WO2020010750A1 - 一种氮掺杂3d多孔碳材料及其制备方法与应用 - Google Patents
一种氮掺杂3d多孔碳材料及其制备方法与应用 Download PDFInfo
- Publication number
- WO2020010750A1 WO2020010750A1 PCT/CN2018/111943 CN2018111943W WO2020010750A1 WO 2020010750 A1 WO2020010750 A1 WO 2020010750A1 CN 2018111943 W CN2018111943 W CN 2018111943W WO 2020010750 A1 WO2020010750 A1 WO 2020010750A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nitrogen
- porous carbon
- doped
- carbon material
- cellulase
- Prior art date
Links
- 239000003575 carbonaceous material Substances 0.000 title claims abstract description 72
- 238000002360 preparation method Methods 0.000 title abstract description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 45
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 42
- 108010059892 Cellulase Proteins 0.000 claims abstract description 40
- 229940106157 cellulase Drugs 0.000 claims abstract description 40
- 239000000463 material Substances 0.000 claims abstract description 21
- 238000003763 carbonization Methods 0.000 claims abstract description 19
- 239000002028 Biomass Substances 0.000 claims abstract description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 13
- -1 nitrogen-containing compound Chemical class 0.000 claims abstract description 8
- 241000219000 Populus Species 0.000 claims abstract description 4
- 238000010000 carbonizing Methods 0.000 claims abstract description 3
- 244000166124 Eucalyptus globulus Species 0.000 claims abstract 2
- 239000001301 oxygen Substances 0.000 claims description 26
- 229910052760 oxygen Inorganic materials 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 24
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims description 18
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 9
- 235000019270 ammonium chloride Nutrition 0.000 claims description 9
- 239000000446 fuel Substances 0.000 claims description 7
- 239000003054 catalyst Substances 0.000 claims description 6
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 5
- 239000004202 carbamide Substances 0.000 claims description 3
- 239000004254 Ammonium phosphate Substances 0.000 claims description 2
- LFVGISIMTYGQHF-UHFFFAOYSA-N ammonium dihydrogen phosphate Chemical compound [NH4+].OP(O)([O-])=O LFVGISIMTYGQHF-UHFFFAOYSA-N 0.000 claims description 2
- 229910000387 ammonium dihydrogen phosphate Inorganic materials 0.000 claims description 2
- 229910000148 ammonium phosphate Inorganic materials 0.000 claims description 2
- 235000019289 ammonium phosphates Nutrition 0.000 claims description 2
- 239000012298 atmosphere Substances 0.000 claims description 2
- 235000013877 carbamide Nutrition 0.000 claims description 2
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 claims description 2
- 239000007789 gas Substances 0.000 claims description 2
- 235000019837 monoammonium phosphate Nutrition 0.000 claims description 2
- 230000001681 protective effect Effects 0.000 claims description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims 1
- 229910052717 sulfur Inorganic materials 0.000 claims 1
- 239000011593 sulfur Substances 0.000 claims 1
- 235000001508 sulfur Nutrition 0.000 claims 1
- 239000002023 wood Substances 0.000 abstract description 3
- 238000001035 drying Methods 0.000 abstract description 2
- 238000002156 mixing Methods 0.000 abstract description 2
- 241000219927 Eucalyptus Species 0.000 description 39
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 24
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 22
- 238000006722 reduction reaction Methods 0.000 description 13
- 229910052757 nitrogen Inorganic materials 0.000 description 11
- 108090000790 Enzymes Proteins 0.000 description 10
- 102000004190 Enzymes Human genes 0.000 description 10
- 229940088598 enzyme Drugs 0.000 description 10
- 230000010287 polarization Effects 0.000 description 9
- 238000001556 precipitation Methods 0.000 description 9
- 230000003197 catalytic effect Effects 0.000 description 8
- 239000012299 nitrogen atmosphere Substances 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 239000011148 porous material Substances 0.000 description 7
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000002149 hierarchical pore Substances 0.000 description 5
- 239000002086 nanomaterial Substances 0.000 description 5
- 238000001179 sorption measurement Methods 0.000 description 5
- DSVGQVZAZSZEEX-UHFFFAOYSA-N [C].[Pt] Chemical compound [C].[Pt] DSVGQVZAZSZEEX-UHFFFAOYSA-N 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 229930003427 Vitamin E Natural products 0.000 description 3
- 238000002484 cyclic voltammetry Methods 0.000 description 3
- 238000003795 desorption Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 238000011056 performance test Methods 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 229940046009 vitamin E Drugs 0.000 description 3
- 235000019165 vitamin E Nutrition 0.000 description 3
- 239000011709 vitamin E Substances 0.000 description 3
- 238000001237 Raman spectrum Methods 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 229910021389 graphene Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 230000010757 Reduction Activity Effects 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- AAMATCKFMHVIDO-UHFFFAOYSA-N azane;1h-pyrrole Chemical compound N.C=1C=CNC=1 AAMATCKFMHVIDO-UHFFFAOYSA-N 0.000 description 1
- DLGYNVMUCSTYDQ-UHFFFAOYSA-N azane;pyridine Chemical compound N.C1=CC=NC=C1 DLGYNVMUCSTYDQ-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000013211 curve analysis Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 239000004246 zinc acetate Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8825—Methods for deposition of the catalytic active composition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the invention belongs to the technical field of battery catalysts, and relates to a nitrogen-doped 3D porous carbon material and a preparation method and application thereof, and in particular relates to a method for preparing nitrogen-doped 3D porous carbon material by pretreating eucalyptus with cellulase and a method and application.
- the carbon material is used as a catalyst to electrocatalyze a cathode oxygen reduction reaction in a fuel cell.
- 3D carbon nanomaterials Compared with other carbon materials, 3D carbon nanomaterials have an interconnected structure, which not only shortens the transport distance of ions in the carbon material, but also provides a continuous and fast electron transport path. In addition, structural interconnectivity ensures that 3D carbon nanomaterials have higher electrical conductivity and better mechanical stability. Therefore, the design, manufacture, and application of different forms of 3D carbon nanomaterials (such as carbon nanotube networks, graphene gels, graphene foam, and 3D CNF, etc.) have been widely studied. However, most of these 3D carbon nanomaterials are prepared from small-molecule compounds using a bottom-up method, and the process is complicated and time-consuming. Therefore, it is of great significance to develop a carbon material with a 3D hierarchical porous structure that is easily available and has high mechanical strength in energy conversion applications.
- 3D carbon nanomaterials Compared with other carbon materials, 3D carbon nanomaterials have an interconnected structure, which not only shortens the transport distance of ions in the carbon material, but also provides
- the purpose of the present invention is to provide a method and a method for preparing nitrogen-doped 3D porous carbon material by using cellulase pretreatment.
- the method of the invention is consistent with the concept of green and sustainable development, is simple, easy to implement, and low in cost, and has important application prospects in the field of catalysis.
- the nitrogen-doped 3D porous carbon material (three-dimensional porous carbon material) prepared by the present invention has a hierarchical pore structure and high strength, and has high catalytic activity for electrocatalytic oxygen reduction reaction.
- Another object of the present invention is to provide an application of the nitrogen-doped 3D porous carbon material.
- the nitrogen-doped 3D porous carbon material is used as a catalyst, especially a catalyst such as a metal-air battery, a hydrogen-oxygen fuel cell, and a methanol fuel cell.
- a method for preparing a nitrogen-doped 3D porous carbon material by using cellulase pretreatment includes the following steps:
- the porous carbon is mixed with a nitrogen-containing compound, dried, and carbonized to obtain a nitrogen-doped three-dimensional porous carbon material.
- the cellulase concentration in the cellulase solution in step (1) is 10 to 400 U / mL;
- the mass-volume ratio of the biomass material to the cellulase solution in step (1) is (1 to 5) g: 50 mL;
- the conditions for the pretreatment in step (1) are: the temperature of the pretreatment is 30 to 50 ° C., the speed of the shaker is 50 to 150 rpm, and the holding time is 2 to 48 h;
- the temperature of carbonization in step (2) is 500-800 ° C, and the time of carbonization is 0.5-2h;
- the heating rate of carbonization is 1 ⁇ 10 °C / min;
- the nitrogen-containing compound in step (3) is one or more of ammonium chloride, ammonium phosphate, urea, thiourea, and ammonium dihydrogen phosphate;
- the mass ratio of the porous carbon to the nitrogen-containing compound is 1 g: (1 to 50) g;
- the drying temperature is 60 to 105 ° C;
- the temperature of the carbonization in step (3) is 800 to 1000 ° C
- the time of carbonization is 0.5 to 4 hours
- the heating rate of the carbonization temperature is 1 to 10 ° C / min.
- Both carbonization in steps (2) and (3) are performed under a protective gas atmosphere.
- the nitrogen-doped 3D porous carbon material is prepared by the above method.
- the nitrogen-doped 3D porous carbon material is applied in the field of catalysts, especially in electrocatalysis of metal air batteries, hydrogen fuel cells, and / or methanol fuel cells, and is used as a catalytic material to electrocatalyze oxygen reduction reactions.
- the metal-air battery is preferably a zinc-air battery.
- the present invention uses cellulase to pretreat biomaterials eucalyptus and poplar and combines carbonization to obtain a 3D carbon nanomaterial with a hierarchical pore structure and higher strength, which has a higher catalytic activity for electrocatalytic oxygen reduction reactions. .
- Renewable resources are fully used throughout the material preparation process, reflecting the principles of green chemistry.
- the present invention has the following advantages and beneficial effects:
- the raw material used in the present invention is a biomass material, which is cheap, readily available, renewable, and makes full use of renewable biomass resources. It is a green way to prepare 3D porous carbon materials.
- the method of the present invention is simple and easy achieve;
- the 3D porous carbon material of the present invention can also be used as a substrate in various catalytic fields;
- the nitrogen-doped three-dimensional porous carbon material of the present invention has a high specific surface area, a multi-stage pore structure, and has good oxygen reduction and oxygen precipitation activities, and has high catalytic activity.
- FIG. 1 is an SEM image of a cellulase pretreated eucalyptus-based nitrogen-doped porous carbon (nitrogen-doped 3D porous carbon material) prepared in Example 1.
- FIG. 1 is a SEM image of an enzyme-treated eucalyptus, C and D is enzyme-treated eucalyptus carbon (ie porous carbon material), E and F are nitrogen-doped 3D porous carbon materials (ie 3D eucalyptus porous carbon), magnification: A: 10 ⁇ m; B: 200 nm; C: 5 ⁇ m; D : 200nm; E: 5 ⁇ m; F: 200nm;
- FIG. 2 is a nitrogen adsorption and desorption curve of the nitrogen-doped 3D porous carbon material prepared in Examples 1 to 3 and the nitrogen-doped porous carbon prepared in Example 4; wherein Example 1: Nitrogen-doped porous carbon-900, implemented Example 2: Nitrogen-doped porous carbon-800, Example 3: Nitrogen-doped porous carbon-1000, Example 4: Nitrogen-doped carbon-900;
- FIG. 4 is an XPS analysis spectrum chart ( Figure a) and a nitrogen content histogram ( Figure b) of the nitrogen-doped 3D porous carbon material prepared in Examples 1 to 3 and the nitrogen-doped porous carbon prepared in Example 4;
- Example 5 is a graph showing the oxygen reduction and oxygen precipitation activity curves of the nitrogen-doped 3D porous carbon material prepared in Examples 1 to 3 and the nitrogen-doped porous carbon prepared in Example 4; wherein A: cyclic voltammetry curve; B: oxygen Reduction polarization curve; C: kinetic current comparison curve; D: time-current curve (oxygen reduction); E: oxygen precipitation polarization curve; F: time-current curve (oxygen precipitation); Example 1: Nitrogen doping Porous carbon-900, Example 2: Nitrogen-doped porous carbon-800, Example 3: Nitrogen-doped porous carbon-1000, Example 4: Nitrogen-doped carbon-900;
- FIG. 6 is a nitrogen-doped 3D porous carbon material prepared in Example 1 used as a zinc-air battery electrode catalytic material.
- a method for preparing a nitrogen-doped 3D porous carbon material by using cellulase pretreatment includes the following steps:
- porous carbon material and ammonium chloride are mixed in water at a mass ratio of 1:20 (the mass-volume ratio of ammonium chloride and water is 20 g: 60 mL), evaporated to dryness at 60 ° C, and ground in a nitrogen atmosphere at 900 ° C after grinding.
- a method for preparing a nitrogen-doped 3D porous carbon material by using cellulase pretreatment includes the following steps:
- porous carbon material and ammonium chloride are mixed in water at a mass ratio of 1:20 (the mass-volume ratio of ammonium chloride to water is 20 g: 60 mL), evaporated to dryness at 60 ° C, and ground in a nitrogen atmosphere at 800 ° C after grinding. Calcined for 2h to obtain vitamin E pretreated eucalyptus nitrogen-doped porous carbon (ie, nitrogen-doped 3D porous carbon material, nitrogen-doped porous carbon-800); nitrogen-doped porous carbon has a hierarchical pore structure.
- a method for preparing a nitrogen-doped 3D porous carbon material by using cellulase pretreatment includes the following steps:
- porous carbon material and ammonium chloride are mixed in water at a mass ratio of 1:20 (the mass-volume ratio of ammonium chloride to water is 20 g: 60 mL), evaporated to dryness at 60 ° C, and ground in a nitrogen atmosphere at 1000 ° C after grinding. Calcined for 2 h to obtain vitamin E pretreated eucalyptus nitrogen-doped porous carbon (ie, nitrogen-doped 3D porous carbon material, nitrogen-doped porous carbon-1000); nitrogen-doped porous carbon has a hierarchical pore structure.
- a method for preparing nitrogen-doped porous carbon includes the following steps:
- 1g of eucalyptus was calcined at 700 ° C under nitrogen atmosphere for 1h (heating rate is 5 ° C / min) to obtain a porous carbon material; the porous carbon material and ammonium chloride were mixed in water at a mass ratio of 1:20, 60 It was evaporated to dryness at °C, and then calcined in a nitrogen atmosphere at 900 ° C. for 2 h to obtain nitrogen-doped porous carbon (nitrogen-doped carbon-900).
- FIG. 1 is an SEM image of a cellulase pretreated eucalyptus-based nitrogen-doped porous carbon (nitrogen-doped 3D porous carbon material) prepared in Example 1.
- FIG. 1 is a SEM image of an enzyme-treated eucalyptus, C and D is enzyme-treated eucalyptus carbon (ie porous carbon material), E and F are nitrogen-doped 3D porous carbon materials (ie 3D eucalyptus porous carbon), magnification: A: 10 ⁇ m; B: 200 nm; C: 5 ⁇ m; D : 200 nm; E: 5 ⁇ m; F: 200 nm.
- a and B are the enzyme-treated eucalyptus material obtained in Example 1.
- Cellulase pretreatment can cause a large number of holes on the surface of eucalyptus. This is because cellulase hydrolyzes the cellulose in eucalyptus to make its surface. It becomes rough and its structure becomes loose at the same time, which is conducive to the subsequent generation of carbonized pores.
- Figures C and D are enzymatically treated eucalyptus carbon. The carbonized eucalyptus surface has more intense interconnected pore structures. This is because the cellulase pretreatment makes the surface of the eucalyptus rough, and the structure also changes. Pore and further carbonization exacerbated the generation of pores.
- Figures E and F are nitrogen-doped 3D porous carbon materials. After further carbonization by mixing with nitrogen-containing compounds, the pore structure becomes more uniform, while the 3D structure of eucalyptus itself is also retained.
- FIG. 2 is a nitrogen adsorption and desorption curve of the nitrogen-doped 3D porous carbon material prepared in Examples 1 to 3 and the nitrogen-doped porous carbon prepared in Example 4; wherein Example 1: Nitrogen-doped porous carbon-900, implemented Example 2: Nitrogen-doped porous carbon-800, Example 3: Nitrogen-doped porous carbon-1000, Example 4: Nitrogen-doped carbon-900. It can be known from the nitrogen adsorption and desorption experiment in FIG. 2 that the cellulase pretreated eucalyptus has the highest adsorption amount under carbonization at 900 ° C., thereby indicating that it has the largest specific surface area. A larger specific surface area provides more catalytically active sites.
- the eucalyptus carbon obtained after carbonization has the smallest amount of nitrogen adsorption, so that the cellulase treatment can increase the specific surface area of the final carbon material.
- FIG. 3 is an XRD ( Figure b) and a Raman spectrum ( Figure a) of a nitrogen-doped 3D porous carbon material prepared in Examples 1 to 3;
- Example 1 Nitrogen-doped porous carbon-900
- Example 2 Nitrogen doped Heteroporous carbon-800
- Example 3 Nitrogen-doped porous carbon-1000. From the analysis of the structure in FIG. 3, it can be seen that the obtained carbon material has a similar I D / I G value and a similar crystal structure.
- Example 4 is an XPS analysis spectrum of the nitrogen-doped 3D porous carbon material prepared in Example 1 ( Figure a) and the nitrogen-doped 3D porous carbon material prepared in Examples 1 to 3 and the nitrogen-doped porous material prepared in Example 4 Histogram of nitrogen content of carbon ( Figure b). It can be seen from the surface nitrogen analysis of the porous carbon material in FIG. 4 that Example 1 has the highest nitrogen element content of 3.7%, and the N spectrum of the porous carbon material obtained in Example 1 is divided into peaks, which are found at 397.9, 400.0, and 401.3 eV. Corresponds to pyridine nitrogen, pyrrole nitrogen and graphitic nitrogen, respectively.
- FIG. 5 is a graph showing the oxygen reduction and oxygen precipitation activity curves of the nitrogen-doped 3D porous carbon material prepared in Examples 1 to 3 and the nitrogen-doped porous carbon prepared in Example 4; wherein A: cyclic voltammetry curve; B: oxygen Reduction polarization curve; C: kinetic current comparison curve; D: time-current curve (oxygen reduction); E: oxygen precipitation polarization curve; F: time-current curve (oxygen precipitation). From the oxygen reduction cyclic voltammetry curve (A) in FIG. 5, it can be seen that the nitrogen-doped porous carbon obtained at 900 ° C. has an oxygen reduction peak that is almost the same as that of platinum carbon.
- FIG. 6 is a nitrogen-doped 3D porous carbon material prepared in Example 1 used as a zinc-air battery electrode catalytic material.
- the open-circuit voltage of the assembled zinc-air battery is 1.49V
- the maximum energy density is 49.9mW cm -2 at a voltage of 0.7V
- the capacity is 801mA h g -1 when discharging at 10mA cm -2 .
- the cycle stability was tested, and the charge-discharge cycle was performed at a current density of 10 mA cm -2 .
- the cycle had 235 cycles (40h) and still had a good charge-discharge efficiency.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Inert Electrodes (AREA)
Abstract
Description
Claims (9)
- 一种利用纤维素酶预处理制备氮掺杂3D多孔碳材料的方法,其特征在于:包括以下步骤:(1)将生物质材料在纤维素酶溶液中进行预处理,获得预处理的生物质材料;所述生物质材料为桉木和/或杨木;(2)将预处理的生物质材料进行碳化,获得多孔碳材料;步骤(2)中所述碳化的温度为500~800℃;(3)在水中,将多孔碳与含氮化合物混合,烘干,碳化,获得氮掺杂的三维多孔碳材料;步骤(3)中所述碳化的温度为800~1000℃。
- 根据权利要求1所述利用纤维素酶预处理制备氮掺杂3D多孔碳材料的方法,其特征在于:步骤(1)中所述预处理的条件为:预处理的温度为30~50℃,摇床速度为50~150rpm,保温时间为2~48h。
- 根据权利要求1所述利用纤维素酶预处理制备氮掺杂3D多孔碳材料的方法,其特征在于:步骤(1)中纤维素酶溶液中纤维素酶的浓度为10~400U/mL;步骤(1)中所述生物质材料与纤维素酶溶液的质量体积比为(1~5)g:50mL;步骤(3)中所述含氮化合物为氯化铵、磷酸铵、尿素、硫脲、磷酸二氢铵中一种以上。
- 根据权利要求1所述利用纤维素酶预处理制备氮掺杂3D多孔碳材料的方法,其特征在于:步骤(2)中所述碳化的时间为0.5~2h;步骤(3)中所述多孔碳与含氮化合物质量比为1g:(1~50)g;步骤(3)中所述碳化的时间为0.5~4h。
- 根据权利要求1所述利用纤维素酶预处理制备氮掺杂3D多孔碳材料的方法,其特征在于:步骤(2)和(3)中碳化都在保护性气体氛围下进行。
- 一种由权利要求1~5任一项所述方法制备得到的氮掺杂3D多孔碳材料。
- 根据权利要求6所述氮掺杂3D多孔碳材料在催化剂领域中应用。
- 根据权利要求7所述的应用,其特征在于:所述氮掺杂3D多孔碳材料在金属空气电池、氢氧燃料电池和/或甲醇燃料电池的电催化中的应用。
- 根据权利要求8所述的应用,其特征在于:所述金属空气电池为锌空电池。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810743517.8A CN109037704B (zh) | 2018-07-09 | 2018-07-09 | 一种氮掺杂3d多孔碳材料及其制备方法与应用 |
CN201810743517.8 | 2018-07-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020010750A1 true WO2020010750A1 (zh) | 2020-01-16 |
Family
ID=64640849
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/111943 WO2020010750A1 (zh) | 2018-07-09 | 2018-10-25 | 一种氮掺杂3d多孔碳材料及其制备方法与应用 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109037704B (zh) |
WO (1) | WO2020010750A1 (zh) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112619681A (zh) * | 2020-12-08 | 2021-04-09 | 连云港师范高等专科学校 | 氮掺杂碳化细菌纤维素负载钯催化剂及其制备方法和应用 |
CN113387342A (zh) * | 2021-06-11 | 2021-09-14 | 郑州大学 | 一种负载Co/CoO的氮掺杂碳复合材料及其制备方法和应用 |
CN113522334A (zh) * | 2021-06-29 | 2021-10-22 | 河南师范大学 | 一种合成柚子皮衍生多孔氮掺杂碳基氧还原催化剂的方法 |
CN113559824A (zh) * | 2021-08-27 | 2021-10-29 | 西北大学 | 处理染料废水用氮掺杂多孔碳材料吸附剂及其制法与应用 |
CN113578251A (zh) * | 2021-08-30 | 2021-11-02 | 西华大学 | 一种氮掺杂改性介孔吸附剂及其制备方法和应用 |
CN113582155A (zh) * | 2021-06-29 | 2021-11-02 | 西安理工大学 | 一种生物质炭中间层及其制备方法及应用 |
CN113845115A (zh) * | 2021-10-12 | 2021-12-28 | 西安理工大学 | 一种杂原子自掺杂生物质多孔碳的制备方法及其应用 |
CN113998697A (zh) * | 2021-11-03 | 2022-02-01 | 中国矿业大学 | 一种树叶基氮掺杂多孔炭的制备方法及其在全pH范围内氧还原电催化中的应用 |
CN114538567A (zh) * | 2022-01-25 | 2022-05-27 | 桂林理工大学 | 一种生物碳基单原子钯铜催化剂的制备及应用方法 |
CN115036519A (zh) * | 2022-07-04 | 2022-09-09 | 上海电气集团股份有限公司 | 氟掺杂多孔碳、微孔层、气体扩散层及制备方法、应用 |
CN115440992A (zh) * | 2022-09-14 | 2022-12-06 | 福州大学 | 一种分级多孔皮胶原基金属镍有机框架复合碳纳米纤维燃料电池阴极材料的制备 |
CN115999505A (zh) * | 2022-10-25 | 2023-04-25 | 中国农业大学 | 用于吸附抗生素的杨木生物炭的制备方法 |
CN116586087A (zh) * | 2023-03-08 | 2023-08-15 | 华南理工大学 | 一种离子液体预处理制备生物质块体碳催化剂的方法和应用 |
CN117352760A (zh) * | 2023-11-05 | 2024-01-05 | 中国人民解放军国防科技大学 | 多级孔、氮掺杂、石墨化炭负载铂基催化剂的制备方法 |
CN118723976A (zh) * | 2024-06-19 | 2024-10-01 | 南方科技大学 | 一种多孔碳材料及其制备方法和应用 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109860645B (zh) * | 2019-01-30 | 2021-07-16 | 中国矿业大学 | 一种生物胶固氮掺杂多孔碳的制备方法及其应用 |
CN109860632A (zh) * | 2019-02-11 | 2019-06-07 | 中南大学 | 基于生物质的二次燃料电池空气电极催化剂的制备方法 |
CN110127696A (zh) * | 2019-06-11 | 2019-08-16 | 吉林化工学院 | 一种生物质基氮掺杂多孔碳材料的制备方法及其应用 |
CN110734048A (zh) * | 2019-11-18 | 2020-01-31 | 哈尔滨工业大学(威海) | 基于原生木材的三维有序碳基多孔吸波材料的制备方法 |
CN111244477A (zh) * | 2020-01-14 | 2020-06-05 | 北京理工大学 | 一种生物质碳纳米球团簇材料的制备及其应用 |
CN112117466B (zh) * | 2020-09-26 | 2022-08-02 | 重庆大学 | 氮自掺杂多孔石墨碳MFCs空气阴极催化剂的制备方法 |
CN113247893A (zh) * | 2021-06-15 | 2021-08-13 | 天津科技大学 | 一种利用高温水热辅助纤维素酶水解制得的木质生物质基多孔碳材料、应用和方法 |
CN113426410A (zh) * | 2021-06-16 | 2021-09-24 | 珠海格力电器股份有限公司 | 多孔碳材料及其制备方法 |
CN114976063A (zh) * | 2022-04-27 | 2022-08-30 | 华南理工大学 | 一种氮掺杂生物质碳基双功能催化剂及其制备方法与应用 |
CN115072698A (zh) * | 2022-05-09 | 2022-09-20 | 中国空间技术研究院 | 杂原子掺杂孔径可控的二维碳材料及其制备方法 |
CN117276525B (zh) * | 2023-11-17 | 2024-02-09 | 南方科技大学 | 硅碳复合材料及其制备方法和应用 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101837973A (zh) * | 2009-03-20 | 2010-09-22 | 山东福田药业有限公司 | 利用玉米芯水解渣制备活性炭的工艺 |
CN103121675A (zh) * | 2013-02-20 | 2013-05-29 | 淮阴工学院 | 酶法预处理稻壳制备稻壳灰活性炭方法 |
CN103265030A (zh) * | 2013-06-01 | 2013-08-28 | 管天球 | 一种茶壳活性炭的制备方法 |
CN104192842A (zh) * | 2014-09-27 | 2014-12-10 | 管天球 | 一种核桃壳活性炭的制备方法 |
CN105197926A (zh) * | 2015-08-18 | 2015-12-30 | 南京林业大学 | 一种以酶解木质素为原料制备活性炭的方法 |
CN106811497A (zh) * | 2015-11-30 | 2017-06-09 | 姜蕾 | 一种利用玉米芯水解渣制备活性炭的工艺 |
EP3249669A1 (en) * | 2016-05-25 | 2017-11-29 | Universiteit van Amsterdam | Supercapacitor and nitrogen-doped porous carbon material |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102637882B (zh) * | 2012-04-13 | 2014-11-05 | 东华大学 | 一种无金属掺杂氮功能化碳催化剂及其制备方法和应用 |
CN104525237A (zh) * | 2015-01-07 | 2015-04-22 | 中国科学院上海高等研究院 | 一种氮掺杂活性炭催化剂及其在氯乙烯合成中的应用 |
US20170226535A1 (en) * | 2015-09-16 | 2017-08-10 | Sweetwater Energy, Inc. | Specialized Activated Carbon Derived From Pretreated Biomass |
CN106276893B (zh) * | 2016-07-18 | 2018-05-08 | 湘潭大学 | 一种氮掺杂葛根基介孔活性炭的制备方法及其应用 |
CN107364860B (zh) * | 2017-07-25 | 2019-07-30 | 成都新柯力化工科技有限公司 | 一种低温高效碳化制备秸秆生物炭的方法 |
CN108217645A (zh) * | 2018-02-13 | 2018-06-29 | 平南县亿翔环保能源有限公司 | 一种利用桉树制备活性炭的方法 |
-
2018
- 2018-07-09 CN CN201810743517.8A patent/CN109037704B/zh active Active
- 2018-10-25 WO PCT/CN2018/111943 patent/WO2020010750A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101837973A (zh) * | 2009-03-20 | 2010-09-22 | 山东福田药业有限公司 | 利用玉米芯水解渣制备活性炭的工艺 |
CN103121675A (zh) * | 2013-02-20 | 2013-05-29 | 淮阴工学院 | 酶法预处理稻壳制备稻壳灰活性炭方法 |
CN103265030A (zh) * | 2013-06-01 | 2013-08-28 | 管天球 | 一种茶壳活性炭的制备方法 |
CN104192842A (zh) * | 2014-09-27 | 2014-12-10 | 管天球 | 一种核桃壳活性炭的制备方法 |
CN105197926A (zh) * | 2015-08-18 | 2015-12-30 | 南京林业大学 | 一种以酶解木质素为原料制备活性炭的方法 |
CN106811497A (zh) * | 2015-11-30 | 2017-06-09 | 姜蕾 | 一种利用玉米芯水解渣制备活性炭的工艺 |
EP3249669A1 (en) * | 2016-05-25 | 2017-11-29 | Universiteit van Amsterdam | Supercapacitor and nitrogen-doped porous carbon material |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112619681B (zh) * | 2020-12-08 | 2022-12-23 | 连云港师范高等专科学校 | 氮掺杂碳化细菌纤维素负载钯催化剂及其制备方法和应用 |
CN112619681A (zh) * | 2020-12-08 | 2021-04-09 | 连云港师范高等专科学校 | 氮掺杂碳化细菌纤维素负载钯催化剂及其制备方法和应用 |
CN113387342A (zh) * | 2021-06-11 | 2021-09-14 | 郑州大学 | 一种负载Co/CoO的氮掺杂碳复合材料及其制备方法和应用 |
CN113522334A (zh) * | 2021-06-29 | 2021-10-22 | 河南师范大学 | 一种合成柚子皮衍生多孔氮掺杂碳基氧还原催化剂的方法 |
CN113582155A (zh) * | 2021-06-29 | 2021-11-02 | 西安理工大学 | 一种生物质炭中间层及其制备方法及应用 |
CN113559824A (zh) * | 2021-08-27 | 2021-10-29 | 西北大学 | 处理染料废水用氮掺杂多孔碳材料吸附剂及其制法与应用 |
CN113559824B (zh) * | 2021-08-27 | 2023-12-19 | 西北大学 | 处理染料废水用氮掺杂多孔碳材料吸附剂及其制法与应用 |
CN113578251A (zh) * | 2021-08-30 | 2021-11-02 | 西华大学 | 一种氮掺杂改性介孔吸附剂及其制备方法和应用 |
CN113845115A (zh) * | 2021-10-12 | 2021-12-28 | 西安理工大学 | 一种杂原子自掺杂生物质多孔碳的制备方法及其应用 |
CN113845115B (zh) * | 2021-10-12 | 2024-04-05 | 西安理工大学 | 一种杂原子自掺杂生物质多孔碳的制备方法及其应用 |
CN113998697B (zh) * | 2021-11-03 | 2023-09-29 | 中国矿业大学 | 一种树叶基氮掺杂多孔炭的制备方法及其在全pH范围内氧还原电催化中的应用 |
CN113998697A (zh) * | 2021-11-03 | 2022-02-01 | 中国矿业大学 | 一种树叶基氮掺杂多孔炭的制备方法及其在全pH范围内氧还原电催化中的应用 |
CN114538567B (zh) * | 2022-01-25 | 2023-08-11 | 桂林理工大学 | 一种生物碳基单原子钯铜催化剂的制备及应用方法 |
CN114538567A (zh) * | 2022-01-25 | 2022-05-27 | 桂林理工大学 | 一种生物碳基单原子钯铜催化剂的制备及应用方法 |
CN115036519A (zh) * | 2022-07-04 | 2022-09-09 | 上海电气集团股份有限公司 | 氟掺杂多孔碳、微孔层、气体扩散层及制备方法、应用 |
CN115440992A (zh) * | 2022-09-14 | 2022-12-06 | 福州大学 | 一种分级多孔皮胶原基金属镍有机框架复合碳纳米纤维燃料电池阴极材料的制备 |
CN115999505A (zh) * | 2022-10-25 | 2023-04-25 | 中国农业大学 | 用于吸附抗生素的杨木生物炭的制备方法 |
CN116586087A (zh) * | 2023-03-08 | 2023-08-15 | 华南理工大学 | 一种离子液体预处理制备生物质块体碳催化剂的方法和应用 |
CN117352760A (zh) * | 2023-11-05 | 2024-01-05 | 中国人民解放军国防科技大学 | 多级孔、氮掺杂、石墨化炭负载铂基催化剂的制备方法 |
CN117352760B (zh) * | 2023-11-05 | 2024-03-26 | 中国人民解放军国防科技大学 | 多级孔、氮掺杂、石墨化炭负载铂基催化剂的制备方法 |
CN118723976A (zh) * | 2024-06-19 | 2024-10-01 | 南方科技大学 | 一种多孔碳材料及其制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
CN109037704A (zh) | 2018-12-18 |
CN109037704B (zh) | 2021-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020010750A1 (zh) | 一种氮掺杂3d多孔碳材料及其制备方法与应用 | |
CN112499613B (zh) | 宽pH范围氧还原电催化用氮磷掺杂多孔碳的制备方法 | |
CN104857976B (zh) | 一种三维二硫化钼纳米花‑石墨烯复合材料及其应用 | |
CN107265436A (zh) | 生物质石墨化多孔碳材料的制备方法及其应用 | |
CN111403658A (zh) | 一种具有电催化功能隔膜的制备方法及其在锂硫电池中的应用 | |
Xia et al. | Nitrogen and oxygen dual-doped hierarchical porous carbon derived from rapeseed meal for high performance lithium–sulfur batteries | |
CN102623684A (zh) | 一种特殊壳层结构石墨基碳负极复合材料及制备方法 | |
CN106710889A (zh) | 一种多级结构氢氧化钴电极材料及其制备方法 | |
CN113422153B (zh) | 一种锂硫电池用正极侧隔层材料的制备方法 | |
CN108807015B (zh) | 一种电化学电容器电极片的原位制备方法及其应用 | |
He et al. | Hierarchical tubular porous carbon derived from mulberry branches for long-life lead-carbon battery | |
Zhou et al. | Synchronized dual-modified graphite felt electrodes for all-vanadium redox flow batteries with high power density and ultra-long lifespan | |
CN113809286A (zh) | 一种mof催化生长碳纳米管包覆镍锡合金电极材料及其制备方法和应用 | |
CN112079352A (zh) | 一种生物质基多孔氮掺杂碳材料的制备方法及应用 | |
CN110277247A (zh) | 一种基于模板法制备的碳纳米材料及其在全碳基锂离子电容器中的应用 | |
CN113839058A (zh) | 一种碳基氧还原反应催化剂及其制备方法 | |
CN118675901A (zh) | 一种酒糟衍生多孔炭材料及其制备方法和应用 | |
CN109671923B (zh) | 一种有序纳米阵列氮硫双掺杂碳硫复合碳棒材料的制备方法及锂硫电池 | |
CN115472832A (zh) | 一种天然石墨球形尾料制备高容量锂电负极材料的方法 | |
CN108002362A (zh) | 一种芳香骨架多孔碳材料、制备方法和应用 | |
CN118545695A (zh) | 一种木质纤维柔性单原子碳气凝胶及其制备方法和应用 | |
Zhang et al. | Hard Carbon Derived from Straw as Anode materials for sodium-ion batteries | |
CN114944480B (zh) | 一种蜂窝状多孔锡碳复合材料的制备方法 | |
CN114360918B (zh) | 一种高性能超级电容器异质结构的电极材料的制备方法 | |
CN110299541B (zh) | 一种微生物燃料电池阴极催化剂的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18925854 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18925854 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08/07/2021) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18925854 Country of ref document: EP Kind code of ref document: A1 |