WO2020010750A1 - 一种氮掺杂3d多孔碳材料及其制备方法与应用 - Google Patents

一种氮掺杂3d多孔碳材料及其制备方法与应用 Download PDF

Info

Publication number
WO2020010750A1
WO2020010750A1 PCT/CN2018/111943 CN2018111943W WO2020010750A1 WO 2020010750 A1 WO2020010750 A1 WO 2020010750A1 CN 2018111943 W CN2018111943 W CN 2018111943W WO 2020010750 A1 WO2020010750 A1 WO 2020010750A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitrogen
porous carbon
doped
carbon material
cellulase
Prior art date
Application number
PCT/CN2018/111943
Other languages
English (en)
French (fr)
Inventor
彭新文
张磊
黎立桂
赵登科
钟林新
陈仲欣
罗建平
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2020010750A1 publication Critical patent/WO2020010750A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention belongs to the technical field of battery catalysts, and relates to a nitrogen-doped 3D porous carbon material and a preparation method and application thereof, and in particular relates to a method for preparing nitrogen-doped 3D porous carbon material by pretreating eucalyptus with cellulase and a method and application.
  • the carbon material is used as a catalyst to electrocatalyze a cathode oxygen reduction reaction in a fuel cell.
  • 3D carbon nanomaterials Compared with other carbon materials, 3D carbon nanomaterials have an interconnected structure, which not only shortens the transport distance of ions in the carbon material, but also provides a continuous and fast electron transport path. In addition, structural interconnectivity ensures that 3D carbon nanomaterials have higher electrical conductivity and better mechanical stability. Therefore, the design, manufacture, and application of different forms of 3D carbon nanomaterials (such as carbon nanotube networks, graphene gels, graphene foam, and 3D CNF, etc.) have been widely studied. However, most of these 3D carbon nanomaterials are prepared from small-molecule compounds using a bottom-up method, and the process is complicated and time-consuming. Therefore, it is of great significance to develop a carbon material with a 3D hierarchical porous structure that is easily available and has high mechanical strength in energy conversion applications.
  • 3D carbon nanomaterials Compared with other carbon materials, 3D carbon nanomaterials have an interconnected structure, which not only shortens the transport distance of ions in the carbon material, but also provides
  • the purpose of the present invention is to provide a method and a method for preparing nitrogen-doped 3D porous carbon material by using cellulase pretreatment.
  • the method of the invention is consistent with the concept of green and sustainable development, is simple, easy to implement, and low in cost, and has important application prospects in the field of catalysis.
  • the nitrogen-doped 3D porous carbon material (three-dimensional porous carbon material) prepared by the present invention has a hierarchical pore structure and high strength, and has high catalytic activity for electrocatalytic oxygen reduction reaction.
  • Another object of the present invention is to provide an application of the nitrogen-doped 3D porous carbon material.
  • the nitrogen-doped 3D porous carbon material is used as a catalyst, especially a catalyst such as a metal-air battery, a hydrogen-oxygen fuel cell, and a methanol fuel cell.
  • a method for preparing a nitrogen-doped 3D porous carbon material by using cellulase pretreatment includes the following steps:
  • the porous carbon is mixed with a nitrogen-containing compound, dried, and carbonized to obtain a nitrogen-doped three-dimensional porous carbon material.
  • the cellulase concentration in the cellulase solution in step (1) is 10 to 400 U / mL;
  • the mass-volume ratio of the biomass material to the cellulase solution in step (1) is (1 to 5) g: 50 mL;
  • the conditions for the pretreatment in step (1) are: the temperature of the pretreatment is 30 to 50 ° C., the speed of the shaker is 50 to 150 rpm, and the holding time is 2 to 48 h;
  • the temperature of carbonization in step (2) is 500-800 ° C, and the time of carbonization is 0.5-2h;
  • the heating rate of carbonization is 1 ⁇ 10 °C / min;
  • the nitrogen-containing compound in step (3) is one or more of ammonium chloride, ammonium phosphate, urea, thiourea, and ammonium dihydrogen phosphate;
  • the mass ratio of the porous carbon to the nitrogen-containing compound is 1 g: (1 to 50) g;
  • the drying temperature is 60 to 105 ° C;
  • the temperature of the carbonization in step (3) is 800 to 1000 ° C
  • the time of carbonization is 0.5 to 4 hours
  • the heating rate of the carbonization temperature is 1 to 10 ° C / min.
  • Both carbonization in steps (2) and (3) are performed under a protective gas atmosphere.
  • the nitrogen-doped 3D porous carbon material is prepared by the above method.
  • the nitrogen-doped 3D porous carbon material is applied in the field of catalysts, especially in electrocatalysis of metal air batteries, hydrogen fuel cells, and / or methanol fuel cells, and is used as a catalytic material to electrocatalyze oxygen reduction reactions.
  • the metal-air battery is preferably a zinc-air battery.
  • the present invention uses cellulase to pretreat biomaterials eucalyptus and poplar and combines carbonization to obtain a 3D carbon nanomaterial with a hierarchical pore structure and higher strength, which has a higher catalytic activity for electrocatalytic oxygen reduction reactions. .
  • Renewable resources are fully used throughout the material preparation process, reflecting the principles of green chemistry.
  • the present invention has the following advantages and beneficial effects:
  • the raw material used in the present invention is a biomass material, which is cheap, readily available, renewable, and makes full use of renewable biomass resources. It is a green way to prepare 3D porous carbon materials.
  • the method of the present invention is simple and easy achieve;
  • the 3D porous carbon material of the present invention can also be used as a substrate in various catalytic fields;
  • the nitrogen-doped three-dimensional porous carbon material of the present invention has a high specific surface area, a multi-stage pore structure, and has good oxygen reduction and oxygen precipitation activities, and has high catalytic activity.
  • FIG. 1 is an SEM image of a cellulase pretreated eucalyptus-based nitrogen-doped porous carbon (nitrogen-doped 3D porous carbon material) prepared in Example 1.
  • FIG. 1 is a SEM image of an enzyme-treated eucalyptus, C and D is enzyme-treated eucalyptus carbon (ie porous carbon material), E and F are nitrogen-doped 3D porous carbon materials (ie 3D eucalyptus porous carbon), magnification: A: 10 ⁇ m; B: 200 nm; C: 5 ⁇ m; D : 200nm; E: 5 ⁇ m; F: 200nm;
  • FIG. 2 is a nitrogen adsorption and desorption curve of the nitrogen-doped 3D porous carbon material prepared in Examples 1 to 3 and the nitrogen-doped porous carbon prepared in Example 4; wherein Example 1: Nitrogen-doped porous carbon-900, implemented Example 2: Nitrogen-doped porous carbon-800, Example 3: Nitrogen-doped porous carbon-1000, Example 4: Nitrogen-doped carbon-900;
  • FIG. 4 is an XPS analysis spectrum chart ( Figure a) and a nitrogen content histogram ( Figure b) of the nitrogen-doped 3D porous carbon material prepared in Examples 1 to 3 and the nitrogen-doped porous carbon prepared in Example 4;
  • Example 5 is a graph showing the oxygen reduction and oxygen precipitation activity curves of the nitrogen-doped 3D porous carbon material prepared in Examples 1 to 3 and the nitrogen-doped porous carbon prepared in Example 4; wherein A: cyclic voltammetry curve; B: oxygen Reduction polarization curve; C: kinetic current comparison curve; D: time-current curve (oxygen reduction); E: oxygen precipitation polarization curve; F: time-current curve (oxygen precipitation); Example 1: Nitrogen doping Porous carbon-900, Example 2: Nitrogen-doped porous carbon-800, Example 3: Nitrogen-doped porous carbon-1000, Example 4: Nitrogen-doped carbon-900;
  • FIG. 6 is a nitrogen-doped 3D porous carbon material prepared in Example 1 used as a zinc-air battery electrode catalytic material.
  • a method for preparing a nitrogen-doped 3D porous carbon material by using cellulase pretreatment includes the following steps:
  • porous carbon material and ammonium chloride are mixed in water at a mass ratio of 1:20 (the mass-volume ratio of ammonium chloride and water is 20 g: 60 mL), evaporated to dryness at 60 ° C, and ground in a nitrogen atmosphere at 900 ° C after grinding.
  • a method for preparing a nitrogen-doped 3D porous carbon material by using cellulase pretreatment includes the following steps:
  • porous carbon material and ammonium chloride are mixed in water at a mass ratio of 1:20 (the mass-volume ratio of ammonium chloride to water is 20 g: 60 mL), evaporated to dryness at 60 ° C, and ground in a nitrogen atmosphere at 800 ° C after grinding. Calcined for 2h to obtain vitamin E pretreated eucalyptus nitrogen-doped porous carbon (ie, nitrogen-doped 3D porous carbon material, nitrogen-doped porous carbon-800); nitrogen-doped porous carbon has a hierarchical pore structure.
  • a method for preparing a nitrogen-doped 3D porous carbon material by using cellulase pretreatment includes the following steps:
  • porous carbon material and ammonium chloride are mixed in water at a mass ratio of 1:20 (the mass-volume ratio of ammonium chloride to water is 20 g: 60 mL), evaporated to dryness at 60 ° C, and ground in a nitrogen atmosphere at 1000 ° C after grinding. Calcined for 2 h to obtain vitamin E pretreated eucalyptus nitrogen-doped porous carbon (ie, nitrogen-doped 3D porous carbon material, nitrogen-doped porous carbon-1000); nitrogen-doped porous carbon has a hierarchical pore structure.
  • a method for preparing nitrogen-doped porous carbon includes the following steps:
  • 1g of eucalyptus was calcined at 700 ° C under nitrogen atmosphere for 1h (heating rate is 5 ° C / min) to obtain a porous carbon material; the porous carbon material and ammonium chloride were mixed in water at a mass ratio of 1:20, 60 It was evaporated to dryness at °C, and then calcined in a nitrogen atmosphere at 900 ° C. for 2 h to obtain nitrogen-doped porous carbon (nitrogen-doped carbon-900).
  • FIG. 1 is an SEM image of a cellulase pretreated eucalyptus-based nitrogen-doped porous carbon (nitrogen-doped 3D porous carbon material) prepared in Example 1.
  • FIG. 1 is a SEM image of an enzyme-treated eucalyptus, C and D is enzyme-treated eucalyptus carbon (ie porous carbon material), E and F are nitrogen-doped 3D porous carbon materials (ie 3D eucalyptus porous carbon), magnification: A: 10 ⁇ m; B: 200 nm; C: 5 ⁇ m; D : 200 nm; E: 5 ⁇ m; F: 200 nm.
  • a and B are the enzyme-treated eucalyptus material obtained in Example 1.
  • Cellulase pretreatment can cause a large number of holes on the surface of eucalyptus. This is because cellulase hydrolyzes the cellulose in eucalyptus to make its surface. It becomes rough and its structure becomes loose at the same time, which is conducive to the subsequent generation of carbonized pores.
  • Figures C and D are enzymatically treated eucalyptus carbon. The carbonized eucalyptus surface has more intense interconnected pore structures. This is because the cellulase pretreatment makes the surface of the eucalyptus rough, and the structure also changes. Pore and further carbonization exacerbated the generation of pores.
  • Figures E and F are nitrogen-doped 3D porous carbon materials. After further carbonization by mixing with nitrogen-containing compounds, the pore structure becomes more uniform, while the 3D structure of eucalyptus itself is also retained.
  • FIG. 2 is a nitrogen adsorption and desorption curve of the nitrogen-doped 3D porous carbon material prepared in Examples 1 to 3 and the nitrogen-doped porous carbon prepared in Example 4; wherein Example 1: Nitrogen-doped porous carbon-900, implemented Example 2: Nitrogen-doped porous carbon-800, Example 3: Nitrogen-doped porous carbon-1000, Example 4: Nitrogen-doped carbon-900. It can be known from the nitrogen adsorption and desorption experiment in FIG. 2 that the cellulase pretreated eucalyptus has the highest adsorption amount under carbonization at 900 ° C., thereby indicating that it has the largest specific surface area. A larger specific surface area provides more catalytically active sites.
  • the eucalyptus carbon obtained after carbonization has the smallest amount of nitrogen adsorption, so that the cellulase treatment can increase the specific surface area of the final carbon material.
  • FIG. 3 is an XRD ( Figure b) and a Raman spectrum ( Figure a) of a nitrogen-doped 3D porous carbon material prepared in Examples 1 to 3;
  • Example 1 Nitrogen-doped porous carbon-900
  • Example 2 Nitrogen doped Heteroporous carbon-800
  • Example 3 Nitrogen-doped porous carbon-1000. From the analysis of the structure in FIG. 3, it can be seen that the obtained carbon material has a similar I D / I G value and a similar crystal structure.
  • Example 4 is an XPS analysis spectrum of the nitrogen-doped 3D porous carbon material prepared in Example 1 ( Figure a) and the nitrogen-doped 3D porous carbon material prepared in Examples 1 to 3 and the nitrogen-doped porous material prepared in Example 4 Histogram of nitrogen content of carbon ( Figure b). It can be seen from the surface nitrogen analysis of the porous carbon material in FIG. 4 that Example 1 has the highest nitrogen element content of 3.7%, and the N spectrum of the porous carbon material obtained in Example 1 is divided into peaks, which are found at 397.9, 400.0, and 401.3 eV. Corresponds to pyridine nitrogen, pyrrole nitrogen and graphitic nitrogen, respectively.
  • FIG. 5 is a graph showing the oxygen reduction and oxygen precipitation activity curves of the nitrogen-doped 3D porous carbon material prepared in Examples 1 to 3 and the nitrogen-doped porous carbon prepared in Example 4; wherein A: cyclic voltammetry curve; B: oxygen Reduction polarization curve; C: kinetic current comparison curve; D: time-current curve (oxygen reduction); E: oxygen precipitation polarization curve; F: time-current curve (oxygen precipitation). From the oxygen reduction cyclic voltammetry curve (A) in FIG. 5, it can be seen that the nitrogen-doped porous carbon obtained at 900 ° C. has an oxygen reduction peak that is almost the same as that of platinum carbon.
  • FIG. 6 is a nitrogen-doped 3D porous carbon material prepared in Example 1 used as a zinc-air battery electrode catalytic material.
  • the open-circuit voltage of the assembled zinc-air battery is 1.49V
  • the maximum energy density is 49.9mW cm -2 at a voltage of 0.7V
  • the capacity is 801mA h g -1 when discharging at 10mA cm -2 .
  • the cycle stability was tested, and the charge-discharge cycle was performed at a current density of 10 mA cm -2 .
  • the cycle had 235 cycles (40h) and still had a good charge-discharge efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inert Electrodes (AREA)

Abstract

一种氮掺杂3D多孔碳材料及其制备方法与应用。所述制备方法包括:(1)将生物质材料在纤维素酶溶液中进行预处理,获得预处理的生物质材料;生物质材料为按木和/或杨木;(2)将预处理的生物质材料进行碳化,获得多孔碳材料;(3)在水中,将多孔碳与含氮化合物混合,烘干,碳化,获得氮掺杂的三维多孔碳材料;碳化的温度为800-1000℃。

Description

一种氮掺杂3D多孔碳材料及其制备方法与应用 技术领域
本发明属于电池催化剂的技术领域,涉及一种氮掺杂3D多孔碳材料及其制备方法与应用,具体涉及一种用纤维素酶预处理桉木制备氮掺杂3D多孔碳材料及其方法与应用。所述碳材料作为催化剂,电催化燃料电池中的阴极氧还原反应。
背景技术
近年来,环境污染和化石燃料短缺已经严重制约世界经济的发展和生态环境的稳定。绿色能源的发展在解决这些问题中将会发挥关键作用。以生物质等可再生化合物为原料制备化学器件用来捕获及储存这些能源是该过程中至关重要的一步。碳材料由于具有表面积大、质量轻、导电性好和热/化学稳定性高等优点,被认为是超级电容器和可再充电电池等化学器件最重要的电极材料。
相对于其他结构的碳材料,3D碳纳米材料具有相互连接的结构,不仅可以缩短离子在碳材料的运输距离,而且还提供了一个连续快速电子传输的途径。另外,结构互连性保证了3D碳纳米材料具有更高的电导率和更好的机械稳定性。因此,不同形式的3D碳纳米材料(如碳纳米管网络、石墨烯凝胶、石墨烯泡沫和3D CNF等)的设计制造及应用被人们广泛研究。然而,这些3D碳纳米材料大多采用自下而上的方法从小分子化合物制备而得,其过程复杂且耗时较长。因此,开发一种简便易得、具有较高机械强度的3D分级多孔结构的碳材料在能量转换应用中具有重要意义。
发明内容
针对传统多孔碳制备方法中原材料价格高昂,过程复杂,使用强酸强碱刻蚀等问题,本发明的目的在于提供一种利用纤维素酶预处理制备氮掺杂的3D多孔碳材料及方法。本发明的方法符合绿色、可持续发展的理念,且简单易行、成本低,在催化领域具有重要的应用前景。本发明所制备的氮掺杂的3D多孔碳材料(三维多孔碳材料)具有分级孔隙结构和较高强度,用于电催化氧还原反 应中具有较高的催化活性。
本发明的另一目的在于提供上述氮掺杂的3D多孔碳材料的应用。所述氮掺杂的3D多孔碳材料用作催化剂,特别是金属空气电池、氢氧燃料电池、甲醇燃料电池等催化剂。
本发明的目的通过以下技术方案实现:
一种利用纤维素酶预处理制备氮掺杂3D多孔碳材料的方法,包括以下步骤:
(1)将生物质材料在纤维素酶溶液中进行预处理,获得预处理的生物质材料;所述生物质材料为桉木和/或杨木;
(2)将预处理的生物质材料进行碳化,获得多孔碳材料;
(3)在水中,将多孔碳与含氮化合物混合,烘干,碳化,获得氮掺杂的三维多孔碳材料。
步骤(1)中纤维素酶溶液中纤维素酶的浓度为10~400U/mL;
步骤(1)中所述生物质材料与纤维素酶溶液的质量体积比为(1~5)g:50mL;
步骤(1)中所述预处理的条件为:预处理的温度为30~50℃,摇床速度为50~150rpm,保温时间为2~48h;
步骤(2)中所述碳化的温度为500~800℃,碳化的时间为0.5~2h;
碳化升温的升温速率为1~10℃/min;
步骤(3)中所述含氮化合物为氯化铵、磷酸铵、尿素、硫脲、磷酸二氢铵中一种以上;
所述多孔碳与含氮化合物质量比为1g:(1~50)g;
所述烘干的温度为60~105℃;
步骤(3)中所述碳化的温度为800~1000℃,碳化的时间为0.5~4h,碳化升温的升温速率为1~10℃/min。
步骤(2)和(3)中碳化都在保护性气体氛围下进行。
所述氮掺杂3D多孔碳材料通过上述方法制备得到。
所述氮掺杂3D多孔碳材料在催化剂领域中应用,特别是在金属空气电池、氢氧燃料电池和/或甲醇燃料电池的电催化中的应用,用作催化材料,电催化氧还原反应。所述金属空气电池优选为锌空电池。
氮掺杂3D多孔碳作为锌空电池氧电极催化材料时,配制6M氢氧化钾和0.2M醋酸锌溶液作为电解质溶液,进行电化学性能测试。
所述氮掺杂3D多孔碳在超级电容器中的应用。
本发明采用纤维素酶预处理生物材料桉木、杨木,结合碳化的方法得到了具有分级孔隙结构和较高强度的3D碳纳米材料,用于电催化氧还原反应中具有较高的催化活性。整个材料制备过程中充分使用了可再生的资源,体现了绿色化学的原则。
与现有技术相比,本发明具有如下优点及有益效果:
(1)本发明所使用的原材料为生物质材料,廉价易得,可再生,充分利用了可再生的生物质资源,是一种制备3D多孔碳材料的绿色途径;本发明的方法简单,易于实现;
(2)本发明的3D多孔碳材料同时也可作为基底应用于多种催化领域;
(3)本发明的氮掺杂的三维多孔碳材料具有高比表面积,多级孔结构,并具有较好的氧还原和氧析出的活性,催化活性高。
附图说明
图1为实施例1制备的纤维素酶预处理桉木基氮掺杂多孔碳(氮掺杂3D多孔碳材料)的SEM图;其中A和B为酶处理的桉木的SEM图,C和D为酶处理桉木碳(即多孔碳材料),E和F为氮掺杂3D多孔碳材料(即3D桉木多孔碳),放大倍数:A:10μm;B:200nm;C:5μm;D:200nm;E:5μm;F:200nm;
图2为实施例1~3制备的氮掺杂3D多孔碳材料和实施例4制备的氮掺杂的多孔碳的氮气吸附脱附曲线;其中实施例1:氮掺杂多孔碳-900,实施例2:氮掺杂多孔碳-800,实施例3:氮掺杂多孔碳-1000,实施例4:氮掺杂碳-900;
图3为实施例1~3制备的氮掺杂3D多孔碳材料的XRD(图b)和Raman谱图(图a);
图4为实施例1~3制备的氮掺杂3D多孔碳材料和实施例4制备的氮掺杂的多孔碳的XPS分析谱图(图a)和氮含量柱状图(图b);
图5为实施例1~3制备的氮掺杂3D多孔碳材料和实施例4制备的氮掺杂的多孔碳的氧还原和氧析出活性曲线图;其中A:循环伏安曲线;B:氧还原极化曲线;C:动力学电流比较曲线;D:时间-电流曲线(氧还原);E:氧析出极化曲 线;F:时间-电流曲线(氧析出);实施例1:氮掺杂多孔碳-900,实施例2:氮掺杂多孔碳-800,实施例3:氮掺杂多孔碳-1000,实施例4:氮掺杂碳-900;
图6为实施例1制备的氮掺杂3D多孔碳材料用作锌空电池电极催化材料,锌空电池性能测试曲线;A:锌空电池的极化和能量密度曲线;B:充放电极化曲线;C:恒流充放电曲线;D:恒流充放电循环曲线。
具体实施方式
下面结合具体实施例和附图对本发明作进一步地说明,但是本发明要求保护的范围并不仅限于此。
实施例1
一种利用纤维素酶预处理制备氮掺杂3D多孔碳材料的方法,包括以下步骤:
(1)将1g的桉木分散于50mL浓度为10U/mL的纤维素酶溶液(中性条件,纤维素酶购自上海源叶生物科技有限公司)中,40℃,90rpm恒温震荡24h,过滤,去离子水洗涤,60℃烘干,得到纤维素酶预处理的桉木(即酶处理的桉木);
(2)将纤维素酶预处理的桉木在700℃氮气氛围下恒温煅烧1h(升温速率为5℃/min),获得多孔碳材料(即酶处理桉木碳);
(3)将多孔碳材料与氯化铵按质量比1:20在水中混合(氯化铵与水的质量体积比为20g:60mL),60℃下蒸干,研磨之后在900℃氮气氛围下煅烧2h,得到维素酶预处理桉木基氮掺杂多孔碳(即氮掺杂3D多孔碳材料,氮掺杂多孔碳-900);氮掺杂的多孔碳具有分级孔隙结构。
实施例2
一种利用纤维素酶预处理制备氮掺杂3D多孔碳材料的方法,包括以下步骤:
(1)将1g的桉木分散于50mL浓度为10U/mL的纤维素酶溶液(纤维素酶溶于水中)中,40℃,90rpm恒温震荡24h,过滤,洗涤烘干,得到纤维素酶预处理的桉木;
(2)将纤维素酶预处理的桉木在700℃氮气氛围下恒温煅烧1h(升温速率为5℃/min),获得多孔碳材料(即酶处理桉木碳);
(3)将多孔碳材料与氯化铵按质量比1:20在水中混合(氯化铵与水的质量 体积比为20g:60mL),60℃下蒸干,研磨之后在800℃氮气氛围下煅烧2h,得到维素酶预处理桉木基氮掺杂多孔碳(即氮掺杂3D多孔碳材料,氮掺杂多孔碳-800);氮掺杂的多孔碳具有分级孔隙结构。
实施例3
一种利用纤维素酶预处理制备氮掺杂3D多孔碳材料的方法,包括以下步骤:
(1)将1g的桉木分散于50mL浓度为10U/mL的纤维素酶液中,40℃,90rpm恒温震荡24h,过滤,去离子水洗涤,60℃烘干,得到纤维素酶预处理的桉木(即酶处理的桉木);
(2)将纤维素酶预处理的桉木之后将得到的桉木在700℃氮气氛围下恒温煅烧1h(升温速率为5℃/min),获得多孔碳材料(即酶处理桉木碳);
(3)将多孔碳材料与氯化铵按质量比1:20在水中混合(氯化铵与水的质量体积比为20g:60mL),60℃下蒸干,研磨之后在1000℃氮气氛围下煅烧2h,得到维素酶预处理桉木基氮掺杂多孔碳(即氮掺杂3D多孔碳材料,氮掺杂多孔碳-1000);氮掺杂的多孔碳具有分级孔隙结构。
实施例4
一种氮掺杂的多孔碳的制备方法,包括以下步骤:
将1g的桉木在700℃氮气氛围下恒温煅烧1h(升温速率为5℃/min),获得多孔碳材料;将多孔碳材料与氯化铵按质量比为1:20比例在水中混合,60℃下蒸干,研磨之后在900℃氮气氛围下煅烧2h,得到氮掺杂的多孔碳(氮掺杂碳-900)。
结构表征和性能测试:
图1为实施例1制备的纤维素酶预处理桉木基氮掺杂多孔碳(氮掺杂3D多孔碳材料)的SEM图;其中A和B为酶处理的桉木的SEM图,C和D为酶处理桉木碳(即多孔碳材料),E和F为氮掺杂3D多孔碳材料(即3D桉木多孔碳),放大倍数:A:10μm;B:200nm;C:5μm;D:200nm;E:5μm;F:200nm。
图中A和B是由实施例1得到的酶处理桉木材料,纤维素酶预处理可导致桉木表面形成大量孔洞,这是由于纤维素酶水解了桉木中的纤维素,使其表面变得粗糙,同时其结构变得疏松,利于后续碳化孔的产生。图C和D是酶处理桉木碳, 经过碳化处理桉木表面出现了更为剧烈的互联的孔道结构,这是由于纤维素酶预处理使桉木表面变得粗糙的同时,结构也变为疏松,进一步的碳化加剧了孔道的产生。图E和F是氮掺杂3D多孔碳材料,进一步与含氮化合物混合碳化后,孔的结构变得较为均一,同时也保留了桉木本身的3D结构。
图2为实施例1~3制备的氮掺杂3D多孔碳材料和实施例4制备的氮掺杂的多孔碳的氮气吸附脱附曲线;其中实施例1:氮掺杂多孔碳-900,实施例2:氮掺杂多孔碳-800,实施例3:氮掺杂多孔碳-1000,实施例4:氮掺杂碳-900。从图2的氮气吸附脱附实验可知,纤维素酶预处理的桉木在900℃碳化下具有最高的吸附量,从而说明其具有最大的比表面积。较大的比表面积可提供较多的催化活性位点。另外,没有经过纤维素酶处理的桉木(实施例4),碳化之后得到的桉木碳具有最小的氮气吸附量,从而说明纤维素酶处理可提高最终碳材料的比表面积。
图3为实施例1~3制备的氮掺杂3D多孔碳材料的XRD(图b)和Raman谱图(图a);实施例1:氮掺杂多孔碳-900,实施例2:氮掺杂多孔碳-800,实施例3:氮掺杂多孔碳-1000。从图3的结构进行分析可知,所得的碳材料具有相近的I D/I G值和相近的结晶结构。
图4为实施例1制备的氮掺杂3D多孔碳材料的XPS分析谱图(图a)和实施例1~3制备的氮掺杂3D多孔碳材料与实施例4制备的氮掺杂的多孔碳的氮含量柱状图(图b)。从图4对多孔碳材料进行表面氮元素分析可知,实施例1具有最高的氮元素含量3.7%,对实施例1得到的多孔碳材料的N谱进行分峰可知,在397.9,400.0和401.3eV分别对应吡啶氮,吡咯氮和石墨氮。
图5为实施例1~3制备的氮掺杂3D多孔碳材料和实施例4制备的氮掺杂的多孔碳的氧还原和氧析出活性曲线图;其中A:循环伏安曲线;B:氧还原极化曲线;C:动力学电流比较曲线;D:时间-电流曲线(氧还原);E:氧析出极化曲线;F:时间-电流曲线(氧析出)。从图5的氧还原循环伏安曲线(A)可知,900℃下得到的氮掺杂多孔碳具有和铂碳相差无几的氧还原峰。对得到的碳材料进行极化曲线分析可知(B),900℃下得到的氮掺杂多孔碳具有和铂碳相同的起始电位和半波电位,然而其动力学电流(C)要大于商业铂碳,从而说明900℃下得到的氮掺杂多孔碳具有较好的氧还原活性。对其稳定性进行测试发现其稳定 性要优于商业铂碳(D)。对实施例1~4得到的碳材料进行氧析出活性测试可知,900℃下得到的氮掺杂多孔碳具有较好的氧析出活性(E)和稳定性(F)。
图6为实施例1制备的氮掺杂3D多孔碳材料用作锌空电池电极催化材料,锌空电池性能测试曲线;A:锌空电池的极化和能量密度曲线;B:充放电极化曲线;C:恒流充放电曲线;D:恒流充放电循环曲线。由图6可知,组装的锌空电池的开路电压为~1.49V,在电压为0.7V具有最大的能量密度49.9mW cm -2,10mA cm -2进行放电时具有801mA h g -1的容量。对其循环稳定性进行测试,在电流密度10mA cm -2进行充放电循环,循环235次(40h)仍具有较好的充放电效率。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (9)

  1. 一种利用纤维素酶预处理制备氮掺杂3D多孔碳材料的方法,其特征在于:包括以下步骤:
    (1)将生物质材料在纤维素酶溶液中进行预处理,获得预处理的生物质材料;所述生物质材料为桉木和/或杨木;
    (2)将预处理的生物质材料进行碳化,获得多孔碳材料;步骤(2)中所述碳化的温度为500~800℃;
    (3)在水中,将多孔碳与含氮化合物混合,烘干,碳化,获得氮掺杂的三维多孔碳材料;步骤(3)中所述碳化的温度为800~1000℃。
  2. 根据权利要求1所述利用纤维素酶预处理制备氮掺杂3D多孔碳材料的方法,其特征在于:步骤(1)中所述预处理的条件为:预处理的温度为30~50℃,摇床速度为50~150rpm,保温时间为2~48h。
  3. 根据权利要求1所述利用纤维素酶预处理制备氮掺杂3D多孔碳材料的方法,其特征在于:步骤(1)中纤维素酶溶液中纤维素酶的浓度为10~400U/mL;
    步骤(1)中所述生物质材料与纤维素酶溶液的质量体积比为(1~5)g:50mL;步骤(3)中所述含氮化合物为氯化铵、磷酸铵、尿素、硫脲、磷酸二氢铵中一种以上。
  4. 根据权利要求1所述利用纤维素酶预处理制备氮掺杂3D多孔碳材料的方法,其特征在于:
    步骤(2)中所述碳化的时间为0.5~2h;步骤(3)中所述多孔碳与含氮化合物质量比为1g:(1~50)g;步骤(3)中所述碳化的时间为0.5~4h。
  5. 根据权利要求1所述利用纤维素酶预处理制备氮掺杂3D多孔碳材料的方法,其特征在于:步骤(2)和(3)中碳化都在保护性气体氛围下进行。
  6. 一种由权利要求1~5任一项所述方法制备得到的氮掺杂3D多孔碳材料。
  7. 根据权利要求6所述氮掺杂3D多孔碳材料在催化剂领域中应用。
  8. 根据权利要求7所述的应用,其特征在于:所述氮掺杂3D多孔碳材料在金属空气电池、氢氧燃料电池和/或甲醇燃料电池的电催化中的应用。
  9. 根据权利要求8所述的应用,其特征在于:所述金属空气电池为锌空电池。
PCT/CN2018/111943 2018-07-09 2018-10-25 一种氮掺杂3d多孔碳材料及其制备方法与应用 WO2020010750A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810743517.8A CN109037704B (zh) 2018-07-09 2018-07-09 一种氮掺杂3d多孔碳材料及其制备方法与应用
CN201810743517.8 2018-07-09

Publications (1)

Publication Number Publication Date
WO2020010750A1 true WO2020010750A1 (zh) 2020-01-16

Family

ID=64640849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111943 WO2020010750A1 (zh) 2018-07-09 2018-10-25 一种氮掺杂3d多孔碳材料及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN109037704B (zh)
WO (1) WO2020010750A1 (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112619681A (zh) * 2020-12-08 2021-04-09 连云港师范高等专科学校 氮掺杂碳化细菌纤维素负载钯催化剂及其制备方法和应用
CN113387342A (zh) * 2021-06-11 2021-09-14 郑州大学 一种负载Co/CoO的氮掺杂碳复合材料及其制备方法和应用
CN113522334A (zh) * 2021-06-29 2021-10-22 河南师范大学 一种合成柚子皮衍生多孔氮掺杂碳基氧还原催化剂的方法
CN113559824A (zh) * 2021-08-27 2021-10-29 西北大学 处理染料废水用氮掺杂多孔碳材料吸附剂及其制法与应用
CN113578251A (zh) * 2021-08-30 2021-11-02 西华大学 一种氮掺杂改性介孔吸附剂及其制备方法和应用
CN113582155A (zh) * 2021-06-29 2021-11-02 西安理工大学 一种生物质炭中间层及其制备方法及应用
CN113845115A (zh) * 2021-10-12 2021-12-28 西安理工大学 一种杂原子自掺杂生物质多孔碳的制备方法及其应用
CN113998697A (zh) * 2021-11-03 2022-02-01 中国矿业大学 一种树叶基氮掺杂多孔炭的制备方法及其在全pH范围内氧还原电催化中的应用
CN114538567A (zh) * 2022-01-25 2022-05-27 桂林理工大学 一种生物碳基单原子钯铜催化剂的制备及应用方法
CN115036519A (zh) * 2022-07-04 2022-09-09 上海电气集团股份有限公司 氟掺杂多孔碳、微孔层、气体扩散层及制备方法、应用
CN115440992A (zh) * 2022-09-14 2022-12-06 福州大学 一种分级多孔皮胶原基金属镍有机框架复合碳纳米纤维燃料电池阴极材料的制备
CN115999505A (zh) * 2022-10-25 2023-04-25 中国农业大学 用于吸附抗生素的杨木生物炭的制备方法
CN116586087A (zh) * 2023-03-08 2023-08-15 华南理工大学 一种离子液体预处理制备生物质块体碳催化剂的方法和应用
CN117352760A (zh) * 2023-11-05 2024-01-05 中国人民解放军国防科技大学 多级孔、氮掺杂、石墨化炭负载铂基催化剂的制备方法
CN118723976A (zh) * 2024-06-19 2024-10-01 南方科技大学 一种多孔碳材料及其制备方法和应用

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109860645B (zh) * 2019-01-30 2021-07-16 中国矿业大学 一种生物胶固氮掺杂多孔碳的制备方法及其应用
CN109860632A (zh) * 2019-02-11 2019-06-07 中南大学 基于生物质的二次燃料电池空气电极催化剂的制备方法
CN110127696A (zh) * 2019-06-11 2019-08-16 吉林化工学院 一种生物质基氮掺杂多孔碳材料的制备方法及其应用
CN110734048A (zh) * 2019-11-18 2020-01-31 哈尔滨工业大学(威海) 基于原生木材的三维有序碳基多孔吸波材料的制备方法
CN111244477A (zh) * 2020-01-14 2020-06-05 北京理工大学 一种生物质碳纳米球团簇材料的制备及其应用
CN112117466B (zh) * 2020-09-26 2022-08-02 重庆大学 氮自掺杂多孔石墨碳MFCs空气阴极催化剂的制备方法
CN113247893A (zh) * 2021-06-15 2021-08-13 天津科技大学 一种利用高温水热辅助纤维素酶水解制得的木质生物质基多孔碳材料、应用和方法
CN113426410A (zh) * 2021-06-16 2021-09-24 珠海格力电器股份有限公司 多孔碳材料及其制备方法
CN114976063A (zh) * 2022-04-27 2022-08-30 华南理工大学 一种氮掺杂生物质碳基双功能催化剂及其制备方法与应用
CN115072698A (zh) * 2022-05-09 2022-09-20 中国空间技术研究院 杂原子掺杂孔径可控的二维碳材料及其制备方法
CN117276525B (zh) * 2023-11-17 2024-02-09 南方科技大学 硅碳复合材料及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101837973A (zh) * 2009-03-20 2010-09-22 山东福田药业有限公司 利用玉米芯水解渣制备活性炭的工艺
CN103121675A (zh) * 2013-02-20 2013-05-29 淮阴工学院 酶法预处理稻壳制备稻壳灰活性炭方法
CN103265030A (zh) * 2013-06-01 2013-08-28 管天球 一种茶壳活性炭的制备方法
CN104192842A (zh) * 2014-09-27 2014-12-10 管天球 一种核桃壳活性炭的制备方法
CN105197926A (zh) * 2015-08-18 2015-12-30 南京林业大学 一种以酶解木质素为原料制备活性炭的方法
CN106811497A (zh) * 2015-11-30 2017-06-09 姜蕾 一种利用玉米芯水解渣制备活性炭的工艺
EP3249669A1 (en) * 2016-05-25 2017-11-29 Universiteit van Amsterdam Supercapacitor and nitrogen-doped porous carbon material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102637882B (zh) * 2012-04-13 2014-11-05 东华大学 一种无金属掺杂氮功能化碳催化剂及其制备方法和应用
CN104525237A (zh) * 2015-01-07 2015-04-22 中国科学院上海高等研究院 一种氮掺杂活性炭催化剂及其在氯乙烯合成中的应用
US20170226535A1 (en) * 2015-09-16 2017-08-10 Sweetwater Energy, Inc. Specialized Activated Carbon Derived From Pretreated Biomass
CN106276893B (zh) * 2016-07-18 2018-05-08 湘潭大学 一种氮掺杂葛根基介孔活性炭的制备方法及其应用
CN107364860B (zh) * 2017-07-25 2019-07-30 成都新柯力化工科技有限公司 一种低温高效碳化制备秸秆生物炭的方法
CN108217645A (zh) * 2018-02-13 2018-06-29 平南县亿翔环保能源有限公司 一种利用桉树制备活性炭的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101837973A (zh) * 2009-03-20 2010-09-22 山东福田药业有限公司 利用玉米芯水解渣制备活性炭的工艺
CN103121675A (zh) * 2013-02-20 2013-05-29 淮阴工学院 酶法预处理稻壳制备稻壳灰活性炭方法
CN103265030A (zh) * 2013-06-01 2013-08-28 管天球 一种茶壳活性炭的制备方法
CN104192842A (zh) * 2014-09-27 2014-12-10 管天球 一种核桃壳活性炭的制备方法
CN105197926A (zh) * 2015-08-18 2015-12-30 南京林业大学 一种以酶解木质素为原料制备活性炭的方法
CN106811497A (zh) * 2015-11-30 2017-06-09 姜蕾 一种利用玉米芯水解渣制备活性炭的工艺
EP3249669A1 (en) * 2016-05-25 2017-11-29 Universiteit van Amsterdam Supercapacitor and nitrogen-doped porous carbon material

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112619681B (zh) * 2020-12-08 2022-12-23 连云港师范高等专科学校 氮掺杂碳化细菌纤维素负载钯催化剂及其制备方法和应用
CN112619681A (zh) * 2020-12-08 2021-04-09 连云港师范高等专科学校 氮掺杂碳化细菌纤维素负载钯催化剂及其制备方法和应用
CN113387342A (zh) * 2021-06-11 2021-09-14 郑州大学 一种负载Co/CoO的氮掺杂碳复合材料及其制备方法和应用
CN113522334A (zh) * 2021-06-29 2021-10-22 河南师范大学 一种合成柚子皮衍生多孔氮掺杂碳基氧还原催化剂的方法
CN113582155A (zh) * 2021-06-29 2021-11-02 西安理工大学 一种生物质炭中间层及其制备方法及应用
CN113559824A (zh) * 2021-08-27 2021-10-29 西北大学 处理染料废水用氮掺杂多孔碳材料吸附剂及其制法与应用
CN113559824B (zh) * 2021-08-27 2023-12-19 西北大学 处理染料废水用氮掺杂多孔碳材料吸附剂及其制法与应用
CN113578251A (zh) * 2021-08-30 2021-11-02 西华大学 一种氮掺杂改性介孔吸附剂及其制备方法和应用
CN113845115A (zh) * 2021-10-12 2021-12-28 西安理工大学 一种杂原子自掺杂生物质多孔碳的制备方法及其应用
CN113845115B (zh) * 2021-10-12 2024-04-05 西安理工大学 一种杂原子自掺杂生物质多孔碳的制备方法及其应用
CN113998697B (zh) * 2021-11-03 2023-09-29 中国矿业大学 一种树叶基氮掺杂多孔炭的制备方法及其在全pH范围内氧还原电催化中的应用
CN113998697A (zh) * 2021-11-03 2022-02-01 中国矿业大学 一种树叶基氮掺杂多孔炭的制备方法及其在全pH范围内氧还原电催化中的应用
CN114538567B (zh) * 2022-01-25 2023-08-11 桂林理工大学 一种生物碳基单原子钯铜催化剂的制备及应用方法
CN114538567A (zh) * 2022-01-25 2022-05-27 桂林理工大学 一种生物碳基单原子钯铜催化剂的制备及应用方法
CN115036519A (zh) * 2022-07-04 2022-09-09 上海电气集团股份有限公司 氟掺杂多孔碳、微孔层、气体扩散层及制备方法、应用
CN115440992A (zh) * 2022-09-14 2022-12-06 福州大学 一种分级多孔皮胶原基金属镍有机框架复合碳纳米纤维燃料电池阴极材料的制备
CN115999505A (zh) * 2022-10-25 2023-04-25 中国农业大学 用于吸附抗生素的杨木生物炭的制备方法
CN116586087A (zh) * 2023-03-08 2023-08-15 华南理工大学 一种离子液体预处理制备生物质块体碳催化剂的方法和应用
CN117352760A (zh) * 2023-11-05 2024-01-05 中国人民解放军国防科技大学 多级孔、氮掺杂、石墨化炭负载铂基催化剂的制备方法
CN117352760B (zh) * 2023-11-05 2024-03-26 中国人民解放军国防科技大学 多级孔、氮掺杂、石墨化炭负载铂基催化剂的制备方法
CN118723976A (zh) * 2024-06-19 2024-10-01 南方科技大学 一种多孔碳材料及其制备方法和应用

Also Published As

Publication number Publication date
CN109037704A (zh) 2018-12-18
CN109037704B (zh) 2021-10-26

Similar Documents

Publication Publication Date Title
WO2020010750A1 (zh) 一种氮掺杂3d多孔碳材料及其制备方法与应用
CN112499613B (zh) 宽pH范围氧还原电催化用氮磷掺杂多孔碳的制备方法
CN104857976B (zh) 一种三维二硫化钼纳米花‑石墨烯复合材料及其应用
CN107265436A (zh) 生物质石墨化多孔碳材料的制备方法及其应用
CN111403658A (zh) 一种具有电催化功能隔膜的制备方法及其在锂硫电池中的应用
Xia et al. Nitrogen and oxygen dual-doped hierarchical porous carbon derived from rapeseed meal for high performance lithium–sulfur batteries
CN102623684A (zh) 一种特殊壳层结构石墨基碳负极复合材料及制备方法
CN106710889A (zh) 一种多级结构氢氧化钴电极材料及其制备方法
CN113422153B (zh) 一种锂硫电池用正极侧隔层材料的制备方法
CN108807015B (zh) 一种电化学电容器电极片的原位制备方法及其应用
He et al. Hierarchical tubular porous carbon derived from mulberry branches for long-life lead-carbon battery
Zhou et al. Synchronized dual-modified graphite felt electrodes for all-vanadium redox flow batteries with high power density and ultra-long lifespan
CN113809286A (zh) 一种mof催化生长碳纳米管包覆镍锡合金电极材料及其制备方法和应用
CN112079352A (zh) 一种生物质基多孔氮掺杂碳材料的制备方法及应用
CN110277247A (zh) 一种基于模板法制备的碳纳米材料及其在全碳基锂离子电容器中的应用
CN113839058A (zh) 一种碳基氧还原反应催化剂及其制备方法
CN118675901A (zh) 一种酒糟衍生多孔炭材料及其制备方法和应用
CN109671923B (zh) 一种有序纳米阵列氮硫双掺杂碳硫复合碳棒材料的制备方法及锂硫电池
CN115472832A (zh) 一种天然石墨球形尾料制备高容量锂电负极材料的方法
CN108002362A (zh) 一种芳香骨架多孔碳材料、制备方法和应用
CN118545695A (zh) 一种木质纤维柔性单原子碳气凝胶及其制备方法和应用
Zhang et al. Hard Carbon Derived from Straw as Anode materials for sodium-ion batteries
CN114944480B (zh) 一种蜂窝状多孔锡碳复合材料的制备方法
CN114360918B (zh) 一种高性能超级电容器异质结构的电极材料的制备方法
CN110299541B (zh) 一种微生物燃料电池阴极催化剂的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18925854

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18925854

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08/07/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18925854

Country of ref document: EP

Kind code of ref document: A1