WO2020019823A1 - 一种生产锌酸钙的方法 - Google Patents

一种生产锌酸钙的方法 Download PDF

Info

Publication number
WO2020019823A1
WO2020019823A1 PCT/CN2019/085932 CN2019085932W WO2020019823A1 WO 2020019823 A1 WO2020019823 A1 WO 2020019823A1 CN 2019085932 W CN2019085932 W CN 2019085932W WO 2020019823 A1 WO2020019823 A1 WO 2020019823A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc
calcium
carbonate
calcium zincate
extractant
Prior art date
Application number
PCT/CN2019/085932
Other languages
English (en)
French (fr)
Inventor
岳辉伟
李世川
龙忠祥
蒋涛
刘权锋
Original Assignee
重庆东群科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810817320.4A external-priority patent/CN108622925A/zh
Priority claimed from CN201810832651.5A external-priority patent/CN108585026A/zh
Application filed by 重庆东群科技有限公司 filed Critical 重庆东群科技有限公司
Priority to CN201980001920.6A priority Critical patent/CN110896633B/zh
Publication of WO2020019823A1 publication Critical patent/WO2020019823A1/zh
Priority to US17/146,475 priority patent/US11247913B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/006Compounds containing, besides zinc, two ore more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/20Obtaining zinc otherwise than by distilling
    • C22B19/24Obtaining zinc otherwise than by distilling with leaching with alkaline solutions, e.g. ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/20Obtaining zinc otherwise than by distilling
    • C22B19/26Refining solutions containing zinc values, e.g. obtained by leaching zinc ores
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/12Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic alkaline solutions
    • C22B3/14Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic alkaline solutions containing ammonia or ammonium salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the technical field of inorganic chemical technology, and relates to a method for producing calcium zincate, in particular to a method for producing calcium zincate by using a low-grade zinc oxide raw ore.
  • Calcium zincate has a wide range of uses.
  • the use of calcium zincate as a negative electrode material for alkaline secondary zinc electrodes has been newly developed in recent years, and is constantly maturing and industrialized.
  • calcium zincate is a room temperature desulfurizing agent with a desulfurization active component. Its sulfur capacity is greatly increased; calcium zincate as a feed additive is not only conducive to animal absorption, but also conducive to reducing environmental pollution.
  • Calcium zincate can also be widely used in glazes, paints, coating additives, etc.
  • Calcium zincate products are widely used and have good market prospects, but currently lack industrially mature and stable production methods.
  • China ’s zinc mines are generally low-grade, and low-grade mining tailings and beneficiation tailings are stored in large quantities.
  • the process has the problems of high energy consumption, large pollution, high cost, etc. It is not possible to economically and efficiently use low-grade zinc ore sources to produce various zinc-containing products (such as calcium zincate). It can be seen that due to the limitations of the existing technology, it is difficult to meet market demand.
  • the preparation method of calcium zincate is limited to experimental exploration.
  • High-purity finished zinc oxide or zinc salt is required as a raw material.
  • the reaction conditions are harsh, the impurities are easily interfered, and the yield is low, which is not suitable for industrial applications.
  • existing low-grade zinc oxide ore processes in the prior art have problems such as high energy consumption, low ore dressing recovery rate, causing severe environmental pollution, and low economic value.
  • the invention proposes a new treatment process, which solves one or more problems in the prior art, such as the lack of an industrial process for preparing calcium zincate, and the low-grade zinc ore cannot be economically and effectively used.
  • the present disclosure provides a method for producing calcium zincate, which includes the following steps:
  • Extraction step mixing and stirring the ground zinc-containing raw material with an extractant, and then filtering to obtain an extract solution, wherein the extractant is a mixed aqueous solution of ammonia and ammonium bicarbonate, or a mixed aqueous solution of ammonia and ammonium carbonate , Or a mixed aqueous solution of ammonia, ammonium bicarbonate and ammonium carbonate;
  • the extractant is a mixed aqueous solution of ammonia and ammonium bicarbonate, or a mixed aqueous solution of ammonia and ammonium carbonate , Or a mixed aqueous solution of ammonia, ammonium bicarbonate and ammonium carbonate;
  • Decarbonization step adding calcium oxide and / or calcium hydroxide to the leaching solution, stirring, and then filtering to obtain a first solid and a first filtrate;
  • Calcium zincate synthesis step adding calcium hydroxide and / or calcium oxide to the first filtrate, stirring for reaction, and filtering to obtain a second solid and a second filtrate;
  • Drying step drying the second solid to obtain a final product of calcium zincate.
  • an active agent is added to the first filtrate;
  • the average particle size of the final calcium zincate product is 10-100 nm.
  • the mass concentration of total ammonia in the extractant is 5% to 15%, and the molar concentration of effective carbonate in the extractant is:
  • C extractant carbonate is the molar concentration of effective carbonate in the extractant
  • n total zinc in the raw material is the amount of the zinc element in the zinc-containing raw material
  • n raw material zinc carbonate is an amount of zinc carbonate in the zinc-containing raw material
  • V extractant is the volume of the extractant
  • the value of a ranges from 100% to 600%, preferably from 150% to 250%.
  • the concentration of zinc ammine ion (based on the mass of zinc element) is 10 to 25 g / L .
  • the amount of the calcium oxide and / or calcium hydroxide substance added in the decarburization step is equal to that of the effective carbonate substance in the leachate
  • the amount is 100% to 130%, preferably 100% to 110%.
  • an amount of a calcium hydroxide and / or calcium oxide substance is added to the first filtrate and the first The ratio of the amount of the zinc ammonia complex ion in the filtrate is 1 to 1.2: 2, and preferably 1 to 1.1.2.
  • carbon dioxide is passed into the second filtrate obtained in the calcium zincate synthesis step, and the second filtrate passed with carbon dioxide is used as an leaching agent, Recycling for extraction of zinc-containing raw materials.
  • the reaction temperature of the calcium zincate synthesis step is 15 to 90 ° C, preferably 30 to 60 ° C, or preferably 15 to 25 ° C.
  • the stirring reaction time of the calcium zincate synthesis step is 15-30 minutes.
  • the active agent is one or more selected from the group consisting of sodium hexametaphosphate and sodium dodecylbenzenesulfonate.
  • the present disclosure achieves for the first time the synthesis of calcium zincate in a zinc ammonia environment.
  • the present disclosure synthesizes calcium zincate from zinc ammonium ions, realizes selective crystallization and separation of zinc elements through the zinc amine ammonium ions balanced movement, specifically generates calcium zincate, has strong reaction adaptability, is simple and fast, and does not require seed crystals.
  • a high-purity calcium zincate product is obtained under an ammonia environment, which is suitable for industrial production and use, and has high comprehensive economic benefits.
  • the method provided by the present disclosure realizes the production of calcium zincate starting from low-purity, low-purity, low-purity raw materials such as zinc-containing raw ore, and combines wet leaching with a synthetic process to realize economic and environmental protection utilization of ultra-low-grade zinc ore.
  • the method of the present disclosure has a wide application range, and the ammonia-ammonium carbonate leaching system can effectively extract and utilize various forms of zinc-containing raw materials.
  • the method for synthesizing calcium zincate of the present disclosure has mild reaction conditions, and creatively adds calcium oxide or calcium hydroxide to the ammonium carbonate-zinc ammonia complex system, so that the balance of zinc ammonia complex ion-zinc ion-calcium zincate occurs.
  • the selective crystallization separation of zinc element is realized through the principle of balanced movement without destroying the ammonia environment of the solution, and a high-value-added calcium zincate product is obtained.
  • the disclosed process does not require ammonia evaporation, is simple and easy to operate, greatly reduces the energy consumption of the process, and also avoids ammonia in the ammonia evaporation process.
  • Environmental damage causes a large amount of co-precipitation of impurities, hidden dangers of high temperature and high pressure, and equipment corrosion.
  • the method of the present disclosure solves the problems of process recovery rate and quality grade.
  • the obtained calcium zincate can be used directly as a product or as an industrial raw material, which has good economic benefits.
  • the method disclosed in the present disclosure is less polluting and the auxiliary materials can be recycled, which solves the problem of environmental pollution caused by the existing zinc raw material processing process auxiliary materials.
  • a low-grade zinc-containing raw ore may be a zinc-containing raw ore having a zinc content of 3% to 15%; in particular, prior to the present disclosure, a zinc-containing raw ore (lean, dressing tailings having a zinc content of 3% to 6%) (Mine) is stored in a large amount, and the existing various processes cannot use it economically, resulting in great processing pressure, and the method disclosed in the present disclosure not only technically realizes such low-grade zinc-containing raw materials. Effective utilization, simple and easy process, low cost, and high economic value.
  • the existence form of the zinc component in the zinc-containing raw ore is not particularly limited, and for example, the zinc component may exist in one or more forms including, but not limited to, zinc oxide, zinc carbonate, zinc silicate, and the like. Glossary
  • zinc ammonium carbonate is a general term for compounds formed by zinc ammonium ions and carbonate, including [Zn (NH 3 ) 4 ] CO 3 (tetraammonium zinc carbonate), [Zn (NH 3 ) 3 ] CO 3 (zinc ammonium carbonate), [Zn (NH 3 ) 2 ] CO 3 (zinc ammonium carbonate), [Zn (NH 3 )] CO 3 (zinc ammonium carbonate) Wait.
  • zinc ammonia complex ions is a collective term for all levels of ammonia zinc complex ions, including [Zn (NH 3 ) 4 ] 2+ (tetraammine zinc ion), [Zn (NH 3 ) 3 ] 2+ (triammonium zinc ion), [Zn (NH 3 ) 2 ] 2+ (diammonium zinc ion), [Zn (NH 3 )] 2+ (monoammonium zinc ion), and the like.
  • Optional or “optionally” means that a step described later may or may not be performed, and the expression includes a case where the step described later is performed and a case where the step described later is not performed.
  • the pulverized zinc-containing raw material and the prepared extractant are mixed at a certain ratio for stirring and leaching.
  • the leaching agent may be selected from: a mixed aqueous solution of ammonia and ammonium bicarbonate; a mixed aqueous solution of ammonia and ammonium carbonate; a mixed aqueous solution of ammonia, ammonium bicarbonate and ammonium carbonate.
  • the zinc-containing raw material is not particularly limited, and may be, for example, a zinc-containing raw ore, especially a low-grade zinc-containing raw ore.
  • the total ammonia concentration and effective carbonate concentration in the leaching agent are not particularly limited, and those skilled in the art may select according to factors such as raw material composition, grade and the like according to actual needs.
  • the mass concentration of total ammonia in the leaching agent is 5% to 15%, more preferably 6% to 8%.
  • the preferred concentration range can achieve a sufficient leaching effect, while avoiding waste caused by excessive ammonia. And environmental issues.
  • the amount of effective carbonate in the extractant is increased by 0 to 500% based on the difference between the theoretical consumption of carbonate complexed with zinc minus the amount of carbonate carried by zinc carbonate in the raw material, More preferably, the amount of effective carbonate in the extractant is increased by 50% to 150% on the basis of the difference between the theoretical consumption of carbonate complexed with zinc and the amount of carbonate carried by zinc carbonate in the raw material.
  • the theory of complex zinc carbonate consumption refers to the amount of carbonate used to completely convert the zinc element in the raw material into ammonium zinc carbonate. Therefore, the molar concentration of effective carbonate in the extractant can be calculated as follows:
  • C extractive agent carbonate is the molar concentration of effective carbonate in the extractant
  • n raw material total zinc is the amount of the zinc element in the zinc-containing raw material
  • n raw material zinc carbonate is the The amount of the substance
  • V extractant is the volume of the extractant
  • a is a coefficient
  • the value of a is 100% to 600%, preferably 150% to 250%.
  • the mass concentration of carbonate in the extractant can be converted according to the molar concentration.
  • the effective carbonate concentration of the preferred extractant can complete the leaching of zinc in the raw material, and can realize the circulation of carbonate in the process, and can avoid the excessive pressure of carbonate to the subsequent process treatment.
  • the weight ratio of the leaching agent to the zinc-containing raw material is not particularly limited as long as the zinc component can be leached.
  • the weight ratio of the extractant to the zinc-containing raw material is 3: 1 to 5: 1, which can obtain a satisfactory extractive effect and avoid waste of the extractant.
  • the leaching temperature is not particularly limited as long as the zinc component in the zinc-containing raw material (for example, zinc-containing raw ore powder) is leached.
  • the extraction is preferably performed at normal temperature, for example, at 15-30 ° C; the extraction can also be performed at a slightly higher temperature (such as 30-55 ° C). You can also choose the appropriate temperature according to the actual conditions.
  • the zinc-containing raw material (such as zinc-containing raw ore powder) is mixed with the extractant and stirred.
  • the stirring time is not particularly limited, as long as the zinc component in the raw material is leached, the stirring time is preferably 1 to 4 hours, and more preferably 1 ⁇ 2 hours.
  • the zinc element in the raw material is converted into zinc ammonia complex ions (mainly zinc amine complex ions at various levels) and enters the liquid phase.
  • filtration was performed to obtain an leaching solution containing zinc ammonia complex ions.
  • the leachate can be used in the subsequent decarburization process.
  • the concentration of zinc ammonia complex ions in the leaching solution is not particularly limited, but the concentration of zinc ammonia complex ions (based on the mass of zinc element) in the leaching solution is preferably 10 to 25 g / L, which can optimize the processing efficiency of the process. Good yield and purity are obtained in the calcium acid synthesis step, and the comprehensive economic benefit is the best.
  • the leaching liquid may optionally be concentrated or diluted to adjust the concentration of zinc ammonia ion in the leaching liquid to a preferred range of 10 to 25 g / L.
  • Step 2 is optional. If necessary, choose Step 2.
  • the leaching solution is purified by a known method to remove impurities such as iron, manganese, lead, and copper.
  • An exemplary purification method is to add zinc powder for replacement and then filter to remove heavy metal contaminants, but various other known purification methods can also be used.
  • the purification step helps to improve the purity of the final product.
  • the decarburization step calcium hydroxide and / or calcium oxide is added to the leaching solution containing zinc ammonia complex ions, and the carbonate / bicarbonate in the leaching solution is converted into calcium carbonate. If the concentration of zinc ammonium ions in the leachate is too high, the equilibrium movement of zinc ammonium ions-zinc ions-zinc hydroxide in the leachate may occur at the same time, and a small part of the zinc components may be co-formed with calcium carbonate in the form of zinc hydroxide. precipitation.
  • the amount of calcium hydroxide and / or calcium oxide added roughly matches the effective carbonate content in the leachate.
  • the amount of calcium hydroxide and / or calcium oxide added in the decarburization step is effective in the leachate.
  • the amount of the carbonate substance is 100% to 130%, more preferably 100% to 110%. Appropriate addition of calcium hydroxide and / or calcium oxide can help control process costs and also improve the purity and quality of the finished zinc product.
  • the reaction temperature is not particularly limited, and it is particularly preferable to carry out the reaction at normal temperature (for example, 15 to 25 ° C.), on the one hand, saving energy, and on the other hand, reducing environmental pollution caused by volatilization of ammonia.
  • the stirring time is not particularly limited as long as a precipitate is obtained, and it is preferably stirred for 1 to 2 hours.
  • the main component of the first solid is calcium carbonate. If the concentration of zinc ammonium ions in the leachate is high, there may also be some zinc hydroxide co-precipitated with calcium carbonate in the first solid.
  • the first solid can be calcined into calcium oxide and carbon dioxide to realize recycling.
  • the first filtrate continued to be used for subsequent calcium zincate synthesis.
  • the ratio of the amount of the calcium hydroxide and / or calcium oxide substance added to the amount of the zinc ammonia complex ion substance in the first filtrate is preferably 1 to 1.2: 2, and more preferably 1 to 1.1.2.
  • the reaction temperature is not particularly limited, and may be, for example, 15 to 90 ° C, preferably 20 to 90 ° C, and more preferably 30 to 60 ° C; or a reaction temperature of normal temperature (15 to 25 ° C) is also preferred. Advantages of reducing environmental pollution caused by ammonia volatilization.
  • the main component of the second solid is calcium zincate.
  • the calcium zincate component can account for more than 95% of the total mass of the second solid.
  • carbon dioxide may be passed into the second filtrate, and then recycled for extraction of zinc-containing raw materials.
  • an active agent may be added to the first filtrate, and then calcium hydroxide and / or calcium oxide are added, and the reaction is performed by stirring.
  • the active agent is preferably sodium hexametaphosphate or sodium dodecylbenzenesulfonate, and the amount is preferably 0.01 to 0.05% of the estimated final product mass.
  • the reaction temperature is particularly preferably normal temperature (15-25 ° C), and a lower temperature is more favorable for controlling the crystal grain size.
  • Another alternative way to control the crystal particle size is to stir the reaction for 15 to 30 minutes and then perform filtration without long reaction and aging processes.
  • This step is optional and a rinsing step is performed if necessary.
  • the second solid is rinsed with water, the liquid-solid ratio is 5 to 10: 1, and the number of rinses is 1 to 2 times.
  • the second solid is dried at a temperature not higher than 125C to obtain a final product containing calcium zincate as a main component. If one or more measures such as adding an active agent, normal temperature reaction, and controlling stirring reaction time are adopted in the calcium zincate synthesis step, a final product containing nano calcium zincate as a main component can be obtained, and the average particle diameter is 10 ⁇ 100nm.
  • a zinc mine in Yunnan with a zinc content of 5.6% and an original ore oxidation rate of 96.3%.
  • the zinc component of this mine is mainly zinc carbonate.
  • the zinc-ammonia complex solution obtained by filtration is subjected to purification treatment.
  • a zinc mine in Chongqing with a zinc content of 4.7% and an original ore oxidation rate of 95.52%.
  • the zinc component in this mine is mainly zinc silicate.
  • the zinc-ammonia complex solution obtained by filtration is subjected to purification treatment.
  • a zinc mine in Yunnan with a zinc content of 5.6% and an original ore oxidation rate of 96.3%.
  • the zinc component of this mine is mainly zinc carbonate.
  • the zinc-ammonia complex solution obtained by filtration is subjected to purification treatment.
  • a zinc mine in Chongqing has a zinc content of 4.7% and a raw ore oxidation rate of 95.52%.
  • the zinc component in it is mainly zinc silicate.
  • the zinc-ammonia complex solution obtained by filtration is subjected to purification treatment.

Abstract

提供一种生产锌酸钙的方法。该方法包括:浸提步骤:将磨细后的含锌原料与浸提剂混合搅拌,过滤,得到浸出液,其中,浸提剂为氨与NH4HCO3和/或(NH4)2CO3的混合水溶液;任选地,对浸出液进行净化;脱碳步骤:向浸出液中加入氧化钙和/或氢氧化钙,搅拌,过滤,得到第一固体和第一滤液;锌酸钙合成步骤:向第一滤液中加入氢氧化钙和/或氧化钙,搅拌进行反应,过滤得到第二固体和第二滤液;任选地,用水漂洗第二固体;干燥步骤:将第二固体干燥,得到锌酸钙终产品。

Description

一种生产锌酸钙的方法 技术领域
本发明属于无机化工技术领域,涉及锌酸钙的生产方法,特别是涉及一种利用低品位氧化锌原矿生产锌酸钙的方法。
背景技术
锌酸钙具有广泛的用途。锌酸钙用于碱性二次锌电极的负极材料是近年新开辟的方向,正在不断成熟和工业化;与传统的氧化锌脱硫剂相比,锌酸钙为脱硫活性组分的常温脱硫剂,其硫容大幅度增加;锌酸钙作为饲料添加剂不仅利于动物吸收,也利于减少环境污染。锌酸钙同时还可以广泛用于釉料、油漆、涂料添加剂等。
现有技术中锌酸钙的制备方法限于实验性的探索,尚不成熟。例如,中国专利公开CN1397498A和CN1595688A都公开了球磨法合成锌酸钙的方法,其中中国专利公开CN1397498A中公开的是将Ca(OH) 2和ZnO按锌酸钙化学式中的比例放入球磨罐中,加入适量水,在氩气氛保护下球磨8-18小时,然后在30-80℃下烘烤10-15小时后得到产品;美国专利5,460,899公开了一种用ZnO和Ca(OH) 2在碱液中反应生成锌酸钙的方法;中国专利CN2012100305744中公开用可溶性锌盐与化学计量比的Ca(OH) 2配成乳状液生成锌酸钙。上述方法中需要以成品高纯度氧化锌或成品锌盐为起始原料,原料昂贵,且反应条件苛刻,耗能高,反应不完全,收率低,反应特异性差,易受杂质干扰,总体制备过程成本高昂,不适于工业化应用。
锌酸钙产品用途广泛,具有良好的市场前景,然而目前缺乏工业上成熟稳定的生产方法。另一方面,中国的锌矿总体上品位低,低品位采矿尾矿及选矿尾矿大量堆存,此前的火法、硫酸浸出法、氯化钙法、氯化铵法、加热蒸氨法等工艺存在能耗高、污染大、成本高等问题,无法经济有效地 利用低品位锌矿源生产各种含锌产品(如锌酸钙)。可见,因现有技术的局限,市场需求难以得到满足。
发明内容
发明要解决的问题
现有技术中锌酸钙的制备方法限于实验性的探索,需要用高纯度成品氧化锌或锌盐为原料,反应条件苛刻,易受杂质干扰,收率低,不适于工业化应用。同时,现有技术中低品位氧化锌矿利用的工艺存在耗能高、选矿回收率低、造成严重环境污染、经济价值低等问题。本发明提出新的处理工艺,解决现有技术中缺乏工业化制备锌酸钙的工艺、低品位锌矿得不到经济有效利用等一方面或多方面的问题。
用于解决问题的方案
为解决现有技术存在的问题,本公开提供一种生产锌酸钙的方法,包括以下步骤:
浸提步骤:将磨细后的含锌原料与浸提剂混合搅拌,然后过滤,得到浸出液,其中,所述浸提剂为氨和碳酸氢铵的混合水溶液,或氨和碳酸铵的混合水溶液,或氨、碳酸氢铵和碳酸铵的混合水溶液;
任选地,对所述浸提步骤中得到的浸出液进行净化;
脱碳步骤:向所述浸出液中加入氧化钙和/或氢氧化钙,搅拌,然后过滤,得到第一固体和第一滤液;
锌酸钙合成步骤:向所述第一滤液中加入氢氧化钙和/或氧化钙,搅拌进行反应,过滤得到第二固体和第二滤液;
任选地,用水漂洗所述第二固体;
干燥步骤:将所述第二固体干燥,得到锌酸钙终产品。
在本公开进一步的实施方案提供的生产锌酸钙的方法中:
在所述锌酸钙合成步骤中,在向所述第一滤液中加入氢氧化钙和/或 氧化钙之前,先向所述第一滤液中加入活性剂;
所述锌酸钙终产品的平均粒径为10~100nm。
在本公开进一步的实施方案提供的生产锌酸钙的方法中,
所述浸提剂中的总氨的质量浓度为5%~15%,所述浸提剂中的有效碳酸根的摩尔浓度为:
C 浸提剂碳酸根=(n 原料总锌-n 原料碳酸锌)×a/V 浸提剂
其中,
C 浸提剂碳酸根为所述浸提剂中的有效碳酸根的摩尔浓度,
n 原料总锌为所述含锌原料中的锌元素的物质的量,
n 原料碳酸锌为所述含锌原料中的碳酸锌的物质的量,
V 浸提剂为所述浸提剂的体积,
a的取值范围为100%~600%,优选150%~250%。
在本公开进一步的实施方案提供的生产锌酸钙的方法中,在所述浸提步骤得到的所述浸出液中,锌氨络离子的浓度(以锌元素的质量计)为10~25g/L。
在本公开进一步的实施方案提供的生产锌酸钙的方法中,在所述脱碳步骤中加入的氧化钙和/或氢氧化钙的物质的量为所述浸出液中的有效碳酸根的物质的量的100%至130%,优选100%至110%。
在本公开进一步的实施方案提供的生产锌酸钙的方法中,在所述锌酸钙合成步骤中,向所述第一滤液中加入氢氧化钙和/或氧化钙的物质的量与第一滤液中锌氨络离子的物质的量之比为1~1.2:2,优选1~1.1:2。
在本公开进一步的实施方案提供的生产锌酸钙的方法中,向所述锌酸钙合成步骤得到的所述第二滤液通入二氧化碳,将通入了二氧化碳的第二滤液作为浸提剂,循环用于含锌原料的浸提。
在本公开进一步的实施方案提供的生产锌酸钙的方法中,所述锌酸钙合成步骤的反应温度为15~90℃,优选30~60℃,或者优选15~25℃。
在本公开进一步的实施方案提供的生产锌酸钙的方法中,所述锌酸钙合成步骤的搅拌反应时间为15~30分钟。
在本公开进一步的实施方案提供的生产锌酸钙的方法中,所述活性剂为选自六偏磷酸钠、十二烷基苯磺酸钠中的一种或多种。
发明的效果
本公开实现了以下一方面或多方面的有利技术效果:
1)本公开首次实现了锌氨环境下的锌酸钙合成。本公开从锌氨络离子合成锌酸钙,通过锌氨络离子平衡移动而实现锌元素的选择性结晶分离,特异性地生成锌酸钙,反应适应性强,简单快速,无需投入晶种,通过简便的工艺在氨环境下得到了高纯度的锌酸钙产品,适合工业化生产使用,综合经济效益很高。
2)本公开提供的方法从低品位含锌原矿这样低纯度、多杂质的廉价原料出发实现锌酸钙的生产,将湿法浸出与合成工艺结合,实现超低品位锌矿的经济环保利用。
3)本公开的方法适用范围广,氨-碳铵浸出体系可以有效地对多种形式的含锌原料进行提取和利用。
4)本公开的锌酸钙合成方法反应条件温和,创造性地向碳铵-锌氨络合物体系中加入氧化钙或氢氧化钙,使锌氨络离子-锌离子-锌酸钙的平衡发生移动,在不破坏溶液氨环境的前提下通过平衡移动原理实现锌元素的选择性结晶分离,得到高附加值的锌酸钙产品。不同于传统的通过加热蒸发氨而破坏络合环境实现锌离子结晶分离的固有方法,本公开的工艺无需蒸氨,简便易行,大大降低了工艺的能耗,还避免了蒸氨工艺中氨环境破坏使杂质大量共沉淀、高温高压安全隐患和设备腐蚀等问题。
5)本公开的方法解决了工艺回收率及精品品位问题,所得的锌酸钙可以直接作为产品,也可以作为工业原料,有良好的经济效益。
6)本公开的方法污染小,辅助物料可循环,解决了现有的锌原料处 理工艺辅助原料带来的环境污染的问题。
具体实施方式
以下将详细说明本公开的各种示例性实施例、特征和方面。在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
另外,为了更好地说明本公开,在下文的具体实施方式中给出了众多的具体细节。在一些实例中,对于本领域技术人员熟知的方法、手段、试剂和设备未作详细描述,但本领域技术人员可以根据本领域的一般知识实现本公开的技术方案。
本公开的方法的适用范围没有特别限定,可广泛适用于各种含锌原料的利用。在以低品位氧化锌原矿为生产原料时,本文公开的方法的优点特别突出。例如,低品位含锌原矿可以是含锌量在3%~15%的含锌原矿;特别地,在本公开之前,含锌量在3%~6%的含锌原矿(贫矿、选矿尾矿)大量堆存,现有的各种工艺对无法对其实现有经济价值的利用,造成很大的处理压力,而本公开的方法不仅在技术上实现了对此类低品位含锌原料的有效的利用,而且工艺简便易行,成本低廉,具有很高的经济价值。
在本公开中,含锌原矿中锌成分的存在形式没有特别限制,例如锌成分可以以包括但不限于氧化锌、碳酸锌、硅酸锌等的一种或多种形式存在。名词解释
在本文中,除非另有说明,“碳酸氨合锌”是锌氨络离子与碳酸根形成的化合物的总称,包括[Zn(NH 3) 4]CO 3(碳酸四氨合锌)、[Zn(NH 3) 3]CO 3(碳酸三氨合锌)、[Zn(NH 3) 2]CO 3(碳酸二氨合锌)、[Zn(NH 3)]CO 3(碳酸一氨合锌)等。
在本文中,除非另有说明,“锌氨络离子”是各级氨合锌络离子的总称,包括[Zn(NH 3) 4] 2+(四氨合锌离子)、[Zn(NH 3) 3] 2+(三氨合锌离子)、 [Zn(NH 3) 2] 2+(二氨合锌离子)、[Zn(NH 3)] 2+(一氨合锌离子)等。
在本文中,除非另有说明,溶液(包括但不限于浸提剂、浸出液等各种液体)中的“有效碳酸根”是指该溶液中碳酸根与碳酸氢根的总和。
“任选的”或“任选地”表示随后所述的步骤可以进行,或者可以不进行,并且该表述包括随后所述的步骤进行的情形和随后所述的步骤不进行的情形。
化学反应式
1.浸提
a.氧化锌浸提
氨与碳酸氢铵作为浸提剂
ZnO+(i-1)NH 3+NH 4HCO 3=[Zn(NH 3) i]CO 3+H 2O(i为1至4的整数)
氨与碳酸铵作为浸提剂
ZnO+(i-2)NH 3+(NH 4) 2CO 3=[Zn(NH 3) i]CO 3+H 2O(i为2至4的整数)
b.氢氧化锌浸提
氨与碳酸氢铵作为浸提剂
Zn(OH) 2+(i-1)NH 3+NH 4HCO 3=[Zn(NH 3) i]CO 3+2H 2O
(i为1至4的整数)
氨与碳酸铵作为浸提剂
Zn(OH) 2+(i-2)NH 3+(NH 4) 2CO 3=[Zn(NH 3) i]CO 3+2H 2O
(i为2至4的整数)
c.碳酸锌(菱锌矿)浸提
ZnCO 3+iNH 3=[Zn(NH 3) i]CO 3(i为1至4的整数)
d.硅酸锌浸提
氨与碳酸氢铵作为浸提剂
ZnSiO 3+(i-1)NH 3+NH 4HCO 3=[Zn(NH 3) i]CO 3+H 2O+SiO 2
(i为1至4的整数)
氨与碳酸铵作为浸提剂
ZnSiO 3+(i-2)NH 3+(NH 4) 2CO 3=[Zn(NH 3) i]CO 3+H 2O+SiO 2
(i为2至4的整数)
2.脱碳
石灰与水反应
CaO+H 2O=Ca(OH) 2
沉淀
Ca(OH) 2+(NH 4) 2CO 3=CaCO 3↓+2NH 3·H 2O
Ca(OH) 2+NH 4HCO 3=CaCO 3↓+NH 3+2H 2O
[Zn(NH 3) i]CO 3+Ca(OH) 2=[Zn(NH 3) i](OH) 2+CaCO 3
(i为1至4的整数)
可能发生的副反应:
Ca(OH) 2+[Zn(NH 3) i]CO 3=CaCO 3↓+Zn(OH) 2↓+iNH 3
(i为1至4的整数)
3.锌酸钙合成
2[Zn(NH 3) i](OH) 2+Ca(OH) 2+2H 2O=Ca(OH) 2·2Zn(OH) 2·2H 2O+2iNH 3
(i为1至4的整数)
具体工艺步骤
步骤1浸提
将磨细后含锌原料与配制好的浸提剂按一定比例混合进行搅拌浸出。浸提剂可以选自:氨和碳酸氢铵的混合水溶液;氨和碳酸铵的混合水溶液;氨、碳酸氢铵和碳酸铵的混合水溶液。含锌原料没有特别限制,例如可以是含锌原矿,特别是低品位含锌原矿。
浸提剂中的总氨浓度和有效碳酸根浓度没有特别限制,本领域技术人员可根据原料成分、品位等因素,结合实际需要进行选择。
在优选的方案中,浸提剂中总氨的质量浓度为5%~15%,更优选 6%~8%,优选的浓度范围可达到充分的浸提效果,又避免过多的氨造成浪费和环保问题。
在优选的方案中,浸提剂中有效碳酸根的量是在络合锌理论碳酸根耗用量减去原料中碳酸锌带入的碳酸根量所得之差的基础上增加0~500%,更优选浸提剂中有效碳酸根的量在络合锌理论碳酸根耗用量减去原料中碳酸锌带入的碳酸根量所得之差的基础上增加50%~150%。络合锌理论碳酸根耗用量是指将原料中的锌元素完全转化为碳酸氨合锌所耗用的碳酸根的量。因此,浸提剂中有效碳酸根的摩尔浓度可以按下式计算:
C 浸提剂碳酸根=(n 原料总锌-n 原料碳酸锌)×a/V 浸提剂
其中,C 浸提剂碳酸根为浸提剂中有效碳酸根的摩尔浓度,n 原料总锌为含锌原料中的锌元素的物质的量,n 原料碳酸锌为含锌原料中的碳酸锌的物质的量,V 浸提剂为浸提剂体积,a为系数,a的取值为100%~600%,优选150%~250%。浸提剂中碳酸根的质量浓度可根据摩尔浓度换算。
优选的浸提剂有效碳酸根浓度可使原料中的锌浸出完全,并且可实现碳酸根在工艺中的循环,又能避免过多的碳酸根对后续工艺处理造成压力。
浸提剂与含锌原料(例如含锌原矿粉)的重量比没有特别限制,只要锌成分可以被浸出即可。优选浸提剂与含锌原料的重量比为3:1至5:1,既可得到满意的浸提效果,又避免浸提剂的浪费。
浸提的温度没有特别限制,只要使含锌原料(例如含锌原矿粉)中的锌成分被浸出即可。优选在常温下进行浸提,例如在15~30℃下进行浸提;也可在稍高的温度下(如30~55℃)进行浸提。也可根据实际条件选择合适的温度。
将含锌原料(例如含锌原矿粉)与浸提剂混合后进行搅拌,搅拌时间没有特别限制,只要使原料中的锌成分被浸出即可,优选搅拌时间为1~4小时,更优选1~2小时。
在浸提过程中,原料中的锌元素转化为锌氨络离子(主要为各级锌氨 络离子),进入液相中。浸提后进行过滤,过滤后得到含有锌氨络离子的浸出液。浸出液可用于后续的脱碳过程。浸出液中的锌氨络离子浓度没有特别限制,但优选浸出液中的锌氨络离子浓度(以锌元素的质量计)为10~25g/L,可使工艺的处理效率最优,在后续的锌酸钙合成步骤中得到良好的收率和纯度,综合经济效益最佳。如果原始浸出的液体中锌氨络离子浓度不在优选范围内,也可任选地将浸出的液体进行浓缩或稀释,将浸出液中的锌氨络离子浓度调节为优选的10~25g/L范围。
步骤2净化
步骤2为任选的步骤,在有必要时选择进行步骤2。将浸出液按公知方法进行净化,去除铁、锰、铅、铜等杂质元素。一种示例性的净化方法是添加锌粉进行置换然后过滤,从而除去重金属污染物,但也可以使用其他各种公知的净化方法。净化步骤有助于提高终产品的纯度。
步骤3脱碳
在脱碳步骤中,向含有锌氨络离子的浸出液中加入氢氧化钙和/或氧化钙,将浸出液中的碳酸根/碳酸氢根转为碳酸钙。如果浸出液中锌氨络离子浓度过高,则有可能同时发生浸出液中锌氨络离子-锌离子-氢氧化锌的平衡移动,极少的一部分锌成分可能以氢氧化锌的形式与碳酸钙共沉淀。
在脱碳步骤中,氢氧化钙和/或氧化钙的添加量大致匹配浸出液中有效碳酸根的含量,例如,脱碳步骤加入的氢氧化钙和/或氧化钙的物质的量为浸出液中有效碳酸根的物质的量的100%至130%,更优选100%至110%。适量地添加氢氧化钙和/或氧化钙,有助于控制工艺成本,也有助于改善成品锌产品的纯度和品质。
在脱碳步骤中,向浸出液中加入氢氧化钙和/或氧化钙,搅拌进行反应,生成固体沉淀。反应的温度没有特别限制,特别优选在常温下进行反应(例如15~25℃),一方面节约能源,另一方面也减少氨挥发造成的环境污染。搅拌时间没有特别限制,只要获得沉淀即可,优选搅拌1~2小时。
搅拌后进行过滤,得到第一固体和第一滤液。第一固体的主要成分为碳酸钙,如果浸出液中锌氨络离子的浓度较高,则第一固体中也可能存在一些与碳酸钙共沉淀的氢氧化锌。可将第一固体煅烧为氧化钙和二氧化碳,实现循环利用。第一滤液继续用于后续的锌酸钙合成。
步骤4锌酸钙合成
向第一滤液中加入氢氧化钙和/或氧化钙,搅拌进行反应。本步骤中加入的氢氧化钙和/或氧化钙的物质的量与第一滤液中锌氨络离子的物质的量之比优选1~1.2:2,更优选1~1.1:2。反应温度没有特别限制,可以是例如15~90℃,优选20~90℃,进一步优选30~60℃;或者也优选常温(15~25℃)的反应温度,该温度范围具有无需加热、节能且减少氨挥发造成的环境污染的优点。优选反应0.5~2小时(更优选0.5~1小时)后即进行过滤,无需长时间的反应和陈化过程。过滤得到第二固体和第二滤液。第二固体的主要成分为锌酸钙,一般而言锌酸钙成分可占第二固体总质量的95%以上。另外可向第二滤液通入二氧化碳,然后循环用于含锌原料的浸提。
特别地,如果希望控制产物锌酸钙的粒径,本步骤可以向第一滤液中加入活性剂,然后再加入氢氧化钙和/或氧化钙,搅拌进行反应。活性剂优选六偏磷酸钠或十二烷基苯磺酸钠,用量优选为估算终产品质量的0.01~0.05%。反应温度特别优选常温(15~25℃),较低的温度更有利于控制结晶粒径。控制结晶粒径的另一可选方式是搅拌反应15~30分钟后即进行过滤,无需长时间的反应和陈化过程。
步骤5漂洗
本步骤为任选的步骤,在有必要时进行漂洗步骤。将第二固体用水进行漂洗,液固比5~10:1,漂洗次数1~2次。
步骤6干燥
将第二固体在不高于125℃的温度下进行干燥,得到以锌酸钙为主要 成分的终产品。如果在锌酸钙合成步骤中采用了加入活性剂、常温反应、控制搅拌反应时间等一种或多种措施,可得到以纳米锌酸钙为主要成分的终产品,其平均粒径为10~100nm。
下面将结合实施例对本公开的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本公开,而不应视为对本公开的范围的限定。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
实施例1
云南某地锌矿,锌含量5.6%,原矿氧化率96.3%,该矿中的锌成分以碳酸锌为主要存在形式。
取300克含锌原矿,放入900毫升的氨-碳铵混合液(总氨质量浓度10%,碳酸根质量浓度3%)中进行搅拌浸提,浸提温度常温,搅拌时间为2小时,然后进行过滤,过滤后的液体中含锌(以氧化锌当量计)1.632%,液体中碳酸根质量浓度为4.23%,增加部分为原矿中碳酸锌带入。根据检验数据,浸提过程原矿中可溶锌回收率为90.79%,总锌回收率为87.43%。
将过滤得到的锌氨络合液进行净化处理。
取600毫升浸提后过滤得到的锌氨络合液,加入14.55克氧化钙,用于沉淀碳酸根,反应1小时后进行过滤。
取过滤后的液体500毫升,加入2.45克氢氧化钙用于锌酸钙的合成,在常温下搅拌进行反应,反应1小时后进行过滤,过滤后的固体在105℃下干燥2小时,进行取样分析,经检验固体中锌酸钙含量为99.65%。
实施例2
重庆某地锌矿,锌含量4.7%,原矿氧化率95.52%,该矿中的锌成分以硅酸锌为主要存在形式。
取300克含锌原矿,放入900毫升的氨-碳铵混合液(总氨质量浓度10%, 碳酸根质量浓度3%)中进行搅拌浸提,浸提温度常温,搅拌时间为2小时,然后进行过滤,过滤后的液体中含锌(以氧化锌当量计)1.367%,液体中碳酸根质量浓度3.54%,增加部分为原矿中碳酸锌带入。根据检验数据,浸提过程原矿中可溶锌回收率为91.35%,总锌回收率为87.26%。
将过滤得到的锌氨络合液进行净化处理。
取600毫升浸提后过滤得到的锌氨络合液,加入12.18克氧化钙,用于沉淀碳酸根,反应1小时后进行过滤。
取过滤后的液体500毫升,加入2克氢氧化钙用于锌酸钙的合成,在常温下搅拌进行反应,反应1小时后进行过滤,过滤后的固体在105℃下干燥2小时,进行取样分析,经检验固体中锌酸钙含量为99.49%。
实施例3
云南某地锌矿,锌含量5.6%,原矿氧化率96.3%,该矿中的锌成分以碳酸锌为主要存在形式。
取300克含锌原矿,放入900毫升的氨-碳铵混合液(总氨质量浓度10%,碳酸根质量浓度3%)中进行搅拌浸提,浸提温度常温,搅拌时间为2小时,然后进行过滤,过滤后的液体中含锌(以氧化锌当量计)1.632%,液体中碳酸根质量浓度为4.23%,增加部分为原矿中碳酸锌带入。根据检验数据,浸提过程原矿中可溶锌回收率为90.79%,总锌回收率为87.43%。
将过滤得到的锌氨络合液进行净化处理。
取600毫升浸提后过滤得到的锌氨络合液,加入14.55克氧化钙,用于沉淀碳酸根,反应1小时后进行过滤。
取过滤后的液体500毫升,加入3毫克十二烷基苯磺酸钠,再加入2.45克氢氧化钙用于锌酸钙的合成,在常温下搅拌进行反应,反应0.5小时后进行过滤,过滤后的固体在105℃下干燥2小时,进行取样分析,经检验固体中锌酸钙含量为99.65%,平均粒径37.1nm。
实施例4
重庆某地锌矿,锌含量4.7%,原矿氧化率95.52%,中的锌成分以硅酸锌为主要存在形式。
取300克含锌原矿,放入900毫升的氨-碳铵混合液(总氨质量浓度10%,碳酸根质量浓度3%)中进行搅拌浸提,浸提温度常温,搅拌时间为2小时,然后进行过滤,过滤后的液体中含锌(以氧化锌当量计)1.367%,液体中碳酸根质量浓度3.54%,增加部分为原矿中碳酸锌带入。根据检验数据,浸提过程原矿中可溶锌回收率为91.35%,总锌回收率为87.26%。
将过滤得到的锌氨络合液进行净化处理。
取600毫升浸提后过滤得到的锌氨络合液,加入12.18克氧化钙,用于沉淀碳酸根,反应1小时后进行过滤。
取过滤后的液体500毫升,加入3毫克十二烷基苯磺酸钠,再加入2克氢氧化钙用于锌酸钙的合成,在常温下搅拌进行反应,反应0.5小时后进行过滤,过滤后的固体在105℃下干燥2小时,进行取样分析,经检验固体中锌酸钙含量为99.49%,平均粒径42.3nm。
以上已经描述了本公开的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。

Claims (10)

  1. 一种生产锌酸钙的方法,其特征在于,所述生产锌酸钙的方法包括以下步骤:
    浸提步骤:将磨细后的含锌原料与浸提剂混合搅拌,然后过滤,得到浸出液,其中,所述浸提剂为氨和碳酸氢铵的混合水溶液,或氨和碳酸铵的混合水溶液,或氨、碳酸氢铵和碳酸铵的混合水溶液;
    任选地,对所述浸提步骤中得到的浸出液进行净化;
    脱碳步骤:向所述浸出液中加入氧化钙和/或氢氧化钙,搅拌,然后过滤,得到第一固体和第一滤液;
    锌酸钙合成步骤:向所述第一滤液中加入氢氧化钙和/或氧化钙,搅拌进行反应,过滤得到第二固体和第二滤液;
    任选地,用水漂洗所述第二固体;
    干燥步骤:将所述第二固体干燥,得到锌酸钙终产品。
  2. 根据权利要求1所述的生产锌酸钙的方法,其特征在于,
    在所述锌酸钙合成步骤中,在向所述第一滤液中加入氢氧化钙和/或氧化钙之前,先向所述第一滤液中加入活性剂;
    所述锌酸钙终产品的平均粒径为10~100nm。
  3. 根据权利要求1或2所述的生产锌酸钙的方法,其特征在于,
    所述浸提剂中的总氨的质量浓度为5%~15%,所述浸提剂中的有效碳酸根的摩尔浓度为:
    C 浸提剂碳酸根=(n 原料总锌-n 原料碳酸锌)×a/V 浸提剂
    其中,
    C 浸提剂碳酸根为所述浸提剂中的有效碳酸根的摩尔浓度,
    n 原料总锌为所述含锌原料中的锌元素的物质的量,
    n 原料碳酸锌为所述含锌原料中的碳酸锌的物质的量,
    V 浸提剂为所述浸提剂的体积,
    a的取值范围为100%~600%,优选150%~250%。
  4. 根据权利要求1至3任一项所述的生产锌酸钙的方法,其特征在于,在所述浸提步骤得到的所述浸出液中,锌氨络离子的浓度(以锌元素的质量计)为10~25g/L。
  5. 根据权利要求1至4任一项所述的生产锌酸钙的方法,其特征在于,在所述脱碳步骤中加入的氧化钙和/或氢氧化钙的物质的量为所述浸出液中的有效碳酸根的物质的量的100%至130%,优选100%至110%。
  6. 根据权利要求1至5任一项所述的生产锌酸钙的方法,其特征在于,在所述锌酸钙合成步骤中,向所述第一滤液中加入氢氧化钙和/或氧化钙的物质的量与第一滤液中锌氨络离子的物质的量之比为1~1.2:2,优选1~1.1:2。
  7. 根据权利要求1至6任一项所述的生产锌酸钙的方法,其特征在于,向所述锌酸钙合成步骤得到的所述第二滤液通入二氧化碳,将通入了二氧化碳的第二滤液作为浸提剂,循环用于含锌原料的浸提。
  8. 根据权利要求1至7任一项所述的生产锌酸钙的方法,其特征在于,所述锌酸钙合成步骤的反应温度为15~90℃,优选30~60℃,或者优选15~25℃。
  9. 根据权利要求2所述的生产锌酸钙的方法,其特征在于,所述锌酸钙合成步骤的搅拌反应时间为15~30分钟。
  10. 根据权利要求2所述的生产锌酸钙的方法,其特征在于,所述活性剂为选自六偏磷酸钠、十二烷基苯磺酸钠中的一种或多种。
PCT/CN2019/085932 2018-07-24 2019-05-08 一种生产锌酸钙的方法 WO2020019823A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980001920.6A CN110896633B (zh) 2018-07-24 2019-05-08 一种生产锌酸钙的方法
US17/146,475 US11247913B2 (en) 2018-07-24 2021-01-11 Method for producing calcium zincate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810817320.4A CN108622925A (zh) 2018-07-24 2018-07-24 一种利用含锌原矿生产锌酸钙的方法
CN201810817320.4 2018-07-24
CN201810832651.5A CN108585026A (zh) 2018-07-26 2018-07-26 一种利用含锌原矿生产纳米锌酸钙的方法
CN201810832651.5 2018-07-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/146,475 Continuation US11247913B2 (en) 2018-07-24 2021-01-11 Method for producing calcium zincate

Publications (1)

Publication Number Publication Date
WO2020019823A1 true WO2020019823A1 (zh) 2020-01-30

Family

ID=69180860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/085932 WO2020019823A1 (zh) 2018-07-24 2019-05-08 一种生产锌酸钙的方法

Country Status (3)

Country Link
US (1) US11247913B2 (zh)
CN (1) CN110896633B (zh)
WO (1) WO2020019823A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1276343A (zh) * 1999-06-03 2000-12-13 王金刚 活性氧化锌生产新工艺
CN101288821A (zh) * 2007-04-19 2008-10-22 北京三聚环保新材料有限公司 锌酸钙和锌酸钙常温脱硫剂的制备方法
CN104294041A (zh) * 2013-07-19 2015-01-21 无锡永发电镀有限公司 一种低品位氧化锌矿制备活性氧化锌的工艺
CN106115767A (zh) * 2015-12-09 2016-11-16 李果 一种氧化锌矿综合利用的方法
CN106277030A (zh) * 2016-07-29 2017-01-04 柳州豪祥特科技有限公司 利用菱锌矿粉制备氧化锌粉体的方法
CN106277029A (zh) * 2016-07-29 2017-01-04 柳州豪祥特科技有限公司 一种制备氧化锌粉体的方法
CN108585026A (zh) * 2018-07-26 2018-09-28 重庆东群科技有限公司 一种利用含锌原矿生产纳米锌酸钙的方法
CN108622925A (zh) * 2018-07-24 2018-10-09 重庆东群科技有限公司 一种利用含锌原矿生产锌酸钙的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5460899A (en) 1994-08-18 1995-10-24 Energy Research Corporation Sealed zinc secondary battery and zinc electrode therefor
CN1397498A (zh) 2002-09-03 2003-02-19 南开大学 锌镍二次电池负极材料锌酸钙的制备方法
CN1274042C (zh) 2004-07-07 2006-09-06 南开大学 用于碱性二次锌电极的负极材料
EP1715536A3 (en) * 2005-04-20 2007-10-10 ReVolt Technology AS Zinc electrode comprising an organic gelling agent and an organic binder.
CN102774873B (zh) 2007-04-19 2014-06-04 北京三聚环保新材料股份有限公司 锌酸钙和锌酸钙常温脱硫剂的制备方法
CN102849783B (zh) 2012-09-25 2014-06-18 四川锌鸿科技有限公司 利用低品位氧化锌矿氨法脱碳生产高纯纳米氧化锌的方法
CN102828034B (zh) * 2012-09-25 2014-04-23 四川巨宏科技有限公司 一种利用低品位氧化锌矿氨法脱碳生产高纯氧化锌的方法
CN102863008B (zh) * 2012-09-25 2014-06-18 四川锌鸿科技有限公司 一种利用低品位氧化锌矿氨法生产高纯氧化锌的方法
CN102863009B (zh) * 2012-09-25 2014-06-18 四川锌鸿科技有限公司 一种利用低品位氧化锌矿生产高纯氧化锌的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1276343A (zh) * 1999-06-03 2000-12-13 王金刚 活性氧化锌生产新工艺
CN101288821A (zh) * 2007-04-19 2008-10-22 北京三聚环保新材料有限公司 锌酸钙和锌酸钙常温脱硫剂的制备方法
CN104294041A (zh) * 2013-07-19 2015-01-21 无锡永发电镀有限公司 一种低品位氧化锌矿制备活性氧化锌的工艺
CN106115767A (zh) * 2015-12-09 2016-11-16 李果 一种氧化锌矿综合利用的方法
CN106277030A (zh) * 2016-07-29 2017-01-04 柳州豪祥特科技有限公司 利用菱锌矿粉制备氧化锌粉体的方法
CN106277029A (zh) * 2016-07-29 2017-01-04 柳州豪祥特科技有限公司 一种制备氧化锌粉体的方法
CN108622925A (zh) * 2018-07-24 2018-10-09 重庆东群科技有限公司 一种利用含锌原矿生产锌酸钙的方法
CN108585026A (zh) * 2018-07-26 2018-09-28 重庆东群科技有限公司 一种利用含锌原矿生产纳米锌酸钙的方法

Also Published As

Publication number Publication date
CN110896633A (zh) 2020-03-20
US20210130184A1 (en) 2021-05-06
CN110896633B (zh) 2022-05-03
US11247913B2 (en) 2022-02-15

Similar Documents

Publication Publication Date Title
CN109097565B (zh) 一种从离子吸附型稀土矿中高效清洁提取稀土的方法
US9528170B2 (en) Method for producing a high-purity nanometer zinc oxide from steel plant smoke and dust by ammonia decarburization
US9512502B2 (en) Method for producing a high-purity nanometer zinc oxide from low-grade zinc oxide ore by ammonia decarburization
CN109467130A (zh) 一种电池级硫酸锰的制备方法
CN110972479B (zh) 一种两次浸提法生产氧化锌的方法
WO2014047760A1 (zh) 利用电解锌酸浸渣氨法脱碳生产高纯纳米氧化锌的方法
CN101619388B (zh) 二氧化硫气体浸出软锰矿过程中抑制连二硫酸锰生成的方法
CN109264748B (zh) 一种以粗制磷酸锂制备碳酸锂的方法
CN102815730A (zh) 一种高硫铝土矿的氧化脱硫-磁化除铁预处理方法
CN104445425A (zh) 一种高纯硫酸锰的制备方法
CN110817935A (zh) 一种利用锌的再生资源制备高纯度氧化锌的方法
WO2014047761A1 (zh) 一种利用低品位氧化锌矿氨法生产高纯纳米氧化锌的方法
US11247913B2 (en) Method for producing calcium zincate
CN110896643B (zh) 利用含锌原矿经锌酸钙合成中间步骤生产含锌复合物或氧化锌的方法
CN103011295B (zh) 还原制备四氧化三锰的方法
CN108588413A (zh) 一种利用含锌原矿生产纳米氧化锌的方法
CN108622927A (zh) 一种利用含锌原矿生产纳米氧化锌的方法
CN108862372A (zh) 一种利用含锌原矿生产纳米氧化锌与碳酸钙复合物的方法
CN108862369B (zh) 一种利用电解锌酸法浸出渣生产纳米氧化锌的方法
CN108950225B (zh) 一种利用电解锌酸法浸出渣生产氧化锌的方法
CN110205489B (zh) 一种以锌酸钡合成途径处理含锌原矿的方法
CN108585026A (zh) 一种利用含锌原矿生产纳米锌酸钙的方法
CN110972482B (zh) 一种低品位含锌原矿的选矿方法
CN108622925A (zh) 一种利用含锌原矿生产锌酸钙的方法
CN108862367B (zh) 一种利用电解锌酸法浸出渣生产纳米锌酸钙的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19842122

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19842122

Country of ref document: EP

Kind code of ref document: A1