WO2020013193A1 - Filter material for removing leukocytes, filter for removing leukocytes and method for producing same - Google Patents

Filter material for removing leukocytes, filter for removing leukocytes and method for producing same Download PDF

Info

Publication number
WO2020013193A1
WO2020013193A1 PCT/JP2019/027187 JP2019027187W WO2020013193A1 WO 2020013193 A1 WO2020013193 A1 WO 2020013193A1 JP 2019027187 W JP2019027187 W JP 2019027187W WO 2020013193 A1 WO2020013193 A1 WO 2020013193A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
nonwoven fabric
filter material
leukocyte removal
less
Prior art date
Application number
PCT/JP2019/027187
Other languages
French (fr)
Japanese (ja)
Inventor
和也 永峰
貴幸 宮本
武和 前田
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to CN201980046495.2A priority Critical patent/CN112384260A/en
Priority to US17/258,810 priority patent/US20210268415A1/en
Priority to JP2020530206A priority patent/JP7264896B2/en
Publication of WO2020013193A1 publication Critical patent/WO2020013193A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3627Degassing devices; Buffer reservoirs; Drip chambers; Blood filters
    • A61M1/3633Blood component filters, e.g. leukocyte filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/02Blood transfusion apparatus
    • A61M1/0281Apparatus for treatment of blood or blood constituents prior to transfusion, e.g. washing, filtering or thawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • B01D39/163Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin sintered or bonded
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/56Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in association with fibre formation, e.g. immediately following extrusion of staple fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers
    • D04H3/011Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0414Surface modifiers, e.g. comprising ion exchange groups
    • B01D2239/0421Rendering the filter material hydrophilic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/0604Arrangement of the fibres in the filtering material
    • B01D2239/0622Melt-blown
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1216Pore size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1233Fibre diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1291Other parameters
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/10Physical properties porous

Definitions

  • the present invention relates to a filter material for removing leukocytes from blood or the like, a leukocyte removal filter provided with the filter material, and a method for producing the same.
  • the fiber diameter of the non-woven fabric used for the leukocyte removal filter is similar to the size of cells such as blood cells, or in order to form pores smaller than that, it is possible to use ultrafine fibers having a fiber diameter of about 10 ⁇ m or 10 ⁇ m or less. Desired.
  • sterilization is required to kill microorganisms such as pathogens attached in the production process, and steam sterilization is generally used. Therefore, the nonwoven fabric made of ultrafine fibers used for the leukocyte removal filter is used as a filter material after undergoing the heat effect in steam sterilization.
  • the present inventors have studied the leukocyte removal filter disclosed in Patent Document 1, and found that the thermal effect of steam sterilization causes a change in the thermal performance of the nonwoven fabric of the filter material. It has been found that the desired leukocyte removal performance may not be obtained in some cases.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a filter material for leukocyte removal and a leukocyte removal filter having excellent leukocyte removal performance.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, completed the present invention. That is, the gist of the present invention is as follows.
  • a filter material for leukocyte removal wherein the filter material has a nonwoven fabric composed of polyester fibers, and the nonwoven fabric has a melting point at a melting point in a DSC curve obtained by differential scanning calorimetry (DSC).
  • DSC differential scanning calorimetry
  • a filter material having one endothermic peak and a second endothermic peak having a maximum value in a temperature range of 155 ° C or more and 225 ° C or less.
  • the filter material according to [1] wherein the nonwoven fabric has an elongation in at least one direction of 15% or more.
  • a leukocyte removal filter wherein the filter material according to any one of [1] to [7] is arranged in a filter container.
  • a method for producing a leukocyte removal filter comprising a filter material having a nonwoven fabric composed of polyester fibers in a filter container, a) a step of heat-treating the nonwoven fabric composed of polyester fibers in a constrained state at a temperature of 155 ° C. or more and 225 ° C.
  • a method for producing a leukocyte removal filter comprising: [10] The method for producing a leukocyte removal filter according to [9], wherein the polyester fiber is a polyethylene terephthalate fiber. [11] The method for producing a leukocyte removal filter according to [9] or [10], wherein an average fiber diameter of constituent fibers of the nonwoven fabric is 3 ⁇ m or less.
  • the leukocyte removal filter material and leukocyte removal filter of the present invention have excellent leukocyte removal performance.
  • the leukocyte-removing filter material and leukocyte-removing filter of the present invention can stably achieve high performance even after steam sterilization, for example.
  • FIG. 4 shows a DSC measurement data chart of the nonwoven fabric of the filter produced in Production Example 1.
  • 9 shows a DSC measurement data chart of the nonwoven fabric of the filter produced in Production Example 2.
  • 9 shows a measurement data chart of DSC of the nonwoven fabric of the filter manufactured in Production Example 3.
  • 13 shows a DSC measurement data chart of the nonwoven fabric of the filter manufactured in Production Example 4.
  • 13 shows a DSC measurement data chart of the nonwoven fabric of the filter manufactured in Production Example 5.
  • 13 shows a measurement data chart of DSC of the nonwoven fabric of the filter produced in Production Example 6.
  • the filter material of the leukocyte removal filter has a nonwoven fabric composed of polyester fibers, and the nonwoven fabric has a first endothermic peak at a melting point in a DSC curve obtained by differential scanning calorimetry (DSC). And a second endothermic peak having a maximum value in a temperature range of 155 ° C. or more and 225 ° C. or less.
  • DSC differential scanning calorimetry
  • the filter material of the present invention exhibits extremely high leukocyte removal performance.
  • the change in the thermal characteristics of the nonwoven fabric of the filter material before and after steam sterilization is small, and a filter material having high leukocyte removal performance can be easily manufactured. .
  • the filter material is used for filtering a liquid containing leukocytes
  • the leukocyte-containing liquid include whole blood, bone marrow, umbilical cord blood, menstrual blood, tissue extract, and those obtained by roughly separating them.
  • the animal species as a source of the leukocyte-containing liquid is not particularly limited, and mammals such as humans, cows, mice, rats, pigs, monkeys, dogs, and cats are preferable.
  • the nonwoven fabric forming the filter material is not particularly limited as long as it is at least made of polyester fibers, and it is preferable that polyester fibers are contained as a main component of the constituent fibers of the nonwoven fabric.
  • 75% by mass or more of the constituent fibers are more preferably made of polyester fibers, more preferably 85% by mass or more, and even more preferably 95% by mass or more.
  • polyester constituting the polyester fiber examples include polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and polybutylene naphthalate.
  • polyethylene terephthalate or polybutylene terephthalate is preferably used, and polyethylene terephthalate is more preferably used. Therefore, it is preferable to use polyethylene terephthalate fiber or polybutylene terephthalate fiber as the polyester fiber constituting the nonwoven fabric, and it is more preferable to use polyethylene terephthalate fiber.
  • the nonwoven fabric preferably comprises polyethylene terephthalate fibers or polybutylene terephthalate fibers at 75% by mass or more of the constituent fibers, more preferably at least 85% by mass, even more preferably at least 95% by mass.
  • the type of nonwoven fabric used for the filter material is not particularly limited, and it can be produced by either a wet method or a dry method.
  • a nonwoven fabric obtained by a melt blowing method, a flash spinning method, or a papermaking method is preferable, and a melt blowing method is more preferable, since a nonwoven fabric made of fibers having a smaller fiber diameter can be obtained.
  • the melt blow method it becomes easy to arbitrarily adjust the fiber diameter, the basis weight, the average pore diameter, and the like of the filter material. Therefore, it is preferable to use a melt blown nonwoven fabric as the nonwoven fabric of the filter material.
  • a method for producing a nonwoven fabric by a melt blow method will be described.
  • the molten polymer melted in the extruder is filtered by a suitable filter, guided to a molten polymer introduction portion of a melt blow die, and then discharged from an orifice-shaped nozzle.
  • the heating gas introduced into the heating gas introduction unit is guided to a heating gas ejection slit formed by a melt blow die lip, and is ejected from here to form the above-discharged molten polymer to form ultrafine fibers.
  • a nonwoven fabric is obtained by laminating.
  • a desired value can be obtained.
  • a nonwoven fabric having a fiber diameter and a basis weight can be obtained, and fiber orientation and fiber dispersibility can be controlled. Furthermore, it is also possible to control the thickness and average pore diameter of the nonwoven fabric by hot pressing.
  • the nonwoven fabric of the filter material has a first endothermic peak at a melting point and a second endothermic peak having a maximum value in a temperature range of 155 ° C or more and 225 ° C or less in a DSC curve obtained by differential scanning calorimetry (DSC). .
  • the first endothermic peak is derived from the melting point of the fiber constituting the nonwoven fabric. In the case of polyethylene terephthalate fiber, the first endothermic peak usually shows an endothermic peak derived from the melting point in a temperature range of 250 ° C.
  • an endothermic peak derived from the melting point is usually shown in the temperature range of 220 to 230 ° C. It is considered that the second endothermic peak is caused by a crystal structure having a different stability (size, structure, etc.) from the crystal structure at the melting point.
  • the fact that the nonwoven fabric of the filter material has the second endothermic peak indicates that a plurality of crystal structures exist in the constituent fibers (particularly, polyester fibers) of the nonwoven fabric.
  • the present inventors have investigated the relationship between the filter performance of the filter material and the second endothermic peak by focusing on the second endothermic peak, and found that the maximum value of the second endothermic peak is in a temperature region of 155 ° C or more and 225 ° C or less. It was found that, while recovering erythrocytes in high yield, leukocytes which cause various non-hemolytic side effects when remaining in blood products can be removed at an extremely high removal rate. Then, it has been found that by appropriately adjusting the maximum value of the second endothermic peak, a certain degree of stability can be obtained in a crystal structure different from the crystal structure at the melting point.
  • the differential scanning calorimetry is performed as follows. Using a differential scanning calorimeter (EXSTAR6000 @ DSC6200R, manufactured by Seiko Instruments Inc.), the nonwoven fabric was taken out from the filter material, and about 4.5 to 5.5 mg of the taken out nonwoven fabric was put into an aluminum pan (5 mm in diameter). The measurement is performed under a nitrogen atmosphere under the conditions of a starting temperature of 30 ° C., an ending temperature of 370 ° C., and a heating rate of 10 ° C./min to obtain a DSC curve.
  • EXSTAR6000 @ DSC6200R manufactured by Seiko Instruments Inc.
  • the nonwoven fabric may be heat-treated at a predetermined temperature.
  • the lower limit of the heat treatment temperature at this time is preferably 155 ° C, and the upper limit is preferably 225 ° C.
  • the heat treatment time depends on the fiber diameter of the nonwoven fabric, but is preferably adjusted as appropriate between 30 seconds and 1 hour.
  • the average fiber diameter of the constituent fibers of the nonwoven fabric of the filter material is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, still more preferably 3 ⁇ m or less, and still more preferably 2 ⁇ m or less, from the viewpoint of enhancing leukocyte removal performance by the filter material.
  • the lower limit value of the average fiber diameter of the constituent fibers of the nonwoven fabric of the filter material is preferably 0.3 ⁇ m or more. This makes it possible to stably produce the nonwoven fabric and to suppress the viscosity resistance from being too high when filtering blood with the filter material.
  • the average fiber diameter refers to a value determined according to the following procedure. That is, a part of the filter material is sampled, the diameters of 100 or more randomly selected fibers are measured based on a scanning electron micrograph, and the average fiber diameter is obtained by number-averaging the diameters. .
  • the nonwoven fabric of the filter material preferably has a lower limit of the average pore diameter of 1 ⁇ m, more preferably 2 ⁇ m. By setting the average pore diameter to 1 ⁇ m or more, it becomes easy to shorten the filtration time.
  • the upper limit of the average pore diameter is preferably 10 ⁇ m, and more preferably 6 ⁇ m. By setting the average pore diameter to 10 ⁇ m or less, it becomes easy to ensure the leukocyte removal performance.
  • the average pore diameter of the nonwoven fabric of the filter material means a mean flow pore size measured by a palm porometer (manufactured by PMI).
  • the lower limit of the basis weight of the nonwoven fabric of the filter material is preferably 5 g / m 2 , and more preferably 20 g / m 2 . By setting the basis weight to 5 g / m 2 or more, it becomes easy to secure the tensile strength of the filter material.
  • the upper limit of the basis weight of the nonwoven fabric of the filter material is preferably 80 g / m 2 , and more preferably 60 g / m 2 . By setting the basis weight to 80 g / m 2 or less, it is possible to suppress the flow resistance during filtration from being excessively increased, and to easily shorten the filtration time.
  • the basis weight means a value obtained by measuring the weight (g) per unit area (1 m 2 ) of the nonwoven fabric.
  • the nonwoven fabric of the filter material preferably has an elongation in at least one direction of at least 15%, more preferably at least 20%. This makes it difficult for the nonwoven fabric to break during the production of the filter material or the filtration by the filter material.
  • the nonwoven fabric preferably has a maximum elongation of 15% or more or 20% or more. For example, among the elongations when stretched in four directions different by 45 °, at least the maximum elongation is 15% or more or 20% or more. It should just be.
  • the elongation of the nonwoven fabric is greatest in a TD (Transverse @ Direction) direction orthogonal to a MD (Machine Direction) direction, which is a direction in which the nonwoven fabric flows (takes up) at the time of molding.
  • TD Transverse @ Direction
  • MD Machine Direction
  • the upper limit of the elongation of the nonwoven fabric is not particularly limited, for example, the maximum elongation is preferably 50% or less, more preferably 35% or less.
  • the elongation of the nonwoven fabric is measured as follows.
  • the nonwoven fabric is taken out of the filter material, and a test piece is cut out from the taken out nonwoven fabric in a size of 8 mm in width and 40 mm in length.
  • a universal testing machine RMG-1210, manufactured by A & D Corp.
  • the both ends of the test piece were fixed with chucks, the test piece was pulled at a chuck interval of 20 mm and a pulling speed of 20 mm / min.
  • the nonwoven fabric of the filter material may be surface-treated.
  • the surface of the fiber is modified by graft polymerization, polymer coating, chemical treatment with alkali, acid, or the like, plasma treatment, or the like.
  • the nonwoven fabric is preferably coated with a hydrophilic material, whereby the affinity of the filter material with blood or the like is improved, and the wettability can be improved.
  • the hydrophilic coating is preferably a polymer coating. According to the polymer coating, the fiber surface can be easily modified into a preferable structure.
  • the polymer used for the polymer coating is not particularly limited as long as it is a hydrophilic polymer, as long as the load on blood components and the like is not particularly large.
  • Examples of the hydrophilic polymer include polymers having a hydrophilic functional group such as a hydroxyl group, an amino group, a carboxyl group, a sulfonic acid group, a carbonyl group, and a sulfonyl group.
  • copolymers of a monomer such as hydroxyethyl (meth) acrylate having a hydrophilic functional group and dimethylaminoethyl (meth) acrylate or diethylaminoethyl (meth) acrylate having a basic functional group and polyvinylpyrrolidone, It is particularly preferable because, in addition to improving the wettability of the nonwoven fabric by making the fiber surface hydrophilic, the performance of capturing blood cells such as leukocytes can be improved by introducing a chargeable functional group.
  • the method of coating the polymer there are no particular restrictions on the method of coating the polymer, as long as it can coat the pores of the filter material, that is, the fiber gaps of the nonwoven fabric, and the nonwoven fabric surface can be uniformly coated within a certain range.
  • a method can be used. Examples of the method include a method of impregnating a non-woven fabric with a solution of a polymer, a method of spraying a solution of a polymer onto a non-woven fabric, and a method of applying and transferring a solution of a polymer to a non-woven fabric using a gravure roll or the like. Above all, a method of impregnating a non-woven fabric with a solution in which a polymer is dissolved is preferable because of excellent continuous productivity and low cost.
  • the solvent for dissolving the polymer is not particularly limited as long as it does not significantly dissolve the nonwoven fabric of the filter material.
  • examples thereof include amides such as N, N-dimethylformamide and N, N-dimethylacetamide; sulfoxides such as dimethyl sulfoxide.
  • Alcohols such as methanol, ethanol, propanol and butanol; ketones such as acetone and methyl ethyl ketone; esters such as methyl acetate and ethyl acetate; hydrocarbons such as toluene and cyclohexane; halogenated hydrocarbons such as chloroform and dichloromethane. Water; and a mixture of two or more of these solvents.
  • alcohols such as methanol, ethanol, propanol, and butanol are preferable, and methanol and ethanol are particularly preferable.
  • the filter material of the present embodiment may have only one nonwoven fabric described above, or may have a laminate of a plurality of nonwoven fabrics. Further, an arbitrary nonwoven fabric may be laminated on the nonwoven fabric described above.
  • the nonwoven fabrics may be arranged so as to overlap with each other in the flow direction of the leukocyte-containing liquid to be filtered.
  • the number of laminations is preferably 10 or more, more preferably 20 or more.
  • the upper limit of the number of layers is preferably 60 or less, and more preferably 50 or less, from the viewpoint of shortening the filtration time.
  • the leukocyte removal filter of the present invention is one in which the filter material of the present embodiment is disposed in a filter container.
  • the filter container may be provided with only one filter material or a plurality of filter materials.
  • different types of filter materials may be included on the upstream side and the downstream side of the filter material of the present embodiment. For example, by arranging a filter material having a larger basis weight and an average pore diameter than the nonwoven fabric of the present embodiment on the upstream side and functioning as a pre-filter, an effect such as a reduction in filtration time is expected.
  • the leukocyte-containing liquid often contains substances such as microaggregates that adversely affect the performance of the filter material, it is preferable to remove these substances using a prefilter.
  • the prefilter for example, it is preferable to use a continuous porous body having pores having an average pore diameter of 20 ⁇ m to 200 ⁇ m.
  • the leukocyte removal filter preferably includes the nonwoven fabric of the present embodiment as a filter material, and the filter material is disposed in a filter container having a liquid inlet and a liquid outlet.
  • the filter container may take any form such as a sphere, a container, a cassette, a bag, a tube, a column, and the like.
  • a cylindrical form having a capacity of about 0.1 mL to 1000 mL and a diameter of about 0.1 cm to 15 cm, or
  • a square or rectangular shape having a length of about 0.1 cm to 20 cm and a square pillar shape having a thickness of about 0.1 cm to 5 cm is preferable.
  • the filter container is at least partially transparent or translucent, so that the progress of the filtration can be visually checked.
  • the nonwoven fabric made of polyester fiber is heat-treated in a constrained state at a temperature of 155 ° C or more and 225 ° C or less.
  • the above description is referred to.
  • a non-woven fabric having a DSC curve with a maximum endothermic peak in a temperature range of 155 ° C. or more and 225 ° C. or less is obtained.
  • the heat treatment step it is preferable to perform the heat treatment in a state where the nonwoven fabric is constrained from the viewpoint of preventing a significant shrinkage of the dimensions of the nonwoven fabric during the heat treatment.
  • a method of realizing the constrained state of the surface of the nonwoven fabric in the vertical and horizontal axes there is a method of fixing the end portion of the nonwoven fabric with a fixture such as a metal frame.
  • a method of realizing the constrained state in the vertical axis direction on the surface of the nonwoven fabric there is a method of performing heat treatment in a state of being stacked in a roll shape.
  • a hydrophilic coating is applied to the heat-treated nonwoven fabric.
  • the coating step is preferably performed after the nonwoven fabric has been cooled to room temperature after the heat treatment step. For example, it is preferable to cool the nonwoven fabric after the heat treatment over 5 minutes or more.
  • a filter material containing a nonwoven fabric coated with hydrophilicity is placed in a filter container, and the filter container is sealed, thereby producing a filter unit.
  • the filter material can be shielded from the outside by sealing the filter container.
  • the filter material placed in the filter container is steam-sterilized at a temperature of 100 ° C. or more and 130 ° C. or less.
  • the filter material can be maintained in a high hygiene state until the leukocyte removal filter is used.
  • Steam sterilization can be performed by disposing a filter material to be sterilized in a filter container in a sealed state, and heating the filter material to 100 ° C. or higher with saturated steam.
  • sterilization may be performed at a temperature of about 100 ° C. or more and 130 ° C. or less, such as 121 ° C. for 20 minutes or 118 ° C. for 40 minutes, for a time of about 20 minutes or more and 60 minutes or less.
  • the filter material obtained in the heat treatment step exhibits a high leukocyte removal rate, and even after the sterilization step, the characteristics of the filter material are maintained, and the filter material exhibits a high leukocyte removal rate. . That is, since the thermal performance of the filter material hardly changes due to the thermal influence of steam sterilization, a leukocyte removal filter exhibiting extremely high leukocyte removal performance can be easily manufactured.
  • a coating solution was prepared as follows. First, 0.95 mol / L of 2-hydroxyethyl methacrylate and 0.05 mol / L of 2-dimethylaminoethyl methacrylate were added to special grade ethanol to make a total volume of 300 mL. As a polymerization initiator, 2,2′-azobis (2,4-dimethylvaleronitrile) was added to a concentration of 0.005 mol / L, and the mixture was polymerized at 45 ° C. for 15 hours under a nitrogen atmosphere. And the polymer was precipitated and recovered.
  • HEDM 2-hydroxyethyl methacrylate and N, N-dimethylaminoethyl methacrylate
  • the heat-treated nonwoven fabric is immersed in the HEDM coating solution prepared as described above at 20 ° C. for several tens of seconds to 5 minutes, and then placed in a stainless steel basket and dried at 80 ° C. for 5 minutes to obtain a coated nonwoven fabric.
  • the coated non-woven fabric thus obtained was punched into a square of 7.2 cm ⁇ 7.2 cm, and 32 sheets were placed in a square housing (filter container) of 7.2 cm ⁇ 7.2 cm ⁇ 0.85 cm (thickness). This was inserted to produce a filter unit.
  • the inlet of the filter unit and the blood bag were connected with a 60-cm-long vinyl chloride tube (outer diameter 5 mm, inner diameter 3 mm), and the tube was closed with a clamp.
  • the prepared filter unit was placed in a steam sterilizer (HG-50, manufactured by Hirayama Seisakusho), and steam sterilized at 121 ° C. for 20 minutes.
  • a leukocyte removal filter provided with a filter material having a coated PET nonwoven fabric was obtained.
  • the filter manufactured in Production Example 1 is referred to as “Filter 1”.
  • (1-4) Production Example 4 A leukocyte removal filter was produced in the same manner as in Production Example 1, except that the heat treatment temperature was changed from 160 ° C to 140 ° C.
  • the filter manufactured in Production Example 4 is referred to as “Filter 4”.
  • Production Example 5 A leukocyte removal filter was produced in the same manner as in Production Example 1, except that the heat treatment temperature was changed from 160 ° C. to 230 ° C.
  • the filter manufactured in Production Example 5 is referred to as “Filter 5”.
  • Production Example 6 In Production Example 1, a leukocyte removal filter was produced in the same manner as in Production Example 1, except that the heat treatment temperature was changed from 160 ° C. to 250 ° C., and the heat treatment time was changed from 3 minutes to 10 minutes.
  • the filter manufactured in Production Example 6 is referred to as “Filter 6”.
  • the white blood cell and red blood cell concentrations of the blood sample before filtration (referred to as “blood before filtration”) and the filtered blood were measured, respectively.
  • Leukocyte concentration was measured by flow cytometry using a flow cytometer LeucoCOUNT kit and FACSCalibur (both manufactured by Becton Dickinson), and red blood cell concentration was measured using a blood cell counter (manufactured by Sysmex, K-4500). It was measured.
  • the leukocyte removal rate (-Log) and the red blood cell recovery rate (%) were calculated by the following equations.
  • a represents the leukocyte concentration of the blood before filtration
  • b represents the leukocyte concentration of the filtered blood
  • c represents the erythrocyte concentration of the blood before filtration
  • d represents the erythrocyte concentration of the filtered blood.
  • Table 1 shows the evaluation results of each filter.
  • Leukocyte removal rate -Log (b / a)
  • Red blood cell recovery rate (%) (d / c) ⁇ 100

Abstract

A filter material for removing leukocytes, said filter material comprising a non-woven fabric configured from polyester fibers, wherein, in a differential scanning calorimetry (DSC) curve obtained by DSC, the non-woven fabric has a first endothermic peak at the melting point and a second endothermic peak with the maximum in a temperature range of 155-225°C inclusive.

Description

白血球除去用フィルター材、白血球除去フィルターおよびその製造方法Leukocyte removal filter material, leukocyte removal filter and method for producing the same
 本発明は、血液等から白血球を除去するためのフィルター材、当該フィルター材を備えた白血球除去フィルター、およびその製造方法に関する。 The present invention relates to a filter material for removing leukocytes from blood or the like, a leukocyte removal filter provided with the filter material, and a method for producing the same.
 輸血用血液製剤は、白血球に起因する発熱反応や感染症等の輸血副作用を低減する目的で、保存する前に予めに白血球を除去した製剤となっている。血液等から白血球を除去する方法としては、細胞の比重差を利用した遠心分離法と、多孔質体を濾材とするフィルター法の2種類が一般的であるが、簡便な操作で高い白血球除去性能が得られるフィルター法が広く用いられている。また、フィルター法で白血球除去を行う1つの方法として不織布をフィルター材に用いる方法がある。白血球除去フィルターのフィルター材として様々な不織布の開発が行われており、白血球除去性能の向上を目的としてその熱的性能を制御することが行われている。例えば、特許文献1では蒸気加熱処理前における未結晶化熱量が5J/g以下である不織布をフィルター材として用いた白血球除去フィルターが開示されている。 血液 Blood products for blood transfusion are products in which leukocytes have been removed in advance before storage for the purpose of reducing transfusion side effects such as pyrogenic reactions and infectious diseases caused by leukocytes. As methods for removing leukocytes from blood and the like, there are generally two types of methods, a centrifugal separation method using a difference in specific gravity of cells and a filter method using a porous material as a filter material, but high leukocyte removal performance by simple operation. Is widely used. One method of removing leukocytes by a filter method is to use a nonwoven fabric as a filter material. Various nonwoven fabrics have been developed as filter materials for leukocyte removal filters, and their thermal performance has been controlled for the purpose of improving leukocyte removal performance. For example, Patent Document 1 discloses a leukocyte removal filter using a nonwoven fabric having a non-crystallization heat of 5 J / g or less before steam heating as a filter material.
国際公開第2016/204289号International Publication No. WO 2016/204289
 白血球除去フィルターに使用する不織布の繊維径は、血球等の細胞のサイズと同程度、もしくはそれよりも小さい孔を形成するために、繊維径が10μm前後や10μm以下の極細繊維を使用することが求められる。また、白血球除去フィルターの製造においては、製造過程で付着した病原体等の微生物を死滅させるために滅菌処理が義務付けられており、蒸気滅菌が一般的に使用されている。そのため、白血球除去フィルターに使用する極細繊維からなる不織布は、蒸気滅菌における熱影響を経た後、フィルター材として使用されることとなる。特許文献1に開示される白血球除去フィルターについて、本発明者らが検討したところ、蒸気滅菌の熱影響によりフィルター材の不織布の熱的性能に変化が生じることで、蒸気滅菌後の白血球除去フィルターについて望ましい白血球除去性能が得られない場合があることが判明した。 The fiber diameter of the non-woven fabric used for the leukocyte removal filter is similar to the size of cells such as blood cells, or in order to form pores smaller than that, it is possible to use ultrafine fibers having a fiber diameter of about 10 μm or 10 μm or less. Desired. In the production of leukocyte removal filters, sterilization is required to kill microorganisms such as pathogens attached in the production process, and steam sterilization is generally used. Therefore, the nonwoven fabric made of ultrafine fibers used for the leukocyte removal filter is used as a filter material after undergoing the heat effect in steam sterilization. The present inventors have studied the leukocyte removal filter disclosed in Patent Document 1, and found that the thermal effect of steam sterilization causes a change in the thermal performance of the nonwoven fabric of the filter material. It has been found that the desired leukocyte removal performance may not be obtained in some cases.
 本発明は上述のような問題点を解決するためになされたもので、優れた白血球除去性能を有する白血球除去用のフィルター材および白血球除去フィルターを提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a filter material for leukocyte removal and a leukocyte removal filter having excellent leukocyte removal performance.
 本発明者らは上記課題を解決するために鋭意研究を重ねた結果、本発明を完成するに至った。すなわち、本発明の要旨は以下の通りである。
[1]白血球除去用のフィルター材であって、前記フィルター材は、ポリエステル繊維から構成された不織布を有し、前記不織布は、示差走査熱量測定(DSC)により得られるDSC曲線において、融点における第一吸熱ピークと、155℃以上225℃以下の温度領域に極大値を備えた第二吸熱ピークとを有することを特徴とするフィルター材。
[2]前記不織布は、少なくとも一方向の伸度が15%以上である[1]に記載のフィルター材。
[3]前記伸度が20%以上である[2]に記載のフィルター材。
[4]前記不織布は、構成繊維の95質量%以上がポリエステル繊維からなる[1]~[3]のいずれかに記載のフィルター材。
[5]前記ポリエステル繊維がポリエチレンテレフタレート繊維である[1]~[4]のいずれかに記載のフィルター材。
[6]前記不織布の構成繊維の平均繊維直径が3μm以下である[1]~[5]のいずれかに記載のフィルター材。
[7]前記不織布がメルトブロー不織布である[1]~[6]のいずれかに記載のフィルター材。
[8][1]~[7]のいずれかに記載のフィルター材がフィルター容器内に配置されていることを特徴とする白血球除去フィルター。
[9]ポリエステル繊維から構成された不織布を有するフィルター材をフィルター容器内に備えた白血球除去フィルターの製造方法であって、
 a)ポリエステル繊維から構成された不織布を155℃以上225℃以下の温度において拘束状態で熱処理する工程、
 b)前記熱処理後の不織布に親水性コーティングを施す工程、
 c)前記親水性コーティングされた不織布を含むフィルター材をフィルター容器内に配置し、前記フィルター容器を密閉する工程、
 d)前記フィルター容器内に配置された前記フィルターを100℃以上130℃以下の温度で蒸気滅菌する工程、
 を含むことを特徴とする白血球除去フィルターの製造方法。
[10]前記ポリエステル繊維がポリエチレンテレフタレート繊維である[9]に記載の白血球除去フィルターの製造方法。
[11]前記不織布の構成繊維の平均繊維直径が3μm以下である[9]または[10]に記載の白血球除去フィルターの製造方法。
The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, completed the present invention. That is, the gist of the present invention is as follows.
[1] A filter material for leukocyte removal, wherein the filter material has a nonwoven fabric composed of polyester fibers, and the nonwoven fabric has a melting point at a melting point in a DSC curve obtained by differential scanning calorimetry (DSC). A filter material having one endothermic peak and a second endothermic peak having a maximum value in a temperature range of 155 ° C or more and 225 ° C or less.
[2] The filter material according to [1], wherein the nonwoven fabric has an elongation in at least one direction of 15% or more.
[3] The filter material according to [2], wherein the elongation is 20% or more.
[4] The filter material according to any one of [1] to [3], wherein the nonwoven fabric comprises 95% by mass or more of the constituent fibers made of polyester fibers.
[5] The filter material according to any one of [1] to [4], wherein the polyester fiber is a polyethylene terephthalate fiber.
[6] The filter material according to any one of [1] to [5], wherein the average fiber diameter of the constituent fibers of the nonwoven fabric is 3 μm or less.
[7] The filter material according to any one of [1] to [6], wherein the nonwoven fabric is a meltblown nonwoven fabric.
[8] A leukocyte removal filter, wherein the filter material according to any one of [1] to [7] is arranged in a filter container.
[9] A method for producing a leukocyte removal filter comprising a filter material having a nonwoven fabric composed of polyester fibers in a filter container,
a) a step of heat-treating the nonwoven fabric composed of polyester fibers in a constrained state at a temperature of 155 ° C. or more and 225 ° C. or less;
b) applying a hydrophilic coating to the non-woven fabric after the heat treatment;
c) arranging a filter material containing the hydrophilic coated nonwoven fabric in a filter container, and sealing the filter container;
d) steam sterilizing the filter disposed in the filter container at a temperature of 100 ° C. or more and 130 ° C. or less;
A method for producing a leukocyte removal filter, comprising:
[10] The method for producing a leukocyte removal filter according to [9], wherein the polyester fiber is a polyethylene terephthalate fiber.
[11] The method for producing a leukocyte removal filter according to [9] or [10], wherein an average fiber diameter of constituent fibers of the nonwoven fabric is 3 μm or less.
 本発明の白血球除去用フィルター材および白血球除去フィルターは、優れた白血球除去性能を有する。本発明の白血球除去用フィルター材および白血球除去フィルターは、例えば蒸気滅菌後においても、安定して高い性能を実現することができる。 The leukocyte removal filter material and leukocyte removal filter of the present invention have excellent leukocyte removal performance. The leukocyte-removing filter material and leukocyte-removing filter of the present invention can stably achieve high performance even after steam sterilization, for example.
製造例1で作製したフィルターの不織布のDSCの測定データチャートを表す。4 shows a DSC measurement data chart of the nonwoven fabric of the filter produced in Production Example 1. 製造例2で作製したフィルターの不織布のDSCの測定データチャートを表す。9 shows a DSC measurement data chart of the nonwoven fabric of the filter produced in Production Example 2. 製造例3で作製したフィルターの不織布のDSCの測定データチャートを表す。9 shows a measurement data chart of DSC of the nonwoven fabric of the filter manufactured in Production Example 3. 製造例4で作製したフィルターの不織布のDSCの測定データチャートを表す。13 shows a DSC measurement data chart of the nonwoven fabric of the filter manufactured in Production Example 4. 製造例5で作製したフィルターの不織布のDSCの測定データチャートを表す。13 shows a DSC measurement data chart of the nonwoven fabric of the filter manufactured in Production Example 5. 製造例6で作製したフィルターの不織布のDSCの測定データチャートを表す。13 shows a measurement data chart of DSC of the nonwoven fabric of the filter produced in Production Example 6.
 以下、本発明の具体的な実施形態について詳細に説明する。本発明は以下の実施形態に何ら限定されず、本発明の目的の範囲内において、適宜変更を加えて実施することができる。 Hereinafter, specific embodiments of the present invention will be described in detail. The present invention is not limited to the following embodiments at all, and can be implemented with appropriate modifications within the scope of the present invention.
 本発明の実施形態において、白血球除去フィルターのフィルター材は、ポリエステル繊維から構成された不織布を有し、前記不織布は、示差走査熱量測定(DSC)により得られるDSC曲線において、融点における第一吸熱ピークと、155℃以上225℃以下の温度領域に極大値を備えた第二吸熱ピークとを有するものである。本発明のフィルター材は、このように構成されることにより、極めて高い白血球除去性能を示すものとなる。また、フィルター材や白血球除去フィルターの製造の際に、蒸気滅菌の前後においてフィルター材の不織布の熱的特性の変化が小さいものとなり、高い白血球除去性能を有するフィルター材を容易に製造できるものとなる。 In an embodiment of the present invention, the filter material of the leukocyte removal filter has a nonwoven fabric composed of polyester fibers, and the nonwoven fabric has a first endothermic peak at a melting point in a DSC curve obtained by differential scanning calorimetry (DSC). And a second endothermic peak having a maximum value in a temperature range of 155 ° C. or more and 225 ° C. or less. With such a configuration, the filter material of the present invention exhibits extremely high leukocyte removal performance. In addition, when manufacturing a filter material or a leukocyte removal filter, the change in the thermal characteristics of the nonwoven fabric of the filter material before and after steam sterilization is small, and a filter material having high leukocyte removal performance can be easily manufactured. .
 フィルター材は白血球を含有する液を濾過対象とするものであり、白血球含有液としては、例えば、全血、骨髄、臍帯血、月経血、組織抽出物、それらを粗分離したもの等が挙げられる。白血球含有液の採取源としての動物種は特に限定されるものではなく、ヒト、ウシ、マウス、ラット、ブタ、サル、イヌ、ネコなどの哺乳動物が好ましい。 The filter material is used for filtering a liquid containing leukocytes, and examples of the leukocyte-containing liquid include whole blood, bone marrow, umbilical cord blood, menstrual blood, tissue extract, and those obtained by roughly separating them. . The animal species as a source of the leukocyte-containing liquid is not particularly limited, and mammals such as humans, cows, mice, rats, pigs, monkeys, dogs, and cats are preferable.
 フィルター材を構成する不織布は、少なくともポリエステル繊維から構成されたものであれば特に限定されず、不織布の構成繊維の主成分としてポリエステル繊維が含まれていることが好ましい。フィルター材の不織布は、構成繊維の75質量%以上がポリエステル繊維からなることがより好ましく、85質量%以上がさらに好ましく、95質量%以上がさらにより好ましい。 不 織布 The nonwoven fabric forming the filter material is not particularly limited as long as it is at least made of polyester fibers, and it is preferable that polyester fibers are contained as a main component of the constituent fibers of the nonwoven fabric. In the nonwoven fabric of the filter material, 75% by mass or more of the constituent fibers are more preferably made of polyester fibers, more preferably 85% by mass or more, and even more preferably 95% by mass or more.
 ポリエステル繊維を構成するポリエステルとしては、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等が挙げられる。これらの中でも、好ましくはポリエチレンテレフタレートまたはポリブチレンテレフタレートが使用され、より好ましくはポリエチレンテレフタレートが使用される。従って、不織布を構成するポリエステル繊維としては、ポリエチレンテレフタレート繊維またはポリブチレンテレフタレート繊維を用いることが好ましく、ポリエチレンテレフタレート繊維を用いることがより好ましい。この場合、不織布は、構成繊維の75質量%以上がポリエチレンテレフタレート繊維またはポリブチレンテレフタレート繊維からなることが好ましく、85質量%以上がより好ましく、95質量%以上がさらに好ましい。 ポ リ エ ス テ ル Examples of the polyester constituting the polyester fiber include polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and polybutylene naphthalate. Among these, polyethylene terephthalate or polybutylene terephthalate is preferably used, and polyethylene terephthalate is more preferably used. Therefore, it is preferable to use polyethylene terephthalate fiber or polybutylene terephthalate fiber as the polyester fiber constituting the nonwoven fabric, and it is more preferable to use polyethylene terephthalate fiber. In this case, the nonwoven fabric preferably comprises polyethylene terephthalate fibers or polybutylene terephthalate fibers at 75% by mass or more of the constituent fibers, more preferably at least 85% by mass, even more preferably at least 95% by mass.
 フィルター材に用いられる不織布の種類は特に限定されず、湿式法、乾式法のいずれによっても製造することができる。なお、より繊維径の細い繊維からなる不織布が得られる点から、メルトブロー法やフラッシュ紡糸法あるいは抄造法により得られる不織布が好ましく、メルトブロー法がより好ましい。メルトブロー法によって不織布を製造することにより、フィルター材の繊維径や目付、平均孔径などを任意に調整することが容易になる。従って、フィルター材の不織布はメルトブロー不織布を用いることが好ましい。 種類 The type of nonwoven fabric used for the filter material is not particularly limited, and it can be produced by either a wet method or a dry method. In addition, a nonwoven fabric obtained by a melt blowing method, a flash spinning method, or a papermaking method is preferable, and a melt blowing method is more preferable, since a nonwoven fabric made of fibers having a smaller fiber diameter can be obtained. By manufacturing the nonwoven fabric by the melt blow method, it becomes easy to arbitrarily adjust the fiber diameter, the basis weight, the average pore diameter, and the like of the filter material. Therefore, it is preferable to use a melt blown nonwoven fabric as the nonwoven fabric of the filter material.
 メルトブロー法による不織布の製造方法の一例について説明する。押出機内で溶融された溶融ポリマーは、適当なフィルターによって濾過された後、メルトブローダイの溶融ポリマー導入部へ導かれ、その後オリフィス状ノズルから吐出される。それと同時に加熱気体導入部に導入された加熱気体を、メルトブローダイトリップにより形成された加熱気体噴出スリットへ導き、ここから噴出させて、前記の吐出された溶融ポリマーを細化して極細繊維を形成し、積層させることにより不織布を得る。この際、樹脂粘度、溶融温度、単孔あたりの吐出量、加熱気体温度、加熱気体圧力、紡口と集積ネットの距離などの紡糸因子を樹脂の種類によって適時選択、制御することにより、所望の繊維径や目付の不織布が得られ、また繊維配向や繊維分散性を制御することができる。更に、熱プレス加工により、不織布の厚み、平均孔径の制御を行うことも可能である。 An example of a method for producing a nonwoven fabric by a melt blow method will be described. The molten polymer melted in the extruder is filtered by a suitable filter, guided to a molten polymer introduction portion of a melt blow die, and then discharged from an orifice-shaped nozzle. At the same time, the heating gas introduced into the heating gas introduction unit is guided to a heating gas ejection slit formed by a melt blow die lip, and is ejected from here to form the above-discharged molten polymer to form ultrafine fibers. Then, a nonwoven fabric is obtained by laminating. At this time, by appropriately selecting and controlling spinning factors such as resin viscosity, melting temperature, discharge amount per single hole, heating gas temperature, heating gas pressure, and distance between the spout and the accumulation net, a desired value can be obtained. A nonwoven fabric having a fiber diameter and a basis weight can be obtained, and fiber orientation and fiber dispersibility can be controlled. Furthermore, it is also possible to control the thickness and average pore diameter of the nonwoven fabric by hot pressing.
 フィルター材の不織布は、示差走査熱量測定(DSC)により得られるDSC曲線において、融点における第一吸熱ピークと、155℃以上225℃以下の温度領域に極大値を備えた第二吸熱ピークとを有する。第一吸熱ピークは、不織布を構成する繊維の融点に由来するものであり、ポリエチレンテレフタレート繊維であれば、通常250℃~260℃の温度領域に融点に由来する吸熱ピークを示し、ポリブチレンテレフタレート繊維であれば、通常220℃~230℃の温度領域に融点に由来する吸熱ピークを示す。第二吸熱ピークは、融点における結晶構造とは安定度(サイズ、構造等)の異なる結晶構造に起因するものと考えられる。フィルター材の不織布が第二吸熱ピークを有することは、当該不織布の構成繊維(特にポリエステル繊維)に複数の結晶構造が存在することを示唆している。本発明者らが、この第二吸熱ピークに着目してフィルター材のフィルター性能との関連性を調べたところ、第二吸熱ピークの極大値が155℃以上225℃以下の温度領域にある場合に、赤血球を高収率で回収しつつ、血液製剤中に残存すると様々な非溶血性副作用をもたらす白血球を極めて高い除去率で除去できることが明らかになった。そして、第二吸熱ピークの極大値を適切に調整することにより、融点での結晶構造とは別の結晶構造においてある程度の安定度が得られることを見出した。 The nonwoven fabric of the filter material has a first endothermic peak at a melting point and a second endothermic peak having a maximum value in a temperature range of 155 ° C or more and 225 ° C or less in a DSC curve obtained by differential scanning calorimetry (DSC). . The first endothermic peak is derived from the melting point of the fiber constituting the nonwoven fabric. In the case of polyethylene terephthalate fiber, the first endothermic peak usually shows an endothermic peak derived from the melting point in a temperature range of 250 ° C. to 260 ° C., and the polybutylene terephthalate fiber In this case, an endothermic peak derived from the melting point is usually shown in the temperature range of 220 to 230 ° C. It is considered that the second endothermic peak is caused by a crystal structure having a different stability (size, structure, etc.) from the crystal structure at the melting point. The fact that the nonwoven fabric of the filter material has the second endothermic peak indicates that a plurality of crystal structures exist in the constituent fibers (particularly, polyester fibers) of the nonwoven fabric. The present inventors have investigated the relationship between the filter performance of the filter material and the second endothermic peak by focusing on the second endothermic peak, and found that the maximum value of the second endothermic peak is in a temperature region of 155 ° C or more and 225 ° C or less. It was found that, while recovering erythrocytes in high yield, leukocytes which cause various non-hemolytic side effects when remaining in blood products can be removed at an extremely high removal rate. Then, it has been found that by appropriately adjusting the maximum value of the second endothermic peak, a certain degree of stability can be obtained in a crystal structure different from the crystal structure at the melting point.
 示差走査熱量測定方法は次のように行う。フィルター材から不織布を取り出し、示差走査熱量測定装置(セイコーインスツルメンツ社製、EXSTAR6000 DSC6200R)を使用して、取り出した不織布のうち4.5~5.5mg程度をアルミニウム製パン(直径5mm)に入れ、窒素雰囲気下で、開始温度30℃、終了温度370℃、昇温速度10℃/分の条件で測定を行い、DSC曲線を得る。 The differential scanning calorimetry is performed as follows. Using a differential scanning calorimeter (EXSTAR6000 @ DSC6200R, manufactured by Seiko Instruments Inc.), the nonwoven fabric was taken out from the filter material, and about 4.5 to 5.5 mg of the taken out nonwoven fabric was put into an aluminum pan (5 mm in diameter). The measurement is performed under a nitrogen atmosphere under the conditions of a starting temperature of 30 ° C., an ending temperature of 370 ° C., and a heating rate of 10 ° C./min to obtain a DSC curve.
 上記のように155℃以上225℃以下の温度領域に第二吸熱ピークの極大値を有する不織布を得るためには、不織布を所定の温度で熱処理すればよい。このときの熱処理温度の下限値は155℃であることが好ましく、上限値は225℃が好ましい。熱処理時間は不織布の繊維径にもよるが、30秒間から1時間の間で適宜調整することが好ましい。 As described above, in order to obtain a nonwoven fabric having the maximum value of the second endothermic peak in the temperature range of 155 ° C. or more and 225 ° C. or less, the nonwoven fabric may be heat-treated at a predetermined temperature. The lower limit of the heat treatment temperature at this time is preferably 155 ° C, and the upper limit is preferably 225 ° C. The heat treatment time depends on the fiber diameter of the nonwoven fabric, but is preferably adjusted as appropriate between 30 seconds and 1 hour.
 フィルター材の不織布の構成繊維の平均繊維直径は、フィルター材による白血球除去性能を高める点から、10μm以下であることが好ましく、5μm以下がより好ましく、3μm以下がさらに好ましく、2μm以下がさらにより好ましい。一方、フィルター材の不織布の構成繊維の平均繊維直径の下限値については、0.3μm以上が好ましい。これにより安定して不織布を製造しやすくなるとともに、フィルター材で血液を濾過する際に粘性抵抗が高くなりすぎるのを抑えることができる。平均繊維直径とは、以下の手順に従って求められる値をいう。すなわち、フィルター材の一部をサンプリングし、走査電子顕微鏡写真を基に、無作為に選択した100本以上の繊維の直径を計測し、それらを数平均することで平均繊維直径の値が得られる。 The average fiber diameter of the constituent fibers of the nonwoven fabric of the filter material is preferably 10 μm or less, more preferably 5 μm or less, still more preferably 3 μm or less, and still more preferably 2 μm or less, from the viewpoint of enhancing leukocyte removal performance by the filter material. . On the other hand, the lower limit value of the average fiber diameter of the constituent fibers of the nonwoven fabric of the filter material is preferably 0.3 μm or more. This makes it possible to stably produce the nonwoven fabric and to suppress the viscosity resistance from being too high when filtering blood with the filter material. The average fiber diameter refers to a value determined according to the following procedure. That is, a part of the filter material is sampled, the diameters of 100 or more randomly selected fibers are measured based on a scanning electron micrograph, and the average fiber diameter is obtained by number-averaging the diameters. .
 フィルター材の不織布は、平均孔径の下限値が1μmであることが好ましく、より好ましくは2μmである。平均孔径を1μm以上とすることで濾過時間の短縮化を図りやすくなる。一方、平均孔径の上限値としては、10μmが好ましく、より好ましくは6μmである。平均孔径を10μm以下とすることで、白血球除去性能を確保しやすくなる。なお、フィルター材の不織布の平均孔径は、パームポロメーター(PMI社製)により測定したミーン・フロー・ポアサイズを意味する。 不 織布 The nonwoven fabric of the filter material preferably has a lower limit of the average pore diameter of 1 μm, more preferably 2 μm. By setting the average pore diameter to 1 μm or more, it becomes easy to shorten the filtration time. On the other hand, the upper limit of the average pore diameter is preferably 10 μm, and more preferably 6 μm. By setting the average pore diameter to 10 μm or less, it becomes easy to ensure the leukocyte removal performance. In addition, the average pore diameter of the nonwoven fabric of the filter material means a mean flow pore size measured by a palm porometer (manufactured by PMI).
 フィルター材の不織布は、目付の下限値が5g/m2であることが好ましく、より好ましくは20g/m2である。目付を5g/m2以上とすることでフィルター材の引張強度を確保しやすくなる。一方、フィルター材の不織布の目付の上限値は80g/m2が好ましく、より好ましくは60g/m2である。目付を80g/m2以下とすることで、濾過の際の流れ抵抗が過剰に高まるのを抑え、濾過時間の短縮化を図りやすくなる。なお、目付とは不織布の単位面積(1m2)あたりの重さ(g)を測定した値を意味する。 The lower limit of the basis weight of the nonwoven fabric of the filter material is preferably 5 g / m 2 , and more preferably 20 g / m 2 . By setting the basis weight to 5 g / m 2 or more, it becomes easy to secure the tensile strength of the filter material. On the other hand, the upper limit of the basis weight of the nonwoven fabric of the filter material is preferably 80 g / m 2 , and more preferably 60 g / m 2 . By setting the basis weight to 80 g / m 2 or less, it is possible to suppress the flow resistance during filtration from being excessively increased, and to easily shorten the filtration time. The basis weight means a value obtained by measuring the weight (g) per unit area (1 m 2 ) of the nonwoven fabric.
 フィルター材の不織布は、少なくとも一方向の伸度が15%以上であることが好ましく、20%以上がより好ましい。これにより、フィルター材の製造の際やフィルター材による濾過の際に、不織布が破断しにくくなる。不織布は、最大伸度が15%以上または20%以上となることが好ましく、例えば、45°ずつ異なる4方向に伸ばしたときの伸度のうち、少なくとも最大のものが15%以上または20%以上となればよい。なお、不織布は一般的に、成形時に不織布が流れていく(巻取られる)方向であるMD(Machine Direction)方向に直交するTD(Transverse Direction)方向において伸度が最も大きくなる。不織布の伸度の上限は特に限定されないが、例えば最大伸度が50%以下が好ましく、35%以下がより好ましい。 不 織布 The nonwoven fabric of the filter material preferably has an elongation in at least one direction of at least 15%, more preferably at least 20%. This makes it difficult for the nonwoven fabric to break during the production of the filter material or the filtration by the filter material. The nonwoven fabric preferably has a maximum elongation of 15% or more or 20% or more. For example, among the elongations when stretched in four directions different by 45 °, at least the maximum elongation is 15% or more or 20% or more. It should just be. In general, the elongation of the nonwoven fabric is greatest in a TD (Transverse @ Direction) direction orthogonal to a MD (Machine Direction) direction, which is a direction in which the nonwoven fabric flows (takes up) at the time of molding. Although the upper limit of the elongation of the nonwoven fabric is not particularly limited, for example, the maximum elongation is preferably 50% or less, more preferably 35% or less.
 不織布の伸度は次のように測定する。フィルター材から不織布を取り出し、取り出した不織布から幅8mm、長さ40mmの大きさで試験片を切り出す。万能試験機(エー・アンド・デイ社製、RTG-1210)を用いて試験片の両端をチャックで固定し、チャックの間隔を20mm、引張速度を20mm/分として試験片を引張り、破断時のチャック間距離を測定し、次式により伸度を求める:伸度(%)=((不織布破断時のチャック間距離-20)/20)×100。 伸 The elongation of the nonwoven fabric is measured as follows. The nonwoven fabric is taken out of the filter material, and a test piece is cut out from the taken out nonwoven fabric in a size of 8 mm in width and 40 mm in length. Using a universal testing machine (RTG-1210, manufactured by A & D Corp.), the both ends of the test piece were fixed with chucks, the test piece was pulled at a chuck interval of 20 mm and a pulling speed of 20 mm / min. The distance between the chucks is measured, and the elongation is determined by the following formula: elongation (%) = ((distance between chucks at break of nonwoven fabric−20) / 20) × 100.
 フィルター材の不織布は、表面処理されているものであってもよい。例えば、繊維の表面がグラフト重合、ポリマーコーティング、アルカリ、酸等の薬品処理、プラズマ処理等で改質されていることが好ましい。中でも、不織布は親水性コーティングされていることが好ましく、これにより、フィルター材の血液等との親和性が向上し、濡れ性を改善することができる。 不 織布 The nonwoven fabric of the filter material may be surface-treated. For example, it is preferable that the surface of the fiber is modified by graft polymerization, polymer coating, chemical treatment with alkali, acid, or the like, plasma treatment, or the like. Among them, the nonwoven fabric is preferably coated with a hydrophilic material, whereby the affinity of the filter material with blood or the like is improved, and the wettability can be improved.
 親水性コーティングは、ポリマーコーティングであることが好ましい。ポリマーコーティングによれば繊維表面を好ましい構造に簡便に改質することができる。ポリマーコーティングに用いるポリマーは、親水性のポリマーであれば、血液成分等への負荷が特に大きいものでない限り特に限定されない。親水性ポリマーとしては、ヒドロキシル基、アミノ基、カルボキシル基、スルホン酸基、カルボニル基、スルホニル基等の親水性官能基を有するポリマーが挙げられる。中でも、親水性官能基を有するヒドロキシエチル(メタ)アクリレートなどのモノマーと塩基性官能基を有するジメチルアミノエチル(メタ)アクリレートやジエチルアミノエチル(メタ)アクリレートとの共重合体や、ポリビニルピロリドンなどは、繊維表面を親水化することにより不織布の濡れ性を改善することに加えて、荷電性官能基の導入により白血球等の血液細胞の捕捉性能を向上できるため、特に好ましい。 The hydrophilic coating is preferably a polymer coating. According to the polymer coating, the fiber surface can be easily modified into a preferable structure. The polymer used for the polymer coating is not particularly limited as long as it is a hydrophilic polymer, as long as the load on blood components and the like is not particularly large. Examples of the hydrophilic polymer include polymers having a hydrophilic functional group such as a hydroxyl group, an amino group, a carboxyl group, a sulfonic acid group, a carbonyl group, and a sulfonyl group. Among them, copolymers of a monomer such as hydroxyethyl (meth) acrylate having a hydrophilic functional group and dimethylaminoethyl (meth) acrylate or diethylaminoethyl (meth) acrylate having a basic functional group, and polyvinylpyrrolidone, It is particularly preferable because, in addition to improving the wettability of the nonwoven fabric by making the fiber surface hydrophilic, the performance of capturing blood cells such as leukocytes can be improved by introducing a chargeable functional group.
 ポリマーをコーティングする方法としては、フィルター材の細孔、すなわち不織布の繊維間隙を著しく閉塞することなく、かつ、不織布表面がある程度の範囲において均一にコーティングできるものであれば、特に制限はなく各種の方法を用いることができる。例えば、ポリマーを溶かした溶液に不織布を含浸させる方法、ポリマーを溶かした溶液を不織布に吹き付ける方法、ポリマーを溶かした溶液をグラビアロール等を用い不織布に塗布・転写する方法などが挙げられる。中でもポリマーを溶かした溶液に不織布を含浸させる方法が、連続生産性に優れ、コストも低いことから好ましい。 There are no particular restrictions on the method of coating the polymer, as long as it can coat the pores of the filter material, that is, the fiber gaps of the nonwoven fabric, and the nonwoven fabric surface can be uniformly coated within a certain range. A method can be used. Examples of the method include a method of impregnating a non-woven fabric with a solution of a polymer, a method of spraying a solution of a polymer onto a non-woven fabric, and a method of applying and transferring a solution of a polymer to a non-woven fabric using a gravure roll or the like. Above all, a method of impregnating a non-woven fabric with a solution in which a polymer is dissolved is preferable because of excellent continuous productivity and low cost.
 上記ポリマーを溶かす溶剤としては、フィルター材の不織布を著しく溶解させないものであれば特に限定はなく、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなどのアミド類;ジメチルスルホキシドなどのスルホキシド類;メタノール、エタノール、プロパノール、ブタノールなどのアルコール類;アセトン、メチルエチルケトンなどのケトン類;酢酸メチル、酢酸エチルなどのエステル類、トルエン、シクロヘキサンなどの炭化水素類;クロロホルム、ジクロロメタンなどのハロゲン化炭化水素類;水;及びこれら溶媒の2種以上の混合物などが挙げられる。中でも、メタノール、エタノール、プロパノール、ブタノールなどのアルコール類が好ましく、特に好ましくはメタノール、エタノールである。 The solvent for dissolving the polymer is not particularly limited as long as it does not significantly dissolve the nonwoven fabric of the filter material. Examples thereof include amides such as N, N-dimethylformamide and N, N-dimethylacetamide; sulfoxides such as dimethyl sulfoxide. Alcohols such as methanol, ethanol, propanol and butanol; ketones such as acetone and methyl ethyl ketone; esters such as methyl acetate and ethyl acetate; hydrocarbons such as toluene and cyclohexane; halogenated hydrocarbons such as chloroform and dichloromethane. Water; and a mixture of two or more of these solvents. Among them, alcohols such as methanol, ethanol, propanol, and butanol are preferable, and methanol and ethanol are particularly preferable.
 本実施形態のフィルター材は上記に説明した不織布を1枚のみ備えたものであってもよく、複数枚積層したものであってもよい。また、上記に説明した不織布に、任意の不織布を積層して設けてもよい。不織布を複数枚積層してフィルター材を形成することにより、白血球除去性能をより高めることができる。不織布を複数枚積層する場合、不織布は、濾過対象液である白血球含有液の流れ方向に対して複数枚重ねて配置すればよい。不織布を複数枚積層する場合の積層枚数は10枚以上が好ましく、20枚以上がより好ましい。一方、積層枚数の上限は、濾過時間を短縮する観点から、60枚以下が好ましく、50枚以下がより好ましい。 フ ィ ル タ ー The filter material of the present embodiment may have only one nonwoven fabric described above, or may have a laminate of a plurality of nonwoven fabrics. Further, an arbitrary nonwoven fabric may be laminated on the nonwoven fabric described above. By laminating a plurality of nonwoven fabrics to form a filter material, leukocyte removal performance can be further improved. In the case of laminating a plurality of nonwoven fabrics, the nonwoven fabrics may be arranged so as to overlap with each other in the flow direction of the leukocyte-containing liquid to be filtered. When laminating a plurality of nonwoven fabrics, the number of laminations is preferably 10 or more, more preferably 20 or more. On the other hand, the upper limit of the number of layers is preferably 60 or less, and more preferably 50 or less, from the viewpoint of shortening the filtration time.
 次に、本発明の白血球除去フィルターについて説明する。本発明の白血球除去フィルターは、本実施形態のフィルター材がフィルター容器内に配置されているものである。フィルター容器には、フィルター材が1つのみ配されていてもよく、複数配されていてもよい。また、本実施形態のフィルター材の上流側や下流側に、異なる種類のフィルター材を含んでもよい。たとえば、本実施形態の不織布よりも目付や平均孔径の大きなフィルター材を上流側に配置し、プレフィルターとして機能させることで、濾過時間が短縮される等の効果が期待される。さらに、白血球含有液には微小凝集物などのフィルター材の性能発揮に悪影響を及ぼすものが含まれている場合が多いため、プレフィルターを使用して、これらの物質を除去することが好ましい。プレフィルターとしては、例えば、平均孔径20μm~200μmの細孔を有する連続多孔質体などを用いることが好ましい。 Next, the leukocyte removal filter of the present invention will be described. The leukocyte removal filter of the present invention is one in which the filter material of the present embodiment is disposed in a filter container. The filter container may be provided with only one filter material or a plurality of filter materials. Further, different types of filter materials may be included on the upstream side and the downstream side of the filter material of the present embodiment. For example, by arranging a filter material having a larger basis weight and an average pore diameter than the nonwoven fabric of the present embodiment on the upstream side and functioning as a pre-filter, an effect such as a reduction in filtration time is expected. Furthermore, since the leukocyte-containing liquid often contains substances such as microaggregates that adversely affect the performance of the filter material, it is preferable to remove these substances using a prefilter. As the prefilter, for example, it is preferable to use a continuous porous body having pores having an average pore diameter of 20 μm to 200 μm.
 白血球除去フィルターは、本実施形態の不織布をフィルター材として備え、液の導入口及び導出口を持つフィルター容器内に当該フィルター材が配置されていることが好ましい。フィルター容器としては、球、コンテナ、カセット、バッグ、チューブ、カラム等、任意の形態をとりうるが、例えば、容量0.1mL~1000mL程度、直径0.1cm~15cm程度の円柱状の形態、あるいは一片の長さ0.1cm~20cm程度の正方形あるいは長方形で、厚みが0.1cm~5cm程度の四角柱状の形態等が好ましい。フィルター容器は、少なくとも一部が透明または半透明であることが好ましく、これにより濾過の進行状況を目視確認できるようになる。 The leukocyte removal filter preferably includes the nonwoven fabric of the present embodiment as a filter material, and the filter material is disposed in a filter container having a liquid inlet and a liquid outlet. The filter container may take any form such as a sphere, a container, a cassette, a bag, a tube, a column, and the like. For example, a cylindrical form having a capacity of about 0.1 mL to 1000 mL and a diameter of about 0.1 cm to 15 cm, or A square or rectangular shape having a length of about 0.1 cm to 20 cm and a square pillar shape having a thickness of about 0.1 cm to 5 cm is preferable. Preferably, the filter container is at least partially transparent or translucent, so that the progress of the filtration can be visually checked.
 本実施形態のフィルター材を備えた白血球除去フィルターは、例えば、次のように製造することができる。すなわち、a)ポリエステル繊維から構成された不織布を155℃以上225℃以下の温度において拘束状態で熱処理する工程、b)熱処理後の不織布に親水性コーティングを施す工程、c)親水性コーティングされた不織布を含むフィルター材をフィルター容器内に配置し、フィルター容器を密閉する工程、d)フィルター容器内に配置されたフィルター材を100℃以上130℃以下の温度で蒸気滅菌する工程を含む製造方法により、ポリエステル繊維から構成された不織布を有するフィルター材をフィルター容器内に備えた白血球除去フィルターを製造することができる。 白 The leukocyte removal filter provided with the filter material of the present embodiment can be manufactured, for example, as follows. That is, a) a step of heat-treating a non-woven fabric composed of polyester fibers in a constrained state at a temperature of 155 ° C. or more and 225 ° C. or less, b) a step of applying a hydrophilic coating to the heat-treated non-woven fabric, and c) a non-woven fabric coated with a hydrophilic coating Disposing the filter material in the filter container and sealing the filter container; d) producing a filter material disposed in the filter container by steam sterilizing at a temperature of 100 ° C. or more and 130 ° C. or less. A leukocyte removal filter having a filter material having a nonwoven fabric made of polyester fibers in a filter container can be manufactured.
 a)工程の熱処理工程では、ポリエステル繊維から構成された不織布を155℃以上225℃以下の温度において拘束状態で熱処理する。ポリエステル繊維から構成された不織布の詳細は、上記の説明が参照される。ポリエステル繊維から構成された不織布を155℃以上225℃以下の温度で熱処理することにより、DSC曲線において、155℃以上225℃以下の温度領域に吸熱ピークの極大値を示す不織布が得られる。 In the heat treatment step (a), the nonwoven fabric made of polyester fiber is heat-treated in a constrained state at a temperature of 155 ° C or more and 225 ° C or less. For details of the nonwoven fabric composed of polyester fibers, the above description is referred to. By heat-treating the non-woven fabric composed of polyester fibers at a temperature of 155 ° C. or more and 225 ° C. or less, a non-woven fabric having a DSC curve with a maximum endothermic peak in a temperature range of 155 ° C. or more and 225 ° C. or less is obtained.
 熱処理工程では、熱処理の際に不織布の寸法の大幅な収縮を防ぐ点から、不織布を拘束した状態で熱処理することが好ましい。例えば、不織布の面の縦横軸のうち1軸もしくは2軸方向に対して拘束した状態としたり、あるいは不織布の面に垂直軸方向に拘束した状態とすることが好ましい。不織布の面の縦横軸方向への拘束状態を実現する方法としては、不織布の端部を金属枠等の固定具で固定する方法などがある。不織布の面に垂直軸方向の拘束状態を実現する方法としては、ロール状に重ねられた状態で熱処理を行う方法などがある。 In the heat treatment step, it is preferable to perform the heat treatment in a state where the nonwoven fabric is constrained from the viewpoint of preventing a significant shrinkage of the dimensions of the nonwoven fabric during the heat treatment. For example, it is preferable to be in a state of being constrained in one or two axes of the vertical and horizontal axes of the surface of the nonwoven fabric, or in a state of being constrained in the direction of a vertical axis on the surface of the nonwoven fabric. As a method of realizing the constrained state of the surface of the nonwoven fabric in the vertical and horizontal axes, there is a method of fixing the end portion of the nonwoven fabric with a fixture such as a metal frame. As a method of realizing the constrained state in the vertical axis direction on the surface of the nonwoven fabric, there is a method of performing heat treatment in a state of being stacked in a roll shape.
 b)工程のコーティング工程では、熱処理後の不織布に親水性コーティングを施す。親水性コーティングの詳細は、上記の説明が参照される。なお、コーティング工程は、熱処理工程後、不織布を常温まで冷ました後に行うことが好ましく、例えば、熱処理後の不織布を5分以上の時間をかけて冷ますことが好ましい。 In the coating step of step b), a hydrophilic coating is applied to the heat-treated nonwoven fabric. For details of the hydrophilic coating, reference is made to the above description. The coating step is preferably performed after the nonwoven fabric has been cooled to room temperature after the heat treatment step. For example, it is preferable to cool the nonwoven fabric after the heat treatment over 5 minutes or more.
 c)工程の組立工程では、親水性コーティングされた不織布を含むフィルター材をフィルター容器内に配置し、フィルター容器を密閉し、これによりフィルターユニットを作製する。フィルター容器やフィルター材の配置の詳細は、上記の説明が参照される。組立工程では、フィルター容器を密閉することにより、フィルター材を外部から遮断することができる。 In the assembling step of step c), a filter material containing a nonwoven fabric coated with hydrophilicity is placed in a filter container, and the filter container is sealed, thereby producing a filter unit. For details of the arrangement of the filter container and the filter material, refer to the above description. In the assembly process, the filter material can be shielded from the outside by sealing the filter container.
 d)工程の滅菌工程では、フィルター容器内に配置されたフィルター材を100℃以上130℃以下の温度で蒸気滅菌する。滅菌工程でフィルター材を滅菌処理することにより、白血球除去フィルターを使用するまで、フィルター材を高い衛生状態で保持することができる。蒸気滅菌は、滅菌対象となるフィルター材を密封状態でフィルター容器内に配置し、飽和水蒸気で100℃以上に加熱することによって行うことができる。例えば121℃で20分間、もしくは118℃で40分間など、100℃以上130℃以下程度の温度で、20分以上60分以下程度の時間で滅菌処理を行えばよい。 滅菌 In the sterilization step of step d), the filter material placed in the filter container is steam-sterilized at a temperature of 100 ° C. or more and 130 ° C. or less. By sterilizing the filter material in the sterilization step, the filter material can be maintained in a high hygiene state until the leukocyte removal filter is used. Steam sterilization can be performed by disposing a filter material to be sterilized in a filter container in a sealed state, and heating the filter material to 100 ° C. or higher with saturated steam. For example, sterilization may be performed at a temperature of about 100 ° C. or more and 130 ° C. or less, such as 121 ° C. for 20 minutes or 118 ° C. for 40 minutes, for a time of about 20 minutes or more and 60 minutes or less.
 上記の製造方法によれば、熱処理工程で得られるフィルター材が高い白血球除去率を示すものとなるとともに、滅菌工程後においても、フィルター材の特性が維持され、高い白血球除去率を示すものとなる。すなわち、蒸気滅菌の熱影響によりフィルター材の熱的性能に変化が生じにくくなるため、極めて高い白血球除去性能を示す白血球除去フィルターを容易に製造することができる。 According to the above manufacturing method, the filter material obtained in the heat treatment step exhibits a high leukocyte removal rate, and even after the sterilization step, the characteristics of the filter material are maintained, and the filter material exhibits a high leukocyte removal rate. . That is, since the thermal performance of the filter material hardly changes due to the thermal influence of steam sterilization, a leukocyte removal filter exhibiting extremely high leukocyte removal performance can be easily manufactured.
 本願は、2018年7月13日に出願された日本国特許出願第2018-133398号に基づく優先権の利益を主張するものである。2018年7月13日に出願された日本国特許出願第2018-133398号の明細書の全内容が、本願に参考のため援用される。 This application claims the benefit of priority based on Japanese Patent Application No. 2018-133398 filed on July 13, 2018. The entire contents of the specification of Japanese Patent Application No. 2018-133398 filed on July 13, 2018 are incorporated herein by reference.
 以下、実施例において本発明に関して詳細に述べるが、本発明は以下の実施例のみに限定されるものではない。 Hereinafter, the present invention will be described in detail in examples, but the present invention is not limited to the examples below.
 (1)フィルターの製造例
 (1-1)製造例1
 ポリエチレンテレフタレート(PET)を用いて、メルトブロー法により、ポリエチレンテレフタレート繊維から構成された不織布を作製した。不織布の平均繊維径は1.52μm、目付は40g/m2、厚さは0.42mm、平均孔径は3.30μmであった。得られた不織布を、面方向の縦横の2軸方向に対して金属枠を使用して拘束し、160℃に熱せられた乾燥機(ESPEC社製、PH-202)内に入れて、3分間の熱処理を施した。その後乾燥機から取り出し、室温にて自然冷却し、熱処理不織布を得た。
(1) Production example of filter (1-1) Production example 1
Using polyethylene terephthalate (PET), a nonwoven fabric composed of polyethylene terephthalate fibers was produced by a melt blow method. The average fiber diameter of the nonwoven fabric was 1.52 μm, the basis weight was 40 g / m 2 , the thickness was 0.42 mm, and the average pore diameter was 3.30 μm. The obtained non-woven fabric was restrained using a metal frame in the longitudinal and horizontal directions of the plane using a metal frame, and placed in a dryer (PH-202, manufactured by ESPEC Corporation) heated to 160 ° C. for 3 minutes. Heat treatment. Then, it was taken out of the dryer and naturally cooled at room temperature to obtain a heat-treated nonwoven fabric.
 上記とは別に、次のようにしてコーティング溶液を調製した。まず、特級エタノール中に2-ヒドロキシエチルメタクリレートを0.95モル/L、2-ジメチルアミノエチルメタクリレートを0.05モル/Lの濃度になるように加え、全量を300mLとした。重合開始剤として2,2’-アゾビス(2,4-ジメチルバレロニトリル)を0.005モル/Lの濃度になるように加え、窒素雰囲気下、45℃にて15時間重合させた後、過剰のn-ヘキサンに注いでポリマーを析出させて回収した。得られたポリマーをエタノールに再溶解させ、n-ヘキサンに注いで析出したポリマーを75℃にて4時間乾燥し、2-ヒドロキシエチルメタクリレートとN,N-ジメチルアミノエチルメタクリレートからなる共重合体(以下、「HEDM」と称する)を得た。HEDMを濃度が1.0g/Lになるようにエタノールに溶解し、HEDMコーティング溶液を調製した。 は Separately from the above, a coating solution was prepared as follows. First, 0.95 mol / L of 2-hydroxyethyl methacrylate and 0.05 mol / L of 2-dimethylaminoethyl methacrylate were added to special grade ethanol to make a total volume of 300 mL. As a polymerization initiator, 2,2′-azobis (2,4-dimethylvaleronitrile) was added to a concentration of 0.005 mol / L, and the mixture was polymerized at 45 ° C. for 15 hours under a nitrogen atmosphere. And the polymer was precipitated and recovered. The obtained polymer was redissolved in ethanol, poured into n-hexane, and the precipitated polymer was dried at 75 ° C. for 4 hours to obtain a copolymer of 2-hydroxyethyl methacrylate and N, N-dimethylaminoethyl methacrylate ( Hereinafter, referred to as “HEDM”). HEDM was dissolved in ethanol to a concentration of 1.0 g / L to prepare a HEDM coating solution.
 上記のように調製したHEDMコーティング溶液に、熱処理不織布を20℃にて数十秒~5分間浸漬した後、ステンレス製バスケットに入れ、80℃にて5分乾燥させることにより、コーティング処理された不織布を得た。このようにして得られたコーティング処理された不織布を7.2cm×7.2cmの正方形に打ち抜き、7.2cm×7.2cm×0.85cm(厚み)の正方形ハウジング(フィルター容器)内に32枚挿入し、フィルターユニットを作製した。フィルターユニットの導入口と血液バッグを長さ60cmの塩化ビニル製チューブ(外径5mm、内径3mm)で接続し、クランプでチューブを閉じた。作製したフィルターユニットを蒸気滅菌装置(平山製作所社製、HG-50)に入れ、121℃で20分間の蒸気滅菌を行った。これにより、コーティング処理されたPET不織布を有するフィルター材を備えた白血球除去フィルターを得た。製造例1で作製したフィルターを「フィルター1」とする。 The heat-treated nonwoven fabric is immersed in the HEDM coating solution prepared as described above at 20 ° C. for several tens of seconds to 5 minutes, and then placed in a stainless steel basket and dried at 80 ° C. for 5 minutes to obtain a coated nonwoven fabric. Got. The coated non-woven fabric thus obtained was punched into a square of 7.2 cm × 7.2 cm, and 32 sheets were placed in a square housing (filter container) of 7.2 cm × 7.2 cm × 0.85 cm (thickness). This was inserted to produce a filter unit. The inlet of the filter unit and the blood bag were connected with a 60-cm-long vinyl chloride tube (outer diameter 5 mm, inner diameter 3 mm), and the tube was closed with a clamp. The prepared filter unit was placed in a steam sterilizer (HG-50, manufactured by Hirayama Seisakusho), and steam sterilized at 121 ° C. for 20 minutes. Thus, a leukocyte removal filter provided with a filter material having a coated PET nonwoven fabric was obtained. The filter manufactured in Production Example 1 is referred to as “Filter 1”.
 (1-2)製造例2
 製造例1において、熱処理温度を160℃から180℃に変更した以外は、製造例1と同様に白血球除去フィルターを作製した。製造例2で作製したフィルターを「フィルター2」とする。
(1-2) Production Example 2
In Production Example 1, a leukocyte removal filter was produced in the same manner as in Production Example 1, except that the heat treatment temperature was changed from 160 ° C to 180 ° C. The filter manufactured in Production Example 2 is referred to as “Filter 2”.
 (1-3)製造例3
 製造例1において、熱処理温度を160℃から220℃に変更した以外は、製造例1と同様に白血球除去フィルターを作製した。製造例3で作製したフィルターを「フィルター3」とする。
(1-3) Production Example 3
In Production Example 1, a leukocyte removal filter was produced in the same manner as in Production Example 1, except that the heat treatment temperature was changed from 160 ° C to 220 ° C. The filter manufactured in Production Example 3 is referred to as “Filter 3”.
 (1-4)製造例4
 製造例1において、熱処理温度を160℃から140℃に変更した以外は、製造例1と同様に白血球除去フィルターを作製した。製造例4で作製したフィルターを「フィルター4」とする。
(1-4) Production Example 4
A leukocyte removal filter was produced in the same manner as in Production Example 1, except that the heat treatment temperature was changed from 160 ° C to 140 ° C. The filter manufactured in Production Example 4 is referred to as “Filter 4”.
 (1-5)製造例5
 製造例1において、熱処理温度を160℃から230℃に変更した以外は、製造例1と同様に白血球除去フィルターを作製した。製造例5で作製したフィルターを「フィルター5」とする。
(1-5) Production Example 5
A leukocyte removal filter was produced in the same manner as in Production Example 1, except that the heat treatment temperature was changed from 160 ° C. to 230 ° C. The filter manufactured in Production Example 5 is referred to as “Filter 5”.
 (1-6)製造例6
 製造例1において、熱処理温度を160℃から250℃に変更し、熱処理時間を3分間から10分に変更した以外は、製造例1と同様に白血球除去フィルターを作製した。製造例6で作製したフィルターを「フィルター6」とする。
(1-6) Production Example 6
In Production Example 1, a leukocyte removal filter was produced in the same manner as in Production Example 1, except that the heat treatment temperature was changed from 160 ° C. to 250 ° C., and the heat treatment time was changed from 3 minutes to 10 minutes. The filter manufactured in Production Example 6 is referred to as “Filter 6”.
 (2)評価方法
 (2-1)フィルター性能評価
 牛全血400mLを、抗凝固剤CPD液56mLが入った血液バッグ(テルモ社製、血液バッグCPD、組成:クエン酸ナトリウム水和物2.63w/v%、クエン酸水和物0.327w/v%、ブドウ糖2.32w/v%、リン酸二水素ナトリウム0.251w/v%)に採血し、混和することにより、血液試料を調製した。恒温槽を用いて血液試料を4℃にした後、血液バッグ中の血液試料456mLを上記製造例で得られた各フィルターで自然落下(落差60cm)によりろ過し、受器でろ過血液を回収した。ろ過を開始してから血液バッグが空になるまでの時間を測定し、ろ過時間とした。
(2) Evaluation method (2-1) Evaluation of filter performance Blood bag containing 400 mL of bovine whole blood and 56 mL of anticoagulant CPD liquid (manufactured by Terumo Corporation, blood bag CPD, composition: sodium citrate hydrate 2.63 w) / V%, citric acid hydrate 0.327 w / v%, glucose 2.32 w / v%, sodium dihydrogen phosphate 0.251 w / v%), and a blood sample was prepared by mixing. . After the blood sample was heated to 4 ° C. using a thermostat, 456 mL of the blood sample in the blood bag was filtered through each filter obtained in the above-mentioned production example by natural fall (fall 60 cm), and the filtered blood was collected in a receiver. . The time from the start of filtration to the emptying of the blood bag was measured and defined as the filtration time.
 ろ過前の血液試料(「ろ過前血液」と称する)とろ過血液の白血球と赤血球濃度をそれぞれ測定した。白血球濃度は、フローサイトメーターLeucoCOUNTキット及びFACSCalibur(共にべクトン・ディッキンソン社製)を用いて、フローサイトメトリー法にて測定し、赤血球濃度は血球カウンター(シスメックス社製、K-4500)を用いて測定した。下記の式により、白血球除去率(-Log)、及び赤血球回収率(%)を算出した。下記の式において、aはろ過前血液の白血球濃度、bはろ過血液の白血球濃度、cはろ過前血液の赤血球濃度、dはろ過血液の赤血球濃度を意味する。各フィルターの評価結果を表1に示す。
  白血球除去率=-Log(b/a)
  赤血球回収率(%)=(d/c)×100
The white blood cell and red blood cell concentrations of the blood sample before filtration (referred to as “blood before filtration”) and the filtered blood were measured, respectively. Leukocyte concentration was measured by flow cytometry using a flow cytometer LeucoCOUNT kit and FACSCalibur (both manufactured by Becton Dickinson), and red blood cell concentration was measured using a blood cell counter (manufactured by Sysmex, K-4500). It was measured. The leukocyte removal rate (-Log) and the red blood cell recovery rate (%) were calculated by the following equations. In the following formula, a represents the leukocyte concentration of the blood before filtration, b represents the leukocyte concentration of the filtered blood, c represents the erythrocyte concentration of the blood before filtration, and d represents the erythrocyte concentration of the filtered blood. Table 1 shows the evaluation results of each filter.
Leukocyte removal rate = -Log (b / a)
Red blood cell recovery rate (%) = (d / c) × 100
 (2-2)DSC測定
 上記製造例で作製した各フィルターから、フィルター材である不織布を取り出した。示差走査熱量測定装置(セイコーインスツルメンツ社製、EXSTAR6000 DSC6200R)を使用して、取り出した不織布4.5~5.5mgをアルミニウム製パン(直径5mm)に入れ、窒素雰囲気下で、開始温度30℃、終了温度370℃、昇温速度10℃/分の条件で測定を行うことでDSC曲線を得た。上記製造例で得られた各フィルターのDSC曲線について、図1~図6に示すとともに、融点である第一吸熱ピークおよび第二吸熱ピークにおける極大値での温度を表1に示した。なお、図1~図6のDSC曲線では、吸熱ピークが負のピークとして現れているため、DSC曲線における極小値が、吸熱ピークの極大値となる。
(2-2) DSC Measurement A nonwoven fabric as a filter material was taken out of each filter produced in the above production example. Using a differential scanning calorimeter (EXSTAR6000 DSC6200R, manufactured by Seiko Instruments Inc.), 4.5 to 5.5 mg of the nonwoven fabric taken out was put into an aluminum pan (5 mm in diameter), and the starting temperature was 30 ° C. under a nitrogen atmosphere. The DSC curve was obtained by performing the measurement at the end temperature of 370 ° C. and the heating rate of 10 ° C./min. The DSC curves of the filters obtained in the above production examples are shown in FIGS. 1 to 6, and the temperatures at the maximum values of the first endothermic peak and the second endothermic peak which are the melting points are shown in Table 1. In the DSC curves of FIGS. 1 to 6, the endothermic peak appears as a negative peak, and the minimum value in the DSC curve becomes the maximum value of the endothermic peak.
 (2-3)伸度測定
 上記製造例で作製した各フィルターから、フィルター材である不織布を取り出した。取り出した不織布から幅8mm、長さ40mmの大きさの試験片を切り出した。万能試験機(エー・アンド・デイ社製、RTG-1210)を用いて、試験片のTD方向の両端をチャックで固定し、チャックの間隔を20mm、引張速度を20mm/分として、不織布が破断するまで引っ張った。破断時のチャック間距離を測定し、以下の式より伸度を求め、10回の測定の平均値を算出した。各フィルターの伸度の測定結果を表1に示す。
  伸度(%)=((不織布破断時のチャック間距離-20)/20)×100
(2-3) Measurement of elongation A non-woven fabric as a filter material was taken out of each filter produced in the above production example. A test piece having a size of 8 mm in width and 40 mm in length was cut out from the nonwoven fabric taken out. Using a universal testing machine (RTG-1210, manufactured by A & D Corp.), the both ends of the test piece in the TD direction were fixed with chucks, the gap between the chucks was set to 20 mm, the tensile speed was set to 20 mm / min, and the nonwoven fabric was broken. I pulled until I did. The distance between the chucks at the time of breaking was measured, the elongation was obtained from the following equation, and the average value of 10 measurements was calculated. Table 1 shows the measurement results of the elongation of each filter.
Elongation (%) = ((distance between chucks at break of nonwoven fabric−20) / 20) × 100
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (3)結果
 フィルター1~3は、第二吸熱ピークの極大値の温度が155℃以上225℃以下の範囲にあり、高い白血球除去性能および赤血球回収率を有するものとなった。一方、第二吸熱ピークの極大値での温度が155℃未満のフィルター4は、フィルター1~3に比べて白血球除去性能が低下した。また、第二吸熱ピークの極大値での温度が225℃より高いフィルター5と第二吸熱ピークが認められなかったフィルター6では、フィルター材が割れてしまい、フィルターを作製できなかった。
(3) Results Filters 1 to 3 had the maximum temperature of the second endothermic peak in the range of 155 ° C. or more and 225 ° C. or less, and had high leukocyte removal performance and red blood cell recovery rate. On the other hand, the filter 4 in which the temperature at the maximum value of the second endothermic peak was less than 155 ° C. had lower leukocyte removal performance than the filters 1 to 3. In the case of the filter 5 having a temperature at the local maximum value of the second endothermic peak higher than 225 ° C. and the filter 6 in which the second endothermic peak was not observed, the filter material was broken, and a filter could not be produced.

Claims (11)

  1.  白血球除去用のフィルター材であって、
     前記フィルター材は、ポリエステル繊維から構成された不織布を有し、
     前記不織布は、示差走査熱量測定(DSC)により得られるDSC曲線において、融点における第一吸熱ピークと、155℃以上225℃以下の温度領域に極大値を備えた第二吸熱ピークとを有することを特徴とするフィルター材。
    A filter material for removing leukocytes,
    The filter material has a nonwoven fabric composed of polyester fibers,
    In the DSC curve obtained by differential scanning calorimetry (DSC), the nonwoven fabric has a first endothermic peak at a melting point and a second endothermic peak having a maximum value in a temperature region of 155 ° C or more and 225 ° C or less. Characteristic filter material.
  2.  前記不織布は、少なくとも一方向の伸度が15%以上である請求項1に記載のフィルター材。 The filter material according to claim 1, wherein the nonwoven fabric has an elongation in at least one direction of 15% or more.
  3.  前記伸度が20%以上である請求項2に記載のフィルター材。 The filter material according to claim 2, wherein the elongation is 20% or more.
  4.  前記不織布は、構成繊維の95質量%以上がポリエステル繊維からなる請求項1~3のいずれか一項に記載のフィルター材。 フ ィ ル タ ー The filter material according to any one of claims 1 to 3, wherein the nonwoven fabric comprises 95% by mass or more of the constituent fibers made of polyester fibers.
  5.  前記ポリエステル繊維がポリエチレンテレフタレート繊維である請求項1~4のいずれか一項に記載のフィルター材。 フ ィ ル タ ー The filter material according to any one of claims 1 to 4, wherein the polyester fiber is a polyethylene terephthalate fiber.
  6.  前記不織布の構成繊維の平均繊維直径が3μm以下である請求項1~5のいずれか一項に記載のフィルター材。 (6) The filter material according to any one of (1) to (5), wherein an average fiber diameter of constituent fibers of the nonwoven fabric is 3 μm or less.
  7.  前記不織布がメルトブロー不織布である請求項1~6のいずれか一項に記載のフィルター材。 フ ィ ル タ ー The filter material according to any one of claims 1 to 6, wherein the nonwoven fabric is a meltblown nonwoven fabric.
  8.  請求項1~7のいずれか一項に記載のフィルター材がフィルター容器内に配置されていることを特徴とする白血球除去フィルター。 (8) A leukocyte removal filter, wherein the filter material according to any one of (1) to (7) is disposed in a filter container.
  9.  ポリエステル繊維から構成された不織布を有するフィルター材をフィルター容器内に備えた白血球除去フィルターの製造方法であって、
     a)ポリエステル繊維から構成された不織布を155℃以上225℃以下の温度において拘束状態で熱処理する工程、
     b)前記熱処理後の不織布に親水性コーティングを施す工程、
     c)前記親水性コーティングされた不織布を含むフィルター材をフィルター容器内に配置し、前記フィルター容器を密閉する工程、
     d)前記フィルター容器内に配置された前記フィルター材を100℃以上130℃以下の温度で蒸気滅菌する工程、
     を含むことを特徴とする白血球除去フィルターの製造方法。
    A method for producing a leukocyte removal filter including a filter material having a nonwoven fabric composed of polyester fibers in a filter container,
    a) a step of heat-treating the nonwoven fabric composed of polyester fibers in a constrained state at a temperature of 155 ° C. or more and 225 ° C. or less;
    b) applying a hydrophilic coating to the non-woven fabric after the heat treatment;
    c) arranging a filter material containing the hydrophilic coated nonwoven fabric in a filter container, and sealing the filter container;
    d) a step of steam sterilizing the filter material disposed in the filter container at a temperature of 100 ° C. or more and 130 ° C. or less;
    A method for producing a leukocyte removal filter, comprising:
  10.  前記ポリエステル繊維がポリエチレンテレフタレート繊維である請求項9に記載の白血球除去フィルターの製造方法。 10. The method for producing a leukocyte removal filter according to claim 9, wherein the polyester fiber is a polyethylene terephthalate fiber.
  11.  前記不織布の構成繊維の平均繊維直径が3μm以下である請求項9または10に記載の白血球除去フィルターの製造方法。 11. The method for producing a leukocyte removal filter according to claim 9, wherein an average fiber diameter of constituent fibers of the nonwoven fabric is 3 μm or less.
PCT/JP2019/027187 2018-07-13 2019-07-09 Filter material for removing leukocytes, filter for removing leukocytes and method for producing same WO2020013193A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980046495.2A CN112384260A (en) 2018-07-13 2019-07-09 Filter medium for leukocyte removal, leukocyte removal filter, and method for producing same
US17/258,810 US20210268415A1 (en) 2018-07-13 2019-07-09 Filter material for removing leukocytes, leukocyte removal filter and method for producing same
JP2020530206A JP7264896B2 (en) 2018-07-13 2019-07-09 Leukocyte-removing filter material, leukocyte-removing filter, and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018133398 2018-07-13
JP2018-133398 2018-07-13

Publications (1)

Publication Number Publication Date
WO2020013193A1 true WO2020013193A1 (en) 2020-01-16

Family

ID=69141741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027187 WO2020013193A1 (en) 2018-07-13 2019-07-09 Filter material for removing leukocytes, filter for removing leukocytes and method for producing same

Country Status (4)

Country Link
US (1) US20210268415A1 (en)
JP (1) JP7264896B2 (en)
CN (1) CN112384260A (en)
WO (1) WO2020013193A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11567389B2 (en) 2017-08-24 2023-01-31 University Of Exeter Display

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010537068A (en) * 2007-08-17 2010-12-02 ファイバーウェブ,インコーポレイテッド Area bonded nonwoven fabric made from a single polymer system
WO2016204297A1 (en) * 2015-06-17 2016-12-22 旭化成メディカル株式会社 Filter element for blood-processing filter, blood-processing filter, and blood-processing method
WO2018034213A1 (en) * 2016-08-18 2018-02-22 旭化成メディカル株式会社 Filter element for blood treatment filter, blood treatment filter, and leukocyte removal method

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3172542B2 (en) * 1990-06-25 2001-06-04 テルモ株式会社 Filter material for capturing leukocytes and method for producing the same
JP3694117B2 (en) * 1996-09-09 2005-09-14 トヨタ自動車株式会社 Self-adhesive composite fiber and its application products
JP2001112862A (en) * 1999-10-22 2001-04-24 Terumo Corp Blood filter
JP4565762B2 (en) * 2001-03-26 2010-10-20 旭化成メディカル株式会社 Leukocyte removal filter and method for producing the same
CN1968720B (en) * 2004-04-21 2010-05-05 东丽株式会社 Medical filter material, extracorporeal circulation column utilizing the same, and blood filter
JP4754377B2 (en) * 2006-03-22 2011-08-24 旭化成メディカル株式会社 Method for manufacturing filter device for blood treatment and filter device for blood treatment
JP2011194083A (en) * 2010-03-19 2011-10-06 Kaneka Corp Method for processing polyester nonwoven fabric and leukocyte removal filter comprising the nonwoven fabric processed
JP2012183237A (en) * 2011-03-07 2012-09-27 Kaneka Corp New leukocyte removal filter
JP5873317B2 (en) * 2011-12-14 2016-03-01 株式会社クレハ Antibacterial nonwoven fabric formed from biodegradable aliphatic polyester fiber and antibacterial method
EP2832409B1 (en) * 2012-03-29 2018-05-09 Kuraray Co., Ltd. Nonwoven sheet, process for producing the same, and filter
CN104619901B (en) * 2012-09-14 2017-09-19 出光兴产株式会社 Multilayer nonwoven fabric and method for producing same
US10188974B2 (en) * 2013-03-18 2019-01-29 Asahi Kasei Medical Co., Ltd. Aggregate-removing filter material, aggregate removal method, white blood cell-removing filter, and blood product filtering method
US11213776B2 (en) * 2013-12-13 2022-01-04 Asahi Kasei Medical Co., Ltd. Leukocyte removal filter material and leukocyte removal method
US10765978B2 (en) * 2015-05-15 2020-09-08 Jnc Corporation Filter
CN107735116B (en) * 2015-06-17 2021-07-06 旭化成医疗株式会社 Filter member for blood treatment filter and blood treatment filter
DE202015105210U1 (en) * 2015-10-02 2016-11-03 Ahlstrom Corp. Filter medium with high heat resistance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010537068A (en) * 2007-08-17 2010-12-02 ファイバーウェブ,インコーポレイテッド Area bonded nonwoven fabric made from a single polymer system
WO2016204297A1 (en) * 2015-06-17 2016-12-22 旭化成メディカル株式会社 Filter element for blood-processing filter, blood-processing filter, and blood-processing method
WO2018034213A1 (en) * 2016-08-18 2018-02-22 旭化成メディカル株式会社 Filter element for blood treatment filter, blood treatment filter, and leukocyte removal method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11567389B2 (en) 2017-08-24 2023-01-31 University Of Exeter Display

Also Published As

Publication number Publication date
US20210268415A1 (en) 2021-09-02
JP7264896B2 (en) 2023-04-25
JPWO2020013193A1 (en) 2021-08-02
CN112384260A (en) 2021-02-19

Similar Documents

Publication Publication Date Title
JP5886753B2 (en) New leukocyte removal filter
TWI396565B (en) Microporous hollow fiber membrane for blood treatment
US10478537B2 (en) Cell separation filter material and filter obtained by layering same
JP2012183237A (en) New leukocyte removal filter
WO1997023266A1 (en) Filter medium for leukocyte removal
JPH0546822B2 (en)
EP3081241A1 (en) Leukocyte removal filter material and leukocyte removal method
CN109562210B (en) Filter element for blood treatment filter, and method for removing leukocytes
JP6919563B2 (en) Porous fibers, adsorbents and purification columns
WO2020013193A1 (en) Filter material for removing leukocytes, filter for removing leukocytes and method for producing same
JP3741320B2 (en) Leukocyte selective removal filter material
EP1262204A1 (en) Novel leukapheretic filter
JP6291970B2 (en) Protein adsorbing material, method for producing the same, blood purifier
JPH03196819A (en) Method for removing mycoplasma
JP7277598B2 (en) BLOOD PROCESSING FILTER, MANUFACTURING METHOD THEREOF, AND LEUKOCELL REMOVAL METHOD
JP7019054B2 (en) Manufacturing method of blood treatment filter and blood treatment filter
JP7340020B2 (en) BLOOD PROCESSING FILTER AND BLOOD PRODUCT MANUFACTURING METHOD
JP2003010322A (en) Hollow fiber membrane for hemocatharsis, method for manufacturing the same, and blood purifier
JP4148310B2 (en) Leukocyte selective removal filter
JPH0724066A (en) Selective leucocyte trapper and leucocyte trapping apparatus
Mayuri P Electrospun Poly (Ethylene-co-vinyl alcohol) Membranes for Leukodepletion Filters: Effect of Chemical Modifications
JP2011194083A (en) Method for processing polyester nonwoven fabric and leukocyte removal filter comprising the nonwoven fabric processed

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19834708

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020530206

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19834708

Country of ref document: EP

Kind code of ref document: A1