WO2020012565A1 - Robot control device - Google Patents

Robot control device Download PDF

Info

Publication number
WO2020012565A1
WO2020012565A1 PCT/JP2018/026078 JP2018026078W WO2020012565A1 WO 2020012565 A1 WO2020012565 A1 WO 2020012565A1 JP 2018026078 W JP2018026078 W JP 2018026078W WO 2020012565 A1 WO2020012565 A1 WO 2020012565A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
teaching point
unit
correction amount
gripping
Prior art date
Application number
PCT/JP2018/026078
Other languages
French (fr)
Japanese (ja)
Inventor
亮輔 川西
泰憲 櫻本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/026078 priority Critical patent/WO2020012565A1/en
Priority to DE112018007703.9T priority patent/DE112018007703C5/en
Priority to CN201880095385.0A priority patent/CN112384340A/en
Priority to JP2019545385A priority patent/JP6632783B1/en
Publication of WO2020012565A1 publication Critical patent/WO2020012565A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • B25J9/1666Avoiding collision or forbidden zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1612Programme controls characterised by the hand, wrist, grip control

Definitions

  • the present invention relates to a robot control device that operates a robot based on a robot program.
  • the robot When recognizing a randomly arranged work by image processing and gripping it with a robot, if the robot is operated to grip the position of the work as taught in the posture as taught, obstacles around the work will be obstructed. And the robot or the work may interfere with each other. For this reason, the teaching point indicating at least one of the position and the posture of the robot is changed to make it different from the time when the gripping position and the posture, which are the positions where the workpiece is gripped, are taught. Alternatively, attempts have been made to avoid interference with the work.
  • Patent Literature 1 discloses a technology that defines a permissible change amount of each teaching point and determines whether the change amount of each teaching point is within a permissible amount range when an interference avoidance correction of an operation program is performed. Have been.
  • Patent Literature 1 does not consider changes in the gripping position and posture of the work in the operation after changing the gripping position from the teaching point to avoid interference. Therefore, when the gripping position and posture of the work are corrected by the interference avoidance, the assembling fails because the gripping position and posture of the work are different from those taught when the gripping operation such as assembling and fitting is performed. there's a possibility that.
  • the present invention has been made in view of the above, and when processing for avoiding interference is performed and the gripping position and posture of the workpiece are different from those at the time of teaching, the operation after gripping the workpiece fails. It is an object of the present invention to obtain a robot control device in which noise is suppressed.
  • the present invention provides a storage unit that stores a robot program including a teaching point indicating at least one of a position and a posture of a robot, An interference avoidance processing unit that performs an interference avoidance process that avoids the robot or the work from interfering with an obstacle; and a grip correction amount that is a correction amount of a grip position of the workpiece and a posture of the work in the interference avoidance process.
  • a grip correction amount acquisition unit that acquires The present invention is directed to a teaching point acquisition unit that acquires a teaching point, and corrects a teaching point based on a grip correction amount when a grip position and a posture of a workpiece are changed based on a grip correction amount along with interference avoidance processing.
  • an operation command unit for transmitting an operation command to the robot according to a robot program in which the teaching point is corrected based on the grip correction amount.
  • the robot control device has an effect that when processing for avoiding interference and the gripping position and posture of the workpiece are different from those at the time of teaching, it is possible to suppress the failure of the operation after gripping the workpiece. Play.
  • Functional block diagram of a robot control device Flow chart showing the flow of the operation of the robot control device according to the first embodiment.
  • Functional block diagram of a robot control device according to Embodiment 2 of the present invention Flow chart showing the flow of the operation of the robot control device according to the second embodiment.
  • Functional block diagram of a robot control device according to Embodiment 3 of the present invention Flow chart showing the flow of the operation of the robot control device according to the third embodiment.
  • FIG. 1 is a functional block diagram of the robot control device according to the first embodiment of the present invention.
  • the robot control device 100 according to the first embodiment includes a control unit 10 that controls the robot 30 and a storage unit 20 that stores a robot program 21 for operating the robot 30.
  • the robot program 21 includes a teaching point group 24.
  • the teaching point group 24 includes at least one teaching point indicating at least one of the position and the posture of the robot 30.
  • the control unit 10 includes an operation group creation unit 11 that groups a part of the teaching points included in the teaching point group 24 to create an operation group 23, an interference avoidance processing unit 12 that performs a process of avoiding interference, A grasping correction amount acquiring unit 13 for acquiring a grasping correction amount based on a result of a process to be avoided, a teaching point acquiring unit 14 for acquiring a teaching point included in the operation group 23, and a teaching point correcting unit 15 for correcting a teaching point And an operation command section 16 for outputting an operation command for operating the robot 30.
  • the storage unit 20 also stores obstacle information 22 indicating the position and shape of an obstacle that may interfere with the robot 30.
  • the robot 30 has a hand 31 for gripping a work.
  • the hand 31 grips the work according to the operation command output from the operation command unit 16 according to the grip command in the robot program 21, and according to the operation command output from the operation command unit 16 according to the grip release command according to the robot program 21. Release the work. That is, the gripping command is a command for instructing gripping of the work, and the gripping release command is a command for instructing gripping of the workpiece.
  • the hand 31 for gripping the work can be exemplified by a hand gripper for holding the work, a suction end effector by air suction, and a suction end effector by magnetic force.
  • examples of the gripping command and the gripping release command include a command for instructing opening and closing of the hand 31 and a command for instructing on / off of suction.
  • the method of sucking the work by the hand 31 is not limited to the illustrated method.
  • the operation group creating unit 11 can be set to either a manual mode for grouping teaching points specified by a user input operation or an automatic mode for analyzing the robot program 21 to group teaching points.
  • the operation group creation unit 11 creates an operation group 23 by grouping the teaching points tagged by selection by the user when creating the robot program 21. I do.
  • the operation group creation unit 11 detects a gripping command and a grip release command in the robot program 21 and teaches while the robot 30 is operating while gripping an object. It is determined whether or not the point is a point, and the teaching points while grasping the object are grouped to create an operation group 23.
  • the robot 30 can be analyzed by analyzing the robot program 21 or detecting a gripping command and a gripping release command while the robot 30 is operating. It is possible to determine whether or not a teaching point that seems not to hold the object is included in the motion group 23. By issuing a warning and notifying the user when a teaching point that seems to be not holding the object by the robot 30 is included in the operation group 23, it is possible to prevent unnecessary teaching points from being grouped. .
  • the operation group creating unit 11 detects teaching points related to a series of operations of gripping an object by the robot 30 and presents the teaching points to the user. By allowing the user to select teaching points to be grouped from among the above, mistakes in selecting teaching points can be reduced.
  • the interference avoidance processing unit 12 determines whether or not to perform processing for avoiding interference during the operation of the robot 30 based on the obstacle information 22 stored in the storage unit 20 and the robot program 21.
  • the grip correction amount acquired by the grip correction amount acquisition unit 13 is defined as a change amount that changes the grip position and posture at the time of teaching the workpiece to the grip position and posture after performing the process of avoiding interference.
  • the acquisition method of the gripping correction amount for avoiding the interference may be an arbitrary calculation method of calculating and acquiring a change amount every time the process of avoiding the interference is performed, or a plurality of correction patterns may be held in advance. Alternatively, a pattern selection method of selecting from among them may be used.
  • the grip correction amount acquisition unit 13 calculates and acquires the grip correction amount based on the obstacle information 22 and the robot program 21.
  • the grip correction amount acquisition unit 13 reads and acquires the grip correction amount stored in the storage unit 20.
  • the process of avoiding interference can be performed at the time of creating the robot program 21 even if the grip correction amount cannot be determined.
  • the amount of calculation of the gripping correction amount can be reduced.
  • the teaching point correction unit 15 performs the teaching point correction so that the position and the posture of the workpiece being gripped are not changed even when the gripping position and the attitude of the workpiece are changed in accordance with the processing for avoiding the interference based on the gripping correction amount.
  • the teaching point acquired by the acquiring unit 14 is corrected.
  • the same correction as the correction of the gripping position and posture is performed on the teaching point to be corrected, so that the position and the position of the corrected workpiece are corrected.
  • the posture and the position and posture of the workpiece when the process for avoiding the interference is not performed can be made to match. If at least one of the grip correction amount and the teaching point to be corrected is not described in the tool coordinate system, the same correction can be performed by unifying the coordinate system to the tool coordinate system.
  • FIG. 2 is a flowchart showing a flow of the operation of the robot control device according to the first embodiment.
  • the interference avoidance processing unit 12 acquires all the teaching points in the robot program 21, that is, the teaching point group 24.
  • the interference avoidance processing unit 12 determines whether it is necessary to perform a process for avoiding interference. If it is necessary to perform the process of avoiding the interference, the result is Yes in step S2, and in step S3, the gripping correction amount acquisition unit 13 acquires the gripping correction amount.
  • the interference avoidance processing unit 12 performs a process of avoiding interference, and changes a gripping position and a posture of the work.
  • the teaching point acquisition unit 14 acquires the operation group 23 created by the operation group creation unit 11.
  • step S6 the teaching point acquiring unit 14 determines whether or not an uncorrected teaching point exists among the teaching points included in the operation group 23. If there is an uncorrected teaching point, the result is Yes in step S6, and the teaching point acquiring unit 14 acquires the value of the uncorrected teaching point in the operation group 23 in step S7. In step S8, the teaching point correction unit 15 corrects the teaching point. After step S8, the process returns to step S6.
  • step S6 the operation command unit 16 corrects the teaching point based on the grip correction amount. According to 21, an operation command is transmitted to the robot 30.
  • step S10 the operation command unit 16 determines whether to end the operation of the robot 30. If there is another robot program 21 to be executed, the operation of the robot 30 is continued. If there is no other robot program 21 to be executed, the operation of the robot 30 ends. If the operation of the robot 30 is to be ended, the answer is Yes in step S10, and the process ends. If the operation of the robot 30 is not terminated, the result is No in step S10, and the process returns to step S1.
  • the robot control device 100 according to the first embodiment executes a process of avoiding interference by the teaching point correction unit 15 correcting the teaching point.
  • the robot control device 100 according to Embodiment 1 changes the position and posture of the work at each teaching point in the operation group 23 even when the gripping position and posture of the work change due to the process of avoiding the interference. do not do. Therefore, the robot control device 100 according to the first embodiment can realize the interference avoidance that guarantees that the operation after gripping the work does not fail. Further, since the robot control device 100 according to the first embodiment performs the correction of the teaching point inside the robot control device 100, it is not necessary to add a correction formula of the teaching point in the robot program 21, and the usability is improved. It is possible to avoid the improvement and the complexity of the robot program 21. In the above description, each teaching point in the operation group 23 has been corrected, but the operation group creation unit 11 is omitted, and not only the teaching points in the operation group 23 but also all the teaching points in the teaching point group 24 are The points may be corrected.
  • FIG. FIG. 3 is a functional block diagram of a robot control device according to Embodiment 2 of the present invention.
  • the robot control device 101 according to the second embodiment includes an operation availability determination unit 17 that determines whether the robot 30 can move to a teaching point in the operation group 23 corrected by the teaching point correction unit 15. The rest is the same as the robot control device 100 according to the first embodiment.
  • the operation availability determination unit 17 checks whether or not the teaching point in the operation group 23 corrected by the teaching point correction unit 15 is within the operation limit of the robot 30, so that the robot 30 can reach the teaching point. It is determined whether it is possible to move.
  • the operation limit can be a range in which the position and posture of the robot 30 can be taken in an arbitrary coordinate system, or a range in which the joint angles of the joints of the robot 30 can be taken.
  • the operation limit can be determined by the user setting the range of the translation position and the posture value in the rectangular coordinate system.
  • the operation limit may be the movable range of the robot 30.
  • the movable range of the robot 30 is a range that the joints of the robot 30 can physically take.
  • the movable range of the robot 30 may be a design value or a value defined by specifications.
  • the movable range of the robot 30 may be determined by the user specifying a range in which the robot 30 and the devices connected to the robot 30 do not collide with a structure existing around the robot 30.
  • the devices connected to the robot 30 can be exemplified by an end effector and a vision sensor.
  • the position of the object around the robot 30 may be acquired by a device such as a laser scanner capable of detecting the position of the object, and the operation limit may be determined based on the acquired position of the object.
  • the operation limit may be set by combining a plurality of setting methods.
  • a method using both the movable range and the range designation of the rectangular coordinate system can be exemplified, but the method is not limited to this.
  • FIG. 4 is a flowchart showing a flow of the operation of the robot control device according to the second embodiment.
  • the operation of the robot controller 101 according to the second embodiment is different from the operation of the robot controller 100 according to the first embodiment in that steps S11 and S12 are added after step S8.
  • step S11 the operation availability determination unit 17 determines whether the corrected teaching point is within the operation limit.
  • step S11 If the corrected teaching point is within the operation limit, the result is Yes in step S11, and the process proceeds to step S6. If the corrected teaching point is not within the range of the operation limit, the result is No in step S11, and in step S12, the operation availability determination unit 17 outputs an error.
  • the robot controller 101 knows beforehand whether or not the corrected teaching point is within the set operation limit when the teaching point in the operation group 23 is corrected by the teaching point correction unit 15. Therefore, an accident such as the robot 30 colliding with a surrounding structure can be prevented.
  • FIG. FIG. 5 is a functional block diagram of a robot control device according to Embodiment 3 of the present invention.
  • the robot control device 102 according to the third embodiment includes a gripping correction range obtaining unit 18 that obtains a range in which the gripping correction amount can be obtained, and a gripping correction amount changing unit 19 that changes the gripping correction amount in a range in which the gripping correction amount can be obtained.
  • the rest is the same as the robot control device 101 according to the second embodiment.
  • a range in which the grip correction amount can be taken is referred to as a grip correction range.
  • the gripping correction range acquisition unit 18 determines the gripping correction range when the gripping position and posture of the work can be obtained in a range in the process of avoiding interference, that is, when the gripping correction amount is a value having a width instead of a specific value. get.
  • the grip correction amount that can be taken to avoid interference may not be uniquely determined. Taking a cylindrical work as an example, interference can be avoided by sliding the gripping position in the direction along the cylindrical axis of the work while maintaining the relative posture between the cylindrical work and the end effector of the robot 30. Where possible, the gripping position of the workpiece is not uniquely determined. In such a case, the grip correction range obtaining unit 18 can obtain the grip correction range.
  • the grip correction range is represented by a range of coordinate values in an arbitrary coordinate system.
  • the work coordinate system of the work is set, and when the cylindrical axis direction is the X-axis direction of the work, the maximum and minimum values of X that can avoid interference are set. Good.
  • the fact that the grip correction range is represented by a range of coordinate values means that the candidate values of the grip correction amount take a continuous value.
  • the grip correction range may be configured by a combination of a plurality of ranges.
  • the grip correction range may be a range in which a plurality of ranges overlap.
  • the grip correction range may be a set of discrete values instead of a continuous range of coordinate values.
  • the grip correction amount changing unit 19 changes the grip correction amount based on the grip correction range and the determination result of the operation availability determination unit 17.
  • the determination is performed by selecting a value for which the determination result in the operation availability determination unit 17 is allowable from the values within the grip correction range.
  • the grip correction range is a set of discrete values
  • the change of the grip correction amount is obtained by acquiring candidate values of the grip correction amount and determining the operation result determination unit 17 from the obtained candidates. This is done by selecting
  • Examples of the method of acquiring the candidate value include a method of calculating a plurality of gripping correction amounts by dividing the gripping correction range at an arbitrary interval, and a method of randomly extracting gripping positions and postures included in the gripping correction range.
  • the grip position and orientation included in the grip correction range are extracted at random, the result of the operation possibility determination differs depending on the extracted candidate value, so there is a possibility that interference avoidance may be successful by re-extracting the candidate value.
  • FIG. 6 is a flowchart showing a flow of the operation of the robot control device according to the third embodiment.
  • the operation of the robot control device 102 according to the third embodiment differs from the operation of the robot control device 101 according to the second embodiment in that steps S21, S22, and S23 are added after step S11. ing.
  • step S21 the grip correction amount changing unit 19 determines the grip correction amount. Determine whether to change.
  • the grip correction amount is changed, the answer is Yes in step S21, and in step S22, the grip correction range obtaining unit 18 obtains the grip correction range.
  • step S23 the grip correction amount changing unit 19 changes the grip correction amount within the grip correction range.
  • step S21 if the grip correction amount is not changed, No is obtained in step S21, and the process proceeds to step S12.
  • the grip correction amount has a plurality of candidate values within the grip correction range, and any of the candidate values within the grip correction range is used as the grip correction amount.
  • the grip correction amount is changed to another candidate value, and it is determined whether the corrected teaching point is within the operation limit. Can be.
  • the grip correction amount can be corrected so that the robot 30 can move within a range where interference can be avoided. This makes it possible to easily adjust the operation of the robot 30 and reduce the number of stops.
  • the function of the control unit 10 according to the first, second, or third embodiment is realized by a processing circuit.
  • the processing circuit may be dedicated hardware or an arithmetic device that executes a program stored in a storage device.
  • FIG. 7 is a diagram illustrating a configuration in which the function of the control unit according to the first, second, or third embodiment is realized by hardware.
  • the processing circuit 29 incorporates a logic circuit 29a for realizing the function of the control unit 10.
  • the hardware that implements the processing circuit 29 can be exemplified by a microcontroller.
  • control unit 10 When the processing circuit 29 is an arithmetic unit, the function of the control unit 10 is realized by software, firmware, or a combination of software and firmware.
  • FIG. 8 is a diagram illustrating a configuration in which the function of the control unit according to the first, second, or third embodiment is realized by software.
  • the processing circuit 29 has a central processing unit 291 for executing the program 29b, a random access memory 292 used by the central processing unit 291 for a work area, and a storage device 293 for storing the program 29b.
  • the functions of the control unit 10 are realized by the central processing unit 291 expanding and executing the program 29b stored in the storage device 293 on the random access memory 292.
  • the software or firmware is described in a programming language and stored in the storage device 293.
  • the processing circuit 29 implements the function of the control unit 10 by reading and executing the program 29b stored in the storage device 293. It can be said that the program 29b causes a computer to execute a procedure and a method for realizing the function of the control unit 10.
  • processing circuit 29 may be partially realized by dedicated hardware and partially realized by software or firmware.
  • the processing circuit 29 can realize the above-described functions by hardware, software, firmware, or a combination thereof.
  • control unit 11 operation group creation unit, 12 interference avoidance processing unit, 13 grip correction amount acquisition unit, 14 teaching point acquisition unit, 15 teaching point correction unit, 16 operation instruction unit, 17 operation possibility determination unit, 18 grip correction range Acquisition unit, 19 grip correction amount change unit, 20 storage unit, 21 robot program, 22 obstacle information, 23 operation group, 24 teaching point group, 29 processing circuit, 29a logic circuit, 29b program, 30 robot, 31 hand, 100 , 101, 102 ⁇ robot control unit, 291 ⁇ central processing unit, 292 ⁇ random access memory, 293 ⁇ storage unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Numerical Control (AREA)
  • Manipulator (AREA)

Abstract

A robot control device (100) has: a storage unit (20) that stores a robot program (21) including teaching points; an interference avoidance processing unit (12) that performs interference avoidance processing when a robot (30) grasps a workpiece; a grasp correction acquisition unit (13) that acquires the grasp correction in the interference avoidance processing, said grasp correction being the amount of correction of a grasp position, which is a position in the workpiece grasped by the robot (30), and workpiece orientation; a teaching point acquisition unit (14) that acquires a teaching point; a teaching point revision unit (15) that revises the teaching point when the grasp position and workpiece orientation are changed because of the interference avoidance processing; and an operation command unit (16) that sends operation commands to the robot (30) in accordance with the robot program (21) in which the teaching point has been revised.

Description

ロボット制御装置Robot controller
 本発明は、ロボットプログラムに基づいてロボットを動作させるロボット制御装置に関する。 The present invention relates to a robot control device that operates a robot based on a robot program.
 乱雑に配置されたワークを画像処理で認識してロボットで把持する際に、ワークの教示通りの位置を教示通りの姿勢で把持するようにロボットに動作を行わせると、ワークの周囲の障害物とロボット又はワークとが干渉してしまうことがある。このため、ロボットの位置及び姿勢の少なくとも一方を示す教示点を変更し、ワークの把持される位置である把持位置及び姿勢を教示した時とは異ならせることより、ワークの周囲の障害物とロボット又はワークとの干渉を回避することが試みられている。 When recognizing a randomly arranged work by image processing and gripping it with a robot, if the robot is operated to grip the position of the work as taught in the posture as taught, obstacles around the work will be obstructed. And the robot or the work may interfere with each other. For this reason, the teaching point indicating at least one of the position and the posture of the robot is changed to make it different from the time when the gripping position and the posture, which are the positions where the workpiece is gripped, are taught. Alternatively, attempts have been made to avoid interference with the work.
 特許文献1には、各教示点の変更可能許容量を規定し、動作プログラムの干渉回避修正を行った場合に、各教示点の変更量が許容量範囲内か否かを判定する技術が開示されている。 Patent Literature 1 discloses a technology that defines a permissible change amount of each teaching point and determines whether the change amount of each teaching point is within a permissible amount range when an interference avoidance correction of an operation program is performed. Have been.
特開2015-231640号公報JP-A-2015-231640
 しかしながら、特許文献1に開示される発明は、干渉回避のために教示点から把持位置などを変更した後の動作におけるワークの把持位置及び姿勢の変化に対する考慮がなされていない。そのため、干渉回避によってワークの把持位置及び姿勢が補正された場合に、組み付け及び嵌合といった把持後の動作において、ワークの把持位置及び姿勢が教示したときとは異なってしまうことにより、組み付けに失敗する可能性がある。 However, the invention disclosed in Patent Literature 1 does not consider changes in the gripping position and posture of the work in the operation after changing the gripping position from the teaching point to avoid interference. Therefore, when the gripping position and posture of the work are corrected by the interference avoidance, the assembling fails because the gripping position and posture of the work are different from those taught when the gripping operation such as assembling and fitting is performed. there's a possibility that.
 したがって、干渉回避に伴って、ワークの把持位置及び姿勢が変化することを考慮した干渉回避技術の実現が望まれていた。 Therefore, it has been desired to implement an interference avoidance technique that takes into account that the gripping position and posture of a workpiece change with interference avoidance.
 本発明は、上記に鑑みてなされたものであって、干渉を回避する処理を行ってワークの把持位置及び姿勢が教示時とは異なった場合に、ワークを把持した後の動作に失敗することを抑制したロボット制御装置を得ることを目的とする。 The present invention has been made in view of the above, and when processing for avoiding interference is performed and the gripping position and posture of the workpiece are different from those at the time of teaching, the operation after gripping the workpiece fails. It is an object of the present invention to obtain a robot control device in which noise is suppressed.
 上述した課題を解決し、目的を達成するために、本発明は、ロボットの位置及び姿勢の少なくとも一方を示す教示点を含むロボットプログラムを記憶する記憶部と、ロボットがワークを把持する際に、ロボット又はワークが障害物と干渉することを回避する干渉回避処理を行う干渉回避処理部と、干渉回避処理における、ワークのロボットに把持される把持位置及びワークの姿勢の補正量である把持補正量を取得する把持補正量取得部とを有する。本発明は、教示点を取得する教示点取得部と、把持位置及びワークの姿勢が干渉回避処理に伴って把持補正量に基づいて変更された場合に、教示点を把持補正量に基づいて補正する教示点補正部と、教示点を把持補正量に基づいて補正したロボットプログラムに従って、ロボットに動作命令を送信する動作命令部とを有する。 In order to solve the above-described problems and achieve the object, the present invention provides a storage unit that stores a robot program including a teaching point indicating at least one of a position and a posture of a robot, An interference avoidance processing unit that performs an interference avoidance process that avoids the robot or the work from interfering with an obstacle; and a grip correction amount that is a correction amount of a grip position of the workpiece and a posture of the work in the interference avoidance process. And a grip correction amount acquisition unit that acquires The present invention is directed to a teaching point acquisition unit that acquires a teaching point, and corrects a teaching point based on a grip correction amount when a grip position and a posture of a workpiece are changed based on a grip correction amount along with interference avoidance processing. And an operation command unit for transmitting an operation command to the robot according to a robot program in which the teaching point is corrected based on the grip correction amount.
 本発明に係るロボット制御装置は、干渉を回避する処理を行ってワークの把持位置及び姿勢が教示時とは異なった場合に、ワークを把持した後の動作に失敗することを抑制できるという効果を奏する。 The robot control device according to the present invention has an effect that when processing for avoiding interference and the gripping position and posture of the workpiece are different from those at the time of teaching, it is possible to suppress the failure of the operation after gripping the workpiece. Play.
本発明の実施の形態1に係るロボット制御装置の機能ブロック図Functional block diagram of a robot control device according to Embodiment 1 of the present invention 実施の形態1に係るロボット制御装置の動作の流れを示すフローチャートFlow chart showing the flow of the operation of the robot control device according to the first embodiment. 本発明の実施の形態2に係るロボット制御装置の機能ブロック図Functional block diagram of a robot control device according to Embodiment 2 of the present invention 実施の形態2に係るロボット制御装置の動作の流れを示すフローチャートFlow chart showing the flow of the operation of the robot control device according to the second embodiment. 本発明の実施の形態3に係るロボット制御装置の機能ブロック図Functional block diagram of a robot control device according to Embodiment 3 of the present invention. 実施の形態3に係るロボット制御装置の動作の流れを示すフローチャートFlow chart showing the flow of the operation of the robot control device according to the third embodiment. 実施の形態1、実施の形態2又は実施の形態3に係る制御部の機能をハードウェアで実現した構成を示す図The figure which shows the structure which implement | achieved the function of the control part which concerns on Embodiment 1, 2, or 3 with hardware. 実施の形態1、実施の形態2又は実施の形態3に係る制御部の機能をソフトウェアで実現した構成を示す図The figure which shows the structure which implement | achieved the function of the control part based on Embodiment 1, 2 or 3 with software.
 以下に、本発明の実施の形態に係るロボット制御装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, a robot control device according to an embodiment of the present invention will be described in detail with reference to the drawings. It should be noted that the present invention is not limited by the embodiment.
実施の形態1.
 図1は、本発明の実施の形態1に係るロボット制御装置の機能ブロック図である。実施の形態1に係るロボット制御装置100は、ロボット30を制御する制御部10と、ロボット30を動作させるロボットプログラム21を記憶する記憶部20とを備えている。ロボットプログラム21には、教示点群24が含まれている。教示点群24は、ロボット30の位置及び姿勢の少なくとも一方を示す教示点を少なくとも一つ含む。制御部10は、教示点群24に含まれる教示点の一部をグループ化して動作グループ23を作成する動作グループ作成部11と、干渉を回避する処理を行う干渉回避処理部12と、干渉を回避する処理の結果に基づいて把持補正量を取得する把持補正量取得部13と、動作グループ23に含まれる教示点を取得する教示点取得部14と、教示点を補正する教示点補正部15と、ロボット30を動作させる動作命令を出力する動作命令部16とを有する。記憶部20には、ロボット30と干渉する可能性のある障害物の位置及び形状を示す障害物情報22も記憶されている。
Embodiment 1 FIG.
FIG. 1 is a functional block diagram of the robot control device according to the first embodiment of the present invention. The robot control device 100 according to the first embodiment includes a control unit 10 that controls the robot 30 and a storage unit 20 that stores a robot program 21 for operating the robot 30. The robot program 21 includes a teaching point group 24. The teaching point group 24 includes at least one teaching point indicating at least one of the position and the posture of the robot 30. The control unit 10 includes an operation group creation unit 11 that groups a part of the teaching points included in the teaching point group 24 to create an operation group 23, an interference avoidance processing unit 12 that performs a process of avoiding interference, A grasping correction amount acquiring unit 13 for acquiring a grasping correction amount based on a result of a process to be avoided, a teaching point acquiring unit 14 for acquiring a teaching point included in the operation group 23, and a teaching point correcting unit 15 for correcting a teaching point And an operation command section 16 for outputting an operation command for operating the robot 30. The storage unit 20 also stores obstacle information 22 indicating the position and shape of an obstacle that may interfere with the robot 30.
 ロボット30は、ワークを把持するハンド31を備えている。ハンド31は、ロボットプログラム21中の把持命令にしたがって動作命令部16から出力される動作命令によりワークを把持し、ロボットプログラム21中の把持解除命令にしたがって動作命令部16から出力される動作命令によりワークを開放する。すなわち、把持命令は、ワークの把持を指令する命令であり、把持解除命令はワークの把持解除を指令する命令である。なお、ワークを把持するハンド31には、ワークを挟持するハンドグリッパ、空気吸引による吸着エンドエフェクタ、及び磁力による吸着エンドエフェクタを例示できる。したがって、把持命令及び把持解除命令は、ハンド31の開閉を指令する命令及び吸着のオンオフを指令する命令が例示できる。ただし、ハンド31によるワークの吸着方法は、例示した方法には限定されない。 The robot 30 has a hand 31 for gripping a work. The hand 31 grips the work according to the operation command output from the operation command unit 16 according to the grip command in the robot program 21, and according to the operation command output from the operation command unit 16 according to the grip release command according to the robot program 21. Release the work. That is, the gripping command is a command for instructing gripping of the work, and the gripping release command is a command for instructing gripping of the workpiece. The hand 31 for gripping the work can be exemplified by a hand gripper for holding the work, a suction end effector by air suction, and a suction end effector by magnetic force. Therefore, examples of the gripping command and the gripping release command include a command for instructing opening and closing of the hand 31 and a command for instructing on / off of suction. However, the method of sucking the work by the hand 31 is not limited to the illustrated method.
 動作グループ作成部11は、ユーザの入力操作によって指定された教示点をグループ化する手動モード又はロボットプログラム21を解析して教示点をグループ化する自動モードのいずれかに設定可能である。動作グループ作成部11を手動モードに設定した場合、動作グループ作成部11は、ロボットプログラム21を作成する際にユーザが選択することによってタグ付けされた教示点をグループ化して、動作グループ23を作成する。動作グループ作成部11を自動モードに設定した場合、動作グループ作成部11は、ロボットプログラム21中の把持命令及び把持解除命令を検出し、ロボット30が物体を把持しながら動作している間の教示点であるか否かを判別し、物体を把持中の教示点をグループ化して動作グループ23を作成する。 The operation group creating unit 11 can be set to either a manual mode for grouping teaching points specified by a user input operation or an automatic mode for analyzing the robot program 21 to group teaching points. When the operation group creation unit 11 is set to the manual mode, the operation group creation unit 11 creates an operation group 23 by grouping the teaching points tagged by selection by the user when creating the robot program 21. I do. When the operation group creation unit 11 is set to the automatic mode, the operation group creation unit 11 detects a gripping command and a grip release command in the robot program 21 and teaches while the robot 30 is operating while gripping an object. It is determined whether or not the point is a point, and the teaching points while grasping the object are grouped to create an operation group 23.
 動作グループ作成部11を手動モードに設定することにより、ロボット30が物体を把持中の教示点であっても動作グループ23に含めないことが可能となる。したがって、ロボット30の動作速度を最適化するといった目的で、ユーザが教示した関節角でロボット30を動作させたい場合には、ロボット30が物体を把持中の教示点であっても動作グループ23に含めないようにすることができる。 (4) By setting the operation group creation unit 11 to the manual mode, even if the robot 30 is teaching points while grasping an object, it is possible to exclude the teaching point from the operation group 23. Therefore, if the user wants to operate the robot 30 at the joint angle taught by the user for the purpose of optimizing the operation speed of the robot 30, even if the robot 30 is at a teaching point while grasping an object, the operation group 23 Can be excluded.
 動作グループ作成部11を自動モードに設定することにより、ユーザは、動作グループ23に含める教示点を指定する操作を行う必要がなくなり、省力化を図れる。また、グループ化する教示点の選択漏れといったヒューマンエラーの発生を回避できる。 (4) By setting the operation group creation unit 11 to the automatic mode, the user does not need to perform an operation of specifying a teaching point to be included in the operation group 23, and thus labor can be saved. Further, it is possible to avoid occurrence of human error such as omission of selection of teaching points to be grouped.
 なお、動作グループ作成部11に手動設定をなした場合であっても、ロボットプログラム21を解析したり、ロボット30の動作中に把持命令及び把持解除命令を検知したりすることで、ロボット30が物体を把持していないと思われる教示点が動作グループ23に含まれているかどうかを判別することができる。ロボット30が物体を把持していないと思われる教示点が動作グループ23に含まれる場合に警告を出してユーザに報知することで、不必要な教示点をグループ化してしまうことを防ぐことができる。 Even when the operation group creation unit 11 is manually set, the robot 30 can be analyzed by analyzing the robot program 21 or detecting a gripping command and a gripping release command while the robot 30 is operating. It is possible to determine whether or not a teaching point that seems not to hold the object is included in the motion group 23. By issuing a warning and notifying the user when a teaching point that seems to be not holding the object by the robot 30 is included in the operation group 23, it is possible to prevent unnecessary teaching points from being grouped. .
 また、動作グループ作成部11に手動設定をなした場合に、ロボット30が物体を把持する一連の動作に関連する教示点を動作グループ作成部11が検出してユーザに提示し、提示した教示点の中からグループ化する教示点をユーザに選択させることで、教示点の選択ミスを低減することができる。 Further, when the operation group creating unit 11 is manually set, the operation group creating unit 11 detects teaching points related to a series of operations of gripping an object by the robot 30 and presents the teaching points to the user. By allowing the user to select teaching points to be grouped from among the above, mistakes in selecting teaching points can be reduced.
 干渉回避処理部12は、記憶部20に記憶されている障害物情報22と、ロボットプログラム21とに基づいて、ロボット30の動作中に干渉を回避する処理を行うか否かを判断する。 The interference avoidance processing unit 12 determines whether or not to perform processing for avoiding interference during the operation of the robot 30 based on the obstacle information 22 stored in the storage unit 20 and the robot program 21.
 干渉を回避する処理を行うと、ワークは教示時の把持位置及び姿勢とは異なる把持位置及び姿勢でロボット30に把持されることとなる。したがって、把持補正量取得部13が取得する把持補正量は、ワークの教示時の把持位置及び姿勢を、干渉を回避する処理を行った後の把持位置及び姿勢に変化させる変化量と定義される。 (4) When the process of avoiding the interference is performed, the work is gripped by the robot 30 at a gripping position and a posture different from the gripping position and the posture at the time of teaching. Therefore, the grip correction amount acquired by the grip correction amount acquisition unit 13 is defined as a change amount that changes the grip position and posture at the time of teaching the workpiece to the grip position and posture after performing the process of avoiding interference. .
 干渉を回避するための把持補正量の取得方式は、干渉を回避する処理が実行されるたびに変化量を算出して取得する随時算出方式でも良いし、複数の補正パターンを予め保持しておき、その中から選択するパターン選択方式でも良い。随時算出方式の場合、把持補正量取得部13は、障害物情報22及びロボットプログラム21に基づいて把持補正量を算出して取得する。パターン選択方式の場合、把持補正量取得部13は、記憶部20に記憶されている把持補正量を読み出して取得する。 The acquisition method of the gripping correction amount for avoiding the interference may be an arbitrary calculation method of calculating and acquiring a change amount every time the process of avoiding the interference is performed, or a plurality of correction patterns may be held in advance. Alternatively, a pattern selection method of selecting from among them may be used. In the case of the occasional calculation method, the grip correction amount acquisition unit 13 calculates and acquires the grip correction amount based on the obstacle information 22 and the robot program 21. In the case of the pattern selection method, the grip correction amount acquisition unit 13 reads and acquires the grip correction amount stored in the storage unit 20.
 随時算出方式で干渉を回避する処理を行う場合には、ロボットプログラム21を作成する時点では、把持補正量を決定できなくても、干渉を回避する処理を行うことができる。 In the case of performing the process of avoiding interference by the calculation method at any time, the process of avoiding interference can be performed at the time of creating the robot program 21 even if the grip correction amount cannot be determined.
 パターン選択方式で干渉を回避する処理を行う場合には、把持補正量の計算量を削減することができる。 When performing a process of avoiding interference by the pattern selection method, the amount of calculation of the gripping correction amount can be reduced.
 教示点補正部15は、把持補正量に基づき、干渉を回避する処理に伴ってワークの把持位置及び姿勢が変更された場合においても、把持中のワークの位置及び姿勢が変わらないよう、教示点取得部14で取得した教示点を補正する。 The teaching point correction unit 15 performs the teaching point correction so that the position and the posture of the workpiece being gripped are not changed even when the gripping position and the attitude of the workpiece are changed in accordance with the processing for avoiding the interference based on the gripping correction amount. The teaching point acquired by the acquiring unit 14 is corrected.
 把持補正量及び補正対象の教示点がツール座標系で記述されている場合は、補正対象の教示点に対して把持位置及び姿勢の補正と同じ補正をすることで、補正後のワークの位置及び姿勢と、干渉を回避する処理を行わない場合のワークの位置及び姿勢とを一致させることができる。把持補正量及び補正対象の教示点の少なくとも一方がツール座標系で記述されていない場合は、座標系をツール座標系に統一することで同様の補正が可能である。 When the grip correction amount and the teaching point to be corrected are described in the tool coordinate system, the same correction as the correction of the gripping position and posture is performed on the teaching point to be corrected, so that the position and the position of the corrected workpiece are corrected. The posture and the position and posture of the workpiece when the process for avoiding the interference is not performed can be made to match. If at least one of the grip correction amount and the teaching point to be corrected is not described in the tool coordinate system, the same correction can be performed by unifying the coordinate system to the tool coordinate system.
 図2は、実施の形態1に係るロボット制御装置の動作の流れを示すフローチャートである。ステップS1において、干渉回避処理部12は、ロボットプログラム21中の全ての教示点、すなわち教示点群24を取得する。ステップS2において、干渉回避処理部12は、干渉を回避する処理が行う必要があるか否かを判断する。干渉を回避する処理を行う必要がある場合、ステップS2においてYesとなり、ステップS3において、把持補正量取得部13は、把持補正量を取得する。ステップS4において、干渉回避処理部12は、干渉を回避する処理を行い、ワークの把持位置及び姿勢を変更する。ステップS5において、教示点取得部14は、動作グループ作成部11によって作成された動作グループ23を取得する。ステップS6において、教示点取得部14は、動作グループ23に含まれる教示点の中に未補正の教示点が存在するか否かを判断する。未補正の教示点が存在する場合、ステップS6でYesとなり、ステップS7において、教示点取得部14は、動作グループ23内の未補正の教示点の値を取得する。ステップS8において、教示点補正部15は、教示点を補正する。ステップS8の後は、ステップS6に戻る。 FIG. 2 is a flowchart showing a flow of the operation of the robot control device according to the first embodiment. In step S1, the interference avoidance processing unit 12 acquires all the teaching points in the robot program 21, that is, the teaching point group 24. In step S2, the interference avoidance processing unit 12 determines whether it is necessary to perform a process for avoiding interference. If it is necessary to perform the process of avoiding the interference, the result is Yes in step S2, and in step S3, the gripping correction amount acquisition unit 13 acquires the gripping correction amount. In step S4, the interference avoidance processing unit 12 performs a process of avoiding interference, and changes a gripping position and a posture of the work. In step S5, the teaching point acquisition unit 14 acquires the operation group 23 created by the operation group creation unit 11. In step S6, the teaching point acquiring unit 14 determines whether or not an uncorrected teaching point exists among the teaching points included in the operation group 23. If there is an uncorrected teaching point, the result is Yes in step S6, and the teaching point acquiring unit 14 acquires the value of the uncorrected teaching point in the operation group 23 in step S7. In step S8, the teaching point correction unit 15 corrects the teaching point. After step S8, the process returns to step S6.
 動作グループ23に含まれる教示点の中に未補正の教示点が存在しない場合、ステップS6においてNoとなり、ステップS9において、動作命令部16は、教示点を把持補正量に基づいて補正したロボットプログラム21に従って、ロボット30に動作命令を送信する。ステップS10において、動作命令部16は、ロボット30の動作を終了するか否かを判断する。実行するロボットプログラム21が他にも存在する場合は、ロボット30の動作を継続し、実行するロボットプログラム21が他になければ、ロボット30の動作を終了することになる。ロボット30の動作を終了する場合は、ステップS10においてYesとなり、処理を終了する。ロボット30の動作を終了しない場合は、ステップS10においてNoとなり、ステップS1に戻る。 If there is no uncorrected teaching point among the teaching points included in the operation group 23, the result is No in step S6, and in step S9, the operation command unit 16 corrects the teaching point based on the grip correction amount. According to 21, an operation command is transmitted to the robot 30. In step S10, the operation command unit 16 determines whether to end the operation of the robot 30. If there is another robot program 21 to be executed, the operation of the robot 30 is continued. If there is no other robot program 21 to be executed, the operation of the robot 30 ends. If the operation of the robot 30 is to be ended, the answer is Yes in step S10, and the process ends. If the operation of the robot 30 is not terminated, the result is No in step S10, and the process returns to step S1.
 実施の形態1に係るロボット制御装置100は、教示点補正部15が教示点を補正することによって干渉を回避する処理を実行する。実施の形態1に係るロボット制御装置100は、干渉を回避する処理を行ったことによりワークの把持位置及び姿勢が変化した場合でも、動作グループ23内の各教示点におけるワークの位置及び姿勢は変化しない。したがって、実施の形態1に係るロボット制御装置100は、ワークの把持後の動作に失敗しないことを保証した干渉回避を実現できる。さらに、実施の形態1に係るロボット制御装置100は、教示点の補正をロボット制御装置100の内部で行うため、ロボットプログラム21中に教示点の補正式を追加するなどの必要がなく、ユーザビリティの向上及びロボットプログラム21の複雑化を回避することが可能である。なお、上記の説明においては、動作グループ23内の各教示点を補正したが、動作グループ作成部11を省略し、動作グループ23内の教示点だけでなく、教示点群24内の全ての教示点を補正するようにしてもよい。 The robot control device 100 according to the first embodiment executes a process of avoiding interference by the teaching point correction unit 15 correcting the teaching point. The robot control device 100 according to Embodiment 1 changes the position and posture of the work at each teaching point in the operation group 23 even when the gripping position and posture of the work change due to the process of avoiding the interference. do not do. Therefore, the robot control device 100 according to the first embodiment can realize the interference avoidance that guarantees that the operation after gripping the work does not fail. Further, since the robot control device 100 according to the first embodiment performs the correction of the teaching point inside the robot control device 100, it is not necessary to add a correction formula of the teaching point in the robot program 21, and the usability is improved. It is possible to avoid the improvement and the complexity of the robot program 21. In the above description, each teaching point in the operation group 23 has been corrected, but the operation group creation unit 11 is omitted, and not only the teaching points in the operation group 23 but also all the teaching points in the teaching point group 24 are The points may be corrected.
実施の形態2.
 図3は、本発明の実施の形態2に係るロボット制御装置の機能ブロック図である。実施の形態2に係るロボット制御装置101は、教示点補正部15によって補正された動作グループ23内の教示点にロボット30が移動可能であるかどうかを判定する動作可否判定部17を有する。この他は実施の形態1に係るロボット制御装置100と同様である。
Embodiment 2 FIG.
FIG. 3 is a functional block diagram of a robot control device according to Embodiment 2 of the present invention. The robot control device 101 according to the second embodiment includes an operation availability determination unit 17 that determines whether the robot 30 can move to a teaching point in the operation group 23 corrected by the teaching point correction unit 15. The rest is the same as the robot control device 100 according to the first embodiment.
 動作可否判定部17は、教示点補正部15によって補正された動作グループ23内の教示点が、ロボット30の動作限界の範囲内であるかどうかをチェックすることにより、その教示点までロボット30が移動可能であるかどうかを判定する。 The operation availability determination unit 17 checks whether or not the teaching point in the operation group 23 corrected by the teaching point correction unit 15 is within the operation limit of the robot 30, so that the robot 30 can reach the teaching point. It is determined whether it is possible to move.
 動作限界は、任意の座標系におけるロボット30の位置及び姿勢の取り得る範囲、又はロボット30の各関節の関節角の取り得る範囲とすることができる。動作限界は、直交座標系における並進位置及び姿勢の値の範囲をユーザが設定することによって定めることができる。 The operation limit can be a range in which the position and posture of the robot 30 can be taken in an arbitrary coordinate system, or a range in which the joint angles of the joints of the robot 30 can be taken. The operation limit can be determined by the user setting the range of the translation position and the posture value in the rectangular coordinate system.
 動作限界は、ロボット30の可動範囲であってもよい。ここでいうロボット30の可動範囲は、ロボット30の関節が物理的に取り得る範囲である。なお、ロボット30の可動範囲は、設計値又は仕様で定められた値であってもよい。 The operation limit may be the movable range of the robot 30. Here, the movable range of the robot 30 is a range that the joints of the robot 30 can physically take. The movable range of the robot 30 may be a design value or a value defined by specifications.
 または、ロボット30の周囲に存在する構造物に、ロボット30及びロボット30に接続された機器が衝突しない範囲をユーザが指定してロボット30の可動範囲を定めても良い。なお、ロボット30に接続される機器は、エンドエフェクタ及びビジョンセンサを例示できる。ロボット30の動作を模擬するシミュレーション空間で、ロボット30の周囲の構造物の配置状態を模擬することで、ロボット30が周囲の構造物と衝突しないで動作できる範囲をシミュレーション上で算出してロボット30の可動範囲を設定してもよい。 Alternatively, the movable range of the robot 30 may be determined by the user specifying a range in which the robot 30 and the devices connected to the robot 30 do not collide with a structure existing around the robot 30. The devices connected to the robot 30 can be exemplified by an end effector and a vision sensor. By simulating the arrangement state of structures around the robot 30 in a simulation space that simulates the operation of the robot 30, the range in which the robot 30 can operate without colliding with the surrounding structures is calculated on the simulation. May be set.
 また、物体の位置を検出可能なレーザスキャナといった装置により、ロボット30の周囲の物体の位置を取得し、取得した物体の位置に基づいて動作限界を決定しても良い。 (4) The position of the object around the robot 30 may be acquired by a device such as a laser scanner capable of detecting the position of the object, and the operation limit may be determined based on the acquired position of the object.
 動作限界は、複数の設定方法を組み合わせることにより設定しても良い。可動範囲と直交座標系の範囲指定とを併用する方法を例示できるが、これに限定はされない。 The operation limit may be set by combining a plurality of setting methods. A method using both the movable range and the range designation of the rectangular coordinate system can be exemplified, but the method is not limited to this.
 図4は、実施の形態2に係るロボット制御装置の動作の流れを示すフローチャートである。実施の形態2に係るロボット制御装置101の動作は、ステップS8の後段にステップS11及びステップS12が追加されている点で、実施の形態1に係るロボット制御装置100の動作と相違している。 FIG. 4 is a flowchart showing a flow of the operation of the robot control device according to the second embodiment. The operation of the robot controller 101 according to the second embodiment is different from the operation of the robot controller 100 according to the first embodiment in that steps S11 and S12 are added after step S8.
 ステップS8において教示点補正部15が教示点を補正した後、ステップS11において、動作可否判定部17は、補正後の教示点が動作限界の範囲内にあるか否かを判断する。 After the teaching point correction unit 15 corrects the teaching point in step S8, in step S11, the operation availability determination unit 17 determines whether the corrected teaching point is within the operation limit.
 補正後の教示点が動作限界の範囲内にある場合、ステップS11でYesとなり、ステップS6に進む。補正後の教示点が動作限界の範囲内にない場合、ステップS11でNoとなり、ステップS12において、動作可否判定部17は、エラーを出力する。 場合 If the corrected teaching point is within the operation limit, the result is Yes in step S11, and the process proceeds to step S6. If the corrected teaching point is not within the range of the operation limit, the result is No in step S11, and in step S12, the operation availability determination unit 17 outputs an error.
 実施の形態2に係るロボット制御装置101は、教示点補正部15によって動作グループ23内の教示点を補正した際に、補正後の教示点が設定した動作限界の範囲内かどうかを事前に知ることができるため、ロボット30が周囲の構造物と衝突するといった事故を防ぐことができる。 The robot controller 101 according to the second embodiment knows beforehand whether or not the corrected teaching point is within the set operation limit when the teaching point in the operation group 23 is corrected by the teaching point correction unit 15. Therefore, an accident such as the robot 30 colliding with a surrounding structure can be prevented.
実施の形態3.
 図5は、本発明の実施の形態3に係るロボット制御装置の機能ブロック図である。実施の形態3に係るロボット制御装置102は、把持補正量が取り得る範囲を取得する把持補正範囲取得部18と、把持補正量が取り得る範囲で把持補正量を変更する把持補正量変更部19とを備える。この他は実施の形態2に係るロボット制御装置101と同様である。以下、把持補正量が取り得る範囲を把持補正範囲という。
Embodiment 3 FIG.
FIG. 5 is a functional block diagram of a robot control device according to Embodiment 3 of the present invention. The robot control device 102 according to the third embodiment includes a gripping correction range obtaining unit 18 that obtains a range in which the gripping correction amount can be obtained, and a gripping correction amount changing unit 19 that changes the gripping correction amount in a range in which the gripping correction amount can be obtained. And The rest is the same as the robot control device 101 according to the second embodiment. Hereinafter, a range in which the grip correction amount can be taken is referred to as a grip correction range.
 把持補正範囲取得部18は、干渉を回避する処理においてワークの把持位置及び姿勢が範囲で得られる場合、すなわち把持補正量が特定の値ではなく幅を持つ値である場合に、把持補正範囲を取得する。 The gripping correction range acquisition unit 18 determines the gripping correction range when the gripping position and posture of the work can be obtained in a range in the process of avoiding interference, that is, when the gripping correction amount is a value having a width instead of a specific value. get.
 干渉回避するために取り得る把持補正量は、一意に決まらないことがある。円筒形のワークを例にとると、円筒形のワークとロボット30のエンドエフェクタとの相対的な姿勢を保持したまま、ワークの円筒軸に沿った方向に把持位置をスライドさせることで干渉回避が可能なケースにおいては、ワークの把持位置は一意に決まらない。このような場合には、把持補正範囲取得部18は、把持補正範囲を取得可能である。 把持 The grip correction amount that can be taken to avoid interference may not be uniquely determined. Taking a cylindrical work as an example, interference can be avoided by sliding the gripping position in the direction along the cylindrical axis of the work while maintaining the relative posture between the cylindrical work and the end effector of the robot 30. Where possible, the gripping position of the workpiece is not uniquely determined. In such a case, the grip correction range obtaining unit 18 can obtain the grip correction range.
 把持補正範囲は、任意の座標系における座標値の範囲で表される。上記の円筒形のワークであれば、ワークのワーク座標系を設定し、円筒軸方向がワークのX軸方向であれば、干渉回避が可能なXの値の最大値及び最小値を設定すればよい。把持補正範囲が座標値の範囲で表されることは、把持補正量の候補値が連続値をとることを意味する。 The grip correction range is represented by a range of coordinate values in an arbitrary coordinate system. In the case of the cylindrical work described above, the work coordinate system of the work is set, and when the cylindrical axis direction is the X-axis direction of the work, the maximum and minimum values of X that can avoid interference are set. Good. The fact that the grip correction range is represented by a range of coordinate values means that the candidate values of the grip correction amount take a continuous value.
 把持補正範囲は、複数の範囲の組み合わせで構成されてもよい。把持補正範囲は、複数の範囲が重複する範囲であってもよい。 The grip correction range may be configured by a combination of a plurality of ranges. The grip correction range may be a range in which a plurality of ranges overlap.
 また、把持補正範囲は、連続した座標値の範囲ではなく、離散値の集合であってもよい。 The grip correction range may be a set of discrete values instead of a continuous range of coordinate values.
 把持補正量変更部19は、把持補正範囲及び動作可否判定部17における判定結果に基づき、把持補正量を変更する。把持補正範囲が連続値である場合には、把持補正範囲内の値から動作可否判定部17における判定結果が可である値を選択することによって行われる。把持補正範囲が離散値の集合である場合には、把持補正量の変更は、把持補正量の候補値を取得し、取得した候補の中から動作可否判定部17における判定結果が可であるものを選択することによって行われる。 The grip correction amount changing unit 19 changes the grip correction amount based on the grip correction range and the determination result of the operation availability determination unit 17. When the grip correction range is a continuous value, the determination is performed by selecting a value for which the determination result in the operation availability determination unit 17 is allowable from the values within the grip correction range. When the grip correction range is a set of discrete values, the change of the grip correction amount is obtained by acquiring candidate values of the grip correction amount and determining the operation result determination unit 17 from the obtained candidates. This is done by selecting
 候補値の取得方法には、把持補正範囲を任意の間隔で区切ることで複数の把持補正量を算出する方法、把持補正範囲に含まれる把持位置及び姿勢をランダムに抽出する方法を例示できる。把持補正範囲に含まれる把持位置及び姿勢をランダムに抽出する場合には、抽出した候補値によって動作可否判定の結果が異なるため、候補値の抽出をやり直すことによって干渉回避に成功する可能性がある。 Examples of the method of acquiring the candidate value include a method of calculating a plurality of gripping correction amounts by dividing the gripping correction range at an arbitrary interval, and a method of randomly extracting gripping positions and postures included in the gripping correction range. When the grip position and orientation included in the grip correction range are extracted at random, the result of the operation possibility determination differs depending on the extracted candidate value, so there is a possibility that interference avoidance may be successful by re-extracting the candidate value. .
 図6は、実施の形態3に係るロボット制御装置の動作の流れを示すフローチャートである。実施の形態3に係るロボット制御装置102の動作は、ステップS11の後段にステップS21、ステップS22及びステップS23が追加されている点で、実施の形態2に係るロボット制御装置101の動作と相違している。 FIG. 6 is a flowchart showing a flow of the operation of the robot control device according to the third embodiment. The operation of the robot control device 102 according to the third embodiment differs from the operation of the robot control device 101 according to the second embodiment in that steps S21, S22, and S23 are added after step S11. ing.
 ステップS11において動作可否判定部17が、補正後の教示点が動作限界の範囲内にないと判断した場合、ステップS11でNoとなり、ステップS21において、把持補正量変更部19は、把持補正量を変更するか否を判断する。把持補正量を変更する場合は、ステップS21でYesとなり、ステップS22において、把持補正範囲取得部18は、把持補正範囲を取得する。ステップS23において、把持補正量変更部19は、把持補正範囲内で把持補正量を変更する。ステップS23の後は、ステップS5に進む。 If the operation possibility determination unit 17 determines that the corrected teaching point is not within the range of the operation limit in step S11, the result is No in step S11, and in step S21, the grip correction amount changing unit 19 determines the grip correction amount. Determine whether to change. When the grip correction amount is changed, the answer is Yes in step S21, and in step S22, the grip correction range obtaining unit 18 obtains the grip correction range. In step S23, the grip correction amount changing unit 19 changes the grip correction amount within the grip correction range. After step S23, the process proceeds to step S5.
 一方、把持補正量を変更しない場合は、ステップS21でNoとなり、ステップS12に進む。 On the other hand, if the grip correction amount is not changed, No is obtained in step S21, and the process proceeds to step S12.
 このように、実施の形態3に係るロボット制御装置102では、把持補正量は、把持補正範囲内に複数の候補値を有し、把持補正範囲内の候補値のいずれかを把持補正量にした補正後の教示点が動作限界の範囲内にない場合に、把持補正量を他の候補値に変更して、補正後の教示点が動作限界の範囲内にあるか否かを判定し直すことができる。一意に決められた把持補正量による補正をした場合には、把持後のロボット動作によっては、動作限界の範囲外となりロボットが補正後の教示点まで移動できないことが懸念される。実施の形態3に係るロボット制御装置102によれば、干渉回避が可能な範囲内で、ロボット30が移動可能な補正量となるよう把持補正量を修正することができる。これにより、ロボット30の動作の調整容易化及び停止の回数低減を実現できる。 As described above, in the robot control device 102 according to the third embodiment, the grip correction amount has a plurality of candidate values within the grip correction range, and any of the candidate values within the grip correction range is used as the grip correction amount. When the corrected teaching point is not within the operation limit, the grip correction amount is changed to another candidate value, and it is determined whether the corrected teaching point is within the operation limit. Can be. When the correction is performed using the uniquely determined grip correction amount, there is a concern that the robot may not move to the corrected teaching point depending on the operation of the robot after gripping due to being outside the operation limit. According to the robot control apparatus 102 according to the third embodiment, the grip correction amount can be corrected so that the robot 30 can move within a range where interference can be avoided. This makes it possible to easily adjust the operation of the robot 30 and reduce the number of stops.
 上記実施の形態1、実施の形態2又は実施の形態3に係る制御部10の機能は、処理回路により実現される。処理回路は、専用のハードウェアであっても、記憶装置に格納されるプログラムを実行する演算装置であってもよい。 The function of the control unit 10 according to the first, second, or third embodiment is realized by a processing circuit. The processing circuit may be dedicated hardware or an arithmetic device that executes a program stored in a storage device.
 処理回路が専用のハードウェアである場合、処理回路は、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、特定用途向け集積回路、フィールドプログラマブルゲートアレイ、又はこれらを組み合わせたものが該当する。図7は、実施の形態1、実施の形態2又は実施の形態3に係る制御部の機能をハードウェアで実現した構成を示す図である。処理回路29には、制御部10の機能を実現する論理回路29aが組み込まれている。処理回路29を実現するハードウェアには、マイクロコントローラを例示できる。 If the processing circuit is dedicated hardware, the processing circuit may be a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an application specific integrated circuit, a field programmable gate array, or a combination thereof. Is applicable. FIG. 7 is a diagram illustrating a configuration in which the function of the control unit according to the first, second, or third embodiment is realized by hardware. The processing circuit 29 incorporates a logic circuit 29a for realizing the function of the control unit 10. The hardware that implements the processing circuit 29 can be exemplified by a microcontroller.
 処理回路29が演算装置である場合、制御部10の機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。 When the processing circuit 29 is an arithmetic unit, the function of the control unit 10 is realized by software, firmware, or a combination of software and firmware.
 図8は、実施の形態1、実施の形態2又は実施の形態3に係る制御部の機能をソフトウェアで実現した構成を示す図である。処理回路29は、プログラム29bを実行する中央処理装置291と、中央処理装置291がワークエリアに用いるランダムアクセスメモリ292と、プログラム29bを記憶する記憶装置293を有する。記憶装置293に記憶されているプログラム29bを中央処理装置291がランダムアクセスメモリ292上に展開し、実行することにより、制御部10の機能が実現される。ソフトウェア又はファームウェアはプログラム言語で記述され、記憶装置293に格納される。 FIG. 8 is a diagram illustrating a configuration in which the function of the control unit according to the first, second, or third embodiment is realized by software. The processing circuit 29 has a central processing unit 291 for executing the program 29b, a random access memory 292 used by the central processing unit 291 for a work area, and a storage device 293 for storing the program 29b. The functions of the control unit 10 are realized by the central processing unit 291 expanding and executing the program 29b stored in the storage device 293 on the random access memory 292. The software or firmware is described in a programming language and stored in the storage device 293.
 処理回路29は、記憶装置293に記憶されたプログラム29bを読み出して実行することにより、制御部10の機能を実現する。プログラム29bは、制御部10の機能を実現する手順及び方法をコンピュータに実行させるものであるとも言える。 The processing circuit 29 implements the function of the control unit 10 by reading and executing the program 29b stored in the storage device 293. It can be said that the program 29b causes a computer to execute a procedure and a method for realizing the function of the control unit 10.
 なお、処理回路29は、一部を専用のハードウェアで実現し、一部をソフトウェア又はファームウェアで実現するようにしてもよい。 Note that the processing circuit 29 may be partially realized by dedicated hardware and partially realized by software or firmware.
 このように、処理回路29は、ハードウェア、ソフトウェア、ファームウェア、又はこれらの組み合わせによって、上述の各機能を実現することができる。 As described above, the processing circuit 29 can realize the above-described functions by hardware, software, firmware, or a combination thereof.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configurations described in the above embodiments are merely examples of the contents of the present invention, and can be combined with other known technologies, and can be combined with other known technologies without departing from the gist of the present invention. Parts can be omitted or changed.
 10 制御部、11 動作グループ作成部、12 干渉回避処理部、13 把持補正量取得部、14 教示点取得部、15 教示点補正部、16 動作命令部、17 動作可否判定部、18 把持補正範囲取得部、19 把持補正量変更部、20 記憶部、21 ロボットプログラム、22 障害物情報、23 動作グループ、24 教示点群、29 処理回路、29a 論理回路、29b プログラム、30 ロボット、31 ハンド、100,101,102 ロボット制御装置、291 中央処理装置、292 ランダムアクセスメモリ、293 記憶装置。 10 control unit, 11 operation group creation unit, 12 interference avoidance processing unit, 13 grip correction amount acquisition unit, 14 teaching point acquisition unit, 15 teaching point correction unit, 16 operation instruction unit, 17 operation possibility determination unit, 18 grip correction range Acquisition unit, 19 grip correction amount change unit, 20 storage unit, 21 robot program, 22 obstacle information, 23 operation group, 24 teaching point group, 29 processing circuit, 29a logic circuit, 29b program, 30 robot, 31 hand, 100 , 101, 102 {robot control unit, 291} central processing unit, 292 {random access memory, 293} storage unit.

Claims (5)

  1.  ロボットの位置及び姿勢の少なくとも一方を示す教示点を含むロボットプログラムを記憶する記憶部と、
     前記ロボットがワークを把持する際に、前記ロボット又は前記ワークが障害物と干渉することを回避する干渉回避処理を行う干渉回避処理部と、
     前記干渉回避処理における、前記ワークの前記ロボットに把持される把持位置及び前記ワークの姿勢の補正量である把持補正量を取得する把持補正量取得部と、
     前記教示点を取得する教示点取得部と、
     前記把持位置及び前記ワークの姿勢が前記干渉回避処理に伴って前記把持補正量に基づいて変更された場合に、前記教示点を前記把持補正量に基づいて補正する教示点補正部と、
     前記教示点を前記把持補正量に基づいて補正した前記ロボットプログラムに従って、前記ロボットに動作命令を送信する動作命令部とを有することを特徴とするロボット制御装置。
    A storage unit that stores a robot program including a teaching point indicating at least one of a position and a posture of the robot,
    When the robot grips a work, an interference avoidance processing unit that performs an interference avoidance process that avoids the robot or the work from interfering with an obstacle,
    In the interference avoidance processing, a gripping correction amount obtaining unit that obtains a gripping correction amount that is a correction amount of a gripping position of the work and a posture of the work held by the robot,
    A teaching point acquisition unit for acquiring the teaching point,
    A teaching point correction unit that corrects the teaching point based on the grip correction amount, when the grip position and the posture of the work are changed based on the grip correction amount along with the interference avoidance processing;
    An operation command unit for transmitting an operation command to the robot in accordance with the robot program in which the teaching point is corrected based on the grip correction amount.
  2.  補正後の前記教示点が前記ロボットの動作限界の範囲内にあるか否かを判断し、前記動作限界の範囲内にない場合に警告を発する動作可否判定部を有することを特徴とする請求項1に記載のロボット制御装置。 An operation availability determination unit that determines whether the corrected teaching point is within the operation limit of the robot and issues a warning when the teaching point is not within the operation limit. 2. The robot control device according to 1.
  3.  前記把持補正量は、把持補正範囲内に複数の候補値を有し、
     前記把持補正範囲内の候補値のいずれかを前記把持補正量にした補正後の前記教示点が前記動作限界の範囲内にない場合に、前記把持補正量を他の前記候補値に変更して、補正後の前記教示点が前記動作限界の範囲内にあるか否かを判定し直すことを特徴とする請求項2に記載のロボット制御装置。
    The grip correction amount has a plurality of candidate values within a grip correction range,
    If any of the candidate values within the gripping correction range is the gripping correction amount and the corrected teaching point is not within the range of the operation limit, the gripping correction amount is changed to another candidate value. 3. The robot control device according to claim 2, wherein the controller further determines whether the corrected teaching point is within the range of the operation limit.
  4.  前記把持補正量を、ランダムに選択した他の前記候補値に変更することを特徴とする請求項3に記載のロボット制御装置。 4. The robot controller according to claim 3, wherein the grip correction amount is changed to another candidate value selected at random.
  5.  前記ロボットプログラムに含まれる2以上の前記教示点をグループ化して動作グループを作成する動作グループ作成部を有し、
     前記動作グループ作成部は、前記ロボットプログラム中の前記ワークの把持を指令する命令及び把持解除を指令する命令を検出し、前記ロボットが前記ワークを把持している状態での前記教示点を抽出してグループ化し、
     前記教示点取得部は、前記動作グループに含まれる前記教示点を取得し、
     前記教示点補正部は、前記動作グループに含まれる前記教示点を前記把持補正量に基づいて補正することを特徴とする請求項1から4のいずれか1項に記載のロボット制御装置。
    An operation group creation unit that creates an operation group by grouping two or more of the teaching points included in the robot program,
    The operation group creation unit detects a command for instructing gripping and a command for releasing gripping in the robot program, and extracts the teaching point in a state where the robot grips the workpiece. Group
    The teaching point acquisition unit acquires the teaching point included in the operation group,
    The robot control device according to claim 1, wherein the teaching point correction unit corrects the teaching points included in the operation group based on the grip correction amount.
PCT/JP2018/026078 2018-07-10 2018-07-10 Robot control device WO2020012565A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2018/026078 WO2020012565A1 (en) 2018-07-10 2018-07-10 Robot control device
DE112018007703.9T DE112018007703C5 (en) 2018-07-10 2018-07-10 robot controller
CN201880095385.0A CN112384340A (en) 2018-07-10 2018-07-10 Robot control device
JP2019545385A JP6632783B1 (en) 2018-07-10 2018-07-10 Robot controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/026078 WO2020012565A1 (en) 2018-07-10 2018-07-10 Robot control device

Publications (1)

Publication Number Publication Date
WO2020012565A1 true WO2020012565A1 (en) 2020-01-16

Family

ID=69142322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026078 WO2020012565A1 (en) 2018-07-10 2018-07-10 Robot control device

Country Status (4)

Country Link
JP (1) JP6632783B1 (en)
CN (1) CN112384340A (en)
DE (1) DE112018007703C5 (en)
WO (1) WO2020012565A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003191186A (en) * 2001-12-25 2003-07-08 Nissan Motor Co Ltd Method of correcting robot teaching data
JP2008033419A (en) * 2006-07-26 2008-02-14 Honda Motor Co Ltd Cad device for robot teaching, and robot teaching method
JP2009050921A (en) * 2007-08-23 2009-03-12 Fanuc Ltd Handling device
JP2016185573A (en) * 2015-03-27 2016-10-27 ファナック株式会社 Robot system having function to correct target unloading passage
JP2016209969A (en) * 2015-05-12 2016-12-15 キヤノン株式会社 Information processing method and information processor
WO2018092860A1 (en) * 2016-11-16 2018-05-24 三菱電機株式会社 Interference avoidance device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015231640A (en) 2014-06-09 2015-12-24 キヤノン株式会社 Robot operation path checking device, robot system, robot operation path checking method, program and recording medium
DE102014223167A1 (en) 2014-11-13 2016-05-19 Kuka Roboter Gmbh Determining object-related gripping spaces by means of a robot
JP6068423B2 (en) * 2014-11-28 2017-01-25 ファナック株式会社 Robot programming device that teaches robots machining operations
CN104942808A (en) * 2015-06-29 2015-09-30 广州数控设备有限公司 Robot motion path off-line programming method and system
JP6114361B1 (en) * 2015-11-02 2017-04-12 ファナック株式会社 Offline robot programming device
CN105415372B (en) * 2015-12-09 2017-04-12 常州汉迪机器人科技有限公司 Multi-joint robot track planning method under constraint of safety space

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003191186A (en) * 2001-12-25 2003-07-08 Nissan Motor Co Ltd Method of correcting robot teaching data
JP2008033419A (en) * 2006-07-26 2008-02-14 Honda Motor Co Ltd Cad device for robot teaching, and robot teaching method
JP2009050921A (en) * 2007-08-23 2009-03-12 Fanuc Ltd Handling device
JP2016185573A (en) * 2015-03-27 2016-10-27 ファナック株式会社 Robot system having function to correct target unloading passage
JP2016209969A (en) * 2015-05-12 2016-12-15 キヤノン株式会社 Information processing method and information processor
WO2018092860A1 (en) * 2016-11-16 2018-05-24 三菱電機株式会社 Interference avoidance device

Also Published As

Publication number Publication date
DE112018007703B4 (en) 2022-03-03
CN112384340A (en) 2021-02-19
JPWO2020012565A1 (en) 2020-07-16
JP6632783B1 (en) 2020-01-22
DE112018007703C5 (en) 2023-01-05
DE112018007703T5 (en) 2021-03-04

Similar Documents

Publication Publication Date Title
US10905508B2 (en) Remote control robot system
US9387589B2 (en) Visual debugging of robotic tasks
US10279476B2 (en) Method and system for programming a robot
US9138893B2 (en) Robot teaching system, robot teaching assistant device, robot teaching method, and computer-readable recording medium
US11040451B2 (en) Teaching device and teaching method
JP7122821B2 (en) Robot system and robot control method
KR101988937B1 (en) Method and apparatus for calibration of a robot hand and a camera
WO2011065035A1 (en) Method of creating teaching data for robot, and teaching system for robot
EP2767370A2 (en) Robot system and method for controlling the same
JP4513663B2 (en) Operation teaching method of assembly mechanism in automatic assembly system
US20200023516A1 (en) Automatic path generation device
US20160136807A1 (en) Determination of Object-Related Gripping Regions Using a Robot
JP7184595B2 (en) machine tool system
EP2818283A1 (en) Method for robot calibration
JP4304495B2 (en) Route planning method
Likar et al. Adaptation of bimanual assembly tasks using iterative learning framework
JP7007791B2 (en) Robot driving methods, computer programs, and robot systems
JP6632783B1 (en) Robot controller
US20170028548A1 (en) Robot control device and robot control method
US11826912B2 (en) Method and control means for controlling a robot assembly
US20180178383A1 (en) Moving Along A Predetermined Path With A Robot
Abou Moughlbay et al. Error regulation strategies for model based visual servoing tasks: Application to autonomous object grasping with nao robot
Amirshirzad et al. Adaptive shared control with human intention estimation for human agent collaboration
JP7302672B2 (en) Robot system, controller and control method
JP3705045B2 (en) Creating robot teaching data

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019545385

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18926037

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18926037

Country of ref document: EP

Kind code of ref document: A1