WO2020020167A1 - 一种空调挂机 - Google Patents

一种空调挂机 Download PDF

Info

Publication number
WO2020020167A1
WO2020020167A1 PCT/CN2019/097317 CN2019097317W WO2020020167A1 WO 2020020167 A1 WO2020020167 A1 WO 2020020167A1 CN 2019097317 W CN2019097317 W CN 2019097317W WO 2020020167 A1 WO2020020167 A1 WO 2020020167A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
end wall
side end
casing
heat exchange
Prior art date
Application number
PCT/CN2019/097317
Other languages
English (en)
French (fr)
Inventor
尹晓英
王永涛
李英舒
王晓刚
戴现伟
张丽
Original Assignee
青岛海尔空调器有限总公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2020020167A1 publication Critical patent/WO2020020167A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0011Indoor units, e.g. fan coil units characterised by air outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • F24F13/14Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers

Definitions

  • the invention relates to refrigeration equipment, in particular to an air conditioner on-hook.
  • the air conditioner is one of the necessary household appliances. As users' requirements for comfort and health are getting higher and higher, the traditional air conditioner's air supply method is to send cold air into the room and slowly convect the surrounding air to exchange heat It is slower and can not give people a quick and cool feeling, but blowing the air outlet of the indoor unit directly to people will adversely affect the user's health and prone to air-conditioning diseases.
  • An object of the present invention is to provide an air conditioner on-hook capable of avoiding direct blowing by users.
  • the present invention provides an air-conditioning on-hook, including:
  • the shell includes a mounting wall, and the shell is fixed through the mounting wall;
  • the air supply component is disposed in the housing, and the air supply component is configured to spray the heat exchange air in the housing out of the housing in a direction parallel to the mounting wall.
  • the casing has an air inlet for allowing external air to enter the casing and an air outlet for ejecting air in the casing, and the air inlet and the air outlet are respectively disposed on opposite sides of the casing.
  • the housing further includes an upper end wall connected to the upper edge of the mounting wall and a lower end wall opposite to the upper end wall.
  • the upper end wall is formed with an air inlet and the lower end wall is formed with an air outlet.
  • the heat exchange component is located in the casing and is spaced from the air inlet.
  • the lower end wall is formed with two air outlets
  • the housing further includes a first side end wall and a second side end wall which are oppositely arranged between the upper end wall and the lower end wall, and one of the air outlets is located near the first end wall of the lower end wall.
  • An end portion of one end wall, and another air outlet is located at an end portion of the lower end wall near the second side end wall;
  • each air supply component respectively supplies air to one air outlet.
  • a first drainage plate which is located outside the casing and is spaced from the lower portion of the first side end wall, and the first drainage plate is configured to guide the airflow passing between the first drainage plate and the first end wall;
  • the second drainage plate is located outside the casing and is spaced from the lower portion of the second side end wall.
  • the second drainage plate is configured to guide the airflow passing between the second drainage plate and the second end wall.
  • the surface of the first drainage plate near the first side end wall is in an arc shape protruding toward the first side end wall;
  • the surface of the second drainage plate near the second side end wall has an arc shape protruding toward the second side end wall.
  • each air supply component includes a fan
  • the heat exchange component includes two evaporators
  • the fans of the two air supply components are respectively disposed below the two evaporators.
  • the partition extends downward along the lower wall of the upper end wall, and is configured so that the airflow entering the casing from the air inlet completely passes through the heat exchange component.
  • the partition includes two partitions, the upper ends of the two partitions are connected to the upper end wall, and the lower ends are connected to the lower end wall, so that the two partitions divide the space in the housing into mutually independent first chambers, first Two chambers and a third chamber located between the first chamber and the second chamber;
  • One of the air outlets is located in the first chamber, and the other air outlet is located in the second chamber.
  • the air inlet, the heat exchange component, and the fans of the two air supply components are located in the third chamber.
  • the air supply component ejects the heat exchange airflow in the casing from a direction parallel to the installation wall. Since the installation wall is installed on the support wall, the airflow emitted by the air conditioner is parallel to the support. In the direction of the wall, such an air outlet method can effectively prevent the cool wind sprayed from the air conditioner from blowing directly on the user, and prevent the user from being cold and cold.
  • the airflow in the air conditioner is not blowing directly to the user, on the one hand, because the user's experience of direct blowing is not considered, the power of the fan in the air conditioner can be increased, which improves the cooling and heating capacity of the air conditioner.
  • the requirements on the flow state of the airflow ejected from the air outlet also become lower, which reduces the design cost and production cost of the air-conditioning hook.
  • FIG. 1 is an exploded schematic diagram of an air conditioner on-hook according to an embodiment of the present invention
  • FIG. 2 is a schematic perspective view of the air-conditioning hook shown in FIG. 1;
  • FIG. 3 is a schematic front view of the on-hook of the air conditioner shown in FIG. 1;
  • FIG. 4 is a schematic front view of the air-conditioning on-hook in which the number of heat exchange components in the air-conditioning on-hook shown in FIG. 1 is replaced by two;
  • FIG. 5 is an exploded schematic diagram of an air conditioner on-hook according to another embodiment of the present invention.
  • FIG. 6 is a schematic perspective view of the air-conditioning hook shown in FIG. 5;
  • FIG. 7 is a schematic front view of the on-hook of the air conditioner shown in FIG. 5;
  • FIG. 8 is a schematic front view of the air-conditioning hook with the number of heat exchange components in the air-conditioning hook shown in FIG. 5 replaced with two;
  • FIG. 9 is an exploded schematic diagram of an air conditioner on-hook according to another embodiment of the present invention.
  • FIG. 10 is a schematic perspective view of the air-conditioning hook shown in FIG. 9;
  • FIG. 11 is a schematic front view of the on-hook of the air conditioner shown in FIG. 9;
  • FIG. 12 is a schematic front view of the air-conditioning hook with the number of heat exchange components in the air-conditioning hook shown in FIG. 9 replaced with two.
  • the air-conditioning on-hook 100 includes a casing and a blower assembly 180 located in the casing.
  • the housing includes a mounting wall 110.
  • the mounting wall 110 is fixed on a supporting wall to realize the installation of the air-conditioning on-hook 100.
  • a heat exchange component 170 is provided in the casing. When the air conditioner 100 is in a cooling mode, the heat exchange component 170 absorbs heat to the outside. When the air conditioner 100 is in a heating mode, the heat exchange component 170 releases heat to the outside.
  • the casing has an air inlet 131 and an air outlet 190. The air outside the casing enters the casing through the air inlet 131 and exchanges heat with the heat exchange component 170.
  • the air inlet 131 and the air outlet 190 can be arranged on opposite sides of the casing, that is, when the air inlet 131 is disposed on the upper end of the casing, the air outlet 190 can be disposed on the lower end of the casing, and the air inlet 131 is disposed on the casing At the left end of the housing, the air outlet 190 may be arranged at the right end of the casing.
  • the installation of the air inlet 131 and the air outlet 190 facing away from each other can effectively prevent the airflow ejected from the air outlet 190 from flowing back into the air inlet 131 immediately.
  • the air supply assembly 180 includes a fan 182 and an air supply channel 181.
  • the fan 182 may be a centrifugal fan.
  • the fan 182 is used to generate both the power for ejecting the heat-exchanging air out of the casing and the suction for drawing the outside air into the casing.
  • the fan 182 sends the extracted heat-exchanged air that has been heat-exchanged with the heat-exchanging component 170 to the air supply passage 181 to form a heat exchange airflow, and the air supply passage 181 guides the heat exchange airflow to the air outlet 190 and sprays out the casing.
  • the air supply assembly 180 is configured to spray the heat exchange air in the casing out of the casing in a direction parallel to the mounting wall 110.
  • the installation wall 110 is generally installed in parallel to the indoor support wall, the airflow emitted by the air supply assembly 180 is sprayed out of the air-conditioning hook 100 parallel to the direction of the supporting wall, so that the air-conditioning hook 100 can be effectively avoided.
  • the cool wind blows directly to the user to prevent the user from getting cold and cold.
  • the power of the fan 182 in the air-conditioning can be increased, which improves the cooling and heating of the air-conditioning on-hook 100.
  • the requirements on the flow state of the airflow ejected from the air outlet 190 also become lower, which reduces the design cost and production cost of the air-conditioning hook 100.
  • the airflow sprayed from the air-conditioning hang-up 100 may be sprayed vertically downwards, obliquely downwards, or horizontally. It should be noted that the installation wall 110 may not be installed completely parallel to the support wall, and may have a small angle with the indoor support wall. When the installation wall 110 and the indoor support wall have a small angle The airflow sprayed from the air-conditioning hook 100 is not completely parallel to the supporting wall, but because the included angle is not large, the airflow sprayed from the air-conditioning hook 100 will not blow directly to the user.
  • the housing is a rectangular parallelepiped, and has an upper end wall 130 connected to the upper edge of the mounting wall 110, a lower end wall 120 connected to the lower edge of the mounting wall 110, and the upper end wall 130 and the lower end, respectively.
  • the air outlet 190 is arranged at any position on the upper end wall 130, the lower end wall 120, the first side end wall 140, or the second side end wall 150, and can be avoided by the air outlet 190.
  • the heat exchange air blows directly to the user.
  • the air outlet 190 may be disposed on the lower end wall 120, and the airflow emitted by the air outlet 190 may be vertically downward, so that the lower end position of the room may be The air temperature can be reduced first (in the cooling mode), and the user can quickly feel the coolness.
  • two air outlets 190 may also be provided on the lower end wall 120, and the two air outlets 190 emit air at the same time, and one of the air outlets 190 is located at the end of the lower end wall 120 near the first side end wall 140, and the other The air outlet 190 is located at an end of the lower end wall 120 near the second side end wall 150. Setting the two air outlets 190 can make the area of the air outlets 190 larger, and having the two air outlets 190 at the two ends of the lower end wall 120 can increase the coverage area of the air outlet of the air conditioner 100.
  • the air-conditioning hanging machine 100 further includes a first guide plate 200 and a second guide plate 300, and the first guide plate 200 and the second guide plate 300 are both located outside the casing.
  • the first drainage plate 200 is spaced from the lower end of the first side end wall 140, and the second drainage plate 300 is spaced from the lower end of the second side end wall 150.
  • the first drainage plate 200 is configured to guide the airflow passing between it and the first side end wall 140; the second drainage plate 300 is configured to guide the airflow passing between it and the second side end wall 150.
  • the airflow from the air outlet 190 of the air-conditioning hook 100 causes a negative pressure at the lower end positions of the first side end wall 140 and the second side end wall 150, and is located at the lower end positions of the first side end wall 140 and the second side end wall 150. Due to the negative pressure, the ambient air will move downward along with the airflow ejected from the air outlet 190. The ambient air will flow through the gap between the first draft plate 200 and the first side end wall 140 before moving with the heat exchange air jets from the air outlet 190, and the inclination angle of the first draft plate 200 will affect the distance from the first The flow direction of the ambient air flowing out of the gap between the drainage plate 200 and the first side end wall 140, so the first drainage plate 200 can have a better drainage effect.
  • the mixed state of the ambient air and the heat exchange air sprayed from the air outlet 190 can also be adjusted, thereby affecting the air-conditioning on-hook 100 Out of the wind effect.
  • the function and effect of the second drainage plate 300 are similar to those of the first drainage plate 200, and details are not described herein.
  • the surface of the first drainage plate 200 near the first side end wall 140 is arc-shaped and convex toward the direction of the first side end wall 140; the surface of the second drainage plate 300 near the second side end wall 150 is arc-shaped It protrudes in a direction close to the second side end wall 150.
  • the ambient air passing through the gap between the first drainage plate 200 and the first side end wall 140 will undergo a process of compression and expansion.
  • the ambient air is compressed, the heat is released to the first drainage plate 200, and the heat is volatilized by the first drainage plate 200.
  • the ambient air expands the temperature will be reduced, so the first drainage plate 200 as set above can further enhance the air conditioner.
  • the cooling effect of the on-hook 100 is arc-shaped and convex toward the direction of the first side end wall 140; the surface of the second drainage plate 300 near the second side end wall 150 is arc-shaped It protrudes in a direction close to the second side end wall 150.
  • the first drainage plate 200 provided as above can also cause the ambient air flowing between it and the first side end wall 140 to spread downward in a cone shape, so as to increase the air diffusion area of the air-conditioning on-hook 100.
  • the functions and effects of the second drainage plate 300 set as above are similar to those of the first drainage plate 200.
  • the air outlet 190 may be provided at the junction of the lower end wall 120 and the first side end wall 140 or between the lower end wall 120 and the second side end wall 150.
  • the heat exchange airflow in the casing is obliquely sprayed out of the air outlet 190, so that the coverage area of the airflow emitted from the air-conditioning hook 100 is large, and the air at the lower end of the room is preferentially heat-exchanged.
  • two air outlets 190 may also be provided, that is, the interface between the lower end wall 120 and the first side end wall 140 and the interface between the lower end wall 120 and the second side end wall 150 are provided with air outlets 190, so that air conditioning by The coverage area of the gas sprayed from the on-hook 100 is larger, which speeds up the heat exchange efficiency between the heat exchange airflow and the ambient air sprayed from the air-conditioning on-hook 100.
  • a first drainage plate (not shown in FIG. 5 to FIG. 7) may be provided at intervals at the lower end of the first side end wall 140.
  • the lower end of the side end wall 150 may be provided with second drainage plates at intervals (not shown in FIGS. 5 to 7), and the surface of the first drainage plate near the first side end wall 140 may also be arc-shaped and close to the first The direction of one end wall 140 is convex; the surface of the second drainage plate near the second side end wall 150 is arc-shaped and protrudes toward the second side end wall 150.
  • the specific structures of the first and second guide plates may be similar to the first and second guide plates 200 and 300 in the embodiment of FIG. 2.
  • the air outlet 190 may be disposed on the first side end wall 140 and / or the second side end wall 150 and allow heat exchange air flow in the casing.
  • the air outlet 190 is horizontally sprayed, so that the horizontal head of the airflow sprayed by the air-conditioning hook 100 can be greater, and the air output effect can be enhanced.
  • two air outlets 190 may also be provided, and the two air outlets 190 are respectively arranged on the first side end wall 140 and the second side end wall 150 one by one, so that they are covered by the gas emitted from the air conditioner on-hook 100. The area becomes larger, speeding up the heat exchange efficiency.
  • a first drainage plate (not shown in FIGS. 9 to 11) and a second drainage plate (FIGS. 9 to 11) may be provided on the lower end wall 120.
  • the first drainage plate is spaced from the end of the lower end wall 120 near the first side end wall 140
  • the second drainage plate is spaced from the end of the lower end wall 120 near the second side end wall 150,
  • the surface of the first drainage plate near the lower end wall 120 may be configured to be arc-shaped and convex upward
  • the surface of the second drainage plate near the lower end wall 120 is arc-shaped and convex upward.
  • the air outlet 190 of the air-conditioning hook 100 has any specific setting position.
  • the heat exchange component 170 in the air-conditioning hook 100 can be arranged at a distance from the air inlet 131, so that the ambient air is immediately exchanged with the air inlet 131 after entering the housing.
  • the heat member 170 exchanges heat.
  • the heat exchange component 170 may be plate-shaped and maintain a small distance from the air inlet 131, so that the ambient air can perform heat exchange immediately after entering the casing from the air inlet 131.
  • the temperature of the air in the casing of the air-conditioning hook 100 is generally low (while cooling)
  • allowing the ambient air to enter the air inlet 131 for the first time to perform heat exchange can increase the heat exchange time of the ambient air (because the ambient air can not only be exchanged with
  • the heat component 170 performs heat exchange, and can also perform heat exchange with the heat exchange component 170 and other components with lower temperature between the air outlet 190).
  • any specific setting position of the air outlet 190 of the air-conditioning on-hook 100 can allow one air supply unit 180 to supply air to both air outlets 190 at the same time.
  • the component 180 may specifically include a fan 182 and two air supply channels 181, and each air supply channel 181 corresponds to one air outlet 190 correspondingly.
  • two air supply components 180 can also be provided, and each air supply component 180 can supply air to one air outlet 190 correspondingly.
  • the air supply volume of the air-conditioning on-hook 100 and the adjustment range of the air supply volume can be increased.
  • the number of heat exchange components 170 may be two. Specifically, it can be two evaporators, and the fans 182 of the two air supply assemblies 180 are respectively disposed below the two evaporators. When the two evaporators and the two fans 182 are all turned on, heat is transferred through one of the evaporators. Subsequent heat exchange air is extracted by the fan 182 located below the evaporator.
  • This setting can make it possible to turn off one of the evaporators and the fan 182 located below the evaporator when the indoor air temperature is almost close to the preset temperature, thereby reducing the energy loss of the air-conditioning on-hook 100.
  • the air-conditioning hook 100 can be installed between two rooms, that is, the air-conditioning hook 100 can pass through the wall between the two rooms, and one of the air outlets 190 The air is blown toward one room, the other air outlet 190 is blown toward the other room, and the temperature of the heat exchange air blown out from the two air outlets 190 can be adjusted independently within a certain range (the two evaporators can be controlled independently, two (The temperature of the heat exchange air stream ejected from each air outlet 190 may be different.)
  • the air conditioner hookup 100 further includes a partition extending downward along the lower wall of the upper end wall 130 and configured to enter the shell through the air inlet 131 The airflow in the body completely passes through the heat exchange member 170.
  • the isolation portion may be a flange disposed around the air inlet 131 around the inside of the casing, or may be a partition 160 between the upper end wall 130 and the lower end wall 120.
  • the partition includes two partitions 160, and the upper ends of the two partitions 160 are connected to the upper end wall 130 and the lower ends are connected to the lower end wall 120, so that the two partitions 160 divide the space in the housing into mutually independent first sections.
  • a chamber, a second chamber, and a third chamber located between the first chamber and the second chamber.
  • One of the air outlets 190 is located in the first chamber, and the other air outlet 190 is located in the second chamber.
  • the air inlet 131, the heat exchange component 170, and the fans 182 of the two air supply assemblies 180 are located in the third chamber.
  • the partition 160 plays a role of isolation, which effectively prevents the heat exchange air in the third cavity in the casing from overflowing the casing from the gap portion of the connection of the first chamber or the second chamber, providing a better Seal effect.
  • the two evaporators may be separated by using the partition 160, and a fan 182 is separately provided below each evaporator.
  • the negative air pressure generated by the fan 182 in the casing is sucked into the third chamber of the casing by the air inlet 131.
  • the ambient air entering the third chamber of the casing immediately exchanges heat with the heat exchange component 170 and passes through the heat exchange component. 170, the heat exchange air passing through the heat exchange component 170 is sucked by the fan 182 and sent to the air supply channel 181, and the air supply channel 181 is guided from the third chamber to the first chamber or the second chamber, and finally exits The tuyere 190 sprays out of the casing.
  • the air supply channel 181 of the air supply module 180 Need to pass through the partition 160.
  • a perforation may be provided on the partition plate 160 to allow the air supply passage 181 to pass through the perforation, and one end thereof is connected to the fan 182 and the other end is connected to the air outlet 190.
  • a gap may also be provided at the edge of the partition plate 160, so that the middle portion of the air supply passage 181 is caught at the gap, and one end thereof is connected to the fan 182 and the other end is connected to the air outlet 190.

Abstract

一种空调挂机(100),包括:壳体,包括安装壁(110),壳体通过安装壁(110)进行安装固定;送风组件(180),设置于壳体内,送风组件(180)配置成将壳体内的换热空气沿平行于安装壁(110)的方向喷出壳体。

Description

一种空调挂机 技术领域
本发明涉及制冷设备,特别是一种空调挂机。
背景技术
空调器是必备的家用电器之一,随着用户对舒适性以及健康的要求也越来越高,传统空调的送风方式是将冷风送入室内后,与周围空气缓慢对流,换热速度较慢,不能给人迅速凉爽的感觉,而将室内机的送风口对人直吹,会对用户健康带来不利影响,容易出现空调病。
发明内容
本发明的一个目的是要提供一种能够避免用户直吹的空调挂机。
特别地,本发明提供了一种空调挂机,包括:
壳体,包括安装壁,壳体通过安装壁进行安装固定;
送风组件,设置于壳体内,送风组件配置成将壳体内的换热空气沿平行于安装壁的方向喷出壳体。
进一步地,壳体具有使外部空气进入壳体进风口以及将壳体内的空气喷出的出风口,进风口以及出风口分别设置在壳体的相对的两边。
进一步地,壳体还包括与安装壁的上端边缘连接的上端壁以及与上端壁相对的下端壁,上端壁形成有进风口,下端壁形成有出风口。
进一步地,还包括:
换热部件,位于壳体内,与进风口间隔设置。
进一步地,下端壁形成有两个出风口,壳体还包括位于上端壁以及下端壁之间的相对布置的第一侧端壁以及第二侧端壁,其中一个出风口位于下端壁的靠近第一侧端壁的端部,另一个出风口位于下端壁的靠近第二侧端壁的端部;
壳体内具有两个送风组件,每个送风组件分别对应向一个出风口供风。
进一步地,还包括:
第一引流板,位于壳体外,与第一侧端壁的下部间隔设置,第一引流板配置成对流经其与第一侧端壁之间的气流进行导向;
第二引流板,位于壳体外,与第二侧端壁的下部间隔设置,第二引流板配置成对流经其与第二侧端壁之间的气流进行导向。
进一步地,第一引流板的靠近第一侧端壁的表面呈朝向第一侧端壁凸起的弧形;
第二引流板的靠近第二侧端壁的表面呈朝向第二侧端壁凸起的弧形。
进一步地,每个送风组件分别包括风机,换热部件包括两个蒸发器,两个送风组件的风机分别对应设置于两个蒸发器的下方。
进一步地,还包括:
隔离部,沿上端壁的下表壁向下延伸,配置成使得由进风口进入壳体内的气流完全穿过换热部件。
进一步地,隔离部包括两块隔板,两块隔板的上端均连接上端壁、下端均连接下端壁,以使得两块隔板将壳体内的空间分隔成相互独立的第一腔室、第二腔室以及位于第一腔室与第二腔室之间的第三腔室;
其中一个出风口位于第一腔室,另一个出风口位于第二腔室,进风口、换热部件以及两个送风组件的风机均位于第三腔室。
本发明的一种空调挂机,送风组件将壳体内的换热气流由平行于安装壁的方向喷出壳体,由于安装壁安装于支撑墙体上,故空调挂机喷出的气流平行于支撑墙体方向,这样的出风方式能够有效地避免由空调挂机中喷出的凉风直吹用户,防止用户受冷着凉。当空调挂机中的气流不直吹向用户时,一方面由于不用考虑用户直吹时的体验感,故空调中的风机的功率便可加大,提升了空调挂机的制冷以及制热能力,另一方面对出风口中喷出的气流的流动状态的要求也变低,降低了空调挂机的设计成本以及生产成本。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的空调挂机的爆炸示意图;
图2是图1所示的空调挂机的立体示意图;
图3是图1所示的空调挂机的主视示意图;
图4是将图1所示的空调挂机中的换热部件的数量替换为两个的空调挂机的主视示意图;
图5是根据本发明另一实施例的空调挂机的爆炸示意图;
图6是图5所示的空调挂机的立体示意图;
图7是图5所示的空调挂机的主视示意图;
图8是将图5所示的空调挂机中的换热部件的数量替换为两个的空调挂机的主视示意图;
图9根据本发明又一实施例的空调挂机的爆炸示意图;
图10是图9所示的空调挂机的立体示意图;
图11是图9所示的空调挂机的主视示意图;
图12是将图9所示的空调挂机中的换热部件的数量替换为两个的空调挂机的主视示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
空调挂机100包括壳体以及位于壳体内的送风组件180。壳体包括安装壁110,通过将安装壁110固定在支撑墙体上从而实现对空调挂机100的安装。壳体内设置有换热部件170,当空调挂机100处于制冷模式时,换热部件170朝外界吸收热量,当空调挂机100为制热模式时,换热部件170朝外界释放热量。壳体上具有进风口131以及出风口190,壳体外部的空气由进风口131进入壳体并与换热部件170进行换热,换热后的换热空气由出风口190喷出壳体。优选地,可以使进风口131以及出风口190布置在壳体的相对的两边,即进风口131布置在壳体上端时,出风口190可以布置在壳体的下端,进风口131布置在壳体的左端时,出风口190可以布置在壳体的右端。进风口131以及出风口190相互背离设置可以有效的防止由出风口190中喷出的气流立马回流到进风口131内。
送风组件180包括风机182以及送风通道181。风机182可以为离心风机,风机182既用于产生将换热空气喷出壳体的动力,又用于产生将外界空 气抽入壳体的吸力。风机182将抽取的与换热部件170换热后的换热空气输送到送风通道181形成换热气流,送风通道181将换热气流导向出风口190并喷出壳体。在一种实施例中,送风组件180配置成将壳体内的换热空气沿平行于安装壁110的方向喷出壳体。由于安装壁110一般平行安装于室内的支撑墙体上,故送风组件180喷出的气流平行于支撑墙体的方向喷出空调挂机100,这样可以有效地避免由空调挂机100中喷出的凉风直吹用户,防止用户受冷着凉。当空调挂机100中的气流不直吹向用户时,一方面由于不用考虑用户直吹时的体验感,故空调中的风机182的功率便可加大,提升了空调挂机100的制冷以及制热能力,另一方面对出风口190中喷出的气流的流动状态的要求也变低,降低了空调挂机100的设计成本以及生产成本。
空调挂机100中喷出的气流可以竖直向下喷射,也可以斜向下喷射,亦可以水平喷射。需要注意的是,安装壁110不一定完全平行于支撑墙体安装,其可以与室内的支撑墙体呈较小的夹角,当安装壁110与室内的支撑墙体呈较小的夹角时,由空调挂机100中喷出的气流并非完全平行于支撑墙体,但是由于夹角不大,故由空调挂机100中喷出的气流也不会直吹用户。
为了方便出风口190的位置布置,壳体呈长方体型,且具有与安装壁110的上端边缘连接的上端壁130、与安装壁110的下端边缘连接的下端壁120、分别位于上端壁130和下端壁120两侧的第一侧端壁140以及第二侧端壁150。当壳体呈长方体形时,出风口190布置在上端壁130、下端壁120、第一侧端壁140或第二侧端壁150上任意一者的任意位置均可避免由出风口190分出的换热气流直吹用户。
一种具体的实施例中,如图1至图3所示,出风口190可以设置在下端壁120上,并且让由出风口190喷出的气流竖直向下,这样可以使得室内的下端位置的空气温度能够最先降低(制冷模式时),用户能够快速感受到凉意。具体地,还可以在下端壁120上设置两个出风口190,两个出风口190同时出风,且其中一个出风口190位于下端壁120的靠近第一侧端壁140的端部,另一个出风口190位于下端壁120的靠近第二侧端壁150的端部。设置两个出风口190可以使得出风口190的面积更大,而让两个出风口190位于下端壁120的两个端部能够增加空调挂机100的出风的覆盖面积。
空调挂机100还包括第一引流板200以及第二引流板300,第一引流板200以及第二引流板300均位于壳体外。其中,第一引流板200与第一侧端 壁140的下端间隔设置,第二引流板300与第二侧端壁150的下端间隔设置。第一引流板200配置成对流经其与第一侧端壁140之间的气流进行导向;第二引流板300配置成对流经其与第二侧端壁150之间的气流进行导向。
空调挂机100的出风口190喷出的气流使得第一侧端壁140以及第二侧端壁150的下端位置形成负压,而位于第一侧端壁140以及第二侧端壁150的下端位置的环境空气会由于此负压的作用而跟随由出风口190中喷出的气流一起朝下运动。环境空气随出风口190中喷出的换热气流一起运动前将流经第一引流板200与第一侧端壁140之间的间隙,而第一引流板200的倾斜角度将影响由第一引流板200与第一侧端壁140之间的间隙中流出的环境空气的流动方向,故第一引流板200能够具有较好的引流效果。通过调节第一引流板200的布置角度(这里指相对第一侧端壁140的角度),还可以调节环境空气和出风口190中喷出的换热空气的混合状态,从而影响空调挂机100的出风效果。第二引流板300的作用及效果与第一引流板200类似,这里不做赘述。
第一引流板200的靠近第一侧端壁140的表面呈弧形且朝靠近第一侧端壁140的方向凸起;第二引流板300的靠近第二侧端壁150的表面呈弧形且朝靠近第二侧端壁150的方向凸起。这样,通过第一引流板200与第一侧端壁140之间的间隙的环境空气将经历先压缩后膨胀的过程。环境空气压缩时,将热量释放到第一引流板200上,由第一引流板200将热量挥发掉;环境空气膨胀时,将使得其温度降低,故第一引流板200如上设置可以进一步增强空调挂机100的制冷效果,特别地,第一引流板200如上设置还可以使得流经其与第一侧端壁140之间的环境空气呈锥形朝下扩散,以增加空调挂机100的气流扩散面积。第二引流板300如上设置的作用及效果与第一引流板200类似。
另一种具体的实施例中,如图5至图7所示,可以让出风口190设置于下端壁120与第一侧端壁140的交界处或下端壁120与第二侧端壁150的交界处,并让壳体中的换热气流倾斜向下喷出出风口190,这样能够使得空调挂机100喷出的气流的覆盖面积较大的同时优先对室内的下端部位的空气换热。具体地,还可以设置两个出风口190,即下端壁120与第一侧端壁140的交界处和下端壁120与第二侧端壁150的交界处均设置有出风口190,使得由空调挂机100中喷出的气体的覆盖面积更大,加快由空调挂机100中喷 出的换热气流与环境空气的换热效率。
当空调挂机100的出风口190如图5至图7设置时,还可在第一侧端壁140的下端可以间隔设置第一引流板(图5至图7中未示出),在第二侧端壁150的下端可以间隔设置第二引流板(图5至图7中未示出),且亦可以使第一引流板的靠近第一侧端壁140的表面呈弧形且朝靠近第一侧端壁140的方向凸起;第二引流板的靠近第二侧端壁150的表面呈弧形且朝靠近第二侧端壁150的方向凸起。当空调挂机100的出风口190如图5至图7设置时,第一引流板以及第二引流板的具体结构可以类比图2的实施例中的第一引流板200以及第二引流板300。
又一种具体的实施例中,如图9至图11所示,出风口190可以设置在第一侧端壁140和/或第二侧端壁150上,并让壳体中的换热气流水平喷出出风口190,这样可以使得空调挂机100喷出的气流的水平扬程更大,增强出风效果。具体地,还可以设置两个出风口190,两个出风口190分别一一对应布置在第一侧端壁140以及第二侧端壁150上,使得由空调挂机100中喷出的气体的覆盖面积变大,加快换热效率。
当空调挂机100的出风口190如图9至图11设置时,可以在下端壁120上设置第一引流板(图9至图11中未示出)以及第二引流板(图9至图11中未示出),第一引流板与下端壁120的靠近第一侧端壁140的端部间隔设置,第二引流板与下端壁120的靠近第二侧端壁150的端部间隔设置,以起到对环境空气导流的效果。特别地,第一引流板的靠近下端壁120的表面还可设置为呈弧面状且朝上凸起,第二引流板的靠近下端壁120的表面呈弧面状且朝上凸起。
如上述介绍的空调挂机100的出风口190任一种具体设置位置,空调挂机100中的换热部件170均可以与进风口131间隔设置,使得环境空气由进风口131进入壳体内后立即与换热部件170换热。换热部件170可以呈板状,且与进风口131保持较小的间隔,使得环境空气由进风口131进入壳体后能够第一时间进行换热。并且由于空调挂机100的壳体内的空气温度一般较低(制冷时),故让环境空气进入进风口131后第一时间进行换热能够增加环境空气的换热时间(因为环境空气不仅可以与换热部件170进行换热,还可以与换热部件170以及出风口190之间的温度较低的其他部件进行换热)。
当空调挂机100具有两个出风口190时,如上述介绍的空调挂机100的 出风口190任一种具体设置位置,均可以让一个送风组件180同时向两个出风口190供风,送风组件180具体可以包括一个风机182以及两个送风通道181,每个送风通道181对应连通一个出风口190。当空调挂机100具有两个出风口190时,还可以设置两个送风组件180,每个送风组件180对应向一个出风口190供风。设置两个送风组件180时,能够增大空调挂机100的送风量以及增大送风量的调节范围。
如图4、图8以及图12所示,如上述介绍的空调挂机100的出风口190任一种具体设置位置,当具有两个送风组件180时,换热部件170的数量可以为两个,具体可以为两个蒸发器,两个送风组件180的风机182分别对应设置于两个蒸发器的下方,当两个蒸发器以及两个风机182全部开启时,经过其中一个蒸发器换热后的换热气流基本全部被位于此蒸发器下方的风机182进行抽取。这样设置可以使得当室内的空气温度基本快接近预设温度时,可以关掉其中一个蒸发器和位于此蒸发器下方的风机182,从而减小空调挂机100的能量损耗。同时,当具有两个送风组件180以及两个蒸发器时,可以让空调挂机100设置于两个房间之间,即空调挂机100可以穿过两个房间中间的墙体,其中一个出风口190朝一个房间吹风,另一个出风口190朝另一个房间吹风,且两个出风口190中吹出的换热气流的温度可以相互独立地在一定范围内调节(两个蒸发器可以分别独立控制,两个出风口190中喷出的换热气流的温度也可以不同)。
由于换热部件170与进风口131间隔设置,故由进风口131中进入壳体内的环境气流将有一小部分由换热部件170与进风口131之间的间隙绕过换热部件170,从而未进行换热。为了防止未与换热部件170换热的环境空气进入壳体内部,空调挂机100还包括隔离部,隔离部沿上端壁130的下表壁向下延伸,其配置成使得由进风口131进入壳体内的气流完全穿过换热部件170,换句话说,由于隔离部的存在,使得由进风口131进入壳体的环境空气经过换热部件170换热后才可由出风口190喷出。隔离部可以是位于壳体内部的围绕进风口131一周布置的凸缘,也可以是位于上端壁130以及下端壁120之间的隔板160。
具体的,隔离部包括两块隔板160,两块隔板160的上端均连接上端壁130、下端均连接下端壁120,以使得两块隔板160将壳体内的空间分隔成相互独立的第一腔室、第二腔室以及位于第一腔室和第二腔室之间的第三腔 室。其中一个出风口190位于第一腔室,另一个出风口190位于第二腔室,进风口131、换热部件170以及两个送风组件180的风机182均位于第三腔室。隔板160起到隔离的作用,其有效地防止了壳体内的第三腔室内的换热空气由第一腔室或第二腔室的连接处的缝隙部位溢出壳体、提供了较好的密封效果。当然,在其他的实施例中,可以利用隔板160将两个蒸发器单独隔离,且每个蒸发器的下方单独设置一个风机182。
环境气流被风机182在壳体内产生的负压由进风口131吸入壳体的第三腔室,进入壳体的第三腔室内的环境气流立即与换热部件170换热并穿过换热部件170,穿过换热部件170的换热气流被风机182吸取后送入送风通道181,且被送风通道181由第三腔室导向第一腔室或第二腔室,并最后由出风口190喷出壳体。由于送风组件180的风机182位于第三腔室内,而风机182抽取的换热气流需由第一腔室或第二腔室的出风口190喷出,故送风组件180的送风通道181需穿过隔板160。具体地,可以在隔板160上设置穿孔,让送风通道181穿过穿孔,且其一端连通风机182,另一端连通出风口190。也可以在隔板160的边缘处设置缺口,让送风通道181的中间部位卡在缺口处,且其一端连通风机182,另一端连通出风口190。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种空调挂机,包括:
    壳体,包括安装壁,所述壳体通过所述安装壁进行安装固定;
    送风组件,设置于所述壳体内,所述送风组件配置成将所述壳体内的换热空气沿平行于所述安装壁的方向喷出所述壳体。
  2. 根据权利要求1所述的空调挂机,其中,
    所述壳体具有使外部空气进入所述壳体进风口以及将所述壳体内的换热空气喷出的出风口,所述进风口以及所述出风口分别设置在所述壳体的相对的两边。
  3. 根据权利要求2所述的空调挂机,其中,
    所述壳体还包括与所述安装壁的上端边缘连接的上端壁以及与所述上端壁相对的下端壁,所述上端壁形成有进风口,所述下端壁形成有出风口。
  4. 根据权利要求3所述的空调挂机,还包括:
    换热部件,位于所述壳体内,与所述进风口间隔设置。
  5. 根据权利要求4所述的空调挂机,其中,
    所述下端壁形成有两个所述出风口,所述壳体还包括位于所述上端壁以及所述下端壁之间的相对布置的第一侧端壁以及第二侧端壁,其中一个所述出风口位于所述下端壁的靠近所述第一侧端壁的端部,另一个所述出风口位于所述下端壁的靠近所述第二侧端壁的端部;
    所述壳体内具有两个所述送风组件,每个所述送风组件分别对应向一个所述出风口供风。
  6. 根据权利要求5所述的空调挂机,还包括:
    第一引流板,位于所述壳体外,与所述第一侧端壁的下部间隔设置,所述第一引流板配置成对流经其与所述第一侧端壁之间的气流进行导向;
    第二引流板,位于所述壳体外,与所述第二侧端壁的下部间隔设置,所述第二引流板配置成对流经其与所述第二侧端壁之间的气流进行导向。
  7. 根据权利要求6所述的空调挂机,其中,
    所述第一引流板的靠近所述第一侧端壁的表面呈朝向所述第一侧端壁凸起的弧形;
    所述第二引流板的靠近所述第二侧端壁的表面呈朝向所述第二侧端壁凸起的弧形。
  8. 根据权利要求5所述的空调挂机,其中,
    每个所述送风组件分别包括风机,所述换热部件包括两个蒸发器,两个所述送风组件的所述风机分别对应设置于两个所述蒸发器的下方。
  9. 根据权利要求8所述的空调挂机,还包括:
    隔离部,沿所述上端壁的下表壁向下延伸,配置成使得由所述进风口进入所述壳体内的气流完全穿过所述换热部件。
  10. 根据权利要求9所述的空调挂机,其中,
    所述隔离部包括两块隔板,两块所述隔板的上端均连接所述上端壁、两块所述隔板的下端均连接所述下端壁,以使得两块所述隔板将所述壳体内的空间分隔成相互独立的第一腔室、第二腔室以及位于所述第一腔室与所述第二腔室之间的第三腔室;
    其中,两个所述出风口分别对应位于所述第一腔室和第二腔室,所述进风口、所述换热部件以及两个所述送风组件的所述风机均位于所述第三腔室。
PCT/CN2019/097317 2018-07-26 2019-07-23 一种空调挂机 WO2020020167A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810835614.X 2018-07-26
CN201810835614.XA CN110779082B (zh) 2018-07-26 2018-07-26 一种空调挂机

Publications (1)

Publication Number Publication Date
WO2020020167A1 true WO2020020167A1 (zh) 2020-01-30

Family

ID=69180390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097317 WO2020020167A1 (zh) 2018-07-26 2019-07-23 一种空调挂机

Country Status (2)

Country Link
CN (1) CN110779082B (zh)
WO (1) WO2020020167A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204176858U (zh) * 2014-10-23 2015-02-25 珠海格力电器股份有限公司 空调室内机
CN104764093A (zh) * 2015-03-25 2015-07-08 广东美的制冷设备有限公司 挂壁式空调器室内机
CN107702216A (zh) * 2017-10-02 2018-02-16 广东美的制冷设备有限公司 壁挂式室内机及空调器
CN108224571A (zh) * 2018-02-11 2018-06-29 珠海格力电器股份有限公司 一种空调柜机和空调器
CN207584883U (zh) * 2017-08-01 2018-07-06 青岛海尔空调器有限总公司 壁挂式空调室内机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104807080B (zh) * 2014-08-29 2017-08-01 青岛海尔空调器有限总公司 一种壁挂式空调器室内机
CN106369673A (zh) * 2016-09-09 2017-02-01 海信科龙电器股份有限公司 一种壁挂式空调室内机及其送风方法
CN206514409U (zh) * 2017-02-22 2017-09-22 珠海格力电器股份有限公司 空调机组及其室内机
CN108224568A (zh) * 2018-02-06 2018-06-29 青岛海尔空调器有限总公司 送风组件及具有该送风组件的柜式空调室内机
CN108317607A (zh) * 2018-02-14 2018-07-24 青岛海尔空调器有限总公司 一种空调器室内挂机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204176858U (zh) * 2014-10-23 2015-02-25 珠海格力电器股份有限公司 空调室内机
CN104764093A (zh) * 2015-03-25 2015-07-08 广东美的制冷设备有限公司 挂壁式空调器室内机
CN207584883U (zh) * 2017-08-01 2018-07-06 青岛海尔空调器有限总公司 壁挂式空调室内机
CN107702216A (zh) * 2017-10-02 2018-02-16 广东美的制冷设备有限公司 壁挂式室内机及空调器
CN108224571A (zh) * 2018-02-11 2018-06-29 珠海格力电器股份有限公司 一种空调柜机和空调器

Also Published As

Publication number Publication date
CN110779082A (zh) 2020-02-11
CN110779082B (zh) 2020-09-25

Similar Documents

Publication Publication Date Title
KR101213655B1 (ko) 스탠드형 공기 조화기
CN105864899A (zh) 空调室内机和空调器
WO2017166935A1 (zh) 空调室内机
CN105674527A (zh) 一种空调器室内机及空调器
JP4017483B2 (ja) 空気調和機
WO2019062625A1 (zh) 壁挂式空调器室内机
WO2020020166A1 (zh) 一种空调挂机
CN112747368A (zh) 空调室内机
WO2019062626A1 (zh) 壁挂式空调器室内机
WO2020020167A1 (zh) 一种空调挂机
JP2018013327A (ja) 空調装置
JP5492624B2 (ja) 空気調和機
CN110848813B (zh) 一种空调挂机
CN110762607B (zh) 一种空调挂机
KR20180130981A (ko) 슬림형 복합 공조장치
WO2019096315A1 (zh) 壁挂式空调器室内机
WO2020164181A1 (zh) 用于空调的加湿装置及空调
CN205747170U (zh) 空调室内机和空调器
CN110056967A (zh) 壁挂式空调器室内机
JPH06159783A (ja) 吹出用チャンバ
KR102606894B1 (ko) 방역효율성을 높인 전열교환기가 구비된 수직기류형 냉난방 시스템
CN212869985U (zh) 空调器室内机
WO2023005367A1 (zh) 壁挂式空调室内机
CN220186955U (zh) 空调室内机及其导流杆
CN209877125U (zh) 用于空调的加湿装置及空调

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19840443

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19840443

Country of ref document: EP

Kind code of ref document: A1