe portion 152 is disposed so as to be in thermal contact therewith.
  • the refrigerant tube 15 causes the refrigerant to flow from the heat transfer portion HT corresponding to the high potential cell to the heat transfer portion HT corresponding to the low potential cell. It has a flowing configuration. For this reason, it is possible to suppress temperature variations among the battery cells C in the plurality of battery modules M1 to M8.
  • the present embodiment is different from the first and third embodiments in that the battery temperature controller 1 is configured to be able to warm up each battery module M of the battery pack P.
  • the battery temperature controller 1 is configured to be able to warm up each battery module M of the battery pack P.
  • portions different from the first and third embodiments will be mainly described, and description of portions similar to those in the first and third embodiments may be omitted.
  • the battery pack P is formed of a series connection body in which eight battery modules M1 to M8 are electrically connected in series by a connection member CM, as in the third embodiment.
  • the battery modules M1 to M8 have the same arrangement as in the first embodiment.
  • the battery temperature controller 1 is configured to warm up each of the battery modules M1 to M8 by the heating device 30.
  • the battery temperature controller 1 includes a heating device 30 that generates heat when energized, and a heater drive circuit 40 that controls the amount of current supplied to the heating device 30.
  • the heating device 30 includes a plurality of electric heaters 31 provided corresponding to the plurality of battery modules M1 to M8, respectively. That is, the electric heater 31 is provided for each of the plurality of battery modules M1 to M8.
  • the electric heater 31 is configured by a variable-type heater in which the amount of heat generated changes according to the amount of electricity.
  • the electric heater 31 constitutes a temperature adjusting member for adjusting the temperature of the battery module M.
  • the electric heater 31 includes a first heater section 32 provided corresponding to the battery cells C7 to C12 having a relatively high potential among the plurality of battery cells C1 to C12 constituting the battery module M, and a battery having a relatively low potential. It has a second heater section 33 provided corresponding to the cells C1 to C6.
  • the battery cells C7 to C12 having a relatively high potential are high potential cells
  • the battery cells C1 to C6 having a relatively low potential are low potential cells.
  • the first heater section 32 is disposed at a position close to the bottom of the battery cells C7 to C12 so as to be in thermal contact with the battery cells C7 to C12. Specifically, the first heater section 32 is disposed so as to abut on a part of the battery cells C7 to C12 opposite to the part where the positive terminal 21 and the negative terminal 22 are provided. It is desirable that the first heater section 32 be configured such that the first heater section 32 and the battery cells C7 to C12 are indirectly in contact with each other via an insulator.
  • the second heater section 33 is disposed at a position close to the bottom of the battery cells C1 to C6 so as to be in thermal contact with the battery cells C1 to C6. Specifically, the second heater section 33 is arranged so as to abut on a part of the battery cells C1 to C6 opposite to a part where the positive terminal 21 and the negative terminal 22 are provided. It is desirable that the second heater section 33 be configured so that the second heater section 33 and the battery cells C1 to C6 are indirectly in contact with each other via an insulator.
  • the first heater section 32 constitutes a heat transfer section provided corresponding to the battery cells C7 to C12 which are high potential cells
  • the second heater section 33 constitutes the battery cells C1 to C1 which are low potential cells.
  • a heat transfer portion provided corresponding to C6 is formed.
  • the heater drive circuit 40 is configured to be able to individually control the amount of current to the first heater unit 32 and the amount of current to the second heater unit 33. Specifically, the heater drive circuit 40 has a first drive unit 41 that controls the amount of current supplied to the first heater unit 32 and a second drive unit 42 that controls the amount of current supplied to the second heater unit 33. I have.
  • the high potential cell generates a larger amount of heat during charging and discharging than the low potential cell. For this reason, at the time of charging or discharging, temperature variations between the high-potential cell and the low-potential cell occur.
  • the battery temperature controller 1 is configured such that when the battery module M is warmed up, the temperature of the first heater section 32 corresponding to the high-potential cell is lower than that of the second heater section 33 corresponding to the low-potential cell.
  • the heater drive circuit 40 is configured to control the amount of current supplied to each of the heater units 32 and 33. According to this, in the battery temperature controller 1, the first heater unit 32 having a low temperature is set corresponding to a high-potential cell having a high temperature at the time of heat generation. This means that the two heater units 33 are set correspondingly.
  • the operation of the battery temperature control device 1 of the present embodiment will be described.
  • the battery temperature controller 1 when the temperature of the battery module M is lower than a predetermined temperature during charging or discharging, power is supplied to the heating device 30 by the heater driving circuit 40.
  • the heater driving circuit 40 controls the heater units 32 and 33 so that the temperature of the first heater unit 32 corresponding to the high-potential cell is lower than that of the second heater unit 33 corresponding to the low-potential cell.
  • the power supply amount is controlled.
  • the heater drive circuit 40 reduces the amount of current supplied to the first heater unit 32 to less than the amount of current supplied to the second heater unit 33.
  • the temperature of each of the battery cells C1 to C12 is increased by the heater sections 32 and 33 until the temperature of the battery cells C1 to C12 becomes an appropriate temperature.
  • the first heater unit 32 having a low temperature corresponds to a high-potential cell having a high temperature at the time of heat generation
  • the second heater unit 33 having a high temperature corresponds to a low-potential cell having a low temperature at the time of heat generation. Is made to correspond. According to this, the temperature variation between the battery cells C, that is, the temperature variation between the high potential cell and the low potential cell can be suppressed. As a result, it is possible to avoid a decrease in output and a decrease in capacity due to temperature variation between the battery cells C.
  • the battery temperature control device 1 is provided with the electric heater 31 as a temperature control member for each of the plurality of battery modules M1 to M8, the temperature variation between the battery cells C in each of the plurality of battery modules M1 to M8. Can be suppressed.
  • the electric heater 31 includes the first heater unit 32 provided corresponding to the battery cells C7 to C12 and the second heater unit 33 provided corresponding to the battery cells C1 to C6.
  • the electric heater 31 is not limited to this. If the electric heater 31 has a configuration in which the amount of electricity to the heater unit corresponding to the high-potential cell is smaller than that of the heater unit corresponding to the low-potential cell, for example, the electric heater 31 corresponds to each of the battery cells C1 to C12. It may be composed of a plurality of heaters provided.
  • the battery temperature controller 1 may be configured to warm up the battery module M by a high-temperature tube through which a heat medium having a higher temperature than the battery module M flows.
  • the heat medium flow path may be set so that the temperature of the portion that thermally contacts the high-potential cell is lower than the temperature of the portion that thermally contacts the low-potential cell.
  • the battery temperature controller 1 is not limited to this.
  • the battery temperature controller 1 may be configured to not only warm up the battery modules M1 to M8, but also to cool the battery modules M1 to M8.
  • the positive electrode current collector 24 is formed of a material having a higher electric resistance value than the negative electrode current collector 25 is described. Not limited. If the battery cell C has a configuration in which the temperature at the time of heat generation is higher on the positive electrode side than on the negative electrode side during charging or discharging, the positive electrode current collector 24 and the negative electrode current collector 25 have substantially the same electric power. It may be made of a material having a resistance value. For example, as the battery cell C, a battery in which the positive terminal 21 is formed of a material having a higher electric resistance value than the negative terminal 22 can be adopted.
  • the battery cell C is configured by a lithium battery, but the battery cell C is not limited to this.
  • the battery cell C may be constituted by a battery other than the lithium battery as long as the temperature at the time of heat generation is higher on the positive electrode side than on the negative electrode side.
  • a battery module M in which twelve battery cells C are electrically connected in series has been exemplified, but the number of battery cells C is not limited to this.
  • the number of the battery cells C constituting the battery module M can be appropriately changed according to the output required for the battery module M.
  • the battery temperature control device 1 of the present disclosure is applied to a device that adjusts the temperature of at least one battery module M mounted on a vehicle. It is not limited to this.
  • the battery temperature controller 1 is also applicable to, for example, a device that adjusts the temperature of a battery module M installed in a house or a factory.
  • the battery temperature control device includes a temperature control member that controls the temperature of the battery module.
  • the battery module has a configuration in which, during charging or discharging, a high-potential cell having a higher potential than a low-potential cell among the plurality of battery cells has a higher temperature during heat generation than a low-potential cell.
  • the temperature control member has a plurality of heat transfer portions set corresponding to the plurality of battery cells, and among the plurality of heat transfer portions, the temperature of the heat transfer portion corresponding to the high-potential cell is set to the low-potential cell. It is configured to be lower than the temperature of the corresponding heat transfer part.
  • the temperature control member of the battery temperature control device includes a flow path forming portion that forms a heat medium flow path through which the heat medium flows, and the plurality of heat transfer portions are formed by a plurality of heat transfer portions in the flow path forming portion. It consists of a part that comes into thermal contact with the battery cell.
  • the heat medium flow path is set such that the temperature of the part thermally contacting the high potential cell is lower than the temperature of the part thermally contacting the low potential cell.
  • the temperature of the heat medium flowing through the heat medium flow path changes due to heat exchange with the battery cells. For example, the temperature of the heat medium flowing through the heat medium flow path increases from the upstream side to the downstream side of the heat medium flow due to the heat received from the battery cells when the battery module is cooled. Further, the temperature of the heat medium flowing through the heat medium flow path decreases from the upstream side to the downstream side of the heat medium flow due to heat radiation to the battery cells when the battery module is warmed up.
  • the heat medium flow path through which the heat medium flows is set in consideration of the temperature characteristics of the battery cell at the time of charging or discharging, a device for individually adjusting the temperature of a plurality of heat transfer portions is provided. Since it becomes unnecessary, the temperature variation between the battery cells can be suppressed by a simple method.
  • thermal contact means not only a state in which the members are in direct contact with each other, but also a case in which another element such as an air layer is interposed between the members. And a state in which heat is indirectly transferred between members via the interface.
  • the temperature control member of the battery temperature control device cools the battery module by supplying a coolant having a lower temperature than the battery module to the heat medium flow path.
  • the heat medium flow path is set so that the refrigerant flows from a part thermally contacting the high potential cell to a part thermally contacting the low potential cell.
  • the temperature of the refrigerant flowing through the heat medium flow path increases from the upstream side to the downstream side of the refrigerant flow due to the heat received from the battery cells. For this reason, if the heat medium flow path is set so that the refrigerant flows from a part thermally contacting the high potential cell to a part thermally contacting the low potential cell, the high potential cell can be cooled with a low-temperature refrigerant. Cooling allows the low potential cell to be cooled with a hot coolant.
  • the heat medium flow path through which the refrigerant flows is set in consideration of the temperature characteristics of the battery cell at the time of charging or discharging, a device for individually adjusting the temperature of the plurality of heat transfer portions is provided. Since it becomes unnecessary, the temperature variation between the battery cells can be suppressed by a simple method.
  • the battery temperature control device is applied to a device in which a plurality of battery modules are electrically connected in series via a connecting member having a larger heat capacity than the conductive member.
  • the temperature control member is provided for each of the plurality of battery modules. According to this, since the temperature control member is provided for each of the plurality of battery modules, it is possible to suppress the temperature variation between the battery cells in each of the plurality of battery modules.
  • a battery temperature control device includes a battery cell, a stacked electrode body in which a positive electrode plate and a negative electrode plate are alternately stacked via a separator, a positive electrode current collector connected to the positive electrode plate, and a negative electrode plate. And a negative electrode current collector connected to the case is accommodated inside the case portion together with the electrolytic solution.
  • the positive electrode current collector is made of a material having a higher electric resistance value than the negative electrode current collector.
  • the high-potential cells are more likely to have a higher temperature at the time of heat generation than the low-potential cells. is there.
  • the battery cell includes a lithium ion battery in which the positive electrode current collector is formed of aluminum or an aluminum alloy, and the negative electrode current collector is formed of copper or a copper alloy. ing.
  • a high-potential cell is more likely to have a higher temperature at the time of heat generation than a low-potential cell, and thus is suitable as a temperature adjustment target of the battery temperature controller of the present disclosure. It is.

Abstract

A battery temperature adjustment device (1) is applied with at least one battery module (M), in which a plurality of chargeable/dischargeable battery cells (C) have been electrically connected in series via conductive members (BB). The battery temperature adjustment device comprises a temperature adjustment member (15, 31) that adjusts the temperature of the battery module. The battery module is configured such that, among the plurality of battery cells, the temperature of a high electric potential cell having a high electric potential is higher than that of a low electric potential cell having a low electric potential, when heat is being generated during charging or discharging. The temperature adjustment member has a plurality of heat transfer sites (HT, 32, 33) set to accommodate the plurality of battery cells, and is configured such that, among the plurality of heat transfer sites, the temperature of the heat transfer site corresponding to the high electric potential cell is lower than the temperature of the heat transfer site corresponding to the low electric potential cell.

Description

電池温調装置Battery temperature controller 関連出願への相互参照Cross-reference to related application
 本出願は、2018年7月23日に出願された日本特許出願番号2018-138006号に基づくもので、ここにその記載内容が参照により組み入れられる。 This application is based on Japanese Patent Application No. 2018-138006 filed on Jul. 23, 2018, the contents of which are incorporated herein by reference.
 本開示は、充放電可能な複数の電池セルが電気的に直列に接続された少なくとも1つの電池モジュールに適用される電池温調装置に関する。 The present disclosure relates to a battery temperature control device applied to at least one battery module in which a plurality of chargeable / dischargeable battery cells are electrically connected in series.
 従来、電池モジュールの冷却構造として、電池モジュールを収容する筐体の内側に冷媒が流れる冷媒流路が設定されたものが知られている(例えば、特許文献1参照)。この特許文献1には、筐体の冷媒入口側および冷媒出口側での温度差を抑えために、冷媒流路の途中に冷媒を導入するための冷媒バイパスを設けること等が記載されている。 Conventionally, as a cooling structure of a battery module, a cooling structure in which a coolant flow path is set inside a housing for housing the battery module is known (for example, see Patent Document 1). Patent Document 1 describes that a coolant bypass for introducing a coolant is provided in the middle of a coolant channel in order to suppress a temperature difference between a coolant inlet side and a coolant outlet side of a housing.
特開2004-31716号公報JP 2004-31716 A
 ところで、本発明者らは、電池モジュールの適切な温度管理を行うために、電池モジュールにおける温度分布について調査した。この結果、電池モジュールでは、充電時や放電時に、電池セル間に温度バラツキが生じ易いことを新たに見出した。具体的には、本発明者らの調査によれば、電池モジュールは、充電時や放電時に、電位が低い電池セルに比べて電位が高い電池セルの温度が高くなり易いことが判った。このような電池セル間の温度バラツキは、出力低下や容量低下を招く要因となることから好ましくない。 By the way, the present inventors investigated the temperature distribution in the battery module in order to perform appropriate temperature management of the battery module. As a result, it has been newly found that the battery module tends to have a temperature variation between the battery cells during charging and discharging. Specifically, according to a study by the present inventors, it has been found that the temperature of a battery cell having a higher potential is likely to be higher in a battery module during charging or discharging than in a battery cell having a lower potential. Such a temperature variation between the battery cells is not preferable because it causes a decrease in output and a decrease in capacity.
 しかしながら、上述の従来技術では、充電時や放電時における電池セル間の温度バラツキについて何ら考慮されていない。このため、充電時や放電時において電池セル間の温度バラツキを抑制することが困難である。
 本開示は、充電時や放電時における電池モジュールを構成する電池セル間の温度バラツキを抑制可能な電池温調装置を提供することを目的とする。
However, in the above-described related art, no consideration is given to the temperature variation between the battery cells during charging and discharging. For this reason, it is difficult to suppress temperature variations between battery cells during charging and discharging.
An object of the present disclosure is to provide a battery temperature control device capable of suppressing temperature variation between battery cells constituting a battery module during charging and discharging.
 本開示の1つの観点によれば、
 充放電可能な複数の電池セルが導電部材を介して電気的に直列に接続された少なくとも1つの電池モジュールに適用される電池温調装置であって、
 電池モジュールの温度を調整する温調部材を備え、
 電池モジュールは、充電時または放電時に、複数の電池セルのうち電位が低い低電位セルに比べて低電位セルよりも電位が高い高電位セルの方が発熱時の温度が高くなる構成になっており、
 温調部材は、複数の前記電池セルに対応して設定された複数の伝熱部位を有し、複数の伝熱部位のうち、高電位セルに対応する伝熱部位の温度が、低電位セルに対応する伝熱部位の温度よりも低くなるように構成されている。
According to one aspect of the present disclosure,
A battery temperature controller applied to at least one battery module in which a plurality of chargeable / dischargeable battery cells are electrically connected in series via a conductive member,
Equipped with a temperature control member for adjusting the temperature of the battery module,
The battery module has a configuration in which, during charging or discharging, a high-potential cell having a higher potential than a low-potential cell among the plurality of battery cells has a higher temperature during heat generation than a low-potential cell. Yes,
The temperature control member has a plurality of heat transfer portions set corresponding to the plurality of battery cells, and among the plurality of heat transfer portions, the temperature of the heat transfer portion corresponding to the high potential cell is lower than the low potential cell. Is configured to be lower than the temperature of the heat transfer portion corresponding to
 これによると、充電時または放電時の電池セルの温度特性を加味して、高電位セルおよび低電位セルに対して異なる温度の伝熱部位を対応させているので、電池セル間の温度バラツキを抑制することができる。すなわち、発熱時の温度が高い高電位セルに温度に低い伝熱部位を対応させ、発熱時の温度が低い低電位セルに温度が高い伝熱部位を対応させているので、高電位セルと低電位セルとの温度バラツキを抑制することができる。この結果、電池セル間の温度バラツキに起因する出力低下や容量低下を回避することが可能となる。 According to this, the heat transfer portions having different temperatures correspond to the high-potential cells and the low-potential cells in consideration of the temperature characteristics of the battery cells at the time of charging or discharging. Can be suppressed. That is, a high-potential cell having a high temperature at the time of heat generation corresponds to a heat transfer portion having a low temperature, and a low-potential cell having a low temperature at the time of heat generation corresponds to a heat transfer portion having a high temperature. Temperature variation with the potential cell can be suppressed. As a result, it is possible to avoid a decrease in output and a decrease in capacity due to temperature variations between the battery cells.
 なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。 Note that the reference numerals in parentheses attached to the respective components and the like indicate an example of the correspondence between the components and the like and the specific components and the like described in the embodiments described later.
第1実施形態に係る電池モジュールを含むシステムの概略構成図である。1 is a schematic configuration diagram of a system including a battery module according to a first embodiment. 電池モジュールにおける各電池セルの接続態様を示す模式的な回路図である。It is a schematic circuit diagram which shows the connection aspect of each battery cell in a battery module. 電池セルの模式的な斜視図である。It is a typical perspective view of a battery cell. 第1実施形態に係る電池温調装置の概略構成図である。It is a schematic structure figure of a battery temperature control device concerning a 1st embodiment. 電池モジュールを構成する電池セルの温度特性を説明するための説明図である。FIG. 4 is an explanatory diagram for explaining temperature characteristics of a battery cell included in a battery module. 電池モジュールを冷却する冷媒の温度変化を説明するための説明図である。FIG. 4 is an explanatory diagram for explaining a temperature change of a refrigerant that cools a battery module. 第2実施形態に係る電池モジュールを示す模式図である。It is a schematic diagram showing a battery module according to a second embodiment. 第2実施形態に係る電池温調装置の概略構成図である。It is a schematic structure figure of a battery temperature control device concerning a 2nd embodiment. 第3実施形態に係る複数の電池モジュールを有する電池パックの模式図である。It is a schematic diagram of a battery pack having a plurality of battery modules according to a third embodiment. 第3実施形態に係る電池温調装置の概略構成図である。It is a schematic structure figure of a battery temperature control device concerning a 3rd embodiment. 第4実施形態に係る複数の電池モジュールを有する電池パックの模式図である。It is a schematic diagram of a battery pack having a plurality of battery modules according to a fourth embodiment. 第4実施形態に係る電池温調装置の概略構成図である。It is a schematic structure figure of a battery temperature control device concerning a 4th embodiment. 第5実施形態に係る複数の電池モジュールを有する電池パックの模式図である。It is a schematic diagram of a battery pack having a plurality of battery modules according to a fifth embodiment. 第5実施形態に係る電池温調装置の概略構成図である。It is a schematic structure figure of a battery temperature control device concerning a 5th embodiment. 第6実施形態に係る電池温調装置の概略構成図である。It is a schematic structure figure of a battery temperature control device concerning a 6th embodiment.
 以下、本開示の実施形態について図面を参照して説明する。なお、以下の実施形態において、先行する実施形態で説明した事項と同一もしくは均等である部分には、同一の参照符号を付し、その説明を省略する場合がある。また、実施形態において、構成要素の一部だけを説明している場合、構成要素の他の部分に関しては、先行する実施形態において説明した構成要素を適用することができる。以下の実施形態は、特に組み合わせに支障が生じない範囲であれば、特に明示していない場合であっても、各実施形態同士を部分的に組み合わせることができる。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments, the same or equivalent parts as those described in the preceding embodiment are denoted by the same reference numerals, and description thereof may be omitted. Further, in the embodiment, when only a part of the component is described, the component described in the preceding embodiment can be applied to the other part of the component. The following embodiments can be partially combined with each other as long as the combination is not particularly hindered, even if not particularly specified.
 (第1実施形態)
 本実施形態について、図1~図6を参照して説明する。本実施形態では、本開示の電池温調装置1を車両に搭載された電池モジュールMの温度を調整する装置に適用した例について説明する。
(1st Embodiment)
This embodiment will be described with reference to FIGS. In the present embodiment, an example will be described in which the battery temperature control device 1 of the present disclosure is applied to a device that adjusts the temperature of a battery module M mounted on a vehicle.
 電池温調装置1が搭載される車両としては、例えば、少なくとも1つの電池モジュールMを電源とするモータジェネレータMGによって走行可能な電気自動車、ハイブリッド自動車等が挙げられる。 車 両 As a vehicle on which the battery temperature control device 1 is mounted, for example, an electric vehicle, a hybrid vehicle, and the like that can be driven by a motor generator MG that uses at least one battery module M as a power source are exemplified.
 図1および図2に示すように、電池モジュールMは、充放電可能な複数の電池セルCが電気的に直列に接続された直列接続体である。電池モジュールMは、12個の電池セルCが電気的に直列に接続されている。具体的には、電池モジュールMは、6個の電池セルCを積層した2つの積層体が隣り合うように2列に並べられた配置態様になっている。 電池 As shown in FIGS. 1 and 2, the battery module M is a series connection body in which a plurality of chargeable / dischargeable battery cells C are electrically connected in series. In the battery module M, twelve battery cells C are electrically connected in series. Specifically, the battery module M has an arrangement in which two stacked bodies in which six battery cells C are stacked are arranged in two rows so as to be adjacent to each other.
 本実施形態では、複数の電池セルCそれぞれを区別するために、電池セルCに対して電位の低いものから順に1~12までの数字を付すことがある。例えば、電池モジュールMにおいて最も電位の低い電池セルCに対して「1」を付し、最も電位の高い電池セルCに対して「12」を付すことがある。 In the present embodiment, in order to distinguish each of the plurality of battery cells C, a number from 1 to 12 may be assigned to the battery cells C in ascending order of potential. For example, in the battery module M, “1” may be assigned to the battery cell C having the lowest potential, and “12” may be assigned to the battery cell C having the highest potential.
 複数の電池セルC1~C12それぞれは、充放電可能な二次電池で構成されている。具体的には、電池セルC1~C12は、リチウムイオン電池で構成されている。電池モジュールMを構成する複数の電池セルC1~C12は、互いに電気的に接続されている。 電池 Each of the plurality of battery cells C1 to C12 is formed of a chargeable / dischargeable secondary battery. Specifically, the battery cells C1 to C12 are constituted by lithium ion batteries. The plurality of battery cells C1 to C12 constituting the battery module M are electrically connected to each other.
 複数の電池セルC1~C12のうち隣接する電池セルCは、電位の低い電池セルCの正極端子21がバスバーBBを介して電位の高い電池セルCの負極端子22に電気的に接続されている。本実施形態の複数の電池セルC1~C12は、バスバーBBを介して電気的に直列に接続されている。電池セルCの詳細については後述する。 In the adjacent battery cells C among the plurality of battery cells C1 to C12, the positive terminal 21 of the low potential battery cell C is electrically connected to the negative terminal 22 of the high potential battery cell C via the bus bar BB. . The plurality of battery cells C1 to C12 of the present embodiment are electrically connected in series via a bus bar BB. Details of the battery cell C will be described later.
 電池モジュールMは、電圧変換機器3を介してモータジェネレータMGに接続されている。モータジェネレータMGは、図示しない駆動輪と動力伝達可能に構成されている。モータジェネレータMGは、車両の走行動力源となり、また、回生駆動制御による発電機能を有している。本実施形態では、モータジェネレータMGが電池モジュールMの電力供給対象となる対象機器を構成する。 The battery module M is connected to the motor generator MG via the voltage conversion device 3. Motor generator MG is configured to be able to transmit power to driving wheels (not shown). Motor generator MG serves as a driving power source for the vehicle, and has a power generation function by regenerative drive control. In the present embodiment, the motor generator MG forms a target device to which the battery module M supplies power.
 電圧変換機器3は、電池モジュールMの出力電圧を所定の電圧を上限として昇圧させる昇圧コンバータ3aおよび直流-交流で電力変換を実施するインバータ3b等を含んで構成されている。本実施形態では、電圧変換機器3が電力供給対象となる対象機器に対して必要な電力を供給する電力変換装置を構成する。 The voltage converter 3 includes a boost converter 3a that boosts the output voltage of the battery module M up to a predetermined voltage as an upper limit, an inverter 3b that performs DC-AC power conversion, and the like. In the present embodiment, the voltage conversion device 3 configures a power conversion device that supplies necessary power to a target device to which power is to be supplied.
 インバータ3bは、複数の半導体スイッチング素子を備え、当該半導体スイッチング素子のスイッチング制御により直流-交流で電力変換を実施するものである。インバータ3bは、モータジェネレータMGによる発電時に発電により生じた交流電力を直流電力に変換する。そして、インバータ3bにより変換された直流電力は電池モジュールMに充電される。また、インバータ3bは、モータジェネレータMGによる車両走行時に電池モジュールMからの直流電力を交流電力に変換する。そして、インバータ3bにより変換された交流電力はモータジェネレータMGに供給される。 The inverter 3b includes a plurality of semiconductor switching elements, and performs DC-AC power conversion by switching control of the semiconductor switching elements. Inverter 3b converts AC power generated by power generation at the time of power generation by motor generator MG into DC power. Then, the DC power converted by the inverter 3b is charged in the battery module M. Further, inverter 3b converts DC power from battery module M into AC power when the vehicle is driven by motor generator MG. Then, the AC power converted by inverter 3b is supplied to motor generator MG.
 車両には、電池モジュールMの充電を商用電源4によって行うための充電器6が搭載されている。この充電器6は、図示しない充電ケーブルによって商用電源4に接続可能に構成されている。これにより、電池モジュールMは、充電器6を介して商用電源4から供給される電力によって充電可能になっている。 The vehicle is equipped with a charger 6 for charging the battery module M with the commercial power supply 4. The charger 6 is configured to be connectable to the commercial power supply 4 via a charging cable (not shown). Thereby, the battery module M can be charged by the electric power supplied from the commercial power supply 4 via the charger 6.
 ここで、電池セルCの詳細について図3を参照して説明する。図3は、電池セルCの模式的は斜視図である。なお、図3では、電池セルCの内部構成を説明するために、電池セルCの内部構成について点線で図示している。 Here, the details of the battery cell C will be described with reference to FIG. FIG. 3 is a schematic perspective view of the battery cell C. In FIG. 3, the internal configuration of the battery cell C is illustrated by a dotted line to explain the internal configuration of the battery cell C.
 図3に示すように、電池セルCは、外殻を形成するケース部20、正極端子21、負極端子22を含んで構成されている。本実施形態では、正極端子21および負極端子22がケース部20の外側に突き出る一対の電極端子を構成している。 (3) As shown in FIG. 3, the battery cell C is configured to include a case portion 20 forming an outer shell, a positive electrode terminal 21, and a negative electrode terminal 22. In the present embodiment, the positive electrode terminal 21 and the negative electrode terminal 22 constitute a pair of electrode terminals that protrude outside the case 20.
 ケース部20は、少なくとも外側に露出する部位が絶縁性を有する材料で構成された外装体である。ケース部20の内部には、図示しない電解液が注入されるとともに、発電要素として積層電極体23、正極集電体24、および負極集電体25が収容されている。 The case portion 20 is an exterior body in which at least a portion exposed to the outside is made of a material having an insulating property. An electrolytic solution (not shown) is injected into the case portion 20, and a stacked electrode body 23, a positive electrode current collector 24, and a negative electrode current collector 25 are housed as power generation elements.
 積層電極体23は、複数のセパレータ231、複数の正極板232、および複数の負極板233を有する。積層電極体23は、セパレータ231によって絶縁された状態で正極板232と負極板233とが交互に積層された積層体として構成されている。正極板232は、例えば、リチウムを含有する材料で構成される。また、負極板233は、例えば、炭素材料で構成される。 The laminated electrode body 23 has a plurality of separators 231, a plurality of positive plates 232, and a plurality of negative plates 233. The laminated electrode body 23 is configured as a laminated body in which positive electrodes 232 and negative electrodes 233 are alternately laminated while being insulated by the separator 231. The positive electrode plate 232 is made of, for example, a material containing lithium. The negative electrode plate 233 is made of, for example, a carbon material.
 複数の正極板232は、それぞれの側端部が正極集電体24に対して電気的に接続されている。この正極集電体24は、正極端子21におけるケース部20の内側に位置する部位に対して電気的に接続されている。 (4) The plurality of positive electrode plates 232 have respective side ends electrically connected to the positive electrode current collector 24. The positive electrode current collector 24 is electrically connected to a portion of the positive electrode terminal 21 located inside the case 20.
 複数の負極板233は、それぞれの側端部が負極集電体25に対して電気的に接続されている。この負極集電体25は、負極端子22におけるケース部20の内側に位置する部位に対して電気的に接続されている。 (4) Each of the plurality of negative electrode plates 233 has a side end electrically connected to the negative electrode current collector 25. The negative electrode current collector 25 is electrically connected to a portion of the negative electrode terminal 22 located inside the case 20.
 ここで、正極集電体24は、負極集電体25に比べて電気抵抗値が大きい材料で構成されている。具体的には、正極集電体24は、耐電解液性および耐酸化性に優れたアルミまたはアルミ合金で構成されている。また、負極集電体25は、耐電解液性および耐酸化性に優れた銅または銅合金で構成されている。 Here, the positive electrode current collector 24 is made of a material having a higher electric resistance value than the negative electrode current collector 25. Specifically, the positive electrode current collector 24 is made of aluminum or an aluminum alloy having excellent electrolytic solution resistance and oxidation resistance. Further, the negative electrode current collector 25 is made of copper or a copper alloy having excellent electrolytic solution resistance and oxidation resistance.
 リチウムおよびアルミの合金の形成電位は、正極集電体24の作動電位の範囲外である。このため、正極集電体24をアルミまたはアルミ合金で構成すれば、正極集電体24にリチウムとアルミとの合金が形成され難い。また、リチウムおよび銅の合金の形成電位は、負極集電体25の作動電位の範囲外である。このため、負極集電体25を銅または銅合金で構成すれば、負極集電体25にリチウムと銅との合金が形成され難い。 形成 The formation potential of the alloy of lithium and aluminum is outside the range of the operating potential of the positive electrode current collector 24. For this reason, if the positive electrode current collector 24 is made of aluminum or an aluminum alloy, an alloy of lithium and aluminum is unlikely to be formed on the positive electrode current collector 24. The formation potential of the alloy of lithium and copper is outside the range of the operating potential of the negative electrode current collector 25. For this reason, if the negative electrode current collector 25 is made of copper or a copper alloy, an alloy of lithium and copper is unlikely to be formed on the negative electrode current collector 25.
 ここで、負極集電体25としては、正極集電体24と同様に、アルミまたはアルミ合金を用いることが考えられる。しかしながら、負極集電体25の作動電位にリチウムおよびアルミの合金の形成電位が含まれるため、電池セルCの充電時や放電時にリチウムおよびアルミの合金が形成されてしまう虞がある。リチウムおよびアルミの合金が形成されると、リチウムが消費されることで急激な容量低下につながることから好ましくない。 Here, it is conceivable to use aluminum or an aluminum alloy as the negative electrode current collector 25, similarly to the positive electrode current collector 24. However, since the operating potential of the negative electrode current collector 25 includes the formation potential of the alloy of lithium and aluminum, there is a possibility that an alloy of lithium and aluminum may be formed when the battery cell C is charged or discharged. The formation of an alloy of lithium and aluminum is not preferable because lithium is consumed, which leads to a rapid decrease in capacity.
 正極端子21および負極端子22は、棒状に形成された導電材料で構成されており、その一部がケース部20の内部に位置付けられ、残部が外側に突き出ている。正極端子21および負極端子22は、所定の間隔をあけた状態でケース部20における同じ端面から外側に向けて突き出ている。 (4) The positive electrode terminal 21 and the negative electrode terminal 22 are made of a rod-shaped conductive material, a part of which is positioned inside the case part 20, and the remaining part protrudes outward. The positive electrode terminal 21 and the negative electrode terminal 22 protrude outward from the same end surface of the case portion 20 at a predetermined interval.
 正極端子21は、ケース部20の内側に位置付けられる部位が正極集電体24に対して電気的に接続されている。また、正極端子21は、ケース部20の外側に位置付けられる部位がバスバーBBに接続されている。 (4) The portion of the positive electrode terminal 21 located inside the case portion 20 is electrically connected to the positive electrode current collector 24. Further, a portion of the positive electrode terminal 21 located outside the case portion 20 is connected to the bus bar BB.
 一方、負極端子22は、ケース部20の内側に位置付けられる部位が負極集電体25に対して電気的に接続されている。また、負極端子22は、ケース部20の外側に位置付けられる部位がバスバーBBに接続されている。 On the other hand, the portion of the negative electrode terminal 22 located inside the case portion 20 is electrically connected to the negative electrode current collector 25. Further, the portion of the negative electrode terminal 22 located outside the case portion 20 is connected to the bus bar BB.
 このように構成される電池モジュールMは、充電時や放電時に自己発熱することで、過度に高温になることがある。電池モジュールMが過度に高温になると、電池セルCの劣化が促進されることから、所定の温度以下に調整するための温調手段が必要となる。 電池 The battery module M configured as described above may generate an excessively high temperature due to self-heating during charging or discharging. If the temperature of the battery module M becomes excessively high, the deterioration of the battery cell C is promoted. Therefore, a temperature control means for adjusting the temperature to a predetermined temperature or lower is required.
 このため、車両には、電池モジュールMの温度を調整するための電池温調装置1が設けられている。電池温調装置1は、電池モジュールMよりも低温となる冷媒によって電池モジュールMを冷却する構成になっている。具体的には、図1に示すように、電池温調装置1は、圧縮機11、放熱器12、膨張弁13、蒸発器14を含む蒸気圧縮式の冷凍サイクル10を含んで構成されている。 Therefore, the vehicle is provided with a battery temperature controller 1 for adjusting the temperature of the battery module M. The battery temperature controller 1 is configured to cool the battery module M with a refrigerant having a lower temperature than the battery module M. Specifically, as shown in FIG. 1, the battery temperature control device 1 is configured to include a vapor compression refrigeration cycle 10 including a compressor 11, a radiator 12, an expansion valve 13, and an evaporator 14. .
 圧縮機11は、冷媒を圧縮して吐出するものである。圧縮機11としては、例えば、電池モジュールMまたは図示しない補助バッテリを電源とする電動モータによって圧縮機構が駆動される電動圧縮機を採用することができる。 The compressor 11 compresses and discharges the refrigerant. As the compressor 11, for example, an electric compressor in which a compression mechanism is driven by an electric motor that uses a battery module M or an auxiliary battery (not shown) as a power source can be employed.
 放熱器12は、圧縮機11から吐出された冷媒を外気と熱交換させて放熱させる熱交換器である。図示しないが、放熱器12には、外気を導入するための室外ファンが併設されている。 The radiator 12 is a heat exchanger that exchanges heat of the refrigerant discharged from the compressor 11 with the outside air and radiates heat. Although not shown, the radiator 12 is provided with an outdoor fan for introducing outside air.
 膨張弁13は、放熱器12を通過した冷媒を所定の圧力まで減圧する減圧機器である。膨張弁13としては、例えば、蒸発器14の冷媒出口側の過熱度が所定値に維持されるように絞り開度を調整する温度式膨張弁を採用することができる。 The expansion valve 13 is a pressure reducing device that reduces the pressure of the refrigerant that has passed through the radiator 12 to a predetermined pressure. As the expansion valve 13, for example, a temperature-type expansion valve that adjusts the throttle opening degree so that the degree of superheat on the refrigerant outlet side of the evaporator 14 is maintained at a predetermined value can be adopted.
 蒸発器14は、膨張弁13で減圧された低温低圧の冷媒を電池モジュールMと熱交換させることで冷媒を蒸発させる熱交換器である。すなわち、蒸発器14は、電池モジュールMよりも低温となる冷媒が熱媒体流路150に供給されることで電池モジュールMを冷却する冷却用熱交換器である。電池モジュールMは、蒸発器14にて冷媒が蒸発する際の吸熱作用によって冷却される。 The evaporator 14 is a heat exchanger that evaporates the refrigerant by exchanging heat with the low-temperature and low-pressure refrigerant depressurized by the expansion valve 13 with the battery module M. That is, the evaporator 14 is a cooling heat exchanger that cools the battery module M by supplying a coolant having a lower temperature than the battery module M to the heat medium passage 150. The battery module M is cooled by an endothermic effect when the refrigerant evaporates in the evaporator 14.
 図4に示すように、蒸発器14は、熱媒体である冷媒が流れる熱媒体流路150を形成する冷媒チューブ15を含んでいる。本実施形態では、冷媒チューブ15が電池モジュールMの温度を調整する温調部材、並びに、熱媒体流路150を形成する流路形成部を構成している。 よ う As shown in FIG. 4, the evaporator 14 includes a refrigerant tube 15 that forms a heat medium flow path 150 through which a refrigerant as a heat medium flows. In the present embodiment, the refrigerant tube 15 constitutes a temperature control member for adjusting the temperature of the battery module M, and a flow path forming section for forming the heat medium flow path 150.
 冷媒チューブ15には、冷媒流れ上流側に対して、膨張弁13で減圧された低温低圧の冷媒を導入するための冷媒入口部16が接続されている。また、冷媒チューブ15には、冷媒流れ下流側に対して、冷媒チューブ15を通過した冷媒を圧縮機11の冷媒吸入側に導出するための冷媒出口部17が設けられている。 The refrigerant tube 15 is connected to a refrigerant inlet 16 for introducing a low-temperature and low-pressure refrigerant depressurized by the expansion valve 13 to the upstream side of the refrigerant flow. Further, the refrigerant tube 15 is provided with a refrigerant outlet 17 for leading the refrigerant having passed through the refrigerant tube 15 to the refrigerant suction side of the compressor 11 with respect to the refrigerant flow downstream side.
 冷媒チューブ15は、電池モジュールMを構成する複数の電池セルCそれぞれに対して熱的に接触するように電池モジュールMの底面部に近接する位置に配置されている。具体的には、冷媒チューブ15は、複数の電池セルCのうち正極端子21および負極端子22が設けられた部位の反対側の部位に対して当接するように配置されている。なお、蒸発器14は、冷媒チューブ15と複数の電池セルCとが絶縁体を介して間接的に接触する構成になっていることが望ましい。 (4) The refrigerant tube 15 is disposed at a position close to the bottom surface of the battery module M so as to thermally contact each of the plurality of battery cells C constituting the battery module M. Specifically, the refrigerant tube 15 is disposed so as to abut on a portion of the plurality of battery cells C opposite to the portion on which the positive electrode terminal 21 and the negative electrode terminal 22 are provided. It is desirable that the evaporator 14 has a configuration in which the refrigerant tube 15 and the plurality of battery cells C are indirectly in contact with each other via an insulator.
 冷媒チューブ15は、複数の電池セルC1~C12に対応して設定された複数の伝熱部位HT1~HT12を有している。すなわち、冷媒チューブ15は、複数の電池セルC1~C12と熱的に接触して熱交換する複数の伝熱部位HT1~HT12を有している。例えば、伝熱部位HT1は、冷媒チューブ15において、電池モジュールMのうち最も電位が低い電池セルC1に熱的に接触する部位である。また、伝熱部位HT12は、冷媒チューブ15において、電池モジュールMのうち最も電位が高い電池セルC1に熱的に接触する部位である。 The refrigerant tube 15 has a plurality of heat transfer portions HT1 to HT12 set corresponding to the plurality of battery cells C1 to C12. That is, the refrigerant tube 15 has a plurality of heat transfer portions HT1 to HT12 that are in thermal contact with the plurality of battery cells C1 to C12 to exchange heat. For example, the heat transfer part HT1 is a part of the refrigerant tube 15 that is in thermal contact with the battery cell C1 having the lowest potential in the battery module M. The heat transfer section HT12 is a section of the refrigerant tube 15 that is in thermal contact with the battery cell C1 having the highest potential in the battery module M.
 ここで、本発明者らは、電池モジュールMの適切な温度管理を行うために、電池モジュールMにおける温度分布について調査した。この結果、電池モジュールMでは、充電時や放電時に、電池セルC間に温度バラツキが生じ易いことを新たに見出した。具体的には、電池モジュールMは、充電時や放電時に、電位が低い電池セルCに比べて電位が高い電池セルCの温度が高くなり易いことが判った。 Here, the present inventors investigated the temperature distribution in the battery module M in order to appropriately manage the temperature of the battery module M. As a result, in the battery module M, it has been newly found that temperature variation easily occurs between the battery cells C during charging and discharging. Specifically, it was found that in the battery module M, the temperature of the battery cell C having a higher potential tends to be higher during charging or discharging than the battery cell C having a lower potential.
 図5は、電池モジュールMの充電を開始してから所定時間が経過するまでの電池セルC2、C4、C9の温度変化を測定した測定結果を示している。図5では、電位の高い電池セルC9の温度変化を実線で示し、電位が低い電池セルC2の温度変化を二点鎖線で示している。また、図5では、電池セルC9と電池セルC2の中間の電位となる電池セルC4の温度変化を一点鎖線で示している。 FIG. 5 shows measurement results obtained by measuring temperature changes of the battery cells C2, C4, and C9 from when charging of the battery module M is started until a predetermined time elapses. In FIG. 5, the temperature change of the battery cell C9 having a high potential is indicated by a solid line, and the temperature change of the battery cell C2 having a low potential is indicated by a two-dot chain line. Further, in FIG. 5, a change in temperature of the battery cell C4 having an intermediate potential between the battery cell C9 and the battery cell C2 is indicated by a chain line.
 図5に示すように、電池セルC9および電池セルC4の温度変化を比較すると、電位の低い電池セルC4に比べて、電位が高い電池セルC9の温度が高くなる。また、電池セルC4および電池セルC2の温度変化を比較すると、電位の低い電池セルC2に比べて、電位が高い電池セルC4の温度が高くなる。このような温度変化は、電池モジュールMの充電時に限らず、電池モジュールMの放電時にも同様に生ずる。また、上述の温度変化は、電池モジュールMの急速充電時や、電池モジュールMの放電負荷が高い高負荷時に顕著となる。 (5) As shown in FIG. 5, comparing the temperature changes of the battery cell C9 and the battery cell C4, the temperature of the battery cell C9 having a higher potential is higher than that of the battery cell C4 having a lower potential. Also, comparing the temperature changes of the battery cell C4 and the battery cell C2, the temperature of the battery cell C4 having a higher potential is higher than that of the battery cell C2 having a lower potential. Such a temperature change occurs not only when the battery module M is charged but also when the battery module M is discharged. Further, the above-mentioned temperature change becomes remarkable when the battery module M is rapidly charged or when the battery module M has a high discharge load.
 以下、上述の電池セルCを含む電池モジュールMに温度バラツキが生ずる要因に関する本発明者らの見解を説明する。なお、以下の見解は、本発明者らの鋭意検討によって見出されたものである。 The following is a description of the present inventors' views regarding factors that cause the temperature variation in the battery module M including the battery cell C described above. The following views have been found through intensive studies by the present inventors.
 本実施形態の電池セルCは、正極集電体24が負極集電体25を構成する材料(本例では銅等)に比べて電気抵抗値が大きい材料(本例ではアルミ等)で構成されている。電池セルCの正極集電体24が負極集電体25に比べて電気抵抗値が大きい材料で構成されていると、充電時または放電時に、電池セルCの負極側の発熱量に比べて正極側の発熱量が大きくなる。 In the battery cell C of the present embodiment, the positive electrode current collector 24 is made of a material (eg, aluminum or the like) having a higher electric resistance value than the material (eg, copper or the like) forming the negative electrode current collector 25. ing. When the positive electrode current collector 24 of the battery cell C is made of a material having a higher electric resistance value than the negative electrode current collector 25, the positive electrode current collector 24 has a higher positive electrode current during charging or discharging than the calorific value on the negative electrode side of the battery cell C. The calorific value on the side increases.
 また、電池モジュールMは、各電池セルCがバスバーBBで電気的に直列に接続されているので、低電位となる電池セルCの正極側の熱がバスバーBBを介して高電位となる電池セルCの負極側に移動する。これにより、高電位となる電池セルCの負極側の温度が昇温する。高電位側の電池セルCの負極側の温度が昇温すると、それに連動して高電位側の電池セルCの正極側の温度が上昇する。このような熱移動に起因して、電池モジュールMでは、充電時や放電時に、電位が低い電池セルに比べて電位が高い電池セルの温度が高くなると考えられる。 Further, in the battery module M, since the battery cells C are electrically connected in series by the bus bar BB, the battery cell C in which the heat on the positive electrode side of the battery cell C having a low potential becomes a high potential via the bus bar BB. It moves to the negative electrode side of C. Thereby, the temperature on the negative electrode side of the battery cell C, which becomes a high potential, rises. When the temperature on the negative electrode side of the battery cell C on the high potential side rises, the temperature on the positive electrode side of the battery cell C on the high potential side rises in conjunction therewith. It is considered that due to such heat transfer, in the battery module M, during charging or discharging, the temperature of the battery cell having a higher potential is higher than that of the battery cell having a lower potential.
 電池モジュールMは、各電池セルCの温度にバラツキがあると、各電池セルCの劣化の進行度合いに偏りが生じて、電池モジュールM全体の出力特性が低下してしまう。これは、電池モジュールMが電池セルCの直列接続体を含んでいることで、各電池セルCのうち、最も劣化が進行した電池セルCの電池特性に応じて電池モジュールM全体の出力特性が決まるからである。このため、電池モジュールMを長期間、所望の性能を発揮させるためには、各電池セルCの温度バラツキを低減させる均温化が重要となる。 (4) In the battery module M, if the temperature of each battery cell C varies, the degree of progress of the deterioration of each battery cell C is biased, and the output characteristics of the entire battery module M deteriorate. This is because the battery module M includes a series connection of the battery cells C, and the output characteristics of the entire battery module M according to the battery characteristics of the battery cell C that has deteriorated the most among the battery cells C. Because it is decided. For this reason, in order for the battery module M to exhibit desired performance for a long period of time, it is important to equalize the temperature to reduce the temperature variation of each battery cell C.
 そこで、本実施形態では、充電時および放電時の電池セルCの温度特性を加味して、発熱時の温度が高い高電位セルに温度の低い伝熱部位HTを対応させ、発熱時の温度が低い低電位セルに温度の高い伝熱部位HTを対応させている。なお、本実施形態では、バスバーBBを介して接続される一対の電池セルCのうち電位が高い方の電池セルCを高電位セルとし、電位が低い方の電池セルCを低電位セルとしている。 Therefore, in the present embodiment, by taking into account the temperature characteristics of the battery cell C at the time of charging and discharging, the high-potential cell having a high temperature at the time of heat generation is associated with the heat transfer portion HT having a low temperature, and the temperature at the time of heat generation is reduced. A high-temperature heat transfer portion HT is made to correspond to a low low-potential cell. In the present embodiment, a battery cell C having a higher potential among a pair of battery cells C connected via a bus bar BB is a high potential cell, and a battery cell C having a lower potential is a low potential cell. .
 ここで、冷媒チューブ15を流れる冷媒の温度は、電池セルCとの熱交換によって変化する。具体的には、冷媒チューブ15を流れる冷媒の温度は、図6に示すように、電池モジュールMの冷却時に、電池セルCからの受熱によって冷媒流れ上流側から下流側に向かって上昇する。 Here, the temperature of the refrigerant flowing through the refrigerant tube 15 changes due to heat exchange with the battery cell C. Specifically, as shown in FIG. 6, the temperature of the refrigerant flowing through the refrigerant tube 15 increases from the upstream side to the downstream side of the refrigerant flow due to the heat received from the battery cells C when the battery module M is cooled.
 このことを加味して、本実施形態の冷媒チューブ15は、高電位セルに熱的に接触する伝熱部位HTから低電位セルに熱的に接触する伝熱部位HTに向かって冷媒が流れるように熱媒体流路150が設定されている。具体的には、冷媒チューブ15は、電池モジュールMのうち最も電位が高い電池セルC12に対応する伝熱部位HT12から最も電位が低い電池セルC1に対応する伝熱部位HT1に向かって冷媒が流れるように熱媒体流路150が設定されている。これによると、冷媒チューブ15は、複数の伝熱部位HTのうち高電位セルに対応する伝熱部位HTの温度が、低電位セルに対応する伝熱部位HTの温度よりも低くなるように構成されていることになる。 In consideration of this, the refrigerant tube 15 of the present embodiment allows the refrigerant to flow from the heat transfer portion HT that is in thermal contact with the high potential cell to the heat transfer portion HT that is in thermal contact with the low potential cell. The heat medium flow path 150 is set in the. Specifically, in the refrigerant tube 15, the refrigerant flows from the heat transfer portion HT12 corresponding to the battery cell C12 having the highest potential in the battery module M to the heat transfer portion HT1 corresponding to the battery cell C1 having the lowest potential. The heat medium passage 150 is set as described above. According to this, the refrigerant tube 15 is configured such that the temperature of the heat transfer portion HT corresponding to the high-potential cell among the plurality of heat transfer portions HT is lower than the temperature of the heat transfer portion HT corresponding to the low-potential cell. It will be.
 次に、本実施形態の電池温調装置1の作動について説明する。電池温調装置1は、充電時や放電時に電池モジュールMの温度が所定の温度よりも高くなると、図示しない制御装置によって圧縮機11および室外ファンが駆動される。 Next, the operation of the battery temperature control device 1 of the present embodiment will be described. In the battery temperature controller 1, when the temperature of the battery module M becomes higher than a predetermined temperature during charging or discharging, the compressor 11 and the outdoor fan are driven by a control device (not shown).
 これにより、圧縮機11から吐出された冷媒は、放熱器12で外気に放熱された後、膨張弁13にて所定の圧力まで減圧される。そして、膨張弁13で減圧された低温低圧の冷媒が蒸発器14の冷媒チューブ15に流入する。 Accordingly, the refrigerant discharged from the compressor 11 is radiated to the outside air by the radiator 12, and then reduced to a predetermined pressure by the expansion valve 13. Then, the low-temperature and low-pressure refrigerant reduced in pressure by the expansion valve 13 flows into the refrigerant tube 15 of the evaporator 14.
 冷媒チューブ15に流入した冷媒は、高電位セルに熱的に接触する伝熱部位HTから低電位セルに熱的に接触する伝熱部位HTに向かって冷媒が流れる。この際、冷媒の蒸発に伴う吸熱反応によって各電池セルCが適温となるまで冷却される。 (4) The refrigerant flowing into the refrigerant tube 15 flows from the heat transfer portion HT that is in thermal contact with the high potential cell to the heat transfer portion HT that is in thermal contact with the low potential cell. At this time, each battery cell C is cooled to an appropriate temperature by an endothermic reaction accompanying the evaporation of the refrigerant.
 電池温調装置1は、電池モジュールMの冷却によって電池モジュールMの温度が適切温度範囲に到達すると、図示しない制御装置によって圧縮機11および室外ファンの作動が停止される。これにより、電池モジュールMの過度の冷却が抑制される。 (4) When the temperature of the battery module M reaches an appropriate temperature range by cooling the battery module M, the operation of the compressor 11 and the outdoor fan is stopped by the control device (not shown). Thereby, excessive cooling of the battery module M is suppressed.
 以上説明した電池温調装置1では、充電時または放電時の電池セルCの温度特性を加味して、各電池セルCに対して冷媒チューブ15において異なる温度の伝熱部位HTを対応させている。すなわち、電池温調装置1では、発熱時の温度が高い高電位セルに温度の低い伝熱部位HTを対応させ、発熱時の温度が低い低電位セルに温度の高い伝熱部位HTを対応させている。これによると、充電時や放電時の電池セルC間の温度バラツキ、すなわち、高電位セルと低電位セルとの温度バラツキを抑制することができる。この結果、電池セルC間の温度バラツキに起因する出力低下や容量低下を抑制することが可能となる。 In the battery temperature control device 1 described above, a heat transfer portion HT having a different temperature in the refrigerant tube 15 is associated with each battery cell C in consideration of the temperature characteristics of the battery cell C during charging or discharging. . That is, in the battery temperature controller 1, the high-potential cells having a high temperature at the time of heat generation correspond to the heat transfer portions HT having a low temperature, and the low-potential cells having a low temperature at heat generation correspond to the heat transfer portions HT having a high temperature. ing. According to this, the temperature variation between the battery cells C at the time of charging and discharging, that is, the temperature variation between the high potential cell and the low potential cell can be suppressed. As a result, it is possible to suppress a decrease in output and a decrease in capacity due to temperature variation between the battery cells C.
 具体的には、温調部材である蒸発器14は、高電位セルに熱的に接触する部位から低電位セルに熱的に接触する部位に向かって冷媒が流れるように、冷媒チューブ15の熱媒体流路150が設定されている。 Specifically, the evaporator 14, which is a temperature control member, heats the refrigerant tube 15 so that the refrigerant flows from a part thermally contacting the high-potential cell to a part thermally contacting the low-potential cell. A medium flow path 150 is set.
 このように、充電時または放電時の電池セルCの温度特性に加味して冷媒が流れる熱媒体流路150を設定する構成とすれば、複数の伝熱部位HTの温度を個別に調整するための機器が不要となる。このため、電池セルC間の温度バラツキを簡易な手法で抑制することができる。 In this way, if the heat medium flow path 150 through which the refrigerant flows is set in consideration of the temperature characteristics of the battery cell C during charging or discharging, the temperature of the plurality of heat transfer portions HT can be individually adjusted. Equipment is unnecessary. For this reason, the temperature variation between the battery cells C can be suppressed by a simple method.
 (第1実施形態の変形例)
 上述の第1実施形態では、電池モジュールMの配置態様として、6個の電池セルCを積層した積層体を2列に並べたものを例示したが、電池モジュールMの配置態様はこれに限定されない。電池モジュールMの配置態様は、電池モジュールMを配置するスペースの大きさ等に応じて適宜変更可能である。例えば、電池モジュールMは、4個の電池セルCを積層した積層体を3列に並べた配置態様や、2個の電池セルCを積層した積層体を6列に並べた配置態様になっていてもよい。このことは、以降の実施形態においても同様である。
(Modification of First Embodiment)
In the above-described first embodiment, as the arrangement mode of the battery modules M, a stacked body in which six battery cells C are stacked is arranged in two rows, but the arrangement mode of the battery modules M is not limited to this. . The arrangement mode of the battery modules M can be appropriately changed according to the size of the space in which the battery modules M are arranged. For example, the battery module M has an arrangement in which a stacked body in which four battery cells C are stacked is arranged in three rows, or an arrangement in which a stacked body in which two battery cells C are stacked is arranged in six rows. You may. This is the same in the following embodiments.
 上述の第1実施形態では、電池温調装置1として、蒸気圧縮式の冷凍サイクル10を例示したが、電池温調装置1はこれに限定されない。電池温調装置1は、電池モジュールMよりも低温となる冷媒によって電池モジュールMを冷却可能であれば、冷凍サイクル10以外の冷却回路で構成されていてもよい。また、電池温調装置1は、各電池セルCに対応して設けられた冷熱発生機器(例えば、ペルチェモジュール)で構成されていてもよい。これらのことは、以降の実施形態においても同様である。 In the above-described first embodiment, the vapor compression refrigeration cycle 10 is exemplified as the battery temperature control device 1, but the battery temperature control device 1 is not limited to this. The battery temperature controller 1 may be configured with a cooling circuit other than the refrigeration cycle 10 as long as the battery module M can be cooled by a refrigerant having a lower temperature than the battery module M. Further, the battery temperature control device 1 may be configured by a cold heat generating device (for example, a Peltier module) provided for each battery cell C. These are the same in the following embodiments.
 上述の第1実施形態では、冷媒チューブ15が電池モジュールMの底面部に近接する位置に配置されるものを例示したが、冷媒チューブ15の配置態様はこれに限定されない。冷媒チューブ15は、例えば、電池モジュールMの側面部に近接する位置に配置されていてもよい。このことは、以降の実施形態においても同様である。 In the first embodiment described above, the refrigerant tube 15 is arranged at a position close to the bottom surface of the battery module M, but the arrangement of the refrigerant tube 15 is not limited to this. The refrigerant tube 15 may be arranged, for example, at a position close to the side surface of the battery module M. This is the same in the following embodiments.
 ここで、電池セルCでは、充電時や放電時に、負極側に比べて正極側の発熱量が大きくなる。このため、冷媒チューブ15は、電池セルCの正極側から負極側に向けて冷媒が流れるように熱媒体流路150が設定されていることが望ましい。すなわち、温調部材は、電池セルCにおいて、電位が低い部位に熱的に接触する伝熱部位HTの温度に比べて電位が高い部位に熱的に接触する伝熱部位HTの温度が低くなるように構成されていることが望ましい。このことは、以降の実施形態においても同様である。 Here, in the battery cell C, the amount of heat generated on the positive electrode side is larger than that on the negative electrode side during charging or discharging. For this reason, it is desirable that the heat medium flow path 150 is set in the refrigerant tube 15 so that the refrigerant flows from the positive electrode side to the negative electrode side of the battery cell C. That is, in the temperature control member, the temperature of the heat transfer portion HT in thermal contact with a higher potential portion in the battery cell C is lower than the temperature of the heat transfer portion HT in thermal contact with a lower potential portion. It is desirable to be constituted as follows. This is the same in the following embodiments.
 (第2実施形態)
 次に、第2実施形態について、図7、図8を参照して説明する。本実施形態では、電池モジュールMの配置態様が第1実施形態と相違している。本実施形態では、第1実施形態と異なる部分について主に説明し、第1実施形態と同様の部分について説明を省略することがある。
(2nd Embodiment)
Next, a second embodiment will be described with reference to FIGS. In the present embodiment, the arrangement of the battery modules M is different from that of the first embodiment. In the present embodiment, portions different from the first embodiment will be mainly described, and description of the same portions as the first embodiment may be omitted.
 図7に示すように、電池モジュールMは、12個の電池セルCが一列に積層された配置態様になっている。すなわち、電池モジュールMは、12個の電池セルCを一列に積層した積層体で構成されている。 電池 As shown in FIG. 7, the battery module M has an arrangement in which 12 battery cells C are stacked in a line. That is, the battery module M is configured by a stacked body in which 12 battery cells C are stacked in a line.
 また、電池温調装置1は、蒸発器14の冷媒チューブ15の冷媒入口部16が、電池モジュールMのうち最も電位が高い電池セルC12に近接して設けられ、冷媒出口部17が、電池モジュールMのうち最も電位が低い電池セルC1に近接して設けられている。 In the battery temperature controller 1, the refrigerant inlet 16 of the refrigerant tube 15 of the evaporator 14 is provided near the battery cell C12 having the highest potential in the battery module M, and the refrigerant outlet 17 is provided in the battery module M. It is provided close to the battery cell C1 having the lowest potential among M.
 これにより、冷媒チューブ15は、高電位セルに熱的に接触する伝熱部位HTから低電位セルに熱的に接触する伝熱部位HTに向かって冷媒が流れるように熱媒体流路150が設定される。具体的には、冷媒チューブ15は、電池モジュールMのうち最も電位が高い電池セルC12に対応する伝熱部位HT12から最も電位が低い電池セルC1に対応する伝熱部位HT1に向かって冷媒が流れるように熱媒体流路150が設定されている。 Thereby, in the refrigerant tube 15, the heat medium flow path 150 is set so that the refrigerant flows from the heat transfer portion HT thermally in contact with the high potential cell to the heat transfer portion HT in thermal contact with the low potential cell. Is done. Specifically, in the refrigerant tube 15, the refrigerant flows from the heat transfer portion HT12 corresponding to the battery cell C12 having the highest potential in the battery module M to the heat transfer portion HT1 corresponding to the battery cell C1 having the lowest potential. The heat medium passage 150 is set as described above.
 その他の構成は、第1実施形態と同様である。本実施形態の電池温調装置1は、発熱時の温度が高い高電位セルに温度の低い伝熱部位HTを対応させ、発熱時の温度が低い低電位セルに温度の高い伝熱部位HTを対応させている。このため、第1実施形態と同様に、高電位セルと低電位セルとの温度バラツキを抑制することができる。 Other configurations are the same as in the first embodiment. The battery temperature controller 1 of the present embodiment associates a low-temperature heat transfer section HT with a high-potential cell having a high temperature at the time of heat generation, and associates a high-temperature heat transfer section HT with a low-potential cell at a low temperature during heat generation. I correspond. Therefore, similarly to the first embodiment, it is possible to suppress temperature variations between the high potential cell and the low potential cell.
 (第3実施形態)
 次に、第3実施形態について、図9、図10を参照して説明する。本実施形態では、車両に対して複数の電池モジュールM1~M8を有する電池パックPが搭載されている点が第1実施形態と相違している。本実施形態では、第1実施形態と異なる部分について主に説明し、第1実施形態と同様の部分について説明を省略することがある。
(Third embodiment)
Next, a third embodiment will be described with reference to FIGS. This embodiment is different from the first embodiment in that a battery pack P having a plurality of battery modules M1 to M8 is mounted on a vehicle. In the present embodiment, portions different from the first embodiment will be mainly described, and description of the same portions as the first embodiment may be omitted.
 図9に示すように、車両には、モータジェネレータMG等の電源として複数の電池モジュールM1~M8を有する電池パックPが搭載されている。電池パックPは、8つの電池モジュールM1~M8で構成されている。なお、各電池モジュールM1~M8は、第1実施形態と同様の配置態様となっている。 車 両 As shown in FIG. 9, the vehicle is equipped with a battery pack P having a plurality of battery modules M1 to M8 as a power source for the motor generator MG and the like. The battery pack P includes eight battery modules M1 to M8. The battery modules M1 to M8 have the same arrangement as in the first embodiment.
 電池パックPは、比較的電位が高い電池モジュールM5~M8と比較的電位が低い電池モジュールM1~M4とが2列に並ぶように配置されている。電池パックPを構成する各電池モジュールM1~M8は、電気配線およびコネクタからなる接続部材CMを介して電気的に直列に接続されている。 (4) The battery pack P has battery modules M5 to M8 having a relatively high potential and battery modules M1 to M4 having a relatively low potential arranged in two rows. Each of the battery modules M1 to M8 constituting the battery pack P is electrically connected in series via a connection member CM including an electric wiring and a connector.
 接続部材CMは、電池モジュールM1~M8を電気的に接続するものである。接続部材CMは、電気抵抗を抑えるために、隣り合う電池セルCを接続するバスバーBBよりも、導電路の断面積が大きくなっている。その一方で、接続部材CMは、バスバーBBよりも導電路の断面積が大きくなることで、バスバーBBよりも熱容量が大きくなっている。なお、熱容量とは、物体の温度を1度上昇させるために必要な熱量である。 (4) The connection member CM electrically connects the battery modules M1 to M8. The connecting member CM has a larger conductive path cross-sectional area than the bus bar BB connecting the adjacent battery cells C in order to suppress electric resistance. On the other hand, the connecting member CM has a larger heat capacity than the bus bar BB because the cross-sectional area of the conductive path is larger than that of the bus bar BB. The heat capacity is the amount of heat required to raise the temperature of an object by one degree.
 図10に示すように、蒸発器14は、複数の電池モジュールM1~M8に対応して設けられた複数の冷媒チューブ15、各冷媒チューブ15に冷媒を分配する分配管部18、お各冷媒チューブ15からの冷媒を集合させる集合管部19を含んで構成されている。 As shown in FIG. 10, the evaporator 14 includes a plurality of refrigerant tubes 15 provided corresponding to the plurality of battery modules M1 to M8, a distribution pipe portion 18 for distributing the refrigerant to each refrigerant tube 15, and each refrigerant tube. It is configured to include a collecting pipe portion 19 for collecting the refrigerant from No. 15.
 複数の冷媒チューブ15それぞれは、対応する電池モジュールMに熱的に接触するように配置されている。本実施形態では、冷媒チューブ15が複数の電池モジュールM1~M8ごとに設けられている。なお、本実施形態では、冷媒チューブ15が電池モジュールMの温度を調整する温調部材、並びに、熱媒体流路150を形成する流路形成部を構成している。 冷媒 Each of the plurality of refrigerant tubes 15 is disposed so as to be in thermal contact with the corresponding battery module M. In the present embodiment, a refrigerant tube 15 is provided for each of the plurality of battery modules M1 to M8. In the present embodiment, the refrigerant tube 15 constitutes a temperature control member for adjusting the temperature of the battery module M, and a flow path forming section for forming the heat medium flow path 150.
 具体的には、複数の冷媒チューブ15それぞれは、上流側管部151、下流側管部152、および上流側管部151と下流側管部152とを接続する接続管部153を有している。 Specifically, each of the plurality of refrigerant tubes 15 has an upstream pipe 151, a downstream pipe 152, and a connection pipe 153 that connects the upstream pipe 151 and the downstream pipe 152. .
 上流側管部151は、冷媒チューブ15における冷媒流れ上流側に位置する部位である。上流側管部151は、電池モジュールMにおいて比較的電位の高い電池セルC7~C12に対して熱的に接触するように配置されている。図示しないが、上流側管部151には、電池セルC7~C12に対して熱的に接触する伝熱部位HT7~HT12が設けられている。そして、上流側管部151は、電位が高い電池セルC12に対応する伝熱部位HT12から電位が低い電池セルC7に対応する伝熱部位HT7に向かって冷媒が流れるように構成されている。 The upstream pipe 151 is a part of the refrigerant tube 15 located on the upstream side of the refrigerant flow. The upstream tube 151 is arranged so as to be in thermal contact with the battery cells C7 to C12 having a relatively high potential in the battery module M. Although not shown, the upstream tube portion 151 is provided with heat transfer portions HT7 to HT12 that are in thermal contact with the battery cells C7 to C12. And the upstream side pipe | tube part 151 is comprised so that a refrigerant | coolant may flow toward the heat transfer part HT7 corresponding to the battery cell C7 with low electric potential from the heat transfer part HT12 corresponding to battery cell C12 with high electric potential.
 下流側管部152は、冷媒チューブ15における冷媒流れ下流側に位置する部位である。下流側管部152は、電池モジュールMにおいて比較的電位の低い電池セルC1~C6に対して熱的に接触するように配置されている。図示しないが、下流側管部152は、電池セルC1~C6に対して熱的に接触する伝熱部位HT1~HT6が設けられている。そして、下流側管部152は、電位が高い電池セルC6に対応する伝熱部位HT6から電位が低い電池セルC1に対応する伝熱部位HT1に向かって冷媒が流れるように構成されている。 The downstream pipe 152 is a part of the refrigerant tube 15 located on the downstream side of the refrigerant flow. The downstream tube section 152 is disposed so as to be in thermal contact with the battery cells C1 to C6 having a relatively low potential in the battery module M. Although not shown, the downstream tube portion 152 is provided with heat transfer portions HT1 to HT6 that are in thermal contact with the battery cells C1 to C6. And the downstream side pipe part 152 is comprised so that a refrigerant | coolant may flow from the heat transfer part HT6 corresponding to the battery cell C6 with a high electric potential to the heat transfer part HT1 corresponding to the battery cell C1 with a low electric potential.
 続いて、分配管部18は、各電池モジュールM1~M8に対応して設けられた上流側管部151に冷媒を分配するものである。分配管部18の冷媒流れ上流側には、冷媒入口部16が接続されている。 Next, the distribution pipe section 18 distributes the refrigerant to the upstream pipe sections 151 provided corresponding to the respective battery modules M1 to M8. The refrigerant inlet 16 is connected to the refrigerant flow upstream of the distribution pipe 18.
 また、集合管部19は、各電池モジュールM1~M8に対応して設けられた下流側管部152からの冷媒を集合させるものである。集合管部19の冷媒流れ下流側には、冷媒出口部17が接続されている。 {Circle around (4)} The collecting pipe section 19 collects the refrigerant from the downstream pipe section 152 provided corresponding to each of the battery modules M1 to M8. The refrigerant outlet 17 is connected to the refrigerant flow downstream of the collecting pipe 19.
 このように構成される蒸発器14には、電池パックPの冷却時に、膨張弁13で減圧された低温低圧の冷媒が流入する。蒸発器14に流入した冷媒は、分配管部18によって各冷媒チューブ15に対して分配される。そして、各冷媒チューブ15に分配された冷媒は、高電位セルに熱的に接触する伝熱部位HTから低電位セルに熱的に接触する伝熱部位HTに向かって冷媒が流れる。この際、冷媒の蒸発に伴う吸熱反応によって各電池セルCが適温となるまで冷却される。そして、各冷媒チューブ15を通過した冷媒は、集合管部19に集められた後、冷媒出口部17から圧縮機11の冷媒出口側に導出される。 低温 When the battery pack P is cooled, the low-temperature and low-pressure refrigerant decompressed by the expansion valve 13 flows into the evaporator 14 configured as described above. The refrigerant flowing into the evaporator 14 is distributed to each refrigerant tube 15 by the distribution pipe section 18. Then, the refrigerant distributed to each of the refrigerant tubes 15 flows from the heat transfer portion HT that is in thermal contact with the high potential cell to the heat transfer portion HT that is in thermal contact with the low potential cell. At this time, each battery cell C is cooled to an appropriate temperature by an endothermic reaction accompanying the evaporation of the refrigerant. Then, the refrigerant that has passed through each refrigerant tube 15 is collected in the collecting pipe part 19, and then is led out from the refrigerant outlet part 17 to the refrigerant outlet side of the compressor 11.
 その他の構成は、第1実施形態と同様である。本実施形態の電池温調装置1は、発熱時の温度が高い高電位セルに温度の低い伝熱部位HTを対応させ、発熱時の温度が低い低電位セルに温度の高い伝熱部位HTを対応させている。このため、第1実施形態と同様に、高電位セルと低電位セルとの温度バラツキを抑制することができる。 Other configurations are the same as in the first embodiment. The battery temperature controller 1 of the present embodiment associates a low-temperature heat transfer section HT with a high-potential cell having a high temperature at the time of heat generation, and associates a high-temperature heat transfer section HT with a low-potential cell at a low temperature during heat generation. I correspond. Therefore, similarly to the first embodiment, it is possible to suppress temperature variations between the high potential cell and the low potential cell.
 加えて、電池温調装置1は、複数の電池モジュールM1~M8ごとに温調部材である冷媒チューブ15が設けられているので、複数の電池モジュールM1~M8それぞれにおいて電池セルC間の温度バラツキを抑制することができる。 In addition, in the battery temperature control device 1, since the refrigerant tube 15 which is a temperature control member is provided for each of the plurality of battery modules M1 to M8, the temperature variation between the battery cells C in each of the plurality of battery modules M1 to M8. Can be suppressed.
 ここで、電池モジュールM1~M8は、電気的に直列に接続されているので、電池セルCと同様の温度分布が生ずることが懸念される。すなわち、電池モジュールM1~M8についても、電位の低い電池モジュールMに比べて、電位の高い電池モジュールMの発熱量が大きくなることが懸念される。 Here, since the battery modules M1 to M8 are electrically connected in series, there is a concern that a temperature distribution similar to that of the battery cell C may occur. That is, with respect to the battery modules M1 to M8, there is a concern that the calorific value of the battery module M having a higher potential is larger than that of the battery module M having a lower potential.
 しかしながら、電池モジュールM1~M8は、バスバーBBよりも熱容量の大きい接続部材CMを介して接続されているので、各電池セルC間に比べて、電池モジュールM1~M8間での熱移動が生じ難い。すなわち、電池モジュールM1~M8間では、各電池セルC間に比べて、電位の高低による温度バラツキが生じ難い。 However, since the battery modules M1 to M8 are connected via the connecting member CM having a larger heat capacity than the bus bar BB, heat transfer between the battery modules M1 to M8 is less likely to occur than between the battery cells C. . That is, the temperature variation due to the level of the electric potential is less likely to occur between the battery cells C between the battery modules M1 to M8.
 (第3実施形態の変形例)
 上述の第3実施形態では、電池パックPとして8個の電池モジュールMが電気的に直列に接続されたものを例示したが、電池パックPの数はこれに限定されない。電池パックPを構成する電池モジュールMの数は、電池パックPに求められる出力に応じて適宜変更可能である。また、第3実施形態では、電池パックPとして、電池モジュールM5~M8と電池モジュールM1~M4とが2列に並ぶように配置されたものを例示したが、電池パックPの配置態様はこれに限定されない。電池パックPの配置態様は、電池パックPを配置するスペースの大きさ等に応じて適宜変更可能である。これらのことは、以降の実施形態においても同様である。
(Modification of Third Embodiment)
In the above-described third embodiment, a battery pack P in which eight battery modules M are electrically connected in series has been illustrated, but the number of battery packs P is not limited to this. The number of battery modules M constituting the battery pack P can be appropriately changed according to the output required for the battery pack P. Further, in the third embodiment, a battery pack P in which the battery modules M5 to M8 and the battery modules M1 to M4 are arranged in two rows is illustrated, but the arrangement of the battery pack P is not limited to this. Not limited. The arrangement mode of the battery pack P can be appropriately changed according to the size of the space in which the battery pack P is arranged. These are the same in the following embodiments.
 (第4実施形態)
 次に、第4実施形態について、図11、図12を参照して説明する。本実施形態では、電池モジュールMを構成する複数の電池セルCの配置態様等が第3実施形態と相違している。本実施形態では、第3実施形態と異なる部分について主に説明し、第1実施形態と同様の部分について説明を省略することがある。
(Fourth embodiment)
Next, a fourth embodiment will be described with reference to FIGS. In the present embodiment, the arrangement of a plurality of battery cells C constituting a battery module M is different from that of the third embodiment. In the present embodiment, parts different from the third embodiment will be mainly described, and description of the same parts as in the first embodiment may be omitted.
 図11に示すように、電池モジュールM1~M8それぞれは、12個の電池セルCが一列に積層された配置態様になっている。すなわち、電池モジュールM1~M8それぞれは、12個の電池セルCを一列に積層した積層体で構成されている。 電池 As shown in FIG. 11, each of the battery modules M1 to M8 has an arrangement mode in which 12 battery cells C are stacked in a line. That is, each of the battery modules M1 to M8 is configured by a stacked body in which 12 battery cells C are stacked in a line.
 電池パックPは、比較的電位が高い電池モジュールM5~M8と比較的電位が低い電池モジュールM1~M4とが2列に並ぶように配置されている。具体的には、電池モジュールM5~M8は、電池モジュールM8における最も電位の低い負極端子22、および電池モジュールM5における最も電位の高い正極端子21が電池パックPの角部に位置するように配置されている。また、電池モジュールM1~M4は、電池モジュールM1における最も電位の高い正極端子21、および電池モジュールM4における最も電位の低い負極端子22が電池パックPの角部に位置するように配置されている。 (4) The battery pack P has battery modules M5 to M8 having a relatively high potential and battery modules M1 to M4 having a relatively low potential arranged in two rows. Specifically, the battery modules M5 to M8 are arranged such that the negative terminal 22 having the lowest potential in the battery module M8 and the positive terminal 21 having the highest potential in the battery module M5 are located at the corners of the battery pack P. ing. Further, the battery modules M1 to M4 are arranged such that the positive terminal 21 having the highest potential in the battery module M1 and the negative terminal 22 having the lowest potential in the battery module M4 are located at the corners of the battery pack P.
 図12に示すように、蒸発器14は、隣接する2つの電池モジュールM1~M8に対して1つの冷媒チューブ15が割り当てられる構成になっている。具体的には、冷媒チューブ15は、隣接する2つの電池モジュールMのうち、高電位となる電池モジュールMに上流側管部151が熱的に接触するように配置され、低電位となる電池モジュールMに対して下流側管部152が熱的に接触するように配置されている。 よ う As shown in FIG. 12, the evaporator 14 has a configuration in which one refrigerant tube 15 is allocated to two adjacent battery modules M1 to M8. Specifically, the refrigerant tube 15 is disposed such that the upstream tube portion 151 is in thermal contact with the battery module M having a high potential among the two battery modules M adjacent to each other, and the battery module having a low potential is provided. M is arranged so that the downstream side pipe portion 152 is in thermal contact with M.
 図示しないが、上流側管部151は、高電位となる電池モジュールMの電池セルC1~C12に対して熱的に接触する伝熱部位HT1~HT12が設けられている。そして、上流側管部151は、電位が高い電池セルC12に対応する伝熱部位HT12から電位が低い電池セルC1に対応する伝熱部位HT1に向かって冷媒が流れるように構成されている。 し な い Although not shown, the upstream tube section 151 is provided with heat transfer portions HT1 to HT12 that are in thermal contact with the battery cells C1 to C12 of the battery module M having a high potential. And the upstream side pipe | tube part 151 is comprised so that a refrigerant | coolant may flow from the heat transfer part HT12 corresponding to the battery cell C1 with low electric potential to the heat transfer part HT1 corresponding to battery cell C1 with low electric potential.
 また、下流側管部152は、低電位となる電池モジュールMの電池セルC1~C12に対して熱的に接触する伝熱部位HT1~HT12が設けられている。そして、下流側管部152は、電位が高い電池セルC12に対応する伝熱部位HT12から電位が低い電池セルC1に対応する伝熱部位HT1に向かって冷媒が流れるように構成されている。 (4) The downstream tube portion 152 is provided with heat transfer portions HT1 to HT12 that are in thermal contact with the battery cells C1 to C12 of the battery module M having a low potential. And the downstream side pipe | tube part 152 is comprised so that a refrigerant | coolant may flow toward the heat transfer part HT1 corresponding to the battery cell C1 with low electric potential from the heat transfer part HT12 corresponding to battery cell C12 with high electric potential.
 このように構成される蒸発器14には、電池パックPの冷却時に、膨張弁13で減圧された低温低圧の冷媒が流入する。蒸発器14に流入した冷媒は、分配管部18によって複数の冷媒チューブ15の上流側管部151に対して分配される。そして、各上流側管部151に分配された冷媒は、高電位となる電池モジュールMの高電位セルに熱的に接触する伝熱部位HTから低電位セルに熱的に接触する伝熱部位HTに向かって冷媒が流れる。この際、冷媒の蒸発に伴う吸熱反応によって高電位となる電池モジュールMの各電池セルCが適温となるまで冷却される。 低温 When the battery pack P is cooled, the low-temperature and low-pressure refrigerant decompressed by the expansion valve 13 flows into the evaporator 14 configured as described above. The refrigerant flowing into the evaporator 14 is distributed to the upstream pipes 151 of the plurality of refrigerant tubes 15 by the distribution pipe 18. Then, the refrigerant distributed to each upstream side pipe portion 151 is transferred from the heat transfer portion HT thermally contacting the high potential cell of the battery module M having a high potential to the heat transfer portion HT thermally contacting the low potential cell. The refrigerant flows toward. At this time, each battery cell C of the battery module M, which has a high potential due to an endothermic reaction accompanying the evaporation of the refrigerant, is cooled until it reaches an appropriate temperature.
 また、各上流側管部151を通過した冷媒は、接続管部153を介して各下流側管部152に分配される。そして、各下流側管部152に分配された冷媒は、低電位となる電池モジュールMの高電位セルに熱的に接触する伝熱部位HTから低電位セルに熱的に接触する伝熱部位HTに向かって冷媒が流れる。この際、冷媒の蒸発に伴う吸熱反応によって低電位となる電池モジュールMの各電池セルCが適温となるまで冷却される。そして、各下流側管部152を通過した冷媒は、集合管部19に集められた後、冷媒出口部17から圧縮機11の冷媒出口側に導出される。 {Circle around (1)} The refrigerant that has passed through each upstream pipe 151 is distributed to each downstream pipe 152 via the connection pipe 153. Then, the refrigerant distributed to each of the downstream pipe portions 152 is transferred from the heat transfer portion HT that is in thermal contact with the high potential cell of the battery module M having a low potential to the heat transfer portion HT that is in thermal contact with the low potential cell. The refrigerant flows toward. At this time, each battery cell C of the battery module M, which has a low potential due to an endothermic reaction accompanying the evaporation of the refrigerant, is cooled until it reaches an appropriate temperature. Then, the refrigerant that has passed through each downstream pipe portion 152 is collected in the collecting pipe portion 19, and then is drawn out from the refrigerant outlet portion 17 to the refrigerant outlet side of the compressor 11.
 その他の構成は、第3実施形態と同様である。本実施形態の電池温調装置1は、隣接する電池モジュールM1~M8で冷媒チューブ15を共用しているものの、冷媒チューブ15が、高電位セルに対応する伝熱部位HTから低電位セルに対応する伝熱部位HTに向かって冷媒が流れる構成になっている。このため、複数の電池モジュールM1~M8における電池セルC間の温度バラツキを抑制することができる。 Other configurations are the same as those of the third embodiment. In the battery temperature control device 1 of the present embodiment, although the refrigerant tubes 15 are shared by the adjacent battery modules M1 to M8, the refrigerant tubes 15 correspond to the low potential cells from the heat transfer portion HT corresponding to the high potential cells. The refrigerant flows toward the heat transfer portion HT. For this reason, it is possible to suppress temperature variations among the battery cells C in the plurality of battery modules M1 to M8.
 (第5実施形態)
 次に、第5実施形態について、図13、図14を参照して説明する。本実施形態では、電池パックPを構成する電池モジュールM1~M8の配置態様が第4実施形態と相違している。本実施形態では、第4実施形態と異なる部分について主に説明し、第4実施形態と同様の部分について説明を省略することがある。
(Fifth embodiment)
Next, a fifth embodiment will be described with reference to FIGS. In the present embodiment, the arrangement of the battery modules M1 to M8 constituting the battery pack P is different from that of the fourth embodiment. In the present embodiment, portions different from the fourth embodiment will be mainly described, and description of the same portions as the fourth embodiment may be omitted.
 図13に示すように、電池パックPは、比較的電位が高い電池モジュールM5~M8と比較的電位が低い電池モジュールM1~M4とが2列に並ぶように配置されている。具体的には、電池モジュールM5~M8は、電池モジュールM8における最も電位の低い正極端子21、および電池モジュールM5における最も電位の低い正極端子21が電池パックPの角部に位置するように配置されている。また、電池モジュールM1~M4は、電池モジュールM1における最も電位の低い正極端子21、および電池モジュールM4における最も電位の低い正極端子21が電池パックPの角部に位置するように配置されている。 (13) As shown in FIG. 13, the battery pack P has battery modules M5 to M8 having a relatively high potential and battery modules M1 to M4 having a relatively low potential arranged in two rows. Specifically, the battery modules M5 to M8 are arranged such that the lowest potential positive terminal 21 of the battery module M8 and the lowest potential positive terminal 21 of the battery module M5 are located at the corners of the battery pack P. ing. Further, the battery modules M1 to M4 are arranged so that the positive terminal 21 having the lowest potential in the battery module M1 and the positive terminal 21 having the lowest potential in the battery module M4 are located at the corners of the battery pack P.
 図14に示すように、蒸発器14は、隣接する2つの電池モジュールM1~M8に対して1つの冷媒チューブ15が割り当てられる構成になっている。具体的には、冷媒チューブ15は、隣接する2つの電池モジュールMのうち高電位となる電池モジュールMに上流側管部151が熱的に接触するように配置され、低電位となる電池モジュールMに対して下流側管部152が熱的に接触するように配置されている。 蒸 発 As shown in FIG. 14, the evaporator 14 has a configuration in which one refrigerant tube 15 is allocated to two adjacent battery modules M1 to M8. Specifically, the refrigerant tube 15 is disposed such that the upstream tube portion 151 is in thermal contact with the battery module M having a high potential among the two battery modules M adjacent to each other, and the battery module M having a low potential is provided. And the downstream side pipe portion 152 is disposed so as to be in thermal contact therewith.
 その他の構成は、第4実施形態と同様である。本実施形態の電池温調装置1は、第4実施形態と同様に、冷媒チューブ15が、高電位セルに対応する伝熱部位HTから低電位セルに対応する伝熱部位HTに向かって冷媒が流れる構成になっている。このため、複数の電池モジュールM1~M8における電池セルC間の温度バラツキを抑制することができる。 Other configurations are the same as in the fourth embodiment. In the battery temperature control device 1 of the present embodiment, similarly to the fourth embodiment, the refrigerant tube 15 causes the refrigerant to flow from the heat transfer portion HT corresponding to the high potential cell to the heat transfer portion HT corresponding to the low potential cell. It has a flowing configuration. For this reason, it is possible to suppress temperature variations among the battery cells C in the plurality of battery modules M1 to M8.
 (第6実施形態)
 次に、第6実施形態について、図15を参照して説明する。本実施形態では、電池温調装置1が電池パックPの各電池モジュールMを暖機可能に構成されている点が第1、第3実施形態と相違している。本実施形態では、第1、第3実施形態と異なる部分について主に説明し、第1、第3実施形態と同様の部分について説明を省略することがある。
(Sixth embodiment)
Next, a sixth embodiment will be described with reference to FIG. The present embodiment is different from the first and third embodiments in that the battery temperature controller 1 is configured to be able to warm up each battery module M of the battery pack P. In the present embodiment, portions different from the first and third embodiments will be mainly described, and description of portions similar to those in the first and third embodiments may be omitted.
 図15に示すように、電池パックPは、第3実施形態と同様に、8つの電池モジュールM1~M8が接続部材CMによって電気的に直列に接続された直列接続体で構成されている。なお、各電池モジュールM1~M8は、第1実施形態と同様の配置態様となっている。 As shown in FIG. 15, the battery pack P is formed of a series connection body in which eight battery modules M1 to M8 are electrically connected in series by a connection member CM, as in the third embodiment. The battery modules M1 to M8 have the same arrangement as in the first embodiment.
 電池温調装置1は、加熱機器30によって各電池モジュールM1~M8を暖機する構成になっている。電池温調装置1は、通電により発熱する加熱機器30、加熱機器30への通電量を制御するヒータ駆動回路40を含んで構成されている。 The battery temperature controller 1 is configured to warm up each of the battery modules M1 to M8 by the heating device 30. The battery temperature controller 1 includes a heating device 30 that generates heat when energized, and a heater drive circuit 40 that controls the amount of current supplied to the heating device 30.
 加熱機器30は、複数の電池モジュールM1~M8それぞれに対応して設けられた複数の電気ヒータ31で構成されている。すなわち、電気ヒータ31は、複数の電池モジュールM1~M8ごとに設けられている。電気ヒータ31は、通電量に応じて発熱量が変化する可変タイプのヒータで構成されている。本実施形態では、電気ヒータ31が電池モジュールMの温度を調整する温調部材を構成する。 The heating device 30 includes a plurality of electric heaters 31 provided corresponding to the plurality of battery modules M1 to M8, respectively. That is, the electric heater 31 is provided for each of the plurality of battery modules M1 to M8. The electric heater 31 is configured by a variable-type heater in which the amount of heat generated changes according to the amount of electricity. In the present embodiment, the electric heater 31 constitutes a temperature adjusting member for adjusting the temperature of the battery module M.
 電気ヒータ31は、電池モジュールMを構成する複数の電池セルC1~C12のうち、比較的電位が高い電池セルC7~C12に対応して設けられた第1ヒータ部32、比較的電位が低い電池セルC1~C6に対応して設けられた第2ヒータ部33を有している。なお、本実施形態では、複数の電池セルC1~C12のうち、比較的電位が高い電池セルC7~C12を高電位セルとし、比較的電位が低い電池セルC1~C6を低電位セルとしている。 The electric heater 31 includes a first heater section 32 provided corresponding to the battery cells C7 to C12 having a relatively high potential among the plurality of battery cells C1 to C12 constituting the battery module M, and a battery having a relatively low potential. It has a second heater section 33 provided corresponding to the cells C1 to C6. In this embodiment, among the plurality of battery cells C1 to C12, the battery cells C7 to C12 having a relatively high potential are high potential cells, and the battery cells C1 to C6 having a relatively low potential are low potential cells.
 第1ヒータ部32は、電池セルC7~C12に対して熱的に接触するように、電池セルC7~C12の底面部に近接する位置に配置されている。具体的には、第1ヒータ部32は、電池セルC7~C12のうち正極端子21および負極端子22が設けられた部位の反対側の部位に対して当接するように配置されている。なお、第1ヒータ部32は、第1ヒータ部32と電池セルC7~C12とが絶縁体を介して間接的に接触する構成になっていることが望ましい。 The first heater section 32 is disposed at a position close to the bottom of the battery cells C7 to C12 so as to be in thermal contact with the battery cells C7 to C12. Specifically, the first heater section 32 is disposed so as to abut on a part of the battery cells C7 to C12 opposite to the part where the positive terminal 21 and the negative terminal 22 are provided. It is desirable that the first heater section 32 be configured such that the first heater section 32 and the battery cells C7 to C12 are indirectly in contact with each other via an insulator.
 一方、第2ヒータ部33は、電池セルC1~C6に対して熱的に接触するように、電池セルC1~C6の底面部に近接する位置に配置されている。具体的には、第2ヒータ部33は、電池セルC1~C6のうち正極端子21および負極端子22が設けられた部位の反対側の部位に対して当接するように配置されている。なお、第2ヒータ部33は、第2ヒータ部33と電池セルC1~C6とが絶縁体を介して間接的に接触する構成になっていることが望ましい。 On the other hand, the second heater section 33 is disposed at a position close to the bottom of the battery cells C1 to C6 so as to be in thermal contact with the battery cells C1 to C6. Specifically, the second heater section 33 is arranged so as to abut on a part of the battery cells C1 to C6 opposite to a part where the positive terminal 21 and the negative terminal 22 are provided. It is desirable that the second heater section 33 be configured so that the second heater section 33 and the battery cells C1 to C6 are indirectly in contact with each other via an insulator.
 本実施形態では、第1ヒータ部32が高電位セルである電池セルC7~C12に対応して設けられた伝熱部位を構成し、第2ヒータ部33が低電位セルである電池セルC1~C6に対応して設けられた伝熱部位を構成する。 In the present embodiment, the first heater section 32 constitutes a heat transfer section provided corresponding to the battery cells C7 to C12 which are high potential cells, and the second heater section 33 constitutes the battery cells C1 to C1 which are low potential cells. A heat transfer portion provided corresponding to C6 is formed.
 ヒータ駆動回路40は、第1ヒータ部32への通電量と第2ヒータ部33への通電量を個別に制御することが可能に構成されている。具体的には、ヒータ駆動回路40は、第1ヒータ部32への通電量を制御する第1駆動部41、第2ヒータ部33への通電量を制御する第2駆動部42を有している。 The heater drive circuit 40 is configured to be able to individually control the amount of current to the first heater unit 32 and the amount of current to the second heater unit 33. Specifically, the heater drive circuit 40 has a first drive unit 41 that controls the amount of current supplied to the first heater unit 32 and a second drive unit 42 that controls the amount of current supplied to the second heater unit 33. I have.
 ここで、電池モジュールMでは、低電位セルに比べて高電位セルの方が充電時や放電時の発熱量が大きくなる。このため、充電時や放電時には、高電位セルと低電位セルとの温度バラツキが生じてしまう。 Here, in the battery module M, the high potential cell generates a larger amount of heat during charging and discharging than the low potential cell. For this reason, at the time of charging or discharging, temperature variations between the high-potential cell and the low-potential cell occur.
 そこで、電池温調装置1は、電池モジュールMの暖機時に、高電位セルに対応する第1ヒータ部32の温度が低電位セルに対応する第2ヒータ部33に比べて低くなるように、ヒータ駆動回路40が各ヒータ部32、33への通電量を制御する構成になっている。これによると、電池温調装置1は、発熱時の温度が高い高電位セルに温度の低い第1ヒータ部32が対応して設定され、発熱時の温度が低い低電位セルに温度の高い第2ヒータ部33が対応して設定されていることになる。 Therefore, the battery temperature controller 1 is configured such that when the battery module M is warmed up, the temperature of the first heater section 32 corresponding to the high-potential cell is lower than that of the second heater section 33 corresponding to the low-potential cell. The heater drive circuit 40 is configured to control the amount of current supplied to each of the heater units 32 and 33. According to this, in the battery temperature controller 1, the first heater unit 32 having a low temperature is set corresponding to a high-potential cell having a high temperature at the time of heat generation. This means that the two heater units 33 are set correspondingly.
 次に、本実施形態の電池温調装置1の作動について説明する。電池温調装置1は、充電時や放電時に電池モジュールMの温度が所定の温度よりも低いと、ヒータ駆動回路40によって加熱機器30へ電力が供給される。 Next, the operation of the battery temperature control device 1 of the present embodiment will be described. In the battery temperature controller 1, when the temperature of the battery module M is lower than a predetermined temperature during charging or discharging, power is supplied to the heating device 30 by the heater driving circuit 40.
 この際、ヒータ駆動回路40は、高電位セルに対応する第1ヒータ部32の温度が低電位セルに対応する第2ヒータ部33に比べて低くなるように、各ヒータ部32、33への通電量を制御する構成になっている。具体的には、ヒータ駆動回路40は、第1ヒータ部32への通電量を第2ヒータ部33への通電量よりも少なくする。これにより、各ヒータ部32、33によって各電池セルC1~C12が適温となるまで昇温する。 At this time, the heater driving circuit 40 controls the heater units 32 and 33 so that the temperature of the first heater unit 32 corresponding to the high-potential cell is lower than that of the second heater unit 33 corresponding to the low-potential cell. The power supply amount is controlled. Specifically, the heater drive circuit 40 reduces the amount of current supplied to the first heater unit 32 to less than the amount of current supplied to the second heater unit 33. As a result, the temperature of each of the battery cells C1 to C12 is increased by the heater sections 32 and 33 until the temperature of the battery cells C1 to C12 becomes an appropriate temperature.
 電池温調装置1は、電池モジュールMの暖機によって電池モジュールMの温度が適切温度範囲に到達すると、ヒータ駆動回路40によって加熱機器30への電力供給が停止される。これにより、電池モジュールMの過度の加熱が抑制される。 (4) In the battery temperature controller 1, when the temperature of the battery module M reaches an appropriate temperature range due to the warm-up of the battery module M, the power supply to the heating device 30 is stopped by the heater drive circuit 40. Thereby, excessive heating of the battery module M is suppressed.
 以上説明した電池温調装置1では、発熱時の温度が高い高電位セルに温度の低い第1ヒータ部32を対応させ、発熱時の温度が低い低電位セルに温度の高い第2ヒータ部33を対応させている。これによると、電池セルC間の温度バラツキ、すなわち、高電位セルと低電位セルとの温度バラツキを抑制することができる。この結果、電池セルC間の温度バラツキに起因する出力低下や容量低下を回避することが可能となる。 In the battery temperature controller 1 described above, the first heater unit 32 having a low temperature corresponds to a high-potential cell having a high temperature at the time of heat generation, and the second heater unit 33 having a high temperature corresponds to a low-potential cell having a low temperature at the time of heat generation. Is made to correspond. According to this, the temperature variation between the battery cells C, that is, the temperature variation between the high potential cell and the low potential cell can be suppressed. As a result, it is possible to avoid a decrease in output and a decrease in capacity due to temperature variation between the battery cells C.
 加えて、電池温調装置1は、複数の電池モジュールM1~M8ごとに温調部材である電気ヒータ31が設けられているので、複数の電池モジュールM1~M8それぞれにおいて電池セルC間の温度バラツキを抑制することができる。 In addition, since the battery temperature control device 1 is provided with the electric heater 31 as a temperature control member for each of the plurality of battery modules M1 to M8, the temperature variation between the battery cells C in each of the plurality of battery modules M1 to M8. Can be suppressed.
 (第6実施形態の変形例)
 上述の第6実施形態では、電気ヒータ31が、電池セルC7~C12に対応して設けられた第1ヒータ部32、および電池セルC1~C6に対応して設けられた第2ヒータ部33で構成されるものを例示したが、電気ヒータ31はこれに限定されない。電気ヒータ31は、低電位セルに対応するヒータ部に比べて高電位セルに対応するヒータ部への通電量が少なくなる構成になっていれば、例えば、電池セルC1~C12それぞれに対応して設けられた複数のヒータ部で構成されていてもよい。
(Modification of the sixth embodiment)
In the above-described sixth embodiment, the electric heater 31 includes the first heater unit 32 provided corresponding to the battery cells C7 to C12 and the second heater unit 33 provided corresponding to the battery cells C1 to C6. Although the configuration is illustrated, the electric heater 31 is not limited to this. If the electric heater 31 has a configuration in which the amount of electricity to the heater unit corresponding to the high-potential cell is smaller than that of the heater unit corresponding to the low-potential cell, for example, the electric heater 31 corresponds to each of the battery cells C1 to C12. It may be composed of a plurality of heaters provided.
 上述の第6実施形態では、電気ヒータ31によって電池モジュールMを暖機するものを例示したが、電池温調装置1はこれに限定されない。電池温調装置1は、電池モジュールMよりも温度が高い熱媒体が流れる高温チューブによって電池モジュールMを暖機する構成になっていてもよい。この場合、高温チューブは、高電位セルに熱的に接触する部位の温度が、低電位セルに熱的に接触する部位の温度よりも低くなるように熱媒体流路を設定すればよい。 In the above-described sixth embodiment, an example in which the battery module M is warmed up by the electric heater 31 has been described, but the battery temperature controller 1 is not limited to this. The battery temperature controller 1 may be configured to warm up the battery module M by a high-temperature tube through which a heat medium having a higher temperature than the battery module M flows. In this case, in the high-temperature tube, the heat medium flow path may be set so that the temperature of the portion that thermally contacts the high-potential cell is lower than the temperature of the portion that thermally contacts the low-potential cell.
 上述の第6実施形態では、加熱機器30によって各電池モジュールM1~M8を暖機するものを例示したが、電池温調装置1はこれに限定されない。電池温調装置1は、各電池モジュールM1~M8を暖機するだけでなく、各電池モジュールM1~M8を冷却可能に構成されていてもよい。 In the above-described sixth embodiment, an example is described in which the battery modules M1 to M8 are warmed up by the heating device 30, but the battery temperature controller 1 is not limited to this. The battery temperature controller 1 may be configured to not only warm up the battery modules M1 to M8, but also to cool the battery modules M1 to M8.
 (他の実施形態)
 以上、本開示の代表的な実施形態について説明したが、本開示は、上述の実施形態に限定されることなく、例えば、以下のように種々変形可能である。
(Other embodiments)
The representative embodiment of the present disclosure has been described above, but the present disclosure is not limited to the above-described embodiment, and may be variously modified as follows, for example.
 上述の実施形態では、電池セルCとして、正極集電体24が負極集電体25に比べて電気抵抗値が大きい材料で構成されるものを例示したが、電池セルCの構成材料はこれに限定されない。電池セルCは、充電時または放電時に、負極側に比べて正極側の方が発熱時の温度が高くなる構成であれば、正極集電体24と負極集電体25とが同程度の電気抵抗値となる材料で構成されていてもよい。例えば、電池セルCは、正極端子21が負極端子22に比べて電気抵抗値が大きい材料で構成されたものを採用することができる。 In the above-described embodiment, as the battery cell C, an example in which the positive electrode current collector 24 is formed of a material having a higher electric resistance value than the negative electrode current collector 25 is described. Not limited. If the battery cell C has a configuration in which the temperature at the time of heat generation is higher on the positive electrode side than on the negative electrode side during charging or discharging, the positive electrode current collector 24 and the negative electrode current collector 25 have substantially the same electric power. It may be made of a material having a resistance value. For example, as the battery cell C, a battery in which the positive terminal 21 is formed of a material having a higher electric resistance value than the negative terminal 22 can be adopted.
 上述の実施形態では、電池セルCがリチウム電池で構成されるものを例示したが、電池セルCはこれに限定されない。電池セルCは、負極側に比べて正極側の方が発熱時の温度が高くなるものであれば、リチウム電池以外の電池で構成されていてもよい。 In the above-described embodiment, the battery cell C is configured by a lithium battery, but the battery cell C is not limited to this. The battery cell C may be constituted by a battery other than the lithium battery as long as the temperature at the time of heat generation is higher on the positive electrode side than on the negative electrode side.
 上述の実施形態では、電池モジュールMとして12個の電池セルCが電気的に直列に接続されたものを例示したが、電池セルCの数はこれに限定されない。電池モジュールMを構成する電池セルCの数は、電池モジュールMに求められる出力に応じて適宜変更可能である。 In the above embodiment, a battery module M in which twelve battery cells C are electrically connected in series has been exemplified, but the number of battery cells C is not limited to this. The number of the battery cells C constituting the battery module M can be appropriately changed according to the output required for the battery module M.
 上述の実施形態では、本開示の電池温調装置1を車両に搭載された少なくとも1つの電池モジュールMの温度を調整する装置に適用した例について説明したが、電池温調装置1の適用対象はこれに限定されない。電池温調装置1は、例えば、家屋や工場等に設置される電池モジュールMの温度を調整する装置にも適用可能である。 In the above-described embodiment, an example has been described in which the battery temperature control device 1 of the present disclosure is applied to a device that adjusts the temperature of at least one battery module M mounted on a vehicle. It is not limited to this. The battery temperature controller 1 is also applicable to, for example, a device that adjusts the temperature of a battery module M installed in a house or a factory.
 上述の実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。 In the above-described embodiment, it goes without saying that the elements making up the embodiment are not necessarily essential, unless otherwise clearly indicated as being essential or in principle considered to be clearly essential.
 上述の実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されない。 In the above-described embodiment, when a numerical value such as the number, numerical value, amount, range or the like of the constituent elements of the exemplary embodiment is referred to, it is particularly limited to a specific number when it is explicitly stated that it is essential and in principle. It is not limited to that particular number, except in such cases.
 上述の実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されない。 In the above embodiments, when referring to the shape, positional relationship, and the like of the components, the shape, positional relationship, and the like, unless otherwise specified and in principle limited to a specific shape, positional relationship, etc. It is not limited to the above.
 (まとめ)
 上述の実施形態の一部または全部で示された第1の観点によれば、電池温調装置は、電池モジュールの温度を調整する温調部材を備える。電池モジュールは、充電時または放電時に、複数の電池セルのうち電位が低い低電位セルに比べて低電位セルよりも電位が高い高電位セルの方が発熱時の温度が高くなる構成になっている。温調部材は、複数の電池セルに対応して設定された複数の伝熱部位を有し、複数の伝熱部位のうち、高電位セルに対応する伝熱部位の温度が、低電位セルに対応する伝熱部位の温度よりも低くなるように構成されている。
(Summary)
According to the first aspect shown in part or all of the above-described embodiments, the battery temperature control device includes a temperature control member that controls the temperature of the battery module. The battery module has a configuration in which, during charging or discharging, a high-potential cell having a higher potential than a low-potential cell among the plurality of battery cells has a higher temperature during heat generation than a low-potential cell. I have. The temperature control member has a plurality of heat transfer portions set corresponding to the plurality of battery cells, and among the plurality of heat transfer portions, the temperature of the heat transfer portion corresponding to the high-potential cell is set to the low-potential cell. It is configured to be lower than the temperature of the corresponding heat transfer part.
 第2の観点によれば、電池温調装置の温調部材は、熱媒体が流れる熱媒体流路を形成する流路形成部を含み、複数の伝熱部位が、流路形成部における複数の電池セルに対して熱的に接触する部位で構成されている。流路形成部は、高電位セルに熱的に接触する部位の温度が、低電位セルに熱的に接触する部位の温度よりも低くなるように熱媒体流路が設定されている。 According to the second aspect, the temperature control member of the battery temperature control device includes a flow path forming portion that forms a heat medium flow path through which the heat medium flows, and the plurality of heat transfer portions are formed by a plurality of heat transfer portions in the flow path forming portion. It consists of a part that comes into thermal contact with the battery cell. In the flow path forming section, the heat medium flow path is set such that the temperature of the part thermally contacting the high potential cell is lower than the temperature of the part thermally contacting the low potential cell.
 熱媒体流路を流れる熱媒体の温度は、電池セルとの熱交換によって変化する。例えば、熱媒体流路を流れる熱媒体の温度は、電池モジュールの冷却時に、電池セルからの受熱によって、熱媒体流れ上流側から下流側に向かって上昇する。また、熱媒体流路を流れる熱媒体の温度は、電池モジュールの暖機時に、電池セルへの放熱によって、熱媒体流れ上流側から下流側に向かって低下する。 温度 The temperature of the heat medium flowing through the heat medium flow path changes due to heat exchange with the battery cells. For example, the temperature of the heat medium flowing through the heat medium flow path increases from the upstream side to the downstream side of the heat medium flow due to the heat received from the battery cells when the battery module is cooled. Further, the temperature of the heat medium flowing through the heat medium flow path decreases from the upstream side to the downstream side of the heat medium flow due to heat radiation to the battery cells when the battery module is warmed up.
 このため、充電時または放電時の電池セルの温度特性に加味して熱媒体が流れる熱媒体流路を設定する構成とすれば、複数の伝熱部位の温度を個別に調整するための機器が不要となるので、電池セル間の温度バラツキを簡易な手法で抑制することができる。 For this reason, if the heat medium flow path through which the heat medium flows is set in consideration of the temperature characteristics of the battery cell at the time of charging or discharging, a device for individually adjusting the temperature of a plurality of heat transfer portions is provided. Since it becomes unnecessary, the temperature variation between the battery cells can be suppressed by a simple method.
 ここで、「熱的に接触する」とは、部材同士とが直に接触している状態だけでなく、部材同士との間に空気層等の他の要素が介在する場合でも当該他の要素を介して部材間で間接的に熱が移動する状態も含まれる。 Here, the term "thermally contact" means not only a state in which the members are in direct contact with each other, but also a case in which another element such as an air layer is interposed between the members. And a state in which heat is indirectly transferred between members via the interface.
 第3の観点によれば、電池温調装置の温調部材は、電池モジュールよりも低温となる冷媒が熱媒体流路に供給されることで電池モジュールを冷却するものである。流路形成部は、高電位セルに熱的に接触する部位から低電位セルに熱的に接触する部位に向かって冷媒が流れるように熱媒体流路が設定されている。 According to the third aspect, the temperature control member of the battery temperature control device cools the battery module by supplying a coolant having a lower temperature than the battery module to the heat medium flow path. In the flow path forming portion, the heat medium flow path is set so that the refrigerant flows from a part thermally contacting the high potential cell to a part thermally contacting the low potential cell.
 熱媒体流路を流れる冷媒の温度は、電池セルからの受熱によって、冷媒流れ上流側から下流側に向かって上昇する。このため、高電位セルに熱的に接触する部位から低電位セルに熱的に接触する部位に向かって冷媒が流れるように熱媒体流路を設定すれば、高電位セルを温度の低い冷媒で冷却し、低電位セルを温度の高い冷媒で冷却することができる。 温度 The temperature of the refrigerant flowing through the heat medium flow path increases from the upstream side to the downstream side of the refrigerant flow due to the heat received from the battery cells. For this reason, if the heat medium flow path is set so that the refrigerant flows from a part thermally contacting the high potential cell to a part thermally contacting the low potential cell, the high potential cell can be cooled with a low-temperature refrigerant. Cooling allows the low potential cell to be cooled with a hot coolant.
 このように、充電時または放電時の電池セルの温度特性に加味して冷媒が流れる熱媒体流路を設定する構成とすれば、複数の伝熱部位の温度を個別に調整するための機器が不要となるので、電池セル間の温度バラツキを簡易な手法で抑制することができる。 As described above, if the heat medium flow path through which the refrigerant flows is set in consideration of the temperature characteristics of the battery cell at the time of charging or discharging, a device for individually adjusting the temperature of the plurality of heat transfer portions is provided. Since it becomes unnecessary, the temperature variation between the battery cells can be suppressed by a simple method.
 第4の観点によれば、電池温調装置は、複数の電池モジュールが導電部材よりも熱容量の大きい接続部材を介して電気的に直列接続されるものに適用される。温調部材は、複数の電池モジュールごとに設けられている。これによると、複数の電池モジュールごとに温調部材が設けられているので、複数の電池モジュールそれぞれにおいて電池セル間の温度バラツキを抑制することができる。 According to the fourth aspect, the battery temperature control device is applied to a device in which a plurality of battery modules are electrically connected in series via a connecting member having a larger heat capacity than the conductive member. The temperature control member is provided for each of the plurality of battery modules. According to this, since the temperature control member is provided for each of the plurality of battery modules, it is possible to suppress the temperature variation between the battery cells in each of the plurality of battery modules.
 第5の観点によれば、電池温調装置は、電池セルが、セパレータを介して正極板と負極板とが交互に積層された積層電極体、正極板に連なる正極集電体、および負極板に連なる負極集電体が、電解液とともにケース部の内側に収容される構成になっている。正極集電体は、負極集電体に比べて電気抵抗値が大きい材料で構成されている。 According to a fifth aspect, a battery temperature control device includes a battery cell, a stacked electrode body in which a positive electrode plate and a negative electrode plate are alternately stacked via a separator, a positive electrode current collector connected to the positive electrode plate, and a negative electrode plate. And a negative electrode current collector connected to the case is accommodated inside the case portion together with the electrolytic solution. The positive electrode current collector is made of a material having a higher electric resistance value than the negative electrode current collector.
 このように構成される電池セルを有する電池モジュールでは、低電位セルに比べて高電位セルの方が発熱時の温度が高くなり易いので、本開示の電池温調装置の温度調整対象として好適である。 In the battery module having the battery cells configured as described above, the high-potential cells are more likely to have a higher temperature at the time of heat generation than the low-potential cells. is there.
 第6の観点によれば、電池温調装置は、電池セルが、正極集電体がアルミまたはアルミ合金で構成され、負極集電体が銅または銅合金で構成されたリチウムイオン電池で構成されている。 According to a sixth aspect, in the battery temperature control device, the battery cell includes a lithium ion battery in which the positive electrode current collector is formed of aluminum or an aluminum alloy, and the negative electrode current collector is formed of copper or a copper alloy. ing.
 リチウムイオン電池で構成される電池セルを有する電池モジュールでは、低電位セルに比べて高電位セルの方が発熱時の温度が高くなり易いので、本開示の電池温調装置の温度調整対象として好適である。 In a battery module having a battery cell composed of a lithium-ion battery, a high-potential cell is more likely to have a higher temperature at the time of heat generation than a low-potential cell, and thus is suitable as a temperature adjustment target of the battery temperature controller of the present disclosure. It is.

Claims (6)

  1.  充放電可能な複数の電池セル(C)が導電部材(BB)を介して電気的に直列に接続された少なくとも1つの電池モジュール(M)に適用される電池温調装置であって、
     前記電池モジュールの温度を調整する温調部材(15、31)を備え、
     前記電池モジュールは、充電時または放電時に、複数の前記電池セルのうち電位が低い低電位セルに比べて前記低電位セルよりも電位が高い高電位セルの方が発熱時の温度が高くなる構成になっており、
     前記温調部材は、複数の前記電池セルに対応して設定された複数の伝熱部位(HT、32、33)を有し、複数の前記伝熱部位のうち、前記高電位セルに対応する前記伝熱部位の温度が、前記低電位セルに対応する前記伝熱部位の温度よりも低くなるように構成されている電池温調装置。
    A battery temperature controller applied to at least one battery module (M) in which a plurality of chargeable / dischargeable battery cells (C) are electrically connected in series via a conductive member (BB),
    A temperature adjusting member (15, 31) for adjusting the temperature of the battery module;
    The battery module has a configuration in which, during charging or discharging, a high-potential cell having a higher potential than the low-potential cell among the plurality of battery cells has a higher temperature during heat generation than a low-potential cell. It has become
    The temperature control member has a plurality of heat transfer portions (HT, 32, 33) set corresponding to the plurality of battery cells, and corresponds to the high-potential cell among the plurality of heat transfer portions. A battery temperature controller configured such that a temperature of the heat transfer portion is lower than a temperature of the heat transfer portion corresponding to the low potential cell.
  2.  前記温調部材は、熱媒体が流れる熱媒体流路(150)を形成する流路形成部(15)を含み、複数の前記伝熱部位(HT)が、前記流路形成部における複数の前記電池セルに対して熱的に接触する部位で構成されており、
     前記流路形成部は、前記高電位セルに熱的に接触する部位の温度が、前記低電位セルに熱的に接触する部位の温度よりも低くなるように前記熱媒体流路が設定されている請求項1に記載の電池温調装置。
    The temperature control member includes a flow path forming portion (15) that forms a heat medium flow path (150) through which a heat medium flows, and a plurality of the heat transfer portions (HT) are formed by a plurality of the heat transfer portions (HT) in the flow path forming portion. It is composed of a part that comes into thermal contact with the battery cell,
    The flow path forming portion is configured such that the heat medium flow path is set so that the temperature of a portion thermally contacting the high potential cell is lower than the temperature of a portion thermally contacting the low potential cell. The battery temperature control device according to claim 1.
  3.  前記温調部材は、前記電池モジュールよりも低温となる冷媒が前記熱媒体流路に供給されることで前記電池モジュールを冷却するものであり、
     前記流路形成部は、前記高電位セルに熱的に接触する部位から前記低電位セルに熱的に接触する部位に向かって冷媒が流れるように前記熱媒体流路が設定されている請求項2に記載の電池温調装置。
    The temperature control member cools the battery module by supplying a coolant having a lower temperature than the battery module to the heat medium flow path,
    The flow path forming part is configured such that the heat medium flow path is set so that a refrigerant flows from a part thermally contacting the high potential cell to a part thermally contacting the low potential cell. 3. The battery temperature controller according to 2.
  4.  複数の前記電池モジュール(M1~M8)が前記導電部材よりも熱容量の大きい接続部材(CM)を介して電気的に直列接続されるものに適用され、
     前記温調部材は、複数の前記電池モジュールごとに設けられている請求項1ないし3のいずれか1つに記載の電池温調装置。
    A plurality of the battery modules (M1 to M8) are electrically connected in series via a connection member (CM) having a larger heat capacity than the conductive member;
    4. The battery temperature control device according to claim 1, wherein the temperature control member is provided for each of the plurality of battery modules. 5.
  5.  前記電池セルは、セパレータ(231)を介して正極板(232)と負極板(233)とが交互に積層された積層電極体(23)、前記正極板に連なる正極集電体(24)、および前記負極板に連なる負極集電体(25)が、電解液とともにケース部(20)の内側に収容される構成になっており、
     前記正極集電体は、前記負極集電体に比べて電気抵抗値が大きい材料で構成されている請求項1ないし4のいずれか1つに記載の電池温調装置。
    The battery cell includes a stacked electrode body (23) in which a positive electrode plate (232) and a negative electrode plate (233) are alternately stacked via a separator (231), a positive electrode current collector (24) connected to the positive electrode plate, And a negative electrode current collector (25) connected to the negative electrode plate is accommodated inside the case portion (20) together with the electrolytic solution,
    The battery temperature control device according to any one of claims 1 to 4, wherein the positive electrode current collector is made of a material having a higher electric resistance value than the negative electrode current collector.
  6.  前記電池セルは、前記正極集電体がアルミまたはアルミ合金で構成され、前記負極集電体が銅または銅合金で構成されたリチウムイオン電池である請求項5に記載の電池温調装置。 The battery temperature controller according to claim 5, wherein the battery cell is a lithium ion battery in which the positive electrode current collector is made of aluminum or an aluminum alloy, and the negative electrode current collector is made of copper or a copper alloy.
PCT/JP2019/027549 2018-07-23 2019-07-11 Battery temperature adjustment device WO2020022087A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-138006 2018-07-23
JP2018138006A JP2020017361A (en) 2018-07-23 2018-07-23 Battery temperature control device

Publications (1)

Publication Number Publication Date
WO2020022087A1 true WO2020022087A1 (en) 2020-01-30

Family

ID=69181583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027549 WO2020022087A1 (en) 2018-07-23 2019-07-11 Battery temperature adjustment device

Country Status (2)

Country Link
JP (1) JP2020017361A (en)
WO (1) WO2020022087A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021049541A1 (en) * 2019-09-10 2021-03-18 株式会社デンソー Battery temperature adjustment device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102638772B1 (en) * 2021-09-07 2024-02-20 엘티정밀 주식회사 Cylindrical battery cooling device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10255735A (en) * 1997-03-11 1998-09-25 Toyota Motor Corp Battery holding device
JP2013008649A (en) * 2011-06-27 2013-01-10 Hitachi Ltd Lithium ion cell and module
JP2013243079A (en) * 2012-05-22 2013-12-05 Hitachi Vehicle Energy Ltd Power storage module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10255735A (en) * 1997-03-11 1998-09-25 Toyota Motor Corp Battery holding device
JP2013008649A (en) * 2011-06-27 2013-01-10 Hitachi Ltd Lithium ion cell and module
JP2013243079A (en) * 2012-05-22 2013-12-05 Hitachi Vehicle Energy Ltd Power storage module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021049541A1 (en) * 2019-09-10 2021-03-18 株式会社デンソー Battery temperature adjustment device

Also Published As

Publication number Publication date
JP2020017361A (en) 2020-01-30

Similar Documents

Publication Publication Date Title
US10096869B2 (en) Battery module, battery temperature managing system and vehicle comprising the same
JP5078463B2 (en) Power supply for vehicle
JP5142605B2 (en) Power supply for vehicle
US9620827B2 (en) Thermal management system for a battery system
US9246200B2 (en) Battery module receiving apparatus, battery module thermostat, and power storage system comprising the same
JP5456371B2 (en) Battery system for vehicle and vehicle equipped with this battery system
JP5137480B2 (en) Power supply for vehicle
US20120129020A1 (en) Temperature-controlled battery system ii
US20160190663A1 (en) Busbars with integrated cooling system for vehicle battery assemblies
US20140011059A1 (en) Power supply device and vehicle equipped therewith
JP2010272430A (en) Battery system for vehicle
WO2005122311A1 (en) Cooling device for fuel cell and vehicle having the same
JP6693480B2 (en) Terminal cooling device
JP5585621B2 (en) Power supply for vehicle
WO2007102756A1 (en) Temperature controller
WO2020022087A1 (en) Battery temperature adjustment device
Lei et al. Separate and integrated thermal management solutions for electric vehicles: A review
KR102371514B1 (en) A Cooling/Heating Structure composed of cylindrical battery Cells
CN111355005B (en) Assembly for electrical connection and battery pack or vehicle
CN113555619A (en) Multistage heating electric-electric hybrid heat management system and control method thereof
US20190381912A1 (en) Technique for the heat-up of a traction energy store
CN220400750U (en) Heat exchange structure of battery, battery and vehicle
CN220604779U (en) High-efficient radiating battery
EP4060793A2 (en) Battery thermal management system
US20230318088A1 (en) Temperature adjusting device and vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19841508

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19841508

Country of ref document: EP

Kind code of ref document: A1