WO2020021844A1 - Rotating electric machine stator - Google Patents

Rotating electric machine stator Download PDF

Info

Publication number
WO2020021844A1
WO2020021844A1 PCT/JP2019/021178 JP2019021178W WO2020021844A1 WO 2020021844 A1 WO2020021844 A1 WO 2020021844A1 JP 2019021178 W JP2019021178 W JP 2019021178W WO 2020021844 A1 WO2020021844 A1 WO 2020021844A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
turn
phase
turn portion
radial direction
Prior art date
Application number
PCT/JP2019/021178
Other languages
French (fr)
Japanese (ja)
Inventor
暁斗 田村
亜希 福原
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201980048856.7A priority Critical patent/CN112470369B/en
Publication of WO2020021844A1 publication Critical patent/WO2020021844A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/24Windings characterised by the conductor shape, form or construction, e.g. with bar conductors with channels or ducts for cooling medium between the conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings

Definitions

  • the present disclosure relates to a stator of a rotating electric machine.
  • Patent Literature 1 discloses a technology in which a two-phase winding is formed by combining a long and short coil end in a stator winding of a rotating electric machine in order to prevent a reduction in efficiency and a reduction in generated torque. Has been disclosed.
  • the present disclosure aims to provide a stator for a rotating electric machine having high heat dissipation performance.
  • the stator of the rotating electric machine includes an annular stator core, and a plurality of phases of stator windings covered with an insulating coating, and is coaxial with the rotatably supported rotor. It is a stator arranged in.
  • the stator winding is a turn connecting the magnet facing portion radially facing the magnet portion of the rotor and the magnet facing portion of the same phase outside the magnet facing portion in the axial direction of the rotating shaft. And a part. At least one of the turn portions provided on both sides in the axial direction is a heat dissipation promoting turn portion.
  • the heat-dissipating turn parts are provided such that the heat-dissipating turn parts of different phases partially overlap each other in the axial direction, and protrude radially with respect to the magnet facing part.
  • the innermost turn part provided at the position closest to the stator core in the axial direction, and a position farther from the stator core than the innermost turn part in the axial direction.
  • an outer layer turn portion provided. The radially projecting amount of the innermost turn portion is different from the radially projecting amount of the outer layer turn portion.
  • the radially projecting amount of the innermost turn portion is the radially projecting amount of the outer layer turn portion.
  • the amount of protrusion is different from the amount. For this reason, compared with the case where the radially projecting amount of the innermost turn portion and the radially projecting amount of the outer layer turn portion are equal, the portion where the innermost turn portion and the outer layer turn portion do not overlap in the axial direction is considered. It is possible to secure a large amount and promote heat radiation into the air.
  • FIG. 4 is a longitudinal sectional view of the rotating electric machine.
  • FIG. 3 is a sectional view taken along line III-III of FIG. 2. Sectional drawing which expands and shows a part of FIG.
  • FIG. 3 is an exploded view of the inverter unit.
  • FIG. 4 is a torque diagram showing a relationship between an ampere-turn of a stator winding and a torque density.
  • FIG. 4 is a cross-sectional view of the rotor and the stator. The figure which expands and shows a part of FIG. FIG. The longitudinal section of a stator. The perspective view of a stator winding.
  • FIG. 4 is a longitudinal sectional view of the rotating electric machine.
  • FIG. 3 is a sectional view taken along line III-III of FIG. 2. Sectional drawing which expands and shows a part of FIG.
  • FIG. 3 is an exploded view of the inverter unit.
  • FIG. 4 is a torque diagram showing a relationship between an ampere-turn of a
  • FIG. 2 is a perspective view showing a configuration of a conductive wire.
  • the schematic diagram which shows the structure of a strand.
  • FIG. 6 is a side view showing the respective conductors of the nth layer and the (n + 1) th layer.
  • FIG. 4 is a functional block diagram showing current feedback control processing by the control device.
  • FIG. 4 is a functional block diagram illustrating a torque feedback control process performed by the control device.
  • FIG. 6 is a cross-sectional view of a rotor and a stator according to a second embodiment.
  • the figure which expands and shows a part of FIG. The figure which shows the flow of the magnetic flux in a magnet part concretely.
  • FIG. 2 is a longitudinal sectional view of the rotating electric machine according to the first embodiment.
  • FIG. 2 is a perspective view of a stator according to the first embodiment.
  • FIG. 3 is a top view of the stator according to the first embodiment.
  • the rotating electric machine 10 is a synchronous polyphase AC motor and has an outer rotor structure (eternal rotation structure).
  • the outline of the rotating electric machine 10 is shown in FIGS. 1 is a vertical cross-sectional perspective view of the rotary electric machine 10,
  • FIG. 2 is a vertical cross-sectional view of the rotary electric machine 10 in a direction along a rotation axis 11, and
  • FIG. 3 is a cross-sectional view (cross-sectional view taken along line III-III of FIG. 2) of the rotating electric machine 10
  • FIG. 4 is a cross-sectional view showing a part of FIG. 3 in an enlarged manner, and FIG. It is.
  • FIG. 3 hatching indicating a cut surface is omitted except for the rotation shaft 11 for convenience of illustration.
  • the direction in which the rotating shaft 11 extends is defined as the axial direction
  • the direction radially extending from the center of the rotating shaft 11 is defined as the radial direction
  • the direction extending circumferentially around the rotating shaft 11 is defined as the circumferential direction.
  • the rotating electric machine 10 roughly includes a bearing unit 20, a housing 30, a rotor 40, a stator 50, and an inverter unit 60. Each of these members is arranged coaxially with the rotating shaft 11 and assembled in a predetermined order in the axial direction to form the rotating electric machine 10.
  • the bearing portion 20 has two bearings 21 and 22 that are arranged apart from each other in the axial direction, and a holding member 23 that holds the bearings 21 and 22.
  • the bearings 21 and 22 are, for example, radial ball bearings, each of which has an outer ring 25, an inner ring 26, and a plurality of balls 27 arranged between the outer ring 25 and the inner ring 26.
  • the holding member 23 has a cylindrical shape, and bearings 21 and 22 are attached to the inside in the radial direction.
  • the rotating shaft 11 and the rotor 40 are rotatably supported inside the bearings 21 and 22 in the radial direction.
  • the housing 30 has a cylindrical peripheral wall portion 31 and an end surface portion 32 provided at one end of both ends in the axial direction of the peripheral wall portion 31.
  • An opening 33 is formed on the opposite side of the end face portion 32 of both ends in the axial direction of the peripheral wall portion 31, and the housing 30 has a configuration in which the opposite side of the end face portion 32 is completely opened by the opening 33.
  • a circular hole 34 is formed in the center of the end face portion 32, and the bearing portion 20 is fixed by a fixing tool such as a screw or a rivet in a state of being inserted through the hole 34.
  • the rotor 40 and the stator 50 are accommodated in the housing 30, that is, in an internal space defined by the peripheral wall portion 31 and the end surface portion 32.
  • the rotating electric machine 10 is of an outer rotor type, and a stator 50 is disposed inside a housing 30 in a radial direction of a cylindrical rotor 40.
  • the rotor 40 is cantilevered by the rotating shaft 11 on the end face 32 side in the axial direction.
  • the rotor 40 has a rotor main body 41 formed in a hollow cylindrical shape, and an annular magnet portion 42 provided radially inside the rotor main body 41.
  • the rotor main body 41 has a substantially cup shape and has a function as a magnet holding member.
  • the rotor main body 41 has a cylindrical magnet holding portion 43, a fixed portion 44 which is also cylindrical and has a smaller diameter than the magnet holding portion 43, and an intermediate portion serving as a portion connecting the magnet holding portion 43 and the fixed portion 44. And a part 45.
  • the magnet part 42 is attached to the inner peripheral surface of the magnet holding part 43.
  • the rotating shaft 11 is inserted through the through hole 44 a of the fixing portion 44, and the fixing portion 44 is fixed to the rotating shaft 11 in the inserted state. That is, the rotor main body 41 is fixed to the rotating shaft 11 by the fixing portion 44.
  • the fixing portion 44 may be fixed to the rotating shaft 11 by spline connection or key connection using irregularities, welding, caulking, or the like. Thereby, the rotor 40 rotates integrally with the rotating shaft 11.
  • Bearings 21 and 22 of the bearing portion 20 are mounted radially outside the fixing portion 44. As described above, since the bearing 20 is fixed to the end face 32 of the housing 30, the rotating shaft 11 and the rotor 40 are rotatably supported by the housing 30. Thereby, the rotor 40 is rotatable in the housing 30.
  • the rotor 40 is provided with the fixing portion 44 on only one of the two axial sides, whereby the rotor 40 is cantilevered on the rotating shaft 11.
  • the fixed portion 44 of the rotor 40 is rotatably supported at two different positions in the axial direction by the bearings 21 and 22 of the bearing portion 20. That is, the rotor 40 is rotatably supported by the two bearings 21 and 22 in the axial direction on one of the two axial ends of the rotor main body 41. Therefore, even when the rotor 40 has a structure in which the rotor 40 is cantilevered by the rotating shaft 11, stable rotation of the rotor 40 is realized. In this case, the rotor 40 is supported by the bearings 21 and 22 at a position shifted to one side with respect to the axial center position of the rotor 40.
  • the bearing 22 near the center of the rotor 40 (the lower side in the figure) and the bearing 21 on the opposite side (the upper side in the figure) have a gap between the outer ring 25 and the inner ring 26 and the ball 27.
  • the dimensions are different, for example, the bearing 22 near the center of the rotor 40 has a larger gap size than the bearing 21 on the opposite side. In this case, on the side near the center of the rotor 40, even if vibration of the rotor 40 or vibration due to imbalance due to component tolerance acts on the bearing portion 20, the influence of the vibration and vibration is favorably absorbed. You.
  • the play size (gap size) is increased by the preload in the bearing 22 near the center of the rotor 40 (the lower side in the figure), so that the vibration generated in the cantilever structure is absorbed by the play portion.
  • the preload may be a fixed position preload, or may be applied by inserting a preload spring, a wave washer, or the like into an axially outer step (upper side in the figure) of the bearing 22.
  • the intermediate portion 45 is configured to have a step in the axial direction between the center in the radial direction and the outside thereof.
  • the radial inner end portion and the radial outer end portion have different axial positions, so that the magnet holding portion 43 and the fixing portion 44 partially overlap in the axial direction. are doing.
  • the magnet holding portion 43 protrudes outward in the axial direction from the base end of the fixing portion 44 (the lower end on the lower side in the figure).
  • the rotor 40 can be supported on the rotating shaft 11 at a position near the center of gravity of the rotor 40 as compared with the case where the intermediate portion 45 is provided in a flat shape without a step. Forty stable operations can be realized.
  • the rotor housing 40 has a bearing housing recess 46 that partially surrounds the bearing portion 20 at a position that surrounds the fixed portion 44 in the radial direction and is inward of the intermediate portion 45.
  • a recess 47 is formed.
  • These accommodation recesses 46 and 47 are arranged so as to be adjacent to each other inside and outside in the radial direction. That is, a part of the bearing portion 20 and the coil end portion 54 of the stator winding 51 are arranged so as to overlap inward and outward in the radial direction.
  • the axial length of the rotating electric machine 10 can be reduced.
  • the coil end portion 54 is bent inward or outward in the radial direction, so that the axial dimension of the coil end portion 54 can be reduced, and the axial length of the stator can be shortened.
  • the bending direction of the coil end portion 54 should preferably take into account the assembly with the rotor 40. Assuming that the stator 50 is assembled radially inward of the rotor 40, it is preferable that the coil end portion 54 be bent radially inward on the insertion front end side with respect to the rotor 40.
  • the bending direction on the opposite side may be arbitrary, but the outer diameter side having a sufficient space is preferable in manufacturing. The coil end portion 54 when bent will be described later in detail with reference to FIGS.
  • the magnet portion 42 is formed of a plurality of magnets arranged radially inside the magnet holding portion 43 so that the magnetic poles alternate alternately along the circumferential direction. However, the details of the magnet section 42 will be described later.
  • the stator 50 is provided radially inside the rotor 40.
  • the stator 50 has a stator winding 51 wound in a substantially cylindrical shape, and a stator core 52 disposed radially inward of the stator winding 51. It is arranged so as to face the annular magnet portion 42 with the gap interposed.
  • the stator winding 51 includes a plurality of phase windings. Each of the phase windings is configured by connecting a plurality of conductors arranged in a circumferential direction at a predetermined pitch. In the present embodiment, three-phase windings of U-phase, V-phase, and W-phase, and three-phase windings of X-phase, Y-phase, and Z-phase are used.
  • the stator winding 51 is configured as a six-phase winding.
  • the stator core 52 is formed in an annular shape from a laminated steel plate made of a soft magnetic material, and is assembled radially inside the stator winding 51.
  • the stator winding 51 is a portion that overlaps the stator core 52 in the axial direction, and is a coil side portion 53 that is radially outside the stator core 52, and one end of the stator core 52 in the axial direction and the other. Coil end portions 54 and 55 projecting to the end sides are provided.
  • the coil side portion 53 faces the stator core 52 and the magnet portion 42 of the rotor 40 in the radial direction.
  • the coil end portion 54 on the side of the bearing portion 20 (upper side in the drawing) of the coil end portions 54 and 55 on both sides in the axial direction is connected to the rotor 40. It is housed in a coil housing recess 47 formed by the rotor main body 41. However, details of the stator 50 will be described later.
  • the inverter unit 60 has a unit base 61 fixed to the housing 30 by fasteners such as bolts, and an electric component 62 assembled to the unit base 61.
  • the unit base 61 includes an end plate 63 fixed to an end of the housing 30 on the opening 33 side, and a casing 64 provided integrally with the end plate 63 and extending in the axial direction. I have.
  • the end plate 63 has a circular opening 65 at the center thereof, and a casing 64 is formed so as to stand up from the peripheral edge of the opening 65.
  • the stator 50 is mounted on the outer peripheral surface of the casing 64. That is, the outer diameter of the casing portion 64 is the same as the inner diameter of the stator core 52 or slightly smaller than the inner diameter of the stator core 52.
  • the stator core 52 By attaching the stator core 52 to the outside of the casing 64, the stator 50 and the unit base 61 are integrated. Further, when the unit base 61 is fixed to the housing 30, the stator 50 is integrated with the housing 30 in a state where the stator core 52 is attached to the casing portion 64.
  • the radially inner side of the casing portion 64 is a housing space for housing the electric component 62, and the electric component 62 is arranged in the housing space so as to surround the rotating shaft 11.
  • the casing part 64 has a role as an accommodation space forming part.
  • the electric component 62 includes a semiconductor module 66 constituting an inverter circuit, a control board 67, and a capacitor module 68.
  • FIG. 6 is an exploded view of the inverter unit 60 in addition to FIGS.
  • the casing portion 64 includes a cylindrical portion 71 and an end surface portion 72 provided at one end (an end on the bearing portion 20 side) of both ends in the axial direction of the cylindrical portion 71. Have. The opposite side of the end face portion 72 of the both ends in the axial direction of the cylindrical portion 71 is completely opened through the opening 65 of the end plate portion 63. A circular hole 73 is formed in the center of the end face portion 72, and the rotary shaft 11 can be inserted through the hole 73.
  • the cylindrical portion 71 of the casing portion 64 serves as a partition portion that partitions between the rotor 40 and the stator 50 disposed radially outward and the electric component 62 disposed radially inward thereof.
  • the rotor 40, the stator 50, and the electric component 62 are arranged radially inward and outward with the tubular portion 71 interposed therebetween.
  • the electric component 62 is an electric component forming an inverter circuit, and has a powering function of rotating the rotor 40 by applying a current to each phase winding of the stator winding 51 in a predetermined order; And a power generation function of inputting a three-phase AC current flowing through the stator winding 51 with the rotation of the motor and outputting the generated power to the outside.
  • the electric component 62 may have only one of the powering function and the power generation function.
  • the power generation function is, for example, a regenerative function that outputs to the outside as regenerative power when the rotating electric machine 10 is used as a vehicle power source.
  • a hollow cylindrical capacitor module 68 is provided around the rotation shaft 11, and a plurality of semiconductor modules 66 are provided on the outer peripheral surface of the capacitor module 68 in the circumferential direction. Are arranged side by side.
  • the capacitor module 68 includes a plurality of smoothing capacitors 68a connected in parallel with each other.
  • the capacitor 68a is a laminated film capacitor in which a plurality of film capacitors are laminated, and has a trapezoidal cross section.
  • the capacitor module 68 is configured by arranging twelve capacitors 68a in a ring.
  • the capacitor 68a for example, a long film having a predetermined width formed by laminating a plurality of films is used, the film width direction is set to a trapezoidal height direction, and the upper and lower bases of the trapezoid alternate.
  • the long film is cut into an equal-leg trapezoidal shape so that the capacitor element is formed. Then, by attaching electrodes and the like to the capacitor element, the capacitor 68a is manufactured.
  • the semiconductor module 66 has a semiconductor switching element such as a MOSFET or an IGBT, and is formed in a substantially plate shape.
  • the rotary electric machine 10 includes two sets of three-phase windings, and an inverter circuit is provided for each of the three-phase windings. Is provided.
  • the semiconductor module 66 is disposed between the cylindrical portion 71 of the casing 64 and the capacitor module 68.
  • the outer peripheral surface of the semiconductor module 66 contacts the inner peripheral surface of the cylindrical portion 71, and the inner peripheral surface of the semiconductor module 66 contacts the outer peripheral surface of the capacitor module 68. In this case, heat generated in the semiconductor module 66 is transmitted to the end plate 63 via the casing 64 and is released from the end plate 63.
  • the semiconductor module 66 preferably has a spacer 69 between the semiconductor module 66 and the cylindrical portion 71 in the outer peripheral surface side, that is, in the radial direction.
  • the cross-sectional shape of the cross section orthogonal to the axial direction is a regular dodecagon
  • the cross-sectional shape of the inner peripheral surface of the cylindrical portion 71 is circular.
  • Has a flat surface and the outer peripheral surface is a curved surface.
  • the spacer 69 may be provided integrally so as to be annularly continuous outside the semiconductor module 66 in the radial direction.
  • the cross-sectional shape of the inner peripheral surface of the cylindrical portion 71 can be the same dodecagon as that of the capacitor module 68.
  • both the inner peripheral surface and the outer peripheral surface of the spacer 69 are preferably flat surfaces.
  • a cooling water passage 74 for flowing cooling water is formed in the cylindrical portion 71 of the casing 64, and heat generated in the semiconductor module 66 is transferred to the cooling water flowing through the cooling water passage 74. Also released. That is, the casing 64 has a water cooling mechanism. As shown in FIGS. 3 and 4, the cooling water passage 74 is formed in an annular shape so as to surround the electric component 62 (the semiconductor module 66 and the capacitor module 68). The semiconductor module 66 is arranged along the inner peripheral surface of the cylindrical portion 71, and a cooling water passage 74 is provided at a position overlapping the semiconductor module 66 inward and outward in the radial direction.
  • stator 50 Since the stator 50 is disposed outside the tubular portion 71 and the electric component 62 is disposed inside, the heat of the stator 50 is transmitted to the tubular portion 71 from the outside, The heat of the semiconductor module 66 is transmitted from the inside. In this case, the stator 50 and the semiconductor module 66 can be cooled at the same time, and the heat of the heat generating member in the rotating electric machine 10 can be efficiently released.
  • the electric component 62 includes an insulating sheet 75 provided on one end face of the capacitor module 68 and a wiring module 76 provided on the other end face in the axial direction.
  • one end face (the end face on the bearing portion 20 side) of both end faces in the axial direction of the capacitor module 68 is opposed to the end face portion 72 of the casing portion 64, and the end face portion 72 is sandwiched by the insulating sheet 75.
  • a wiring module 76 is mounted on the other end surface (the end surface on the opening 65 side).
  • the wiring module 76 has a main body portion 76a made of a synthetic resin and having a circular plate shape, and a plurality of busbars 76b and 76c embedded therein.
  • the busbars 76b and 76c allow the semiconductor module 66 and the capacitor to be mounted.
  • An electrical connection is made with the module 68.
  • the semiconductor module 66 has a connection pin 66a extending from the axial end face, and the connection pin 66a is connected to the bus bar 76b on the radial outside of the main body portion 76a.
  • the bus bar 76c extends on the outer side of the main body 76a in the radial direction on the side opposite to the capacitor module 68, and is connected to the wiring member 79 at its tip (see FIG. 2).
  • the heat radiation paths of the capacitor module 68 are provided from both end surfaces in the axial direction of the capacitor module 68 to the end surface 72 and A path leading to the cylindrical portion 71 is formed.
  • heat can be radiated from the end face of the capacitor module 68 other than the outer peripheral face where the semiconductor module 66 is provided. That is, not only the heat radiation in the radial direction but also the heat radiation in the axial direction are possible.
  • the capacitor module 68 has a hollow cylindrical shape and the rotating shaft 11 is disposed on the inner peripheral portion thereof with a predetermined gap interposed therebetween, the heat of the capacitor module 68 can be released from the hollow portion. ing. In this case, the flow of air is generated by the rotation of the rotating shaft 11, so that the cooling effect is enhanced.
  • a disc-shaped control board 67 is attached to the wiring module 76.
  • the control board 67 has a printed circuit board (PCB) on which a predetermined wiring pattern is formed, and a control device 77 including various ICs and a microcomputer is mounted on the board.
  • the control board 67 is fixed to the wiring module 76 by a fixture such as a screw.
  • the control board 67 has an insertion hole 67a at the center thereof, through which the rotating shaft 11 is inserted.
  • a control board 67 is provided on the opposite side of the capacitor module 68 from both sides in the axial direction of the wiring module 76, and the bus bar 76c of the wiring module 76 extends from one side of the control board 67 to the other side. I have.
  • the control board 67 may be provided with a notch for avoiding interference with the bus bar 76c. For example, a part of the outer edge of the circular control board 67 may be cut away.
  • the inverter circuit is used.
  • the resulting electromagnetic noise is suitably shielded. That is, in the inverter circuit, switching control in each semiconductor module 66 is performed using PWM control based on a predetermined carrier frequency, and electromagnetic noise may be generated by the switching control. It can be shielded suitably by the housing 30, the rotor 40, the stator 50, and the like outside in the radial direction of 62.
  • a through hole 78 is formed through which a wiring member 79 (see FIG. 2) for electrically connecting the outer stator 50 and the inner electric component 62 is inserted.
  • the wiring member 79 is connected to the end of the stator winding 51 and the bus bar 76c of the wiring module 76 by crimping, welding, or the like.
  • the wiring member 79 is, for example, a bus bar, and its joint surface is desirably flattened.
  • the through holes 78 may be provided at one or a plurality of positions. In the present embodiment, the through holes 78 are provided at two positions. In the configuration in which the through holes 78 are provided at two locations, the winding terminals extending from the two sets of three-phase windings can be easily connected by the wiring members 79, respectively, which is suitable for performing multiphase connection. It has become.
  • the rotor 40 and the stator 50 are provided in this order from the outside in the radial direction as shown in FIG. 4, and the inverter unit 60 is provided inside the stator 50 in the radial direction.
  • the rotor 40 and the stator 50 are arranged radially outward from a distance of d ⁇ 0.705 from the center of rotation.
  • a region radially inward from the inner peripheral surface of the stator 50 on the radial inner side (that is, the inner peripheral surface of the stator core 52) is defined as a first region X1
  • the cross-sectional area of the first region X1 is larger than the cross-sectional area of the second region X2.
  • the volume of the first region X1 is larger than the volume of the second region X2.
  • a first region X1 radially inward from the inner peripheral surface of the magnetic circuit component in the housing 30 is radially inward of the magnetic circuit component.
  • the volume is larger than the second area X2 between the surface and the housing 30.
  • a configuration of a stator in a rotating electric machine there is known a configuration in which a plurality of slots are provided in a circumferential direction on a stator core made of laminated steel sheets and forming an annular shape, and a stator winding is wound in the slots.
  • the stator core has a plurality of teeth extending in the radial direction at predetermined intervals from the yoke portion, and a slot is formed between teeth adjacent in the circumferential direction.
  • a plurality of layers of conductors are accommodated in the slot, for example, in the radial direction, and the conductors constitute a stator winding.
  • stator winding when the stator winding is energized, magnetic saturation occurs in the teeth of the stator core as the magnetomotive force of the stator winding increases, and as a result, the rotating electric machine It is possible that the torque density is limited. That is, in the stator core, it is considered that the magnetic flux is generated by energizing the stator windings and concentrates on the teeth, thereby causing magnetic saturation.
  • FIG. 7 is a torque diagram showing the relationship between the ampere turn [AT] indicating the magnetomotive force of the stator winding and the torque density [Nm / L].
  • the dashed line indicates the characteristic in a general IPM rotor type rotating electric machine.
  • FIG. 7 in a general rotating electric machine, by increasing the magnetomotive force in the stator, magnetic saturation occurs at two places, ie, the teeth portion between the slots and the q-axis core portion. The increase in torque is limited.
  • the ampere-turn design value is limited by X1.
  • the following configuration is added to the rotating electric machine 10 in order to eliminate the torque limitation caused by the magnetic saturation. That is, as a first contrivance, a slotless structure is employed in the stator 50 in order to eliminate magnetic saturation caused by teeth of the stator core in the stator, and in order to eliminate magnetic saturation occurring in the q-axis core portion of the IPM rotor. , SPM rotor. According to the first device, the above two portions where magnetic saturation occurs can be eliminated, but it is conceivable that the torque in the low current region decreases (see the dashed line in FIG. 7).
  • a pole anisotropic structure in which the magnet magnetic path is lengthened to increase the magnetic force in the magnet section 42 of the rotor 40 is adopted in order to recover the torque reduction by increasing the magnetic flux of the SPM rotor. ing.
  • a flat conductor structure in which the radial thickness of the conductor is reduced in the coil side portion 53 of the stator winding 51 is employed to reduce the torque reduction.
  • a larger eddy current is generated in the opposed stator winding 51 due to the above-described pole anisotropic structure in which the magnetic force is increased.
  • the generation of radial eddy currents in the stator windings 51 can be suppressed because the flat conductive wire structure is thin in the radial direction.
  • a magnet part having a magnetic flux density distribution close to a sine wave using a pole anisotropic structure is adopted.
  • the sine wave matching ratio can be increased by pulse control or the like to be described later to increase the torque, and the eddy current loss can be further suppressed due to a gradual change in magnetic flux compared to the radial magnet. .
  • the stator winding 51 has a strand conductor structure in which a plurality of strands are gathered and twisted. According to this, while the fundamental wave component is collected, a large current can flow, and the generation of eddy current due to the circumferential direction generated by the conductor that spreads in the circumferential direction with the flat wire structure reduces the cross-sectional area of each element wire. Since the thickness is reduced, the thickness can be more effectively suppressed than when the thickness is reduced in the radial direction by the third device. And, since the plurality of strands are twisted, the eddy current with respect to the magnetic flux generated by the rule of the right-hand screw with respect to the current flowing direction can be offset with respect to the magnetomotive force from the conductor.
  • the torque is increased while the eddy current loss caused by the high magnetic force is suppressed while employing the magnet having the high magnetic force as the second device. Can be planned.
  • FIG. 8 is a cross-sectional view of the rotor 40 and the stator 50
  • FIG. 9 is an enlarged view of a part of the rotor 40 and the stator 50 shown in FIG.
  • FIG. 10 is a cross-sectional view showing a horizontal cross section of the stator 50
  • FIG. 11 is a cross-sectional view showing a vertical cross section of the stator 50.
  • FIG. 12 is a perspective view of the stator winding 51. 8 and 9, the magnetization directions of the magnets in the magnet section 42 are indicated by arrows.
  • the stator core 52 is formed by stacking a plurality of electromagnetic steel sheets in the axial direction and has a cylindrical shape having a predetermined thickness in the radial direction.
  • the child winding 51 is to be assembled.
  • the outer peripheral surface of the stator core 52 is a conductive wire installation part.
  • the outer peripheral surface of the stator core 52 has a curved surface without irregularities, and a plurality of conductive wire groups 81 are arranged on the outer peripheral surface in a circumferential direction.
  • the stator core 52 functions as a back yoke which is a part of a magnetic circuit for rotating the rotor 40.
  • the configuration is such that no teeth (that is, iron core) made of a soft magnetic material are provided between the conductor groups 81 that are adjacent in the circumferential direction (that is, a slotless structure).
  • the structure is such that the resin material of the sealing portion 57 enters the gaps 56 between the respective conductive wire groups 81. That is, speaking of the state before the sealing of the sealing portion 57, the conductor groups 81 are arranged radially outside the stator core 52 at predetermined intervals in the circumferential direction with the gap 56, which is a region between the conductors, interposed therebetween. As a result, a stator 50 having a slotless structure is constructed.
  • the sealing portion 57 provides an inter-wire member.
  • the configuration in which the teeth are provided between the conductor groups 81 arranged in the circumferential direction means that the teeth have a predetermined thickness in the radial direction and a predetermined width in the circumferential direction. It can be said that this is a configuration in which a part of the magnetic circuit, that is, a magnet magnetic path is formed between the magnetic circuits 81. In this regard, a configuration in which the teeth are not provided between the conductive wire groups 81 can be said to be a configuration in which the above-described magnetic circuit is not formed.
  • the stator winding 51 is sealed by a sealing portion 57 made of a synthetic resin material as a sealing material.
  • the sealing portion 57 is provided between the conductor groups 81, that is, the gap 56 is filled with a synthetic resin material, and is provided between the conductor groups 81 by the sealing portion 57. And an insulating member interposed therebetween. That is, the sealing portion 57 functions as an insulating member in the gap 56.
  • the sealing portion 57 extends radially outside the stator core 52 in a range that includes all the conductor groups 81, that is, in a range in which the radial thickness is larger than the radial thickness of each conductor group 81. Is provided.
  • the sealing portion 57 is provided in a range including the turn portion 84 of the stator winding 51. Inside the stator winding 51 in the radial direction, a sealing portion 57 is provided in a range including at least a part of the end face of the stator core 52.
  • the stator windings 51 are resin-sealed substantially at the ends of the phase windings of the respective phases, that is, substantially entirely except for connection terminals with the inverter circuit.
  • the sealing portion 57 In the configuration in which the sealing portion 57 is provided in a range including the end face of the stator core 52, the sealing portion 57 can press the laminated steel sheet of the stator core 52 inward in the axial direction. Thereby, the laminated state of each steel plate can be maintained using the sealing portion 57.
  • the inner peripheral surface of the stator core 52 is not resin-sealed in the present embodiment, the entire stator core 52 including the inner peripheral surface of the stator core 52 is resin-sealed instead. It may be a configuration.
  • the sealing portion 57 is made of a heat-resistant fluororesin, an epoxy resin, a PPS resin, a PEEK resin, an LCP resin, a silicon resin, a PAI resin, a PI resin, or the like. Preferably, it is configured. Further, considering the coefficient of linear expansion from the viewpoint of suppressing cracking due to the difference in expansion, it is preferable that the material is the same as the outer coating of the conductor of the stator winding 51. That is, a silicone resin whose linear expansion coefficient is generally twice or more that of another resin is desirably excluded.
  • a PPO resin, a phenol resin, and an FRP resin having a heat resistance of about 180 ° C. are also candidates. This is not the case in a field where the ambient temperature of the rotating electric machine can be regarded as being lower than 100 ° C.
  • the torque of the rotating electric machine 10 is proportional to the magnitude of the magnetic flux.
  • the maximum magnetic flux amount at the stator is limited depending on the saturation magnetic flux density at the teeth, but the stator core does not have teeth. In such a case, the maximum magnetic flux amount at the stator is not limited. Therefore, the configuration is advantageous in increasing the current flowing through the stator winding 51 to increase the torque of the rotating electric machine 10.
  • Each conductive wire group 81 radially outside the stator core 52 is configured by arranging a plurality of conductive wires 82 having a flat rectangular cross section in a radial direction.
  • Each conductive wire 82 is arranged in a direction that satisfies “radial dimension ⁇ circumferential dimension” in a cross section.
  • the thickness of each conductive wire group 81 in the radial direction is reduced.
  • the thickness of the conductor region is reduced in the radial direction, and the conductor region extends flat to the region where the teeth are conventionally formed, so that the conductor region has a flat conductor region structure.
  • the conductor region in one circumferential direction can be designed to be larger than the gap region.
  • the conductor area / gap area in one circumferential direction of the stator winding is 1 or less.
  • each conductive wire group 81 is provided such that the conductor region is equal to the gap region or the conductor region is larger than the gap region.
  • the torque of the rotating electric machine 10 is substantially inversely proportional to the radial thickness of the conductor group 81.
  • the configuration is advantageous in increasing the torque of the rotating electric machine 10.
  • the distance from the magnet part 42 of the rotor 40 to the stator core 52 that is, the distance of the part without iron
  • the flux linkage of the stator core 52 by the permanent magnet can be increased, and the torque can be increased.
  • the conductor 82 is made of a covered conductor in which the surface of a conductor 82a is covered with an insulating film 82b, and insulation is ensured between the conductors 82 overlapping each other in the radial direction and between the conductor 82 and the stator core 52. ing.
  • the thickness of the insulating film 82b in the conductor 82 is, for example, 80 ⁇ m, which is thicker than the thickness (20 to 40 ⁇ m) of a commonly used conductor. Thereby, the insulating property between the conductor 82 and the stator core 52 is ensured without interposing an insulating paper or the like between them.
  • each of the phase windings constituted by the conductive wires 82 has an insulating property by the insulating coating 82b except for an exposed portion for connection.
  • the exposed portion is, for example, an input / output terminal portion or a neutral point portion in the case of a star connection.
  • the conductive wires 82 adjacent to each other in the radial direction are fixed to each other by using a resin fixing or a self-sealing coated wire. This suppresses dielectric breakdown, vibration, and sound due to the rubbing of the conductive wires 82.
  • the conductor 82a is configured as an aggregate of a plurality of strands 86.
  • the conductor 82a is formed in a twisted yarn shape by twisting a plurality of strands 86.
  • the strand 86 is configured as a composite in which thin fibrous conductive materials 87 are bundled.
  • the strand 86 is a composite of CNT (carbon nanotube) fibers, and as the CNT fibers, fibers including boron-containing fine fibers in which at least a part of carbon is replaced by boron are used.
  • a vapor grown carbon fiber (VGCF) or the like can be used in addition to the CNT fiber, but it is preferable to use the CNT fiber.
  • the surface of the wire 86 is covered with a polymer insulating layer such as enamel, PEEK resin, or PPS resin.
  • the conductive wire 82 has a flat rectangular cross section and is arranged in a plurality in the radial direction.
  • a plurality of strands 86 are gathered in a twisted state, and in that state, a synthetic resin or the like is used. It is good to harden it into a desired shape and form it.
  • Each conductive wire 82 is bent so as to be arranged in a predetermined arrangement pattern in the circumferential direction, whereby a phase winding for each phase is formed as the stator winding 51.
  • a coil side portion 53 is formed by a straight portion 83 extending linearly in the axial direction of each of the conductors 82, and is located on both outer sides of the coil side portion 53 in the axial direction.
  • the projecting turn portions 84 form the coil end portions 54 and 55.
  • Each conductor 82 is configured as a series of corrugated conductors by alternately repeating a straight portion 83 and a turn portion 84.
  • the linear portions 83 are arranged at positions facing the magnet portion 42 in the radial direction, and the in-phase linear portions 83 arranged at a predetermined interval at a position outside the magnet portion 42 in the axial direction are: They are connected to each other by a turn part 84. Note that the straight portion 83 corresponds to a “magnet facing portion”.
  • the stator winding 51 is formed in an annular shape by distributed winding.
  • linear portions 83 are arranged in the circumferential direction at a pitch corresponding to one pole pair of the magnet portion 42 for each phase, and in the coil end portions 54 and 55, the linear portions 83 for each phase are arranged.
  • a turn portion 84 formed in a substantially V shape.
  • the straight portions 83 forming a pair corresponding to one pole pair have current directions opposite to each other.
  • the combination of the pair of linear portions 83 connected by the turn portion 84 is different between the one coil end portion 54 and the other coil end portion 55, and the connection at the coil end portions 54 and 55 is different.
  • the stator winding 51 is formed in a substantially cylindrical shape.
  • the stator winding 51 constitutes a winding for each phase using two pairs of conducting wires 82 for each phase, and one of the three windings (U Phase, V phase, W phase) and the other three-phase winding (X phase, Y phase, Z phase) are provided in two layers inside and outside in the radial direction.
  • the number of phases of the winding is S and the logarithm of the conductor 82 is m
  • 2 ⁇ S ⁇ m 2Sm conductor groups 81 are formed for each pole pair.
  • the linear portions 83 are superposed in two layers on the inner and outer sides in the radial direction, and at the coil end portions 54 and 55, the straight lines 83 on the inner and outer sides in the radial direction overlap.
  • the turn part 84 is configured to extend in the circumferential direction in directions opposite to each other in the circumferential direction. That is, in each of the conductive wires 82 that are adjacent in the radial direction, the directions of the turn portions 84 are opposite to each other except for the portion that becomes the coil end.
  • FIGS. 15A and 15B are diagrams showing the form of each conductor 82 in the n-th layer.
  • FIG. 15A shows the shape of the conductor 82 viewed from the side of the stator winding 51
  • FIG. The shape of the conducting wire 82 as viewed from one axial side of the slave winding 51 is shown.
  • positions where the conductive wire group 81 is arranged are indicated as D1, D2, D3,.
  • only three conductive wires 82 are shown, which are a first conductive wire 82_A, a second conductive wire 82_B, and a third conductive wire 82_C.
  • the straight portions 83 are arranged at the position of the nth layer, that is, at the same position in the radial direction, and the straight portions 83 separated from each other by six positions (3 ⁇ m pairs) in the circumferential direction. They are connected to each other by a turn part 84.
  • every fifth straight portion 83 is connected to each other by the turn portion 84 on the same pitch circle centered on the axis of the rotor 40.
  • a pair of straight portions 83 are arranged at D ⁇ b> 1 and D ⁇ b> 7, respectively, and the pair of straight portions 83 are connected by an inverted V-shaped turn portion 84.
  • the other conductors 82_B and 82_C are arranged in the same n-th layer with their circumferential positions shifted one by one.
  • the turn portions 84 may interfere with each other. For this reason, in the present embodiment, an interference avoiding portion in which a part thereof is radially offset is formed in the turn portion 84 of each of the conductive wires 82_A to 82_C.
  • the turn portion 84 of each of the conductors 82_A to 82_C has a slope portion 84a extending in the circumferential direction on the same pitch circle, and a radially inner side from the same pitch circle from the slope portion 84a (see FIG. 15 (b), and has a top portion 84b, an inclined portion 84c, and a return portion 84d, which are portions extending in the circumferential direction on another pitch circle.
  • the top portion 84b, the inclined portion 84c, and the return portion 84d correspond to an interference avoiding portion.
  • the inclined portion 84c may be configured to shift radially outward with respect to the inclined portion 84a.
  • the turn portion 84 of each of the conductors 82_A to 82_C has a slope portion 84a on one side and a slope portion 84c on the other side on both sides of the top portion 84b, which is a central position in the circumferential direction.
  • the radial positions of the inclined portions 84a and 84c are different from each other.
  • the turn portion 84 of the first conductive wire 82 ⁇ / b> _A extends in the circumferential direction from the position D ⁇ b> 1 of the n-layer as a starting point, and bends in the radial direction (for example, radially inward) at the top portion 84 b which is the central position in the circumferential direction.
  • the radial direction for example, radially inward
  • the return portion 84d By turning again in the circumferential direction, it extends in the circumferential direction again, and further turns again in the radial direction (for example, radially outward) at the return portion 84d, thereby reaching the D9 position of the n-layer which is the end point position. I have.
  • one of the inclined portions 84a is vertically arranged in order from the top in the order of the first conductor 82_A ⁇ the second conductor 82_B ⁇ the third conductor 82_C, and each of the conductors 82_A ⁇ 82_C is turned upside down, and the other inclined portions 84c are arranged vertically from the top in the order of the third conductor 82_C ⁇ the second conductor 82_B ⁇ the first conductor 82_A. Therefore, the conductors 82_A to 82_C can be arranged in the circumferential direction without interfering with each other.
  • a turn portion 84 connected to the radially inner straight portion 83 of the plurality of linear portions 83 and a radially outer straight portion 83 are formed. It is preferable that the turn portions 84 connected to the straight portions 83 are arranged further apart from each other in the radial direction than the straight portions 83. Further, when a plurality of layers of the conductive wires 82 are bent to the same side in the radial direction near the end of the turn portion 84, that is, near the boundary with the linear portion 83, the insulation between the conductive wires 82 of the adjacent layers is caused by the interference. Should not be impaired.
  • the respective conducting wires 82 overlapping in the radial direction are bent in the radial direction at the return portion 84d of the turn portion 84, respectively.
  • the bending radius of the bent portion it is preferable to make the bending radius of the bent portion different between the n-th conductive wire 82 and the (n + 1) -th conductive wire 82.
  • the bending radius R1 of the radially inner (n-th layer) conductive wire 82 is made smaller than the bending radius R2 of the radially outer (n + 1-th layer) conductive wire 82.
  • the amount of shift in the radial direction be different between the n-th conductive wire 82 and the (n + 1) -th conductive wire 82.
  • the shift amount S1 of the radially inner (n-th layer) conductive wire 82 is made larger than the shift amount S2 of the radially outer (n + 1-th layer) conductive wire 82.
  • the length of the magnetic circuit inside the magnet is conventionally set to 1.0 [T] or more. It can be longer than the circuit length.
  • a magnetic circuit length per pole pair can be achieved with a small amount of magnets, and the reversible demagnetization range is maintained even when exposed to severe high-temperature conditions, compared to a design using conventional linearly-oriented magnets.
  • the inventor of the present application has found a configuration that can obtain characteristics close to those of a polar anisotropic magnet even when a conventional magnet is used.
  • the magnet portion 42 has an annular shape and is provided inside the rotor main body 41 (specifically, inside the magnet holding portion 43 in the radial direction).
  • the magnet section 42 is a polar anisotropic magnet and has a first magnet 91 and a second magnet 92 having different magnetic poles.
  • the first magnets 91 and the second magnets 92 are alternately arranged in the circumferential direction.
  • the first magnet 91 is an N-pole magnet in the rotor 40
  • the second magnet 92 is an S-pole magnet in the rotor 40.
  • the first magnet 91 and the second magnet 92 are permanent magnets made of a rare earth magnet such as a neodymium magnet.
  • the magnetization direction extends in an arc between the d axis which is the center of the magnetic pole and the q axis which is the boundary of the magnetic pole.
  • the magnetization direction is the radial direction on the d-axis side
  • the circumferential direction is the circumferential direction on the q-axis side.
  • the magnetic flux flows in an arc between the adjacent N and S poles by the magnets 91 and 92, so that the magnet magnetic path is longer than, for example, a radial anisotropic magnet. Therefore, as shown in FIG. 17, the magnetic flux density distribution becomes close to a sine wave.
  • the magnetic flux can be concentrated at the magnetic pole position, and the torque of the rotating electric machine 10 can be increased.
  • the horizontal axis represents the electrical angle
  • the vertical axis represents the magnetic flux density.
  • 17 and 18, 90 ° on the horizontal axis indicates the d-axis (that is, the center of the magnetic pole), and 0 ° and 180 ° on the horizontal axis indicate the q-axis.
  • the sine wave matching ratio of the magnetic flux density distribution may be, for example, 40% or more. In this way, the amount of magnetic flux in the center portion of the waveform can be reliably improved as compared with the case of using a radially oriented magnet or a parallelly oriented magnet having a sine wave matching ratio of about 30%. Further, when the sine wave matching ratio is set to 60% or more, the amount of magnetic flux at the center portion of the waveform can be reliably improved as compared with the magnetic flux concentrated array called the Halbach array.
  • the magnetic flux density changes sharply near the q-axis.
  • the change in the magnetic flux density becomes steeper, the eddy current generated in the stator winding 51 increases.
  • the magnetic flux density distribution is close to a sine wave. For this reason, near the q-axis, the change in the magnetic flux density is smaller than the change in the magnetic flux density of the radial anisotropic magnet. Thereby, generation of eddy current can be suppressed.
  • a magnetic flux is generated in the direction orthogonal to the magnetic pole surface near the d-axis of each of the magnets 91 and 92 (that is, the magnetic pole center). Make an arc. Further, the magnetic flux that is perpendicular to the magnetic pole surface becomes a strong magnetic flux.
  • the conductor groups 81 are thinned in the radial direction as described above, the radial center position of the conductor groups 81 approaches the magnetic pole surface of the magnet part 42 and is fixed. The child 50 can receive a strong magnet magnetic flux from the rotor 40.
  • the stator 50 is provided with a cylindrical stator core 52 radially inside the stator winding 51, that is, on the opposite side of the rotor 40 with the stator winding 51 interposed therebetween. Therefore, the magnetic flux extending from the magnetic pole surfaces of the magnets 91 and 92 is attracted to the stator core 52 and orbits while using the stator core 52 as a part of the magnetic path. In this case, the direction and path of the magnet magnetic flux can be optimized.
  • FIG. 19 is an electric circuit diagram of a control system of the rotating electric machine 10
  • FIG. 20 is a functional block diagram illustrating a control process performed by the control device 110.
  • the stator winding 51 includes a U-phase winding, a V-phase winding, and a W-phase winding.
  • the phase winding 51b includes an X-phase winding, a Y-phase winding, and a Z-phase winding.
  • a first inverter 101 and a second inverter 102 are provided for each of the three-phase windings 51a and 51b.
  • the inverters 101 and 102 are configured by full-bridge circuits having the same number of upper and lower arms as the number of phases of the phase windings, and the switches (semiconductor switching elements) provided on each arm are turned on and off to turn the stator windings 51 on and off. The conduction current is adjusted in each phase winding.
  • a DC power supply 103 and a smoothing capacitor 104 are connected in parallel to each of the inverters 101 and 102.
  • the DC power supply 103 is configured by, for example, an assembled battery in which a plurality of cells are connected in series.
  • Each switch of the inverters 101 and 102 corresponds to the semiconductor module 66 shown in FIG. 1 and the like, and the capacitor 104 corresponds to the capacitor module 68 shown in FIG. 1 and the like.
  • the control device 110 includes a microcomputer including a CPU and various memories. Based on various detection information in the rotating electric machine 10 and requests for powering drive and power generation, the control of the power supply is performed by turning on and off the switches in the inverters 101 and 102. carry out. Control device 110 corresponds to control device 77 shown in FIG.
  • the detection information of the rotating electric machine 10 includes, for example, a rotation angle (electrical angle information) of the rotor 40 detected by an angle detector such as a resolver, a power supply voltage (inverter input voltage) detected by a voltage sensor, and a current sensor. , The energized current of each phase detected by Control device 110 generates and outputs an operation signal for operating each switch of inverters 101 and 102.
  • the power generation request is, for example, a request for regenerative driving when the rotating electric machine 10 is used as a vehicle power source.
  • the first inverter 101 includes a series connection of an upper arm switch Sp and a lower arm switch Sn in three phases including a U phase, a V phase, and a W phase.
  • the high potential side terminal of the upper arm switch Sp of each phase is connected to the positive terminal of the DC power supply 103, and the low potential side terminal of the lower arm switch Sn of each phase is connected to the negative terminal (ground) of the DC power supply 103.
  • One end of each of a U-phase winding, a V-phase winding, and a W-phase winding is connected to an intermediate connection point between the upper arm switch Sp and the lower arm switch Sn of each phase.
  • These phase windings are star-connected (Y connection), and the other ends of the phase windings are connected to each other at a neutral point.
  • the second inverter 102 has a configuration similar to that of the first inverter 101, and includes a series connection of an upper arm switch Sp and a lower arm switch Sn in three phases including an X phase, a Y phase, and a Z phase. ing.
  • the high potential side terminal of the upper arm switch Sp of each phase is connected to the positive terminal of the DC power supply 103, and the low potential side terminal of the lower arm switch Sn of each phase is connected to the negative terminal (ground) of the DC power supply 103.
  • One end of each of an X-phase winding, a Y-phase winding, and a Z-phase winding is connected to an intermediate connection point between the upper arm switch Sp and the lower arm switch Sn of each phase.
  • These phase windings are star-connected (Y connection), and the other ends of the phase windings are connected to each other at a neutral point.
  • FIG. 20 shows a current feedback control process for controlling the U, V, and W phase currents, and a current feedback control process for controlling the X, Y, and Z phase currents.
  • the control process on the U, V, and W phases will be described first.
  • a current command value setting unit 111 uses a torque-dq map and based on a powering torque command value or a power generation torque command value for the rotating electric machine 10 and an electric angular velocity ⁇ obtained by time-differentiating the electric angle ⁇ . , A d-axis current command value and a q-axis current command value are set.
  • the current command value setting unit 111 is provided in common on the U, V, and W phase sides and the X, Y, and Z phase sides.
  • the power generation torque command value is, for example, a regenerative torque command value when the rotating electric machine 10 is used as a vehicle power source.
  • the dq conversion unit 112 converts a current detection value (each phase current) obtained by a current sensor provided for each phase into a d-axis current and a q-axis current which are components of an orthogonal two-dimensional rotating coordinate system having the field direction as a d-axis. And convert to
  • the d-axis current feedback control unit 113 calculates a d-axis command voltage as an operation amount for feedback-controlling the d-axis current to a d-axis current command value. Further, the q-axis current feedback control unit 114 calculates a q-axis command voltage as an operation amount for feedback-controlling the q-axis current to a q-axis current command value. In each of these feedback control units 113 and 114, the command voltage is calculated using the PI feedback method based on the deviation of the d-axis current and the q-axis current from the current command value.
  • the three-phase converter 115 converts d-axis and q-axis command voltages into U-phase, V-phase, and W-phase command voltages.
  • Each of the units 111 to 115 is a feedback control unit that performs feedback control of the fundamental wave current based on the dq conversion theory, and the U-phase, V-phase, and W-phase command voltages are feedback control values.
  • the operation signal generation unit 116 generates an operation signal for the first inverter 101 based on the three-phase command voltage using a known triangular wave carrier comparison method. Specifically, the operation signal generation unit 116 performs a PWM control based on a magnitude comparison between a signal obtained by standardizing a three-phase command voltage with a power supply voltage and a carrier signal such as a triangular wave signal, and thereby switches the upper and lower arms in each phase. An operation signal (duty signal) is generated.
  • the X, Y, and Z phase sides have the same configuration, and the dq conversion unit 122 outputs a current detection value (each phase current) obtained by a current sensor provided for each phase to a field direction of d. It is converted into a d-axis current and a q-axis current which are components of an orthogonal two-dimensional rotating coordinate system as axes.
  • the d-axis current feedback control unit 123 calculates a d-axis command voltage
  • the q-axis current feedback control unit 124 calculates a q-axis command voltage.
  • the three-phase converter 125 converts d-axis and q-axis command voltages into X-phase, Y-phase, and Z-phase command voltages.
  • the operation signal generation unit 126 generates an operation signal for the second inverter 102 based on the three-phase command voltage.
  • the operation signal generation unit 126 performs a PWM control based on a magnitude comparison between a signal obtained by standardizing a three-phase command voltage with a power supply voltage and a carrier signal such as a triangular wave signal, and thereby switches the upper and lower arms in each phase.
  • An operation signal (duty signal) is generated.
  • the driver 117 turns on and off the three-phase switches Sp and Sn of the inverters 101 and 102 based on the switch operation signals generated by the operation signal generation units 116 and 126.
  • This process is used mainly for the purpose of increasing the output of the rotating electric machine 10 and reducing the loss under operating conditions in which the output voltage of each of the inverters 101 and 102 becomes large, such as in a high rotation region and a high output region.
  • the control device 110 selects and executes one of the torque feedback control process and the current feedback control process based on the operating conditions of the rotating electric machine 10.
  • FIG. 21 shows a torque feedback control process corresponding to the U, V, and W phases and a torque feedback control process corresponding to the X, Y, and Z phases.
  • the same components as those in FIG. 20 are denoted by the same reference numerals, and description thereof will be omitted.
  • the control process on the U, V, and W phases will be described first.
  • the voltage amplitude calculation unit 127 is a command value for the magnitude of the voltage vector based on the powering torque command value or the power generation torque command value for the rotary electric machine 10 and the electrical angular velocity ⁇ obtained by time-differentiating the electrical angle ⁇ . Calculate the voltage amplitude command.
  • the torque estimation unit 128a calculates a torque estimation value corresponding to the U, V, and W phases based on the d-axis current and the q-axis current converted by the dq conversion unit 112. Note that the torque estimating unit 128a may calculate the voltage amplitude command based on the map information in which the d-axis current, the q-axis current, and the voltage amplitude command are related.
  • the torque feedback control unit 129a calculates a voltage phase command, which is a command value of a voltage vector phase, as an operation amount for performing feedback control of a torque estimation value to a powering torque command value or a power generation torque command value.
  • the torque feedback control unit 129a calculates a voltage phase command using a PI feedback method based on the deviation of the estimated torque value from the powering torque command value or the generated torque command value.
  • the operation signal generation unit 130a generates an operation signal for the first inverter 101 based on the voltage amplitude command, the voltage phase command, and the electrical angle ⁇ . Specifically, the operation signal generation unit 130a calculates a three-phase command voltage based on the voltage amplitude command, the voltage phase command, and the electrical angle ⁇ , and standardizes the calculated three-phase command voltage with the power supply voltage. And PWM control based on a magnitude comparison between the signal and a carrier signal such as a triangular wave signal to generate switch operation signals for the upper and lower arms in each phase.
  • a carrier signal such as a triangular wave signal
  • the operation signal generation unit 130a is based on a pulse pattern information, a voltage amplitude command, a voltage phase command, and an electrical angle ⁇ , which are map information in which the voltage amplitude command, the voltage phase command, the electric angle ⁇ and the switch operation signal are related.
  • a switch operation signal may be generated.
  • the X-, Y-, and Z-phase sides also have the same configuration, and the torque estimating unit 128b determines the X, Y, and Z-axis currents based on the d-axis current and the q-axis current converted by the dq An estimated torque value corresponding to the Z phase is calculated.
  • the torque feedback control unit 129b calculates a voltage phase command as an operation amount for feedback-controlling the torque estimation value to the powering torque command value or the power generation torque command value.
  • the torque feedback control unit 129b calculates the voltage phase command using the PI feedback method based on the deviation of the estimated torque value from the powering torque command value or the generated torque command value.
  • the operation signal generator 130b generates an operation signal for the second inverter 102 based on the voltage amplitude command, the voltage phase command, and the electrical angle ⁇ . Specifically, the operation signal generation unit 130b calculates a three-phase command voltage based on the voltage amplitude command, the voltage phase command, and the electrical angle ⁇ , and standardizes the calculated three-phase command voltage with the power supply voltage. And PWM control based on a magnitude comparison between the signal and a carrier signal such as a triangular wave signal to generate switch operation signals for the upper and lower arms in each phase. The driver 117 turns on and off the three-phase switches Sp and Sn in the inverters 101 and 102 based on the switch operation signals generated by the operation signal generation units 130a and 130b.
  • the operation signal generation unit 130b is based on the voltage amplitude command, the voltage phase command, the pulse pattern information that is the map information associated with the electrical angle ⁇ and the switch operation signal, the voltage amplitude command, the voltage phase command, and the electrical angle ⁇ .
  • a switch operation signal may be generated.
  • the teeth made of the soft magnetic material are not provided between the linear portions 83 adjacent in the circumferential direction of the stator winding 51 (that is, between the adjacent magnet facing portions).
  • the conductor cross-sectional area can be increased by bringing the adjacent linear portions 83 closer to each other, as compared with the case where the teeth are provided between the linear portions 83. Heat generated due to energization can be reduced.
  • the absence of teeth between the straight portions 83 can eliminate magnetic saturation and increase the current flowing through the stator winding 51. It becomes possible. In this case, it is possible to suitably cope with an increase in the amount of heat generated with an increase in the supplied current. As described above, it is possible to optimize the heat radiation performance of the stator 50.
  • the stator core 52 is assembled to the stator winding 51, and in the assembled state, no teeth made of a soft magnetic material are provided between the linear portions 83 adjacent in the circumferential direction.
  • the stator core 52 provided on the opposite side in the radial direction with respect to the rotor 40 functions as a back yoke, so that an appropriate magnetic circuit can be provided even if no teeth exist between the linear portions 83. Can be formed.
  • the stator winding 51 is sealed with a sealing material, so that an insulating member is provided between the linear portions 83 circumferentially adjacent to each other in the stator winding 51. Thereby, even if the respective linear portions 83 are arranged at positions close to each other in the circumferential direction, it is possible to secure good insulation properties in the linear portions 83.
  • the conducting wire 82 is flattened and the radial thickness of the straight portion 83 is reduced, so that the radial center position of the straight portion 83 can be closer to the magnet portion 42 of the rotor 40. Accordingly, it is possible to increase the magnetic flux density in the linear portion 83 of the stator winding 51 and to increase the torque while suppressing the magnetic saturation in the stator 50 by adopting the slotless structure. Further, as described above, since the linear portions 83 adjacent to each other in the circumferential direction can be brought closer to each other, the conductor cross-sectional area can be ensured even when the conducting wire 82 is flat.
  • each conductor 82 of the stator winding 51 is an aggregate of a plurality of strands 86, the current flow path in the conductor 82 can be made thinner. Accordingly, even when an eddy current is generated when the magnetic field from the magnet portion 42 is linked to the conducting wire 82, an eddy current suppressing effect of the conducting wire 82 against the eddy current can be obtained. As a result, eddy current flowing through the conductive wire 82 can be reduced.
  • each conducting wire 82 is configured by twisting the strands 86, there are portions where the directions of applying the magnetic field are opposite to each other in each strand 86, and the back electromotive voltage caused by the interlinking magnetic field cancels out. Is done. As a result, the effect of reducing the eddy current flowing through the conductive wire 82 can be enhanced.
  • each strand 86 is made of the fibrous conductive material 87, the current flow path in the conductor 82 can be made thinner, and the number of twists of the current flow path can be increased. Thereby, the effect of reducing the eddy current can be enhanced.
  • the strand 86 is preferably made of at least carbon nanotube fiber.
  • the conductor area WA can be extended in the circumferential direction as compared with the inter-wire area WB because the teeth are not provided in the stator core 52. Accordingly, a configuration in which the conductor region WA is larger than the inter-conductor region WB in the circumferential direction can be suitably realized.
  • the turn portion 84 of the stator winding 51 is shifted in the radial direction and has an interference avoiding portion that avoids interference with another turn portion 84, different turn portions 84 are arranged apart from each other in the radial direction. Can be. Thereby, the heat radiation of the turn portion 84 can be improved, and the heat radiation performance of the stator 50 can be further enhanced.
  • the turn portions 84 are inclined portions 84a (portions extending in the circumferential direction on the same pitch circle). And a top portion 84b, a slope portion 84c, and a return portion 84d that are shifted radially inward from the same pitch circle from the inclined portion 84a and extend in the circumferential direction on another pitch circle. (Corresponding to two parts). Thereby, mutual interference in the turn portion 84 can be properly avoided.
  • the turn portion 84 connected to the radially inner straight portion 83 and the turn portion 84 connected to the radially outer straight portion 83 are smaller in diameter than the straight portions 83.
  • the heat dissipating performance of the turn portion 84 can be improved because the heat dissipating member is disposed apart from the direction.
  • each of these turns is different.
  • the portions 84 can be suitably spaced.
  • the amount of radial shift from the straight portion 83 in the bent portion is determined by the turn portion 84 connected to the radially inner straight portion 83 and the turn portion 84 connected to the radially outer straight portion 83. Due to the difference, the respective turn portions 84 can be suitably separated from each other.
  • the stator 50 includes a stator winding 51 outside a stator core 52.
  • the stator winding 51 includes a coil side portion 53 and coil end portions 54 and 55.
  • the coil side portion 53 is opposed to the magnet portion 42 of the rotor 40 and extends straight along the magnet portion 42 in the axial direction.
  • the coil end portions 54 and 55 have a plurality of turn portions 84 bent toward the side opposite to the magnet portion 42 of the rotor 40, and the turn portions 84 overlap each other in the axial direction of the rotating shaft 11.
  • the coil end portions 54 and 55 are bent radially inward along the stator core 52, and the stator core 52 is formed by the coil end portion 54 and the coil end portion 55. It is configured to sandwich it.
  • a part of the turn portion 84 forming the coil end portion 54 which is located on a side farther from the end plate portion 63, has a diameter of the rotating shaft 11 larger than the inner peripheral surface of the stator core 52. It is located inside the direction.
  • the turn portions 84 having different shapes are shifted from each other in the radial direction, and there are a portion overlapping each other in the axial direction and a portion not overlapping.
  • the turn portions 84 forming the coil end portions 55 located closer to the end plate portion 63 have the same radial projection amount.
  • the turn portions 84 forming the coil end portion 55 do not shift from each other in the radial direction, and the portion where the turn portions 84 overlap each other in the axial direction in the entire coil end portion 55 forms the coil end portion 54. More than in the turn section 84.
  • the coil end portion 55 is located radially outward of the rotating shaft 11 from the inner peripheral surface of the annular stator core 52.
  • the coil end portion 54 and the coil end portion 55 have asymmetric shapes.
  • the stator winding 51 having a large radial projection in the coil end portion 54 has a small axial projection in the coil end portion 55.
  • the stator winding 51 having a small amount of protrusion in the radial direction at the coil end portion 54 has a large amount of protrusion in the axial direction at the coil end portion 55. That is, the length of the stator winding 51 including the coil end portion 54 and the coil end portion 55 is substantially equal to each other.
  • the casing portion 64 that holds the stator core 52 from the radial inside is a cylindrical shape extending in the axial direction.
  • a casing portion 64 is located radially inside the coil end portion 55. In other words, on the coil end portion 55 side, the casing portion 64 is provided to protrude longer in the axial direction than the stator core 52.
  • the casing 64 is not located radially inside the coil end 54. In other words, on the coil end portion 54 side, the end in the axial direction of the casing portion 64 is flush with the end in the axial direction of the stator core 52, and extends in the axial direction with respect to the stator core 52.
  • the extension height is zero. Therefore, the casing portion 64 has a higher extension height in the axial direction with respect to the stator core 52 on the coil end portion 55 side than on the coil end portion 54 side.
  • the stator 50 includes stator windings 51 for three phases of U-phase, V-phase, and W-phase outside the annular stator core 52. That is, the stator winding 51 includes a U-phase stator winding 51U that is a U-phase winding, a V-phase stator winding 51V that is a V-phase winding, and a W-phase stator that is a W-phase winding. It is formed by three types of phase windings including a winding 51W.
  • the turn part 84 will be referred to as a turn part 841 or a turn part 846.
  • the description will be made using two symbols. That is, among the coil end portions 54 and 55, the turn portion 84 on the coil end portion 54 side located farther from the end plate portion 63 is denoted by the reference numeral of the turn portion 841. On the other hand, among the coil end portions 54 and 55, the turn portion 84 on the coil end portion 55 side located closer to the end plate portion 63 is denoted by the reference numeral of the turn portion 846.
  • the turn portion 841 is a U-phase turn portion 841U that is a turn portion 841 in the U-phase stator winding 51U, a V-phase turn portion 841V that is a V-phase turn portion 841, and a W phase that is a turn portion 841 in the W phase.
  • a turn portion 841W is provided.
  • the turn portion 846 has three types of a U-phase turn portion 846U, a V-phase turn portion 846V, and a W-phase turn portion 846W.
  • the coil side part 53 has three types of a U-phase coil side part 53U, a V-phase coil side part 53V, and a W-phase coil side part 53W.
  • the U-phase stator winding 51U includes a U-phase coil side portion 53U and U-phase turn portions 841U and 846U.
  • the V-phase stator winding 51V includes a V-phase coil side portion 53V and V-phase turn portions 841V and 846V.
  • the W-phase stator winding 51W includes a W-phase coil side portion 53W and W-phase turn portions 841W and 846W.
  • the U-phase stator winding 51U, the V-phase stator winding 51V, and the W-phase stator winding 51W are arranged in a circumferential direction so that the stator windings 51 of the same phase do not contact each other on the outer peripheral surface of the stator core 52. They are arranged regularly every predetermined number. That is, in the circumferential direction of the stator 50, the V-phase stator winding 51V and the W-phase stator winding 51W are arranged adjacent to the U-phase stator winding 51U.
  • a U-phase stator winding 51U and a W-phase stator winding 51W are arranged adjacent to the V-phase stator winding 51V.
  • a U-phase stator winding 51U and a V-phase stator winding 51V are arranged adjacent to the W-phase stator winding 51W. Therefore, the U-phase stator windings 51U are provided in the stator 50 at equal intervals in the circumferential direction.
  • the V-phase stator windings 51V are provided in the stator 50 at equal intervals in the circumferential direction.
  • the W-phase stator windings 51W are provided at equal intervals in the circumferential direction on the stator 50.
  • the longest U-phase stator winding 51U of the turn portion 841 has the shortest turn portion 846.
  • the shortest W-phase stator winding 51W of the turn portion 841 has the longest turn portion 846. That is, the conductor length of the U-phase stator winding 51U, the conductor length of the V-phase stator winding 51V, and the conductor length of the W-phase stator winding 51W are equal to each other.
  • the U-phase stator winding 51U, the V-phase stator winding 51V, and the W-phase stator winding 51W have the same thickness. However, it is not necessary that the stator windings 51 of each phase have strictly equal lengths and thicknesses. I just need.
  • the conductor group 81 forming the turn portion 841 is constituted by four conductors 82 arranged in the radial direction. That is, the U-phase turn part 841U is configured in the order of the first U-phase turn part 841U1, the second U-phase turn part 841U2, the third U-phase turn part 841U3, and the fourth U-phase turn part 841U4 in the direction from the radial outside to the radial inside. Have been.
  • the V-phase turn part 841V includes a first V-phase turn part 841V1, a second V-phase turn part 841V2, a third V-phase turn part 841V3, and a fourth V in a direction from the radial outside to the radial inside.
  • the phase turn portions 841V4 are configured in this order.
  • the W-phase turn portion 841W includes a first W-phase turn portion 841W1, a second W-phase turn portion 841W2, a third W-phase turn portion 841W3, and a fourth W in a direction from the radial outside to the radial inside.
  • the phase turn portions 841W4 are configured in this order.
  • the conductor group 81 and the conductor 82 together provide a conductor part.
  • the conducting wire 82 forming the turn portion 841 includes two inclined portions 841a which are portions extending radially inward, a top portion 841b which is a portion extending in the circumferential direction, and two corner portions connecting the inclined portions 841a and 841b. 841e.
  • the turn portion 841 has a U-shape having an open end radially outward.
  • the U-phase turn portion 841U is located closer to the stator core 52 in the axial direction than the V-phase turn portion 841V and the W-phase turn portion 841W. That is, the U-phase turn portion 841U provides the innermost turn portion located at the innermost layer among the turn portions 841.
  • the V-phase turn portion 841V and the W-phase turn portion 841W are located axially outward, which is a direction farther from the stator core 52 than the U-phase turn portion 841U. That is, the V-phase turn part 841V and the W-phase turn part 841W provide an outer layer turn part. Further, the W-phase turn portion 841W, which is the outer layer turn portion, is located axially outside the U-phase turn portion 841U and the V-phase turn portion 841V. That is, the W-phase turn portion 841W provides the outermost turn portion located at the outermost layer among the turn portions 841.
  • the V-phase turn portion 841V that is the outer layer turn portion is located between the U-phase turn portion 841U that is the innermost turn portion and the W-phase turn portion 841W that is the outermost layer turn portion. That is, the V-phase turn part 841V provides a middle turn part located in a middle layer between the innermost layer and the outermost layer of the turn part 841.
  • the maximum protrusion amount of the U-phase turn portion 841U is indicated by the innermost layer maximum protrusion amount LU.
  • the maximum protrusion amount of the V-phase turn portion 841V that is the distance from the radially outermost position to the radially innermost position is indicated by the middle-layer maximum protrusion amount LV.
  • the maximum protrusion amount of the W-phase turn portion 841W is indicated by the outermost layer maximum protrusion amount LW.
  • the innermost layer maximum protrusion amount LU is larger than the middle layer maximum protrusion amount LV.
  • the outermost layer maximum protrusion amount LW is smaller than the middle layer maximum protrusion amount LV. That is, the radial protrusion amount of the turn portion 841 is the largest in the innermost layer maximum protrusion amount LU, and the smallest in the outermost layer maximum protrusion amount LW.
  • the protruding amount means a length that protrudes in the radial direction with reference to the outer peripheral surface of the stator core 52, which is the surface on which the coil side portion 53 is located. Further, the protruding amount is an amount determined for each conducting wire 82 forming the turn portion 841, and in the U-phase turn portion 841U, the first U-phase turn portion 841U1, the second U-phase turn portion 841U2, and the third U-phase turn portion 841U3
  • the fourth U-phase turn portion 841U4 has a different protrusion amount.
  • the innermost layer maximum protrusion amount LU is equal to the protrusion amount in the fourth U-phase turn portion 841U4.
  • the middle layer maximum protrusion amount LV is equal to the protrusion amount in the fourth V-phase turn portion 841V4.
  • the outermost layer maximum protrusion amount LW is equal to the protrusion amount in the fourth W-phase turn portion 841W4.
  • the amount of radial protrusion of the second U-phase turn portion 841U2 in the U-phase turn portion 841U is substantially equal to the thickness of the stator core 52 in the radial direction.
  • the radial projection of the first U-phase turn 841U1 is smaller than the second U-phase turn 841U2 by the thickness of the first U-phase turn 841U1.
  • the amount of radial protrusion of the third U-phase turn portion 841U3 is about twice the radial thickness of the stator core 52. That is, the radially projecting amount of the third U-phase turn portion 841U3 is larger than the thickness dimension of the stator core 52. Therefore, at least a portion of the U-phase turn portion 841U protrudes radially inward from the inner peripheral surface of the stator core 52.
  • the amount of radial protrusion of the fourth U-phase turn portion 841U4 is greater than that of the third U-phase turn portion 841U3 by the thickness of the fourth U-phase turn portion 841U4.
  • the amount of radial protrusion of the second U-phase turn portion 841U2 is smaller than the amount of radial protrusion of the third U-phase turn portion 841U3. That is, the first U-phase turn portion 841U1 and the second U-phase turn portion 841U2 provide a small turn portion having a small protrusion amount. On the other hand, the third U-phase turn portion 841U3 and the fourth U-phase turn portion 841U4 provide a large turn portion having a large protrusion amount.
  • the V-phase turn portion 841V includes a first V-phase turn portion 841V1 and a second V-phase turn portion 841V2 as small turn portions, and a third V-phase turn portion 841V3 and a fourth V-phase turn portion 841V4. Is a large turn section.
  • the radially projecting amounts of the third V-phase turn portion 841V3 and the fourth V-phase turn portion 841V4, which are the large turn portions of the V-phase turn portion 841V are equal to the third U-phase turn portion 841U3, the fourth U-phase turn portion 841U4, and Is smaller than the amount of protrusion in the radial direction.
  • the amount of protrusion of the second V-phase turn portion 841V2 in the radial direction is substantially equal to the amount of protrusion of the second U-phase turn portion 841U2 in the radial direction.
  • a gap is formed between the large turn part and the small turn part. That is, the second U-phase turn part 841U2 and the third U-phase turn part 841U3 are radially separated from each other, and a gap is formed between the second U-phase turn part 841U2 and the third U-phase turn part 841U3. . Also, a gap is formed between the second V-phase turn part 841V2 and the third V-phase turn part 841V3.
  • the size of the gap between the second V-phase turn part 841V2 and the third V-phase turn part 841V3 in the V-phase turn part 841V depends on the size of the gap between the second U-phase turn part 841U2 and the third U-phase turn part 841U3 in the U-phase turn part 841U. It is smaller than the size of the gap between them.
  • the amount of protrusion of the second W-phase turn portion 841W2 and the amount of protrusion of the third W-phase turn portion 841W3 differ by the thickness of the conductive wire 82. That is, the gap formed between the second W-phase turn portion 841W2 and the third W-phase turn portion 841W3 is extremely small. In other words, the size of the gap between the second W-phase turn part 841W2 and the third W-phase turn part 841W3 in the W-phase turn part 841W is the second V-phase turn part 841V2 and the third V-phase turn part in the V-phase turn part 841V. 841 V3, which is smaller than the size of the gap.
  • the radius of curvature Ra is the same size outside the bends of the two corners 841e in the second V-phase turn 841V2.
  • the radius of curvature Rb is the same size inside the two corners 841e of the third V-phase turn 841V3.
  • the corners 841e that define the radius of curvature Ra and the radius of curvature Rb face each other.
  • the curvature radius Ra and the curvature radius are assumed.
  • Rb has the same size. That is, in the V-phase turn portion 841V, a gap is generated between the second V-phase turn portion 841V2 and the third V-phase turn portion 841V3 by changing the size of the radius of curvature Ra and the radius of curvature Rb.
  • the radius of curvature Ra is larger than the radius of curvature Rb. That is, the second V-phase turn portion 841V2 is bent so as to draw a gentler curve than the third V-phase turn portion 841V3. Thereby, in the V-phase turn portion 841V, a gap can be formed, and the four conductive wires 82 can be bent and turned without difficulty. Also in the U-phase turn portion 841U, the second U-phase turn portion 841U2 is bent with a large radius of curvature so as to draw a gentler curve than the third U-phase turn portion 841U3, similarly to the V-phase turn portion 841V.
  • the amount of protrusion in the radial direction of the first U-phase turn portion 841U1 is equal to the amount of protrusion in the radial direction of the first V-phase turn portion 841V1.
  • the amount of protrusion in the radial direction at the second U-phase turn portion 841U2 is equal to the amount of protrusion in the radial direction of the second V-phase turn portion 841V2.
  • the protrusion amount of the fourth W-phase turn portion 841W4 is smaller than the protrusion amount of the first V-phase turn portion 841V1.
  • the top portion 841b of the W-phase turn portion 841W is provided at a position radially displaced from the top portion 841b of the U-phase turn portion 841U and the top portion 841b of the V-phase turn portion 841V.
  • the top portion 841b of the W-phase turn portion 841W does not axially overlap the top portion 841b of the other turn portion 841.
  • the heat of the stator winding 51 is actively radiated into the air, so that the temperature does not easily rise.
  • the portion of the stator winding 51 having a small contact area with air heat is hardly dissipated into the air, and the temperature is likely to rise due to heat retention. Therefore, in order to improve the heat dissipation performance from the stator winding 51, it is necessary to make the low temperature air and the stator winding 51 contact as much as possible.
  • the coil end portion 54 has three types of turn portions 841 including a U-phase turn portion 841U as an innermost turn portion, a V-phase turn portion 841V as an intermediate turn portion, and a W-phase turn portion 841W as an outermost turn portion. It is constituted by.
  • the three types of turn portions 841 of the U-phase turn portion 841U, the V-phase turn portion 841V, and the W-phase turn portion 841W are not displaced from each other in the radial direction, and the protrusion amounts in the radial direction are equal to each other. Is assumed.
  • the U-phase turn portion 841U which is the innermost turn portion, has the stator core 52 disposed inside, the V-phase turn portion 841V, which is the middle turn portion, and the W-phase turn portion, which is the outermost turn portion, outside. 841W.
  • the heat radiation performance of the U-phase turn portion 841U tends to be lower than at least the W-phase turn portion 841W.
  • the amount of radial protrusion of the U-phase turn portion 841U, the amount of radial protrusion of the V-phase turn portion 841V, and the amount of radial protrusion of the W-phase turn portion 841W are different.
  • the protrusion amounts are different from each other.
  • three types of turn portions 841 of the U-phase turn portion 841U, the V-phase turn portion 841V, and the W-phase turn portion 841W are arranged to be shifted from each other in the radial direction. Therefore, at least a portion of the U-phase turn portion 841U, which is the innermost turn portion, is a portion where no other turn portion 841 is arranged outside.
  • the V-phase turn portion 841V which is the middle turn portion, has a portion on the outside where no other turn portion 841 is arranged. Therefore, the U-phase turn portion 841U, which is the innermost turn portion, and the V-phase turn portion 841V, which is the middle turn portion, provide a heat dissipation promoting turn portion 841 having a portion where heat dissipation to the air is promoted. Also, the amount of the W-phase turn portion 841W overlapping the other turn portions 841 in the axial direction is small. In other words, the contact area with the air inside the W-phase turn portion 841W in the axial direction is large. Therefore, the W-phase turn portion 841W provides a heat dissipation promoting turn portion 841 in which heat dissipation is promoted.
  • a gap is formed between the second U-phase turn portion 841U2 and the third U-phase turn portion 841U3 forming the U-phase turn portion 841U. It is assumed that no gap is formed between the second U-phase turn portion 841U2 and the third U-phase turn portion 841U3. In this case, air flowing around the U-phase turn portion 841U cannot enter between the four conducting wires 82 forming the U-phase turn portion 841U. That is, the area where the second U-phase turn portion 841U2 and the third U-phase turn portion 841U3 are in contact with each other cannot be included in the contact area between the U-phase turn portion 841U and air.
  • the U-phase turn portion 841U a gap is formed between the second U-phase turn portion 841U2 and the third U-phase turn portion 841U3. Therefore, air can enter between the second U-phase turn part 841U2 and the third U-phase turn part 841U3. That is, the area of the portion where the second U-phase turn portion 841U2 and the third U-phase turn portion 841U3 face each other can be included in the contact area between the U-phase turn portion 841U and air. Therefore, it is easy to secure a large contact area with the air in the U-phase turn portion 841U.
  • the coil end portion 54 farther from the end plate portion 63 tends to contribute to the improvement of the heat radiation performance of the stator winding 51 than the coil end portion 55 closer to the end plate portion 63.
  • the shape of the turn portion 841 forming the coil end portion 54 having a shape having a high heat dissipation performance is better than the shape of the turn portion 846 forming the coil end portion 55 having a shape having a high heat dissipation performance.
  • the heat radiation performance of the entire wire 51 can be improved.
  • the shape of the heat radiation performance of both the turn portions 841 and 846 is higher in the whole stator winding 51 than the shape of the heat radiation performance of only one of the turn portions 841 and 846. Easy to enhance heat dissipation performance.
  • the radially projecting amount of the U-phase turn portion 841U as the innermost turn portion is the radially projecting amount of the V-phase turn portion 841V and the W-phase turn portion 841W as the outer layer turn portion.
  • the projection amount is different from that of FIG.
  • the U-phase turn portion 841U has many portions that do not axially overlap the V-phase turn portion 841V and the W-phase turn portion 841W. Therefore, as compared with the case where the U-phase turn portion 841U overlaps the other turn portion 841 in the axial direction, a larger contact area with the air can be ensured, and the wind generated by the rotation of the rotor 40 in the vicinity can be secured.
  • the heat radiation into the air in the U-phase turn portion 841U can be promoted. Also, in the V-phase turn portion 841V and the W-phase turn portion 841W, the heat radiation to the air can be promoted in the same manner as the U-phase turn portion 841U. Therefore, it is easy to suppress an abnormal temperature rise in the turn portion 841 and to exert appropriate performance of the rotating electric machine 10. In particular, it is very important for the rotary electric machine 10 to operate properly that the heat radiation into the air in the U-phase turn part 841U located in the innermost layer where the heat is most likely to be stored among the turn parts 841 is very important. It is.
  • the U-phase turn portion 841U has a gap between a small turn portion such as the second U-phase turn portion 841U2 and a large turn portion such as the third U-phase turn portion 841U3. Therefore, a large contact area between the air flowing around the U-phase turn portion 841U and the U-phase turn portion 841U can be ensured. Therefore, the heat radiation performance of the U-phase turn portion 841U can be improved. Further, also in the V-phase turn portion 841V and the W-phase turn portion 841W, heat radiation into the air can be promoted by providing a gap similarly to the U-phase turn portion 841U.
  • a gap in the U-phase turn portion 841U as the innermost turn portion is larger than a gap in the V-phase turn portion 841V and the W-phase turn portion 841W as the outer layer turn portions. For this reason, the heat radiation performance in the U-phase turn portion 841U located in the innermost layer where the heat is most likely to be stored is increased, and the temperature in the U-phase stator winding 51U is higher than the temperatures in the other stator windings 51. It is easy to prevent it from becoming too high.
  • the radius of curvature Ra at the corner 841e of the second V-phase turn portion 841V2, which is a small turn portion, is larger than the radius of curvature Rb at the corner portion 841e of the third V-phase turn portion 841V3, which is a large turn portion. Therefore, in the V-phase turn portion 841V, a gap is easily formed between the second V-phase turn portion 841V2 and the third V-phase turn portion 841V3. That is, in the turn portion 841 configured by bending the plurality of conducting wires 82, the conducting wire 82 can be turned without difficulty, and an excessive load is suppressed from being applied to the corner portion 841e, and the properly turned state is maintained. It's easy to do.
  • the turn portions 84 provided on both sides in the axial direction are the heat radiation promoting turn portion 841.
  • the turn portions 84 provided on both sides in the axial direction have asymmetric shapes.
  • the orientation of the stator 50 can be more easily recognized as compared with the case where both sides of the turn portion 84 are the heat dissipation promoting turn portions 841. Therefore, when assembling the components constituting the rotating electric machine 10, it is easy to prevent the components from being erroneously assembled in the correct orientation. In addition, a high degree of freedom in designing the stator winding 51 can be ensured.
  • the heat dissipation promoting turn portion 841 is a turn portion 841 on the side where the extension height of a portion of the casing portion 64 that is axially outside the stator core 52 in the turn portions 84 on both axial sides of the stator core 52 is smaller. It is provided in. For this reason, the heat radiation can be promoted in the turn portion 841 in which the flow of the air is hardly hindered by the casing portion 64. Therefore, a greater heat dissipation promoting effect can be easily obtained than when the same type of heat dissipation promoting turn portion 841 is provided on the turn portion 846 side opposite to the turn portion 841.
  • the resistance value of the U-phase stator winding 51U, the resistance value of the V-phase stator winding 51V, and the resistance value of the W-phase stator winding 51W are equal to each other. That is, the conductor lengths and the thicknesses of the different-phase stator windings 51 are equal to each other. For this reason, the resistance values of the different-phase stator windings 51 can be made equal to each other, and the amount of heat generated between the different-phase stator windings 51 when the conducting wire 82 is energized can be made equal. Therefore, only the heat value of the specific stator winding 51 is abnormally large, and it is easy to suppress that the specific portion of the stator winding 51 becomes abnormally high in temperature.
  • the innermost layer maximum protrusion amount LU in the radial direction of the U-phase turn portion 841U, which is the innermost turn portion, is determined by the radially intermediate maximum layer protrusion amount LV of the V-phase turn portion 841V and the radial direction of the W-phase turn portion 841W. It is larger than the outermost layer maximum protrusion amount LW. Therefore, heat dissipation can be promoted not only at the top portion 841b of the U-phase turn portion 841U but also at the inclined portion 841a. Therefore, the heat radiation performance of the U-phase turn portion 841U located in the innermost layer where heat is most likely to be stored is easily increased.
  • the radially-directed maximum layer protrusion amount LV in the V-phase turn portion 841V is larger than the radially outermost layer maximum protrusion amount LW in the W-phase turn portion 841W. Furthermore, the radially innermost layer maximum protrusion amount LU of the U-phase turn portion 841U is larger than the radially middle layer maximum protrusion amount LV of the V-phase turn portion 841V. In other words, the radially protruding amount of the heat radiation promoting turn portion 841 is set to be larger in the order in which heat is more likely to accumulate.
  • the innermost layer maximum protrusion amount LU in the U-phase turn portion 841U forming the heat dissipation promotion turn portion 841 is larger than the thickness dimension of the stator core 52. For this reason, it becomes possible to prevent the air from becoming difficult to flow due to the stator core 52 being positioned inside the U-phase turn portion 841U in the axial direction. Therefore, it is easy to have a configuration in which air actively flows on both the axially outer side and the axially inner side of the U-phase turn portion 841U. Therefore, it is easy to enhance the heat radiation performance in the U-phase turn portion 841U.
  • a gap may be formed other than between the second U-phase turn portion 841U2 and the third U-phase turn portion 841U3.
  • a gap may be formed between the first U-phase turn part 841U1 and the second U-phase turn part 841U2.
  • a plurality of gaps may be formed in the U-phase turn section 841U by forming a gap between the third U-phase turn section 841U3 and the fourth U-phase turn section 841U4. According to this, it is possible to secure a large number of gaps in the U-phase turn portion 841U.
  • stator 50 The detailed structure of the stator 50 described above is a configuration applicable not only to the first embodiment but also to all embodiments.
  • the magnet unit 42 is configured using a magnet array called a Halbach array. That is, the magnet part 42 has the first magnet 131 whose magnetization direction (direction of the magnetic pole) is the radial direction, and the second magnet 132 whose magnetization direction (the direction of the magnetic pole) is the circumferential direction.
  • the first magnets 131 are arranged at predetermined intervals, and the second magnets 132 are arranged at positions between the adjacent first magnets 131 in the circumferential direction.
  • the first magnet 131 and the second magnet 132 are permanent magnets made of a rare earth magnet such as a neodymium magnet.
  • the first magnets 131 are circumferentially separated from each other such that the poles on the side facing the stator 50 (inside in the radial direction) alternately become N poles and S poles.
  • the second magnets 132 are arranged so that the magnetic poles in the circumferential direction are alternately opposite to each other next to the first magnets 131.
  • a magnetic body 133 made of a soft magnetic material is disposed radially outside the first magnet 131, that is, on the side of the magnet holding portion 43 of the rotor main body 41.
  • the magnetic body 133 may be made of an electromagnetic steel sheet, soft iron, or a powdered iron core material.
  • the circumferential length of the magnetic body 133 is the same as the circumferential length of the first magnet 131 (in particular, the circumferential length of the outer peripheral portion of the first magnet 131).
  • the radial thickness of the integrated body in a state where the first magnet 131 and the magnetic body 133 are integrated is the same as the radial thickness of the second magnet 132.
  • the thickness of the first magnet 131 in the radial direction is smaller than that of the second magnet 132 by the amount of the magnetic body 133.
  • the magnets 131 and 132 and the magnetic body 133 are fixed to each other by, for example, an adhesive.
  • the outer side of the first magnet 131 in the magnet portion 42 in the radial direction is on the opposite side to the stator 50, and the magnetic body 133 is located on the opposite side of the first magnet 131 in the radial direction (opposite to the stator 50). On the stator side).
  • a key 134 is formed on the outer periphery of the magnetic body 133 as a protrusion projecting radially outward, that is, toward the magnet holding portion 43 of the rotor main body 41. Further, a key groove 135 is formed on the inner peripheral surface of the magnet holding portion 43 as a recess for accommodating the key 134 of the magnetic body 133.
  • the protruding shape of the key 134 and the groove shape of the key groove 135 are the same, and the same number of key grooves 135 as the keys 134 are formed corresponding to the keys 134 formed on each magnetic body 133.
  • the key 134 and the key groove 135 may be provided in any of the magnet holding portion 43 and the magnetic body 133 of the rotor main body 41, and conversely, the outer periphery of the magnetic body 133 may be provided. It is also possible to provide a key groove 135 in the portion and to provide a key 134 in the inner peripheral portion of the magnet holding portion 43 of the rotor main body 41.
  • the magnetic flux density in the first magnet 131 can be increased by alternately arranging the first magnets 131 and the second magnets 132. Therefore, in the magnet section 42, the magnetic flux is concentrated on one side, and the magnetic flux on the side closer to the stator 50 can be enhanced.
  • the magnet section 42 of the present embodiment has a configuration in which a portion of the first magnet 131 where demagnetization easily occurs is replaced with a magnetic body 133.
  • FIGS. 24A and 24B are diagrams specifically showing the flow of the magnetic flux in the magnet unit 42.
  • FIG. 24A shows a case where a conventional configuration having no magnetic body 133 in the magnet unit 42 is used, and FIG. The case where the configuration of the present embodiment having the magnetic body 133 in the magnet section 42 is used is shown.
  • the magnet holding portion 43 and the magnet portion 42 of the rotor main body 41 are linearly developed, and the lower side of the figure is the stator side and the upper side is the non-stator side.
  • the magnetic pole surface of the first magnet 131 and the side surface of the second magnet 132 are in contact with the inner peripheral surface of the magnet holder 43, respectively. Further, the magnetic pole surface of the second magnet 132 is in contact with the side surface of the first magnet 131.
  • the magnetic body 133 is provided between the magnetic pole surface of the first magnet 131 and the inner peripheral surface of the magnet holding portion 43 on the side opposite to the stator of the first magnet 131. Therefore, the passage of magnetic flux through the magnetic body 133 is allowed. Therefore, magnetic saturation in the magnet holding portion 43 can be suppressed, and the proof strength against demagnetization is improved.
  • FIG. 24B unlike FIG. 24A, F2 that promotes magnetic saturation can be eliminated. Thereby, the permeance of the entire magnetic circuit can be effectively improved. With this configuration, the magnetic circuit characteristics can be maintained even under severe high-temperature conditions.
  • the magnet magnetic path passing inside the magnet is longer. Therefore, the magnet permeance increases, the magnetic force can be increased, and the torque can be increased. Further, since the magnetic flux is concentrated at the center of the d-axis, the sine wave matching ratio can be increased. In particular, when the current waveform is changed to a sine wave or a trapezoidal wave by the PWM control, or a switching IC with 120-degree conduction is used, the torque can be more effectively increased.
  • the outer peripheral surface of the stator core 52 is formed into a curved surface without irregularities, and the plurality of conductor groups 81 are arranged at predetermined intervals on the outer peripheral surface.
  • the stator core 52 includes an annular yoke portion 141 provided on the opposite side (lower side in the figure) to the rotor among the radially opposite sides of the stator winding 51, A projection 142 extends from the yoke 141 so as to project between the linear portions 83 adjacent in the circumferential direction.
  • the protrusions 142 are provided at predetermined intervals on a radially outer side of the yoke 141, that is, on the rotor 40 side.
  • Each conductive wire group 81 of the stator winding 51 is engaged with the protrusion 142 in the circumferential direction, and is arranged side by side in the circumferential direction while using the protrusion 142 as a positioning portion.
  • the protrusion 142 corresponds to an “inter-winding member”.
  • the protrusion 142 provides an inter-wire member.
  • the protrusion 142 has a thickness in the radial direction from the yoke 141, which is a radial thickness of the linear part 83 radially adjacent to the yoke 141, of the linear parts 83 in a plurality of layers inside and outside the radial direction. (H1 in the figure). Due to the thickness limitation of the protrusions 142, the protrusions 142 do not function as teeth between the conductive wire groups 81 (that is, the linear portions 83) that are adjacent in the circumferential direction, and no magnetic path is formed by the teeth. .
  • the protrusions 142 may not be provided entirely between the conductor groups 81 arranged in the circumferential direction, but may be provided between at least one set of conductor groups 81 adjacent in the circumferential direction.
  • the shape of the protrusion 142 may be an arbitrary shape such as a rectangular shape or an arc shape.
  • a single linear portion 83 may be provided on the outer peripheral surface of the stator core 52. Therefore, in a broad sense, the thickness of the projection 142 in the radial direction from the yoke 141 may be smaller than half the thickness of the straight portion 83 in the radial direction.
  • the protrusion 142 is within the range of the virtual circle.
  • the thickness of the protrusion 142 in the radial direction is limited and does not function as a tooth between the linear portions 83 adjacent in the circumferential direction. Is provided, adjacent linear portions 83 can be brought closer to each other. Thereby, the conductor cross-sectional area can be increased, and the heat generated due to the energization of the stator winding 51 can be reduced. In such a configuration, magnetic saturation can be eliminated by the absence of teeth, and the current flowing through the stator winding 51 can be increased. In this case, it is possible to suitably cope with an increase in the amount of heat generated with an increase in the supplied current.
  • the turn portion 84 is shifted in the radial direction and has an interference avoiding portion that avoids interference with another turn portion 84, the different turn portions 84 are separated from each other in the radial direction. Can be arranged. Thereby, the heat radiation of the turn portion 84 can be improved. As described above, it is possible to optimize the heat radiation performance of the stator 50.
  • the radial thickness of the protrusion 142 is It is not tied to 25 H1. Specifically, if the yoke 141 and the magnet 42 are separated by 2 mm or more, the radial thickness of the protrusion 142 may be H1 or more in FIG.
  • the straight portion 83 in the radial direction exceeds 2 mm and the conductor group 81 is constituted by two layers of conductors 82 inside and outside in the radial direction
  • the radial thickness of the protrusion 142 is up to “H1 ⁇ 3/2”, the above-described effect can be obtained to a considerable extent by increasing the conductor cross-sectional area in the conductor group 81. .
  • the stator core 52 may have the configuration shown in FIG. Although the sealing portion 57 is omitted in FIG. 26, the sealing portion 57 may be provided. In FIG. 26, for convenience, the magnet part 42 and the stator core 52 are linearly developed and shown.
  • the stator 50 has a protrusion 142 as an inter-winding member between the conductors 82 (that is, the straight portions 83) adjacent in the circumferential direction.
  • the circumferential width of the protrusion 142 which is excited by energization of the stator winding 51 is Wt
  • the saturation magnetic flux density of the protrusion 142 is Bs
  • the protrusion 142 is formed by Wt ⁇ Bs ⁇ Wm ⁇ Br ... (1)
  • a magnetic material in the range of one pole of the magnet part 42.
  • the three-phase winding of the stator winding 51 is a distributed winding, and in the stator winding 51, the number of protrusions 142, The number of the gaps 56 between the conductive wire groups 81 is “3 ⁇ m”.
  • m is the logarithm of the conductor 82.
  • the width Wt is defined in this way, the protrusions 142 of the stator core 52 are formed of a magnetic material satisfying the above-described relationship (1). Note that the width dimension Wt is also a circumferential dimension of a portion where relative magnetic permeability can be larger than 1 in one pole.
  • the number of the protrusions 142 that is, each conductive wire group 81 is provided for one pole pair (that is, two poles) of the magnet portion 42.
  • the number of gaps 56 between them is “3 ⁇ m”.
  • the width Wt in the circumferential direction of the protrusion 142 that is excited by energization of the stator winding 51 in the range of one pole of the magnet part 42 is “A ⁇ m”. After the width Wt is defined in this manner, the protrusion 142 is formed of a magnetic material satisfying the relationship (1).
  • the protrusion 142 in the stator core 52 may be a magnetic material that satisfies the relationship of Wt ⁇ 1 / ⁇ Wm.
  • the sealing portion 57 covering the stator winding 51 is provided in the range including all the conductor groups 81 on the radially outer side of the stator core 52, that is, the thickness dimension in the radial direction is equal to that of each conductor group 81.
  • the configuration is provided in a range that is larger than the thickness dimension in the radial direction, the configuration may be changed.
  • the sealing portion 57 is provided so that a part of the conductive wire 82 protrudes.
  • the sealing portion 57 is configured to be provided in a state in which a part of the conductor 82 that is the outermost in the radial direction in the conductor group 81 is exposed to the radial outside, that is, to the stator 50 side.
  • the radial thickness of the sealing portion 57 is preferably the same as or smaller than the radial thickness of each conductive wire group 81.
  • the configuration may be such that each conductive wire group 81 is not sealed by the sealing portion 57. That is, the configuration is such that the sealing portion 57 that covers the stator winding 51 is not used. In this case, there is a gap between the conductor groups 81 arranged in the circumferential direction.
  • the configuration in which a gap is formed between the conductor groups 81 arranged in the circumferential direction is a configuration in which the stator winding 51 is formed only by the conductor group 81, and the conductor such as the sealing portion 57 is provided between the conductor groups 81.
  • Provided is a configuration in which no intervening member is provided.
  • the stator 50 may not have the stator core 52.
  • the stator 50 is constituted by the stator winding 51 shown in FIG.
  • the stator winding 51 may be sealed with a sealing material.
  • the stator 50 may include an annular winding holding portion made of a nonmagnetic material such as a synthetic resin, instead of the stator core 52 made of a soft magnetic material.
  • a turn portion is formed between the nth layer and the (n + 1) th layer.
  • the configuration may be such that the direction of the wire shift at 84 is reversed.
  • the turn portions 84 connected to the linear portions 83 of the plurality of layers and located at positions overlapping inward and outward in the radial direction are configured to be bent in different radial directions.
  • the turn portions 84 can be suitably arranged to be separated from each other. Note that it is preferable that the present configuration is applied to a portion where insulation is strictest or is used as a final layer or a start layer among a plurality of layers.
  • the n-th layer and the (n + 1) -th layer may have a configuration in which the conductive wire shift position in the axial direction (the vertical position in the drawing) is different. In this case, even if the bending radius at the turn portion 84 of each layer is the same, mutual interference can be suppressed.
  • the straight portions 83 at positions on the same pitch circle centered on the rotating shaft 11 are connected to each other by the turn portion 84, and the turn portion 84 serves as an interference avoiding portion.
  • the configuration is provided, this may be changed.
  • a configuration may be used in which the linear portions 83 at positions on different pitch circles around the rotation axis 11, that is, the linear portions 83 in different layers are connected by the turn portion 84.
  • any configuration may be used as long as the turn portion 84 is shifted in the radial direction and has an interference avoiding portion that avoids interference with another turn portion 84.
  • each conductive wire group 81 is sealed by the sealing portion 57.
  • a sealing material as a non-heat generating portion can be interposed between the linear portions 83 arranged in the radial direction.
  • the heat generated at 83 can be diffused. Thereby, the heat radiation performance of the conductor group 81 can be improved.
  • the sealing material is preferably inserted between the linear portions 83 in each of the conductive wire groups 81, and thus each The straight portion 83 can be fixed well.
  • a configuration in which the sealing portion 57 is not provided may be employed.
  • a gap as a non-heat generating portion can be interposed between the linear portions 83 arranged in the radial direction, and the heat radiation performance of the conductor group 81 can also be improved.
  • the linear portions 83 of the conductors 82 are arranged in four layers in the radially inner and outer layers, and the gap between the pair of opposing surfaces is changed in the circumferential direction.
  • a configuration may be adopted in which the size is different and the larger side is alternately reversed in each of the gaps arranged in the radial direction.
  • each conductive wire group 81 is sealed by the sealing portion 57.
  • the number of layers of the linear portion 83 may be three or more. According to this configuration, heat can be appropriately diffused in each of the linear portions 83 arranged in the radial direction.
  • the holding force for holding the linear portions 83 can be satisfactorily obtained.
  • the linear portion 83 of the conducting wire 82 may be provided in a single layer in the radial direction.
  • the number of the layers may be arbitrary, and three, four, five, six, or the like may be provided.
  • the rotating shaft 11 is provided so as to protrude at both the one end side and the other end side of the rotating electric machine 10 in the axial direction.
  • the configuration may be modified so that the rotating shaft 11 protrudes only at one end side.
  • the rotating shaft 11 may be provided so as to extend from the portion supported by the bearing portion 20 in a cantilevered manner to the outside in the axial direction.
  • the internal space of the inverter unit 60 since the rotation shaft 11 does not protrude into the inverter unit 60, the internal space of the inverter unit 60, more specifically, the internal space of the tubular portion 71 can be used more widely.
  • a configuration for rotatably supporting the rotating shaft 11 a configuration may be adopted in which bearings are provided at two locations on one end side and the other end side of the rotor 40 in the axial direction.
  • bearings are provided at two locations, one end side and the other end side, with the inverter unit 60 interposed therebetween.
  • the intermediate portion 45 of the rotor main body 41 in the rotor 40 is configured to have a step in the axial direction. However, this may be changed to eliminate the step of the intermediate portion 45 and make the intermediate portion 45 flat.
  • the conductor 82 a in the conductor 82 of the stator winding 51 is configured as an aggregate of a plurality of strands 86, but this configuration may be modified to use a rectangular conductor having a rectangular cross section as the conductor 82. Good. Further, a configuration may be used in which a round conductor having a circular cross section or an elliptical cross section is used as the conductor 82.
  • the inverter unit 60 is provided radially inside the stator 50.
  • the inverter unit 60 may not be provided radially inside the stator 50 instead. In this case, it is possible to leave an internal region radially inside the stator 50 as a space. Further, it is possible to arrange components different from the inverter unit 60 in the internal area.
  • the rotating electric machine 10 may be configured without the housing 30.
  • the rotor 40, the stator 50, and the like may be held in a part of a wheel or another vehicle part.
  • the present disclosure is also applicable to a rotating electric machine having an inner rotor structure (adduction structure).
  • the stator 50 and the rotor 40 may be provided in the housing 30 in order from the outside in the radial direction, and the inverter unit 60 may be provided inside the rotor 40 in the radial direction.
  • the SPM rotor has been described as the rotor, but the present invention is also applicable to an IPM rotor.
  • the straight portion 83 provides a magnet facing portion disposed to face the magnet portion 42 with a predetermined air gap and a rotor core (not shown) interposed therebetween.
  • the disclosure in this specification is not limited to the illustrated embodiment.
  • the disclosure includes the illustrated embodiments and variations based thereon based on those skilled in the art.
  • the disclosure is not limited to the combination of parts and / or elements shown in the embodiments.
  • the disclosure can be implemented in various combinations.
  • the disclosure may have additional parts that can be added to the embodiments.
  • the disclosure encompasses embodiments that omit parts and / or elements.
  • the disclosure encompasses the replacement or combination of parts and / or elements between one embodiment and another.
  • the disclosed technical scope is not limited to the description of the embodiments. Some of the disclosed technical ranges are indicated by the description of the claims, and should be construed to include all modifications within the meaning and scope equivalent to the description of the claims.

Abstract

This rotating electric machine stator is a stator (50) disposed coaxially with a rotatably supported rotor (40) and is provided with an annular stator core (52) and stator windings (51) having a plurality of phases, which are covered with an insulating film (82b). The stator windings have: magnet opposed portions (83) facing magnet portions (42) of the rotor in the radial direction of the rotating shaft of the rotating electric machine; and turn portions (84) that connect the magnet opposed portions having the same phase to each other outside the magnet opposed portions in the axial direction of the rotating shaft. At least one of the turn portions provided on both sides in the axial direction serves as heat-dissipation accelerating turn portions (841). The heat-dissipation accelerating turn portions are provided such that the heat-dissipation accelerating turn portions having different phases are partially overlapped with each other in the axial direction, and project in the radial direction with respect to the magnet opposed portions. The heat-dissipation accelerating turn portions having different phases, which are overlapped in the axial direction, are provided with: the most inner layer turn portion (841U) provided at the position nearest to the stator core in the axial direction; and outer layer turn portions (841V, 841W) provided at positions further from the stator core than the most inner layer turn portion in the axial direction. The projection amount of the most inner layer turn portion in the radial direction is different from the projection amounts of the outer layer turn portions in the radial direction.

Description

回転電機の固定子Rotating electric machine stator 関連出願の相互参照Cross-reference of related applications
 本出願は、2018年7月25日に出願された日本出願番号2018-139470号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2018-139470 filed on July 25, 2018, the contents of which are incorporated herein by reference.
 本開示は、回転電機の固定子に関する。 The present disclosure relates to a stator of a rotating electric machine.
 特許文献1は、効率の低下や発生トルクの低下を防止する目的で、回転電機の固定子巻線において、コイルエンドの長いものと短いものとを組み合わせて二相の巻線を形成した技術を開示している。 Patent Literature 1 discloses a technology in which a two-phase winding is formed by combining a long and short coil end in a stator winding of a rotating electric machine in order to prevent a reduction in efficiency and a reduction in generated torque. Has been disclosed.
特開昭61-224841号公報JP-A-61-224841
 従来技術の構成では、コイル同士の重なり部分において、コイルへの通電によって発生した熱がこもりやすく、コイルの温度が上昇しやすかった。コイルの温度が異常に上昇することで、コイルをなす導線の被膜に熱劣化が生じてコイルの絶縁性が低下するなどして、回転電機が正常に機能しなくなることが懸念される。上述の観点において、または言及されていない他の観点において、回転電機の固定子にはさらなる改良が求められている。 (4) In the configuration of the related art, heat generated by energization of the coil is likely to be trapped in the overlapping portion between the coils, and the temperature of the coil is likely to rise. If the temperature of the coil rises abnormally, there is a concern that the rotating electrical machine will not function properly due to thermal degradation of the coating of the conductive wire forming the coil and a decrease in the insulation of the coil. In view of the above, or other aspects not mentioned, there is a need for further improvements in the rotating electrical machine stator.
 本開示は、放熱性能の高い回転電機の固定子を提供することを目的とする。 The present disclosure aims to provide a stator for a rotating electric machine having high heat dissipation performance.
 本開示の第一の態様における回転電機の固定子は、円環状の固定子コアと、絶縁被膜によって覆われた複数相の固定子巻線とを備え、回転自在に支持された回転子と同軸に配置された固定子である。固定子巻線は、回転子の磁石部に対して径方向に対向している磁石対向部と、磁石対向部よりも回転軸の軸方向外側において同相の磁石対向部同士を接続しているターン部とを有する。軸方向の両側に設けられるターン部のうち、少なくとも一方は放熱促進ターン部である。放熱促進ターン部は、異相の放熱促進ターン部同士が軸方向に部分的に重なって設けられているとともに、磁石対向部に対して径方向に突出する。軸方向に重なり合う異相の放熱促進ターン部のうち、軸方向において固定子コアに最も近い位置に設けられている最内層ターン部と、軸方向において最内層ターン部よりも固定子コアから遠い位置に設けられている外層ターン部とを備える。最内層ターン部の径方向への突出量は、外層ターン部の径方向への突出量とは異なる突出量である。 The stator of the rotating electric machine according to the first aspect of the present disclosure includes an annular stator core, and a plurality of phases of stator windings covered with an insulating coating, and is coaxial with the rotatably supported rotor. It is a stator arranged in. The stator winding is a turn connecting the magnet facing portion radially facing the magnet portion of the rotor and the magnet facing portion of the same phase outside the magnet facing portion in the axial direction of the rotating shaft. And a part. At least one of the turn portions provided on both sides in the axial direction is a heat dissipation promoting turn portion. The heat-dissipating turn parts are provided such that the heat-dissipating turn parts of different phases partially overlap each other in the axial direction, and protrude radially with respect to the magnet facing part. Of the different phases of the heat dissipation promoting turns overlapping in the axial direction, the innermost turn part provided at the position closest to the stator core in the axial direction, and a position farther from the stator core than the innermost turn part in the axial direction. And an outer layer turn portion provided. The radially projecting amount of the innermost turn portion is different from the radially projecting amount of the outer layer turn portion.
 開示された回転電機の固定子によると、放熱促進ターン部をなす最内層ターン部と外層ターン部とにおいて、最内層ターン部の径方向への突出量は、外層ターン部の径方向への突出量とは異なる突出量である。このため、最内層ターン部の径方向への突出量と外層ターン部の径方向への突出量とが等しい場合に比べて、最内層ターン部と外層ターン部とが軸方向に重ならない部分を大きく確保し、空気中への放熱を促進することができる。したがって、最内層ターン部と外層ターン部との大部分が重なっている場合に比べて、空気との接触面積を大きく確保しやすく、最内層ターン部で発生した熱がこもりにくい。よって、放熱性能の高い回転電機の固定子を提供できる。 According to the stator of the disclosed rotating electrical machine, in the innermost turn portion and the outer turn portion forming the heat radiation promotion turn portion, the radially projecting amount of the innermost turn portion is the radially projecting amount of the outer layer turn portion. The amount of protrusion is different from the amount. For this reason, compared with the case where the radially projecting amount of the innermost turn portion and the radially projecting amount of the outer layer turn portion are equal, the portion where the innermost turn portion and the outer layer turn portion do not overlap in the axial direction is considered. It is possible to secure a large amount and promote heat radiation into the air. Therefore, as compared with the case where the innermost turn portion and the outermost turn portion overlap with each other, a large contact area with air can be easily secured, and the heat generated in the innermost turn portion is less likely to be trapped. Therefore, it is possible to provide a stator of a rotating electric machine having high heat dissipation performance.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
回転電機の縦断面斜視図。 回転電機の縦断面図。 図2のIII-III線断面図。 図3の一部を拡大して示す断面図。 回転電機の分解図。 インバータユニットの分解図。 固定子巻線のアンペアターンとトルク密度との関係を示すトルク線図。 回転子及び固定子の横断面図。 図8の一部を拡大して示す図。 固定子の横断面図。 固定子の縦断面図。 固定子巻線の斜視図。 導線の構成を示す斜視図。 素線の構成を示す模式図。 n層目における各導線の形態を示す図。 n層目とn+1層目の各導線を示す側面図。 実施形態の磁石について電気角と磁束密度との関係を示す図。 比較例の磁石について電気角と磁束密度との関係を示す図。 回転電機の制御システムの電気回路図。 制御装置による電流フィードバック制御処理を示す機能ブロック図。 制御装置によるトルクフィードバック制御処理を示す機能ブロック図。 第2実施形態における回転子及び固定子の横断面図。 図22の一部を拡大して示す図。 磁石部における磁束の流れを具体的に示す図。 別例における固定子の断面図。 別例における固定子の断面図。 別例における固定子の断面図。 別例における固定子の断面図。 別例においてn層目とn+1層目の各導線を示す側面図。 別例における固定子の断面図。 第1実施形態における回転電機の縦断面図。 第1実施形態における固定子の斜視図。 図32の一部を拡大して示す図。 第1実施形態における固定子の上面図。 図34の一部を拡大して示す図。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing is
FIG. FIG. 4 is a longitudinal sectional view of the rotating electric machine. FIG. 3 is a sectional view taken along line III-III of FIG. 2. Sectional drawing which expands and shows a part of FIG. FIG. FIG. 3 is an exploded view of the inverter unit. FIG. 4 is a torque diagram showing a relationship between an ampere-turn of a stator winding and a torque density. FIG. 4 is a cross-sectional view of the rotor and the stator. The figure which expands and shows a part of FIG. FIG. The longitudinal section of a stator. The perspective view of a stator winding. FIG. 2 is a perspective view showing a configuration of a conductive wire. The schematic diagram which shows the structure of a strand. The figure which shows the form of each lead in the n-th layer. FIG. 6 is a side view showing the respective conductors of the nth layer and the (n + 1) th layer. The figure which shows the relationship between an electric angle and magnetic flux density about the magnet of embodiment. The figure which shows the relationship between an electric angle and a magnetic flux density about the magnet of a comparative example. The electric circuit diagram of the control system of a rotating electric machine. FIG. 4 is a functional block diagram showing current feedback control processing by the control device. FIG. 4 is a functional block diagram illustrating a torque feedback control process performed by the control device. FIG. 6 is a cross-sectional view of a rotor and a stator according to a second embodiment. The figure which expands and shows a part of FIG. The figure which shows the flow of the magnetic flux in a magnet part concretely. Sectional drawing of the stator in another example. Sectional drawing of the stator in another example. Sectional drawing of the stator in another example. Sectional drawing of the stator in another example. The side view which shows each conductor of the nth layer and the n + 1th layer in another example. Sectional drawing of the stator in another example. FIG. 2 is a longitudinal sectional view of the rotating electric machine according to the first embodiment. FIG. 2 is a perspective view of a stator according to the first embodiment. The figure which expands and shows a part of FIG. FIG. 3 is a top view of the stator according to the first embodiment. The figure which expands and shows a part of FIG.
 図面を参照しながら、複数の実施形態を説明する。複数の実施形態において、機能的におよび/または構造的に対応する部分および/または関連付けられる部分には同一の参照符号、または百以上の位が異なる参照符号が付される場合がある。対応する部分および/または関連付けられる部分については、他の実施形態の説明を参照することができる。 複数 A plurality of embodiments will be described with reference to the drawings. In embodiments, functionally and / or structurally corresponding parts and / or associated parts may be provided with the same reference signs or reference signs that differ by more than a hundred places. For corresponding parts and / or associated parts, the description of the other embodiments can be referred to.
 (第1実施形態)
 以下に、図1から図21を用いて、本実施形態に係る回転電機10の固定子50を適用可能な基礎的形態としての回転電機10を説明する。
(1st Embodiment)
Hereinafter, the rotating electric machine 10 as a basic form to which the stator 50 of the rotating electric machine 10 according to the present embodiment can be applied will be described with reference to FIGS. 1 to 21.
 本実施形態に係る回転電機10は、同期式多相交流モータであり、アウタロータ構造(外転構造)のものとなっている。回転電機10の概要を図1乃至図5に示す。図1は、回転電機10の縦断面斜視図であり、図2は、回転電機10の回転軸11に沿う方向での縦断面図であり、図3は、回転軸11に直交する方向での回転電機10の横断面図(図2のIII-III線断面図)であり、図4は、図3の一部を拡大して示す断面図であり、図5は、回転電機10の分解図である。なお、図3では、図示の都合上、回転軸11を除き、切断面を示すハッチングを省略している。以下の記載では、回転軸11が延びる方向を軸方向とし、回転軸11の中心から放射状に延びる方向を径方向とし、回転軸11を中心として円周状に延びる方向を周方向としている。 The rotating electric machine 10 according to the present embodiment is a synchronous polyphase AC motor and has an outer rotor structure (eternal rotation structure). The outline of the rotating electric machine 10 is shown in FIGS. 1 is a vertical cross-sectional perspective view of the rotary electric machine 10, FIG. 2 is a vertical cross-sectional view of the rotary electric machine 10 in a direction along a rotation axis 11, and FIG. 3 is a cross-sectional view (cross-sectional view taken along line III-III of FIG. 2) of the rotating electric machine 10, FIG. 4 is a cross-sectional view showing a part of FIG. 3 in an enlarged manner, and FIG. It is. In FIG. 3, hatching indicating a cut surface is omitted except for the rotation shaft 11 for convenience of illustration. In the following description, the direction in which the rotating shaft 11 extends is defined as the axial direction, the direction radially extending from the center of the rotating shaft 11 is defined as the radial direction, and the direction extending circumferentially around the rotating shaft 11 is defined as the circumferential direction.
 回転電機10は、大別して、軸受部20と、ハウジング30と、回転子40と、固定子50と、インバータユニット60とを備えている。これら各部材は、いずれも回転軸11と共に同軸上に配置され、所定順序で軸方向に組み付けられることで回転電機10が構成されている。 The rotating electric machine 10 roughly includes a bearing unit 20, a housing 30, a rotor 40, a stator 50, and an inverter unit 60. Each of these members is arranged coaxially with the rotating shaft 11 and assembled in a predetermined order in the axial direction to form the rotating electric machine 10.
 軸受部20は、軸方向に互いに離間して配置される2つの軸受21,22と、その軸受21,22を保持する保持部材23とを有している。軸受21,22は、例えばラジアル玉軸受であり、それぞれ外輪25と、内輪26と、それら外輪25及び内輪26の間に配置された複数の玉27とを有している。保持部材23は円筒状をなしており、その径方向内側に軸受21,22が組み付けられている。そして、軸受21,22の径方向内側に、回転軸11及び回転子40が回転自在に支持されている。 The bearing portion 20 has two bearings 21 and 22 that are arranged apart from each other in the axial direction, and a holding member 23 that holds the bearings 21 and 22. The bearings 21 and 22 are, for example, radial ball bearings, each of which has an outer ring 25, an inner ring 26, and a plurality of balls 27 arranged between the outer ring 25 and the inner ring 26. The holding member 23 has a cylindrical shape, and bearings 21 and 22 are attached to the inside in the radial direction. The rotating shaft 11 and the rotor 40 are rotatably supported inside the bearings 21 and 22 in the radial direction.
 ハウジング30は、円筒状をなす周壁部31と、その周壁部31の軸方向両端部のうち一方の端部に設けられた端面部32とを有している。周壁部31の軸方向両端部のうち端面部32の反対側は開口部33となっており、ハウジング30は、端面部32の反対側が開口部33により全面的に開放された構成となっている。端面部32には、その中央に円形の孔34が形成されており、その孔34に挿通させた状態で、ネジやリベット等の固定具により軸受部20が固定されている。また、ハウジング30内、すなわち周壁部31及び端面部32により区画された内部スペースには、回転子40と固定子50とが収容されている。本実施形態では回転電機10がアウタロータ式であり、ハウジング30内には、筒状をなす回転子40の径方向内側に固定子50が配置されている。回転子40は、軸方向において端面部32の側で回転軸11に片持ち支持されている。 The housing 30 has a cylindrical peripheral wall portion 31 and an end surface portion 32 provided at one end of both ends in the axial direction of the peripheral wall portion 31. An opening 33 is formed on the opposite side of the end face portion 32 of both ends in the axial direction of the peripheral wall portion 31, and the housing 30 has a configuration in which the opposite side of the end face portion 32 is completely opened by the opening 33. . A circular hole 34 is formed in the center of the end face portion 32, and the bearing portion 20 is fixed by a fixing tool such as a screw or a rivet in a state of being inserted through the hole 34. The rotor 40 and the stator 50 are accommodated in the housing 30, that is, in an internal space defined by the peripheral wall portion 31 and the end surface portion 32. In the present embodiment, the rotating electric machine 10 is of an outer rotor type, and a stator 50 is disposed inside a housing 30 in a radial direction of a cylindrical rotor 40. The rotor 40 is cantilevered by the rotating shaft 11 on the end face 32 side in the axial direction.
 回転子40は、中空筒状に形成された回転子本体41と、その回転子本体41の径方向内側に設けられた環状の磁石部42とを有している。回転子本体41は、略カップ状をなし、磁石保持部材としての機能を有する。回転子本体41は、筒状をなす磁石保持部43と、同じく筒状をなしかつ磁石保持部43よりも小径の固定部44と、それら磁石保持部43及び固定部44を繋ぐ部位となる中間部45とを有している。磁石保持部43の内周面に磁石部42が取り付けられている。 The rotor 40 has a rotor main body 41 formed in a hollow cylindrical shape, and an annular magnet portion 42 provided radially inside the rotor main body 41. The rotor main body 41 has a substantially cup shape and has a function as a magnet holding member. The rotor main body 41 has a cylindrical magnet holding portion 43, a fixed portion 44 which is also cylindrical and has a smaller diameter than the magnet holding portion 43, and an intermediate portion serving as a portion connecting the magnet holding portion 43 and the fixed portion 44. And a part 45. The magnet part 42 is attached to the inner peripheral surface of the magnet holding part 43.
 固定部44の貫通孔44aには回転軸11が挿通されており、その挿通状態で回転軸11に対して固定部44が固定されている。つまり、固定部44により、回転軸11に対して回転子本体41が固定されている。なお、固定部44は、凹凸を利用したスプライン結合やキー結合、溶接、又はかしめ等により回転軸11に対して固定されているとよい。これにより、回転子40が回転軸11と一体に回転する。 The rotating shaft 11 is inserted through the through hole 44 a of the fixing portion 44, and the fixing portion 44 is fixed to the rotating shaft 11 in the inserted state. That is, the rotor main body 41 is fixed to the rotating shaft 11 by the fixing portion 44. The fixing portion 44 may be fixed to the rotating shaft 11 by spline connection or key connection using irregularities, welding, caulking, or the like. Thereby, the rotor 40 rotates integrally with the rotating shaft 11.
 また、固定部44の径方向外側には、軸受部20の軸受21,22が組み付けられている。上述のとおり軸受部20はハウジング30の端面部32に固定されているため、回転軸11及び回転子40は、ハウジング30に回転可能に支持されるものとなっている。これにより、ハウジング30内において回転子40が回転自在となっている。 軸 受 Bearings 21 and 22 of the bearing portion 20 are mounted radially outside the fixing portion 44. As described above, since the bearing 20 is fixed to the end face 32 of the housing 30, the rotating shaft 11 and the rotor 40 are rotatably supported by the housing 30. Thereby, the rotor 40 is rotatable in the housing 30.
 回転子40には、軸方向両側のうち片側にのみ固定部44が設けられており、これにより、回転子40が回転軸11に片持ち支持されている。ここで、回転子40の固定部44は、軸受部20の軸受21,22により、軸方向に異なる2位置で回転可能に支持されている。すなわち、回転子40は、回転子本体41における軸方向の両側端部のうち一方の側において、軸方向2箇所の軸受21,22により回転可能に支持されている。そのため、回転子40が回転軸11に片持ち支持される構造であっても、回転子40の安定回転が実現されるようになっている。この場合、回転子40の軸方向中心位置に対して片側にずれた位置で、回転子40が軸受21,22により支持されている。 固定 The rotor 40 is provided with the fixing portion 44 on only one of the two axial sides, whereby the rotor 40 is cantilevered on the rotating shaft 11. Here, the fixed portion 44 of the rotor 40 is rotatably supported at two different positions in the axial direction by the bearings 21 and 22 of the bearing portion 20. That is, the rotor 40 is rotatably supported by the two bearings 21 and 22 in the axial direction on one of the two axial ends of the rotor main body 41. Therefore, even when the rotor 40 has a structure in which the rotor 40 is cantilevered by the rotating shaft 11, stable rotation of the rotor 40 is realized. In this case, the rotor 40 is supported by the bearings 21 and 22 at a position shifted to one side with respect to the axial center position of the rotor 40.
 また、軸受部20において回転子40の中心寄り(図の下側)の軸受22と、その逆側(図の上側)の軸受21とは、外輪25及び内輪26と玉27との間の隙間寸法が相違しており、例えば回転子40の中心寄りの軸受22の方が、その逆側の軸受21よりも隙間寸法が大きいものとなっている。この場合、回転子40の中心寄りの側において、回転子40の振れや、部品公差に起因するインバランスによる振動が軸受部20に作用しても、その振れや振動の影響が良好に吸収される。具体的には、回転子40の中心寄り(図の下側)の軸受22において予圧により遊び寸法(隙間寸法)を大きくしていることで、片持ち構造において生じる振動がその遊び部分により吸収される。上記予圧は、定位置予圧でもよいが、軸受22の軸方向外側(図の上側)の段差に予圧用バネ、ウェーブワッシャ等を挿入することで与えてもよい。 Further, in the bearing portion 20, the bearing 22 near the center of the rotor 40 (the lower side in the figure) and the bearing 21 on the opposite side (the upper side in the figure) have a gap between the outer ring 25 and the inner ring 26 and the ball 27. The dimensions are different, for example, the bearing 22 near the center of the rotor 40 has a larger gap size than the bearing 21 on the opposite side. In this case, on the side near the center of the rotor 40, even if vibration of the rotor 40 or vibration due to imbalance due to component tolerance acts on the bearing portion 20, the influence of the vibration and vibration is favorably absorbed. You. Specifically, the play size (gap size) is increased by the preload in the bearing 22 near the center of the rotor 40 (the lower side in the figure), so that the vibration generated in the cantilever structure is absorbed by the play portion. You. The preload may be a fixed position preload, or may be applied by inserting a preload spring, a wave washer, or the like into an axially outer step (upper side in the figure) of the bearing 22.
 また、中間部45は、径方向中心側とその外側とで軸方向の段差を有する構成となっている。この場合、中間部45において、径方向の内側端部と外側端部とは、軸方向の位置が相違しており、これにより、軸方向において磁石保持部43と固定部44とが一部重複している。つまり、固定部44の基端部(図の下側の奥側端部)よりも軸方向外側に、磁石保持部43が突出するものとなっている。本構成では、中間部45が段差無しで平板状に設けられる場合に比べて、回転子40の重心近くの位置で、回転軸11に対して回転子40を支持させることが可能となり、回転子40の安定動作が実現できるものとなっている。 中間 The intermediate portion 45 is configured to have a step in the axial direction between the center in the radial direction and the outside thereof. In this case, in the intermediate portion 45, the radial inner end portion and the radial outer end portion have different axial positions, so that the magnet holding portion 43 and the fixing portion 44 partially overlap in the axial direction. are doing. In other words, the magnet holding portion 43 protrudes outward in the axial direction from the base end of the fixing portion 44 (the lower end on the lower side in the figure). In this configuration, the rotor 40 can be supported on the rotating shaft 11 at a position near the center of gravity of the rotor 40 as compared with the case where the intermediate portion 45 is provided in a flat shape without a step. Forty stable operations can be realized.
 上述した中間部45の構成によれば、回転子40には、径方向において固定部44を囲みかつ中間部45の内寄りとなる位置に、軸受部20の一部を収容する軸受収容凹部46が環状に形成されるとともに、径方向において軸受収容凹部46を囲みかつ中間部45の外寄りとなる位置に、後述する固定子50の固定子巻線51のコイルエンド部54を収容するコイル収容凹部47が形成されている。そして、これら各収容凹部46,47が、径方向の内外で隣り合うように配置されるようになっている。つまり、軸受部20の一部と、固定子巻線51のコイルエンド部54とが径方向内外に重複するように配置されている。これにより、回転電機10において軸方向の長さ寸法の短縮が可能となっている。 According to the configuration of the intermediate portion 45 described above, the rotor housing 40 has a bearing housing recess 46 that partially surrounds the bearing portion 20 at a position that surrounds the fixed portion 44 in the radial direction and is inward of the intermediate portion 45. Is formed in an annular shape, and encloses the bearing accommodating recess 46 in the radial direction and is located outside of the intermediate portion 45, and accommodates a coil end portion 54 of a stator winding 51 of a stator 50 described later. A recess 47 is formed. These accommodation recesses 46 and 47 are arranged so as to be adjacent to each other inside and outside in the radial direction. That is, a part of the bearing portion 20 and the coil end portion 54 of the stator winding 51 are arranged so as to overlap inward and outward in the radial direction. Thus, the axial length of the rotating electric machine 10 can be reduced.
 コイルエンド部54は、径方向の内側又は外側に曲げられることで、そのコイルエンド部54の軸方向寸法を小さくすることができ、固定子軸長を短縮することが可能である。コイルエンド部54の曲げ方向は、回転子40との組み付けを考慮したものであるとよい。回転子40の径方向内側に固定子50を組み付けることを想定すると、その回転子40に対する挿入先端側では、コイルエンド部54が径方向内側に曲げられるとよい。その逆側の曲げ方向は任意でよいが、空間的に余裕のある外径側が製造上好ましい。この曲げられた場合のコイルエンド部54については、図31から図35を用いて後に詳述する。 (4) The coil end portion 54 is bent inward or outward in the radial direction, so that the axial dimension of the coil end portion 54 can be reduced, and the axial length of the stator can be shortened. The bending direction of the coil end portion 54 should preferably take into account the assembly with the rotor 40. Assuming that the stator 50 is assembled radially inward of the rotor 40, it is preferable that the coil end portion 54 be bent radially inward on the insertion front end side with respect to the rotor 40. The bending direction on the opposite side may be arbitrary, but the outer diameter side having a sufficient space is preferable in manufacturing. The coil end portion 54 when bent will be described later in detail with reference to FIGS.
 また、磁石部42は、磁石保持部43の径方向内側において、周方向に沿って磁極が交互に変わるように配置された複数の磁石により構成されている。ただし、磁石部42の詳細については後述する。 (4) The magnet portion 42 is formed of a plurality of magnets arranged radially inside the magnet holding portion 43 so that the magnetic poles alternate alternately along the circumferential direction. However, the details of the magnet section 42 will be described later.
 固定子50は、回転子40の径方向内側に設けられている。固定子50は、略筒状に巻回形成された固定子巻線51と、その径方向内側に配置された固定子コア52とを有しており、固定子巻線51が、所定のエアギャップを挟んで円環状の磁石部42に対向するように配置されている。固定子巻線51は複数の相巻線よりなる。それら各相巻線は、周方向に配列された複数の導線が所定ピッチで互いに接続されることで構成されている。本実施形態では、U相、V相及びW相の3相巻線と、X相、Y相及びZ相の3相巻線とを用い、それら3相2組の相巻線を用いることで、固定子巻線51が6相の相巻線として構成されている。 The stator 50 is provided radially inside the rotor 40. The stator 50 has a stator winding 51 wound in a substantially cylindrical shape, and a stator core 52 disposed radially inward of the stator winding 51. It is arranged so as to face the annular magnet portion 42 with the gap interposed. The stator winding 51 includes a plurality of phase windings. Each of the phase windings is configured by connecting a plurality of conductors arranged in a circumferential direction at a predetermined pitch. In the present embodiment, three-phase windings of U-phase, V-phase, and W-phase, and three-phase windings of X-phase, Y-phase, and Z-phase are used. , The stator winding 51 is configured as a six-phase winding.
 固定子コア52は、軟磁性材からなる積層鋼板により円環状に形成されており、固定子巻線51の径方向内側に組み付けられている。 The stator core 52 is formed in an annular shape from a laminated steel plate made of a soft magnetic material, and is assembled radially inside the stator winding 51.
 固定子巻線51は、軸方向において固定子コア52に重複する部分であり、かつ固定子コア52の径方向外側となるコイルサイド部53と、軸方向において固定子コア52の一端側及び他端側にそれぞれ張り出すコイルエンド部54,55とを有している。コイルサイド部53は、径方向において固定子コア52と回転子40の磁石部42にそれぞれ対向している。回転子40の内側に固定子50が配置された状態では、軸方向両側のコイルエンド部54,55のうち軸受部20の側(図の上側)となるコイルエンド部54が、回転子40の回転子本体41により形成されたコイル収容凹部47に収容されている。ただし、固定子50の詳細については後述する。 The stator winding 51 is a portion that overlaps the stator core 52 in the axial direction, and is a coil side portion 53 that is radially outside the stator core 52, and one end of the stator core 52 in the axial direction and the other. Coil end portions 54 and 55 projecting to the end sides are provided. The coil side portion 53 faces the stator core 52 and the magnet portion 42 of the rotor 40 in the radial direction. In a state where the stator 50 is arranged inside the rotor 40, the coil end portion 54 on the side of the bearing portion 20 (upper side in the drawing) of the coil end portions 54 and 55 on both sides in the axial direction is connected to the rotor 40. It is housed in a coil housing recess 47 formed by the rotor main body 41. However, details of the stator 50 will be described later.
 インバータユニット60は、ハウジング30に対してボルト等の締結具により固定されるユニットベース61と、そのユニットベース61に組み付けられる電気コンポーネント62とを有している。ユニットベース61は、ハウジング30の開口部33側の端部に対して固定されるエンドプレート部63と、そのエンドプレート部63に一体に設けられ、軸方向に延びるケーシング部64とを有している。エンドプレート部63は、その中心部に円形の開口部65を有しており、開口部65の周縁部から起立するようにしてケーシング部64が形成されている。 The inverter unit 60 has a unit base 61 fixed to the housing 30 by fasteners such as bolts, and an electric component 62 assembled to the unit base 61. The unit base 61 includes an end plate 63 fixed to an end of the housing 30 on the opening 33 side, and a casing 64 provided integrally with the end plate 63 and extending in the axial direction. I have. The end plate 63 has a circular opening 65 at the center thereof, and a casing 64 is formed so as to stand up from the peripheral edge of the opening 65.
 ケーシング部64の外周面には固定子50が組み付けられている。つまり、ケーシング部64の外径寸法は、固定子コア52の内径寸法と同じか、又は固定子コア52の内径寸法よりも僅かに小さい寸法になっている。ケーシング部64の外側に固定子コア52が組み付けられることで、固定子50とユニットベース61とが一体化されている。また、ユニットベース61がハウジング30に固定されることからすると、ケーシング部64に固定子コア52が組み付けられた状態では、固定子50がハウジング30に対して一体化された状態となっている。 固定 The stator 50 is mounted on the outer peripheral surface of the casing 64. That is, the outer diameter of the casing portion 64 is the same as the inner diameter of the stator core 52 or slightly smaller than the inner diameter of the stator core 52. By attaching the stator core 52 to the outside of the casing 64, the stator 50 and the unit base 61 are integrated. Further, when the unit base 61 is fixed to the housing 30, the stator 50 is integrated with the housing 30 in a state where the stator core 52 is attached to the casing portion 64.
 また、ケーシング部64の径方向内側は、電気コンポーネント62を収容する収容空間となっており、その収容空間には、回転軸11を囲むようにして電気コンポーネント62が配置されている。ケーシング部64は、収容空間形成部としての役目を有している。電気コンポーネント62は、インバータ回路を構成する半導体モジュール66や、制御基板67、コンデンサモジュール68を具備する構成となっている。 Further, the radially inner side of the casing portion 64 is a housing space for housing the electric component 62, and the electric component 62 is arranged in the housing space so as to surround the rotating shaft 11. The casing part 64 has a role as an accommodation space forming part. The electric component 62 includes a semiconductor module 66 constituting an inverter circuit, a control board 67, and a capacitor module 68.
 ここで、上記図1~図5に加え、インバータユニット60の分解図である図6を用いて、インバータユニット60の構成をさらに説明する。 Here, the configuration of the inverter unit 60 will be further described with reference to FIG. 6 which is an exploded view of the inverter unit 60 in addition to FIGS.
 ユニットベース61において、ケーシング部64は、筒状部71と、その筒状部71の軸方向両端部のうち一方の端部(軸受部20側の端部)に設けられた端面部72とを有している。筒状部71の軸方向両端部のうち端面部72の反対側は、エンドプレート部63の開口部65を通じて全面的に開放されている。端面部72には、その中央に円形の孔73が形成されており、その孔73に回転軸11が挿通可能となっている。 In the unit base 61, the casing portion 64 includes a cylindrical portion 71 and an end surface portion 72 provided at one end (an end on the bearing portion 20 side) of both ends in the axial direction of the cylindrical portion 71. Have. The opposite side of the end face portion 72 of the both ends in the axial direction of the cylindrical portion 71 is completely opened through the opening 65 of the end plate portion 63. A circular hole 73 is formed in the center of the end face portion 72, and the rotary shaft 11 can be inserted through the hole 73.
 ケーシング部64の筒状部71は、その径方向外側に配置される回転子40及び固定子50と、その径方向内側に配置される電気コンポーネント62との間を仕切る仕切り部となっており、筒状部71を挟んで径方向内外に、回転子40及び固定子50と電気コンポーネント62とが並ぶようにそれぞれ配置されている。 The cylindrical portion 71 of the casing portion 64 serves as a partition portion that partitions between the rotor 40 and the stator 50 disposed radially outward and the electric component 62 disposed radially inward thereof. The rotor 40, the stator 50, and the electric component 62 are arranged radially inward and outward with the tubular portion 71 interposed therebetween.
 また、電気コンポーネント62は、インバータ回路を構成する電気部品であり、固定子巻線51の各相巻線に対して所定順序で電流を流して回転子40を回転させる力行機能と、回転軸11の回転に伴い固定子巻線51に流れる3相交流電流を入力し、発電電力として外部に出力する発電機能とを有している。なお、電気コンポーネント62は、力行機能と発電機能とのうちいずれか一方のみを有するものであってもよい。発電機能は、例えば回転電機10が車両用動力源として用いられる場合、回生電力として外部に出力する回生機能である。 The electric component 62 is an electric component forming an inverter circuit, and has a powering function of rotating the rotor 40 by applying a current to each phase winding of the stator winding 51 in a predetermined order; And a power generation function of inputting a three-phase AC current flowing through the stator winding 51 with the rotation of the motor and outputting the generated power to the outside. The electric component 62 may have only one of the powering function and the power generation function. The power generation function is, for example, a regenerative function that outputs to the outside as regenerative power when the rotating electric machine 10 is used as a vehicle power source.
 電気コンポーネント62の具体的な構成として、回転軸11の周りには、中空円筒状をなすコンデンサモジュール68が設けられており、そのコンデンサモジュール68の外周面上に、複数の半導体モジュール66が周方向に並べて配置されている。コンデンサモジュール68は、互いに並列接続された平滑用のコンデンサ68aを複数備えている。具体的には、コンデンサ68aは、複数枚のフィルムコンデンサが積層されてなる積層型フィルムコンデンサであり、横断面が台形状をなしている。コンデンサモジュール68は、12個のコンデンサ68aが環状に並べて配置されることで構成されている。 As a specific configuration of the electric component 62, a hollow cylindrical capacitor module 68 is provided around the rotation shaft 11, and a plurality of semiconductor modules 66 are provided on the outer peripheral surface of the capacitor module 68 in the circumferential direction. Are arranged side by side. The capacitor module 68 includes a plurality of smoothing capacitors 68a connected in parallel with each other. Specifically, the capacitor 68a is a laminated film capacitor in which a plurality of film capacitors are laminated, and has a trapezoidal cross section. The capacitor module 68 is configured by arranging twelve capacitors 68a in a ring.
 なお、コンデンサ68aの製造過程においては、例えば、複数のフィルムが積層されてなる所定幅の長尺フィルムを用い、フィルム幅方向を台形高さ方向とし、かつ台形の上底と下底とが交互になるように長尺フィルムが等脚台形状に切断されることにより、コンデンサ素子が作られる。そして、そのコンデンサ素子に電極等を取り付けることでコンデンサ68aが作製される。 In the manufacturing process of the capacitor 68a, for example, a long film having a predetermined width formed by laminating a plurality of films is used, the film width direction is set to a trapezoidal height direction, and the upper and lower bases of the trapezoid alternate. The long film is cut into an equal-leg trapezoidal shape so that the capacitor element is formed. Then, by attaching electrodes and the like to the capacitor element, the capacitor 68a is manufactured.
 半導体モジュール66は、例えばMOSFETやIGBT等の半導体スイッチング素子を有し、略板状に形成されている。本実施形態では、回転電機10が2組の3相巻線を備えており、その3相巻線ごとにインバータ回路が設けられていることから、計12個の半導体モジュール66が電気コンポーネント62に設けられている。 The semiconductor module 66 has a semiconductor switching element such as a MOSFET or an IGBT, and is formed in a substantially plate shape. In the present embodiment, the rotary electric machine 10 includes two sets of three-phase windings, and an inverter circuit is provided for each of the three-phase windings. Is provided.
 半導体モジュール66は、ケーシング部64の筒状部71とコンデンサモジュール68との間に挟まれた状態で配置されている。半導体モジュール66の外周面は筒状部71の内周面に当接し、半導体モジュール66の内周面はコンデンサモジュール68の外周面に当接している。この場合、半導体モジュール66で生じた熱は、ケーシング部64を介してエンドプレート部63に伝わり、エンドプレート部63から放出される。 The semiconductor module 66 is disposed between the cylindrical portion 71 of the casing 64 and the capacitor module 68. The outer peripheral surface of the semiconductor module 66 contacts the inner peripheral surface of the cylindrical portion 71, and the inner peripheral surface of the semiconductor module 66 contacts the outer peripheral surface of the capacitor module 68. In this case, heat generated in the semiconductor module 66 is transmitted to the end plate 63 via the casing 64 and is released from the end plate 63.
 半導体モジュール66は、外周面側、すなわち径方向において半導体モジュール66と筒状部71との間にスペーサ69を有しているとよい。この場合、コンデンサモジュール68では軸方向に直交する横断面の断面形状が正12角形である一方、筒状部71の内周面の横断面形状が円形であるため、スペーサ69は、内周面が平坦面、外周面が曲面となっている。スペーサ69は、各半導体モジュール66の径方向外側において円環状に連なるように一体に設けられていてもよい。なお、筒状部71の内周面の横断面形状をコンデンサモジュール68と同じ12角形にすることも可能である。この場合、スペーサ69の内周面及び外周面がいずれも平坦面であるとよい。 The semiconductor module 66 preferably has a spacer 69 between the semiconductor module 66 and the cylindrical portion 71 in the outer peripheral surface side, that is, in the radial direction. In this case, in the capacitor module 68, the cross-sectional shape of the cross section orthogonal to the axial direction is a regular dodecagon, while the cross-sectional shape of the inner peripheral surface of the cylindrical portion 71 is circular. Has a flat surface and the outer peripheral surface is a curved surface. The spacer 69 may be provided integrally so as to be annularly continuous outside the semiconductor module 66 in the radial direction. Note that the cross-sectional shape of the inner peripheral surface of the cylindrical portion 71 can be the same dodecagon as that of the capacitor module 68. In this case, both the inner peripheral surface and the outer peripheral surface of the spacer 69 are preferably flat surfaces.
 また、本実施形態では、ケーシング部64の筒状部71に、冷却水を流通させる冷却水通路74が形成されており、半導体モジュール66で生じた熱は、冷却水通路74を流れる冷却水に対しても放出される。つまり、ケーシング部64は水冷機構を備えている。図3や図4に示すように、冷却水通路74は、電気コンポーネント62(半導体モジュール66及びコンデンサモジュール68)を囲むように環状に形成されている。半導体モジュール66は筒状部71の内周面に沿って配置されており、その半導体モジュール66に対して径方向内外に重なる位置に冷却水通路74が設けられている。 Further, in the present embodiment, a cooling water passage 74 for flowing cooling water is formed in the cylindrical portion 71 of the casing 64, and heat generated in the semiconductor module 66 is transferred to the cooling water flowing through the cooling water passage 74. Also released. That is, the casing 64 has a water cooling mechanism. As shown in FIGS. 3 and 4, the cooling water passage 74 is formed in an annular shape so as to surround the electric component 62 (the semiconductor module 66 and the capacitor module 68). The semiconductor module 66 is arranged along the inner peripheral surface of the cylindrical portion 71, and a cooling water passage 74 is provided at a position overlapping the semiconductor module 66 inward and outward in the radial direction.
 筒状部71の外側には固定子50が配置され、内側には電気コンポーネント62が配置されていることから、筒状部71に対しては、その外側から固定子50の熱が伝わるとともに、内側から半導体モジュール66の熱が伝わることになる。この場合、固定子50と半導体モジュール66とを同時に冷やすことが可能となっており、回転電機10における発熱部材の熱を効率良く放出することができる。 Since the stator 50 is disposed outside the tubular portion 71 and the electric component 62 is disposed inside, the heat of the stator 50 is transmitted to the tubular portion 71 from the outside, The heat of the semiconductor module 66 is transmitted from the inside. In this case, the stator 50 and the semiconductor module 66 can be cooled at the same time, and the heat of the heat generating member in the rotating electric machine 10 can be efficiently released.
 また、電気コンポーネント62は、軸方向において、コンデンサモジュール68の一方の端面に設けられた絶縁シート75と、他方の端面に設けられた配線モジュール76とを備えている。この場合、コンデンサモジュール68の軸方向両端面のうち一方の端面(軸受部20側の端面)は、ケーシング部64の端面部72に対向しており、絶縁シート75を挟んだ状態で端面部72に重ね合わされている。また、他方の端面(開口部65側の端面)には、配線モジュール76が組み付けられている。 {Circle around (2)} The electric component 62 includes an insulating sheet 75 provided on one end face of the capacitor module 68 and a wiring module 76 provided on the other end face in the axial direction. In this case, one end face (the end face on the bearing portion 20 side) of both end faces in the axial direction of the capacitor module 68 is opposed to the end face portion 72 of the casing portion 64, and the end face portion 72 is sandwiched by the insulating sheet 75. Has been superimposed. A wiring module 76 is mounted on the other end surface (the end surface on the opening 65 side).
 配線モジュール76は、合成樹脂材よりなり円形板状をなす本体部76aと、その内部に埋設された複数のバスバー76b,76cを有しており、そのバスバー76b,76cにより、半導体モジュール66やコンデンサモジュール68と電気的接続がなされている。具体的には、半導体モジュール66は、その軸方向端面から延びる接続ピン66aを有しており、その接続ピン66aが、本体部76aの径方向外側においてバスバー76bに接続されている。また、バスバー76cは、本体部76aの径方向外側においてコンデンサモジュール68とは反対側に延びており、その先端部にて配線部材79に接続されるようになっている(図2参照)。 The wiring module 76 has a main body portion 76a made of a synthetic resin and having a circular plate shape, and a plurality of busbars 76b and 76c embedded therein. The busbars 76b and 76c allow the semiconductor module 66 and the capacitor to be mounted. An electrical connection is made with the module 68. Specifically, the semiconductor module 66 has a connection pin 66a extending from the axial end face, and the connection pin 66a is connected to the bus bar 76b on the radial outside of the main body portion 76a. The bus bar 76c extends on the outer side of the main body 76a in the radial direction on the side opposite to the capacitor module 68, and is connected to the wiring member 79 at its tip (see FIG. 2).
 上記のとおりコンデンサモジュール68の軸方向両側に絶縁シート75と配線モジュール76とがそれぞれ設けられた構成によれば、コンデンサモジュール68の放熱経路として、コンデンサモジュール68の軸方向両端面から端面部72及び筒状部71に至る経路が形成される。これにより、コンデンサモジュール68において半導体モジュール66が設けられた外周面以外の端面部からの放熱が可能になっている。つまり、径方向への放熱だけでなく、軸方向への放熱も可能となっている。 According to the configuration in which the insulating sheet 75 and the wiring module 76 are provided on both sides in the axial direction of the capacitor module 68 as described above, the heat radiation paths of the capacitor module 68 are provided from both end surfaces in the axial direction of the capacitor module 68 to the end surface 72 and A path leading to the cylindrical portion 71 is formed. Thereby, heat can be radiated from the end face of the capacitor module 68 other than the outer peripheral face where the semiconductor module 66 is provided. That is, not only the heat radiation in the radial direction but also the heat radiation in the axial direction are possible.
 また、コンデンサモジュール68は中空円筒状をなし、その内周部には所定の隙間を介在させて回転軸11が配置されることから、コンデンサモジュール68の熱はその中空部からも放出可能となっている。この場合、回転軸11の回転により空気の流れが生じることにより、その冷却効果が高められるようになっている。 Further, since the capacitor module 68 has a hollow cylindrical shape and the rotating shaft 11 is disposed on the inner peripheral portion thereof with a predetermined gap interposed therebetween, the heat of the capacitor module 68 can be released from the hollow portion. ing. In this case, the flow of air is generated by the rotation of the rotating shaft 11, so that the cooling effect is enhanced.
 配線モジュール76には、円板状の制御基板67が取り付けられている。制御基板67は、所定の配線パターンが形成されたプリントサーキットボード(PCB)を有しており、そのボード上には各種ICや、マイコン等からなる制御装置77が実装されている。制御基板67は、ネジ等の固定具により配線モジュール76に固定されている。制御基板67は、その中央部に、回転軸11を挿通させる挿通孔67aを有している。 円 A disc-shaped control board 67 is attached to the wiring module 76. The control board 67 has a printed circuit board (PCB) on which a predetermined wiring pattern is formed, and a control device 77 including various ICs and a microcomputer is mounted on the board. The control board 67 is fixed to the wiring module 76 by a fixture such as a screw. The control board 67 has an insertion hole 67a at the center thereof, through which the rotating shaft 11 is inserted.
 なお、配線モジュール76の軸方向両側のうちコンデンサモジュール68の反対側に制御基板67が設けられ、その制御基板67の両面の一方側から他方側に配線モジュール76のバスバー76cが延びる構成となっている。かかる構成において、制御基板67には、バスバー76cとの干渉を回避する切欠が設けられているとよい。例えば、円形状をなす制御基板67の外縁部の一部が切り欠かれているとよい。 A control board 67 is provided on the opposite side of the capacitor module 68 from both sides in the axial direction of the wiring module 76, and the bus bar 76c of the wiring module 76 extends from one side of the control board 67 to the other side. I have. In such a configuration, the control board 67 may be provided with a notch for avoiding interference with the bus bar 76c. For example, a part of the outer edge of the circular control board 67 may be cut away.
 上述のとおり、ケーシング部64に囲まれた空間内に電気コンポーネント62が収容され、その外側に、ハウジング30、回転子40及び固定子50が層状に設けられている構成によれば、インバータ回路で生じる電磁ノイズが好適にシールドされるようになっている。すなわち、インバータ回路では、所定のキャリア周波数によるPWM制御を利用して各半導体モジュール66でのスイッチング制御が行われ、そのスイッチング制御により電磁ノイズが生じることが考えられるが、その電磁ノイズを、電気コンポーネント62の径方向外側のハウジング30、回転子40、固定子50等により好適にシールドできる。 As described above, according to the configuration in which the electric component 62 is accommodated in the space surrounded by the casing portion 64 and the housing 30, the rotor 40, and the stator 50 are provided in layers outside the space, the inverter circuit is used. The resulting electromagnetic noise is suitably shielded. That is, in the inverter circuit, switching control in each semiconductor module 66 is performed using PWM control based on a predetermined carrier frequency, and electromagnetic noise may be generated by the switching control. It can be shielded suitably by the housing 30, the rotor 40, the stator 50, and the like outside in the radial direction of 62.
 筒状部71においてエンドプレート部63の付近には、その外側の固定子50と内側の電気コンポーネント62とを電気的に接続する配線部材79(図2参照)を挿通させる貫通孔78が形成されている。図2に示すように、配線部材79は、圧着、溶接などにより、固定子巻線51の端部と配線モジュール76のバスバー76cとにそれぞれ接続されている。配線部材79は、例えばバスバーであり、その接合面は平たく潰されていることが望ましい。貫通孔78は、1カ所又は複数箇所に設けられているとよく、本実施形態では2カ所に貫通孔78が設けられている。2カ所に貫通孔78が設けられる構成では、2組の3相巻線から延びる巻線端子を、それぞれ配線部材79により容易に結線することが可能となり、多相結線を行う上で好適なものとなっている。 In the vicinity of the end plate 63 in the cylindrical portion 71, a through hole 78 is formed through which a wiring member 79 (see FIG. 2) for electrically connecting the outer stator 50 and the inner electric component 62 is inserted. ing. As shown in FIG. 2, the wiring member 79 is connected to the end of the stator winding 51 and the bus bar 76c of the wiring module 76 by crimping, welding, or the like. The wiring member 79 is, for example, a bus bar, and its joint surface is desirably flattened. The through holes 78 may be provided at one or a plurality of positions. In the present embodiment, the through holes 78 are provided at two positions. In the configuration in which the through holes 78 are provided at two locations, the winding terminals extending from the two sets of three-phase windings can be easily connected by the wiring members 79, respectively, which is suitable for performing multiphase connection. It has become.
 上述のとおりハウジング30内には、図4に示すように径方向外側から順に回転子40、固定子50が設けられ、固定子50の径方向内側にインバータユニット60が設けられている。ここで、ハウジング30の内周面の半径をdとした場合に、回転中心からd×0.705の距離よりも径方向外側に回転子40と固定子50とが配置されている。この場合、回転子40及び固定子50のうち径方向内側の固定子50の内周面(すなわち固定子コア52の内周面)から径方向内側となる領域を第1領域X1、径方向において固定子50の内周面からハウジング30までの間の領域を第2領域X2とすると、第1領域X1の横断面の面積は、第2領域X2の横断面の面積よりも大きい構成となっている。また、軸方向において回転子40の磁石部42及び固定子巻線51が重複する範囲で見て、第1領域X1の容積が第2領域X2の容積よりも大きい構成となっている。 As described above, in the housing 30, the rotor 40 and the stator 50 are provided in this order from the outside in the radial direction as shown in FIG. 4, and the inverter unit 60 is provided inside the stator 50 in the radial direction. Here, assuming that the radius of the inner peripheral surface of the housing 30 is d, the rotor 40 and the stator 50 are arranged radially outward from a distance of d × 0.705 from the center of rotation. In this case, of the rotor 40 and the stator 50, a region radially inward from the inner peripheral surface of the stator 50 on the radial inner side (that is, the inner peripheral surface of the stator core 52) is defined as a first region X1, Assuming that a region between the inner peripheral surface of the stator 50 and the housing 30 is the second region X2, the cross-sectional area of the first region X1 is larger than the cross-sectional area of the second region X2. I have. Further, when viewed in a range where the magnet portion 42 of the rotor 40 and the stator winding 51 overlap in the axial direction, the volume of the first region X1 is larger than the volume of the second region X2.
 なお、回転子40及び固定子50を磁気回路コンポーネントとすると、ハウジング30内において、その磁気回路コンポーネントの内周面から径方向内側となる第1領域X1が、径方向において磁気回路コンポーネントの内周面からハウジング30までの間の第2領域X2よりも容積が大きい構成となっている。 Assuming that the rotor 40 and the stator 50 are magnetic circuit components, a first region X1 radially inward from the inner peripheral surface of the magnetic circuit component in the housing 30 is radially inward of the magnetic circuit component. The volume is larger than the second area X2 between the surface and the housing 30.
 次いで、回転子40及び固定子50の構成をより詳しく説明する。 Next, the configurations of the rotor 40 and the stator 50 will be described in more detail.
 一般に、回転電機における固定子の構成として、積層鋼板よりなりかつ円環状をなす固定子コアに周方向に複数のスロットを設け、そのスロット内に固定子巻線を巻装するものが知られている。具体的には、固定子コアは、ヨーク部から所定間隔で径方向に延びる複数のティースを有しており、周方向に隣り合うティース間にスロットが形成されている。そして、スロット内に、例えば径方向に複数層の導線が収容され、その導線により固定子巻線が構成されている。 Generally, as a configuration of a stator in a rotating electric machine, there is known a configuration in which a plurality of slots are provided in a circumferential direction on a stator core made of laminated steel sheets and forming an annular shape, and a stator winding is wound in the slots. I have. Specifically, the stator core has a plurality of teeth extending in the radial direction at predetermined intervals from the yoke portion, and a slot is formed between teeth adjacent in the circumferential direction. A plurality of layers of conductors are accommodated in the slot, for example, in the radial direction, and the conductors constitute a stator winding.
 ただし、上述した固定子構造では、固定子巻線の通電時において、固定子巻線の起磁力が増加するのに伴い固定子コアのティース部分で磁気飽和が生じ、それに起因して回転電機のトルク密度が制限されることが考えられる。つまり、固定子コアにおいて、固定子巻線の通電により生じた回転磁束がティースに集中することで、磁気飽和が生じると考えられる。 However, in the above-described stator structure, when the stator winding is energized, magnetic saturation occurs in the teeth of the stator core as the magnetomotive force of the stator winding increases, and as a result, the rotating electric machine It is possible that the torque density is limited. That is, in the stator core, it is considered that the magnetic flux is generated by energizing the stator windings and concentrates on the teeth, thereby causing magnetic saturation.
 また、一般的に、回転電機におけるIPMロータの構成として、永久磁石がd軸に配置され、q軸にロータコアが配置されたものが知られている。このような場合、d軸近傍の固定子巻線が励磁されることで、フレミングの法則により固定子から回転子のq軸に励磁磁束が流入される。そしてこれにより、回転子のq軸コア部分に、広範囲の磁気飽和が生じると考えられる。 Generally, as a configuration of an IPM rotor in a rotating electric machine, a configuration in which a permanent magnet is arranged on a d-axis and a rotor core is arranged on a q-axis is known. In such a case, when the stator winding near the d-axis is excited, the excitation magnetic flux flows from the stator to the q-axis of the rotor according to Fleming's law. It is considered that this causes a wide range of magnetic saturation in the q-axis core portion of the rotor.
 図7は、固定子巻線の起磁力を示すアンペアターン[AT]とトルク密度[Nm/L]との関係を示すトルク線図である。破線が一般的なIPMロータ型の回転電機における特性を示す。図7に示すように、一般的な回転電機では、固定子において起磁力を増加させていくことにより、スロット間のティース部分及びq軸コア部分の2カ所で磁気飽和が生じ、それが原因でトルクの増加が制限されてしまう。このように、当該一般的な回転電機では、アンペアターン設計値がX1で制限されることになる。 FIG. 7 is a torque diagram showing the relationship between the ampere turn [AT] indicating the magnetomotive force of the stator winding and the torque density [Nm / L]. The dashed line indicates the characteristic in a general IPM rotor type rotating electric machine. As shown in FIG. 7, in a general rotating electric machine, by increasing the magnetomotive force in the stator, magnetic saturation occurs at two places, ie, the teeth portion between the slots and the q-axis core portion. The increase in torque is limited. As described above, in the general rotating electric machine, the ampere-turn design value is limited by X1.
 そこで本実施形態では、磁気飽和に起因するトルク制限を解消すべく、回転電機10において、以下に示す構成を付与するものとしている。すなわち、第1の工夫として、固定子において固定子コアのティースで生じる磁気飽和をなくすべく、固定子50においてスロットレス構造を採用し、かつIPMロータのq軸コア部分で生じる磁気飽和をなくすべく、SPMロータを採用している。第1の工夫によれば、磁気飽和が生じる上記2カ所の部分をなくすことができるが、低電流域でのトルクが減少することが考えられる(図7の一点鎖線参照)。そのため、第2の工夫として、SPMロータの磁束増強を図ることでトルク減少を挽回すべく、回転子40の磁石部42において磁石磁路を長くして磁力を高めた極異方構造を採用している。 Therefore, in the present embodiment, the following configuration is added to the rotating electric machine 10 in order to eliminate the torque limitation caused by the magnetic saturation. That is, as a first contrivance, a slotless structure is employed in the stator 50 in order to eliminate magnetic saturation caused by teeth of the stator core in the stator, and in order to eliminate magnetic saturation occurring in the q-axis core portion of the IPM rotor. , SPM rotor. According to the first device, the above two portions where magnetic saturation occurs can be eliminated, but it is conceivable that the torque in the low current region decreases (see the dashed line in FIG. 7). Therefore, as a second contrivance, a pole anisotropic structure in which the magnet magnetic path is lengthened to increase the magnetic force in the magnet section 42 of the rotor 40 is adopted in order to recover the torque reduction by increasing the magnetic flux of the SPM rotor. ing.
 また、第3の工夫として、固定子巻線51のコイルサイド部53において導線の径方向厚さを小さくした扁平導線構造を採用してトルク減少の挽回を図っている。ここで、上述の磁力を高めた極異方構造によって、対向する固定子巻線51には、より大きな渦電流が発生することが考えられる。しかしながら、第3の工夫によれば、径方向に薄い扁平導線構造のため、固定子巻線51における径方向の渦電流の発生を抑制することができる。このように、これら第1~第3の各構成によれば、図7に実線で示すように、磁力の高い磁石を採用してトルク特性の大幅な改善を見込みつつも、磁力の高い磁石ゆえに生じ得る大きい渦電流発生の懸念も改善できるものとなっている。 As a third device, a flat conductor structure in which the radial thickness of the conductor is reduced in the coil side portion 53 of the stator winding 51 is employed to reduce the torque reduction. Here, it is conceivable that a larger eddy current is generated in the opposed stator winding 51 due to the above-described pole anisotropic structure in which the magnetic force is increased. However, according to the third device, the generation of radial eddy currents in the stator windings 51 can be suppressed because the flat conductive wire structure is thin in the radial direction. As described above, according to each of the first to third configurations, as shown by the solid line in FIG. 7, while a magnet having a high magnetic force is employed to greatly improve the torque characteristics, the magnet having a high magnetic force is used. Concerns about possible large eddy current generation can also be improved.
 さらに、第4の工夫として、極異方構造を利用し正弦波に近い磁束密度分布を有する磁石部を採用している。これによれば、後述するパルス制御等によって正弦波整合率を高めてトルク増強を図ることができるとともに、ラジアル磁石と比べ緩やかな磁束変化のため渦電流損もまた更に抑制することができるのである。 Further, as a fourth contrivance, a magnet part having a magnetic flux density distribution close to a sine wave using a pole anisotropic structure is adopted. According to this, the sine wave matching ratio can be increased by pulse control or the like to be described later to increase the torque, and the eddy current loss can be further suppressed due to a gradual change in magnetic flux compared to the radial magnet. .
 また、第5の工夫として、固定子巻線51を複数の素線を寄せ集めて撚った素線導体構造としている。これによれば、基本波成分は集電されて大電流が流せるとともに、扁平導線構造で周方向に広がった導線で発生する周方向に起因する渦電流の発生を、素線それぞれの断面積が小さくなるため、第3の工夫による径方向に薄くする以上に効果的に抑制することができる。そして、複数の素線が撚り合っていることで、導体からの起磁力に対しては、電流通電方向に対して右ネジの法則で発生する磁束に対する渦電流を相殺することができる。 (5) As a fifth contrivance, the stator winding 51 has a strand conductor structure in which a plurality of strands are gathered and twisted. According to this, while the fundamental wave component is collected, a large current can flow, and the generation of eddy current due to the circumferential direction generated by the conductor that spreads in the circumferential direction with the flat wire structure reduces the cross-sectional area of each element wire. Since the thickness is reduced, the thickness can be more effectively suppressed than when the thickness is reduced in the radial direction by the third device. And, since the plurality of strands are twisted, the eddy current with respect to the magnetic flux generated by the rule of the right-hand screw with respect to the current flowing direction can be offset with respect to the magnetomotive force from the conductor.
 このように、第4の工夫、第5の工夫をさらに加えると、第2の工夫である磁力の高い磁石を採用しながら、さらにその高い磁力に起因する渦電流損を抑制しながらトルク増強を図ることができる。 As described above, when the fourth device and the fifth device are further added, the torque is increased while the eddy current loss caused by the high magnetic force is suppressed while employing the magnet having the high magnetic force as the second device. Can be planned.
 以下に、上述した固定子50のスロットレス構造、固定子巻線51の扁平導線構造、及び磁石部42の極異方構造について個別に説明を加える。ここではまずは、固定子50におけるスロットレス構造と固定子巻線51の扁平導線構造とを説明する。図8は、回転子40及び固定子50の横断面図であり、図9は、図8に示す回転子40及び固定子50の一部を拡大して示す図である。図10は、固定子50の横断面を示す断面図であり、図11は、固定子50の縦断面を示す断面図である。また、図12は、固定子巻線51の斜視図である。なお、図8及び図9には、磁石部42における磁石の磁化方向を矢印にて示している。 ス ロ ッ ト Hereinafter, the slotless structure of the stator 50, the flat conductor structure of the stator winding 51, and the pole anisotropic structure of the magnet portion 42 will be individually described. First, the slotless structure of the stator 50 and the flat conductor structure of the stator winding 51 will be described. FIG. 8 is a cross-sectional view of the rotor 40 and the stator 50, and FIG. 9 is an enlarged view of a part of the rotor 40 and the stator 50 shown in FIG. FIG. 10 is a cross-sectional view showing a horizontal cross section of the stator 50, and FIG. 11 is a cross-sectional view showing a vertical cross section of the stator 50. FIG. 12 is a perspective view of the stator winding 51. 8 and 9, the magnetization directions of the magnets in the magnet section 42 are indicated by arrows.
 図8乃至図11に示すように、固定子コア52は、軸方向に複数の電磁鋼板が積層され、かつ径方向に所定の厚さを有する円筒状をなしており、その径方向外側に固定子巻線51が組み付けられるものとなっている。固定子コア52の外周面が導線設置部となっている。固定子コア52の外周面は凹凸のない曲面状をなしており、その外周面において周方向に並べて複数の導線群81が配置されている。固定子コア52は、回転子40を回転させるための磁気回路の一部となるバックヨークとして機能する。この場合、周方向に隣り合う各導線群81の間には軟磁性材からなるティース(つまり、鉄心)が設けられていない構成(つまり、スロットレス構造)となっている。本実施形態において、それら各導線群81の間隙56には、封止部57の樹脂材料が入り込む構造となっている。つまり、封止部57の封止前の状態で言えば、固定子コア52の径方向外側には、それぞれ導線間領域である間隙56を隔てて周方向に所定間隔で導線群81が配置されており、これによりスロットレス構造の固定子50が構築されている。封止部57は、導線間部材を提供する。 As shown in FIGS. 8 to 11, the stator core 52 is formed by stacking a plurality of electromagnetic steel sheets in the axial direction and has a cylindrical shape having a predetermined thickness in the radial direction. The child winding 51 is to be assembled. The outer peripheral surface of the stator core 52 is a conductive wire installation part. The outer peripheral surface of the stator core 52 has a curved surface without irregularities, and a plurality of conductive wire groups 81 are arranged on the outer peripheral surface in a circumferential direction. The stator core 52 functions as a back yoke which is a part of a magnetic circuit for rotating the rotor 40. In this case, the configuration is such that no teeth (that is, iron core) made of a soft magnetic material are provided between the conductor groups 81 that are adjacent in the circumferential direction (that is, a slotless structure). In the present embodiment, the structure is such that the resin material of the sealing portion 57 enters the gaps 56 between the respective conductive wire groups 81. That is, speaking of the state before the sealing of the sealing portion 57, the conductor groups 81 are arranged radially outside the stator core 52 at predetermined intervals in the circumferential direction with the gap 56, which is a region between the conductors, interposed therebetween. As a result, a stator 50 having a slotless structure is constructed. The sealing portion 57 provides an inter-wire member.
 なお、周方向に並ぶ各導線群81の間においてティースが設けられている構成とは、ティースが、径方向に所定厚さを有し、かつ周方向に所定幅を有することで、各導線群81の間に磁気回路の一部、すなわち磁石磁路を形成する構成であると言える。この点において、各導線群81の間にティースが設けられていない構成とは、上記の磁気回路の形成がなされていない構成であると言える。 Note that the configuration in which the teeth are provided between the conductor groups 81 arranged in the circumferential direction means that the teeth have a predetermined thickness in the radial direction and a predetermined width in the circumferential direction. It can be said that this is a configuration in which a part of the magnetic circuit, that is, a magnet magnetic path is formed between the magnetic circuits 81. In this regard, a configuration in which the teeth are not provided between the conductive wire groups 81 can be said to be a configuration in which the above-described magnetic circuit is not formed.
 図10及び図11に示すように、固定子巻線51は、封止材としての合成樹脂材からなる封止部57により封止されている。図10の横断面で見れば、封止部57は、各導線群81の間、すなわち間隙56に合成樹脂材が充填されて設けられており、封止部57により、各導線群81の間に絶縁部材が介在する構成となっている。つまり、間隙56において封止部57が絶縁部材として機能する。封止部57は、固定子コア52の径方向外側において、各導線群81を全て含む範囲、すなわち径方向の厚さ寸法が各導線群81の径方向の厚さ寸法よりも大きくなる範囲で設けられている。 及 び As shown in FIGS. 10 and 11, the stator winding 51 is sealed by a sealing portion 57 made of a synthetic resin material as a sealing material. 10, the sealing portion 57 is provided between the conductor groups 81, that is, the gap 56 is filled with a synthetic resin material, and is provided between the conductor groups 81 by the sealing portion 57. And an insulating member interposed therebetween. That is, the sealing portion 57 functions as an insulating member in the gap 56. The sealing portion 57 extends radially outside the stator core 52 in a range that includes all the conductor groups 81, that is, in a range in which the radial thickness is larger than the radial thickness of each conductor group 81. Is provided.
 また、図11の縦断面で見れば、封止部57は、固定子巻線51のターン部84を含む範囲で設けられている。固定子巻線51の径方向内側では、固定子コア52の端面の少なくとも一部を含む範囲で封止部57が設けられている。この場合、固定子巻線51は、各相の相巻線の端部、すなわちインバータ回路との接続端子を除く略全体で樹脂封止されている。 In addition, when viewed in the vertical cross section of FIG. 11, the sealing portion 57 is provided in a range including the turn portion 84 of the stator winding 51. Inside the stator winding 51 in the radial direction, a sealing portion 57 is provided in a range including at least a part of the end face of the stator core 52. In this case, the stator windings 51 are resin-sealed substantially at the ends of the phase windings of the respective phases, that is, substantially entirely except for connection terminals with the inverter circuit.
 封止部57が固定子コア52の端面を含む範囲で設けられた構成では、封止部57により、固定子コア52の積層鋼板を軸方向内側に押さえ付けることができる。これにより、封止部57を用いて、各鋼板の積層状態を保持することができる。なお、本実施形態では、固定子コア52の内周面を樹脂封止していないが、これに代えて、固定子コア52の内周面を含む固定子コア52の全体を樹脂封止する構成であってもよい。 In the configuration in which the sealing portion 57 is provided in a range including the end face of the stator core 52, the sealing portion 57 can press the laminated steel sheet of the stator core 52 inward in the axial direction. Thereby, the laminated state of each steel plate can be maintained using the sealing portion 57. Although the inner peripheral surface of the stator core 52 is not resin-sealed in the present embodiment, the entire stator core 52 including the inner peripheral surface of the stator core 52 is resin-sealed instead. It may be a configuration.
 回転電機10が車両動力源として使用される場合には、封止部57が、高耐熱のフッ素樹脂や、エポキシ樹脂、PPS樹脂、PEEK樹脂、LCP樹脂、シリコン樹脂、PAI樹脂、PI樹脂等により構成されていることが好ましい。また、膨張差による割れ抑制の観点から線膨張係数を考えると、固定子巻線51の導線の外被膜と同じ材質であることが望ましい。すなわち、線膨張係数が、一般的に他樹脂の倍以上であるシリコン樹脂は望ましくは除外される。なお、電気車両の如く、燃焼を利用した機関を持たない電気製品においては、180℃程度の耐熱性を持つPPO樹脂やフェノール樹脂、FRP樹脂も候補となる。回転電機の周囲温度が100℃未満と見做せる分野においては、この限りではない。 When the rotating electric machine 10 is used as a vehicle power source, the sealing portion 57 is made of a heat-resistant fluororesin, an epoxy resin, a PPS resin, a PEEK resin, an LCP resin, a silicon resin, a PAI resin, a PI resin, or the like. Preferably, it is configured. Further, considering the coefficient of linear expansion from the viewpoint of suppressing cracking due to the difference in expansion, it is preferable that the material is the same as the outer coating of the conductor of the stator winding 51. That is, a silicone resin whose linear expansion coefficient is generally twice or more that of another resin is desirably excluded. In addition, in an electric product such as an electric vehicle that does not have an engine using combustion, a PPO resin, a phenol resin, and an FRP resin having a heat resistance of about 180 ° C. are also candidates. This is not the case in a field where the ambient temperature of the rotating electric machine can be regarded as being lower than 100 ° C.
 回転電機10のトルクは磁束の大きさに比例する。ここで、固定子コアがティースを有している場合には、固定子での最大磁束量がティースでの飽和磁束密度に依存して制限されるが、固定子コアがティースを有していない場合には、固定子での最大磁束量が制限されない。そのため、固定子巻線51に対する通電電流を増加して回転電機10のトルク増加を図る上で、有利な構成となっている。 ト ル ク The torque of the rotating electric machine 10 is proportional to the magnitude of the magnetic flux. Here, when the stator core has teeth, the maximum magnetic flux amount at the stator is limited depending on the saturation magnetic flux density at the teeth, but the stator core does not have teeth. In such a case, the maximum magnetic flux amount at the stator is not limited. Therefore, the configuration is advantageous in increasing the current flowing through the stator winding 51 to increase the torque of the rotating electric machine 10.
 固定子コア52の径方向外側における各導線群81は、断面が扁平矩形状をなす複数の導線82が径方向に並べて配置されて構成されている。各導線82は、横断面において「径方向寸法<周方向寸法」となる向きで配置されている。これにより、各導線群81において径方向の薄肉化が図られている。また、径方向の薄肉化を図るとともに、導体領域が、ティースが従来あった領域まで平らに延び、扁平導線領域構造となっている。これにより、薄肉化により断面積が小さくなることで懸念される導線の発熱量の増加を、周方向に扁平化して導体の断面積を稼ぐことで抑えている。なお、複数の導線を周方向に並べ、かつそれらを並列結線とする構成であっても、導体被膜分の導体断面積低下は起こるものの、同じ理屈に依る効果が得られる。 各 Each conductive wire group 81 radially outside the stator core 52 is configured by arranging a plurality of conductive wires 82 having a flat rectangular cross section in a radial direction. Each conductive wire 82 is arranged in a direction that satisfies “radial dimension <circumferential dimension” in a cross section. Thus, the thickness of each conductive wire group 81 in the radial direction is reduced. In addition, the thickness of the conductor region is reduced in the radial direction, and the conductor region extends flat to the region where the teeth are conventionally formed, so that the conductor region has a flat conductor region structure. As a result, an increase in the calorific value of the conductor, which may be caused by a reduction in the cross-sectional area due to the reduction in thickness, is suppressed by flattening in the circumferential direction to increase the cross-sectional area of the conductor. Note that, even in a configuration in which a plurality of conductors are arranged in the circumferential direction and are connected in parallel, an effect based on the same theory can be obtained, although the conductor cross-sectional area is reduced by the conductor coating.
 スロットがないことから、本実施形態における固定子巻線51では、その周方向の一周における導体領域を、隙間領域より大きく設計することができる。なお、従来の車両用回転電機は、固定子巻線の周方向の一周における導体領域/隙間領域は1以下であるのが当然であった。一方、本実施形態では、導体領域が隙間領域と同等又は導体領域が隙間領域よりも大きくなるようにして、各導線群81が設けられている。ここで、図10に示すように、周方向において導線82(つまり、後述する直線部83)が配置された導線領域をWA、隣り合う導線82の間となる導線間領域をWBとすると、導線領域WAは、導線間領域WBより周方向において大きいものとなっている。 Since there is no slot, in the stator winding 51 in the present embodiment, the conductor region in one circumferential direction can be designed to be larger than the gap region. In the conventional rotating electric machine for a vehicle, it is natural that the conductor area / gap area in one circumferential direction of the stator winding is 1 or less. On the other hand, in the present embodiment, each conductive wire group 81 is provided such that the conductor region is equal to the gap region or the conductor region is larger than the gap region. Here, as shown in FIG. 10, assuming that a conductor region in which the conductor 82 (that is, a straight line portion 83 described later) is disposed in the circumferential direction is WA and a region between conductors between adjacent conductors 82 is WB, The area WA is larger in the circumferential direction than the inter-wire area WB.
 回転電機10のトルクは、導線群81の径方向の厚さに略反比例する。この点、固定子コア52の径方向外側において導線群81の厚さを薄くしたことにより、回転電機10のトルク増加を図る上で有利な構成となっている。その理由としては、回転子40の磁石部42から固定子コア52までの距離(つまり鉄の無い部分の距離)を小さくして磁気抵抗を下げることができるためである。これによれば、永久磁石による固定子コア52の鎖交磁束を大きくすることができ、トルクを増強することができる。 ト ル ク The torque of the rotating electric machine 10 is substantially inversely proportional to the radial thickness of the conductor group 81. In this regard, by reducing the thickness of the conductive wire group 81 on the radially outer side of the stator core 52, the configuration is advantageous in increasing the torque of the rotating electric machine 10. The reason is that the distance from the magnet part 42 of the rotor 40 to the stator core 52 (that is, the distance of the part without iron) can be reduced to reduce the magnetic resistance. According to this, the flux linkage of the stator core 52 by the permanent magnet can be increased, and the torque can be increased.
 導線82は、導体82aの表面が絶縁被膜82bにより被覆された被覆導線よりなり、径方向に互いに重なる導線82同士の間、及び導線82と固定子コア52との間においてそれぞれ絶縁性が確保されている。導線82における絶縁被膜82bの厚さは例えば80μmであり、これは一般に使用される導線の被膜厚さ(20~40μm)よりも厚肉となっている。これにより、導線82と固定子コア52との間に絶縁紙等を介在させることをしなくても、これら両者の間の絶縁性が確保されている。なお、導線82により構成される各相巻線は、接続のための露出部分を除き、絶縁被膜82bによる絶縁性が保持されるものとなっている。露出部分としては、例えば、入出力端子部や、星形結線とする場合の中性点部分である。導線群81では、樹脂固着や自己融着被覆線を用いて、径方向に隣り合う各導線82が相互に固着されている。これにより、導線82同士が擦れ合うことによる絶縁破壊や、振動、音が抑制される。 The conductor 82 is made of a covered conductor in which the surface of a conductor 82a is covered with an insulating film 82b, and insulation is ensured between the conductors 82 overlapping each other in the radial direction and between the conductor 82 and the stator core 52. ing. The thickness of the insulating film 82b in the conductor 82 is, for example, 80 μm, which is thicker than the thickness (20 to 40 μm) of a commonly used conductor. Thereby, the insulating property between the conductor 82 and the stator core 52 is ensured without interposing an insulating paper or the like between them. In addition, each of the phase windings constituted by the conductive wires 82 has an insulating property by the insulating coating 82b except for an exposed portion for connection. The exposed portion is, for example, an input / output terminal portion or a neutral point portion in the case of a star connection. In the conductive wire group 81, the conductive wires 82 adjacent to each other in the radial direction are fixed to each other by using a resin fixing or a self-sealing coated wire. This suppresses dielectric breakdown, vibration, and sound due to the rubbing of the conductive wires 82.
 本実施形態では、導体82aが複数の素線86の集合体として構成されている。具体的には、図13に示すように、導体82aは、複数の素線86を撚ることで撚糸状に形成されている。また、図14に示すように、素線86は、細い繊維状の導電材87を束ねた複合体として構成されている。例えば、素線86はCNT(カーボンナノチューブ)繊維の複合体であり、CNT繊維として、炭素の少なくとも一部をホウ素で置換したホウ素含有微細繊維を含む繊維が用いられている。炭素系微細繊維としては、CNT繊維以外に、気相成長法炭素繊維(VGCF)等を用いることができるが、CNT繊維を用いることが好ましい。なお、素線86の表面は、エナメルやPEEK樹脂やPPS樹脂などの高分子絶縁層で覆われている。 In the present embodiment, the conductor 82a is configured as an aggregate of a plurality of strands 86. Specifically, as shown in FIG. 13, the conductor 82a is formed in a twisted yarn shape by twisting a plurality of strands 86. Further, as shown in FIG. 14, the strand 86 is configured as a composite in which thin fibrous conductive materials 87 are bundled. For example, the strand 86 is a composite of CNT (carbon nanotube) fibers, and as the CNT fibers, fibers including boron-containing fine fibers in which at least a part of carbon is replaced by boron are used. As the carbon-based fine fiber, a vapor grown carbon fiber (VGCF) or the like can be used in addition to the CNT fiber, but it is preferable to use the CNT fiber. Note that the surface of the wire 86 is covered with a polymer insulating layer such as enamel, PEEK resin, or PPS resin.
 上記の導体82aでは、複数の素線86が撚り合わされて構成されているため、各素線86での渦電流の発生が抑えられ、導体82aにおける渦電流の低減を図ることができる。また、各素線86が捻られていることで、1本の素線86において磁界の印加方向が互いに逆になる部位が生じて逆起電圧が相殺される。そのため、やはり渦電流の低減を図ることができる。特に、素線86を繊維状の導電材87により構成することで、細線化することと捻り回数を格段に増やすこととが可能になり、渦電流をより好適に低減することができる。 た め Since the plurality of strands 86 are twisted in the conductor 82a, generation of eddy current in each strand 86 is suppressed, and eddy current in the conductor 82a can be reduced. Further, since the strands 86 are twisted, portions where directions of applying the magnetic field are opposite to each other are generated in one strand 86, and the back electromotive voltage is canceled. Therefore, the eddy current can be reduced. In particular, by forming the wire 86 from the fibrous conductive material 87, it is possible to make the wire thinner and to remarkably increase the number of twists, so that the eddy current can be more suitably reduced.
 上述のとおり導線82は、断面が扁平矩形状をなし、径方向に複数並べて配置されるものとなっており、例えば複数の素線86を撚った状態で集合させ、その状態で合成樹脂等により所望の形状に固めて成形するとよい。 As described above, the conductive wire 82 has a flat rectangular cross section and is arranged in a plurality in the radial direction. For example, a plurality of strands 86 are gathered in a twisted state, and in that state, a synthetic resin or the like is used. It is good to harden it into a desired shape and form it.
 各導線82は、周方向に所定の配置パターンで配置されるように折り曲げ形成されており、これにより、固定子巻線51として相ごとの相巻線が形成されている。図12に示すように、固定子巻線51では、各導線82のうち軸方向に直線状に延びる直線部83によりコイルサイド部53が形成され、軸方向においてコイルサイド部53よりも両外側に突出するターン部84によりコイルエンド部54,55が形成されている。各導線82は、直線部83とターン部84とが交互に繰り返されることにより、波巻状の一連の導線として構成されている。直線部83は、磁石部42に対して径方向に対向する位置に配置されており、磁石部42の軸方向外側となる位置において所定間隔を隔てて配置される同相の直線部83同士が、ターン部84により互いに接続されている。なお、直線部83が「磁石対向部」に相当する。 Each conductive wire 82 is bent so as to be arranged in a predetermined arrangement pattern in the circumferential direction, whereby a phase winding for each phase is formed as the stator winding 51. As shown in FIG. 12, in the stator winding 51, a coil side portion 53 is formed by a straight portion 83 extending linearly in the axial direction of each of the conductors 82, and is located on both outer sides of the coil side portion 53 in the axial direction. The projecting turn portions 84 form the coil end portions 54 and 55. Each conductor 82 is configured as a series of corrugated conductors by alternately repeating a straight portion 83 and a turn portion 84. The linear portions 83 are arranged at positions facing the magnet portion 42 in the radial direction, and the in-phase linear portions 83 arranged at a predetermined interval at a position outside the magnet portion 42 in the axial direction are: They are connected to each other by a turn part 84. Note that the straight portion 83 corresponds to a “magnet facing portion”.
 本実施形態では、固定子巻線51が分布巻きにより円環状に巻回形成されている。この場合、コイルサイド部53では、相ごとに、磁石部42の1極対に対応するピッチで周方向に直線部83が配置され、コイルエンド部54,55では、相ごとの各直線部83が、略V字状に形成されたターン部84により互いに接続されている。1極対に対応して対となる各直線部83は、それぞれ電流の向きが互いに逆になるものとなっている。また、一方のコイルエンド部54と他方のコイルエンド部55とでは、ターン部84により接続される一対の直線部83の組み合わせがそれぞれ相違しており、そのコイルエンド部54,55での接続が周方向に繰り返されることにより、固定子巻線51が略円筒状に形成されている。 In the present embodiment, the stator winding 51 is formed in an annular shape by distributed winding. In this case, in the coil side portion 53, linear portions 83 are arranged in the circumferential direction at a pitch corresponding to one pole pair of the magnet portion 42 for each phase, and in the coil end portions 54 and 55, the linear portions 83 for each phase are arranged. Are connected to each other by a turn portion 84 formed in a substantially V shape. The straight portions 83 forming a pair corresponding to one pole pair have current directions opposite to each other. Also, the combination of the pair of linear portions 83 connected by the turn portion 84 is different between the one coil end portion 54 and the other coil end portion 55, and the connection at the coil end portions 54 and 55 is different. By repeating in the circumferential direction, the stator winding 51 is formed in a substantially cylindrical shape.
 より具体的には、固定子巻線51は、各相2対ずつの導線82を用いて相ごとの巻線を構成しており、固定子巻線51のうち一方の3相巻線(U相、V相、W相)と他方の3相巻線(X相、Y相、Z相)とが径方向内外の2層に設けられるものとなっている。この場合、巻線の相数をS、導線82の対数をmとすれば、極対ごとに2×S×m=2Sm個の導線群81が形成されることになる。本実施形態では、相数Sが3、対数mが2であり、8極対(16極)の回転電機であることから、2×3×2×8=96の導線群81が周方向に配置されている。 More specifically, the stator winding 51 constitutes a winding for each phase using two pairs of conducting wires 82 for each phase, and one of the three windings (U Phase, V phase, W phase) and the other three-phase winding (X phase, Y phase, Z phase) are provided in two layers inside and outside in the radial direction. In this case, assuming that the number of phases of the winding is S and the logarithm of the conductor 82 is m, 2 × S × m = 2Sm conductor groups 81 are formed for each pole pair. In the present embodiment, since the number of phases S is 3, the logarithm m is 2, and the rotating electric machine has 8 pole pairs (16 poles), 2 × 3 × 2 × 8 = 96 conductive wire groups 81 are arranged in the circumferential direction. Are located.
 図12に示す固定子巻線51では、コイルサイド部53において、径方向内外の2層で直線部83が重ねて配置されるとともに、コイルエンド部54,55において、径方向内外に重なる各直線部83から、互いに周方向逆となる向きでターン部84が周方向に延びる構成となっている。つまり、径方向に隣り合う各導線82では、コイル端となる部分を除き、ターン部84の向きが互いに逆となっている。 In the stator winding 51 shown in FIG. 12, in the coil side portion 53, the linear portions 83 are superposed in two layers on the inner and outer sides in the radial direction, and at the coil end portions 54 and 55, the straight lines 83 on the inner and outer sides in the radial direction overlap. From the part 83, the turn part 84 is configured to extend in the circumferential direction in directions opposite to each other in the circumferential direction. That is, in each of the conductive wires 82 that are adjacent in the radial direction, the directions of the turn portions 84 are opposite to each other except for the portion that becomes the coil end.
 ここで、固定子巻線51における導線82の巻回構造を具体的に説明する。本実施形態では、波巻にて形成された複数の導線82を、径方向内外に複数層(例えば2層)に重ねて設ける構成としている。図15は、n層目における各導線82の形態を示す図であり、(a)には、固定子巻線51の側方から見た導線82の形状を示し、(b)には、固定子巻線51の軸方向一側から見た導線82の形状を示している。なお、図15では、導線群81が配置される位置をそれぞれD1,D2,D3,…と示している。また、説明の便宜上、3本の導線82のみを示しており、それを第1導線82_A、第2導線82_B、第3導線82_Cとしている。 Here, the winding structure of the conductor wire 82 in the stator winding 51 will be specifically described. In the present embodiment, a plurality of conductive wires 82 formed by wave winding are provided in a plurality of layers (for example, two layers) inward and outward in the radial direction. FIGS. 15A and 15B are diagrams showing the form of each conductor 82 in the n-th layer. FIG. 15A shows the shape of the conductor 82 viewed from the side of the stator winding 51, and FIG. The shape of the conducting wire 82 as viewed from one axial side of the slave winding 51 is shown. In FIG. 15, positions where the conductive wire group 81 is arranged are indicated as D1, D2, D3,. Also, for convenience of explanation, only three conductive wires 82 are shown, which are a first conductive wire 82_A, a second conductive wire 82_B, and a third conductive wire 82_C.
 各導線82_A~82_Cでは、直線部83が、いずれもn層目の位置、すなわち径方向において同じ位置に配置され、周方向に6位置(3×m対分)ずつ離れた直線部83同士がターン部84により互いに接続されている。換言すると、各導線82_A~82_Cでは、いずれも回転子40の軸心を中心とする同一のピッチ円上において、5個おきの直線部83がターン部84により互いに接続されている。例えば第1導線82_Aでは、一対の直線部83がD1,D7にそれぞれ配置され、その一対の直線部83同士が、逆V字状のターン部84により接続されている。また、他の導線82_B,82_Cは、同じn層目において周方向の位置を1つずつずらしてそれぞれ配置されている。この場合、各導線82_A~82_Cは、いずれも同じ層に配置されるため、ターン部84が互いに干渉することが考えられる。そのため本実施形態では、各導線82_A~82_Cのターン部84に、その一部を径方向にオフセットした干渉回避部を形成することとしている。 In each of the conductors 82_A to 82_C, the straight portions 83 are arranged at the position of the nth layer, that is, at the same position in the radial direction, and the straight portions 83 separated from each other by six positions (3 × m pairs) in the circumferential direction. They are connected to each other by a turn part 84. In other words, in each of the conductors 82_A to 82_C, every fifth straight portion 83 is connected to each other by the turn portion 84 on the same pitch circle centered on the axis of the rotor 40. For example, in the first conductive wire 82 </ b> _A, a pair of straight portions 83 are arranged at D <b> 1 and D <b> 7, respectively, and the pair of straight portions 83 are connected by an inverted V-shaped turn portion 84. The other conductors 82_B and 82_C are arranged in the same n-th layer with their circumferential positions shifted one by one. In this case, since each of the conductive wires 82_A to 82_C is disposed in the same layer, the turn portions 84 may interfere with each other. For this reason, in the present embodiment, an interference avoiding portion in which a part thereof is radially offset is formed in the turn portion 84 of each of the conductive wires 82_A to 82_C.
 具体的には、各導線82_A~82_Cのターン部84は、同一のピッチ円上で周方向に延びる部分である傾斜部84aと、傾斜部84aからその同一のピッチ円よりも径方向内側(図15(b)において上側)にシフトし、別のピッチ円上で周方向に延びる部分である頂部84b、傾斜部84c及び戻り部84dとを有している。頂部84b、傾斜部84c及び戻り部84dが干渉回避部に相当する。なお、傾斜部84cは、傾斜部84aに対して径方向外側にシフトする構成であってもよい。 Specifically, the turn portion 84 of each of the conductors 82_A to 82_C has a slope portion 84a extending in the circumferential direction on the same pitch circle, and a radially inner side from the same pitch circle from the slope portion 84a (see FIG. 15 (b), and has a top portion 84b, an inclined portion 84c, and a return portion 84d, which are portions extending in the circumferential direction on another pitch circle. The top portion 84b, the inclined portion 84c, and the return portion 84d correspond to an interference avoiding portion. Note that the inclined portion 84c may be configured to shift radially outward with respect to the inclined portion 84a.
 つまり、各導線82_A~82_Cのターン部84は、周方向の中央位置である頂部84bを挟んでその両側に、一方側の傾斜部84aと他方側の傾斜部84cとを有しており、それら各傾斜部84a,84cの径方向の位置(図15(a)では紙面前後方向の位置、図15(b)では上下方向の位置)が互いに相違するものとなっている。例えば第1導線82_Aのターン部84は、n層のD1位置を始点位置として周方向に沿って延び、周方向の中央位置である頂部84bで径方向(例えば径方向内側)に曲がった後、周方向に再度曲がることで、再び周方向に沿って延び、さらに戻り部84dで再び径方向(例えば径方向外側)に曲がることで、終点位置であるn層のD9位置に達する構成となっている。 That is, the turn portion 84 of each of the conductors 82_A to 82_C has a slope portion 84a on one side and a slope portion 84c on the other side on both sides of the top portion 84b, which is a central position in the circumferential direction. The radial positions of the inclined portions 84a and 84c (positions in the front-rear direction in FIG. 15A, positions in the up-down direction in FIG. 15B) are different from each other. For example, the turn portion 84 of the first conductive wire 82 </ b> _A extends in the circumferential direction from the position D <b> 1 of the n-layer as a starting point, and bends in the radial direction (for example, radially inward) at the top portion 84 b which is the central position in the circumferential direction. By turning again in the circumferential direction, it extends in the circumferential direction again, and further turns again in the radial direction (for example, radially outward) at the return portion 84d, thereby reaching the D9 position of the n-layer which is the end point position. I have.
 上記構成によれば、導線82_A~82_Cでは、一方の各傾斜部84aが、上から第1導線82_A→第2導線82_B→第3導線82_Cの順に上下に並ぶとともに、頂部84bで各導線82_A~82_Cの上下が入れ替わり、他方の各傾斜部84cが、上から第3導線82_C→第2導線82_B→第1導線82_Aの順に上下に並ぶ構成となっている。そのため、各導線82_A~82_Cが互いに干渉することなく周方向に配置できるようになっている。 According to the above configuration, in each of the conductors 82_A to 82_C, one of the inclined portions 84a is vertically arranged in order from the top in the order of the first conductor 82_A → the second conductor 82_B → the third conductor 82_C, and each of the conductors 82_A ~ 82_C is turned upside down, and the other inclined portions 84c are arranged vertically from the top in the order of the third conductor 82_C → the second conductor 82_B → the first conductor 82_A. Therefore, the conductors 82_A to 82_C can be arranged in the circumferential direction without interfering with each other.
 ここで、複数の導線82を径方向に重ねて導線群81とする構成において、複数層の各直線部83のうち径方向内側の直線部83に接続されたターン部84と、径方向外側の直線部83に接続されたターン部84とが、それら各直線部83同士よりも径方向に離して配置されているとよい。また、ターン部84の端部、すなわち直線部83との境界部付近で、複数層の導線82が径方向の同じ側に曲げられる場合に、その隣り合う層の導線82同士の干渉により絶縁性が損なわれることが生じないようにするとよい。 Here, in a configuration in which a plurality of conductive wires 82 are superposed in the radial direction to form a conductive wire group 81, a turn portion 84 connected to the radially inner straight portion 83 of the plurality of linear portions 83 and a radially outer straight portion 83 are formed. It is preferable that the turn portions 84 connected to the straight portions 83 are arranged further apart from each other in the radial direction than the straight portions 83. Further, when a plurality of layers of the conductive wires 82 are bent to the same side in the radial direction near the end of the turn portion 84, that is, near the boundary with the linear portion 83, the insulation between the conductive wires 82 of the adjacent layers is caused by the interference. Should not be impaired.
 例えば図15のD7~D9では、径方向に重なる各導線82が、ターン部84の戻り部84dでそれぞれ径方向に曲げられる。この場合、図16に示すように、n層目の導線82とn+1層目の導線82とで、曲がり部の曲げアールを相違させるとよい。具体的には、径方向内側(n層目)の導線82の曲げアールR1を、径方向外側(n+1層目)の導線82の曲げアールR2よりも小さくする。 For example, in D7 to D9 of FIG. 15, the respective conducting wires 82 overlapping in the radial direction are bent in the radial direction at the return portion 84d of the turn portion 84, respectively. In this case, as shown in FIG. 16, it is preferable to make the bending radius of the bent portion different between the n-th conductive wire 82 and the (n + 1) -th conductive wire 82. Specifically, the bending radius R1 of the radially inner (n-th layer) conductive wire 82 is made smaller than the bending radius R2 of the radially outer (n + 1-th layer) conductive wire 82.
 また、n層目の導線82とn+1層目の導線82とで、径方向のシフト量を相違させるとよい。具体的には、径方向内側(n層目)の導線82のシフト量S1を、径方向外側(n+1層目)の導線82のシフト量S2よりも大きくする。 シ フ ト Further, it is preferable that the amount of shift in the radial direction be different between the n-th conductive wire 82 and the (n + 1) -th conductive wire 82. Specifically, the shift amount S1 of the radially inner (n-th layer) conductive wire 82 is made larger than the shift amount S2 of the radially outer (n + 1-th layer) conductive wire 82.
 上記構成により、径方向に重なる各導線82が同じ向きに曲げられる場合であっても、各導線82の相互干渉を好適に回避することができる。これにより、良好な絶縁性が得られることとなる。 According to the above configuration, even when the conductive wires 82 overlapping in the radial direction are bent in the same direction, mutual interference between the conductive wires 82 can be preferably avoided. Thereby, good insulating properties are obtained.
 次に、回転子40における磁石部42の構造について説明する。本実施形態では、永久磁石として、残留磁束密度Br=1.0[T]、保磁力bHc=400[kA/m]以上のものを想定している。5000~10000[AT]が相間励磁により掛かるものであるから、1極対で25[mm]の永久磁石を使えば、bHc=10000[A]となり、減磁をしないことが伺える。ここで、本実施形態においては、配向により磁化容易軸をコントロールした永久磁石を利用しているから、その磁石内部の磁気回路長を、従来1.0[T]以上を出す直線配向磁石の磁気回路長と比べて、長くすることができる。すなわち、1極対あたりの磁気回路長を、少ない磁石量で達成できる他、従来の直線配向磁石を利用した設計と比べ、過酷な高熱条件に曝されても、その可逆減磁範囲を保つことができる。また、本願発明者は、従来技術の磁石を用いても、極異方性磁石と近しい特性を得られる構成を見いだした。 Next, the structure of the magnet portion 42 in the rotor 40 will be described. In the present embodiment, it is assumed that the permanent magnet has a residual magnetic flux density Br = 1.0 [T] and a coercive force bHc = 400 [kA / m] or more. Since 5000 to 10000 [AT] is applied by inter-phase excitation, if a permanent magnet of 25 [mm] is used for one pole pair, bHc = 10000 [A], indicating that no demagnetization occurs. Here, in the present embodiment, since a permanent magnet whose easy axis of magnetization is controlled by the orientation is used, the length of the magnetic circuit inside the magnet is conventionally set to 1.0 [T] or more. It can be longer than the circuit length. In other words, a magnetic circuit length per pole pair can be achieved with a small amount of magnets, and the reversible demagnetization range is maintained even when exposed to severe high-temperature conditions, compared to a design using conventional linearly-oriented magnets. Can be. In addition, the inventor of the present application has found a configuration that can obtain characteristics close to those of a polar anisotropic magnet even when a conventional magnet is used.
 図8及び図9に示すように、磁石部42は、円環状をなしており、回転子本体41の内側(詳しくは磁石保持部43の径方向内側)に設けられている。磁石部42は、それぞれ極異方性磁石でありかつ磁極が互いに異なる第1磁石91及び第2磁石92を有している。第1磁石91及び第2磁石92は周方向に交互に配置されている。第1磁石91は、回転子40においてN極となる磁石であり、第2磁石92は、回転子40においてS極となる磁石である。第1磁石91及び第2磁石92は、例えばネオジム磁石等の希土類磁石からなる永久磁石である。 As shown in FIGS. 8 and 9, the magnet portion 42 has an annular shape and is provided inside the rotor main body 41 (specifically, inside the magnet holding portion 43 in the radial direction). The magnet section 42 is a polar anisotropic magnet and has a first magnet 91 and a second magnet 92 having different magnetic poles. The first magnets 91 and the second magnets 92 are alternately arranged in the circumferential direction. The first magnet 91 is an N-pole magnet in the rotor 40, and the second magnet 92 is an S-pole magnet in the rotor 40. The first magnet 91 and the second magnet 92 are permanent magnets made of a rare earth magnet such as a neodymium magnet.
 各磁石91,92では、それぞれ磁極中心であるd軸と磁極境界であるq軸との間において磁化方向が円弧状に延びている。各磁石91,92それぞれにおいて、d軸側では磁化方向が径方向とされ、q軸側では磁化方向が周方向とされている。磁石部42では、各磁石91,92により、隣接するN,S極間を円弧状に磁束が流れるため、例えばラジアル異方性磁石に比べて磁石磁路が長くなっている。このため、図17に示すように、磁束密度分布が正弦波に近いものとなる。その結果、図18に比較例として示すラジアル異方性磁石の磁束密度分布とは異なり、磁極位置に磁束を集中させることができ、回転電機10のトルクを高めることができる。なお、図17及び図18において、横軸は電気角を示し、縦軸は磁束密度を示す。また、図17及び図18において、横軸の90°はd軸(すなわち磁極中心)を示し、横軸の0°,180°はq軸を示す。 磁石 In each of the magnets 91 and 92, the magnetization direction extends in an arc between the d axis which is the center of the magnetic pole and the q axis which is the boundary of the magnetic pole. In each of the magnets 91 and 92, the magnetization direction is the radial direction on the d-axis side, and the circumferential direction is the circumferential direction on the q-axis side. In the magnet section 42, the magnetic flux flows in an arc between the adjacent N and S poles by the magnets 91 and 92, so that the magnet magnetic path is longer than, for example, a radial anisotropic magnet. Therefore, as shown in FIG. 17, the magnetic flux density distribution becomes close to a sine wave. As a result, unlike the magnetic flux density distribution of the radial anisotropic magnet shown as a comparative example in FIG. 18, the magnetic flux can be concentrated at the magnetic pole position, and the torque of the rotating electric machine 10 can be increased. 17 and 18, the horizontal axis represents the electrical angle, and the vertical axis represents the magnetic flux density. 17 and 18, 90 ° on the horizontal axis indicates the d-axis (that is, the center of the magnetic pole), and 0 ° and 180 ° on the horizontal axis indicate the q-axis.
 また、磁束密度分布の正弦波整合率は、例えば40%以上の値とされていればよい。このようにすれば、正弦波整合率が30%程度であるラジアル配向磁石、パラレル配向磁石を用いる場合に比べ、確実に波形中央部分の磁束量を向上させることができる。また、正弦波整合率を60%以上とすれば、ハルバッハ配列と呼ばれる磁束集中配列と比べ、確実に波形中央部分の磁束量を向上させることができる。 The sine wave matching ratio of the magnetic flux density distribution may be, for example, 40% or more. In this way, the amount of magnetic flux in the center portion of the waveform can be reliably improved as compared with the case of using a radially oriented magnet or a parallelly oriented magnet having a sine wave matching ratio of about 30%. Further, when the sine wave matching ratio is set to 60% or more, the amount of magnetic flux at the center portion of the waveform can be reliably improved as compared with the magnetic flux concentrated array called the Halbach array.
 図18に示す比較例では、q軸付近において磁束密度が急峻に変化する。磁束密度の変化が急峻なほど、固定子巻線51に発生する渦電流が増加してしまう。これに対し、本実施形態では、磁束密度分布が正弦波に近い。このため、q軸付近において、磁束密度の変化が、ラジアル異方性磁石の磁束密度の変化よりも小さい。これにより、渦電流の発生を抑制することができる。 で は In the comparative example shown in FIG. 18, the magnetic flux density changes sharply near the q-axis. As the change in the magnetic flux density becomes steeper, the eddy current generated in the stator winding 51 increases. On the other hand, in the present embodiment, the magnetic flux density distribution is close to a sine wave. For this reason, near the q-axis, the change in the magnetic flux density is smaller than the change in the magnetic flux density of the radial anisotropic magnet. Thereby, generation of eddy current can be suppressed.
 ところで、磁石部42では、各磁石91,92のd軸付近(すなわち磁極中心)において磁極面に直交する向きで磁束が生じ、その磁束は、磁極面から離れるほど、d軸から離れるような円弧状をなす。また、磁極面に直交する磁束ほど、強い磁束となる。この点において、本実施形態の回転電機10では、上述のとおり各導線群81を径方向に薄くしたため、導線群81の径方向の中心位置が磁石部42の磁極面に近づくことになり、固定子50において回転子40から強い磁石磁束を受けることができる。 By the way, in the magnet portion 42, a magnetic flux is generated in the direction orthogonal to the magnetic pole surface near the d-axis of each of the magnets 91 and 92 (that is, the magnetic pole center). Make an arc. Further, the magnetic flux that is perpendicular to the magnetic pole surface becomes a strong magnetic flux. In this regard, in the rotating electric machine 10 of the present embodiment, since the conductor groups 81 are thinned in the radial direction as described above, the radial center position of the conductor groups 81 approaches the magnetic pole surface of the magnet part 42 and is fixed. The child 50 can receive a strong magnet magnetic flux from the rotor 40.
 また、固定子50には、固定子巻線51の径方向内側、すなわち固定子巻線51を挟んで回転子40の逆側に円筒状の固定子コア52が設けられている。そのため、各磁石91,92の磁極面から延びる磁束は、固定子コア52に引きつけられ、固定子コア52を磁路の一部として用いつつ周回する。この場合、磁石磁束の向き及び経路を適正化することができる。 固定 Further, the stator 50 is provided with a cylindrical stator core 52 radially inside the stator winding 51, that is, on the opposite side of the rotor 40 with the stator winding 51 interposed therebetween. Therefore, the magnetic flux extending from the magnetic pole surfaces of the magnets 91 and 92 is attracted to the stator core 52 and orbits while using the stator core 52 as a part of the magnetic path. In this case, the direction and path of the magnet magnetic flux can be optimized.
 次に、回転電機10を制御する制御システムの構成について説明する。図19は、回転電機10の制御システムの電気回路図であり、図20は、制御装置110による制御処理を示す機能ブロック図である。 Next, the configuration of a control system that controls the rotating electric machine 10 will be described. FIG. 19 is an electric circuit diagram of a control system of the rotating electric machine 10, and FIG. 20 is a functional block diagram illustrating a control process performed by the control device 110.
 図19では、固定子巻線51として2組の3相巻線51a,51bが示されており、3相巻線51aはU相巻線、V相巻線及びW相巻線よりなり、3相巻線51bはX相巻線、Y相巻線及びZ相巻線よりなる。3相巻線51a,51bごとに、第1インバータ101と第2インバータ102とがそれぞれ設けられている。インバータ101,102は、相巻線の相数と同数の上下アームを有するフルブリッジ回路により構成されており、各アームに設けられたスイッチ(半導体スイッチング素子)のオンオフにより、固定子巻線51の各相巻線において通電電流が調整される。 In FIG. 19, two sets of three- phase windings 51a and 51b are shown as the stator winding 51. The three-phase winding 51a includes a U-phase winding, a V-phase winding, and a W-phase winding. The phase winding 51b includes an X-phase winding, a Y-phase winding, and a Z-phase winding. A first inverter 101 and a second inverter 102 are provided for each of the three- phase windings 51a and 51b. The inverters 101 and 102 are configured by full-bridge circuits having the same number of upper and lower arms as the number of phases of the phase windings, and the switches (semiconductor switching elements) provided on each arm are turned on and off to turn the stator windings 51 on and off. The conduction current is adjusted in each phase winding.
 各インバータ101,102には、直流電源103と平滑用のコンデンサ104とが並列に接続されている。直流電源103は、例えば複数の単電池が直列接続された組電池により構成されている。なお、インバータ101,102の各スイッチが、図1等に示す半導体モジュール66に相当し、コンデンサ104が、図1等に示すコンデンサモジュール68に相当する。 直流 A DC power supply 103 and a smoothing capacitor 104 are connected in parallel to each of the inverters 101 and 102. The DC power supply 103 is configured by, for example, an assembled battery in which a plurality of cells are connected in series. Each switch of the inverters 101 and 102 corresponds to the semiconductor module 66 shown in FIG. 1 and the like, and the capacitor 104 corresponds to the capacitor module 68 shown in FIG. 1 and the like.
 制御装置110は、CPUや各種メモリからなるマイコンを備えており、回転電機10における各種の検出情報や、力行駆動及び発電の要求に基づいて、インバータ101,102における各スイッチのオンオフにより通電制御を実施する。制御装置110が、図6に示す制御装置77に相当する。回転電機10の検出情報には、例えば、レゾルバ等の角度検出器により検出される回転子40の回転角度(電気角情報)や、電圧センサにより検出される電源電圧(インバータ入力電圧)、電流センサにより検出される各相の通電電流が含まれる。制御装置110は、インバータ101,102の各スイッチを操作する操作信号を生成して出力する。なお、発電の要求は、例えば回転電機10が車両用動力源として用いられる場合、回生駆動の要求である。 The control device 110 includes a microcomputer including a CPU and various memories. Based on various detection information in the rotating electric machine 10 and requests for powering drive and power generation, the control of the power supply is performed by turning on and off the switches in the inverters 101 and 102. carry out. Control device 110 corresponds to control device 77 shown in FIG. The detection information of the rotating electric machine 10 includes, for example, a rotation angle (electrical angle information) of the rotor 40 detected by an angle detector such as a resolver, a power supply voltage (inverter input voltage) detected by a voltage sensor, and a current sensor. , The energized current of each phase detected by Control device 110 generates and outputs an operation signal for operating each switch of inverters 101 and 102. The power generation request is, for example, a request for regenerative driving when the rotating electric machine 10 is used as a vehicle power source.
 第1インバータ101は、U相、V相及びW相からなる3相において上アームスイッチSpと下アームスイッチSnとの直列接続体をそれぞれ備えている。各相の上アームスイッチSpの高電位側端子は直流電源103の正極端子に接続され、各相の下アームスイッチSnの低電位側端子は直流電源103の負極端子(グランド)に接続されている。各相の上アームスイッチSpと下アームスイッチSnとの間の中間接続点には、それぞれU相巻線、V相巻線、W相巻線の一端が接続されている。これら各相巻線は星形結線(Y結線)されており、各相巻線の他端は中性点にて互いに接続されている。 The first inverter 101 includes a series connection of an upper arm switch Sp and a lower arm switch Sn in three phases including a U phase, a V phase, and a W phase. The high potential side terminal of the upper arm switch Sp of each phase is connected to the positive terminal of the DC power supply 103, and the low potential side terminal of the lower arm switch Sn of each phase is connected to the negative terminal (ground) of the DC power supply 103. . One end of each of a U-phase winding, a V-phase winding, and a W-phase winding is connected to an intermediate connection point between the upper arm switch Sp and the lower arm switch Sn of each phase. These phase windings are star-connected (Y connection), and the other ends of the phase windings are connected to each other at a neutral point.
 第2インバータ102は、第1インバータ101と同様の構成を有しており、X相、Y相及びZ相からなる3相において上アームスイッチSpと下アームスイッチSnとの直列接続体をそれぞれ備えている。各相の上アームスイッチSpの高電位側端子は直流電源103の正極端子に接続され、各相の下アームスイッチSnの低電位側端子は直流電源103の負極端子(グランド)に接続されている。各相の上アームスイッチSpと下アームスイッチSnとの間の中間接続点には、それぞれX相巻線、Y相巻線、Z相巻線の一端が接続されている。これら各相巻線は星形結線(Y結線)されており、各相巻線の他端は中性点で互いに接続されている。 The second inverter 102 has a configuration similar to that of the first inverter 101, and includes a series connection of an upper arm switch Sp and a lower arm switch Sn in three phases including an X phase, a Y phase, and a Z phase. ing. The high potential side terminal of the upper arm switch Sp of each phase is connected to the positive terminal of the DC power supply 103, and the low potential side terminal of the lower arm switch Sn of each phase is connected to the negative terminal (ground) of the DC power supply 103. . One end of each of an X-phase winding, a Y-phase winding, and a Z-phase winding is connected to an intermediate connection point between the upper arm switch Sp and the lower arm switch Sn of each phase. These phase windings are star-connected (Y connection), and the other ends of the phase windings are connected to each other at a neutral point.
 図20には、U,V,W相の各相電流を制御する電流フィードバック制御処理と、X,Y,Z相の各相電流を制御する電流フィードバック制御処理とが示されている。ここではまず、U,V,W相側の制御処理について説明する。 FIG. 20 shows a current feedback control process for controlling the U, V, and W phase currents, and a current feedback control process for controlling the X, Y, and Z phase currents. Here, the control process on the U, V, and W phases will be described first.
 図20において、電流指令値設定部111は、トルク-dqマップを用い、回転電機10に対する力行トルク指令値又は発電トルク指令値や、電気角θを時間微分して得られる電気角速度ωに基づいて、d軸の電流指令値とq軸の電流指令値とを設定する。なお、電流指令値設定部111は、U,V,W相側及びX,Y,Z相側において共通に設けられている。なお、発電トルク指令値は、例えば回転電機10が車両用動力源として用いられる場合、回生トルク指令値である。 20, a current command value setting unit 111 uses a torque-dq map and based on a powering torque command value or a power generation torque command value for the rotating electric machine 10 and an electric angular velocity ω obtained by time-differentiating the electric angle θ. , A d-axis current command value and a q-axis current command value are set. The current command value setting unit 111 is provided in common on the U, V, and W phase sides and the X, Y, and Z phase sides. The power generation torque command value is, for example, a regenerative torque command value when the rotating electric machine 10 is used as a vehicle power source.
 dq変換部112は、相ごとに設けられた電流センサによる電流検出値(各相電流)を、界磁方向をd軸とする直交2次元回転座標系の成分であるd軸電流とq軸電流とに変換する。 The dq conversion unit 112 converts a current detection value (each phase current) obtained by a current sensor provided for each phase into a d-axis current and a q-axis current which are components of an orthogonal two-dimensional rotating coordinate system having the field direction as a d-axis. And convert to
 d軸電流フィードバック制御部113は、d軸電流をd軸の電流指令値にフィードバック制御するための操作量としてd軸の指令電圧を算出する。また、q軸電流フィードバック制御部114は、q軸電流をq軸の電流指令値にフィードバック制御するための操作量としてq軸の指令電圧を算出する。これら各フィードバック制御部113,114では、d軸電流及びq軸電流の電流指令値に対する偏差に基づき、PIフィードバック手法を用いて指令電圧が算出される。 The d-axis current feedback control unit 113 calculates a d-axis command voltage as an operation amount for feedback-controlling the d-axis current to a d-axis current command value. Further, the q-axis current feedback control unit 114 calculates a q-axis command voltage as an operation amount for feedback-controlling the q-axis current to a q-axis current command value. In each of these feedback control units 113 and 114, the command voltage is calculated using the PI feedback method based on the deviation of the d-axis current and the q-axis current from the current command value.
 3相変換部115は、d軸及びq軸の指令電圧を、U相、V相及びW相の指令電圧に変換する。なお、上記の各部111~115が、dq変換理論による基本波電流のフィードバック制御を実施するフィードバック制御部であり、U相、V相及びW相の指令電圧がフィードバック制御値である。 The three-phase converter 115 converts d-axis and q-axis command voltages into U-phase, V-phase, and W-phase command voltages. Each of the units 111 to 115 is a feedback control unit that performs feedback control of the fundamental wave current based on the dq conversion theory, and the U-phase, V-phase, and W-phase command voltages are feedback control values.
 そして、操作信号生成部116は、周知の三角波キャリア比較方式を用い、3相の指令電圧に基づいて、第1インバータ101の操作信号を生成する。具体的には、操作信号生成部116は、3相の指令電圧を電源電圧で規格化した信号と、三角波信号等のキャリア信号との大小比較に基づくPWM制御により、各相における上下アームのスイッチ操作信号(デューティ信号)を生成する。 Then, the operation signal generation unit 116 generates an operation signal for the first inverter 101 based on the three-phase command voltage using a known triangular wave carrier comparison method. Specifically, the operation signal generation unit 116 performs a PWM control based on a magnitude comparison between a signal obtained by standardizing a three-phase command voltage with a power supply voltage and a carrier signal such as a triangular wave signal, and thereby switches the upper and lower arms in each phase. An operation signal (duty signal) is generated.
 また、X,Y,Z相側においても同様の構成を有しており、dq変換部122は、相ごとに設けられた電流センサによる電流検出値(各相電流)を、界磁方向をd軸とする直交2次元回転座標系の成分であるd軸電流とq軸電流とに変換する。 The X, Y, and Z phase sides have the same configuration, and the dq conversion unit 122 outputs a current detection value (each phase current) obtained by a current sensor provided for each phase to a field direction of d. It is converted into a d-axis current and a q-axis current which are components of an orthogonal two-dimensional rotating coordinate system as axes.
 d軸電流フィードバック制御部123はd軸の指令電圧を算出し、q軸電流フィードバック制御部124はq軸の指令電圧を算出する。3相変換部125は、d軸及びq軸の指令電圧を、X相、Y相及びZ相の指令電圧に変換する。そして、操作信号生成部126は、3相の指令電圧に基づいて、第2インバータ102の操作信号を生成する。具体的には、操作信号生成部126は、3相の指令電圧を電源電圧で規格化した信号と、三角波信号等のキャリア信号との大小比較に基づくPWM制御により、各相における上下アームのスイッチ操作信号(デューティ信号)を生成する。 The d-axis current feedback control unit 123 calculates a d-axis command voltage, and the q-axis current feedback control unit 124 calculates a q-axis command voltage. The three-phase converter 125 converts d-axis and q-axis command voltages into X-phase, Y-phase, and Z-phase command voltages. Then, the operation signal generation unit 126 generates an operation signal for the second inverter 102 based on the three-phase command voltage. Specifically, the operation signal generation unit 126 performs a PWM control based on a magnitude comparison between a signal obtained by standardizing a three-phase command voltage with a power supply voltage and a carrier signal such as a triangular wave signal, and thereby switches the upper and lower arms in each phase. An operation signal (duty signal) is generated.
 ドライバ117は、操作信号生成部116,126にて生成されたスイッチ操作信号に基づいて、各インバータ101,102における各3相のスイッチSp,Snをオンオフさせる。 The driver 117 turns on and off the three-phase switches Sp and Sn of the inverters 101 and 102 based on the switch operation signals generated by the operation signal generation units 116 and 126.
 続いて、トルクフィードバック制御処理について説明する。この処理は、例えば高回転領域及び高出力領域等、各インバータ101,102の出力電圧が大きくなる運転条件において、主に回転電機10の高出力化や損失低減の目的で用いられる。制御装置110は、回転電機10の運転条件に基づいて、トルクフィードバック制御処理及び電流フィードバック制御処理のいずれか一方の処理を選択して実行する。 Next, the torque feedback control process will be described. This process is used mainly for the purpose of increasing the output of the rotating electric machine 10 and reducing the loss under operating conditions in which the output voltage of each of the inverters 101 and 102 becomes large, such as in a high rotation region and a high output region. The control device 110 selects and executes one of the torque feedback control process and the current feedback control process based on the operating conditions of the rotating electric machine 10.
 図21には、U,V,W相に対応するトルクフィードバック制御処理と、X,Y,Z相に対応するトルクフィードバック制御処理とが示されている。なお、図21において、図20と同じ構成については、同じ符号を付して説明を省略する。ここではまず、U,V,W相側の制御処理について説明する。 FIG. 21 shows a torque feedback control process corresponding to the U, V, and W phases and a torque feedback control process corresponding to the X, Y, and Z phases. In FIG. 21, the same components as those in FIG. 20 are denoted by the same reference numerals, and description thereof will be omitted. Here, the control process on the U, V, and W phases will be described first.
 電圧振幅算出部127は、回転電機10に対する力行トルク指令値又は発電トルク指令値と、電気角θを時間微分して得られる電気角速度ωとに基づいて、電圧ベクトルの大きさの指令値である電圧振幅指令を算出する。 The voltage amplitude calculation unit 127 is a command value for the magnitude of the voltage vector based on the powering torque command value or the power generation torque command value for the rotary electric machine 10 and the electrical angular velocity ω obtained by time-differentiating the electrical angle θ. Calculate the voltage amplitude command.
 トルク推定部128aは、dq変換部112により変換されたd軸電流とq軸電流とに基づいて、U,V,W相に対応するトルク推定値を算出する。なお、トルク推定部128aは、d軸電流、q軸電流及び電圧振幅指令が関係付けられたマップ情報に基づいて、電圧振幅指令を算出すればよい。 The torque estimation unit 128a calculates a torque estimation value corresponding to the U, V, and W phases based on the d-axis current and the q-axis current converted by the dq conversion unit 112. Note that the torque estimating unit 128a may calculate the voltage amplitude command based on the map information in which the d-axis current, the q-axis current, and the voltage amplitude command are related.
 トルクフィードバック制御部129aは、力行トルク指令値又は発電トルク指令値にトルク推定値をフィードバック制御するための操作量として、電圧ベクトルの位相の指令値である電圧位相指令を算出する。トルクフィードバック制御部129aでは、力行トルク指令値又は発電トルク指令値に対するトルク推定値の偏差に基づき、PIフィードバック手法を用いて電圧位相指令が算出される。 The torque feedback control unit 129a calculates a voltage phase command, which is a command value of a voltage vector phase, as an operation amount for performing feedback control of a torque estimation value to a powering torque command value or a power generation torque command value. The torque feedback control unit 129a calculates a voltage phase command using a PI feedback method based on the deviation of the estimated torque value from the powering torque command value or the generated torque command value.
 操作信号生成部130aは、電圧振幅指令、電圧位相指令及び電気角θに基づいて、第1インバータ101の操作信号を生成する。具体的には、操作信号生成部130aは、電圧振幅指令、電圧位相指令及び電気角θに基づいて3相の指令電圧を算出し、算出した3相の指令電圧を電源電圧で規格化した信号と、三角波信号等のキャリア信号との大小比較に基づくPWM制御により、各相における上下アームのスイッチ操作信号を生成する。 The operation signal generation unit 130a generates an operation signal for the first inverter 101 based on the voltage amplitude command, the voltage phase command, and the electrical angle θ. Specifically, the operation signal generation unit 130a calculates a three-phase command voltage based on the voltage amplitude command, the voltage phase command, and the electrical angle θ, and standardizes the calculated three-phase command voltage with the power supply voltage. And PWM control based on a magnitude comparison between the signal and a carrier signal such as a triangular wave signal to generate switch operation signals for the upper and lower arms in each phase.
 ちなみに、操作信号生成部130aは、電圧振幅指令、電圧位相指令、電気角θ及びスイッチ操作信号が関係付けられたマップ情報であるパルスパターン情報、電圧振幅指令、電圧位相指令並びに電気角θに基づいて、スイッチ操作信号を生成してもよい。 Incidentally, the operation signal generation unit 130a is based on a pulse pattern information, a voltage amplitude command, a voltage phase command, and an electrical angle θ, which are map information in which the voltage amplitude command, the voltage phase command, the electric angle θ and the switch operation signal are related. Thus, a switch operation signal may be generated.
 また、X,Y,Z相側においても同様の構成を有しており、トルク推定部128bは、dq変換部122により変換されたd軸電流とq軸電流とに基づいて、X,Y,Z相に対応するトルク推定値を算出する。 The X-, Y-, and Z-phase sides also have the same configuration, and the torque estimating unit 128b determines the X, Y, and Z-axis currents based on the d-axis current and the q-axis current converted by the dq An estimated torque value corresponding to the Z phase is calculated.
 トルクフィードバック制御部129bは、力行トルク指令値又は発電トルク指令値にトルク推定値をフィードバック制御するための操作量として、電圧位相指令を算出する。トルクフィードバック制御部129bでは、力行トルク指令値又は発電トルク指令値に対するトルク推定値の偏差に基づき、PIフィードバック手法を用いて電圧位相指令が算出される。 The torque feedback control unit 129b calculates a voltage phase command as an operation amount for feedback-controlling the torque estimation value to the powering torque command value or the power generation torque command value. The torque feedback control unit 129b calculates the voltage phase command using the PI feedback method based on the deviation of the estimated torque value from the powering torque command value or the generated torque command value.
 操作信号生成部130bは、電圧振幅指令、電圧位相指令及び電気角θに基づいて、第2インバータ102の操作信号を生成する。具体的には、操作信号生成部130bは、電圧振幅指令、電圧位相指令及び電気角θに基づいて3相の指令電圧を算出し、算出した3相の指令電圧を電源電圧で規格化した信号と、三角波信号等のキャリア信号との大小比較に基づくPWM制御により、各相における上下アームのスイッチ操作信号を生成する。ドライバ117は、操作信号生成部130a,130bにて生成されたスイッチ操作信号に基づいて、各インバータ101,102における各3相のスイッチSp,Snをオンオフさせる。 The operation signal generator 130b generates an operation signal for the second inverter 102 based on the voltage amplitude command, the voltage phase command, and the electrical angle θ. Specifically, the operation signal generation unit 130b calculates a three-phase command voltage based on the voltage amplitude command, the voltage phase command, and the electrical angle θ, and standardizes the calculated three-phase command voltage with the power supply voltage. And PWM control based on a magnitude comparison between the signal and a carrier signal such as a triangular wave signal to generate switch operation signals for the upper and lower arms in each phase. The driver 117 turns on and off the three-phase switches Sp and Sn in the inverters 101 and 102 based on the switch operation signals generated by the operation signal generation units 130a and 130b.
 ちなみに、操作信号生成部130bは、電圧振幅指令、電圧位相指令、電気角θ及びスイッチ操作信号が関係付けられたマップ情報であるパルスパターン情報、電圧振幅指令、電圧位相指令並びに電気角θに基づいて、スイッチ操作信号を生成してもよい。 Incidentally, the operation signal generation unit 130b is based on the voltage amplitude command, the voltage phase command, the pulse pattern information that is the map information associated with the electrical angle θ and the switch operation signal, the voltage amplitude command, the voltage phase command, and the electrical angle θ. Thus, a switch operation signal may be generated.
 以上詳述した本実施形態によれば、以下の優れた効果が得られる。 According to the embodiment described in detail above, the following excellent effects can be obtained.
 固定子50において、固定子巻線51の周方向に隣り合う直線部83の間(つまり、隣り合う磁石対向部の間)に、軟磁性材からなるティースが設けられていない構成とした。上記構成によれば、各直線部83の間にティースが設けられている場合に比べて、隣り合う各直線部83を近づけることで導体断面積を大きくすることができ、固定子巻線51の通電に伴い生じる発熱を低減することができる。各直線部83の間にティースが設けられていない、いわゆるスロットレス構造では、直線部83間のティースがないことで磁気飽和の解消が可能となり、固定子巻線51への通電電流を増大させることが可能となる。この場合において、その通電電流の増大に伴い発熱量が増えることに好適に対処することができる。以上により、固定子50での放熱性能を適正化することが可能になっている。 In the stator 50, the teeth made of the soft magnetic material are not provided between the linear portions 83 adjacent in the circumferential direction of the stator winding 51 (that is, between the adjacent magnet facing portions). According to the above configuration, the conductor cross-sectional area can be increased by bringing the adjacent linear portions 83 closer to each other, as compared with the case where the teeth are provided between the linear portions 83. Heat generated due to energization can be reduced. In a so-called slotless structure in which no teeth are provided between the straight portions 83, the absence of teeth between the straight portions 83 can eliminate magnetic saturation and increase the current flowing through the stator winding 51. It becomes possible. In this case, it is possible to suitably cope with an increase in the amount of heat generated with an increase in the supplied current. As described above, it is possible to optimize the heat radiation performance of the stator 50.
 固定子巻線51に固定子コア52を組み付け、その組み付け状態において、周方向に隣り合う直線部83の間に、軟磁性材からなるティースが設けられていない構成とした。この場合、回転子40に対して径方向反対側に設けられた固定子コア52がバックヨークとして機能することで、各直線部83の間にティースが存在していなくても、適正な磁気回路の形成が可能となる。 The stator core 52 is assembled to the stator winding 51, and in the assembled state, no teeth made of a soft magnetic material are provided between the linear portions 83 adjacent in the circumferential direction. In this case, the stator core 52 provided on the opposite side in the radial direction with respect to the rotor 40 functions as a back yoke, so that an appropriate magnetic circuit can be provided even if no teeth exist between the linear portions 83. Can be formed.
 固定子巻線51を封止材により封止し、これにより固定子巻線51において周方向に隣り合う直線部83の間に絶縁部材を設ける構成とした。これにより、各直線部83が周方向に互いに近い位置に配置されていても、その直線部83において良好な絶縁性を確保することができる。 (4) The stator winding 51 is sealed with a sealing material, so that an insulating member is provided between the linear portions 83 circumferentially adjacent to each other in the stator winding 51. Thereby, even if the respective linear portions 83 are arranged at positions close to each other in the circumferential direction, it is possible to secure good insulation properties in the linear portions 83.
 固定子巻線51において導線82を扁平状にして直線部83における径方向厚さを薄くしたため、その直線部83においてその径方向の中心位置を回転子40の磁石部42に近づけることができる。これにより、スロットレス構造の採用による固定子50での磁気飽和の抑制を図りつつ、固定子巻線51の直線部83における磁束密度を高めてトルクの増強を図ることが可能となる。また、上記のとおり周方向に隣り合う直線部83同士を互いに近づけることが可能となっているため、導線82を扁平状にしても導体断面積を確保できるものとなっている。 た め In the stator winding 51, the conducting wire 82 is flattened and the radial thickness of the straight portion 83 is reduced, so that the radial center position of the straight portion 83 can be closer to the magnet portion 42 of the rotor 40. Accordingly, it is possible to increase the magnetic flux density in the linear portion 83 of the stator winding 51 and to increase the torque while suppressing the magnetic saturation in the stator 50 by adopting the slotless structure. Further, as described above, since the linear portions 83 adjacent to each other in the circumferential direction can be brought closer to each other, the conductor cross-sectional area can be ensured even when the conducting wire 82 is flat.
 固定子巻線51の各導線82を複数の素線86の集合体としたため、導線82における電流流通経路の細線化を図ることができる。これにより、磁石部42からの磁界が導線82と鎖交した場合に渦電流が生じても、その渦電流に対する導線82の渦電流抑制効果を得ることができる。その結果、導線82に流れる渦電流を低減することができる。 た め Since each conductor 82 of the stator winding 51 is an aggregate of a plurality of strands 86, the current flow path in the conductor 82 can be made thinner. Accordingly, even when an eddy current is generated when the magnetic field from the magnet portion 42 is linked to the conducting wire 82, an eddy current suppressing effect of the conducting wire 82 against the eddy current can be obtained. As a result, eddy current flowing through the conductive wire 82 can be reduced.
 また、各導線82は、素線86が撚り合わせられて構成されているため、各素線86において磁界の印加方向が互いに逆になる部位が生じ、鎖交磁界に起因した逆起電圧が相殺される。その結果、導線82を流れる渦電流の低減効果を高めることができる。 Further, since each conducting wire 82 is configured by twisting the strands 86, there are portions where the directions of applying the magnetic field are opposite to each other in each strand 86, and the back electromotive voltage caused by the interlinking magnetic field cancels out. Is done. As a result, the effect of reducing the eddy current flowing through the conductive wire 82 can be enhanced.
 各素線86を繊維状の導電材87により構成したため、導線82における電流流通経路をより細線化でき、また、電流流通経路の撚り回数をより増大できる。これにより、渦電流の低減効果を高めることができる。なお、素線86は、少なくともカーボンナノチューブ繊維で構成されているとよい。 た め Since each strand 86 is made of the fibrous conductive material 87, the current flow path in the conductor 82 can be made thinner, and the number of twists of the current flow path can be increased. Thereby, the effect of reducing the eddy current can be enhanced. Note that the strand 86 is preferably made of at least carbon nanotube fiber.
 スロットレス構造を有する固定子50では、固定子コア52においてティースが設けられていない分、導線間領域WBに比べて導線領域WAを周方向に拡張できる。これにより、周方向において導線領域WAが導線間領域WBより大きいとする構成を好適に実現できる。 In the stator 50 having the slotless structure, the conductor area WA can be extended in the circumferential direction as compared with the inter-wire area WB because the teeth are not provided in the stator core 52. Accordingly, a configuration in which the conductor region WA is larger than the inter-conductor region WB in the circumferential direction can be suitably realized.
 固定子巻線51のターン部84が、径方向にシフトされ、他のターン部84との干渉を回避する干渉回避部を有することから、異なるターン部84同士を径方向に離して配置することができる。これにより、ターン部84においても放熱性の向上を図ることができ、ひいては固定子50での放熱性能をより一層高めることが可能となる。 Since the turn portion 84 of the stator winding 51 is shifted in the radial direction and has an interference avoiding portion that avoids interference with another turn portion 84, different turn portions 84 are arranged apart from each other in the radial direction. Can be. Thereby, the heat radiation of the turn portion 84 can be improved, and the heat radiation performance of the stator 50 can be further enhanced.
 固定子50の同一のピッチ円上で、各導線82のターン部84における相互干渉を回避する構成として、ターン部84が、同一のピッチ円上で周方向に延びる部分である傾斜部84a(第1部分に相当)と、傾斜部84aからその同一のピッチ円よりも径方向内側にシフトし、別のピッチ円上で周方向に延びる部分である頂部84b、傾斜部84c及び戻り部84d(第2部分に相当)とを有する構成とした。これにより、ターン部84における相互干渉を適正に回避することができる。 As a configuration for avoiding mutual interference at the turn portions 84 of the respective conductors 82 on the same pitch circle of the stator 50, the turn portions 84 are inclined portions 84a (portions extending in the circumferential direction on the same pitch circle). And a top portion 84b, a slope portion 84c, and a return portion 84d that are shifted radially inward from the same pitch circle from the inclined portion 84a and extend in the circumferential direction on another pitch circle. (Corresponding to two parts). Thereby, mutual interference in the turn portion 84 can be properly avoided.
 複数層の各直線部83のうち径方向内側の直線部83に接続されたターン部84と、径方向外側の直線部83に接続されたターン部84とを、それら直線部83同士よりも径方向に離して配置したため、ターン部84における放熱性能を高めることができる。 Among the straight portions 83 of the plurality of layers, the turn portion 84 connected to the radially inner straight portion 83 and the turn portion 84 connected to the radially outer straight portion 83 are smaller in diameter than the straight portions 83. The heat dissipating performance of the turn portion 84 can be improved because the heat dissipating member is disposed apart from the direction.
 ターン部84における曲がり部の曲げアールを、径方向内側の直線部83に接続されたターン部84と、径方向外側の直線部83に接続されたターン部84とで異ならせたため、それら各ターン部84を好適に離して配置することができる。 Since the bending radius of the bent portion in the turn portion 84 is different between the turn portion 84 connected to the radially inner straight portion 83 and the turn portion 84 connected to the radially outer straight portion 83, each of these turns is different. The portions 84 can be suitably spaced.
 ターン部84において曲がり部における直線部83からの径方向シフト量を、径方向内側の直線部83に接続されたターン部84と、径方向外側の直線部83に接続されたターン部84とで異ならせたため、それら各ターン部84を好適に離して配置することができる。 In the turn portion 84, the amount of radial shift from the straight portion 83 in the bent portion is determined by the turn portion 84 connected to the radially inner straight portion 83 and the turn portion 84 connected to the radially outer straight portion 83. Due to the difference, the respective turn portions 84 can be suitably separated from each other.
 以下に、本実施形態の固定子50の詳細構造を図31から図35を用いて説明する。図31において、固定子50は、固定子コア52の外側に固定子巻線51を備えている。固定子巻線51は、コイルサイド部53とコイルエンド部54,55とを備えている。コイルサイド部53は、回転子40における磁石部42と対向しており、磁石部42に沿って軸方向に真っすぐに延びている。 Hereinafter, a detailed structure of the stator 50 of the present embodiment will be described with reference to FIGS. In FIG. 31, the stator 50 includes a stator winding 51 outside a stator core 52. The stator winding 51 includes a coil side portion 53 and coil end portions 54 and 55. The coil side portion 53 is opposed to the magnet portion 42 of the rotor 40 and extends straight along the magnet portion 42 in the axial direction.
 コイルエンド部54,55は、複数のターン部84が回転子40の磁石部42とは反対側に折り曲げられており、ターン部84同士が回転軸11の軸方向に重なっている。言い換えると、固定子巻線51は、固定子コア52に沿うようにコイルエンド部54,55が径方向内側に折り曲げられており、コイルエンド部54とコイルエンド部55とで固定子コア52を挟むように構成されている。 The coil end portions 54 and 55 have a plurality of turn portions 84 bent toward the side opposite to the magnet portion 42 of the rotor 40, and the turn portions 84 overlap each other in the axial direction of the rotating shaft 11. In other words, in the stator winding 51, the coil end portions 54 and 55 are bent radially inward along the stator core 52, and the stator core 52 is formed by the coil end portion 54 and the coil end portion 55. It is configured to sandwich it.
 コイルエンド部54,55の内、エンドプレート部63から遠い側に位置しているコイルエンド部54をなすターン部84の一部は、固定子コア52の内周面よりも回転軸11の径方向内側に位置している。言い換えると、コイルエンド部54をなすターン部84は、形状の異なるターン部84同士が径方向に互いにずれており、軸方向に互いに重なっている部分と重なっていない部分とが存在する。 Of the coil end portions 54, 55, a part of the turn portion 84 forming the coil end portion 54, which is located on a side farther from the end plate portion 63, has a diameter of the rotating shaft 11 larger than the inner peripheral surface of the stator core 52. It is located inside the direction. In other words, in the turn portion 84 forming the coil end portion 54, the turn portions 84 having different shapes are shifted from each other in the radial direction, and there are a portion overlapping each other in the axial direction and a portion not overlapping.
 一方、コイルエンド部54,55の内、エンドプレート部63に近い側に位置しているコイルエンド部55をなすターン部84は、径方向への突出量が互いに等しい。言い換えると、コイルエンド部55をなすターン部84は、径方向に互いにずれておらず、コイルエンド部55の全体においてターン部84同士が軸方向に互いに重なっている部分がコイルエンド部54をなすターン部84に比べて多い。コイルエンド部55は、円環状の固定子コア52の内周面よりも回転軸11の径方向外側に位置している。コイルエンド部54とコイルエンド部55とは、互いに非対称な形状である。 On the other hand, of the coil end portions 54 and 55, the turn portions 84 forming the coil end portions 55 located closer to the end plate portion 63 have the same radial projection amount. In other words, the turn portions 84 forming the coil end portion 55 do not shift from each other in the radial direction, and the portion where the turn portions 84 overlap each other in the axial direction in the entire coil end portion 55 forms the coil end portion 54. More than in the turn section 84. The coil end portion 55 is located radially outward of the rotating shaft 11 from the inner peripheral surface of the annular stator core 52. The coil end portion 54 and the coil end portion 55 have asymmetric shapes.
 コイルエンド部54において径方向への突出量が大きい固定子巻線51は、コイルエンド部55において軸方向への突出量が小さい。一方、コイルエンド部54において径方向への突出量が小さい固定子巻線51は、コイルエンド部55において軸方向への突出量が大きい。すなわち、コイルエンド部54とコイルエンド部55とを合わせた固定子巻線51の長さは、互いに略等しい長さである。 固定 The stator winding 51 having a large radial projection in the coil end portion 54 has a small axial projection in the coil end portion 55. On the other hand, the stator winding 51 having a small amount of protrusion in the radial direction at the coil end portion 54 has a large amount of protrusion in the axial direction at the coil end portion 55. That is, the length of the stator winding 51 including the coil end portion 54 and the coil end portion 55 is substantially equal to each other.
 固定子コア52を径方向内側から保持しているケーシング部64は軸方向に延びる円筒形である。コイルエンド部55の径方向内側にはケーシング部64が位置している。言い換えると、コイルエンド部55側において、ケーシング部64は、固定子コア52よりも軸方向に長く突出して設けられている。一方、コイルエンド部54の径方向内側にはケーシング部64が位置していない。言い換えると、コイルエンド部54側において、ケーシング部64の軸方向における端部は、固定子コア52の軸方向における端部と面一であって、固定子コア52を基準とした軸方向への延出高さがゼロである。したがって、ケーシング部64は、コイルエンド部54側に比べてコイルエンド部55側の方が固定子コア52を基準とした軸方向への延出高さが高い。 ケ ー シ ン グ The casing portion 64 that holds the stator core 52 from the radial inside is a cylindrical shape extending in the axial direction. A casing portion 64 is located radially inside the coil end portion 55. In other words, on the coil end portion 55 side, the casing portion 64 is provided to protrude longer in the axial direction than the stator core 52. On the other hand, the casing 64 is not located radially inside the coil end 54. In other words, on the coil end portion 54 side, the end in the axial direction of the casing portion 64 is flush with the end in the axial direction of the stator core 52, and extends in the axial direction with respect to the stator core 52. The extension height is zero. Therefore, the casing portion 64 has a higher extension height in the axial direction with respect to the stator core 52 on the coil end portion 55 side than on the coil end portion 54 side.
 図32において、固定子50は、円環状の固定子コア52の外側にU相、V相、W相の3相分の固定子巻線51を備えている。すなわち、固定子巻線51は、U相の巻線であるU相固定子巻線51UとV相の巻線であるV相固定子巻線51VとW相の巻線であるW相固定子巻線51Wとの3種類の相巻線によって形成されている。本実施形態において、以降の説明ではコイルエンド部54側におけるターン部84とコイルエンド部55側におけるターン部84を区別する目的で、ターン部84の符号としてターン部841とターン部846との2つの符号を用いて説明を行う。すなわち、コイルエンド部54,55の内、エンドプレート部63から遠い側に位置するコイルエンド部54側のターン部84には、ターン部841の符号を付している。一方、コイルエンド部54,55の内、エンドプレート部63から近い側に位置しているコイルエンド部55側のターン部84には、ターン部846の符号を付している。 In FIG. 32, the stator 50 includes stator windings 51 for three phases of U-phase, V-phase, and W-phase outside the annular stator core 52. That is, the stator winding 51 includes a U-phase stator winding 51U that is a U-phase winding, a V-phase stator winding 51V that is a V-phase winding, and a W-phase stator that is a W-phase winding. It is formed by three types of phase windings including a winding 51W. In the following description, in order to distinguish the turn part 84 on the coil end part 54 side and the turn part 84 on the coil end part 55 side in the following description, the turn part 84 will be referred to as a turn part 841 or a turn part 846. The description will be made using two symbols. That is, among the coil end portions 54 and 55, the turn portion 84 on the coil end portion 54 side located farther from the end plate portion 63 is denoted by the reference numeral of the turn portion 841. On the other hand, among the coil end portions 54 and 55, the turn portion 84 on the coil end portion 55 side located closer to the end plate portion 63 is denoted by the reference numeral of the turn portion 846.
 ターン部841は、U相固定子巻線51Uにおけるターン部841であるU相ターン部841Uと、V相におけるターン部841であるV相ターン部841Vと、W相におけるターン部841であるW相ターン部841Wを備えている。ターン部846についてもターン部841と同様に、U相ターン部846UとV相ターン部846VとW相ターン部846Wとの3種類を有している。コイルサイド部53についてもターン部841と同様に、U相コイルサイド部53UとV相コイルサイド部53VとW相コイルサイド部53Wとの3種類を有している。 The turn portion 841 is a U-phase turn portion 841U that is a turn portion 841 in the U-phase stator winding 51U, a V-phase turn portion 841V that is a V-phase turn portion 841, and a W phase that is a turn portion 841 in the W phase. A turn portion 841W is provided. Similarly to the turn portion 841, the turn portion 846 has three types of a U-phase turn portion 846U, a V-phase turn portion 846V, and a W-phase turn portion 846W. Similarly to the turn part 841, the coil side part 53 has three types of a U-phase coil side part 53U, a V-phase coil side part 53V, and a W-phase coil side part 53W.
 U相固定子巻線51Uは、U相コイルサイド部53UとU相ターン部841U、846Uとを備えている。V相固定子巻線51Vは、V相コイルサイド部53VとV相ターン部841V、846Vとを備えている。W相固定子巻線51Wは、W相コイルサイド部53WとW相ターン部841W、846Wとを備えている。 The U-phase stator winding 51U includes a U-phase coil side portion 53U and U-phase turn portions 841U and 846U. The V-phase stator winding 51V includes a V-phase coil side portion 53V and V- phase turn portions 841V and 846V. The W-phase stator winding 51W includes a W-phase coil side portion 53W and W- phase turn portions 841W and 846W.
 U相固定子巻線51UとV相固定子巻線51VとW相固定子巻線51Wとは、固定子コア52の外周面において同相の固定子巻線51同士が接触しないように周方向に所定数ごとに規則的に配置されている。すなわち、固定子50の周方向において、U相固定子巻線51Uに隣接して、V相固定子巻線51VとW相固定子巻線51Wとが配置されている。V相固定子巻線51Vに隣接して、U相固定子巻線51UとW相固定子巻線51Wとが配置されている。W相固定子巻線51Wに隣接して、U相固定子巻線51UとV相固定子巻線51Vとが配置されている。したがって、U相固定子巻線51U同士は、固定子50において周方向に等間隔に並んで設けられている。V相固定子巻線51V同士は、固定子50において周方向に等間隔に並んで設けられている。W相固定子巻線51W同士は、固定子50において周方向に等間隔に並んで設けられている。 The U-phase stator winding 51U, the V-phase stator winding 51V, and the W-phase stator winding 51W are arranged in a circumferential direction so that the stator windings 51 of the same phase do not contact each other on the outer peripheral surface of the stator core 52. They are arranged regularly every predetermined number. That is, in the circumferential direction of the stator 50, the V-phase stator winding 51V and the W-phase stator winding 51W are arranged adjacent to the U-phase stator winding 51U. A U-phase stator winding 51U and a W-phase stator winding 51W are arranged adjacent to the V-phase stator winding 51V. A U-phase stator winding 51U and a V-phase stator winding 51V are arranged adjacent to the W-phase stator winding 51W. Therefore, the U-phase stator windings 51U are provided in the stator 50 at equal intervals in the circumferential direction. The V-phase stator windings 51V are provided in the stator 50 at equal intervals in the circumferential direction. The W-phase stator windings 51W are provided at equal intervals in the circumferential direction on the stator 50.
 各相の固定子巻線51の導線82の長さに関して、ターン部841の最も長いU相固定子巻線51Uは、ターン部846が最も短い。一方、ターン部841の最も短いW相固定子巻線51Wは、ターン部846が最も長い。すなわち、U相固定子巻線51Uの導体長とV相固定子巻線51Vの導体長とW相固定子巻線51Wの導体長とは、互いに等しい長さである。また、U相固定子巻線51Uの太さとV相固定子巻線51Vの太さとW相固定子巻線51Wの太さとは、互いに等しい太さである。ただし、各相の固定子巻線51が厳密に等しい長さ及び太さである必要はなく、互いの固定子巻線51における抵抗値が同程度に揃う程度に等しい長さ及び太さであればよい。 に 関 し て Regarding the length of the conductor wire 82 of the stator winding 51 of each phase, the longest U-phase stator winding 51U of the turn portion 841 has the shortest turn portion 846. On the other hand, the shortest W-phase stator winding 51W of the turn portion 841 has the longest turn portion 846. That is, the conductor length of the U-phase stator winding 51U, the conductor length of the V-phase stator winding 51V, and the conductor length of the W-phase stator winding 51W are equal to each other. The U-phase stator winding 51U, the V-phase stator winding 51V, and the W-phase stator winding 51W have the same thickness. However, it is not necessary that the stator windings 51 of each phase have strictly equal lengths and thicknesses. I just need.
 図33において、ターン部841をなす導線群81は、径方向に並ぶ4本の導線82によって構成されている。すなわち、U相ターン部841Uは、径方向外側から径方向内側に向かう向きに第1U相ターン部841U1、第2U相ターン部841U2、第3U相ターン部841U3、第4U相ターン部841U4の順に構成されている。U相ターン部841Uと同様に、V相ターン部841Vは、径方向外側から径方向内側に向かう向きに第1V相ターン部841V1、第2V相ターン部841V2、第3V相ターン部841V3、第4V相ターン部841V4の順に構成されている。U相ターン部841Uと同様に、W相ターン部841Wは、径方向外側から径方向内側に向かう向きに第1W相ターン部841W1、第2W相ターン部841W2、第3W相ターン部841W3、第4W相ターン部841W4の順に構成されている。導線群81と導線82とは、ともに導線部を提供する。 に お い て In FIG. 33, the conductor group 81 forming the turn portion 841 is constituted by four conductors 82 arranged in the radial direction. That is, the U-phase turn part 841U is configured in the order of the first U-phase turn part 841U1, the second U-phase turn part 841U2, the third U-phase turn part 841U3, and the fourth U-phase turn part 841U4 in the direction from the radial outside to the radial inside. Have been. Similarly to the U-phase turn part 841U, the V-phase turn part 841V includes a first V-phase turn part 841V1, a second V-phase turn part 841V2, a third V-phase turn part 841V3, and a fourth V in a direction from the radial outside to the radial inside. The phase turn portions 841V4 are configured in this order. Similarly to the U-phase turn portion 841U, the W-phase turn portion 841W includes a first W-phase turn portion 841W1, a second W-phase turn portion 841W2, a third W-phase turn portion 841W3, and a fourth W in a direction from the radial outside to the radial inside. The phase turn portions 841W4 are configured in this order. The conductor group 81 and the conductor 82 together provide a conductor part.
 ターン部841をなす導線82は、径方向内側に延びる部分である2本の傾斜部841aと、周方向に延びる部分である頂部841bと、傾斜部841aと頂部841bとを接続する2つの角部841eを備えている。ターン部841は、径方向外側に開放端を有するU字状をなしている。 The conducting wire 82 forming the turn portion 841 includes two inclined portions 841a which are portions extending radially inward, a top portion 841b which is a portion extending in the circumferential direction, and two corner portions connecting the inclined portions 841a and 841b. 841e. The turn portion 841 has a U-shape having an open end radially outward.
 ターン部841において、U相ターン部841Uは、V相ターン部841VやW相ターン部841Wよりも固定子コア52に近い軸方向内側に位置している。すなわち、U相ターン部841Uは、ターン部841のうち、最も内層に位置している最内層ターン部を提供する。 In the turn portion 841, the U-phase turn portion 841U is located closer to the stator core 52 in the axial direction than the V-phase turn portion 841V and the W-phase turn portion 841W. That is, the U-phase turn portion 841U provides the innermost turn portion located at the innermost layer among the turn portions 841.
 一方、V相ターン部841VとW相ターン部841Wとは、U相ターン部841Uよりも固定子コア52から遠い方向である軸方向外側に位置している。すなわち、V相ターン部841VとW相ターン部841Wとは、外層ターン部を提供する。さらに、外層ターン部であるW相ターン部841Wは、U相ターン部841UやV相ターン部841Vよりも軸方向外側に位置している。すなわち、W相ターン部841Wは、ターン部841のうち、最も外層に位置している最外層ターン部を提供する。さらに、外層ターン部であるV相ターン部841Vは、最内層ターン部であるU相ターン部841Uと最外層ターン部であるW相ターン部841Wとの間に位置している。すなわち、V相ターン部841Vは、ターン部841のうち、最内層と最外層との間の中層に位置している中層ターン部を提供する。 On the other hand, the V-phase turn portion 841V and the W-phase turn portion 841W are located axially outward, which is a direction farther from the stator core 52 than the U-phase turn portion 841U. That is, the V-phase turn part 841V and the W-phase turn part 841W provide an outer layer turn part. Further, the W-phase turn portion 841W, which is the outer layer turn portion, is located axially outside the U-phase turn portion 841U and the V-phase turn portion 841V. That is, the W-phase turn portion 841W provides the outermost turn portion located at the outermost layer among the turn portions 841. Further, the V-phase turn portion 841V that is the outer layer turn portion is located between the U-phase turn portion 841U that is the innermost turn portion and the W-phase turn portion 841W that is the outermost layer turn portion. That is, the V-phase turn part 841V provides a middle turn part located in a middle layer between the innermost layer and the outermost layer of the turn part 841.
 図34において、最内層ターン部であるU相ターン部841Uについて、径方向最外側から径方向最内側までの距離であるU相ターン部841Uの最大突出量は、最内層最大突出量LUで示されている。中層ターン部であるV相ターン部841Vについて、径方向最外側から径方向最内側までの距離であるV相ターン部841Vの最大突出量は、中層最大突出量LVで示されている。最外層ターン部であるW相ターン部841Wについて、径方向最外側から径方向最内側までの距離であるW相ターン部841Wの最大突出量は、最外層最大突出量LWで示されている。 In FIG. 34, for the U-phase turn portion 841U, which is the innermost turn portion, the maximum protrusion amount of the U-phase turn portion 841U, which is the distance from the radially outermost position to the radially innermost position, is indicated by the innermost layer maximum protrusion amount LU. Have been. Regarding the V-phase turn portion 841V that is the middle turn portion, the maximum protrusion amount of the V-phase turn portion 841V that is the distance from the radially outermost position to the radially innermost position is indicated by the middle-layer maximum protrusion amount LV. For the W-phase turn portion 841W, which is the outermost layer turn portion, the maximum protrusion amount of the W-phase turn portion 841W, which is the distance from the radially outermost position to the radially innermost position, is indicated by the outermost layer maximum protrusion amount LW.
 最内層最大突出量LUは、中層最大突出量LVよりも大きい。最外層最大突出量LWは、中層最大突出量LVよりも小さい。すなわち、ターン部841における径方向の突出量は、最内層最大突出量LUが最も大きく、最外層最大突出量LWが最も小さい。 内 The innermost layer maximum protrusion amount LU is larger than the middle layer maximum protrusion amount LV. The outermost layer maximum protrusion amount LW is smaller than the middle layer maximum protrusion amount LV. That is, the radial protrusion amount of the turn portion 841 is the largest in the innermost layer maximum protrusion amount LU, and the smallest in the outermost layer maximum protrusion amount LW.
 ここで突出量とは、コイルサイド部53が位置している面である固定子コア52の外周面を基準として径方向に突出している長さを意味している。また、突出量は、ターン部841をなす導線82毎に決まる量であって、U相ターン部841Uにおいては、第1U相ターン部841U1と第2U相ターン部841U2と第3U相ターン部841U3と第4U相ターン部841U4とで、それぞれに異なる突出量を有する。最内層最大突出量LUは、第4U相ターン部841U4における突出量に等しい。中層最大突出量LVは、第4V相ターン部841V4における突出量に等しい。最外層最大突出量LWは、第4W相ターン部841W4における突出量に等しい。 Here, the protruding amount means a length that protrudes in the radial direction with reference to the outer peripheral surface of the stator core 52, which is the surface on which the coil side portion 53 is located. Further, the protruding amount is an amount determined for each conducting wire 82 forming the turn portion 841, and in the U-phase turn portion 841U, the first U-phase turn portion 841U1, the second U-phase turn portion 841U2, and the third U-phase turn portion 841U3 The fourth U-phase turn portion 841U4 has a different protrusion amount. The innermost layer maximum protrusion amount LU is equal to the protrusion amount in the fourth U-phase turn portion 841U4. The middle layer maximum protrusion amount LV is equal to the protrusion amount in the fourth V-phase turn portion 841V4. The outermost layer maximum protrusion amount LW is equal to the protrusion amount in the fourth W-phase turn portion 841W4.
 図33において、U相ターン部841Uにおける第2U相ターン部841U2の径方向への突出量は、固定子コア52の径方向の厚さ寸法と略等しい大きさである。第1U相ターン部841U1の径方向の突出量は、第1U相ターン部841U1の厚さ分だけ第2U相ターン部841U2よりも小さい。 In FIG. 33, the amount of radial protrusion of the second U-phase turn portion 841U2 in the U-phase turn portion 841U is substantially equal to the thickness of the stator core 52 in the radial direction. The radial projection of the first U-phase turn 841U1 is smaller than the second U-phase turn 841U2 by the thickness of the first U-phase turn 841U1.
 第3U相ターン部841U3の径方向への突出量は、固定子コア52の径方向の厚さ寸法の2倍程度の大きさである。すなわち、第3U相ターン部841U3の径方向への突出量は、固定子コア52の厚さ寸法よりも大きい。したがって、U相ターン部841Uの少なくとも一部は、固定子コア52の内周面よりも径方向の内側まで突出している。第4U相ターン部841U4の径方向の突出量は、第4U相ターン部841U4の厚さ分だけ第3U相ターン部841U3よりも大きい。 The amount of radial protrusion of the third U-phase turn portion 841U3 is about twice the radial thickness of the stator core 52. That is, the radially projecting amount of the third U-phase turn portion 841U3 is larger than the thickness dimension of the stator core 52. Therefore, at least a portion of the U-phase turn portion 841U protrudes radially inward from the inner peripheral surface of the stator core 52. The amount of radial protrusion of the fourth U-phase turn portion 841U4 is greater than that of the third U-phase turn portion 841U3 by the thickness of the fourth U-phase turn portion 841U4.
 第2U相ターン部841U2の径方向への突出量は、第3U相ターン部841U3の径方向への突出量よりも小さい。すなわち、第1U相ターン部841U1と第2U相ターン部841U2とは、突出量の小さな小ターン部を提供する。一方、第3U相ターン部841U3と第4U相ターン部841U4とは、突出量の大きな大ターン部を提供する。 径 The amount of radial protrusion of the second U-phase turn portion 841U2 is smaller than the amount of radial protrusion of the third U-phase turn portion 841U3. That is, the first U-phase turn portion 841U1 and the second U-phase turn portion 841U2 provide a small turn portion having a small protrusion amount. On the other hand, the third U-phase turn portion 841U3 and the fourth U-phase turn portion 841U4 provide a large turn portion having a large protrusion amount.
 U相ターン部841Uと同様にV相ターン部841Vは、第1V相ターン部841V1と第2V相ターン部841V2とは、小ターン部であり、第3V相ターン部841V3と第4V相ターン部841V4とは、大ターン部である。ただし、V相ターン部841Vの大ターン部である第3V相ターン部841V3と第4V相ターン部841V4との径方向への突出量は、第3U相ターン部841U3と第4U相ターン部841U4との径方向への突出量に比べて小さい。一方、第2V相ターン部841V2の径方向への突出量は、第2U相ターン部841U2の径方向への突出量と略等しい大きさである。 Similarly to the U-phase turn portion 841U, the V-phase turn portion 841V includes a first V-phase turn portion 841V1 and a second V-phase turn portion 841V2 as small turn portions, and a third V-phase turn portion 841V3 and a fourth V-phase turn portion 841V4. Is a large turn section. However, the radially projecting amounts of the third V-phase turn portion 841V3 and the fourth V-phase turn portion 841V4, which are the large turn portions of the V-phase turn portion 841V, are equal to the third U-phase turn portion 841U3, the fourth U-phase turn portion 841U4, and Is smaller than the amount of protrusion in the radial direction. On the other hand, the amount of protrusion of the second V-phase turn portion 841V2 in the radial direction is substantially equal to the amount of protrusion of the second U-phase turn portion 841U2 in the radial direction.
 大ターン部と小ターン部との間には空隙が形成されている。すなわち、第2U相ターン部841U2と第3U相ターン部841U3とは、互いに径方向に離隔しており、第2U相ターン部841U2と第3U相ターン部841U3との間に空隙が形成されている。また、第2V相ターン部841V2と第3V相ターン部841V3との間にも空隙が形成されている。V相ターン部841Vにおける第2V相ターン部841V2と第3V相ターン部841V3との間の空隙の大きさは、U相ターン部841Uにおける第2U相ターン部841U2と第3U相ターン部841U3との間の空隙の大きさよりも小さい。 空 A gap is formed between the large turn part and the small turn part. That is, the second U-phase turn part 841U2 and the third U-phase turn part 841U3 are radially separated from each other, and a gap is formed between the second U-phase turn part 841U2 and the third U-phase turn part 841U3. . Also, a gap is formed between the second V-phase turn part 841V2 and the third V-phase turn part 841V3. The size of the gap between the second V-phase turn part 841V2 and the third V-phase turn part 841V3 in the V-phase turn part 841V depends on the size of the gap between the second U-phase turn part 841U2 and the third U-phase turn part 841U3 in the U-phase turn part 841U. It is smaller than the size of the gap between them.
 W相ターン部841Wにおいては、第2W相ターン部841W2の突出量と第3W相ターン部841W3の突出量とが、導線82の厚さ分程度異なる。すなわち、第2W相ターン部841W2と第3W相ターン部841W3との間に形成される隙間が極めて小さい。言い換えると、W相ターン部841Wにおける第2W相ターン部841W2と第3W相ターン部841W3との間の空隙の大きさは、V相ターン部841Vにおける第2V相ターン部841V2と第3V相ターン部841V3との間の空隙の大きさよりも小さい。 In the 相 W-phase turn portion 841W, the amount of protrusion of the second W-phase turn portion 841W2 and the amount of protrusion of the third W-phase turn portion 841W3 differ by the thickness of the conductive wire 82. That is, the gap formed between the second W-phase turn portion 841W2 and the third W-phase turn portion 841W3 is extremely small. In other words, the size of the gap between the second W-phase turn part 841W2 and the third W-phase turn part 841W3 in the W-phase turn part 841W is the second V-phase turn part 841V2 and the third V-phase turn part in the V-phase turn part 841V. 841 V3, which is smaller than the size of the gap.
 図35において、小ターン部である第2V相ターン部841V2の角部841eの曲げ外側における曲率半径Raと、大ターン部である第3V相ターン部841V3の角部841eの曲げ内側における曲率半径Rbとは異なる大きさである。曲率半径Raは、第2V相ターン部841V2における2箇所の角部841eの曲げ外側において同じ大きさである。曲率半径Rbは、第3V相ターン部841V3における2箇所の角部841eの曲げ内側において同じ大きさである。曲率半径Raと曲率半径Rbとを規定する角部841eは互いに対向している。ここで、仮に第2V相ターン部841V2と第3V相ターン部841V3との間に空隙が形成されておらず、導線82が互いに隙間なく接触している場合を想定すると、曲率半径Raと曲率半径Rbは等しい大きさとなる。すなわち、V相ターン部841Vにおいては、曲率半径Raと曲率半径Rbとの大きさを変えることで、第2V相ターン部841V2と第3V相ターン部841V3との間に空隙を生じさせている。 In FIG. 35, the radius of curvature Ra on the outside of the bend of the corner 841e of the second V-phase turn portion 841V2, which is a small turn portion, and the radius of curvature Rb on the inside of the bend of the corner 841e of the third V-phase turn portion 841V3, which is a large turn portion. Is a different size. The radius of curvature Ra is the same size outside the bends of the two corners 841e in the second V-phase turn 841V2. The radius of curvature Rb is the same size inside the two corners 841e of the third V-phase turn 841V3. The corners 841e that define the radius of curvature Ra and the radius of curvature Rb face each other. Here, assuming that no gap is formed between the second V-phase turn portion 841V2 and the third V-phase turn portion 841V3, and the conductive wires 82 are in contact with each other without any gap, the curvature radius Ra and the curvature radius are assumed. Rb has the same size. That is, in the V-phase turn portion 841V, a gap is generated between the second V-phase turn portion 841V2 and the third V-phase turn portion 841V3 by changing the size of the radius of curvature Ra and the radius of curvature Rb.
 V相ターン部841Vにおいて、曲率半径Raは、曲率半径Rbよりも大きい。すなわち、第2V相ターン部841V2は、第3V相ターン部841V3に比べて緩やかな曲線を描くように曲げられている。これにより、V相ターン部841Vにおいて、空隙を形成するとともに、4本の導線82を無理なく曲げてターンさせることができる。U相ターン部841Uにおいても、V相ターン部841Vと同様に第2U相ターン部841U2は、第3U相ターン部841U3に比べて緩やかな曲線を描くように大きな曲率半径で曲げられている。 In the V-phase turn portion 841V, the radius of curvature Ra is larger than the radius of curvature Rb. That is, the second V-phase turn portion 841V2 is bent so as to draw a gentler curve than the third V-phase turn portion 841V3. Thereby, in the V-phase turn portion 841V, a gap can be formed, and the four conductive wires 82 can be bent and turned without difficulty. Also in the U-phase turn portion 841U, the second U-phase turn portion 841U2 is bent with a large radius of curvature so as to draw a gentler curve than the third U-phase turn portion 841U3, similarly to the V-phase turn portion 841V.
 第1U相ターン部841U1における径方向への突出量と、第1V相ターン部841V1における径方向への突出量とは、等しい大きさである。第2U相ターン部841U2における径方向への突出量と、第2V相ターン部841V2における径方向への突出量とは、等しい大きさである。第4W相ターン部841W4の突出量は、第1V相ターン部841V1の突出量よりも小さい。したがって、W相ターン部841Wにおける頂部841bは、U相ターン部841Uにおける頂部841b及びV相ターン部841Vにおける頂部841bと径方向にずれた位置に設けられている。言い換えると、W相ターン部841Wの頂部841bは他のターン部841における頂部841bとは軸方向に重なっていない。 (4) The amount of protrusion in the radial direction of the first U-phase turn portion 841U1 is equal to the amount of protrusion in the radial direction of the first V-phase turn portion 841V1. The amount of protrusion in the radial direction at the second U-phase turn portion 841U2 is equal to the amount of protrusion in the radial direction of the second V-phase turn portion 841V2. The protrusion amount of the fourth W-phase turn portion 841W4 is smaller than the protrusion amount of the first V-phase turn portion 841V1. Therefore, the top portion 841b of the W-phase turn portion 841W is provided at a position radially displaced from the top portion 841b of the U-phase turn portion 841U and the top portion 841b of the V-phase turn portion 841V. In other words, the top portion 841b of the W-phase turn portion 841W does not axially overlap the top portion 841b of the other turn portion 841.
 コイルエンド部54における放熱について以下に説明する。固定子巻線51には通電に伴い発熱が生じる。この発熱により固定子巻線51の温度が上昇する。ただし、固定子巻線51の温度が上昇するほど、固定子巻線51の周囲の空気との温度差が大きくなるため、固定子巻線51の熱が積極的に空気中に放熱される。ここで、固定子巻線51と周囲の空気との接触面積の大きさによって固定子巻線51から空気に放熱される放熱量が変化する。すなわち、固定子巻線51のうち、空気との接触面積が大きい部分については、固定子巻線51の熱が積極的に空気中に放熱されて温度が上昇しにくい。一方、固定子巻線51のうち、空気との接触面積が小さい部分については、空気中に放熱されにくく、熱がこもって温度が上昇しやすい。したがって、固定子巻線51からの放熱性能を高めるためには、温度の低い空気と固定子巻線51とをなるべく多く接触させることが必要となる。 (4) The heat radiation in the coil end portion 54 will be described below. Heat is generated in the stator windings 51 due to energization. This heat causes the temperature of the stator winding 51 to rise. However, as the temperature of the stator windings 51 rises, the temperature difference between the stator windings 51 and the air around the stator windings 51 increases, so that the heat of the stator windings 51 is actively radiated into the air. Here, the amount of heat radiated from the stator winding 51 to the air varies depending on the size of the contact area between the stator winding 51 and the surrounding air. That is, in the portion of the stator winding 51 having a large contact area with the air, the heat of the stator winding 51 is actively radiated into the air, so that the temperature does not easily rise. On the other hand, in the portion of the stator winding 51 having a small contact area with air, heat is hardly dissipated into the air, and the temperature is likely to rise due to heat retention. Therefore, in order to improve the heat dissipation performance from the stator winding 51, it is necessary to make the low temperature air and the stator winding 51 contact as much as possible.
 コイルエンド部54は、最内層ターン部であるU相ターン部841Uと、中層ターン部であるV相ターン部841Vと、最外層ターン部であるW相ターン部841Wとの3種類のターン部841によって構成されている。ここで、仮にU相ターン部841UとV相ターン部841VとW相ターン部841Wとの3種類のターン部841が、互いに径方向にずれておらず、径方向への突出量が互いに等しい場合を想定する。この場合には、最外層ターン部であるW相ターン部841Wの外側には、空気との接触を妨げる部材がなく、他のターン部841に比べて空気との接触面積が大きく放熱性能が高い。一方、最内層ターン部であるU相ターン部841Uは、内側に固定子コア52が配置されるとともに、外側に中層ターン部であるV相ターン部841Vと最外層ターン部であるW相ターン部841Wとが配置されることとなる。このため、U相ターン部841Uの内側と外側との両側において、空気との接触を妨げる部材が存在することとなる。したがって、U相ターン部841Uは、少なくともW相ターン部841Wよりも放熱性能が低くなりやすい。 The coil end portion 54 has three types of turn portions 841 including a U-phase turn portion 841U as an innermost turn portion, a V-phase turn portion 841V as an intermediate turn portion, and a W-phase turn portion 841W as an outermost turn portion. It is constituted by. Here, assuming that the three types of turn portions 841 of the U-phase turn portion 841U, the V-phase turn portion 841V, and the W-phase turn portion 841W are not displaced from each other in the radial direction, and the protrusion amounts in the radial direction are equal to each other. Is assumed. In this case, there is no member that hinders contact with air outside the W-phase turn portion 841W, which is the outermost turn portion, and the contact area with air is large as compared with the other turn portions 841 and the heat radiation performance is high. . On the other hand, the U-phase turn portion 841U, which is the innermost turn portion, has the stator core 52 disposed inside, the V-phase turn portion 841V, which is the middle turn portion, and the W-phase turn portion, which is the outermost turn portion, outside. 841W. For this reason, there are members on both sides of the inside and outside of the U-phase turn portion 841U that hinder contact with air. Therefore, the heat radiation performance of the U-phase turn portion 841U tends to be lower than at least the W-phase turn portion 841W.
 しかしながら、ターン部841においては、U相ターン部841Uの径方向への突出量と、V相ターン部841Vの径方向への突出量と、W相ターン部841Wの径方向への突出量とが互いに異なる突出量である。言い換えると、U相ターン部841UとV相ターン部841VとW相ターン部841Wとの3種類のターン部841が、互いに径方向にずれて配置されている。このため、最内層ターン部であるU相ターン部841Uの少なくとも一部においては、外側に他のターン部841が配置されていない部分となる。中層ターン部であるV相ターン部841Vについても同様に、外側に他のターン部841が配置されていない部分が存在する。したがって、最内層ターン部であるU相ターン部841Uと中層ターン部であるV相ターン部841Vとは、空気中への放熱が促進された部分を有する放熱促進ターン部841を提供している。また、W相ターン部841Wについても、軸方向に他のターン部841と重なる量が少ない。言い換えると、W相ターン部841Wの軸方向内側における空気との接触面積が大きい。したがって、W相ターン部841Wは、放熱の促進された放熱促進ターン部841を提供している。 However, in the turn portion 841, the amount of radial protrusion of the U-phase turn portion 841U, the amount of radial protrusion of the V-phase turn portion 841V, and the amount of radial protrusion of the W-phase turn portion 841W are different. The protrusion amounts are different from each other. In other words, three types of turn portions 841 of the U-phase turn portion 841U, the V-phase turn portion 841V, and the W-phase turn portion 841W are arranged to be shifted from each other in the radial direction. Therefore, at least a portion of the U-phase turn portion 841U, which is the innermost turn portion, is a portion where no other turn portion 841 is arranged outside. Similarly, the V-phase turn portion 841V, which is the middle turn portion, has a portion on the outside where no other turn portion 841 is arranged. Therefore, the U-phase turn portion 841U, which is the innermost turn portion, and the V-phase turn portion 841V, which is the middle turn portion, provide a heat dissipation promoting turn portion 841 having a portion where heat dissipation to the air is promoted. Also, the amount of the W-phase turn portion 841W overlapping the other turn portions 841 in the axial direction is small. In other words, the contact area with the air inside the W-phase turn portion 841W in the axial direction is large. Therefore, the W-phase turn portion 841W provides a heat dissipation promoting turn portion 841 in which heat dissipation is promoted.
 さらに、U相ターン部841Uをなす第2U相ターン部841U2と第3U相ターン部841U3との間には空隙が形成されている。仮に、第2U相ターン部841U2と第3U相ターン部841U3との間に空隙が形成されていないと仮定する。この場合には、U相ターン部841Uの周囲を流れる空気がU相ターン部841Uをなす4本の導線82の間に入り込むことができない。すなわち、第2U相ターン部841U2と第3U相ターン部841U3とが互いに接触している面積をU相ターン部841Uと空気との接触面積に含むことができない。しかしながら、U相ターン部841Uにおいて、第2U相ターン部841U2と第3U相ターン部841U3との間に空隙が形成されている。このため、第2U相ターン部841U2と第3U相ターン部841U3との間に空気が入り込むことができる。すなわち、第2U相ターン部841U2と第3U相ターン部841U3とが互いに向かい合う部分の面積をU相ターン部841Uと空気との接触面積に含むことができる。したがって、U相ターン部841Uにおける空気との接触面積を大きく確保しやすい。 Further, a gap is formed between the second U-phase turn portion 841U2 and the third U-phase turn portion 841U3 forming the U-phase turn portion 841U. It is assumed that no gap is formed between the second U-phase turn portion 841U2 and the third U-phase turn portion 841U3. In this case, air flowing around the U-phase turn portion 841U cannot enter between the four conducting wires 82 forming the U-phase turn portion 841U. That is, the area where the second U-phase turn portion 841U2 and the third U-phase turn portion 841U3 are in contact with each other cannot be included in the contact area between the U-phase turn portion 841U and air. However, in the U-phase turn portion 841U, a gap is formed between the second U-phase turn portion 841U2 and the third U-phase turn portion 841U3. Therefore, air can enter between the second U-phase turn part 841U2 and the third U-phase turn part 841U3. That is, the area of the portion where the second U-phase turn portion 841U2 and the third U-phase turn portion 841U3 face each other can be included in the contact area between the U-phase turn portion 841U and air. Therefore, it is easy to secure a large contact area with the air in the U-phase turn portion 841U.
 図31において、回転子40が回転することで回転電機10の内部に風が発生する。発生した風の一部は、回転子40の内側に位置している固定子50に沿って流れる。この時、コイルエンド部54,55においては、風の流れ方が部位によって異なる。すなわち、固定子コア52を保持しているケーシング部64が、軸方向に大きく延び出しているコイルエンド部55の方が風の通路が制限されており、風が流れにくい。一方、コイルエンド部54は、コイルエンド部55に比べて風の流れを妨げる部材が少なく、多くの風が流れやすい。したがって、エンドプレート部63から近い側のコイルエンド部55に比べて、エンドプレート部63から遠い側のコイルエンド部54の方が固定子巻線51の放熱性能の向上に貢献しやすい。言い換えると、コイルエンド部55をなすターン部846の形状を放熱性能の高い形状とするよりも、コイルエンド部54をなすターン部841の形状を放熱性能の高い形状とする方が、固定子巻線51全体における放熱性能を高めることができる。ただし、ターン部841、846の両方について放熱性能の高い形状とする方が、ターン部841、846のどちらか一方のみについて放熱性能の高い形状とする場合に比べて、固定子巻線51全体における放熱性能を高めやすい。 に お い て In FIG. 31, when the rotor 40 rotates, wind is generated inside the rotating electric machine 10. Part of the generated wind flows along the stator 50 located inside the rotor 40. At this time, in the coil end portions 54 and 55, the flow of the wind differs depending on the portion. That is, the passage of the wind is more restricted in the coil end portion 55 in which the casing portion 64 holding the stator core 52 is greatly extended in the axial direction, and the wind is less likely to flow. On the other hand, the coil end portion 54 has fewer members obstructing the flow of the wind as compared with the coil end portion 55, and more wind can easily flow. Therefore, the coil end portion 54 farther from the end plate portion 63 tends to contribute to the improvement of the heat radiation performance of the stator winding 51 than the coil end portion 55 closer to the end plate portion 63. In other words, the shape of the turn portion 841 forming the coil end portion 54 having a shape having a high heat dissipation performance is better than the shape of the turn portion 846 forming the coil end portion 55 having a shape having a high heat dissipation performance. The heat radiation performance of the entire wire 51 can be improved. However, the shape of the heat radiation performance of both the turn portions 841 and 846 is higher in the whole stator winding 51 than the shape of the heat radiation performance of only one of the turn portions 841 and 846. Easy to enhance heat dissipation performance.
 上述した実施形態によると、最内層ターン部であるU相ターン部841Uの径方向への突出量は、外層ターン部であるV相ターン部841V及びW相ターン部841Wの径方向への突出量とは異なる突出量である。言い換えると、U相ターン部841Uは、V相ターン部841V及びW相ターン部841Wと軸方向に重ならない部分を多く有している。このため、U相ターン部841Uが他のターン部841と軸方向に重なっている場合に比べて、空気との接触面積をより大きく確保できるとともに、近傍における回転子40の回転により発生した風の通りも良くなるため、U相ターン部841Uにおける空気中への放熱を促進できる。また、V相ターン部841VやW相ターン部841Wにおいても、U相ターン部841Uと同様に空気中への放熱を促進できる。したがって、ターン部841における異常な温度上昇を抑制して回転電機10の適正な性能を発揮させやすい。特に、ターン部841のうち、最も熱のこもりやすい最内層に位置しているU相ターン部841Uにおける空気中への放熱を促進することは、回転電機10を適正に動作させる上で非常に重要である。 According to the above-described embodiment, the radially projecting amount of the U-phase turn portion 841U as the innermost turn portion is the radially projecting amount of the V-phase turn portion 841V and the W-phase turn portion 841W as the outer layer turn portion. The projection amount is different from that of FIG. In other words, the U-phase turn portion 841U has many portions that do not axially overlap the V-phase turn portion 841V and the W-phase turn portion 841W. Therefore, as compared with the case where the U-phase turn portion 841U overlaps the other turn portion 841 in the axial direction, a larger contact area with the air can be ensured, and the wind generated by the rotation of the rotor 40 in the vicinity can be secured. Since the passage is improved, the heat radiation into the air in the U-phase turn portion 841U can be promoted. Also, in the V-phase turn portion 841V and the W-phase turn portion 841W, the heat radiation to the air can be promoted in the same manner as the U-phase turn portion 841U. Therefore, it is easy to suppress an abnormal temperature rise in the turn portion 841 and to exert appropriate performance of the rotating electric machine 10. In particular, it is very important for the rotary electric machine 10 to operate properly that the heat radiation into the air in the U-phase turn part 841U located in the innermost layer where the heat is most likely to be stored among the turn parts 841 is very important. It is.
 U相ターン部841Uは、第2U相ターン部841U2などの小ターン部と第3U相ターン部841U3などの大ターン部との間に空隙を備えている。このため、U相ターン部841Uの周囲を流れる空気とU相ターン部841Uとの接触面積を大きく確保することができる。したがって、U相ターン部841Uにおける放熱性能を高めることができる。また、V相ターン部841VやW相ターン部841Wにおいても、U相ターン部841Uと同様に空隙を設けることで空気中への放熱を促進できる。 The U-phase turn portion 841U has a gap between a small turn portion such as the second U-phase turn portion 841U2 and a large turn portion such as the third U-phase turn portion 841U3. Therefore, a large contact area between the air flowing around the U-phase turn portion 841U and the U-phase turn portion 841U can be ensured. Therefore, the heat radiation performance of the U-phase turn portion 841U can be improved. Further, also in the V-phase turn portion 841V and the W-phase turn portion 841W, heat radiation into the air can be promoted by providing a gap similarly to the U-phase turn portion 841U.
 最内層ターン部であるU相ターン部841Uにおける空隙は、外層ターン部であるV相ターン部841V及びW相ターン部841Wにおける空隙よりも大きい。このため、最も熱のこもりやすい最内層に位置しているU相ターン部841Uにおける放熱性能を高めて、U相固定子巻線51Uにおける温度が他の固定子巻線51の温度に比べて、高くなり過ぎることを防止しやすい。 空 A gap in the U-phase turn portion 841U as the innermost turn portion is larger than a gap in the V-phase turn portion 841V and the W-phase turn portion 841W as the outer layer turn portions. For this reason, the heat radiation performance in the U-phase turn portion 841U located in the innermost layer where the heat is most likely to be stored is increased, and the temperature in the U-phase stator winding 51U is higher than the temperatures in the other stator windings 51. It is easy to prevent it from becoming too high.
 小ターン部である第2V相ターン部841V2の角部841eにおける曲率半径Raは、大ターン部である第3V相ターン部841V3の角部841eにおける曲率半径Rbよりも大きい。このため、V相ターン部841Vにおいて、第2V相ターン部841V2と第3V相ターン部841V3との間に空隙を形成しやすい。すなわち、複数の導線82を折り曲げて構成されているターン部841において、導線82を無理なくターンさせられるとともに、角部841eに過度な負荷が加わることを抑制して、適正にターンした状態を維持しやすい。 The radius of curvature Ra at the corner 841e of the second V-phase turn portion 841V2, which is a small turn portion, is larger than the radius of curvature Rb at the corner portion 841e of the third V-phase turn portion 841V3, which is a large turn portion. Therefore, in the V-phase turn portion 841V, a gap is easily formed between the second V-phase turn portion 841V2 and the third V-phase turn portion 841V3. That is, in the turn portion 841 configured by bending the plurality of conducting wires 82, the conducting wire 82 can be turned without difficulty, and an excessive load is suppressed from being applied to the corner portion 841e, and the properly turned state is maintained. It's easy to do.
 軸方向の両側に設けられているターン部84のうち、一方のみが放熱促進ターン部841である。言い換えると、軸方向の両側に設けられたターン部84は、互いに非対称な形状である。このため、ターン部84の両側を放熱促進ターン部841とする場合に比べて、固定子50の向きを認識しやすい。したがって、回転電機10を構成する各部品を組み付ける際に、部品の向きを誤って組み付けてしまうことを防止しやすい。また、固定子巻線51の設計自由度を高く確保することができる。 Only one of the turn portions 84 provided on both sides in the axial direction is the heat radiation promoting turn portion 841. In other words, the turn portions 84 provided on both sides in the axial direction have asymmetric shapes. For this reason, the orientation of the stator 50 can be more easily recognized as compared with the case where both sides of the turn portion 84 are the heat dissipation promoting turn portions 841. Therefore, when assembling the components constituting the rotating electric machine 10, it is easy to prevent the components from being erroneously assembled in the correct orientation. In addition, a high degree of freedom in designing the stator winding 51 can be ensured.
 放熱促進ターン部841は、固定子コア52の軸方向両側のターン部84のうち、ケーシング部64において固定子コア52よりも軸方向外側となる部分の延出高さが小さい側のターン部841に設けられている。このため、ケーシング部64によって空気の流れが阻害されにくいターン部841において、放熱を促進できる。したがって、同種の放熱促進ターン部841を、ターン部841とは反対側のターン部846側に設けた場合に比べて、より大きな放熱促進効果を得やすい。 The heat dissipation promoting turn portion 841 is a turn portion 841 on the side where the extension height of a portion of the casing portion 64 that is axially outside the stator core 52 in the turn portions 84 on both axial sides of the stator core 52 is smaller. It is provided in. For this reason, the heat radiation can be promoted in the turn portion 841 in which the flow of the air is hardly hindered by the casing portion 64. Therefore, a greater heat dissipation promoting effect can be easily obtained than when the same type of heat dissipation promoting turn portion 841 is provided on the turn portion 846 side opposite to the turn portion 841.
 U相固定子巻線51Uの抵抗値とV相固定子巻線51Vの抵抗値とW相固定子巻線51Wの抵抗値とが、互いに等しい大きさである。すなわち、異相の固定子巻線51同士の導体長及び太さが互いに等しい長さである。このため、異相の固定子巻線51同士の抵抗値を互いに揃えて、導線82に通電をした場合における異相の固定子巻線51同士の発熱量を同程度とすることができる。したがって、特定の固定子巻線51の発熱量のみが異常に大きく、固定子巻線51の特定部位が異常な高温になることを抑制しやすい。 (4) The resistance value of the U-phase stator winding 51U, the resistance value of the V-phase stator winding 51V, and the resistance value of the W-phase stator winding 51W are equal to each other. That is, the conductor lengths and the thicknesses of the different-phase stator windings 51 are equal to each other. For this reason, the resistance values of the different-phase stator windings 51 can be made equal to each other, and the amount of heat generated between the different-phase stator windings 51 when the conducting wire 82 is energized can be made equal. Therefore, only the heat value of the specific stator winding 51 is abnormally large, and it is easy to suppress that the specific portion of the stator winding 51 becomes abnormally high in temperature.
 最内層ターン部であるU相ターン部841Uにおける径方向への最内層最大突出量LUは、V相ターン部841Vにおける径方向への中層最大突出量LV及びW相ターン部841Wにおける径方向への最外層最大突出量LWよりも大きい。このため、U相ターン部841Uにおける頂部841bだけでなく、傾斜部841aでも放熱を促進できる。したがって、最も熱のこもりやすい最内層に位置しているU相ターン部841Uにおける放熱性能を高めやすい。 The innermost layer maximum protrusion amount LU in the radial direction of the U-phase turn portion 841U, which is the innermost turn portion, is determined by the radially intermediate maximum layer protrusion amount LV of the V-phase turn portion 841V and the radial direction of the W-phase turn portion 841W. It is larger than the outermost layer maximum protrusion amount LW. Therefore, heat dissipation can be promoted not only at the top portion 841b of the U-phase turn portion 841U but also at the inclined portion 841a. Therefore, the heat radiation performance of the U-phase turn portion 841U located in the innermost layer where heat is most likely to be stored is easily increased.
 V相ターン部841Vにおける径方向への中層最大突出量LVは、W相ターン部841Wにおける径方向への最外層最大突出量LWよりも大きい。さらに、U相ターン部841Uにおける径方向への最内層最大突出量LUは、V相ターン部841Vにおける径方向への中層最大突出量LVよりも大きい。言い換えると、熱のこもりやすい順に放熱促進ターン部841の径方向への突出量を大きく設定している。このため、熱のこもりやすい軸方向内側に位置している固定子巻線51ほど、放熱促進ターン部841での放熱性能を向上させることで、固定子巻線51全体において部位ごとの温度差が大きくなり過ぎることを抑制できる。 の 中 The radially-directed maximum layer protrusion amount LV in the V-phase turn portion 841V is larger than the radially outermost layer maximum protrusion amount LW in the W-phase turn portion 841W. Furthermore, the radially innermost layer maximum protrusion amount LU of the U-phase turn portion 841U is larger than the radially middle layer maximum protrusion amount LV of the V-phase turn portion 841V. In other words, the radially protruding amount of the heat radiation promoting turn portion 841 is set to be larger in the order in which heat is more likely to accumulate. For this reason, by improving the heat radiation performance of the heat radiation promotion turn part 841 as the stator winding 51 is located on the axially inner side where the heat is easily stored, the temperature difference of each part in the entire stator winding 51 is reduced. It can be suppressed from becoming too large.
 放熱促進ターン部841をなすU相ターン部841Uにおける最内層最大突出量LUは、固定子コア52の厚さ寸法よりも大きい。このため、U相ターン部841Uの軸方向内側において固定子コア52が位置することによって空気が流れにくくなることを抑制できる。したがって、U相ターン部841Uの軸方向外側と軸方向内側との両面において積極的に空気が流れる構成としやすい。よって、U相ターン部841Uにおける放熱性能を高めやすい。 U The innermost layer maximum protrusion amount LU in the U-phase turn portion 841U forming the heat dissipation promotion turn portion 841 is larger than the thickness dimension of the stator core 52. For this reason, it becomes possible to prevent the air from becoming difficult to flow due to the stator core 52 being positioned inside the U-phase turn portion 841U in the axial direction. Therefore, it is easy to have a configuration in which air actively flows on both the axially outer side and the axially inner side of the U-phase turn portion 841U. Therefore, it is easy to enhance the heat radiation performance in the U-phase turn portion 841U.
 U相ターン部841Uにおいて、第2U相ターン部841U2と第3U相ターン部841U3との間以外に空隙を形成してもよい。例えば、第1U相ターン部841U1と第2U相ターン部841U2との間に空隙を形成してもよい。さらに、第3U相ターン部841U3と第4U相ターン部841U4との間に空隙を形成するなどしてU相ターン部841Uに複数の空隙を形成してもよい。これによると、U相ターン部841Uにおける空隙の数を多く確保できる。すなわち、サイズの大きな1つの空隙を形成するかわりに、サイズの小さな3つの空隙を形成することでU相ターン部841Uにおける空隙の大きさを大きく確保することができる。したがって、U相ターン部841Uにおける放熱性能を高めることができる。ここで、空隙を複数形成することは、U相ターン部841U以外のターン部841にも適用可能である。 In the U-phase turn portion 841U, a gap may be formed other than between the second U-phase turn portion 841U2 and the third U-phase turn portion 841U3. For example, a gap may be formed between the first U-phase turn part 841U1 and the second U-phase turn part 841U2. Further, a plurality of gaps may be formed in the U-phase turn section 841U by forming a gap between the third U-phase turn section 841U3 and the fourth U-phase turn section 841U4. According to this, it is possible to secure a large number of gaps in the U-phase turn portion 841U. That is, instead of forming one large-sized gap, three small-sized gaps can be formed, so that a large gap can be secured in the U-phase turn portion 841U. Therefore, the heat radiation performance of the U-phase turn portion 841U can be improved. Here, forming a plurality of voids is applicable to the turn portions 841 other than the U-phase turn portion 841U.
 上述した固定子50の詳細構造は、第1実施形態のみならず、全ての実施形態において適用可能な構成である。 詳細 The detailed structure of the stator 50 described above is a configuration applicable not only to the first embodiment but also to all embodiments.
 以下に、他の実施形態を第1実施形態との相違点を中心に説明する。 Hereinafter, another embodiment will be described focusing on differences from the first embodiment.
 (第2実施形態)
 本実施形態では、回転子40における磁石部42の極異方構造を変更しており、以下に詳しく説明する。
(2nd Embodiment)
In the present embodiment, the pole anisotropic structure of the magnet portion 42 in the rotor 40 is changed, and will be described in detail below.
 図22及び図23に示すように、磁石部42は、ハルバッハ配列と称される磁石配列を用いて構成されている。すなわち、磁石部42は、磁化方向(磁極の向き)を径方向とする第1磁石131と、磁化方向(磁極の向き)を周方向とする第2磁石132とを有しており、周方向に所定間隔で第1磁石131が配置されるとともに、周方向において隣り合う第1磁石131の間となる位置に第2磁石132が配置されている。第1磁石131及び第2磁石132は、例えばネオジム磁石等の希土類磁石からなる永久磁石である。 及 び As shown in FIGS. 22 and 23, the magnet unit 42 is configured using a magnet array called a Halbach array. That is, the magnet part 42 has the first magnet 131 whose magnetization direction (direction of the magnetic pole) is the radial direction, and the second magnet 132 whose magnetization direction (the direction of the magnetic pole) is the circumferential direction. The first magnets 131 are arranged at predetermined intervals, and the second magnets 132 are arranged at positions between the adjacent first magnets 131 in the circumferential direction. The first magnet 131 and the second magnet 132 are permanent magnets made of a rare earth magnet such as a neodymium magnet.
 第1磁石131は、固定子50に対向する側(径方向内側)の極が交互にN極、S極となるように周方向に互いに離間して配置されている。また、第2磁石132は、各第1磁石131の隣において周方向の磁極の向きが交互に逆向きとなるように配置されている。 The first magnets 131 are circumferentially separated from each other such that the poles on the side facing the stator 50 (inside in the radial direction) alternately become N poles and S poles. The second magnets 132 are arranged so that the magnetic poles in the circumferential direction are alternately opposite to each other next to the first magnets 131.
 また、第1磁石131の径方向外側、すなわち回転子本体41の磁石保持部43の側には、軟磁性材料よりなる磁性体133が配置されている。例えば磁性体133は、電磁鋼板や軟鉄、圧粉鉄心材料により構成されているとよい。この場合、磁性体133の周方向の長さは第1磁石131の周方向の長さ(特に第1磁石131の外周部の周方向の長さ)と同じである。また、第1磁石131と磁性体133とを一体化した状態でのその一体物の径方向の厚さは、第2磁石132の径方向の厚さと同じである。換言すれば、第1磁石131は第2磁石132よりも磁性体133の分だけ径方向の厚さが薄くなっている。各磁石131,132と磁性体133とは、例えば接着剤により相互に固着されている。磁石部42において第1磁石131の径方向外側は、固定子50とは反対側であり、磁性体133は、径方向における第1磁石131の両側のうち、固定子50とは反対側(反固定子側)に設けられている。 磁性 Further, a magnetic body 133 made of a soft magnetic material is disposed radially outside the first magnet 131, that is, on the side of the magnet holding portion 43 of the rotor main body 41. For example, the magnetic body 133 may be made of an electromagnetic steel sheet, soft iron, or a powdered iron core material. In this case, the circumferential length of the magnetic body 133 is the same as the circumferential length of the first magnet 131 (in particular, the circumferential length of the outer peripheral portion of the first magnet 131). Further, the radial thickness of the integrated body in a state where the first magnet 131 and the magnetic body 133 are integrated is the same as the radial thickness of the second magnet 132. In other words, the thickness of the first magnet 131 in the radial direction is smaller than that of the second magnet 132 by the amount of the magnetic body 133. The magnets 131 and 132 and the magnetic body 133 are fixed to each other by, for example, an adhesive. The outer side of the first magnet 131 in the magnet portion 42 in the radial direction is on the opposite side to the stator 50, and the magnetic body 133 is located on the opposite side of the first magnet 131 in the radial direction (opposite to the stator 50). On the stator side).
 磁性体133の外周部には、径方向外側、すなわち回転子本体41の磁石保持部43の側に突出する凸部としてのキー134が形成されている。また、磁石保持部43の内周面には、磁性体133のキー134を収容する凹部としてのキー溝135が形成されている。キー134の突出形状とキー溝135の溝形状とは同じであり、各磁性体133に形成されたキー134に対応して、キー134と同数のキー溝135が形成されている。キー134及びキー溝135の係合により、第1磁石131及び第2磁石132と回転子本体41との周方向(回転方向)の位置ずれが抑制されている。なお、キー134及びキー溝135(凸部及び凹部)を、回転子本体41の磁石保持部43及び磁性体133のいずれに設けるかは任意でよく、上記とは逆に、磁性体133の外周部にキー溝135を設けるとともに、回転子本体41の磁石保持部43の内周部にキー134を設けることも可能である。 キ ー A key 134 is formed on the outer periphery of the magnetic body 133 as a protrusion projecting radially outward, that is, toward the magnet holding portion 43 of the rotor main body 41. Further, a key groove 135 is formed on the inner peripheral surface of the magnet holding portion 43 as a recess for accommodating the key 134 of the magnetic body 133. The protruding shape of the key 134 and the groove shape of the key groove 135 are the same, and the same number of key grooves 135 as the keys 134 are formed corresponding to the keys 134 formed on each magnetic body 133. By the engagement of the key 134 and the key groove 135, the positional displacement of the first magnet 131 and the second magnet 132 and the rotor main body 41 in the circumferential direction (rotation direction) is suppressed. The key 134 and the key groove 135 (the convex portion and the concave portion) may be provided in any of the magnet holding portion 43 and the magnetic body 133 of the rotor main body 41, and conversely, the outer periphery of the magnetic body 133 may be provided. It is also possible to provide a key groove 135 in the portion and to provide a key 134 in the inner peripheral portion of the magnet holding portion 43 of the rotor main body 41.
 ここで、磁石部42では、第1磁石131と第2磁石132とを交互に配列することにより、第1磁石131での磁束密度を大きくすることが可能となっている。そのため、磁石部42において、磁束の片面集中を生じさせ、固定子50寄りの側での磁束強化を図ることができる。 Here, in the magnet unit 42, the magnetic flux density in the first magnet 131 can be increased by alternately arranging the first magnets 131 and the second magnets 132. Therefore, in the magnet section 42, the magnetic flux is concentrated on one side, and the magnetic flux on the side closer to the stator 50 can be enhanced.
 また、第1磁石131の径方向外側、すなわち反固定子側に磁性体133を配置したことにより、第1磁石131の径方向外側での部分的な磁気飽和を抑制でき、ひいては磁気飽和に起因して生じる第1磁石131の減磁を抑制できる。これにより、結果的に磁石部42の磁力を増加させることが可能となっている。本実施形態の磁石部42は、言うなれば、第1磁石131において減磁が生じ易い部分を磁性体133に置き換えた構成となっている。 Further, by arranging the magnetic body 133 radially outside the first magnet 131, that is, on the side opposite to the stator, it is possible to suppress partial magnetic saturation outside the first magnet 131 in the radial direction, and as a result, magnetic saturation occurs. The demagnetization of the first magnet 131 generated as a result can be suppressed. As a result, it is possible to increase the magnetic force of the magnet part 42. In other words, the magnet section 42 of the present embodiment has a configuration in which a portion of the first magnet 131 where demagnetization easily occurs is replaced with a magnetic body 133.
 図24は、磁石部42における磁束の流れを具体的に示す図であり、(a)は、磁石部42において磁性体133を有していない従来構成を用いた場合を示し、(b)は、磁石部42において磁性体133を有している本実施形態の構成を用いた場合を示している。なお、図24では、回転子本体41の磁石保持部43及び磁石部42を直線状に展開して示しており、図の下側が固定子側、上側が反固定子側となっている。 FIGS. 24A and 24B are diagrams specifically showing the flow of the magnetic flux in the magnet unit 42. FIG. 24A shows a case where a conventional configuration having no magnetic body 133 in the magnet unit 42 is used, and FIG. The case where the configuration of the present embodiment having the magnetic body 133 in the magnet section 42 is used is shown. In FIG. 24, the magnet holding portion 43 and the magnet portion 42 of the rotor main body 41 are linearly developed, and the lower side of the figure is the stator side and the upper side is the non-stator side.
 図24(a)の構成では、第1磁石131の磁極面と第2磁石132の側面とが、それぞれ磁石保持部43の内周面に接触している。また、第2磁石132の磁極面が第1磁石131の側面に接触している。この場合、磁石保持部43には、第2磁石132の外側経路を通って第1磁石131との接触面に入る磁束F1と、磁石保持部43と略平行で、かつ第2磁石132の磁束F2を引きつける磁束との合成磁束が生じる。そのため、磁石保持部43において第1磁石131と第2磁石132との接触面付近において、部分的に磁気飽和が生じることが懸念される。 In the configuration of FIG. 24A, the magnetic pole surface of the first magnet 131 and the side surface of the second magnet 132 are in contact with the inner peripheral surface of the magnet holder 43, respectively. Further, the magnetic pole surface of the second magnet 132 is in contact with the side surface of the first magnet 131. In this case, the magnetic flux F <b> 1 entering the contact surface with the first magnet 131 through the outer path of the second magnet 132 and the magnetic flux F <b> 1 substantially parallel to the magnet A composite magnetic flux is generated with the magnetic flux that attracts F2. Therefore, there is a concern that magnetic saturation may partially occur near the contact surface between the first magnet 131 and the second magnet 132 in the magnet holding unit 43.
 これに対し、図24(b)の構成では、第1磁石131の反固定子側において第1磁石131の磁極面と磁石保持部43の内周面との間に磁性体133が設けられているため、その磁性体133で磁束の通過が許容される。したがって、磁石保持部43での磁気飽和を抑制でき、減磁に対する耐力が向上する。 On the other hand, in the configuration of FIG. 24B, the magnetic body 133 is provided between the magnetic pole surface of the first magnet 131 and the inner peripheral surface of the magnet holding portion 43 on the side opposite to the stator of the first magnet 131. Therefore, the passage of magnetic flux through the magnetic body 133 is allowed. Therefore, magnetic saturation in the magnet holding portion 43 can be suppressed, and the proof strength against demagnetization is improved.
 また、図24(b)の構成では、図24(a)とは異なり、磁気飽和を促すF2を消すことができる。これにより、磁気回路全体のパーミアンスを効果的に向上させることができる。このように構成することで、その磁気回路特性を、過酷な高熱条件下でも保つことができる。 Furthermore, in the configuration of FIG. 24B, unlike FIG. 24A, F2 that promotes magnetic saturation can be eliminated. Thereby, the permeance of the entire magnetic circuit can be effectively improved. With this configuration, the magnetic circuit characteristics can be maintained even under severe high-temperature conditions.
 また、従来のSPMロータにおけるラジアル磁石と比べて、磁石内部を通る磁石磁路が長くなる。そのため、磁石パーミアンスが上昇し、磁力を上げ、トルクを増強することができる。さらに、磁束がd軸の中央に集まることにより、正弦波整合率を高くすることができる。特に、PWM制御により、電流波形を正弦波や台形波とする、又は120度通電のスイッチングICを利用すると、より効果的にトルクを増強することができる。 磁石 In addition, compared to the radial magnet in the conventional SPM rotor, the magnet magnetic path passing inside the magnet is longer. Therefore, the magnet permeance increases, the magnetic force can be increased, and the torque can be increased. Further, since the magnetic flux is concentrated at the center of the d-axis, the sine wave matching ratio can be increased. In particular, when the current waveform is changed to a sine wave or a trapezoidal wave by the PWM control, or a switching IC with 120-degree conduction is used, the torque can be more effectively increased.
 (他の実施形態)
 上記実施形態を例えば次のように変更してもよい。
(Other embodiments)
The above embodiment may be changed as follows, for example.
 ・上記実施形態では、固定子コア52の外周面を凹凸のない曲面状とし、その外周面に所定間隔で複数の導線群81を並べて配置する構成としたが、これを変更してもよい。例えば、図25に示すように、固定子コア52は、固定子巻線51の径方向両側のうち回転子とは反対側(図の下側)に設けられた円環状のヨーク部141と、そのヨーク部141から、周方向に隣り合う直線部83の間に向かって突出するように延びる突起部142とを有している。突起部142は、ヨーク部141の径方向外側、すなわち回転子40側に所定間隔で設けられている。固定子巻線51の各導線群81は、突起部142と周方向において係合しており、突起部142を位置決め部として用いつつ周方向に並べて配置されている。なお、突起部142が「巻線間部材」に相当する。突起部142は、導線間部材を提供する。 (4) In the above embodiment, the outer peripheral surface of the stator core 52 is formed into a curved surface without irregularities, and the plurality of conductor groups 81 are arranged at predetermined intervals on the outer peripheral surface. However, this may be changed. For example, as shown in FIG. 25, the stator core 52 includes an annular yoke portion 141 provided on the opposite side (lower side in the figure) to the rotor among the radially opposite sides of the stator winding 51, A projection 142 extends from the yoke 141 so as to project between the linear portions 83 adjacent in the circumferential direction. The protrusions 142 are provided at predetermined intervals on a radially outer side of the yoke 141, that is, on the rotor 40 side. Each conductive wire group 81 of the stator winding 51 is engaged with the protrusion 142 in the circumferential direction, and is arranged side by side in the circumferential direction while using the protrusion 142 as a positioning portion. The protrusion 142 corresponds to an “inter-winding member”. The protrusion 142 provides an inter-wire member.
 突起部142は、ヨーク部141からの径方向の厚さ寸法が、径方向内外の複数層の直線部83のうち、ヨーク部141に径方向に隣接する直線部83の径方向の厚さ寸法の1/2(図のH1)よりも小さい構成となっている。こうした突起部142の厚さ制限により、周方向に隣り合う導線群81(すなわち直線部83)の間において突起部142がティースとして機能せず、ティースによる磁路形成がなされないようになっている。突起部142は、周方向に並ぶ各導線群81の間ごとに全て設けられていなくてもよく、周方向に隣り合う少なくとも1組の導線群81の間に設けられていればよい。突起部142の形状は、矩形状、円弧状など任意の形状でよい。 The protrusion 142 has a thickness in the radial direction from the yoke 141, which is a radial thickness of the linear part 83 radially adjacent to the yoke 141, of the linear parts 83 in a plurality of layers inside and outside the radial direction. (H1 in the figure). Due to the thickness limitation of the protrusions 142, the protrusions 142 do not function as teeth between the conductive wire groups 81 (that is, the linear portions 83) that are adjacent in the circumferential direction, and no magnetic path is formed by the teeth. . The protrusions 142 may not be provided entirely between the conductor groups 81 arranged in the circumferential direction, but may be provided between at least one set of conductor groups 81 adjacent in the circumferential direction. The shape of the protrusion 142 may be an arbitrary shape such as a rectangular shape or an arc shape.
 また、固定子コア52の外周面では、直線部83が一層で設けられていてもよい。したがって、広義には、突起部142におけるヨーク部141からの径方向の厚さ寸法は、直線部83における径方向の厚さ寸法の1/2よりも小さいものであればよい。 直線 Further, on the outer peripheral surface of the stator core 52, a single linear portion 83 may be provided. Therefore, in a broad sense, the thickness of the projection 142 in the radial direction from the yoke 141 may be smaller than half the thickness of the straight portion 83 in the radial direction.
 なお、回転軸11の軸心を中心とし、かつヨーク部141に径方向に隣接する直線部83の径方向の中心位置を通る仮想円を想定すると、突起部142は、その仮想円の範囲内においてヨーク部141から突出する形状、換言すれば仮想円よりも径方向外側(すなわち回転子40側)に突出しない形状をなしているとよい。 Assuming a virtual circle centered on the axis of the rotating shaft 11 and passing through the radial center of the linear portion 83 radially adjacent to the yoke portion 141, the protrusion 142 is within the range of the virtual circle. In this case, it is preferable to form a shape that protrudes from the yoke portion 141, in other words, a shape that does not protrude radially outward from the virtual circle (ie, toward the rotor 40).
 上記構成によれば、突起部142は、径方向の厚さ寸法が制限されており、周方向に隣り合う直線部83の間においてティースとして機能するものでないため、各直線部83の間にティースが設けられている場合に比べて、隣り合う各直線部83を近づけることができる。これにより、導体断面積を大きくすることができ、固定子巻線51の通電に伴い生じる発熱を低減することができる。かかる構成では、ティースがないことで磁気飽和の解消が可能となり、固定子巻線51への通電電流を増大させることが可能となる。この場合において、その通電電流の増大に伴い発熱量が増えることに好適に対処することができる。また、固定子巻線51では、ターン部84が、径方向にシフトされ、他のターン部84との干渉を回避する干渉回避部を有することから、異なるターン部84同士を径方向に離して配置することができる。これにより、ターン部84においても放熱性の向上を図ることができる。以上により、固定子50での放熱性能を適正化することが可能になっている。 According to the above configuration, the thickness of the protrusion 142 in the radial direction is limited and does not function as a tooth between the linear portions 83 adjacent in the circumferential direction. Is provided, adjacent linear portions 83 can be brought closer to each other. Thereby, the conductor cross-sectional area can be increased, and the heat generated due to the energization of the stator winding 51 can be reduced. In such a configuration, magnetic saturation can be eliminated by the absence of teeth, and the current flowing through the stator winding 51 can be increased. In this case, it is possible to suitably cope with an increase in the amount of heat generated with an increase in the supplied current. Further, in the stator winding 51, since the turn portion 84 is shifted in the radial direction and has an interference avoiding portion that avoids interference with another turn portion 84, the different turn portions 84 are separated from each other in the radial direction. Can be arranged. Thereby, the heat radiation of the turn portion 84 can be improved. As described above, it is possible to optimize the heat radiation performance of the stator 50.
 また、固定子コア52のヨーク部141と、回転子40の磁石部42(すなわち各磁石91,92)とが所定距離以上離れていれば、突起部142の径方向の厚さ寸法は、図25のH1に縛られるものではない。具体的には、ヨーク部141と磁石部42とが2mm以上離れていれば、突起部142の径方向の厚さ寸法は、図25のH1以上であってもよい。例えば、直線部83の径方向厚み寸法が2mmを越えており、かつ導線群81が径方向内外の2層の導線82により構成されている場合に、ヨーク部141に隣接していない直線部83、すなわちヨーク部141から数えて2層目の導線82の半分位置までの範囲で、突起部142が設けられていてもよい。この場合、突起部142の径方向厚さ寸法が「H1×3/2」までになっていれば、導線群81における導体断面積を大きくすることで、前述の効果を少なからず得ることはできる。 If the yoke 141 of the stator core 52 and the magnets 42 of the rotor 40 (that is, the magnets 91 and 92) are separated by a predetermined distance or more, the radial thickness of the protrusion 142 is It is not tied to 25 H1. Specifically, if the yoke 141 and the magnet 42 are separated by 2 mm or more, the radial thickness of the protrusion 142 may be H1 or more in FIG. For example, when the thickness of the straight portion 83 in the radial direction exceeds 2 mm and the conductor group 81 is constituted by two layers of conductors 82 inside and outside in the radial direction, the straight portion 83 not adjacent to the yoke portion 141 That is, the protrusion 142 may be provided in a range from the yoke 141 to half the position of the second-layer conductive wire 82 counted. In this case, if the radial thickness of the protrusion 142 is up to “H1 × 3/2”, the above-described effect can be obtained to a considerable extent by increasing the conductor cross-sectional area in the conductor group 81. .
 また、固定子コア52は、図26に示す構成であってもよい。なお、図26では、封止部57を省略しているが、封止部57が設けられていてもよい。図26では、便宜上、磁石部42及び固定子コア52を直線状に展開して示している。 The stator core 52 may have the configuration shown in FIG. Although the sealing portion 57 is omitted in FIG. 26, the sealing portion 57 may be provided. In FIG. 26, for convenience, the magnet part 42 and the stator core 52 are linearly developed and shown.
 図26の構成では、固定子50は、周方向に隣接する導線82(すなわち直線部83)の間に、巻線間部材としての突起部142を有している。ここで、磁石部42の1極分の範囲において固定子巻線51の通電により励磁される突起部142の周方向の幅寸法をWt、突起部142の飽和磁束密度をBs、磁石部42の1極分の周方向の幅寸法をWm、磁石部42の残留磁束密度をBrとする場合、突起部142は、Wt×Bs≦Wm×Br 
  …(1)
となる磁性材料により構成されている。
In the configuration of FIG. 26, the stator 50 has a protrusion 142 as an inter-winding member between the conductors 82 (that is, the straight portions 83) adjacent in the circumferential direction. Here, in the range of one pole of the magnet part 42, the circumferential width of the protrusion 142 which is excited by energization of the stator winding 51 is Wt, the saturation magnetic flux density of the protrusion 142 is Bs, When the circumferential width of one pole is Wm and the residual magnetic flux density of the magnet part 42 is Br, the protrusion 142 is formed by Wt × Bs ≦ Wm × Br
… (1)
And a magnetic material.
 詳しくは、本実施形態では、固定子巻線51の3相巻線が分布巻であり、その固定子巻線51では、磁石部42の1極に対して、突起部142の数、すなわち各導線群81の間となる間隙56の数が「3×m」個となっている。なお、mは導線82の対数である。この場合、固定子巻線51が各相所定順序で通電されると、1極内において2相分の突起部142が励磁される。したがって、磁石部42の1極分の範囲において固定子巻線51の通電により励磁される突起部142の周方向の幅寸法Wtは、突起部142(つまり、間隙56)の周方向の幅寸法をAとすると、「2×A×m」となる。そして、こうして幅寸法Wtが規定された上で、固定子コア52において、突起部142が、上記(1)の関係を満たす磁性材料として構成されている。なお、幅寸法Wtは、1極内において比透磁率が1よりも大きくなりえる部分の周方向寸法でもある。 More specifically, in the present embodiment, the three-phase winding of the stator winding 51 is a distributed winding, and in the stator winding 51, the number of protrusions 142, The number of the gaps 56 between the conductive wire groups 81 is “3 × m”. Here, m is the logarithm of the conductor 82. In this case, when the stator winding 51 is energized in a predetermined order for each phase, the projections 142 for two phases are excited within one pole. Therefore, in the range of one pole of the magnet portion 42, the circumferential width Wt of the protrusion 142 that is excited by the conduction of the stator winding 51 is equal to the circumferential width of the protrusion 142 (that is, the gap 56). Is A, “2 × A × m” is obtained. After the width Wt is defined in this way, the protrusions 142 of the stator core 52 are formed of a magnetic material satisfying the above-described relationship (1). Note that the width dimension Wt is also a circumferential dimension of a portion where relative magnetic permeability can be larger than 1 in one pole.
 なお、固定子巻線51を集中巻とする場合には、固定子巻線51において、磁石部42の1極対(つまり2極)に対して、突起部142の数、すなわち各導線群81の間となる間隙56の数が「3×m」個となっている。この場合、固定子巻線51が各相所定順序で通電されると、1極内において1相分の突起部142が励磁される。したがって、磁石部42の1極分の範囲において固定子巻線51の通電により励磁される突起部142の周方向の幅寸法Wtは、「A×m」となる。そして、こうして幅寸法Wtが規定された上で、突起部142が、上記(1)の関係を満たす磁性材料として構成されている。 When the stator winding 51 is a concentrated winding, in the stator winding 51, the number of the protrusions 142, that is, each conductive wire group 81 is provided for one pole pair (that is, two poles) of the magnet portion 42. The number of gaps 56 between them is “3 × m”. In this case, when the stator winding 51 is energized in a predetermined order for each phase, the projections 142 for one phase are excited within one pole. Therefore, the width Wt in the circumferential direction of the protrusion 142 that is excited by energization of the stator winding 51 in the range of one pole of the magnet part 42 is “A × m”. After the width Wt is defined in this manner, the protrusion 142 is formed of a magnetic material satisfying the relationship (1).
 ちなみに、ネオジム磁石やサマリウムコバルト磁石、フェライト磁石といったBH積が20[MGOe(kJ/m^3)]以上の磁石ではBd=1.0強[T]、鉄ではBr=2.0強[T]である。そのため、高出力モータとしては、固定子コア52において、突起部142が、Wt<1/2×Wmの関係を満たす磁性材料であればよい。 Incidentally, magnets having a BH product of 20 [MGOe (kJ / m ^ 3)] or more, such as neodymium magnets, samarium cobalt magnets, and ferrite magnets, have Bd = 1.0 or more [T], and iron has Br = 2.0 or more [T]. ]. Therefore, as the high-output motor, the protrusion 142 in the stator core 52 may be a magnetic material that satisfies the relationship of Wt <1 / × Wm.
 ・上記実施形態では、固定子巻線51を覆う封止部57を、固定子コア52の径方向外側において各導線群81を全て含む範囲、すなわち径方向の厚さ寸法が各導線群81の径方向の厚さ寸法よりも大きくなる範囲で設ける構成としたが、これを変更してもよい。例えば、図27に示すように、封止部57を、導線82の一部がはみ出すように設ける構成とする。より具体的には、封止部57を、導線群81において最も径方向外側となる導線82の一部を径方向外側、すなわち固定子50側に露出させた状態で設ける構成とする。この場合、封止部57の径方向の厚さ寸法は、各導線群81の径方向の厚さ寸法と同じ、又はその厚さ寸法よりも小さいとよい。 In the above-described embodiment, the sealing portion 57 covering the stator winding 51 is provided in the range including all the conductor groups 81 on the radially outer side of the stator core 52, that is, the thickness dimension in the radial direction is equal to that of each conductor group 81. Although the configuration is provided in a range that is larger than the thickness dimension in the radial direction, the configuration may be changed. For example, as shown in FIG. 27, the sealing portion 57 is provided so that a part of the conductive wire 82 protrudes. More specifically, the sealing portion 57 is configured to be provided in a state in which a part of the conductor 82 that is the outermost in the radial direction in the conductor group 81 is exposed to the radial outside, that is, to the stator 50 side. In this case, the radial thickness of the sealing portion 57 is preferably the same as or smaller than the radial thickness of each conductive wire group 81.
 ・図28に示すように、各導線群81が封止部57により封止されていない構成としてもよい。つまり、固定子巻線51を覆う封止部57を用いない構成とする。この場合、周方向に並ぶ各導線群81の間は空隙となっている。周方向に並ぶ各導線群81の間を空隙とした構成は、固定子巻線51が導線群81のみで形成された構成であって、各導線群81の間に封止部57などの導線間部材を設けていない構成を提供する。 · As shown in FIG. 28, the configuration may be such that each conductive wire group 81 is not sealed by the sealing portion 57. That is, the configuration is such that the sealing portion 57 that covers the stator winding 51 is not used. In this case, there is a gap between the conductor groups 81 arranged in the circumferential direction. The configuration in which a gap is formed between the conductor groups 81 arranged in the circumferential direction is a configuration in which the stator winding 51 is formed only by the conductor group 81, and the conductor such as the sealing portion 57 is provided between the conductor groups 81. Provided is a configuration in which no intervening member is provided.
 ・固定子50が固定子コア52を具備していない構成としてもよい。この場合、固定子50は、図12に示す固定子巻線51により構成されることになる。なお、固定子コア52を具備していない固定子50において、固定子巻線51を封止材により封止する構成としてもよい。又は、固定子50が、軟磁性材からなる固定子コア52に代えて、合成樹脂等の非磁性材からなる円環状の巻線保持部を備える構成であってもよい。 The stator 50 may not have the stator core 52. In this case, the stator 50 is constituted by the stator winding 51 shown in FIG. In the stator 50 having no stator core 52, the stator winding 51 may be sealed with a sealing material. Alternatively, the stator 50 may include an annular winding holding portion made of a nonmagnetic material such as a synthetic resin, instead of the stator core 52 made of a soft magnetic material.
 ・固定子巻線51の導線群81において、径方向の内外に重なる各導線82の干渉を回避する構成として、図29(a)に示すように、n層目とn+1層目とでターン部84における導線シフトの向きを逆にする構成としてもよい。つまり、複数層の各直線部83に接続され、かつ径方向内外に重なる位置となる各ターン部84を、径方向の異なる方向に曲げる構成とする。これにより、やはり各ターン部84を好適に離して配置することができる。なお、本構成は、最も絶縁の厳しい部分に適用したり、複数層のうち最終層や開始層に用いたりすることが好ましい。 In the conductor group 81 of the stator winding 51, as shown in FIG. 29 (a), as a configuration for avoiding interference between the conductors 82 overlapping inward and outward in the radial direction, a turn portion is formed between the nth layer and the (n + 1) th layer. The configuration may be such that the direction of the wire shift at 84 is reversed. In other words, the turn portions 84 connected to the linear portions 83 of the plurality of layers and located at positions overlapping inward and outward in the radial direction are configured to be bent in different radial directions. Thus, the turn portions 84 can be suitably arranged to be separated from each other. Note that it is preferable that the present configuration is applied to a portion where insulation is strictest or is used as a final layer or a start layer among a plurality of layers.
 又は、図29(b)に示すように、n層目とn+1層目とで軸方向における導線シフト位置(図の上下方向の位置)を相違させる構成としてもよい。この場合、各層のターン部84での曲げアールが同じであっても、相互の干渉を抑制できる。 Alternatively, as shown in FIG. 29B, the n-th layer and the (n + 1) -th layer may have a configuration in which the conductive wire shift position in the axial direction (the vertical position in the drawing) is different. In this case, even if the bending radius at the turn portion 84 of each layer is the same, mutual interference can be suppressed.
 ・上記実施形態では、固定子巻線51において、回転軸11を中心とする同一のピッチ円上となる位置の直線部83同士をターン部84により接続し、そのターン部84が干渉回避部を備える構成としたが、これを変更してもよい。例えば、固定子巻線51において、回転軸11を中心とする異なるピッチ円上となる位置の直線部83同士、すなわち異なる層の直線部83同士をターン部84により接続する構成であってもよい。いずれにしろ、ターン部84が、径方向にシフトされ、他のターン部84との干渉を回避する干渉回避部を有する構成であればよい。 In the above embodiment, in the stator winding 51, the straight portions 83 at positions on the same pitch circle centered on the rotating shaft 11 are connected to each other by the turn portion 84, and the turn portion 84 serves as an interference avoiding portion. Although the configuration is provided, this may be changed. For example, in the stator winding 51, a configuration may be used in which the linear portions 83 at positions on different pitch circles around the rotation axis 11, that is, the linear portions 83 in different layers are connected by the turn portion 84. . In any case, any configuration may be used as long as the turn portion 84 is shifted in the radial direction and has an interference avoiding portion that avoids interference with another turn portion 84.
 ・図30(a)に示すように、固定子巻線51の導線群81において、各導線82の直線部83が、径方向(図の上下方向)に対向する一対の対向面同士が非平行となる状態で配置される構成としてもよい。なお、図30(a)では、各導線群81が封止部57により封止されている。本構成によれば、径方向に並ぶ各直線部83同士の間に、非発熱部としての封止材を介在させることができ、その非発熱部において、固定子巻線51の通電時に直線部83にて生じた熱を拡散させることができる。これにより、導線群81での放熱性能を高めることができる。 As shown in FIG. 30A, in the conductor group 81 of the stator winding 51, a pair of opposing surfaces of the straight portions 83 of the conductors 82 that face each other in the radial direction (vertical direction in the drawing) are non-parallel. It is good also as composition arranged in the state where it becomes. In FIG. 30A, each conductive wire group 81 is sealed by the sealing portion 57. According to this configuration, a sealing material as a non-heat generating portion can be interposed between the linear portions 83 arranged in the radial direction. The heat generated at 83 can be diffused. Thereby, the heat radiation performance of the conductor group 81 can be improved.
 また、周方向に隣り合う各直線部83の間にティースが介在していない構成になっていても、各導線群81における直線部83同士の間に好適に封止材を入り込ませ、ひいては各直線部83を良好に固定することができる。ただし、図30(a)の構成において、封止部57が設けられていない構成であってもよい。この場合には、径方向に並ぶ各直線部83同士の間に、非発熱部としての空隙を介在させることができ、やはり導線群81での放熱性能を高めることができる。 Further, even if the teeth are not interposed between the linear portions 83 adjacent in the circumferential direction, the sealing material is preferably inserted between the linear portions 83 in each of the conductive wire groups 81, and thus each The straight portion 83 can be fixed well. However, in the configuration of FIG. 30A, a configuration in which the sealing portion 57 is not provided may be employed. In this case, a gap as a non-heat generating portion can be interposed between the linear portions 83 arranged in the radial direction, and the heat radiation performance of the conductor group 81 can also be improved.
 ・図30(b)に示すように、固定子50の導線群81において、各導線82の直線部83を径方向内外4層に配置し、一対の対向面同士の隙間寸法が、周方向に大小異なり、かつ大きい側が径方向に並ぶ各隙間において交互に逆になる構成としてもよい。なお、図30(b)では、各導線群81が封止部57により封止されている。直線部83の層数は3層以上であればよい。本構成によれば、径方向に並ぶ各直線部83において熱の拡散を好適に行わせることができる。 -As shown in Fig. 30 (b), in the conductor group 81 of the stator 50, the linear portions 83 of the conductors 82 are arranged in four layers in the radially inner and outer layers, and the gap between the pair of opposing surfaces is changed in the circumferential direction. A configuration may be adopted in which the size is different and the larger side is alternately reversed in each of the gaps arranged in the radial direction. In FIG. 30B, each conductive wire group 81 is sealed by the sealing portion 57. The number of layers of the linear portion 83 may be three or more. According to this configuration, heat can be appropriately diffused in each of the linear portions 83 arranged in the radial direction.
 また、回転電機10の作動時に回転方向が正逆入れ替わって交番に掛かっても、各直線部83を保持する保持力を良好に得ることができる。 Also, even when the rotating direction is switched between forward and reverse during the operation of the rotating electric machine 10 and the motor rotates, the holding force for holding the linear portions 83 can be satisfactorily obtained.
 ・固定子巻線51において、導線82の直線部83を径方向に単層で設ける構成としてもよい。また、径方向内外に複数層で直線部83を配置する場合に、その層数は任意でよく、3層、4層、5層、6層等で設けてもよい。 (4) In the stator winding 51, the linear portion 83 of the conducting wire 82 may be provided in a single layer in the radial direction. When the linear portion 83 is arranged in a plurality of layers inside and outside in the radial direction, the number of the layers may be arbitrary, and three, four, five, six, or the like may be provided.
 ・上記実施形態では、回転軸11を、軸方向で回転電機10の一端側及び他端側の両方に突出するように設けたが、これを変更し、一端側にのみ突出する構成としてもよい。この場合、回転軸11は、軸受部20により片持ち支持される部分を端部とし、その軸方向外側に延びるように設けられるとよい。本構成では、インバータユニット60の内部に回転軸11が突出しない構成となるため、インバータユニット60の内部空間、詳しくは筒状部71の内部空間をより広く用いることができることとなる。 In the above-described embodiment, the rotating shaft 11 is provided so as to protrude at both the one end side and the other end side of the rotating electric machine 10 in the axial direction. However, the configuration may be modified so that the rotating shaft 11 protrudes only at one end side. . In this case, the rotating shaft 11 may be provided so as to extend from the portion supported by the bearing portion 20 in a cantilevered manner to the outside in the axial direction. In this configuration, since the rotation shaft 11 does not protrude into the inverter unit 60, the internal space of the inverter unit 60, more specifically, the internal space of the tubular portion 71 can be used more widely.
 ・回転軸11を回転自在に支持する構成として、回転子40の軸方向一端側及び他端側の2カ所に軸受を設ける構成としてもよい。この場合、図1の構成で言えば、インバータユニット60を挟んで一端側及び他端側の2カ所に軸受が設けられるとよい。 (4) As a configuration for rotatably supporting the rotating shaft 11, a configuration may be adopted in which bearings are provided at two locations on one end side and the other end side of the rotor 40 in the axial direction. In this case, in the configuration of FIG. 1, it is preferable that bearings are provided at two locations, one end side and the other end side, with the inverter unit 60 interposed therebetween.
 ・上記実施形態では、回転子40において回転子本体41の中間部45を、軸方向に段差を有する構成としたが、これを変更し、中間部45の段差を無くし、平板状としてもよい。 In the above embodiment, the intermediate portion 45 of the rotor main body 41 in the rotor 40 is configured to have a step in the axial direction. However, this may be changed to eliminate the step of the intermediate portion 45 and make the intermediate portion 45 flat.
 ・上記実施形態では、固定子巻線51の導線82において導体82aを複数の素線86の集合体として構成したが、これを変更し、導線82として断面矩形状の角形導線を用いる構成としてもよい。また、導線82として断面円形状又は断面楕円状の丸形導線を用いる構成としてもよい。 In the above embodiment, the conductor 82 a in the conductor 82 of the stator winding 51 is configured as an aggregate of a plurality of strands 86, but this configuration may be modified to use a rectangular conductor having a rectangular cross section as the conductor 82. Good. Further, a configuration may be used in which a round conductor having a circular cross section or an elliptical cross section is used as the conductor 82.
 ・上記実施形態では、固定子50の径方向内側にインバータユニット60を設ける構成としたが、これに代えて、固定子50の径方向内側にインバータユニット60を設けない構成としてもよい。この場合、固定子50の径方向内側となる内部領域を空間としておくことが可能である。また、その内部領域に、インバータユニット60とは異なる部品を配することが可能である。 In the above embodiment, the inverter unit 60 is provided radially inside the stator 50. However, the inverter unit 60 may not be provided radially inside the stator 50 instead. In this case, it is possible to leave an internal region radially inside the stator 50 as a space. Further, it is possible to arrange components different from the inverter unit 60 in the internal area.
 ・回転電機10において、ハウジング30を具備しない構成としてもよい。この場合、例えばホイールや他の車両部品の一部において、回転子40、固定子50等が保持される構成であってもよい。 The rotating electric machine 10 may be configured without the housing 30. In this case, for example, the rotor 40, the stator 50, and the like may be held in a part of a wheel or another vehicle part.
 ・インナロータ構造(内転構造)の回転電機に本開示を適用することも可能である。この場合、例えばハウジング30内において、径方向外側から順に固定子50、回転子40が設けられ、回転子40の径方向内側にインバータユニット60が設けられているとよい。上記実施形態は、ロータとしてSPMロータを挙げたが、IPMロータにも適用可能である。この場合、直線部83が、所定のエアギャップ及びロータコア(不図示)を挟んで磁石部42に対向するよう配置される磁石対向部を提供することとなる。 The present disclosure is also applicable to a rotating electric machine having an inner rotor structure (adduction structure). In this case, for example, the stator 50 and the rotor 40 may be provided in the housing 30 in order from the outside in the radial direction, and the inverter unit 60 may be provided inside the rotor 40 in the radial direction. In the above embodiment, the SPM rotor has been described as the rotor, but the present invention is also applicable to an IPM rotor. In this case, the straight portion 83 provides a magnet facing portion disposed to face the magnet portion 42 with a predetermined air gap and a rotor core (not shown) interposed therebetween.
 なお、この明細書における開示は、例示された実施形態に制限されない。開示は、例示された実施形態と、それらに基づく当業者による変形態様を包含する。例えば、開示は、実施形態において示された部品および/または要素の組み合わせに限定されない。開示は、多様な組み合わせによって実施可能である。開示は、実施形態に追加可能な追加的な部分をもつことができる。開示は、実施形態の部品および/または要素が省略されたものを包含する。開示は、ひとつの実施形態と他の実施形態との間における部品および/または要素の置き換え、または組み合わせを包含する。開示される技術的範囲は、実施形態の記載に限定されない。開示されるいくつかの技術的範囲は、請求の範囲の記載によって示され、さらに請求の範囲の記載と均等の意味及び範囲内での全ての変更を含むものと解されるべきである。
 
 
 
 
Note that the disclosure in this specification is not limited to the illustrated embodiment. The disclosure includes the illustrated embodiments and variations based thereon based on those skilled in the art. For example, the disclosure is not limited to the combination of parts and / or elements shown in the embodiments. The disclosure can be implemented in various combinations. The disclosure may have additional parts that can be added to the embodiments. The disclosure encompasses embodiments that omit parts and / or elements. The disclosure encompasses the replacement or combination of parts and / or elements between one embodiment and another. The disclosed technical scope is not limited to the description of the embodiments. Some of the disclosed technical ranges are indicated by the description of the claims, and should be construed to include all modifications within the meaning and scope equivalent to the description of the claims.



Claims (12)

  1.  円環状の固定子コア(52)と、
     絶縁被膜(82b)によって覆われた複数相の固定子巻線(51)とを備え、
     回転自在に支持された回転子(40)と同軸に配置された固定子(50)であって、
     前記固定子巻線は、
     前記回転子の磁石部(42)に対して回転電機の回転軸における径方向に対向している磁石対向部(83)と、
     前記磁石対向部よりも前記回転軸の軸方向外側において同相の前記磁石対向部同士を接続しているターン部(84)とを有し、
     前記軸方向の両側に設けられる前記ターン部のうち、少なくとも一方は放熱促進ターン部(841)であって、
     前記放熱促進ターン部は、
     異相の前記放熱促進ターン部同士が前記軸方向に部分的に重なって設けられているとともに、前記磁石対向部に対して前記径方向に突出しており、
     前記軸方向に重なり合う異相の前記放熱促進ターン部のうち、前記軸方向において前記固定子コアに最も近い位置に設けられている最内層ターン部(841U)と、
     前記軸方向において前記最内層ターン部よりも前記固定子コアから遠い位置に設けられている外層ターン部(841V,841W)とを備え、
     前記最内層ターン部の前記径方向への突出量は、前記外層ターン部の前記径方向への突出量とは異なる突出量である回転電機の固定子。
    An annular stator core (52);
    A plurality of stator windings (51) covered with an insulating coating (82b);
    A stator (50) arranged coaxially with a rotatably supported rotor (40),
    The stator winding includes:
    A magnet facing portion (83) radially facing the magnet portion (42) of the rotor in the rotating shaft of the rotating electric machine;
    A turn portion (84) connecting the magnet opposing portions in the same phase to each other at an axially outer side of the rotating shaft than the magnet opposing portion;
    At least one of the turn portions provided on both sides in the axial direction is a heat radiation promoting turn portion (841),
    The heat dissipation promoting turn portion,
    The different phases of the heat radiation promoting turn portions are provided so as to partially overlap in the axial direction, and project in the radial direction with respect to the magnet facing portion,
    An innermost turn part (841U) provided at a position closest to the stator core in the axial direction, of the heat dissipation promoting turn parts of different phases overlapping in the axial direction;
    Outer turn portions (841V, 841W) provided at positions farther from the stator core than the innermost turn portions in the axial direction;
    The stator of the rotating electric machine, wherein an amount of protrusion of the innermost turn portion in the radial direction is different from an amount of protrusion of the outer layer turn portion in the radial direction.
  2.  前記固定子巻線は、同相において2本以上の導線(82)を有し、
     前記放熱促進ターン部は、同相において、前記径方向への突出量の小さな小ターン部(841U2,841V2,841W2)と、前記小ターン部よりも前記径方向への突出量の大きな大ターン部(841U3,841V3,841W3)とを備え、
     前記小ターン部と前記大ターン部との前記径方向における間に空隙を備えている請求項1に記載の回転電機の固定子。
    The stator winding has two or more wires (82) in phase;
    In the same phase, the heat-dissipation-promoting turn portion has a small turn portion (841U2, 841V2, 841W2) having a small amount of protrusion in the radial direction, and a large turn portion (841) having a larger amount of protrusion in the radial direction than the small turn portion. 841U3, 841V3, 841W3).
    2. The stator of the rotating electric machine according to claim 1, wherein a gap is provided between the small turn portion and the large turn portion in the radial direction. 3.
  3.  前記最内層ターン部における前記空隙は、前記外層ターン部における前記空隙よりも大きい請求項2に記載の回転電機の固定子。 The stator of the rotating electric machine according to claim 2, wherein the gap in the innermost turn portion is larger than the gap in the outer turn portion.
  4.  前記径方向に互いに対向する前記小ターン部と前記大ターン部とにおいて、前記小ターン部の角部(841e)の曲げ外側における曲率半径(Ra)は、前記大ターン部の前記角部の曲げ内側における曲率半径(Rb)よりも大きい請求項2または請求項3に記載の回転電機の固定子。 In the small turn portion and the large turn portion facing each other in the radial direction, the radius of curvature (Ra) outside the bend of the corner (841e) of the small turn portion is determined by the bending of the corner of the large turn portion. The stator for a rotating electrical machine according to claim 2 or 3, wherein the stator is larger than a radius of curvature (Rb) on the inner side.
  5.  前記軸方向の両側の前記ターン部のうち、一方のみが前記放熱促進ターン部である請求項1から請求項4のいずれかに記載の回転電機の固定子。 5. The stator of the rotating electric machine according to claim 1, wherein only one of the turn portions on both sides in the axial direction is the heat-dissipating turn portion.
  6.  前記固定子コアは、前記固定子コアよりも前記軸方向外側に延び出して設けられたケーシング部(64)によって保持され、
     前記放熱促進ターン部は、前記固定子コアの前記軸方向両側の前記ターン部のうち、前記ケーシング部において前記固定子コアよりも前記軸方向外側となる部分の高さである延出高さが小さい側の前記ターン部に設けられている請求項5に記載の回転電機の固定子。
    The stator core is held by a casing (64) provided to extend outward in the axial direction from the stator core,
    The heat dissipation promoting turn portion has an extension height, which is the height of a portion of the turn portion on both sides in the axial direction of the stator core, the portion being axially outside the stator core in the casing portion. The stator of the rotating electric machine according to claim 5, wherein the stator is provided on the smaller turn portion.
  7.  異相の前記固定子巻線同士の抵抗値が互いに等しい大きさである請求項1から請求項6のいずれかに記載の回転電機の固定子。 7. The stator of the rotating electric machine according to claim 1, wherein resistance values of the stator windings having different phases are equal to each other. 8.
  8.  前記最内層ターン部の前記径方向への最大突出量(LU)は、前記外層ターン部の前記径方向への最大突出量(LV,LW)よりも大きい請求項1から請求項7のいずれかに記載の回転電機の固定子。 The maximum protruding amount (LU) of the innermost turn portion in the radial direction is greater than the maximum protruding amount (LV, LW) of the outer turn portion in the radial direction. The stator of the rotary electric machine according to claim 1.
  9.  前記外層ターン部は、
     前記軸方向に重なり合う前記放熱促進ターン部のうち、前記固定子コアから最も遠い位置に設けられている最外層ターン部(841W)と、
     前記最外層ターン部と前記最内層ターン部との間に設けられている中層ターン部(841V)とを備え、
     前記中層ターン部の前記径方向への最大突出量(LV)は、前記最外層ターン部の前記径方向への最大突出量(LW)よりも大きく、前記最内層ターン部の前記径方向への最大突出量(LU)は、前記中層ターン部の前記径方向への最大突出量(LV)よりも大きい請求項8に記載の回転電機の固定子。
    The outer layer turn portion,
    An outermost layer turn portion (841W) provided at a position farthest from the stator core among the heat dissipation promoting turn portions overlapping in the axial direction;
    A middle turn part (841V) provided between the outermost turn part and the innermost turn part;
    The maximum protrusion amount (LV) of the middle turn portion in the radial direction is larger than the maximum protrusion amount (LW) of the outermost turn portion in the radial direction, and the maximum turn amount (LW) of the innermost turn portion in the radial direction. 9. The stator of the rotating electric machine according to claim 8, wherein a maximum protrusion amount (LU) is larger than a maximum protrusion amount (LV) of the middle turn portion in the radial direction.
  10.  前記放熱促進ターン部の前記径方向への最大突出量(LU)は、前記固定子コアの厚さ寸法よりも大きい請求項1から請求項9のいずれかに記載の回転電機の固定子。 The stator of the rotating electric machine according to any one of claims 1 to 9, wherein a maximum protrusion amount (LU) of the heat radiation promotion turn portion in the radial direction is larger than a thickness dimension of the stator core.
  11.  前記固定子巻線(51)は、前記回転子に対向する位置で前記回転軸の周方向に所定間隔で配置される導線部(81,82)を有し、
     前記導線部は、前記径方向の厚さ寸法が、1磁極内における1相分の前記周方向の幅寸法よりも小さい請求項1から請求項10のいずれかに記載の回転電機の固定子。
    The stator winding (51) has conductor portions (81, 82) arranged at predetermined positions in a circumferential direction of the rotation shaft at a position facing the rotor,
    The stator of a rotating electrical machine according to any one of claims 1 to 10, wherein the conductive wire portion has a thickness in the radial direction smaller than a circumferential width of one phase in one magnetic pole.
  12.  前記固定子巻線(51)は、前記回転子に対向する位置で前記回転軸の周方向に所定間隔で配置される導線部(81,82)を有し、
     前記固定子において、
     前記周方向における前記各導線部の間に導線間部材(57,142)を設け、かつ前記導線間部材として、1磁極における前記導線間部材の前記周方向の幅寸法をWt、前記導線間部材の飽和磁束密度をBs、1磁極における前記磁石部の前記周方向の幅寸法をWm、前記磁石部の残留磁束密度をBrとした場合に、Wt×Bs≦Wm×Brの関係となる磁性材料、若しくは非磁性材料を用いる構成か、
     又は前記周方向における前記各導線部の間に前記導線間部材を設けていない構成である請求項1から請求項11のいずれかに記載の回転電機の固定子。
    The stator winding (51) has conductor portions (81, 82) arranged at predetermined positions in a circumferential direction of the rotation shaft at a position facing the rotor,
    In the stator,
    An inter-conductor member (57, 142) is provided between the conductor portions in the circumferential direction, and as the inter-conductor member, the circumferential width of the inter-conductor member in one magnetic pole is Wt, and the inter-conductor member is Magnetic material having a relationship of Wt × Bs ≦ Wm × Br, where Sm is the saturation magnetic flux density of Bs, W is the circumferential width of the magnet portion at one magnetic pole, and W is the residual magnetic flux density of the magnet portion. Or a configuration using a non-magnetic material,
    The stator of a rotating electrical machine according to any one of claims 1 to 11, wherein the conductor-to-conductor member is not provided between the conductors in the circumferential direction.
PCT/JP2019/021178 2018-07-25 2019-05-29 Rotating electric machine stator WO2020021844A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980048856.7A CN112470369B (en) 2018-07-25 2019-05-29 Stator of rotating electric machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-139470 2018-07-25
JP2018139470A JP6958504B2 (en) 2018-07-25 2018-07-25 Rotating machine stator

Publications (1)

Publication Number Publication Date
WO2020021844A1 true WO2020021844A1 (en) 2020-01-30

Family

ID=69180642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021178 WO2020021844A1 (en) 2018-07-25 2019-05-29 Rotating electric machine stator

Country Status (3)

Country Link
JP (1) JP6958504B2 (en)
CN (1) CN112470369B (en)
WO (1) WO2020021844A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024046522A1 (en) * 2022-08-29 2024-03-07 Schaeffler Technologies AG & Co. KG Stator and kit-of-parts

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023110431A (en) * 2022-01-28 2023-08-09 株式会社デンソー Coil body, armature, and stator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61224841A (en) * 1985-03-29 1986-10-06 Toshiba Corp Single-layer concentric winding 3-phase stator winding
JP2010226903A (en) * 2009-03-25 2010-10-07 Toyota Motor Corp Coil and stator for rotary electric machine
JP2017034848A (en) * 2015-07-31 2017-02-09 株式会社デンソー Stator of rotary electric machine and rotary electric machine comprising the stator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4519682B2 (en) * 2005-03-01 2010-08-04 本田技研工業株式会社 Stator and motor drive device
JP5057144B2 (en) * 2007-09-13 2012-10-24 株式会社デンソー Rotating electric machine stator
JP5261052B2 (en) * 2008-07-17 2013-08-14 トヨタ自動車株式会社 Rotating electric machine and rotating electric machine cooling system
WO2012081087A1 (en) * 2010-12-14 2012-06-21 三菱電機株式会社 Rotating electrical machine for vehicle, and method for manufacturing stator for use in rotating electrical machine
JP2014212638A (en) * 2013-04-19 2014-11-13 株式会社デンソー Stator of dynamo-electric machine
JP2018102018A (en) * 2015-04-23 2018-06-28 三菱電機株式会社 Rotor of rotary electric machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61224841A (en) * 1985-03-29 1986-10-06 Toshiba Corp Single-layer concentric winding 3-phase stator winding
JP2010226903A (en) * 2009-03-25 2010-10-07 Toyota Motor Corp Coil and stator for rotary electric machine
JP2017034848A (en) * 2015-07-31 2017-02-09 株式会社デンソー Stator of rotary electric machine and rotary electric machine comprising the stator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024046522A1 (en) * 2022-08-29 2024-03-07 Schaeffler Technologies AG & Co. KG Stator and kit-of-parts

Also Published As

Publication number Publication date
JP2020018093A (en) 2020-01-30
CN112470369A (en) 2021-03-09
CN112470369B (en) 2023-09-29
JP6958504B2 (en) 2021-11-02

Similar Documents

Publication Publication Date Title
JP7095731B2 (en) Rotating electric machine
JP6922863B2 (en) Rotating machine
JP7238318B2 (en) Rotating electric machine
US20190165660A1 (en) Rotating Electric Machine and Method for Manufacturing the Rotating Electric Machine
JP7010204B2 (en) Rotating machine and manufacturing method of rotating machine
JP6927186B2 (en) Rotating machine
JP2021019381A (en) Rotary electric machine
WO2020021844A1 (en) Rotating electric machine stator
JP7363379B2 (en) Control device and rotating electrical machine system
WO2020145078A1 (en) Control device and rotating electric machine system
JP7095550B2 (en) Rotating electric machine control device and rotating electric machine control method
JP6927185B2 (en) Rotating machine
JP2021019379A (en) Rotary electric machine
JP6009519B2 (en) Rotating electric machine and method of manufacturing rotating electric machine
CN112840526B (en) Rotary electric machine
JP2021019497A (en) Rotary electric machine
JP2021019380A (en) Rotary electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19839824

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19839824

Country of ref document: EP

Kind code of ref document: A1