WO2020008645A1 - User equipment and base station - Google Patents

User equipment and base station Download PDF

Info

Publication number
WO2020008645A1
WO2020008645A1 PCT/JP2018/025781 JP2018025781W WO2020008645A1 WO 2020008645 A1 WO2020008645 A1 WO 2020008645A1 JP 2018025781 W JP2018025781 W JP 2018025781W WO 2020008645 A1 WO2020008645 A1 WO 2020008645A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
pusch
uplink shared
shared channel
signal
Prior art date
Application number
PCT/JP2018/025781
Other languages
French (fr)
Japanese (ja)
Inventor
一樹 武田
良介 大澤
聡 永田
リフェ ワン
ギョウリン コウ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2018/025781 priority Critical patent/WO2020008645A1/en
Publication of WO2020008645A1 publication Critical patent/WO2020008645A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the present disclosure relates to a user terminal and a base station in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • LTE-A LTE Advanced, LTE @ Rel. 10, 11, 12, 13
  • LTE @ Rel. 8, 9 LTE @ Rel. 8, 9
  • a user terminal (UE: User @ Equipment) provides an uplink power margin (PH: Power @ Headroom) for each serving cell with respect to a network-side device (eg, a base station). ) Is fed back as a power headroom report (PHR: Power @ Headroom @ Report).
  • UE User @ Equipment
  • PHR Power @ Headroom @ Report
  • the base station determines the uplink transmission power of the UE based on the PHR, and notifies the UE of a transmission power control (TPC: Transmit Power Control) command so that the uplink transmission power is appropriate.
  • TPC Transmit Power Control
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • PHR is supported as in LTE.
  • the PH based on the actual PUSCH transmission is not always reported. If an appropriate PH cannot be obtained for a plurality of cells, appropriate transmission power control cannot be performed, and communication throughput and communication quality may be degraded.
  • an object of the present disclosure is to provide a user terminal and a base station that can report an appropriate PH even in a future wireless communication system.
  • a user terminal includes a transmitting unit that performs a plurality of uplink shared channel transmissions respectively corresponding to a plurality of cells, and a plurality of power headrooms (PH) based on the actual plurality of uplink shared channel transmissions, respectively. And a control unit for reporting the above in one of the plurality of uplink shared channel transmissions.
  • a transmitting unit that performs a plurality of uplink shared channel transmissions respectively corresponding to a plurality of cells, and a plurality of power headrooms (PH) based on the actual plurality of uplink shared channel transmissions, respectively.
  • PH power headrooms
  • an appropriate PH can be reported even in a future wireless communication system.
  • FIG. 1A and 1B are diagrams illustrating an example of PHR for a plurality of CCs.
  • FIG. 2 is a diagram illustrating an example of a PHR according to aspect 1-1.
  • FIG. 3 is a diagram illustrating an example of the PHR according to aspect 1-2.
  • FIG. 4 is a diagram illustrating an example of setting grant PUSCH transmission.
  • FIG. 5 is a diagram illustrating an example of a PHR according to aspect 2-1.
  • 6A and 6B are diagrams illustrating an example of the PHR according to aspect 2-2.
  • FIG. 7 is a diagram illustrating an example of the PHR according to aspect 2-3.
  • FIG. 8 is a diagram illustrating an example of a schematic configuration of the wireless communication system according to the embodiment.
  • FIG. 1A and 1B are diagrams illustrating an example of a schematic configuration of the wireless communication system according to the embodiment.
  • FIG. 9 is a diagram illustrating an example of the entire configuration of the base station according to the embodiment.
  • FIG. 10 is a diagram illustrating an example of a functional configuration of the base station according to the embodiment.
  • FIG. 11 is a diagram illustrating an example of the overall configuration of the user terminal according to the embodiment.
  • FIG. 12 is a diagram illustrating an example of a functional configuration of the user terminal according to the embodiment.
  • FIG. 13 is a diagram illustrating an example of a hardware configuration of the base station and the user terminal according to the embodiment.
  • the UE performs PH calculation as follows.
  • UL TTI-length (ul-TTI-Length), which is an upper layer parameter, is set in a sub-slot for serving cell c, and when a UE is in a sub-slot i of serving cell c for a serving cell other than serving cell c.
  • the UE calculates the PH as follows.
  • the UE calculates the PH for sub-slot i.
  • the UE calculates the PH for the slot including subslot i.
  • the UE calculates the PH for the slot including subslot i.
  • UE calculates the PH as follows.
  • the UE calculates the PH for slot i. -Otherwise, the UE calculates the PH for the subframe containing slot i.
  • the UE When the upper layer parameter ul-TTI-Length is set to the slot for the serving cell c, and the UE reports the PH on the subframe i of the serving cell c using the slot PUSCH to the serving cells other than the serving cell c. If so, the UE calculates the PH for subframe i.
  • Type 3UE @ PH that is valid for i is being considered.
  • the type of the PHR of the UE may include, for example, a type 2 UE @ PH that is valid for a PUCCH transmission opportunity i on UL ⁇ BWP ⁇ b of the carrier f of the serving cell c.
  • the UE may schedule the first transmission of a transport block (TB) after the PHR is triggered (as determined by the NDI (New ⁇ Data ⁇ Indicator) field in DCI format 0_0 or DCI format 0_1), the first DCI format 0_0 or DCI.
  • NDI New ⁇ Data ⁇ Indicator
  • the subcarrier spacing setting ⁇ 1 on the active UL BWP b 1 of carrier f 1 of serving cell c 1 is set to the active UL BWP b 2 of carrier f 2 of serving cell c 2
  • Type 1 PHR for PUSCH transmission in a slot on UL BWP b 1 that is less than the above subcarrier spacing setting ⁇ 2 and if the UE completely overlaps multiple slots on UL BWP b 2 If it, UE has been studied to provide a type 1PHR for the first slot of the plurality of slots on the UL BWP b 2.
  • the UE includes the first transmission of a TB on active UL BWP b 1 of carrier f 1 of serving cell c 1 .
  • to calculate types 1PHR in 1PUSCH transmission it is considered to not consider the 2PUSCH transmission on the active UL BWP b 2 of the carrier f 2 of the serving cell c 2 overlapping with transmission first 1PUSCH.
  • the “not considered” may mean that the virtual PH is calculated and reported assuming that there is no second PUSCH transmission, and the PH of the carrier f 2 of the serving cell c 2 performing the second PUSCH transmission is: It may not be included in the PHR.
  • the second PUSCH transmission is a PUSCH scheduled in DCI format 0_0 or DCI format 0_1 in the PDCCH received in the corresponding second PDCCH monitoring opportunity, and (condition 2)
  • the second PDCCH monitoring opportunity is after the first PDCCH monitoring opportunity where the UE detects the first DCI format 0_0 or DCI format 0_1 to schedule the first PUSCH transmission.
  • the UE receives the PDCCH for scheduling the PUSCH transmission of CC # 2, the PDCCH for the scheduling of the PUSCH transmission of CC # 1, and CC # 0. It is assumed that PDCCHs for PUSCH transmission scheduling are detected in this order.
  • the UE is a CC # 0 virtual PH (Virtual @ PH: VPH, PH based on the reference format), a CC # 1 virtual PH, and a CC # 2 real PH (Real @ PH: RPH, PH based on actual transmission). ) And can be calculated.
  • the UE when PUSCH transmission of CC # 0, PUSCH transmission of CC # 1, and PUSCH transmission of CC # 2 are scheduled in the same time resource by these three PDCCHs as shown in FIG. 1B, the UE: It is conceivable to transmit data and PHR in the PUSCH transmission of CC # 2 based on the first DCI for PUSCH scheduling after the PHR is triggered. In this case, the UE does not consider the PUSCH transmission of CC # 0 and CC # 1 for the calculation of the PHR in the PUSCH transmission of CC # 2. For example, the UE may transmit a virtual PH of CC # 0, a virtual PH of CC # 1, and a real PH of CC # 2.
  • the actual PH may not be calculated and reported depending on the CC.
  • the actual PH be reported for all of these CCs.
  • the present inventors conceived PHR in PUSCH transmission of a plurality of cells (serving cells, CCs).
  • the upper layer signaling includes, for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling (for example, MAC CE, MAC PDU (Protocol Data Data Unit)), broadcast information (master information block (MIB: Master Information Block)). Or a system information block (SIB: System @ Information @ Block), or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • MIB Master Information Block
  • SIB System @ Information @ Block
  • the UE may transmit the PHR on a dynamic grant PUSCH.
  • the UE may calculate the correct PH and include it in the PUSCH. Let T be the time required for the UE to calculate the PH.
  • the UE calculates an accurate PH (actual PH) based on the actual transmission (PUSCH transmission). Is also good. Otherwise, for example, if the UE determines not to consider the PUSCH transmission based on the above conditions 1 and 2, the UE may calculate the PH based on the reference format.
  • the time domain resource allocation field (start and length indicator value, start and length indicator value: SLIV ) in DCI for scheduling PUSCH transmission when the slot offset K 2 indicated by indicating the above time T The UE may calculate the actual PH for the PUSCH transmission.
  • the UE may send capability information on T to the base station. Thereby, the base station may schedule the PUSCH based on the capability information so that the actual PH is obtained.
  • T may be a value defined in association with a terminal capability (for example, also referred to as UE @ processing @ capability, PUSCH @ timing @ capability) regarding the processing time of PDSCH / PUSCH.
  • ⁇ Aspect 1-1> For the PUSCH transmitting the PHR, the PUSCH transmitted in a different cell that temporally overlaps the PUSCH, and the last DCI transmitted in the PDCCH (or DCI) that schedules these PUSCHs, If a predetermined processing time is secured between the PUSCH and the PUSCH, the actual PH calculated at the timing of the PUSCH transmitting the PHR may be reported.
  • the predetermined processing time may be the T or a different value.
  • the UE may perform this operation regardless of whether PUSCH transmissions on multiple CCs overlap in time.
  • the UE may use the PDCCH for scheduling the PUSCH transmission of CC # 2, the PDCCH for the scheduling of the PUSCH transmission of CC # 1, and the PUSCH of CC # 0. It is assumed that PDCCHs for transmission scheduling are detected in this order. Also, it is assumed that PUSCH transmission of CC # 0, PUSCH transmission of CC # 1, and PUSCH transmission of CC # 2 are scheduled in the same time resource.
  • the UE determines to transmit the CC # 0, CC # 1, and CC # 2 PHR in the PUSCH transmission of CC # 2 scheduled for the first UL grant after the PHR is triggered.
  • the UE calculates the real PH of CC # 0, the real PH of CC # 1, and the real PH of CC # 2, and transmits the calculated PH in the PUSCH transmission of CC # 2.
  • the PUSCH transmitting the PHR may be the PUSCH having the lowest CC index (or cell index) among the PUSCHs, or may be the PUSCH of a predetermined CC (for example, PCell). , The PUSCH of any CC selected by the terminal.
  • the UE can appropriately determine whether to calculate the actual PH based on the PUSCH scheduling. Further, even when the PUSCH is scheduled in a plurality of CCs after the PHR is triggered, the UE can appropriately determine the CC that transmits the PHR. Also, the UE can transmit a PHR corresponding to an actual situation by transmitting the PHRs for a plurality of CCs collectively.
  • the UE may include a PUSCH transmitting the PHR and a PDCCH (or DCI) that schedules these PUSCHs for the PUSCH transmitted in the same or a different cell in the slot transmitting the PUSCH or a slot overlapping the slot. If a predetermined processing time is secured between the last transmitted DCI and the earliest PUSCH among these PUSCHs, the actual PH calculated at the timing of the PUSCH transmitting the PHR may be reported. Good.
  • the predetermined processing time may be the T or a different value.
  • the UE may use the PDCCH for scheduling the PUSCH transmission of CC # 2, the PDCCH for the scheduling of the PUSCH transmission of CC # 1, and the PUSCH of CC # 0. It is assumed that PDCCHs for transmission scheduling are detected in this order. It is assumed that the PUSCH transmission of CC # 0, the PUSCH transmission of CC # 1, and the PUSCH transmission of CC # 2 are scheduled in this order. Further, it is assumed that the PUSCH transmission of CC # 0, the PUSCH transmission of CC # 1, and the PUSCH transmission of CC # 2 are scheduled in this order.
  • the UE determines to transmit the PHRs of CC # 0, CC # 1, and CC # 2 in the earliest PUSCH transmission of CC # 0.
  • the PHR transmitted from the PDCCH reception time interval between (CC # PUSCH transmission of 0) (t 0 of CC # 0, CC # 1 of t 1, CC # 2 of t 2) is not less than T. Therefore, the UE calculates the real PH of CC # 0, the real PH of CC # 1, and the real PH of CC # 2, and transmits the calculated PH in the PUSCH transmission of CC # 0.
  • the PUSCH transmitting the PHR may be the PUSCH having the lowest CC index (or cell index) among the PUSCHs, or may be the PUSCH of a predetermined CC (for example, PCell). , The PUSCH of any CC selected by the terminal. Also, when there are a plurality of PUSCH transmissions in the corresponding slot of a predetermined CC, the UE may transmit the PHR in the earliest PUSCH transmission or may transmit the PHR in the latest PUSCH transmission.
  • the UE can appropriately determine whether to calculate the actual PH based on the PUSCH scheduling. Further, even when the PUSCH is scheduled in a plurality of CCs after the PHR is triggered, the UE can appropriately determine the CC that transmits the PHR. In addition, in the earliest PUSCH transmission, the UE can transmit the PHRs for a plurality of CCs at the earliest possible timing by transmitting the PHRs for the plurality of CCs collectively.
  • the UE may be configured for configured grant PUSCH transmission.
  • the UE is configured to transmit the set grant PUSCH for CC # 2 and periodically performs the PUSCH transmission. Furthermore, it is assumed that after the PHR is triggered, the UE detects a PDCCH for scheduling the PUSCH transmission of CC # 1 and a PDCCH for scheduling the PUSCH transmission of CC # 0 in this order. Thereafter, in the same time resource, the set grant PUSCH transmission of CC # 2 and the dynamic grant (dynamic @ grant) PUSCH transmission of CC # 1 are performed, and then the dynamic grant PUSCH transmission of CC # 0 is performed. .
  • the present inventors conceived the relationship between the set grant PUSCH transmission and the PHR.
  • the UE may not report the PH on the configuration grant PUSCH.
  • the UE may not report PH on the configuration grant PUSCH, even if the configuration grant PUSCH is the first PUSCH transmission after triggering the PHR. Also, even if the PHR prohibition timer (phrProhibitTimer) has expired at the transmission timing of the set grant PUSCH, the UE does not have to report the PH in the set grant PUSCH.
  • the UE may calculate the PH of the CC configured for the configuration grant PUSCH transmission according to the following example 2-1-1 or example 2-1-2.
  • the UE may not consider the configuration grant PUSCH in the PH calculation. For example, the UE may always calculate the virtual PH for the configuration grant PUSCH.
  • ⁇ Aspect 2-1-2 If the time interval between the PDCCH that schedules the PUSCH carrying the PHR and the configured grant PUSCH transmission is greater than or equal to T, the UE may consider the configured grant PUSCH transmission in the PH calculation (for the configured grant PUSCH transmission). The actual PH may be calculated).
  • the UE is configured to transmit the configuration grant PUSCH in CC # 2 and periodically performs the PUSCH transmission. Furthermore, it is assumed that after the PHR is triggered, the UE detects a PDCCH for scheduling the PUSCH transmission of CC # 1 and a PDCCH for scheduling the PUSCH transmission of CC # 0 in this order. Then, it is assumed that the transmission of the set grant PUSCH of CC # 2 and the transmission of the dynamic grant PUSCH of CC # 1 are temporally overlapped, and then the transmission of the dynamic grant PUSCH of CC # 0.
  • a time interval from PDCCH reception for scheduling PUSCH transmission of CC # 1 carrying PHR to transmission of a set grant PUSCH of CC # 2 that temporally overlaps with CC # 1 PUSCH transmission is T or more.
  • the UE calculates the actual PH of CC # 1 and the actual PH of CC # 2.
  • the UE may calculate the virtual PH of CC # 0. Therefore, the UE reports the virtual PH of CC # 0, the real PH of CC # 1, and the real PH of CC # 2 on the PUSCH of CC # 2.
  • the processing is simplified, and the processing load on the UE and the base station can be reduced.
  • the UE may transmit the PHR on the configuration grant PUSCH.
  • the UE may transmit the PHR on the first PUSCH transmission after the PHR is triggered. If the configured grant PUSCH transmission is the first PUSCH transmission after the PHR is triggered, and if the TB size of the configured grant PUSCH transmission is sufficient to carry the PHR, the UE may perform PHR in the configured grant PUSCH transmission. May be transmitted.
  • the UE transmits a PHR on the configured grant PUSCH instead, the PHR may be transmitted in the next dynamic grant PUSCH transmission.
  • the UE may calculate the actual PH as the PH for the PUSCH of a CC other than the CC carrying the PHR. If the time interval between the UL grant and the PUSCH carrying the PHR is smaller than T, the UE may calculate the virtual PH as the PH for the PUSCH of a CC other than the CC carrying the PHR.
  • the UE may calculate the actual PH as the PH for the set grant PUSCH. If the time interval between triggering the PHR and transmitting the set grant PUSCH carrying the PHR is smaller than T, the UE may calculate the virtual PH as the PH for the set grant PUSCH.
  • the UE calculates the actual PH for the PUSCH transmission of CC # 0.
  • the UE calculates the actual PH for the PUSCH transmission of CC # 1.
  • the UE calculates the actual PH for the CC # 2 set grant PUSCH transmission.
  • the UE reports the actual PH of CC # 0, the actual PH of CC # 1, and the actual PH of CC # 2 in CC # 2.
  • the UE calculates a virtual PH for PUSCH transmission of CC # 0.
  • the UE calculates a virtual PH for the PUSCH transmission of CC # 1.
  • the UE calculates the actual PH for the CC # 2 set grant PUSCH transmission.
  • the UE reports the virtual PH of CC # 0, the virtual PH of CC # 1, and the real PH of CC # 2 in CC # 2.
  • the UE can appropriately determine whether to calculate the actual PH based on the PUSCH transmission timing. Further, the UE can appropriately determine the CC transmitting the PHR even when the PUSCH is transmitted in a plurality of CCs after the PHR is triggered. In addition, the UE can transmit PHRs for a plurality of CCs as early as possible by transmitting the PHRs collectively in the earliest PUSCH transmission. Further, even when at least one of the plurality of CCs performs the set grant PUSCH transmission, the CC carrying the PHR can be appropriately determined.
  • the configured grant PUSCH transmission is the first PUSCH transmission after the PHR is triggered and overlaps with the dynamic grant PUSCH transmission of another CC, whether to transmit the PHR in the configured grant PUSCH transmission is determined by the UE implementation ( implementation / selection.
  • the UE may not transmit the PHR in the configured grant PUSCH transmission Good.
  • the UE may calculate the PH of CCs # 0 to # 2 in the same manner as in aspect 2-1.
  • the UE may calculate the real PH of CC # 1, the real PH of CC # 2, and the virtual PH of CC # 0 in the same manner as in aspect 2-1-2.
  • the UE may carry one PHR from the first plurality of PUSCH transmissions after the PHR is triggered, based on at least one of timing of a corresponding PDCCH, cell index, and whether or not a dynamic grant PUSCH transmission.
  • PUSCH transmission may be determined. For example, the UE may select a dynamic grant PUSCH transmission scheduled by the earliest PDCCH after the PHR is triggered out of a plurality of initial PUSCH transmissions. The UE may select the PUSCH transmission corresponding to the smallest cell index from the plurality of first PUSCH transmissions. The UE may select a dynamic grant PUSCH transmission among a plurality of initial PUSCH transmissions. The UE may select a configuration grant PUSCH transmission among a plurality of first PUSCH transmissions.
  • the UE may calculate the actual PH as the PH for the PUSCH of a CC other than the CC carrying the PHR. If the time interval between the UL grant and the PUSCH carrying the PHR is smaller than T, the UE may calculate the virtual PH as the PH for the PUSCH of a CC other than the CC carrying the PHR.
  • the UE may transmit the PHR in the configured grant PUSCH transmission .
  • the UE can flexibly determine the PUSCH transmission for transmitting the PHR.
  • the UE may determine the real PH or the virtual PH based on the type of the configuration grant PUSCH.
  • Type 1 PUSCH transmission with configured grant Type 1 configuration grant PUSCH transmission
  • the UE can perform the real PH. May be calculated.
  • Type 1 configuration grant PUSCH transmission is configured by higher layer signaling and does not require activation.
  • the UE may calculate the PH for Type 2 PUSCH transmission with configuration grant (Type 2 PUSCH transmission with configured grant, Type 2 configuration grant PUSCH transmission) as follows.
  • Type 2 configuration grant PUSCH transmission is configured by higher layer signaling and requires activation.
  • the UE may always transmit the first type 2 setting grant PUSCH transmission regardless of the presence or absence of the uplink data or the PHR. Therefore, in the first type-2 setting grant PUSCH transmission, the UE performs an operation close to the dynamic grant PUSCH transmission. Further, in transmission of the type 2 setting grant PUSCH other than the first type 2 setting grant PUSCH transmission, the UE performs an operation similar to the type 1 setting grant PUSCH transmission.
  • the UE sets the actual PH as the PH for the type 2 PUSCH transmission other than the first type 2 setting grant PUSCH transmission after receiving the activation DCI as long as the processing time for calculating the actual PH up to the PUSCH of the PH report can be secured. It may be calculated.
  • the UE may calculate the actual PH as the PH for the first Type 2 PUSCH transmission after receiving the activation DCI.
  • wireless communication system Wireless communication system
  • communication is performed using any of the wireless communication methods according to the above embodiments of the present disclosure or a combination thereof.
  • FIG. 8 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are applied. can do.
  • DC dual connectivity
  • the wireless communication system 1 includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), and 5G. (5th generation mobile communication system), NR (New Radio), FRA (Future Radio Access), New-RAT (Radio Access Technology), etc., or a system for realizing these.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • NR New Radio
  • FRA Full Radio Access
  • New-RAT Radio Access Technology
  • the wireless communication system 1 includes a base station 11 forming a macro cell C1 having relatively wide coverage, and a base station 12 (12a to 12c) arranged in the macro cell C1 and forming a small cell C2 smaller than the macro cell C1.
  • a base station 11 forming a macro cell C1 having relatively wide coverage
  • a base station 12 (12a to 12c) arranged in the macro cell C1 and forming a small cell C2 smaller than the macro cell C1.
  • user terminals 20 are arranged in the macro cell C1 and each small cell C2.
  • the arrangement, number, and the like of each cell and the user terminals 20 are not limited to the modes shown in the figure.
  • the user terminal 20 can be connected to both the base station 11 and the base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 simultaneously using CA or DC. Also, the user terminal 20 may apply CA or DC using a plurality of cells (CCs) (for example, five or less CCs, six or more CCs).
  • CCs cells
  • a communication between the user terminal 20 and the base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (also referred to as an existing carrier or a legacy carrier).
  • a carrier having a relatively high frequency band for example, 3.5 GHz, 5 GHz or the like
  • a wide bandwidth may be used, or between the user terminal 20 and the base station 11.
  • the same carrier as described above may be used.
  • the configuration of the frequency band used by each base station is not limited to this.
  • the user terminal 20 can perform communication using time division duplex (TDD: Time Division Duplex) and / or frequency division duplex (FDD: Frequency Division Duplex) in each cell.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • a single numerology may be applied, or a plurality of different numerologies may be applied.
  • Numerology may be a communication parameter applied to transmission and / or reception of a certain signal and / or channel, for example, subcarrier interval, bandwidth, symbol length, cyclic prefix length, subframe length. , TTI length, number of symbols per TTI, radio frame configuration, specific filtering processing performed by the transceiver in the frequency domain, specific windowing processing performed by the transceiver in the time domain, and the like.
  • the numerology may be referred to as different.
  • the base station 11 and the base station 12 may be connected by a wire (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface, or the like) or wirelessly. Good.
  • a wire for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface, or the like
  • CPRI Common Public Radio Interface
  • X2 interface or the like
  • the base station 11 and each base station 12 are connected to the upper station device 30 and are connected to the core network 40 via the upper station device 30.
  • the higher station apparatus 30 includes, for example, an access gateway apparatus, a radio network controller (RNC), and a mobility management entity (MME), but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • each base station 12 may be connected to the upper station device 30 via the base station 11.
  • the base station 11 is a base station having relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
  • the base station 12 is a base station having local coverage, such as a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and a transmission / reception point. May be called.
  • a base station 10 when the base stations 11 and 12 are not distinguished, they are collectively referred to as a base station 10.
  • Each user terminal 20 is a terminal corresponding to various communication systems such as LTE and LTE-A, and may include not only mobile communication terminals (mobile stations) but also fixed communication terminals (fixed stations).
  • Orthogonal Frequency Division Multiple Access (OFDMA) is applied to the downlink as a wireless access scheme, and Single-Carrier Frequency Division Multiple Access (SC-FDMA: Single Carrier) is applied to the uplink. Frequency Division Multiple Access) and / or OFDMA is applied.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • OFDMA is a multicarrier transmission scheme in which a frequency band is divided into a plurality of narrow frequency bands (subcarriers), and data is mapped to each subcarrier to perform communication.
  • SC-FDMA divides a system bandwidth into bands each composed of one or a continuous resource block for each terminal, and a single carrier transmission that reduces interference between terminals by using different bands for a plurality of terminals. It is a method.
  • the uplink and downlink radio access schemes are not limited to these combinations, and other radio access schemes may be used.
  • a downlink shared channel (PDSCH: Physical Downlink Shared Channel), a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel, and the like shared by each user terminal 20 are used. Used.
  • the PDSCH transmits user data, upper layer control information, SIB (System Information Block), and the like.
  • SIB System Information Block
  • MIB Master ⁇ Information ⁇ Block
  • Downlink L1 / L2 control channels include PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel) and the like.
  • Downlink control information (DCI: Downlink Control Information) including PDSCH and / or PUSCH scheduling information is transmitted by the PDCCH.
  • the scheduling information may be notified by DCI.
  • a DCI that schedules DL data (eg, PDSCH) reception and / or measurement of a DL reference signal may be referred to as a DL assignment, a DL grant, a DL @ DCI, and so on.
  • a DCI that schedules transmission of UL data (eg, PUSCH) transmission and / or transmission of a UL sounding (for measurement) signal may be referred to as UL grant, UL @ DCI, and so on.
  • PCFICH transmits the number of OFDM symbols used for PDCCH.
  • the PHICH transmits acknowledgment information (for example, retransmission control information, HARQ-ACK, ACK / NACK, etc.) of HARQ (Hybrid Automatic Repeat Repeat request) for the PUSCH.
  • the EPDCCH is frequency-division multiplexed with a PDSCH (Downlink Shared Data Channel) and used for transmission of DCI and the like like the PDCCH.
  • PDSCH Downlink Shared Data Channel
  • an uplink shared channel (PUSCH: Physical Uplink Shared Channel), an uplink control channel (PUCCH: Physical Uplink Control Channel), a random access channel (PRACH: Physical Random Access Channel) or the like is used.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PRACH Physical Random Access Channel
  • user data higher layer control information, etc. are transmitted.
  • downlink radio quality information CQI: Channel Quality Indicator
  • delivery confirmation information delivery confirmation information
  • scheduling request (SR: Scheduling Request), and the like are transmitted by PUCCH.
  • the PRACH transmits a random access preamble for establishing a connection with a cell.
  • a cell-specific reference signal CRS: Cell-specific Reference Signal
  • CSI-RS Channel State Information-Reference Signal
  • DMRS Demodulation Reference Signal
  • PRS Positioning Reference Signal
  • a measurement reference signal SRS: Sounding Reference Signal
  • DMRS demodulation reference signal
  • PRS Positioning Reference Signal
  • the transmitted reference signal is not limited to these.
  • FIG. 9 is a diagram illustrating an example of the entire configuration of the base station according to the embodiment.
  • the base station 10 includes a plurality of transmitting / receiving antennas 101, an amplifier unit 102, a transmitting / receiving unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
  • the transmitting / receiving antenna 101, the amplifier unit 102, and the transmitting / receiving unit 103 may be configured to include at least one each.
  • the baseband signal processing unit 104 regarding user data, processing of a PDCP (Packet Data Convergence Protocol) layer, division / combination of user data, transmission processing of an RLC layer such as RLC (Radio Link Control) retransmission control, and MAC (Medium Access) Control)
  • the transmission / reception unit performs retransmission control (for example, HARQ transmission processing), scheduling, transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, precoding processing, and so on.
  • HARQ transmission processing for example, HARQ transmission processing
  • IFFT inverse fast Fourier transform
  • precoding processing precoding processing
  • the downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and transferred to the transmission / reception unit 103.
  • the transmission / reception section 103 converts the baseband signal output from the baseband signal processing section 104 after precoding for each antenna into a radio frequency band, and transmits the radio frequency band.
  • the radio frequency signal frequency-converted by the transmitting / receiving section 103 is amplified by the amplifier section 102 and transmitted from the transmitting / receiving antenna 101.
  • the transmission / reception unit 103 can be configured from a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure. Note that the transmission / reception unit 103 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • a radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
  • the transmitting / receiving section 103 receives the upstream signal amplified by the amplifier section 102.
  • Transmitting / receiving section 103 frequency-converts the received signal into a baseband signal and outputs the baseband signal to baseband signal processing section 104.
  • fast Fourier transform FFT: Fast Fourier Transform
  • IDFT inverse discrete Fourier transform
  • error correction is performed on user data included in the input uplink signal.
  • Decoding, reception processing of MAC retransmission control, reception processing of the RLC layer and PDCP layer are performed, and the data is transferred to the upper station apparatus 30 via the transmission path interface 106.
  • the call processing unit 105 performs call processing (setting, release, etc.) of a communication channel, state management of the base station 10, management of radio resources, and the like.
  • the transmission path interface 106 transmits and receives signals to and from the higher-level station device 30 via a predetermined interface.
  • the transmission line interface 106 transmits and receives signals (backhaul signaling) to and from another base station 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface). Is also good.
  • CPRI Common Public Radio Interface
  • X2 interface X2 interface
  • transmitting / receiving section 103 may receive a plurality of uplink shared channel transmissions respectively corresponding to a plurality of cells.
  • FIG. 10 is a diagram illustrating an example of a functional configuration of the base station according to an embodiment of the present disclosure. Note that, in this example, functional blocks of characteristic portions in the present embodiment are mainly shown, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 104 includes at least a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. Note that these configurations need only be included in base station 10, and some or all of the configurations need not be included in baseband signal processing section 104.
  • the control unit (scheduler) 301 controls the entire base station 10.
  • the control unit 301 can be configured from a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
  • the control unit 301 controls, for example, signal generation in the transmission signal generation unit 302, signal assignment in the mapping unit 303, and the like. Further, the control unit 301 controls a signal reception process in the reception signal processing unit 304, a signal measurement in the measurement unit 305, and the like.
  • the control unit 301 performs scheduling (for example, resources) of system information, a downlink data signal (for example, a signal transmitted on the PDSCH), and a downlink control signal (for example, a signal transmitted on the PDCCH and / or the EPDCCH; acknowledgment information and the like). Allocation). Further, control section 301 controls generation of a downlink control signal, a downlink data signal, and the like based on a result of determining whether or not retransmission control is required for an uplink data signal.
  • scheduling for example, resources
  • a downlink data signal for example, a signal transmitted on the PDSCH
  • a downlink control signal for example, a signal transmitted on the PDCCH and / or the EPDCCH; acknowledgment information and the like. Allocation.
  • control section 301 controls generation of a downlink control signal, a downlink data signal, and the like based on a result of determining whether or not retransmission control is required for an uplink data signal.
  • the control unit 301 controls scheduling of a synchronization signal (for example, Primary Synchronization Signal (PSS) / Secondary Synchronization Signal (SSS)) and a downlink reference signal (for example, CRS, CSI-RS, DMRS).
  • a synchronization signal for example, Primary Synchronization Signal (PSS) / Secondary Synchronization Signal (SSS)
  • SSS Secondary Synchronization Signal
  • CRS channel CSI-RS
  • DMRS Downlink reference signal
  • the control unit 301 includes an uplink data signal (for example, a signal transmitted on PUSCH), an uplink control signal (for example, a signal transmitted on PUCCH and / or PUSCH, acknowledgment information, etc.), a random access preamble (for example, PRACH). (Transmission signal), scheduling of uplink reference signals and the like.
  • an uplink data signal for example, a signal transmitted on PUSCH
  • an uplink control signal for example, a signal transmitted on PUCCH and / or PUSCH, acknowledgment information, etc.
  • a random access preamble for example, PRACH.
  • Transmission signal scheduling of uplink reference signals and the like.
  • Transmission signal generation section 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) based on an instruction from control section 301, and outputs the generated downlink signal to mapping section 303.
  • the transmission signal generation unit 302 can be configured from a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
  • the transmission signal generation unit 302 generates a DL assignment for notifying downlink data allocation information and / or a UL grant for notifying uplink data allocation information, based on an instruction from the control unit 301, for example.
  • the DL assignment and the UL grant are both DCI and follow the DCI format.
  • the downlink data signal is subjected to an encoding process and a modulation process according to an encoding rate, a modulation scheme, and the like determined based on channel state information (CSI: Channel ⁇ State ⁇ Information) from each user terminal 20 and the like.
  • CSI Channel ⁇ State ⁇ Information
  • Mapping section 303 maps the downlink signal generated by transmission signal generating section 302 to a predetermined radio resource based on an instruction from control section 301, and outputs it to transmitting / receiving section 103.
  • the mapping unit 303 can be configured from a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
  • the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, and the like) on the reception signal input from the transmission / reception unit 103.
  • the received signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20.
  • the reception signal processing unit 304 can be configured from a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure.
  • the reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301. For example, when a PUCCH including HARQ-ACK is received, HARQ-ACK is output to control section 301. Further, the reception signal processing unit 304 outputs the reception signal and / or the signal after the reception processing to the measurement unit 305.
  • the measurement unit 305 performs measurement on the received signal.
  • the measurement unit 305 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
  • the measurement unit 305 may perform RRM (Radio Resource Management) measurement, CSI (Channel State Information) measurement, or the like based on the received signal.
  • the measurement unit 305 is configured to receive power (for example, RSRP (Reference Signal Received Power)), reception quality (for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio, SNR (Signal to Noise Ratio)). , Signal strength (for example, RSSI (Received @ Signal @ Strength @ Indicator)), channel information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 301.
  • the control unit 301 may acquire a plurality of power headrooms (PH) based on actual transmissions of the plurality of uplink shared channels in one of the plurality of uplink shared channel transmissions.
  • PH power headroom
  • FIG. 11 is a diagram illustrating an example of the overall configuration of the user terminal according to the embodiment.
  • the user terminal 20 includes a plurality of transmitting / receiving antennas 201, an amplifier unit 202, a transmitting / receiving unit 203, a baseband signal processing unit 204, and an application unit 205.
  • the transmitting / receiving antenna 201, the amplifier unit 202, and the transmitting / receiving unit 203 may be configured to include at least one each.
  • the radio frequency signal received by the transmitting / receiving antenna 201 is amplified by the amplifier unit 202.
  • the transmission / reception unit 203 receives the downlink signal amplified by the amplifier unit 202.
  • the transmission / reception section 203 converts the frequency of the received signal into a baseband signal, and outputs the baseband signal to the baseband signal processing section 204.
  • the transmission / reception unit 203 can be configured from a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure. Note that the transmission / reception unit 203 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • the baseband signal processing unit 204 performs FFT processing, error correction decoding, reception processing for retransmission control, and the like on the input baseband signal.
  • the downlink user data is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Also, of the downlink data, broadcast information may be transferred to the application unit 205.
  • uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs retransmission control transmission processing (eg, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like, and performs transmission / reception processing. Transferred to 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits the radio frequency band.
  • the radio frequency signal frequency-converted by the transmitting / receiving section 203 is amplified by the amplifier section 202 and transmitted from the transmitting / receiving antenna 201.
  • the transmission / reception unit 203 may perform a plurality of uplink shared channel (PUSCH) transmissions (dynamic grant PUSCH transmission or set grant PUSCH transmission) respectively corresponding to the plurality of cells (CCs).
  • PUSCH uplink shared channel
  • FIG. 12 is a diagram illustrating an example of a functional configuration of the user terminal according to the embodiment. Note that, in this example, functional blocks of characteristic portions in the present embodiment are mainly shown, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 204 of the user terminal 20 includes at least a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Note that these configurations need only be included in the user terminal 20, and some or all of the configurations need not be included in the baseband signal processing unit 204.
  • the control unit 401 controls the entire user terminal 20.
  • the control unit 401 can be configured by a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
  • the control unit 401 controls, for example, signal generation in the transmission signal generation unit 402, signal assignment in the mapping unit 403, and the like. Further, the control unit 401 controls signal reception processing in the reception signal processing unit 404, signal measurement in the measurement unit 405, and the like.
  • the control unit 401 acquires the downlink control signal and the downlink data signal transmitted from the base station 10 from the reception signal processing unit 404.
  • the control unit 401 controls generation of an uplink control signal and / or an uplink data signal based on a result of determining whether or not retransmission control is required for a downlink control signal and / or a downlink data signal.
  • control unit 401 When the control unit 401 acquires various information notified from the base station 10 from the reception signal processing unit 404, the control unit 401 may update parameters used for control based on the information.
  • Transmission signal generating section 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) based on an instruction from control section 401 and outputs the generated signal to mapping section 403.
  • the transmission signal generation unit 402 can be configured from a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
  • the transmission signal generation unit 402 generates an uplink control signal related to acknowledgment information, channel state information (CSI), and the like, based on an instruction from the control unit 401, for example. Further, transmission signal generating section 402 generates an uplink data signal based on an instruction from control section 401. For example, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the downlink control signal notified from the base station 10 includes a UL grant.
  • CSI channel state information
  • Mapping section 403 maps the uplink signal generated by transmission signal generation section 402 to a radio resource based on an instruction from control section 401, and outputs the result to transmission / reception section 203.
  • the mapping unit 403 can be configured from a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
  • the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, and decoding) on the reception signal input from the transmission / reception unit 203.
  • the received signal is, for example, a downlink signal (a downlink control signal, a downlink data signal, a downlink reference signal, etc.) transmitted from the base station 10.
  • the reception signal processing unit 404 can be configured from a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure.
  • the reception signal processing unit 404 can configure a reception unit according to the present disclosure.
  • the reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401.
  • the reception signal processing unit 404 outputs, for example, broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401. Further, the reception signal processing unit 404 outputs the reception signal and / or the signal after the reception processing to the measurement unit 405.
  • the measurement unit 405 performs measurement on the received signal.
  • the measurement unit 405 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
  • the measurement unit 405 may perform RRM measurement, CSI measurement, and the like based on the received signal.
  • the measurement unit 405 may measure reception power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), channel information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 401.
  • control unit 401 determines that the processing time of each of the plurality of PHs (the time required for calculating the PH, capability information) and that each of the plurality of uplink shared channel transmissions is a set grant uplink shared channel transmission. And determining whether the plurality of PHs are based on actual plurality of uplink shared channel transmissions (either real or virtual PH, based on actual transmissions or based on a reference format) based on at least one of: You may.
  • control unit 401 determines whether the set grant uplink shared channel transmission is based on actual transmission of the plurality of uplink shared channels based on the type of the set grant uplink shared channel transmission (for example, type 1 or type 2). You may decide.
  • control unit 401 determines the timing of the downlink shared channel for scheduling the uplink shared channel transmission (for example, the earliest PDCCH after the PHR trigger) and the timing of the uplink shared channel transmission (for example, the most recent after the PHR trigger).
  • the uplink shared channel transmission used for the report may be determined based on at least one of the early PUSCH) and whether each of the plurality of uplink shared channel transmissions is a configured grant uplink shared channel transmission.
  • the control unit 401 may determine the uplink shared channel transmission used for the report based on the size of the set grant uplink shared channel transmission (for example, the TB size).
  • control unit 401 when the plurality of uplink shared channel transmissions overlap in time, and includes dynamic grant uplink shared channel transmission and set grant uplink shared channel transmission, the dynamic grant uplink shared channel transmission and the A plurality of power headrooms (PH) respectively corresponding to the plurality of cells may be reported in one uplink shared channel transmission having a predetermined type among the set grant uplink shared channel transmissions.
  • PH power headrooms
  • the predetermined type may be the dynamic grant uplink shared channel transmission.
  • the predetermined type may be the set grant uplink shared channel transmission.
  • each functional block may be realized using one device physically or logically coupled, or directly or indirectly (for example, two or more devices physically or logically separated from each other). , Wired, wireless, etc.) and using these multiple devices.
  • the functional block may be realized by combining one device or the plurality of devices with software.
  • the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block that makes transmission function may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like.
  • the realization method is not particularly limited.
  • a base station, a user terminal, and the like may function as a computer that performs processing of the wireless communication method according to the present disclosure.
  • FIG. 13 is a diagram illustrating an example of a hardware configuration of the base station and the user terminal according to the embodiment.
  • the above-described base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. .
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices illustrated in the drawing, or may be configured to exclude some of the devices.
  • processor 1001 may be implemented by one or more chips.
  • the functions of the base station 10 and the user terminal 20 are performed, for example, by reading predetermined software (program) on hardware such as the processor 1001 and the memory 1002 so that the processor 1001 performs an operation and communicates via the communication device 1004. And controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • predetermined software program
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
  • CPU Central Processing Unit
  • the above-described baseband signal processing unit 104 (204), call processing unit 105, and the like may be realized by the processor 1001.
  • the processor 1001 reads out a program (program code), a software module, data, and the like from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to these.
  • a program program code
  • a program that causes a computer to execute at least a part of the operation described in the above embodiment is used.
  • the control unit 401 of the user terminal 20 may be implemented by a control program stored in the memory 1002 and operated by the processor 1001, and other functional blocks may be similarly implemented.
  • the memory 1002 is a computer-readable recording medium, for example, at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically EPROM), RAM (Random Access Memory), and other appropriate storage media. It may be constituted by one.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc) ROM, etc.)), a digital versatile disc, At least one of a Blu-ray (registered trademark) disk, a removable disk, a hard disk drive, a smart card, a flash memory device (eg, a card, a stick, a key drive), a magnetic stripe, a database, a server, and other suitable storage media. May be configured.
  • the storage 1003 may be called an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high-frequency switch, a duplexer, a filter, a frequency synthesizer, and the like in order to realize at least one of frequency division duplex (FDD: Frequency Division Duplex) and time division duplex (TDD: Time Division Duplex). May be configured.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission line interface 106, and the like may be realized by the communication device 1004.
  • the transmission / reception unit 103 may be physically or logically separated by the transmission unit 103a and the reception unit 103b.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, and the like) that receives an external input.
  • the output device 1006 is an output device that performs output to the outside (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, and the like). Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • the devices such as the processor 1001 and the memory 1002 are connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using a different bus for each device.
  • the base station 10 and the user terminal 20 include hardware such as a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array). It may be configured to include hardware, and some or all of the functional blocks may be realized using the hardware.
  • the processor 1001 may be implemented using at least one of these hardware.
  • the channel and the symbol may be a signal (signaling).
  • the signal may be a message.
  • the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like according to an applied standard.
  • a component carrier (CC: Component Carrier) may be called a cell, a frequency carrier, a carrier frequency, or the like.
  • the radio frame may be configured by one or a plurality of periods (frames) in the time domain.
  • the one or more respective periods (frames) forming the radio frame may be referred to as a subframe.
  • a subframe may be configured by one or more slots in the time domain.
  • the subframe may be of a fixed length of time (eg, 1 ms) that does not depend on numerology.
  • the new melology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
  • Numerology includes, for example, subcarrier interval (SCS: SubCarrier @ Spacing), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Transmission @ Time @ Interval), number of symbols per TTI, radio frame configuration, transmission and reception.
  • SCS SubCarrier @ Spacing
  • TTI Transmission @ Time @ Interval
  • TTI Transmission @ Time @ Interval
  • radio frame configuration transmission and reception.
  • At least one of a specific filtering process performed by the transceiver in the frequency domain and a specific windowing process performed by the transceiver in the time domain may be indicated.
  • the slot may be configured by one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain. Further, the slot may be a time unit based on numerology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots.
  • Each minislot may be constituted by one or more symbols in the time domain.
  • minislots may be called subslots.
  • a minislot may be made up of a smaller number of symbols than slots.
  • a PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (PUSCH) mapping type A.
  • a PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals.
  • the radio frame, the subframe, the slot, the minislot, and the symbol may have different names corresponding thereto. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be interchanged with each other.
  • one subframe may be called a transmission time interval (TTI: Transmission @ Time @ Interval)
  • TTI Transmission @ Time @ Interval
  • TTI Transmission Time interval
  • TTI Transmission @ Time @ Interval
  • TTI Transmission Time interval
  • TTI Transmission @ Time @ Interval
  • TTI Transmission Time interval
  • TTI Transmission @ Time @ Interval
  • TTI Transmission Time interval
  • TTI Transmission @ Time @ Interval
  • TTI Transmission Time interval
  • TTI Transmission @ Time @ Interval
  • one slot or one minislot is called a TTI.
  • TTI means, for example, a minimum time unit of scheduling in wireless communication.
  • the base station performs scheduling for allocating radio resources (frequency bandwidth, transmission power, and the like that can be used in each user terminal) to each user terminal in TTI units.
  • radio resources frequency bandwidth, transmission power, and the like that can be used in each user terminal
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, a code word, or a processing unit such as scheduling and link adaptation. Note that when a TTI is given, a time section (for example, the number of symbols) in which a transport block, a code block, a codeword, and the like are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (mini-slot number) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE@Rel.8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, and the like.
  • a TTI shorter than the normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • a long TTI (for example, a normal TTI, a subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, and a short TTI (for example, a shortened TTI, etc.) may be replaced with a TTI shorter than the long TTI and 1 ms.
  • the TTI having the TTI length described above may be replaced with the TTI.
  • the resource block (RB: Resource Block) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain.
  • the number of subcarriers included in the RB may be the same irrespective of the numerology, and may be, for example, 12.
  • the number of subcarriers included in the RB may be determined based on numerology.
  • the RB may include one or more symbols in the time domain, and may have a length of one slot, one minislot, one subframe, or one TTI.
  • One TTI, one subframe, and the like may each be configured by one or a plurality of resource blocks.
  • one or a plurality of RBs include a physical resource block (PRB: Physical @ RB), a subcarrier group (SCG: Sub-Carrier @ Group), a resource element group (REG: Resource @ Element @ Group), a PRB pair, an RB pair, and the like. May be called.
  • PRB Physical @ RB
  • SCG Sub-Carrier @ Group
  • REG Resource @ Element @ Group
  • PRB pair an RB pair, and the like. May be called.
  • a resource block may be composed of one or more resource elements (RE: Resource @ Element).
  • RE Resource @ Element
  • one RE may be a radio resource area of one subcarrier and one symbol.
  • a bandwidth part (which may also be referred to as a partial bandwidth or the like) may represent a subset of contiguous common RBs (common @ resource @ blocks) for a certain numerology in a certain carrier. Good.
  • the common RB may be specified by an index of the RB based on the common reference point of the carrier.
  • a PRB may be defined in a BWP and numbered within the BWP.
  • $ BWP may include a BWP for UL (UL @ BWP) and a BWP for DL (DL @ BWP).
  • BWP for a UE, one or more BWPs may be configured in one carrier.
  • At least one of the configured BWPs may be active, and the UE may not have to assume transmitting and receiving a given signal / channel outside the active BWP.
  • “cell”, “carrier”, and the like in the present disclosure may be replaced with “BWP”.
  • the structures of the above-described radio frame, subframe, slot, minislot, and symbol are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, included in an RB The number of subcarriers, the number of symbols in a TTI, the symbol length, the configuration such as the cyclic prefix (CP) length can be variously changed.
  • the information, parameters, and the like described in the present disclosure may be represented using an absolute value, may be represented using a relative value from a predetermined value, or may be represented using another corresponding information. May be represented.
  • a radio resource may be indicated by a predetermined index.
  • Names used for parameters and the like in the present disclosure are not limited in any way. Further, the formulas and the like using these parameters may be different from those explicitly disclosed in the present disclosure.
  • the various channels (PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.) and information elements can be identified by any suitable name, so the various names assigned to these various channels and information elements Is not a limiting name in any way.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that can be referred to throughout the above description are not limited to voltages, currents, electromagnetic waves, magnetic or magnetic particles, optical or photons, or any of these. May be represented by a combination of
  • information, signals, etc. can be output from the upper layer to at least one of the lower layer and the lower layer to the upper layer.
  • Information, signals, and the like may be input and output via a plurality of network nodes.
  • Information and signals input and output may be stored in a specific location (for example, a memory) or may be managed using a management table. Information and signals that are input and output can be overwritten, updated, or added. The output information, signal, and the like may be deleted. The input information, signal, and the like may be transmitted to another device.
  • Notification of information is not limited to the aspect / embodiment described in the present disclosure, and may be performed using another method.
  • the information is notified by physical layer signaling (for example, downlink control information (DCI: Downlink Control Information), uplink control information (UCI: Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, It may be implemented by broadcast information (master information block (MIB: Master Information Block), system information block (SIB: System Information Block), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be called L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like.
  • the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
  • the MAC signaling may be notified using, for example, a MAC control element (MAC @ CE (Control @ Element)).
  • the notification of the predetermined information is not limited to an explicit notification, and is implicit (for example, by not performing the notification of the predetermined information or by another information). May be performed).
  • the determination may be made by a value represented by 1 bit (0 or 1) or by a boolean value represented by true or false. , May be performed by comparing numerical values (for example, comparison with a predetermined value).
  • Software whether called software, firmware, middleware, microcode, hardware description language, or any other name, instructions, instruction sets, codes, code segments, program codes, programs, subprograms, software modules , Applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
  • software, instructions, information, and the like may be transmitted and received via a transmission medium.
  • a transmission medium For example, if the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.), the website, When transmitted from a server or other remote source, at least one of these wired and / or wireless technologies is included within the definition of a transmission medium.
  • system and “network” may be used interchangeably.
  • precoding In the present disclosure, “precoding”, “precoder”, “weight (precoding weight)”, “pseudo collocation (QCL: Quasi-Co-Location)”, “transmission power”, “phase rotation”, “antenna port” , “Antenna port group”, “layer”, “number of layers”, “rank”, “beam”, “beam width”, “beam angle”, “antenna”, “antenna element”, “panel”, etc. The terms may be used interchangeably.
  • base station (BS: Base @ Station)”, “wireless base station”, “fixed station (fixed @ station)”, “NodeB”, “eNodeB (eNB)”, “gNodeB (gNB)”, “ “Access point (access @ point)”, “transmission point (TP: Transmission @ Point)”, “reception point (RP: Reception @ Point)”, “transmission / reception point (TRP: Transmission / Reception @ Point)", “panel”, “cell” Terms such as, “sector”, “cell group”, “carrier”, “component carrier” may be used interchangeably.
  • a base station may be referred to by a term such as a macro cell, a small cell, a femto cell, a pico cell, and the like.
  • a base station can accommodate one or more (eg, three) cells. If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (RRH: Communication services can also be provided by Remote Radio ⁇ Head)).
  • a base station subsystem eg, a small indoor base station (RRH: Communication services can also be provided by Remote Radio ⁇ Head).
  • RRH Small indoor base station
  • the term “cell” or “sector” refers to part or all of the coverage area of at least one of a base station and a base station subsystem that provides communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • a mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal. , A handset, a user agent, a mobile client, a client or some other suitable terminology.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • at least one of the base station and the mobile station may be a device mounted on the mobile unit, the mobile unit itself, or the like.
  • the moving object may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving object (for example, a drone, a self-driving car, etc.), or a robot (maned or unmanned). ).
  • at least one of the base station and the mobile station includes a device that does not necessarily move during a communication operation.
  • at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be replaced with a user terminal.
  • communication between a base station and a user terminal is replaced with communication between a plurality of user terminals (for example, it may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • each aspect / embodiment of the present disclosure may be applied.
  • the configuration may be such that the user terminal 20 has the function of the base station 10 described above.
  • words such as “up” and “down” may be read as words corresponding to communication between terminals (for example, “side”).
  • an uplink channel, a downlink channel, and the like may be replaced with a side channel.
  • the user terminal in the present disclosure may be replaced with a base station.
  • the base station 10 may have the function of the user terminal 20 described above.
  • an operation performed by the base station may be performed by an upper node (upper node) in some cases.
  • various operations performed for communication with a terminal include a base station, one or more network nodes other than the base station (eg, Obviously, it can be performed by MME (Mobility @ Management @ Entity), S-GW (Serving-Gateway), etc., but not limited thereto, or a combination thereof.
  • Each aspect / embodiment described in the present disclosure may be used alone, may be used in combination, or may be switched and used in execution.
  • the order of the processing procedure, sequence, flowchart, and the like of each aspect / embodiment described in the present disclosure may be changed as long as there is no inconsistency.
  • elements of the various steps are presented in an exemplary order, and are not limited to the specific order presented.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • LTE-B Long Term Evolution-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication
  • system 5G (5th generation mobile communication system)
  • FRA Fluture Radio Access
  • New-RAT Radio Access Technology
  • NR New Radio
  • NX New radio access
  • FX Fluture generation radio access
  • GSM Registered trademark
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • UWB Ultra-WideBand
  • Bluetooth registered trademark
  • a system using other appropriate wireless communication methods a next-generation system extended based on these systems, and the like.
  • a plurality of systems may be combined (for example, a combination of LTE or LTE-A and 5G) and applied.
  • any reference to elements using designations such as "first,” “second,” etc., as used in this disclosure, does not generally limit the quantity or order of those elements. These designations may be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not mean that only two elements can be employed or that the first element must precede the second element in some way.
  • determining means judging, calculating, computing, processing, deriving, investigating, searching (up, search, inquiry) ( For example, a search in a table, database, or another data structure), ascertaining, etc., may be regarded as "deciding".
  • determination includes receiving (eg, receiving information), transmitting (eg, transmitting information), input (input), output (output), and access ( accessing) (e.g., accessing data in a memory) or the like.
  • judgment (decision) is regarded as “judgment (decision)” of resolving, selecting, selecting, establishing, comparing, and the like. Is also good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of any operation.
  • “judgment (decision)” may be read as “assuming”, “expecting”, “considering”, or the like.
  • the “maximum transmission power” described in the present disclosure may mean the maximum value of the transmission power, may mean the nominal maximum transmission power (the nominal UE maximum transmit power), or may refer to the rated maximum transmission power (the rated UE maximum transmit power).
  • connection refers to any direct or indirect connection or coupling between two or more elements. And may include the presence of one or more intermediate elements between two elements “connected” or “coupled” to each other.
  • the coupling or connection between the elements may be physical, logical, or a combination thereof. For example, “connection” may be read as “access”.
  • the radio frequency domain, microwave It can be considered to be “connected” or “coupled” to each other using electromagnetic energy having a wavelength in the region, the light (both visible and invisible) regions, and the like.
  • the term “A and B are different” may mean that “A and B are different from each other”.
  • the term may mean that “A and B are different from C”.
  • Terms such as “separate” and “coupled” may be construed similarly to “different.”

Abstract

A user equipment pertaining to an embodiment of the present disclosure has: a transmission unit for transmitting multiple uplink shared channels respectively corresponding to multiple cells; and a control unit for reporting, during one of the transmissions of the multiple uplink shared channels, multiple power headrooms (PHs) based respectively on the actual transmissions of the multiple uplink shared channels. According to the embodiment of the present disclosure, appropriate PHs can be reported also in future radio communication systems.

Description

ユーザ端末及び基地局User terminal and base station
 本開示は、次世代移動通信システムにおけるユーザ端末及び基地局に関する。 The present disclosure relates to a user terminal and a base station in a next-generation mobile communication system.
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTE(LTE Rel.8、9)の更なる大容量、高度化などを目的として、LTE-A(LTEアドバンスト、LTE Rel.10、11、12、13)が仕様化された。 In a UMTS (Universal Mobile Telecommunications System) network, long term evolution (LTE: Long Term Evolution) has been specified for the purpose of higher data rates and lower delays (Non-Patent Document 1). Also, LTE-A (LTE Advanced, LTE @ Rel. 10, 11, 12, 13) has been specified for the purpose of further increasing the capacity and sophistication of LTE (LTE @ Rel. 8, 9).
 LTEの後継システム(例えば、FRA(Future Radio Access)、5G(5th generation mobile communication system)、5G+(plus)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、LTE Rel.14又は15以降などともいう)も検討されている。 Succession system of LTE (for example, FRA (Future Radio Access), 5G (5th generation mobile communication system), 5G + (plus), NR (New Radio), NX (New radio access), FX (Future generation radio access), LTE Rel. 14 or 15).
 既存のLTE(例えば、LTE Rel.8-13)において、ユーザ端末(UE:User Equipment)は、ネットワーク側の装置(例えば、基地局)に対して、サービングセルごとの上り電力余裕(PH:Power Headroom)に関する情報を含むパワーヘッドルームレポート(PHR:Power Headroom Report)をフィードバックする。 In existing LTE (eg, LTE@Rel.8-13), a user terminal (UE: User @ Equipment) provides an uplink power margin (PH: Power @ Headroom) for each serving cell with respect to a network-side device (eg, a base station). ) Is fed back as a power headroom report (PHR: Power @ Headroom @ Report).
 基地局は、PHRに基づいてUEの上り送信電力を判断して、適切な上り送信電力となるように当該UEに対して送信電力制御(TPC:Transmit Power Control)コマンドの通知などを行う。 The base station determines the uplink transmission power of the UE based on the PHR, and notifies the UE of a transmission power control (TPC: Transmit Power Control) command so that the uplink transmission power is appropriate.
 将来の無線通信システム(例えば、NR)においても、LTEと同じくPHRがサポートされる。 PH In future wireless communication systems (for example, NR), PHR is supported as in LTE.
 しかしながら、複数のセルのそれぞれにおいてPUSCH送信が行われる場合、実際のPUSCH送信に基づくPHが報告されるとは限らない。複数のセルに対して適切なPHが得られなければ、適切な送信電力制御ができなくなり、通信スループット、通信品質などが劣化するおそれがある。 However, when the PUSCH transmission is performed in each of the plurality of cells, the PH based on the actual PUSCH transmission is not always reported. If an appropriate PH cannot be obtained for a plurality of cells, appropriate transmission power control cannot be performed, and communication throughput and communication quality may be degraded.
 そこで、本開示は、将来の無線通信システムにおいても、適切なPHを報告できるユーザ端末及び基地局を提供することを目的の1つとする。 Therefore, an object of the present disclosure is to provide a user terminal and a base station that can report an appropriate PH even in a future wireless communication system.
 本開示の一態様に係るユーザ端末は、複数のセルにそれぞれ対応する複数の上り共有チャネル送信を行う送信部と、実際の前記複数の上り共有チャネル送信にそれぞれ基づく複数のパワーヘッドルーム(PH)を、前記複数の上り共有チャネル送信の1つにおいて報告する制御部と、を有することを特徴とする。 A user terminal according to one aspect of the present disclosure includes a transmitting unit that performs a plurality of uplink shared channel transmissions respectively corresponding to a plurality of cells, and a plurality of power headrooms (PH) based on the actual plurality of uplink shared channel transmissions, respectively. And a control unit for reporting the above in one of the plurality of uplink shared channel transmissions.
 本開示の一態様によれば、将来の無線通信システムにおいても、適切なPHを報告できる。 According to an aspect of the present disclosure, an appropriate PH can be reported even in a future wireless communication system.
図1A及び図1Bは、複数のCCに対するPHRの一例を示す図である。1A and 1B are diagrams illustrating an example of PHR for a plurality of CCs. 図2は、態様1-1に係るPHRの一例を示す図である。FIG. 2 is a diagram illustrating an example of a PHR according to aspect 1-1. 図3は、態様1-2に係るPHRの一例を示す図である。FIG. 3 is a diagram illustrating an example of the PHR according to aspect 1-2. 図4は、設定グラントPUSCH送信の一例を示す図である。FIG. 4 is a diagram illustrating an example of setting grant PUSCH transmission. 図5は、態様2-1に係るPHRの一例を示す図である。FIG. 5 is a diagram illustrating an example of a PHR according to aspect 2-1. 図6A及び図6Bは、態様2-2に係るPHRの一例を示す図である。6A and 6B are diagrams illustrating an example of the PHR according to aspect 2-2. 図7は、態様2-3に係るPHRの一例を示す図である。FIG. 7 is a diagram illustrating an example of the PHR according to aspect 2-3. 図8は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。FIG. 8 is a diagram illustrating an example of a schematic configuration of the wireless communication system according to the embodiment. 図9は、一実施形態に係る基地局の全体構成の一例を示す図である。FIG. 9 is a diagram illustrating an example of the entire configuration of the base station according to the embodiment. 図10は、一実施形態に係る基地局の機能構成の一例を示す図である。FIG. 10 is a diagram illustrating an example of a functional configuration of the base station according to the embodiment. 図11は、一実施形態に係るユーザ端末の全体構成の一例を示す図である。FIG. 11 is a diagram illustrating an example of the overall configuration of the user terminal according to the embodiment. 図12は、一実施形態に係るユーザ端末の機能構成の一例を示す図である。FIG. 12 is a diagram illustrating an example of a functional configuration of the user terminal according to the embodiment. 図13は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。FIG. 13 is a diagram illustrating an example of a hardware configuration of the base station and the user terminal according to the embodiment.
 LTEにおいては、UEは、次のようにPH計算を行う。 In LTE, the UE performs PH calculation as follows.
 サービングセルcに対し、上位レイヤパラメータであるUL TTI長(ul-TTI-Length)がサブスロットに設定された場合、及びUEが、サービングセルc以外のサービングセルに対して、サービングセルcのサブスロットi上のPHを報告する場合、UEは、次のようにPHを計算する。 When UL TTI-length (ul-TTI-Length), which is an upper layer parameter, is set in a sub-slot for serving cell c, and when a UE is in a sub-slot i of serving cell c for a serving cell other than serving cell c. When reporting the PH, the UE calculates the PH as follows.
・サービングセルに対して上位レイヤパラメータul-TTI-Lengthがサブスロットに設定された場合、UEはサブスロットiに対するPHを計算する。
・サービングセルに対して上位レイヤパラメータul-TTI-Lengthがスロットに設定された場合、UEはサブスロットiを含むスロットに対するPHを計算する。
・それ以外の場合、UEはサブスロットiを含むスロットに対するPHを計算する。
-If the upper layer parameter ul-TTI-Length is set in the sub-slot for the serving cell, the UE calculates the PH for sub-slot i.
-When the upper layer parameter ul-TTI-Length is set to the slot for the serving cell, the UE calculates the PH for the slot including subslot i.
-Otherwise, the UE calculates the PH for the slot including subslot i.
 サービングセルcに対して上位レイヤパラメータul-TTI-Lengthがスロットに設定された場合、及びUEが、サービングセルc以外のサービングセルに対して、スロットPUSCHを用いるサービングセルcのスロットi上のPHを報告する場合、UEは、次のようにPHを計算する。 When the upper layer parameter ul-TTI-Length is set to the slot for the serving cell c, and when the UE reports the PH on the slot i of the serving cell c using the slot PUSCH to a serving cell other than the serving cell c. , UE calculates the PH as follows.
・サービングセルに対して上位レイヤパラメータul-TTI-Lengthがスロットに設定された場合、UEはスロットiに対するPHを計算する。
・それ以外の場合、UEはスロットiを含むサブフレームに対するPHを計算する。
-If the upper layer parameter ul-TTI-Length is set to the slot for the serving cell, the UE calculates the PH for slot i.
-Otherwise, the UE calculates the PH for the subframe containing slot i.
 サービングセルcに対して上位レイヤパラメータul-TTI-Lengthがスロットに設定された場合、及びUEが、サービングセルc以外のサービングセルに対して、スロットPUSCHを用いるサービングセルcのサブフレームi上のPHを報告する場合、UEはサブフレームiに対するPHを計算する。 When the upper layer parameter ul-TTI-Length is set to the slot for the serving cell c, and the UE reports the PH on the subframe i of the serving cell c using the slot PUSCH to the serving cells other than the serving cell c. If so, the UE calculates the PH for subframe i.
 一方、NRにおいては、次のようにPH計算及び報告を行うことが検討されている。 On the other hand, in NR, it is under consideration to perform PH calculation and reporting as follows.
 UEのPHRのタイプとして、サービングセルcのキャリアfのUL BWP b上のPUSCH送信機会(occasion)iに対して有効であるタイプ1UE PHと、サービングセルcのキャリアfのUL BWP b上のSRS送信機会iに対して有効であるタイプ3UE PHと、が検討されている。更に、UEのPHRのタイプが、例えば、サービングセルcのキャリアfのUL BWP b上のPUCCH送信機会iに対して有効であるタイプ2UE PHを含んでもよい。 As a type of PHR of the UE, a type 1 UE @ PH valid for a PUSCH transmission opportunity (occasion) i on UL ¥ BWP ¥ b of the carrier f of the serving cell c, and an SRS transmission opportunity on UL ¥ BWP ¥ b of the carrier f of the serving cell c Type 3UE @ PH that is valid for i is being considered. Further, the type of the PHR of the UE may include, for example, a type 2 UE @ PH that is valid for a PUCCH transmission opportunity i on UL ¥ BWP ¥ b of the carrier f of the serving cell c.
 UEは、PHRがトリガされてから、トランスポートブロック(TB)の初送(DCIフォーマット0_0又はDCIフォーマット0_1におけるNDI(New Data Indicator)フィールドによって決定される)をスケジュールする最初のDCIフォーマット0_0又はDCIフォーマット0_1を検出したPDCCHモニタリング機会までに受信したDCIを考慮することによって、アクティベートされたサービングセルに対するPHRが実際の送信(actual transmission)又は参照フォーマット(reference format)に基づくかを決定してもよい。 The UE may schedule the first transmission of a transport block (TB) after the PHR is triggered (as determined by the NDI (New \ Data \ Indicator) field in DCI format 0_0 or DCI format 0_1), the first DCI format 0_0 or DCI. By considering the DCI received up to the PDCCH monitoring opportunity that detected format 0_1, it may be determined whether the PHR for the activated serving cell is based on actual transmission or reference format.
 もしUEがPUSCH送信用の複数のセルを設定され、サービングセルcのキャリアfのアクティブUL BWP b上のサブキャリア間隔設定μが、サービングセルcのキャリアfのアクティブUL BWP b上のサブキャリア間隔設定μよりも小さい場合、及び、もしUEがUL BWP b上の複数のスロットと完全に重複するUL BWP b上の1つのスロット内のPUSCH送信におけるタイプ1PHRを提供する場合、UEは、UL BWP b上の複数のスロットの最初のスロットに対するタイプ1PHRを提供することが検討されている。 If the UE is configured with multiple cells for PUSCH transmission, the subcarrier spacing setting μ 1 on the active UL BWP b 1 of carrier f 1 of serving cell c 1 is set to the active UL BWP b 2 of carrier f 2 of serving cell c 2 Provide Type 1 PHR for PUSCH transmission in a slot on UL BWP b 1 that is less than the above subcarrier spacing setting μ 2 and if the UE completely overlaps multiple slots on UL BWP b 2 If it, UE has been studied to provide a type 1PHR for the first slot of the plurality of slots on the UL BWP b 2.
 もしUEがPUSCH送信用の複数のセルを設定され、次の条件1、2が満たされる場合、UEは、サービングセルcのキャリアfのアクティブUL BWP b上のTBの初送を含む第1PUSCH送信におけるタイプ1PHRの計算に対し、第1PUSCH送信と重複するサービングセルcのキャリアfのアクティブUL BWP b上の第2PUSCH送信を考慮しないことが検討されている。ここで、前記「考慮しない」とは、当該第2PUSCH送信がないものとして仮想PHを計算して報告するものとしてもよいし、当該第2PUSCH送信を行うサービングセルcのキャリアfのPHは、PHRに含めないものとしてもよい。 If the UE is configured with multiple cells for PUSCH transmission and the following conditions 1 and 2 are satisfied, the UE includes the first transmission of a TB on active UL BWP b 1 of carrier f 1 of serving cell c 1 . to calculate types 1PHR in 1PUSCH transmission, it is considered to not consider the 2PUSCH transmission on the active UL BWP b 2 of the carrier f 2 of the serving cell c 2 overlapping with transmission first 1PUSCH. Here, the “not considered” may mean that the virtual PH is calculated and reported assuming that there is no second PUSCH transmission, and the PH of the carrier f 2 of the serving cell c 2 performing the second PUSCH transmission is: It may not be included in the PHR.
(条件1)
 第2PUSCH送信が、対応する第2PDCCHモニタリング機会内で受信されたPDCCH内のDCIフォーマット0_0又はDCIフォーマット0_1でスケジューリングされたPUSCHであって、かつ
(条件2)
 第2PDCCHモニタリング機会が、第1PUSCH送信をスケジュールする最初のDCIフォーマット0_0又はDCIフォーマット0_1をUEが検出する第1PDCCHモニタリング機会の後である。
(Condition 1)
The second PUSCH transmission is a PUSCH scheduled in DCI format 0_0 or DCI format 0_1 in the PDCCH received in the corresponding second PDCCH monitoring opportunity, and (condition 2)
The second PDCCH monitoring opportunity is after the first PDCCH monitoring opportunity where the UE detects the first DCI format 0_0 or DCI format 0_1 to schedule the first PUSCH transmission.
 この検討に基づき、次の具体例が考えられる。 に Based on this study, the following specific examples can be considered.
 図1A及び図1Bに示すように、UEは、PHRをトリガされた後、CC#2のPUSCH送信のスケジューリングのためのPDCCH、CC#1のPUSCH送信のスケジューリングのためのPDCCH、CC#0のPUSCH送信のスケジューリングのためのPDCCH、の順に検出したとする。 As shown in FIG. 1A and FIG. 1B, after the PHR is triggered, the UE receives the PDCCH for scheduling the PUSCH transmission of CC # 2, the PDCCH for the scheduling of the PUSCH transmission of CC # 1, and CC # 0. It is assumed that PDCCHs for PUSCH transmission scheduling are detected in this order.
 これら3つのPDCCHによって、図1Aに示すように、CC#0のPUSCH送信、CC#1のPUSCH送信、CC#2のPUSCH送信、の順にスケジュールされた場合、UEは、PHRをトリガされてからPUSCHのスケジューリングのための最初のDCIに基づくCC#2のPUSCH送信において、データ及びPHRを送信することが考えられる。この場合、UEは、PHRの計算に対し、CC#0とCC#1のPUSCH送信を考慮しない。例えばUEは、CC#0の仮想PH(Virtual PH:VPH、参照フォーマットに基づくPH)と、CC#1の仮想PHと、CC#2の実PH(Real PH:RPH、実際の送信に基づくPH)と、を計算することが考えられる。 As shown in FIG. 1A, when these three PDCCHs are scheduled in the order of PUSCH transmission of CC # 0, PUSCH transmission of CC # 1, and PUSCH transmission of CC # 2, the UE starts after the PHR is triggered. It is conceivable to transmit data and PHR in PUSCH transmission of CC # 2 based on the first DCI for PUSCH scheduling. In this case, the UE does not consider the PUSCH transmission of CC # 0 and CC # 1 for the calculation of PHR. For example, the UE is a CC # 0 virtual PH (Virtual @ PH: VPH, PH based on the reference format), a CC # 1 virtual PH, and a CC # 2 real PH (Real @ PH: RPH, PH based on actual transmission). ) And can be calculated.
 また、これら3つのPDCCHによって、図1Bに示すように、同じ時間リソースに、CC#0のPUSCH送信、CC#1のPUSCH送信、CC#2のPUSCH送信、がスケジュールされた場合、UEは、PHRをトリガされてからPUSCHのスケジューリングのための最初のDCIに基づくCC#2のPUSCH送信において、データ及びPHRを送信することが考えられる。この場合、UEは、CC#2のPUSCH送信におけるPHRの計算に対し、CC#0とCC#1のPUSCH送信を考慮しない。例えばUEは、CC#0の仮想PHと、CC#1の仮想PHと、CC#2の実PHと、を送信することが考えられる。 Further, when PUSCH transmission of CC # 0, PUSCH transmission of CC # 1, and PUSCH transmission of CC # 2 are scheduled in the same time resource by these three PDCCHs as shown in FIG. 1B, the UE: It is conceivable to transmit data and PHR in the PUSCH transmission of CC # 2 based on the first DCI for PUSCH scheduling after the PHR is triggered. In this case, the UE does not consider the PUSCH transmission of CC # 0 and CC # 1 for the calculation of the PHR in the PUSCH transmission of CC # 2. For example, the UE may transmit a virtual PH of CC # 0, a virtual PH of CC # 1, and a real PH of CC # 2.
 このように、CCによっては実PHが計算及び報告されない場合がある。特に、複数のCCにおけるPUSCH送信が時間的に重複する場合、これらのCCの全てに対して実PHが報告されることが好ましい。 As described above, the actual PH may not be calculated and reported depending on the CC. In particular, when PUSCH transmissions on a plurality of CCs overlap in time, it is preferable that the actual PH be reported for all of these CCs.
 そこで、本発明者らは、複数のセル(サービングセル、CC)のPUSCH送信におけるPHRを着想した。 Therefore, the present inventors conceived PHR in PUSCH transmission of a plurality of cells (serving cells, CCs).
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。 Hereinafter, embodiments according to the present disclosure will be described in detail with reference to the drawings. The wireless communication method according to each embodiment may be applied alone or in combination.
 上位レイヤシグナリングは、例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング(例えば、MAC CE、MAC PDU(Protocol Data Unit))、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block))などのいずれか、又はこれらの組み合わせであってもよい。 The upper layer signaling includes, for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling (for example, MAC CE, MAC PDU (Protocol Data Data Unit)), broadcast information (master information block (MIB: Master Information Block)). Or a system information block (SIB: System @ Information @ Block), or a combination thereof.
(態様1)
 UEは、動的グラント(dynamic grant)PUSCHにおいてPHRを送信してもよい。
(Aspect 1)
The UE may transmit the PHR on a dynamic grant PUSCH.
 もし十分な処理時間(processing time)が利用可能である場合、UEは、正確なPHを計算し、PUSCHに含めてもよい。UEがPHの計算に必要とする時間をTとする。 UE If sufficient processing time is available, the UE may calculate the correct PH and include it in the PUSCH. Let T be the time required for the UE to calculate the PH.
 もしULグラントとPUSCH(PUSCH送信開始)の間の時間間隔(time-gap)がT以上である場合、UEは、実際の送信(PUSCH送信)に基づく正確なPH(実PH)を計算してもよい。そうでない場合、例えば、UEは、前述の条件1、2に基づきPUSCH送信を考慮しないと判定した場合、参照フォーマットに基づくPHを計算してもよい。 If the time interval (time-gap) between the UL grant and the PUSCH (PUSCH transmission start) is T or more, the UE calculates an accurate PH (actual PH) based on the actual transmission (PUSCH transmission). Is also good. Otherwise, for example, if the UE determines not to consider the PUSCH transmission based on the above conditions 1 and 2, the UE may calculate the PH based on the reference format.
 例えば、PUSCH送信のスケジューリングのためのDCI内の時間ドメインリソース割り当てフィールド(開始及び長さインジケータ値、start and length indicator value:SLIV)によって指示されるスロットオフセットKがT以上の時間を示す場合、UEは、当該PUSCH送信に対する実PHを計算してもよい。 For example, the time domain resource allocation field (start and length indicator value, start and length indicator value: SLIV ) in DCI for scheduling PUSCH transmission when the slot offset K 2 indicated by indicating the above time T, The UE may calculate the actual PH for the PUSCH transmission.
 UEは、Tに関する能力(capability)情報を基地局へ送信してもよい。これによって、基地局は、能力情報に基づいて、実PHが得られるようにPUSCHをスケジュールしてもよい。Tは、PDSCH/PUSCHの処理時間に関する端末能力(例えばUE processing capability、PUSCH timing capabilityとも呼ばれる)と関連付けられて定められる値であってもよい。 The UE may send capability information on T to the base station. Thereby, the base station may schedule the PUSCH based on the capability information so that the actual PH is obtained. T may be a value defined in association with a terminal capability (for example, also referred to as UE @ processing @ capability, PUSCH @ timing @ capability) regarding the processing time of PDSCH / PUSCH.
<態様1-1>
 UEは、PHRを送信するPUSCHと、そのPUSCHと時間的に重複する異なるセルで送信されるPUSCHについて、これらのPUSCHをスケジューリングするPDCCH(またはDCI)の中で最後に送信されるDCIと、これらのPUSCHとの間に、所定の処理時間が確保される場合、PHRを送信するPUSCHのタイミングで計算される実PHを報告してもよい。前記所定の処理時間は前記Tであってもよいし、異なる値であってもよい。
<Aspect 1-1>
For the PUSCH transmitting the PHR, the PUSCH transmitted in a different cell that temporally overlaps the PUSCH, and the last DCI transmitted in the PDCCH (or DCI) that schedules these PUSCHs, If a predetermined processing time is secured between the PUSCH and the PUSCH, the actual PH calculated at the timing of the PUSCH transmitting the PHR may be reported. The predetermined processing time may be the T or a different value.
 UEは、複数のCCにおけるPUSCH送信が時間的に重複しているかどうかに関わらず、この動作を行ってもよい。 The UE may perform this operation regardless of whether PUSCH transmissions on multiple CCs overlap in time.
 例えば、図2に示すように、UEは、PHRをトリガされた後、CC#2のPUSCH送信のスケジューリングのためのPDCCH、CC#1のPUSCH送信のスケジューリングのためのPDCCH、CC#0のPUSCH送信のスケジューリングのためのPDCCH、の順に検出したとする。また、同じ時間リソースに、CC#0のPUSCH送信、CC#1のPUSCH送信、CC#2のPUSCH送信、がスケジュールされたとする。 For example, as shown in FIG. 2, after the PHR is triggered, the UE may use the PDCCH for scheduling the PUSCH transmission of CC # 2, the PDCCH for the scheduling of the PUSCH transmission of CC # 1, and the PUSCH of CC # 0. It is assumed that PDCCHs for transmission scheduling are detected in this order. Also, it is assumed that PUSCH transmission of CC # 0, PUSCH transmission of CC # 1, and PUSCH transmission of CC # 2 are scheduled in the same time resource.
 この場合、UEは、PHRをトリガされてから最初のULグラントにスケジュールされたCC#2のPUSCH送信において、CC#0、CC#1、及びCC#2のPHRを送信することを決定する。 In this case, the UE determines to transmit the CC # 0, CC # 1, and CC # 2 PHR in the PUSCH transmission of CC # 2 scheduled for the first UL grant after the PHR is triggered.
 また、各PDCCH受信からPHR送信(CC#2のPUSCH送信)までの時間間隔(CC#0のt、CC#1のt、CC#2のt)がT以上であるとする。したがって、UEは、CC#0の実PHと、CC#1の実PHと、CC#2の実PHと、を計算し、計算されたPHを、CC#2のPUSCH送信において送信する。 Moreover, the PHR transmitted from the PDCCH reception (CC # 2 of PUSCH transmission) until the time interval (CC # t 0 of 0, CC # 1 of t 1, CC # 2 of t 2) is not less than T. Therefore, the UE calculates the real PH of CC # 0, the real PH of CC # 1, and the real PH of CC # 2, and transmits the calculated PH in the PUSCH transmission of CC # 2.
 なお、本実施の形態においてPHRを送信するPUSCHは、PUSCHの中でもっともCCインデックス(又はセルインデックス)の低いPUSCHであってもよいし、所定CC(例えばPCell)のPUSCHであってもよいし、端末が選択する任意のCCのPUSCHであってもよい。 In this embodiment, the PUSCH transmitting the PHR may be the PUSCH having the lowest CC index (or cell index) among the PUSCHs, or may be the PUSCH of a predetermined CC (for example, PCell). , The PUSCH of any CC selected by the terminal.
 この態様1-1によれば、UEは、PUSCHのスケジューリングに基づいて、実PHを計算するか否かを適切に決定できる。また、UEは、PHRをトリガされた後に複数のCCにおいてPUSCHをスケジュールされた場合であっても、PHRを送信するCCを適切に決定できる。また、UEは、複数のCCに対するPHRをまとめて送信することによって、実際の状況に対応するPHRを送信できる。 According to this example 1-1, the UE can appropriately determine whether to calculate the actual PH based on the PUSCH scheduling. Further, even when the PUSCH is scheduled in a plurality of CCs after the PHR is triggered, the UE can appropriately determine the CC that transmits the PHR. Also, the UE can transmit a PHR corresponding to an actual situation by transmitting the PHRs for a plurality of CCs collectively.
<態様1-2>
 UEは、PHRを送信するPUSCHと、そのPUSCHを送信するスロットまたは当該スロットと重複するスロットで、同じ又は異なるセルで送信されるPUSCHについて、これらのPUSCHをスケジューリングするPDCCH(またはDCI)の中で最後に送信されるDCIと、これらのPUSCHの中で最も早いPUSCHとの間に、所定の処理時間が確保される場合、PHRを送信するPUSCHのタイミングで計算される実PHを報告してもよい。前記所定の処理時間は前記Tであってもよいし、異なる値であってもよい。
<Aspect 1-2>
The UE may include a PUSCH transmitting the PHR and a PDCCH (or DCI) that schedules these PUSCHs for the PUSCH transmitted in the same or a different cell in the slot transmitting the PUSCH or a slot overlapping the slot. If a predetermined processing time is secured between the last transmitted DCI and the earliest PUSCH among these PUSCHs, the actual PH calculated at the timing of the PUSCH transmitting the PHR may be reported. Good. The predetermined processing time may be the T or a different value.
 例えば、図3に示すように、UEは、PHRをトリガされた後、CC#2のPUSCH送信のスケジューリングのためのPDCCH、CC#1のPUSCH送信のスケジューリングのためのPDCCH、CC#0のPUSCH送信のスケジューリングのためのPDCCH、の順に検出したとする。CC#0のPUSCH送信、CC#1のPUSCH送信、CC#2のPUSCH送信、の順にスケジュールされたとする。また、CC#0のPUSCH送信、CC#1のPUSCH送信、CC#2のPUSCH送信、の順にスケジュールされたとする。 For example, as illustrated in FIG. 3, after the PHR is triggered, the UE may use the PDCCH for scheduling the PUSCH transmission of CC # 2, the PDCCH for the scheduling of the PUSCH transmission of CC # 1, and the PUSCH of CC # 0. It is assumed that PDCCHs for transmission scheduling are detected in this order. It is assumed that the PUSCH transmission of CC # 0, the PUSCH transmission of CC # 1, and the PUSCH transmission of CC # 2 are scheduled in this order. Further, it is assumed that the PUSCH transmission of CC # 0, the PUSCH transmission of CC # 1, and the PUSCH transmission of CC # 2 are scheduled in this order.
 この場合、UEは、最も早いCC#0のPUSCH送信において、CC#0、CC#1、及びCC#2のPHRを送信することを決定する。 In this case, the UE determines to transmit the PHRs of CC # 0, CC # 1, and CC # 2 in the earliest PUSCH transmission of CC # 0.
 また、各PDCCH受信からPHR送信(CC#0のPUSCH送信)までの時間間隔(CC#0のt、CC#1のt、CC#2のt)がT以上であるとする。したがって、UEは、CC#0の実PHと、CC#1の実PHと、CC#2の実PHと、を計算し、計算されたPHを、CC#0のPUSCH送信において送信する。 Moreover, the PHR transmitted from the PDCCH reception time interval between (CC # PUSCH transmission of 0) (t 0 of CC # 0, CC # 1 of t 1, CC # 2 of t 2) is not less than T. Therefore, the UE calculates the real PH of CC # 0, the real PH of CC # 1, and the real PH of CC # 2, and transmits the calculated PH in the PUSCH transmission of CC # 0.
 なお、本実施の形態においてPHRを送信するPUSCHは、PUSCHの中でもっともCCインデックス(又はセルインデックス)の低いPUSCHであってもよいし、所定CC(例えばPCell)のPUSCHであってもよいし、端末が選択する任意のCCのPUSCHであってもよい。また、所定CCの当該スロットで複数のPUSCH送信がある場合、UEは、最も早いPUSCH送信においてPHRを送信してもよいし、最も遅いPUSCH送信においてPHRを送信してもよい。 In this embodiment, the PUSCH transmitting the PHR may be the PUSCH having the lowest CC index (or cell index) among the PUSCHs, or may be the PUSCH of a predetermined CC (for example, PCell). , The PUSCH of any CC selected by the terminal. Also, when there are a plurality of PUSCH transmissions in the corresponding slot of a predetermined CC, the UE may transmit the PHR in the earliest PUSCH transmission or may transmit the PHR in the latest PUSCH transmission.
 この態様1-2によれば、UEは、PUSCHのスケジューリングに基づいて、実PHを計算するか否かを適切に決定できる。また、UEは、PHRをトリガされた後に複数のCCにおいてPUSCHをスケジュールされた場合であっても、PHRを送信するCCを適切に決定できる。また、UEは、最も早いPUSCH送信において、複数のCCに対するPHRをまとめて送信することによって、複数のCCに対するPHRをできるだけ早いタイミングで送信できる。 According to aspect 1-2, the UE can appropriately determine whether to calculate the actual PH based on the PUSCH scheduling. Further, even when the PUSCH is scheduled in a plurality of CCs after the PHR is triggered, the UE can appropriately determine the CC that transmits the PHR. In addition, in the earliest PUSCH transmission, the UE can transmit the PHRs for a plurality of CCs at the earliest possible timing by transmitting the PHRs for the plurality of CCs collectively.
(態様2)
 UEは、設定グラント(configured grant)PUSCH送信を設定されてもよい。
(Aspect 2)
The UE may be configured for configured grant PUSCH transmission.
 図4に示すように、UEは、CC#2に対して設定グラントPUSCH送信を設定され、周期的にPUSCH送信を行うとする。更に、UEは、PHRをトリガされた後、CC#1のPUSCH送信のスケジューリングのためのPDCCH、CC#0のPUSCH送信のスケジューリングのためのPDCCH、の順に検出したとする。その後、同じ時間リソースにおいて、CC#2の設定グラントPUSCH送信、CC#1の動的グラント(dynamic grant)PUSCH送信、が行われ、その後、CC#0の動的グラントPUSCH送信が行われるとする。 と す る As shown in FIG. 4, it is assumed that the UE is configured to transmit the set grant PUSCH for CC # 2 and periodically performs the PUSCH transmission. Furthermore, it is assumed that after the PHR is triggered, the UE detects a PDCCH for scheduling the PUSCH transmission of CC # 1 and a PDCCH for scheduling the PUSCH transmission of CC # 0 in this order. Thereafter, in the same time resource, the set grant PUSCH transmission of CC # 2 and the dynamic grant (dynamic @ grant) PUSCH transmission of CC # 1 are performed, and then the dynamic grant PUSCH transmission of CC # 0 is performed. .
 このようなケースにおいて、UEがどのPUSCH送信においてPHRを送信するか、実PH及び仮想PHのいずれを計算するかが明確になっていない。 In such a case, it is not clear in which PUSCH transmission the UE will transmit the PHR and whether to calculate the real PH or the virtual PH.
 そこで、本発明者らは、設定グラントPUSCH送信とPHRとの関係について着想した。 Therefore, the present inventors conceived the relationship between the set grant PUSCH transmission and the PHR.
<態様2-1>
 UEは、設定グラントPUSCHにおいてPHを報告しなくてもよい。たとえ設定グラントPUSCHが、PHRをトリガされた後の最初のPUSCH送信であるとしても、UEは、設定グラントPUSCHにおいてPHを報告しなくてもよい。また、たとえ設定グラントPUSCHの送信タイミングにおいて、PHR禁止タイマ(phrProhibitTimer)が満了していたとしても、UEは、設定グラントPUSCHにおいてPHを報告しなくてもよい。
<Aspect 2-1>
The UE may not report the PH on the configuration grant PUSCH. The UE may not report PH on the configuration grant PUSCH, even if the configuration grant PUSCH is the first PUSCH transmission after triggering the PHR. Also, even if the PHR prohibition timer (phrProhibitTimer) has expired at the transmission timing of the set grant PUSCH, the UE does not have to report the PH in the set grant PUSCH.
 UEは、次の態様2-1-1又は態様2-1-2に従って、設定グラントPUSCH送信を設定されたCCのPHを計算してもよい。 The UE may calculate the PH of the CC configured for the configuration grant PUSCH transmission according to the following example 2-1-1 or example 2-1-2.
《態様2-1-1》
 UEは、PH計算において設定グラントPUSCHを考慮しなくてもよい。例えば、UEは、設定グラントPUSCHに対して常に仮想PHを計算してもよい。
<< Aspect 2-1-1 >>
The UE may not consider the configuration grant PUSCH in the PH calculation. For example, the UE may always calculate the virtual PH for the configuration grant PUSCH.
《態様2-1-2》
 PHRを運ぶPUSCHをスケジュールするPDCCHと、設定グラントPUSCH送信と、の間の時間間隔がT以上である場合、UEは、PH計算において設定グラントPUSCH送信を考慮してもよい(設定グラントPUSCH送信に対する実PHを計算してもよい)。
<< Aspect 2-1-2 >>
If the time interval between the PDCCH that schedules the PUSCH carrying the PHR and the configured grant PUSCH transmission is greater than or equal to T, the UE may consider the configured grant PUSCH transmission in the PH calculation (for the configured grant PUSCH transmission). The actual PH may be calculated).
 例えば、図5に示すように、UEは、CC#2における設定グラントPUSCH送信を設定され、周期的にPUSCH送信を行うとする。更に、UEは、PHRをトリガされた後、CC#1のPUSCH送信のスケジューリングのためのPDCCH、CC#0のPUSCH送信のスケジューリングのためのPDCCH、の順に検出したとする。その後、CC#2の設定グラントPUSCH送信、CC#1の動的グラントPUSCH送信、が時間的に重複して行われ、その後、CC#0の動的グラントPUSCH送信が行われるとする。 For example, as shown in FIG. 5, it is assumed that the UE is configured to transmit the configuration grant PUSCH in CC # 2 and periodically performs the PUSCH transmission. Furthermore, it is assumed that after the PHR is triggered, the UE detects a PDCCH for scheduling the PUSCH transmission of CC # 1 and a PDCCH for scheduling the PUSCH transmission of CC # 0 in this order. Then, it is assumed that the transmission of the set grant PUSCH of CC # 2 and the transmission of the dynamic grant PUSCH of CC # 1 are temporally overlapped, and then the transmission of the dynamic grant PUSCH of CC # 0.
 PHRを運ぶCC#1のPUSCH送信をスケジュールするPDCCH受信から、CC#1のPUSCH送信と時間的に重複するCC#2の設定グラントPUSCH送信までの時間間隔が、T以上であるとする。この場合、UEは、CC#1の実PHと、CC#2の実PHと、を計算する。また、UEは、前述の条件1、2に基づきPUSCH送信を考慮しないと判定した場合、CC#0の仮想PHを計算してもよい。よって、UEは、CC#0の仮想PHと、CC#1の実PHと、CC#2の実PHとを、CC#2のPUSCHにおいて報告する。 時間 It is assumed that a time interval from PDCCH reception for scheduling PUSCH transmission of CC # 1 carrying PHR to transmission of a set grant PUSCH of CC # 2 that temporally overlaps with CC # 1 PUSCH transmission is T or more. In this case, the UE calculates the actual PH of CC # 1 and the actual PH of CC # 2. Further, when the UE determines not to consider the PUSCH transmission based on the above conditions 1 and 2, the UE may calculate the virtual PH of CC # 0. Therefore, the UE reports the virtual PH of CC # 0, the real PH of CC # 1, and the real PH of CC # 2 on the PUSCH of CC # 2.
 この態様2-1によれば、UEは動的グラントPUSCH送信によってPHRを送信することから、処理が簡単になり、UE及び基地局の処理負荷を抑えることができる。 According to aspect 2-1, since the UE transmits the PHR by the dynamic grant PUSCH transmission, the processing is simplified, and the processing load on the UE and the base station can be reduced.
<態様2-2>
 UEは、設定グラントPUSCHにおいてPHRを送信してもよい。
<Aspect 2-2>
The UE may transmit the PHR on the configuration grant PUSCH.
 UEは、PHRがトリガされた後の最初のPUSCH送信においてPHRを送信してもよい。設定グラントPUSCH送信が、PHRがトリガされた後の最初のPUSCH送信であり、且つ当該設定グラントPUSCH送信のTBサイズがPHRを運ぶのに十分である場合、UEは、当該設定グラントPUSCH送信においてPHRを送信してもよい。 The UE may transmit the PHR on the first PUSCH transmission after the PHR is triggered. If the configured grant PUSCH transmission is the first PUSCH transmission after the PHR is triggered, and if the TB size of the configured grant PUSCH transmission is sufficient to carry the PHR, the UE may perform PHR in the configured grant PUSCH transmission. May be transmitted.
 設定グラントPUSCH送信が、PHRがトリガされた後の最初のPUSCH送信であり、且つ当該設定グラントPUSCH送信のTBサイズがPHRを運ぶのに十分でない場合、UEは、当該設定グラントPUSCHではPHRを送信せず、次の動的グラントPUSCH送信においてPHRを送信してもよい。 If the configured grant PUSCH transmission is the first PUSCH transmission after the PHR is triggered and the TB size of the configured grant PUSCH transmission is not sufficient to carry the PHR, the UE transmits a PHR on the configured grant PUSCH Instead, the PHR may be transmitted in the next dynamic grant PUSCH transmission.
 ULグラントとPHRを運ぶPUSCHとの間の時間間隔がT以上である場合、UEは、PHRを運ぶCC以外のCCのPUSCHのためのPHとして実PHを計算してもよい。ULグラントとPHRを運ぶPUSCHとの間の時間間隔がTよりも小さい場合、UEは、PHRを運ぶCC以外のCCのPUSCHのためのPHとして仮想PHを計算してもよい。 If the time interval between the UL grant and the PUSCH carrying the PHR is greater than or equal to T, the UE may calculate the actual PH as the PH for the PUSCH of a CC other than the CC carrying the PHR. If the time interval between the UL grant and the PUSCH carrying the PHR is smaller than T, the UE may calculate the virtual PH as the PH for the PUSCH of a CC other than the CC carrying the PHR.
 PHRのトリガとPHRを運ぶ設定グラントPUSCH送信との間の時間間隔がT以上である場合、UEは、当該設定グラントPUSCHのためのPHとして実PHを計算してもよい。PHRのトリガとPHRを運ぶ設定グラントPUSCH送信との間の時間間隔がTよりも小さい場合、UEは、当該設定グラントPUSCHのためのPHとして仮想PHを計算してもよい。 If the time interval between the trigger of the PHR and the transmission of the set grant PUSCH carrying the PHR is greater than or equal to T, the UE may calculate the actual PH as the PH for the set grant PUSCH. If the time interval between triggering the PHR and transmitting the set grant PUSCH carrying the PHR is smaller than T, the UE may calculate the virtual PH as the PH for the set grant PUSCH.
 図6Aに示すように、CC#0のULグラントを運ぶPDCCH受信からCC#2のPHRを運ぶ設定グラントPUSCH送信までの時間間隔が、T以上であるとする。この場合、UEは、CC#0のPUSCH送信に対する実PHを計算する。 時間 As shown in FIG. 6A, it is assumed that the time interval from the reception of the PDCCH carrying the UL grant of CC # 0 to the transmission of the set grant PUSCH carrying the PHR of CC # 2 is T or more. In this case, the UE calculates the actual PH for the PUSCH transmission of CC # 0.
 CC#1のULグラントを運ぶPDCCH受信からCC#2のPHRを運ぶ設定グラントPUSCH送信までの時間間隔が、T以上であるとする。この場合、UEは、CC#1のPUSCH送信に対する実PHを計算する。 It is assumed that the time interval from the reception of the PDCCH carrying the UL grant of CC # 1 to the transmission of the set grant PUSCH carrying the PHR of CC # 2 is T or more. In this case, the UE calculates the actual PH for the PUSCH transmission of CC # 1.
 PHRのトリガとCC#2のPHRを運ぶ設定グラントPUSCH送信との間の時間間隔がT以上であるとする。この場合、UEは、CC#2の設定グラントPUSCH送信に対する実PHを計算する。 Assume that the time interval between the trigger of the PHR and the transmission of the set grant PUSCH carrying the PHR of CC # 2 is T or more. In this case, the UE calculates the actual PH for the CC # 2 set grant PUSCH transmission.
 よって、UEは、CC#0の実PHと、CC#1の実PHと、CC#2の実PHと、を、CC#2において報告する。 Therefore, the UE reports the actual PH of CC # 0, the actual PH of CC # 1, and the actual PH of CC # 2 in CC # 2.
 図6Bに示すように、CC#0のULグラントを運ぶPDCCH受信からCC#2のPHRを運ぶ設定グラントPUSCH送信までの時間間隔が、Tよりも小さいとする。この場合、UEは、CC#0のPUSCH送信に対する仮想PHを計算する。 時間 As shown in FIG. 6B, it is assumed that the time interval from the reception of the PDCCH carrying the UL grant of CC # 0 to the transmission of the set grant PUSCH carrying the PHR of CC # 2 is smaller than T. In this case, the UE calculates a virtual PH for PUSCH transmission of CC # 0.
 CC#1のULグラントを運ぶPDCCH受信からCC#2のPHRを運ぶ設定グラントPUSCH送信までの時間間隔が、Tよりも小さいとする。この場合、UEは、CC#1のPUSCH送信に対する仮想PHを計算する。 It is assumed that the time interval from the reception of the PDCCH carrying the UL grant of CC # 1 to the transmission of the set grant PUSCH carrying the PHR of CC # 2 is smaller than T. In this case, the UE calculates a virtual PH for the PUSCH transmission of CC # 1.
 PHRのトリガとCC#2のPHRを運ぶ設定グラントPUSCH送信との間の時間間隔がT以上であるとする。この場合、UEは、CC#2の設定グラントPUSCH送信に対する実PHを計算する。 Assume that the time interval between the trigger of the PHR and the transmission of the set grant PUSCH carrying the PHR of CC # 2 is T or more. In this case, the UE calculates the actual PH for the CC # 2 set grant PUSCH transmission.
 よって、UEは、CC#0の仮想PHと、CC#1の仮想PHと、CC#2の実PHと、を、CC#2において報告する。 Therefore, the UE reports the virtual PH of CC # 0, the virtual PH of CC # 1, and the real PH of CC # 2 in CC # 2.
 この態様2-2によれば、UEは、PUSCH送信のタイミングに基づいて、実PHを計算するか否かを適切に決定できる。また、UEは、PHRをトリガされた後に複数のCCにおいてPUSCH送信が行われる場合であっても、PHRを送信するCCを適切に決定できる。また、UEは、最も早いPUSCH送信においてまとめてPHRを送信することによって、複数のCCに対するPHRをできるだけ早いタイミングで送信できる。また、複数のCCの少なくとも1つが設定グラントPUSCH送信を行う場合であっても、PHRを運ぶCCを適切に決定できる。 According to this aspect 2-2, the UE can appropriately determine whether to calculate the actual PH based on the PUSCH transmission timing. Further, the UE can appropriately determine the CC transmitting the PHR even when the PUSCH is transmitted in a plurality of CCs after the PHR is triggered. In addition, the UE can transmit PHRs for a plurality of CCs as early as possible by transmitting the PHRs collectively in the earliest PUSCH transmission. Further, even when at least one of the plurality of CCs performs the set grant PUSCH transmission, the CC carrying the PHR can be appropriately determined.
<態様2-3>
 設定グラントPUSCH送信が、PHRがトリガされた後の最初のPUSCH送信であり、且つ他のCCの動的グラントPUSCH送信と重複する場合、設定グラントPUSCH送信においてPHRを送信するかは、UE実装(implementation)/選択(selection)に任されてもよい。
<Aspect 2-3>
If the configured grant PUSCH transmission is the first PUSCH transmission after the PHR is triggered and overlaps with the dynamic grant PUSCH transmission of another CC, whether to transmit the PHR in the configured grant PUSCH transmission is determined by the UE implementation ( implementation / selection.
 設定グラントPUSCH送信が、PHRがトリガされた後の最初のPUSCH送信であり、且つ他のCCの動的グラントPUSCH送信と重複する場合、UEは、設定グラントPUSCH送信においてPHRを送信しなくてもよい。 If the configured grant PUSCH transmission is the first PUSCH transmission after the PHR is triggered and overlaps the dynamic grant PUSCH transmissions of other CCs, the UE may not transmit the PHR in the configured grant PUSCH transmission Good.
 図7に示すように、CC#2の設定グラントPUSCH送信が、PHRがトリガされた後の最初のPUSCH送信であり、且つCC#1の動的グラントPUSCH送信と重複する場合、UEは、CC#1の動的グラントPUSCH送信においてPHRを送信してもよい。例えば、UEは、態様2-1と同様にして、CC#0~#2のPHを計算してもよい。例えば、UEは、態様2-1-2と同様にして、CC#1の実PHと、CC#2の実PHと、CC#0の仮想PHと、を計算してもよい。 As shown in FIG. 7, if the configured grant PUSCH transmission of CC # 2 is the first PUSCH transmission after the PHR is triggered and overlaps with the dynamic grant PUSCH transmission of CC # 1, The PHR may be transmitted in the # 1 dynamic grant PUSCH transmission. For example, the UE may calculate the PH of CCs # 0 to # 2 in the same manner as in aspect 2-1. For example, the UE may calculate the real PH of CC # 1, the real PH of CC # 2, and the virtual PH of CC # 0 in the same manner as in aspect 2-1-2.
 UEは、PHRがトリガされた後の複数の最初のPUSCH送信から、対応するPDCCHのタイミング、セルインデックス、動的グラントPUSCH送信であるかどうか、の少なくとも1つに基づいて、PHRを運ぶ1つのPUSCH送信を決定してもよい。例えば、UEは、複数の最初のPUSCH送信のうち、PHRがトリガされた後の最も早いPDCCHによってスケジュールされる動的グラントPUSCH送信を選択してもよい。UEは、複数の最初のPUSCH送信のうち、最小のセルインデックスに対応するPUSCH送信を選択してもよい。UEは、複数の最初のPUSCH送信のうち、動的グラントPUSCH送信を選択してもよい。UEは、複数の最初のPUSCH送信のうち、設定グラントPUSCH送信を選択してもよい。 The UE may carry one PHR from the first plurality of PUSCH transmissions after the PHR is triggered, based on at least one of timing of a corresponding PDCCH, cell index, and whether or not a dynamic grant PUSCH transmission. PUSCH transmission may be determined. For example, the UE may select a dynamic grant PUSCH transmission scheduled by the earliest PDCCH after the PHR is triggered out of a plurality of initial PUSCH transmissions. The UE may select the PUSCH transmission corresponding to the smallest cell index from the plurality of first PUSCH transmissions. The UE may select a dynamic grant PUSCH transmission among a plurality of initial PUSCH transmissions. The UE may select a configuration grant PUSCH transmission among a plurality of first PUSCH transmissions.
 ULグラントとPHRを運ぶPUSCHとの間の時間間隔がT以上である場合、UEは、PHRを運ぶCC以外のCCのPUSCHのためのPHとして実PHを計算してもよい。ULグラントとPHRを運ぶPUSCHとの間の時間間隔がTよりも小さい場合、UEは、PHRを運ぶCC以外のCCのPUSCHのためのPHとして仮想PHを計算してもよい。 If the time interval between the UL grant and the PUSCH carrying the PHR is greater than or equal to T, the UE may calculate the actual PH as the PH for the PUSCH of a CC other than the CC carrying the PHR. If the time interval between the UL grant and the PUSCH carrying the PHR is smaller than T, the UE may calculate the virtual PH as the PH for the PUSCH of a CC other than the CC carrying the PHR.
 設定グラントPUSCH送信が、PHRがトリガされた後の最初のPUSCH送信であり、且つ他のCCの動的グラントPUSCH送信と重複する場合、UEは、設定グラントPUSCH送信においてPHRを送信してもよい。 If the configured grant PUSCH transmission is the first PUSCH transmission after the PHR is triggered and overlaps with a dynamic grant PUSCH transmission of another CC, the UE may transmit the PHR in the configured grant PUSCH transmission .
 この態様2-3によれば、UEは、PHRを送信するPUSCH送信を柔軟に決定できる。 According to this aspect 2-3, the UE can flexibly determine the PUSCH transmission for transmitting the PHR.
<態様2-4>
 UEは、設定グラントPUSCHのタイプに基づいて、実PH又は仮想PHを決定してもよい。
<Aspect 2-4>
The UE may determine the real PH or the virtual PH based on the type of the configuration grant PUSCH.
 UEは、設定グラントを伴うタイプ1PUSCH送信(Type 1 PUSCH transmission with configured grant、タイプ1設定グラントPUSCH送信)に対するPHとして、PH報告のPUSCHまでに実PHを計算する処理時間が確保できる限り、実PHを計算してもよい。タイプ1設定グラントPUSCH送信は、上位レイヤシグナリングによって設定され、アクティベーションを必要としない。 As long as the processing time for calculating the actual PH by the PUSCH of the PH report can be secured as the PH for the Type 1 PUSCH transmission with the configuration grant (Type 1 PUSCH transmission with configured grant, Type 1 configuration grant PUSCH transmission), the UE can perform the real PH. May be calculated. Type 1 configuration grant PUSCH transmission is configured by higher layer signaling and does not require activation.
 UEは、設定グラントを伴うタイプ2PUSCH送信(Type 2 PUSCH transmission with configured grant、タイプ2設定グラントPUSCH送信)に対するPHを次のように計算してもよい。タイプ2設定グラントPUSCH送信は、上位レイヤシグナリングによって設定され、アクティベーションを必要とする。 The UE may calculate the PH for Type 2 PUSCH transmission with configuration grant (Type 2 PUSCH transmission with configured grant, Type 2 configuration grant PUSCH transmission) as follows. Type 2 configuration grant PUSCH transmission is configured by higher layer signaling and requires activation.
 UEは、タイプ2設定グラントPUSCH送信のためのアクティベーションDCIを受信した場合、上りデータ又はPHRの有無に関わらず、最初のタイプ2設定グラントPUSCH送信を必ず送信してもよい。よって、最初のタイプ2設定グラントPUSCH送信において、UEは、動的グラントPUSCH送信に近い動作を行う。また、最初のタイプ2設定グラントPUSCH送信以外のタイプ2設定グラントPUSCH送信において、UEは、タイプ1設定グラントPUSCH送信に近い動作を行う。 When the UE receives the activation DCI for transmitting the type 2 setting grant PUSCH, the UE may always transmit the first type 2 setting grant PUSCH transmission regardless of the presence or absence of the uplink data or the PHR. Therefore, in the first type-2 setting grant PUSCH transmission, the UE performs an operation close to the dynamic grant PUSCH transmission. Further, in transmission of the type 2 setting grant PUSCH other than the first type 2 setting grant PUSCH transmission, the UE performs an operation similar to the type 1 setting grant PUSCH transmission.
 UEは、アクティベーションDCIを受信した後の最初のタイプ2設定グラントPUSCH送信以外の、タイプ2PUSCH送信に対するPHとして、PH報告のPUSCHまでに実PHを計算する処理時間が確保できる限り、実PHを計算してもよい。 The UE sets the actual PH as the PH for the type 2 PUSCH transmission other than the first type 2 setting grant PUSCH transmission after receiving the activation DCI as long as the processing time for calculating the actual PH up to the PUSCH of the PH report can be secured. It may be calculated.
 アクティベーションDCI内の時間ドメインリソース割り当てフィールドによって指示されるスロットオフセットKがTよりも小さい場合、UEは、当該アクティベーションDCIを受信した後の最初のタイプ2PUSCH送信に対するPHとして、仮想PHを計算してもよい。そうでない場合、UEは、アクティベーションDCIを受信した後の最初のタイプ2PUSCH送信に対するPHとして、実PHを計算してもよい。 If the slot offset K 2 indicated by the time-domain resource allocation field in the activation DCI is less than T, UE as PH for the first type 2PUSCH transmission after receiving the activation DCI, calculating a virtual PH May be. Otherwise, the UE may calculate the actual PH as the PH for the first Type 2 PUSCH transmission after receiving the activation DCI.
 この態様2-4によれば、設定グラントPUSCH送信のタイプに適したPHを計算することができる。 According to aspect 2-4, it is possible to calculate the PH suitable for the type of the set grant PUSCH transmission.
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
(Wireless communication system)
Hereinafter, the configuration of the wireless communication system according to an embodiment of the present disclosure will be described. In this wireless communication system, communication is performed using any of the wireless communication methods according to the above embodiments of the present disclosure or a combination thereof.
 図8は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。 FIG. 8 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment. In the wireless communication system 1, carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are applied. can do.
 なお、無線通信システム1は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、NR(New Radio)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)などと呼ばれてもよいし、これらを実現するシステムと呼ばれてもよい。 The wireless communication system 1 includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), and 5G. (5th generation mobile communication system), NR (New Radio), FRA (Future Radio Access), New-RAT (Radio Access Technology), etc., or a system for realizing these.
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。 The wireless communication system 1 includes a base station 11 forming a macro cell C1 having relatively wide coverage, and a base station 12 (12a to 12c) arranged in the macro cell C1 and forming a small cell C2 smaller than the macro cell C1. Have. Further, user terminals 20 are arranged in the macro cell C1 and each small cell C2. The arrangement, number, and the like of each cell and the user terminals 20 are not limited to the modes shown in the figure.
 ユーザ端末20は、基地局11及び基地局12の双方に接続することができる。ユーザ端末20は、マクロセルC1及びスモールセルC2を、CA又はDCを用いて同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)(例えば、5個以下のCC、6個以上のCC)を用いてCA又はDCを適用してもよい。 The user terminal 20 can be connected to both the base station 11 and the base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 simultaneously using CA or DC. Also, the user terminal 20 may apply CA or DC using a plurality of cells (CCs) (for example, five or less CCs, six or more CCs).
 ユーザ端末20と基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、legacy carrierなどとも呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、基地局11との間と同じキャリアが用いられてもよい。なお、各基地局が利用する周波数帯域の構成はこれに限られない。 A communication between the user terminal 20 and the base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (also referred to as an existing carrier or a legacy carrier). On the other hand, between the user terminal 20 and the base station 12, a carrier having a relatively high frequency band (for example, 3.5 GHz, 5 GHz or the like) and a wide bandwidth may be used, or between the user terminal 20 and the base station 11. The same carrier as described above may be used. The configuration of the frequency band used by each base station is not limited to this.
 また、ユーザ端末20は、各セルで、時分割複信(TDD:Time Division Duplex)及び/又は周波数分割複信(FDD:Frequency Division Duplex)を用いて通信を行うことができる。また、各セル(キャリア)では、単一のニューメロロジーが適用されてもよいし、複数の異なるニューメロロジーが適用されてもよい。 The user terminal 20 can perform communication using time division duplex (TDD: Time Division Duplex) and / or frequency division duplex (FDD: Frequency Division Duplex) in each cell. In each cell (carrier), a single numerology may be applied, or a plurality of different numerologies may be applied.
 ニューメロロジーとは、ある信号及び/又はチャネルの送信及び/又は受信に適用される通信パラメータであってもよく、例えば、サブキャリア間隔、帯域幅、シンボル長、サイクリックプレフィックス長、サブフレーム長、TTI長、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域で行う特定のフィルタリング処理、送受信機が時間領域で行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。例えば、ある物理チャネルについて、構成するOFDMシンボルのサブキャリア間隔が異なる場合及び/又はOFDMシンボル数が異なる場合には、ニューメロロジーが異なると称されてもよい。 Numerology may be a communication parameter applied to transmission and / or reception of a certain signal and / or channel, for example, subcarrier interval, bandwidth, symbol length, cyclic prefix length, subframe length. , TTI length, number of symbols per TTI, radio frame configuration, specific filtering processing performed by the transceiver in the frequency domain, specific windowing processing performed by the transceiver in the time domain, and the like. For example, for a certain physical channel, if the subcarrier intervals of the constituent OFDM symbols are different and / or if the number of OFDM symbols is different, the numerology may be referred to as different.
 基地局11と基地局12との間(又は、2つの基地局12間)は、有線(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線によって接続されてもよい。 The base station 11 and the base station 12 (or between the two base stations 12) may be connected by a wire (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface, or the like) or wirelessly. Good.
 基地局11及び各基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されない。また、各基地局12は、基地局11を介して上位局装置30に接続されてもよい。 The base station 11 and each base station 12 are connected to the upper station device 30 and are connected to the core network 40 via the upper station device 30. Note that the higher station apparatus 30 includes, for example, an access gateway apparatus, a radio network controller (RNC), and a mobility management entity (MME), but is not limited thereto. Further, each base station 12 may be connected to the upper station device 30 via the base station 11.
 なお、基地局11は、相対的に広いカバレッジを有する基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、基地局12は、局所的なカバレッジを有する基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、基地局11及び12を区別しない場合は、基地局10と総称する。 Note that the base station 11 is a base station having relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like. The base station 12 is a base station having local coverage, such as a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and a transmission / reception point. May be called. Hereinafter, when the base stations 11 and 12 are not distinguished, they are collectively referred to as a base station 10.
 各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末(移動局)だけでなく固定通信端末(固定局)を含んでもよい。 Each user terminal 20 is a terminal corresponding to various communication systems such as LTE and LTE-A, and may include not only mobile communication terminals (mobile stations) but also fixed communication terminals (fixed stations).
 無線通信システム1においては、無線アクセス方式として、下りリンクに直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)が適用され、上りリンクにシングルキャリア-周波数分割多元接続(SC-FDMA:Single Carrier Frequency Division Multiple Access)及び/又はOFDMAが適用される。 In the wireless communication system 1, Orthogonal Frequency Division Multiple Access (OFDMA) is applied to the downlink as a wireless access scheme, and Single-Carrier Frequency Division Multiple Access (SC-FDMA: Single Carrier) is applied to the uplink. Frequency Division Multiple Access) and / or OFDMA is applied.
 OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックによって構成される帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限らず、他の無線アクセス方式が用いられてもよい。 OFDMA is a multicarrier transmission scheme in which a frequency band is divided into a plurality of narrow frequency bands (subcarriers), and data is mapped to each subcarrier to perform communication. SC-FDMA divides a system bandwidth into bands each composed of one or a continuous resource block for each terminal, and a single carrier transmission that reduces interference between terminals by using different bands for a plurality of terminals. It is a method. The uplink and downlink radio access schemes are not limited to these combinations, and other radio access schemes may be used.
 無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHによって、ユーザデータ、上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHによって、MIB(Master Information Block)が伝送される。 In the wireless communication system 1, as downlink channels, a downlink shared channel (PDSCH: Physical Downlink Shared Channel), a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel, and the like shared by each user terminal 20 are used. Used. The PDSCH transmits user data, upper layer control information, SIB (System Information Block), and the like. Also, MIB (Master \ Information \ Block) is transmitted by PBCH.
 下りL1/L2制御チャネルは、PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel)、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHによって、PDSCH及び/又はPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。 Downlink L1 / L2 control channels include PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel) and the like. Downlink control information (DCI: Downlink Control Information) including PDSCH and / or PUSCH scheduling information is transmitted by the PDCCH.
 なお、DCIによってスケジューリング情報が通知されてもよい。DLデータ(例えば、PDSCH)受信及び/又はDL参照信号の測定をスケジューリングするDCIは、DLアサインメント、DLグラント、DL DCIなどと呼ばれてもよい。ULデータ(例えば、PUSCH)送信及び/又はULサウンディング(測定用)信号の送信をスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。 ス ケ ジ ュ ー リ ン グ The scheduling information may be notified by DCI. A DCI that schedules DL data (eg, PDSCH) reception and / or measurement of a DL reference signal may be referred to as a DL assignment, a DL grant, a DL @ DCI, and so on. A DCI that schedules transmission of UL data (eg, PUSCH) transmission and / or transmission of a UL sounding (for measurement) signal may be referred to as UL grant, UL @ DCI, and so on.
 PCFICHによって、PDCCHに用いるOFDMシンボル数が伝送される。PHICHによって、PUSCHに対するHARQ(Hybrid Automatic Repeat reQuest)の送達確認情報(例えば、再送制御情報、HARQ-ACK、ACK/NACKなどともいう)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。 PCFICH transmits the number of OFDM symbols used for PDCCH. The PHICH transmits acknowledgment information (for example, retransmission control information, HARQ-ACK, ACK / NACK, etc.) of HARQ (Hybrid Automatic Repeat Repeat request) for the PUSCH. The EPDCCH is frequency-division multiplexed with a PDSCH (Downlink Shared Data Channel) and used for transmission of DCI and the like like the PDCCH.
 無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送される。また、PUCCHによって、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、送達確認情報、スケジューリングリクエスト(SR:Scheduling Request)などが伝送される。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。 In the wireless communication system 1, as an uplink channel, an uplink shared channel (PUSCH: Physical Uplink Shared Channel), an uplink control channel (PUCCH: Physical Uplink Control Channel), a random access channel (PRACH: Physical Random Access Channel) or the like is used. By PUSCH, user data, higher layer control information, etc. are transmitted. Also, downlink radio quality information (CQI: Channel Quality Indicator), delivery confirmation information, scheduling request (SR: Scheduling Request), and the like are transmitted by PUCCH. The PRACH transmits a random access preamble for establishing a connection with a cell.
 無線通信システム1では、下り参照信号として、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI-RS:Channel State Information-Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)、位置決定参照信号(PRS:Positioning Reference Signal)などが伝送される。また、無線通信システム1では、上り参照信号として、測定用参照信号(SRS:Sounding Reference Signal)、復調用参照信号(DMRS)などが伝送される。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。また、伝送される参照信号は、これらに限られない。 In the wireless communication system 1, as a downlink reference signal, a cell-specific reference signal (CRS: Cell-specific Reference Signal), a channel state information reference signal (CSI-RS: Channel State Information-Reference Signal), and a demodulation reference signal (DMRS: DeModulation Reference Signal, a position determination reference signal (PRS: Positioning Reference Signal), and the like are transmitted. In the wireless communication system 1, a measurement reference signal (SRS: Sounding Reference Signal), a demodulation reference signal (DMRS), and the like are transmitted as uplink reference signals. The DMRS may be called a user terminal specific reference signal (UE-specific Reference Signal). The transmitted reference signal is not limited to these.
(基地局)
 図9は、一実施形態に係る基地局の全体構成の一例を示す図である。基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。
(base station)
FIG. 9 is a diagram illustrating an example of the entire configuration of the base station according to the embodiment. The base station 10 includes a plurality of transmitting / receiving antennas 101, an amplifier unit 102, a transmitting / receiving unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106. The transmitting / receiving antenna 101, the amplifier unit 102, and the transmitting / receiving unit 103 may be configured to include at least one each.
 下りリンクによって基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。 ユ ー ザ User data transmitted from the base station 10 to the user terminal 20 by downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQの送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化、逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。 In the baseband signal processing unit 104, regarding user data, processing of a PDCP (Packet Data Convergence Protocol) layer, division / combination of user data, transmission processing of an RLC layer such as RLC (Radio Link Control) retransmission control, and MAC (Medium Access) Control) The transmission / reception unit performs retransmission control (for example, HARQ transmission processing), scheduling, transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, precoding processing, and so on. 103. The downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and transferred to the transmission / reception unit 103.
 送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102によって増幅され、送受信アンテナ101から送信される。送受信部103は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。 The transmission / reception section 103 converts the baseband signal output from the baseband signal processing section 104 after precoding for each antenna into a radio frequency band, and transmits the radio frequency band. The radio frequency signal frequency-converted by the transmitting / receiving section 103 is amplified by the amplifier section 102 and transmitted from the transmitting / receiving antenna 101. The transmission / reception unit 103 can be configured from a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure. Note that the transmission / reception unit 103 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
 一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。 On the other hand, as for an uplink signal, a radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102. The transmitting / receiving section 103 receives the upstream signal amplified by the amplifier section 102. Transmitting / receiving section 103 frequency-converts the received signal into a baseband signal and outputs the baseband signal to baseband signal processing section 104.
 ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行う。 In the baseband signal processing unit 104, fast Fourier transform (FFT: Fast Fourier Transform) processing, inverse discrete Fourier transform (IDFT: Inverse Discrete Fourier Transform) processing, and error correction are performed on user data included in the input uplink signal. Decoding, reception processing of MAC retransmission control, reception processing of the RLC layer and PDCP layer are performed, and the data is transferred to the upper station apparatus 30 via the transmission path interface 106. The call processing unit 105 performs call processing (setting, release, etc.) of a communication channel, state management of the base station 10, management of radio resources, and the like.
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して他の基地局10と信号を送受信(バックホールシグナリング)してもよい。 The transmission path interface 106 transmits and receives signals to and from the higher-level station device 30 via a predetermined interface. The transmission line interface 106 transmits and receives signals (backhaul signaling) to and from another base station 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface). Is also good.
 また、送受信部103は、複数のセルにそれぞれ対応する複数の上り共有チャネル送信を受信してもよい。 送 受 信 Also, transmitting / receiving section 103 may receive a plurality of uplink shared channel transmissions respectively corresponding to a plurality of cells.
 図10は、本開示の一実施形態に係る基地局の機能構成の一例を示す図である。なお、本例では、本実施形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。 FIG. 10 is a diagram illustrating an example of a functional configuration of the base station according to an embodiment of the present disclosure. Note that, in this example, functional blocks of characteristic portions in the present embodiment are mainly shown, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication.
 ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305と、を少なくとも備えている。なお、これらの構成は、基地局10に含まれていればよく、一部又は全部の構成がベースバンド信号処理部104に含まれなくてもよい。 The baseband signal processing unit 104 includes at least a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. Note that these configurations need only be included in base station 10, and some or all of the configurations need not be included in baseband signal processing section 104.
 制御部(スケジューラ)301は、基地局10全体の制御を実施する。制御部301は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。 The control unit (scheduler) 301 controls the entire base station 10. The control unit 301 can be configured from a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
 制御部301は、例えば、送信信号生成部302における信号の生成、マッピング部303における信号の割り当てなどを制御する。また、制御部301は、受信信号処理部304における信号の受信処理、測定部305における信号の測定などを制御する。 The control unit 301 controls, for example, signal generation in the transmission signal generation unit 302, signal assignment in the mapping unit 303, and the like. Further, the control unit 301 controls a signal reception process in the reception signal processing unit 304, a signal measurement in the measurement unit 305, and the like.
 制御部301は、システム情報、下りデータ信号(例えば、PDSCHで送信される信号)、下り制御信号(例えば、PDCCH及び/又はEPDCCHで送信される信号。送達確認情報など)のスケジューリング(例えば、リソース割り当て)を制御する。また、制御部301は、上りデータ信号に対する再送制御の要否を判定した結果などに基づいて、下り制御信号、下りデータ信号などの生成を制御する。 The control unit 301 performs scheduling (for example, resources) of system information, a downlink data signal (for example, a signal transmitted on the PDSCH), and a downlink control signal (for example, a signal transmitted on the PDCCH and / or the EPDCCH; acknowledgment information and the like). Allocation). Further, control section 301 controls generation of a downlink control signal, a downlink data signal, and the like based on a result of determining whether or not retransmission control is required for an uplink data signal.
 制御部301は、同期信号(例えば、PSS(Primary Synchronization Signal)/SSS(Secondary Synchronization Signal))、下り参照信号(例えば、CRS、CSI-RS、DMRS)などのスケジューリングの制御を行う。 The control unit 301 controls scheduling of a synchronization signal (for example, Primary Synchronization Signal (PSS) / Secondary Synchronization Signal (SSS)) and a downlink reference signal (for example, CRS, CSI-RS, DMRS).
 制御部301は、上りデータ信号(例えば、PUSCHで送信される信号)、上り制御信号(例えば、PUCCH及び/又はPUSCHで送信される信号。送達確認情報など)、ランダムアクセスプリアンブル(例えば、PRACHで送信される信号)、上り参照信号などのスケジューリングを制御する。 The control unit 301 includes an uplink data signal (for example, a signal transmitted on PUSCH), an uplink control signal (for example, a signal transmitted on PUCCH and / or PUSCH, acknowledgment information, etc.), a random access preamble (for example, PRACH). (Transmission signal), scheduling of uplink reference signals and the like.
 送信信号生成部302は、制御部301からの指示に基づいて、下り信号(下り制御信号、下りデータ信号、下り参照信号など)を生成して、マッピング部303に出力する。送信信号生成部302は、本開示に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。 Transmission signal generation section 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) based on an instruction from control section 301, and outputs the generated downlink signal to mapping section 303. The transmission signal generation unit 302 can be configured from a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
 送信信号生成部302は、例えば、制御部301からの指示に基づいて、下りデータの割り当て情報を通知するDLアサインメント及び/又は上りデータの割り当て情報を通知するULグラントを生成する。DLアサインメント及びULグラントは、いずれもDCIであり、DCIフォーマットに従う。また、下りデータ信号には、各ユーザ端末20からのチャネル状態情報(CSI:Channel State Information)などに基づいて決定された符号化率、変調方式などに従って符号化処理、変調処理が行われる。 The transmission signal generation unit 302 generates a DL assignment for notifying downlink data allocation information and / or a UL grant for notifying uplink data allocation information, based on an instruction from the control unit 301, for example. The DL assignment and the UL grant are both DCI and follow the DCI format. In addition, the downlink data signal is subjected to an encoding process and a modulation process according to an encoding rate, a modulation scheme, and the like determined based on channel state information (CSI: Channel \ State \ Information) from each user terminal 20 and the like.
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本開示に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。 Mapping section 303 maps the downlink signal generated by transmission signal generating section 302 to a predetermined radio resource based on an instruction from control section 301, and outputs it to transmitting / receiving section 103. The mapping unit 303 can be configured from a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
 受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信される上り信号(上り制御信号、上りデータ信号、上り参照信号など)である。受信信号処理部304は、本開示に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。 (4) The reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, and the like) on the reception signal input from the transmission / reception unit 103. Here, the received signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20. The reception signal processing unit 304 can be configured from a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure.
 受信信号処理部304は、受信処理によって復号された情報を制御部301に出力する。例えば、HARQ-ACKを含むPUCCHを受信した場合、HARQ-ACKを制御部301に出力する。また、受信信号処理部304は、受信信号及び/又は受信処理後の信号を、測定部305に出力する。 (4) The reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301. For example, when a PUCCH including HARQ-ACK is received, HARQ-ACK is output to control section 301. Further, the reception signal processing unit 304 outputs the reception signal and / or the signal after the reception processing to the measurement unit 305.
 測定部305は、受信した信号に関する測定を実施する。測定部305は、本開示に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。 (4) The measurement unit 305 performs measurement on the received signal. The measurement unit 305 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
 例えば、測定部305は、受信した信号に基づいて、RRM(Radio Resource Management)測定、CSI(Channel State Information)測定などを行ってもよい。測定部305は、受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality)、SINR(Signal to Interference plus Noise Ratio)、SNR(Signal to Noise Ratio))、信号強度(例えば、RSSI(Received Signal Strength Indicator))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部301に出力されてもよい。 For example, the measurement unit 305 may perform RRM (Radio Resource Management) measurement, CSI (Channel State Information) measurement, or the like based on the received signal. The measurement unit 305 is configured to receive power (for example, RSRP (Reference Signal Received Power)), reception quality (for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio, SNR (Signal to Noise Ratio)). , Signal strength (for example, RSSI (Received @ Signal @ Strength @ Indicator)), channel information (for example, CSI), and the like. The measurement result may be output to the control unit 301.
 また、制御部301は、実際の前記複数の上り共有チャネル送信にそれぞれ基づく複数のパワーヘッドルーム(PH)を、前記複数の上り共有チャネル送信の1つにおいて取得してもよい。 The control unit 301 may acquire a plurality of power headrooms (PH) based on actual transmissions of the plurality of uplink shared channels in one of the plurality of uplink shared channel transmissions.
(ユーザ端末)
 図11は、一実施形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。
(User terminal)
FIG. 11 is a diagram illustrating an example of the overall configuration of the user terminal according to the embodiment. The user terminal 20 includes a plurality of transmitting / receiving antennas 201, an amplifier unit 202, a transmitting / receiving unit 203, a baseband signal processing unit 204, and an application unit 205. Note that the transmitting / receiving antenna 201, the amplifier unit 202, and the transmitting / receiving unit 203 may be configured to include at least one each.
 送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。 (4) The radio frequency signal received by the transmitting / receiving antenna 201 is amplified by the amplifier unit 202. The transmission / reception unit 203 receives the downlink signal amplified by the amplifier unit 202. The transmission / reception section 203 converts the frequency of the received signal into a baseband signal, and outputs the baseband signal to the baseband signal processing section 204. The transmission / reception unit 203 can be configured from a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure. Note that the transmission / reception unit 203 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤ及びMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、ブロードキャスト情報もアプリケーション部205に転送されてもよい。 The baseband signal processing unit 204 performs FFT processing, error correction decoding, reception processing for retransmission control, and the like on the input baseband signal. The downlink user data is transferred to the application unit 205. The application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Also, of the downlink data, broadcast information may be transferred to the application unit 205.
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて送受信部203に転送される。 On the other hand, uplink user data is input from the application unit 205 to the baseband signal processing unit 204. The baseband signal processing unit 204 performs retransmission control transmission processing (eg, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like, and performs transmission / reception processing. Transferred to 203.
 送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202によって増幅され、送受信アンテナ201から送信される。 (4) The transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits the radio frequency band. The radio frequency signal frequency-converted by the transmitting / receiving section 203 is amplified by the amplifier section 202 and transmitted from the transmitting / receiving antenna 201.
 また、送受信部203は、複数のセル(CC)にそれぞれ対応する複数の上り共有チャネル(PUSCH)送信(動的グラントPUSCH送信又は設定グラントPUSCH送信)を行ってもよい。 {Also, the transmission / reception unit 203 may perform a plurality of uplink shared channel (PUSCH) transmissions (dynamic grant PUSCH transmission or set grant PUSCH transmission) respectively corresponding to the plurality of cells (CCs).
 図12は、一実施形態に係るユーザ端末の機能構成の一例を示す図である。なお、本例においては、本実施形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。 FIG. 12 is a diagram illustrating an example of a functional configuration of the user terminal according to the embodiment. Note that, in this example, functional blocks of characteristic portions in the present embodiment are mainly shown, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication.
 ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。なお、これらの構成は、ユーザ端末20に含まれていればよく、一部又は全部の構成がベースバンド信号処理部204に含まれなくてもよい。 The baseband signal processing unit 204 of the user terminal 20 includes at least a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Note that these configurations need only be included in the user terminal 20, and some or all of the configurations need not be included in the baseband signal processing unit 204.
 制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。 The control unit 401 controls the entire user terminal 20. The control unit 401 can be configured by a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
 制御部401は、例えば、送信信号生成部402における信号の生成、マッピング部403における信号の割り当てなどを制御する。また、制御部401は、受信信号処理部404における信号の受信処理、測定部405における信号の測定などを制御する。 The control unit 401 controls, for example, signal generation in the transmission signal generation unit 402, signal assignment in the mapping unit 403, and the like. Further, the control unit 401 controls signal reception processing in the reception signal processing unit 404, signal measurement in the measurement unit 405, and the like.
 制御部401は、基地局10から送信された下り制御信号及び下りデータ信号を、受信信号処理部404から取得する。制御部401は、下り制御信号及び/又は下りデータ信号に対する再送制御の要否を判定した結果などに基づいて、上り制御信号及び/又は上りデータ信号の生成を制御する。 The control unit 401 acquires the downlink control signal and the downlink data signal transmitted from the base station 10 from the reception signal processing unit 404. The control unit 401 controls generation of an uplink control signal and / or an uplink data signal based on a result of determining whether or not retransmission control is required for a downlink control signal and / or a downlink data signal.
 制御部401は、基地局10から通知された各種情報を受信信号処理部404から取得した場合、当該情報に基づいて制御に用いるパラメータを更新してもよい。 When the control unit 401 acquires various information notified from the base station 10 from the reception signal processing unit 404, the control unit 401 may update parameters used for control based on the information.
 送信信号生成部402は、制御部401からの指示に基づいて、上り信号(上り制御信号、上りデータ信号、上り参照信号など)を生成して、マッピング部403に出力する。送信信号生成部402は、本開示に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。 Transmission signal generating section 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) based on an instruction from control section 401 and outputs the generated signal to mapping section 403. The transmission signal generation unit 402 can be configured from a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
 送信信号生成部402は、例えば、制御部401からの指示に基づいて、送達確認情報、チャネル状態情報(CSI)などに関する上り制御信号を生成する。また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。 (4) The transmission signal generation unit 402 generates an uplink control signal related to acknowledgment information, channel state information (CSI), and the like, based on an instruction from the control unit 401, for example. Further, transmission signal generating section 402 generates an uplink data signal based on an instruction from control section 401. For example, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the downlink control signal notified from the base station 10 includes a UL grant.
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本開示に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。 Mapping section 403 maps the uplink signal generated by transmission signal generation section 402 to a radio resource based on an instruction from control section 401, and outputs the result to transmission / reception section 203. The mapping unit 403 can be configured from a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
 受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、基地局10から送信される下り信号(下り制御信号、下りデータ信号、下り参照信号など)である。受信信号処理部404は、本開示に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本開示に係る受信部を構成することができる。 (4) The reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, and decoding) on the reception signal input from the transmission / reception unit 203. Here, the received signal is, for example, a downlink signal (a downlink control signal, a downlink data signal, a downlink reference signal, etc.) transmitted from the base station 10. The reception signal processing unit 404 can be configured from a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure. In addition, the reception signal processing unit 404 can configure a reception unit according to the present disclosure.
 受信信号処理部404は、受信処理によって復号された情報を制御部401に出力する。受信信号処理部404は、例えば、ブロードキャスト情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。また、受信信号処理部404は、受信信号及び/又は受信処理後の信号を、測定部405に出力する。 (4) The reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401. The reception signal processing unit 404 outputs, for example, broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401. Further, the reception signal processing unit 404 outputs the reception signal and / or the signal after the reception processing to the measurement unit 405.
 測定部405は、受信した信号に関する測定を実施する。測定部405は、本開示に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。 The measurement unit 405 performs measurement on the received signal. The measurement unit 405 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
 例えば、測定部405は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部405は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部401に出力されてもよい。 For example, the measurement unit 405 may perform RRM measurement, CSI measurement, and the like based on the received signal. The measurement unit 405 may measure reception power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), channel information (for example, CSI), and the like. The measurement result may be output to the control unit 401.
 また、制御部401は、前記複数のPHのそれぞれの計算の処理時間(PHの計算に必要な時間、能力情報)と、前記複数の上り共有チャネル送信のそれぞれが設定グラント上り共有チャネル送信であるかと、の少なくとも1つに基づいて、前記複数のPHが実際の前記複数の上り共有チャネル送信に基づくか(実PHか仮想PHか、実際の送信に基づくか参照フォーマットに基づくか)を決定してもよい。 In addition, the control unit 401 determines that the processing time of each of the plurality of PHs (the time required for calculating the PH, capability information) and that each of the plurality of uplink shared channel transmissions is a set grant uplink shared channel transmission. And determining whether the plurality of PHs are based on actual plurality of uplink shared channel transmissions (either real or virtual PH, based on actual transmissions or based on a reference format) based on at least one of: You may.
 また、制御部401は、前記設定グラント上り共有チャネル送信のタイプ(例えば、タイプ1、タイプ2)に基づいて、前記設定グラント上り共有チャネル送信が実際の前記複数の上り共有チャネル送信に基づくかを決定してもよい。 Further, the control unit 401 determines whether the set grant uplink shared channel transmission is based on actual transmission of the plurality of uplink shared channels based on the type of the set grant uplink shared channel transmission (for example, type 1 or type 2). You may decide.
 また、制御部401は、前記上り共有チャネル送信のスケジューリングのための下り共有チャネルのタイミング(例えば、PHRトリガ後の最も早いPDCCH)と、前記上り共有チャネル送信のタイミング(例えば、PHRトリガ後の最も早いPUSCH)と、前記複数の上り共有チャネル送信のそれぞれが設定グラント上り共有チャネル送信であるかと、の少なくとも1つに基づいて、前記報告に用いられる上り共有チャネル送信を決定してもよい。 Also, the control unit 401 determines the timing of the downlink shared channel for scheduling the uplink shared channel transmission (for example, the earliest PDCCH after the PHR trigger) and the timing of the uplink shared channel transmission (for example, the most recent after the PHR trigger). The uplink shared channel transmission used for the report may be determined based on at least one of the early PUSCH) and whether each of the plurality of uplink shared channel transmissions is a configured grant uplink shared channel transmission.
 また、制御部401は、前記設定グラント上り共有チャネル送信のサイズ(例えば、TBサイズ)に基づいて、前記報告に用いられる上り共有チャネル送信を決定してもよい。 The control unit 401 may determine the uplink shared channel transmission used for the report based on the size of the set grant uplink shared channel transmission (for example, the TB size).
 また、制御部401は、前記複数の上り共有チャネル送信が時間的に重複し、且つ動的グラント上り共有チャネル送信及び設定グラント上り共有チャネル送信を含む場合、前記動的グラント上り共有チャネル送信及び前記設定グラント上り共有チャネル送信のうち、所定の種類を有する1つの上り共有チャネル送信において、前記複数のセルにそれぞれ対応する複数のパワーヘッドルーム(PH)を報告してもよい。 Further, the control unit 401, when the plurality of uplink shared channel transmissions overlap in time, and includes dynamic grant uplink shared channel transmission and set grant uplink shared channel transmission, the dynamic grant uplink shared channel transmission and the A plurality of power headrooms (PH) respectively corresponding to the plurality of cells may be reported in one uplink shared channel transmission having a predetermined type among the set grant uplink shared channel transmissions.
 また、前記所定の種類は、前記動的グラント上り共有チャネル送信であってもよい。 The predetermined type may be the dynamic grant uplink shared channel transmission.
 また、前記所定の種類は、前記設定グラント上り共有チャネル送信であってもよい。 The predetermined type may be the set grant uplink shared channel transmission.
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
Note that the block diagram used in the description of the above-described embodiment shows blocks in functional units. These functional blocks (components) are realized by an arbitrary combination of at least one of hardware and software. In addition, a method for implementing each functional block is not particularly limited. That is, each functional block may be realized using one device physically or logically coupled, or directly or indirectly (for example, two or more devices physically or logically separated from each other). , Wired, wireless, etc.) and using these multiple devices. The functional block may be realized by combining one device or the plurality of devices with software.
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。 Here, the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. Not limited. For example, a functional block (constituent unit) that makes transmission function may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like. In any case, as described above, the realization method is not particularly limited.
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図13は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, a base station, a user terminal, and the like according to an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method according to the present disclosure. FIG. 13 is a diagram illustrating an example of a hardware configuration of the base station and the user terminal according to the embodiment. The above-described base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. .
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following description, the term “apparatus” can be read as a circuit, a device, a unit, or the like. The hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices illustrated in the drawing, or may be configured to exclude some of the devices.
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。 For example, although only one processor 1001 is illustrated, there may be multiple processors. Further, the processing may be executed by one processor, or the processing may be executed by two or more processors simultaneously, sequentially, or by using another method. Note that the processor 1001 may be implemented by one or more chips.
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 The functions of the base station 10 and the user terminal 20 are performed, for example, by reading predetermined software (program) on hardware such as the processor 1001 and the memory 1002 so that the processor 1001 performs an operation and communicates via the communication device 1004. And controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001によって実現されてもよい。 The processor 1001 controls the entire computer by operating an operating system, for example. The processor 1001 may be configured by a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like. For example, the above-described baseband signal processing unit 104 (204), call processing unit 105, and the like may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。 The processor 1001 reads out a program (program code), a software module, data, and the like from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operation described in the above embodiment is used. For example, the control unit 401 of the user terminal 20 may be implemented by a control program stored in the memory 1002 and operated by the processor 1001, and other functional blocks may be similarly implemented.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, for example, at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically EPROM), RAM (Random Access Memory), and other appropriate storage media. It may be constituted by one. The memory 1002 may be called a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to an embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。 The storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc) ROM, etc.)), a digital versatile disc, At least one of a Blu-ray (registered trademark) disk, a removable disk, a hard disk drive, a smart card, a flash memory device (eg, a card, a stick, a key drive), a magnetic stripe, a database, a server, and other suitable storage media. May be configured. The storage 1003 may be called an auxiliary storage device.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004によって実現されてもよい。送受信部103は、送信部103aと受信部103bとで、物理的に又は論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmission / reception device) for performing communication between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 includes, for example, a high-frequency switch, a duplexer, a filter, a frequency synthesizer, and the like in order to realize at least one of frequency division duplex (FDD: Frequency Division Duplex) and time division duplex (TDD: Time Division Duplex). May be configured. For example, the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission line interface 106, and the like may be realized by the communication device 1004. The transmission / reception unit 103 may be physically or logically separated by the transmission unit 103a and the reception unit 103b.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, and the like) that receives an external input. The output device 1006 is an output device that performs output to the outside (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, and the like). Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 The devices such as the processor 1001 and the memory 1002 are connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using a different bus for each device.
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 In addition, the base station 10 and the user terminal 20 include hardware such as a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array). It may be configured to include hardware, and some or all of the functional blocks may be realized using the hardware. For example, the processor 1001 may be implemented using at least one of these hardware.
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
(Modification)
Note that terms described in the present disclosure and terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meaning. For example, at least one of the channel and the symbol may be a signal (signaling). Also, the signal may be a message. The reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like according to an applied standard. A component carrier (CC: Component Carrier) may be called a cell, a frequency carrier, a carrier frequency, or the like.
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 The radio frame may be configured by one or a plurality of periods (frames) in the time domain. The one or more respective periods (frames) forming the radio frame may be referred to as a subframe. Furthermore, a subframe may be configured by one or more slots in the time domain. The subframe may be of a fixed length of time (eg, 1 ms) that does not depend on numerology.
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 Here, the new melology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel. Numerology includes, for example, subcarrier interval (SCS: SubCarrier @ Spacing), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Transmission @ Time @ Interval), number of symbols per TTI, radio frame configuration, transmission and reception. At least one of a specific filtering process performed by the transceiver in the frequency domain and a specific windowing process performed by the transceiver in the time domain may be indicated.
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。 The slot may be configured by one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain. Further, the slot may be a time unit based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。 The slot may include a plurality of mini slots. Each minislot may be constituted by one or more symbols in the time domain. Also, minislots may be called subslots. A minislot may be made up of a smaller number of symbols than slots. A PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (PUSCH) mapping type A. A PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。 Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. The radio frame, the subframe, the slot, the minislot, and the symbol may have different names corresponding thereto. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be interchanged with each other.
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a transmission time interval (TTI: Transmission @ Time @ Interval), a plurality of consecutive subframes may be called a TTI, and one slot or one minislot is called a TTI. May be. That is, at least one of the subframe and the TTI may be a subframe (1 ms) in the existing LTE, a period shorter than 1 ms (for example, 1 to 13 symbols), or a period longer than 1 ms. It may be. Note that the unit representing the TTI may be called a slot, a minislot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI means, for example, a minimum time unit of scheduling in wireless communication. For example, in the LTE system, the base station performs scheduling for allocating radio resources (frequency bandwidth, transmission power, and the like that can be used in each user terminal) to each user terminal in TTI units. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, a code word, or a processing unit such as scheduling and link adaptation. Note that when a TTI is given, a time section (for example, the number of symbols) in which a transport block, a code block, a codeword, and the like are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 If one slot or one minislot is called a TTI, one or more TTIs (ie, one or more slots or one or more minislots) may be the minimum time unit for scheduling. Further, the number of slots (mini-slot number) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE@Rel.8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, and the like. A TTI shorter than the normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that a long TTI (for example, a normal TTI, a subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, and a short TTI (for example, a shortened TTI, etc.) may be replaced with a TTI shorter than the long TTI and 1 ms. The TTI having the TTI length described above may be replaced with the TTI.
 リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 The resource block (RB: Resource Block) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain. The number of subcarriers included in the RB may be the same irrespective of the numerology, and may be, for example, 12. The number of subcarriers included in the RB may be determined based on numerology.
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。 R Also, the RB may include one or more symbols in the time domain, and may have a length of one slot, one minislot, one subframe, or one TTI. One TTI, one subframe, and the like may each be configured by one or a plurality of resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。 Note that one or a plurality of RBs include a physical resource block (PRB: Physical @ RB), a subcarrier group (SCG: Sub-Carrier @ Group), a resource element group (REG: Resource @ Element @ Group), a PRB pair, an RB pair, and the like. May be called.
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 {Also, a resource block may be composed of one or more resource elements (RE: Resource @ Element). For example, one RE may be a radio resource area of one subcarrier and one symbol.
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 A bandwidth part (BWP: Bandwidth @ Part) (which may also be referred to as a partial bandwidth or the like) may represent a subset of contiguous common RBs (common @ resource @ blocks) for a certain numerology in a certain carrier. Good. Here, the common RB may be specified by an index of the RB based on the common reference point of the carrier. A PRB may be defined in a BWP and numbered within the BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 $ BWP may include a BWP for UL (UL @ BWP) and a BWP for DL (DL @ BWP). For a UE, one or more BWPs may be configured in one carrier.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 少 な く と も At least one of the configured BWPs may be active, and the UE may not have to assume transmitting and receiving a given signal / channel outside the active BWP. Note that “cell”, “carrier”, and the like in the present disclosure may be replaced with “BWP”.
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。 The structures of the above-described radio frame, subframe, slot, minislot, and symbol are merely examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, included in an RB The number of subcarriers, the number of symbols in a TTI, the symbol length, the configuration such as the cyclic prefix (CP) length can be variously changed.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。 Further, the information, parameters, and the like described in the present disclosure may be represented using an absolute value, may be represented using a relative value from a predetermined value, or may be represented using another corresponding information. May be represented. For example, a radio resource may be indicated by a predetermined index.
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 名称 Names used for parameters and the like in the present disclosure are not limited in any way. Further, the formulas and the like using these parameters may be different from those explicitly disclosed in the present disclosure. The various channels (PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.) and information elements can be identified by any suitable name, so the various names assigned to these various channels and information elements Is not a limiting name in any way.
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc., that can be referred to throughout the above description are not limited to voltages, currents, electromagnetic waves, magnetic or magnetic particles, optical or photons, or any of these. May be represented by a combination of
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。 情報 In addition, information, signals, etc. can be output from the upper layer to at least one of the lower layer and the lower layer to the upper layer. Information, signals, and the like may be input and output via a plurality of network nodes.
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。 (4) Information and signals input and output may be stored in a specific location (for example, a memory) or may be managed using a management table. Information and signals that are input and output can be overwritten, updated, or added. The output information, signal, and the like may be deleted. The input information, signal, and the like may be transmitted to another device.
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。 Notification of information is not limited to the aspect / embodiment described in the present disclosure, and may be performed using another method. For example, the information is notified by physical layer signaling (for example, downlink control information (DCI: Downlink Control Information), uplink control information (UCI: Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, It may be implemented by broadcast information (master information block (MIB: Master Information Block), system information block (SIB: System Information Block), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
 なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))を用いて通知されてもよい。 {Note that the physical layer signaling may be called L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like. The RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like. Also, the MAC signaling may be notified using, for example, a MAC control element (MAC @ CE (Control @ Element)).
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。 In addition, the notification of the predetermined information (for example, the notification of “X”) is not limited to an explicit notification, and is implicit (for example, by not performing the notification of the predetermined information or by another information). May be performed).
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value represented by 1 bit (0 or 1) or by a boolean value represented by true or false. , May be performed by comparing numerical values (for example, comparison with a predetermined value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, whether called software, firmware, middleware, microcode, hardware description language, or any other name, instructions, instruction sets, codes, code segments, program codes, programs, subprograms, software modules , Applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 ソ フ ト ウ ェ ア In addition, software, instructions, information, and the like may be transmitted and received via a transmission medium. For example, if the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.), the website, When transmitted from a server or other remote source, at least one of these wired and / or wireless technologies is included within the definition of a transmission medium.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。 用語 As used in this disclosure, the terms “system” and “network” may be used interchangeably.
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(QCL:Quasi-Co-Location)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。 In the present disclosure, “precoding”, “precoder”, “weight (precoding weight)”, “pseudo collocation (QCL: Quasi-Co-Location)”, “transmission power”, “phase rotation”, “antenna port” , "Antenna port group", "layer", "number of layers", "rank", "beam", "beam width", "beam angle", "antenna", "antenna element", "panel", etc. The terms may be used interchangeably.
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(TP:Transmission Point)」、「受信ポイント(RP:Reception Point)」、「送受信ポイント(TRP:Transmission/Reception Point)」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In the present disclosure, “base station (BS: Base @ Station)”, “wireless base station”, “fixed station (fixed @ station)”, “NodeB”, “eNodeB (eNB)”, “gNodeB (gNB)”, “ "Access point (access @ point)", "transmission point (TP: Transmission @ Point)", "reception point (RP: Reception @ Point)", "transmission / reception point (TRP: Transmission / Reception @ Point)", "panel", "cell" Terms such as, "sector", "cell group", "carrier", "component carrier" may be used interchangeably. A base station may be referred to by a term such as a macro cell, a small cell, a femto cell, a pico cell, and the like.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 A base station can accommodate one or more (eg, three) cells. If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (RRH: Communication services can also be provided by Remote Radio 通信 Head)). The term "cell" or "sector" refers to part or all of the coverage area of at least one of a base station and a base station subsystem that provides communication services in this coverage.
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。 In the present disclosure, terms such as “mobile station (MS)”, “user terminal”, “user equipment” (UE), and “terminal” may be used interchangeably. .
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal. , A handset, a user agent, a mobile client, a client or some other suitable terminology.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。 少 な く と も At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like. Note that at least one of the base station and the mobile station may be a device mounted on the mobile unit, the mobile unit itself, or the like. The moving object may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving object (for example, a drone, a self-driving car, etc.), or a robot (maned or unmanned). ). Note that at least one of the base station and the mobile station includes a device that does not necessarily move during a communication operation. For example, at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 基地 In addition, the base station in the present disclosure may be replaced with a user terminal. For example, communication between a base station and a user terminal is replaced with communication between a plurality of user terminals (for example, it may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.). As for the configuration, each aspect / embodiment of the present disclosure may be applied. In this case, the configuration may be such that the user terminal 20 has the function of the base station 10 described above. Further, words such as “up” and “down” may be read as words corresponding to communication between terminals (for example, “side”). For example, an uplink channel, a downlink channel, and the like may be replaced with a side channel.
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。 Similarly, the user terminal in the present disclosure may be replaced with a base station. In this case, the base station 10 may have the function of the user terminal 20 described above.
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。 In the present disclosure, an operation performed by the base station may be performed by an upper node (upper node) in some cases. In a network including one or more network nodes having a base station (network @ nodes), various operations performed for communication with a terminal include a base station, one or more network nodes other than the base station (eg, Obviously, it can be performed by MME (Mobility @ Management @ Entity), S-GW (Serving-Gateway), etc., but not limited thereto, or a combination thereof.
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 各 Each aspect / embodiment described in the present disclosure may be used alone, may be used in combination, or may be switched and used in execution. In addition, the order of the processing procedure, sequence, flowchart, and the like of each aspect / embodiment described in the present disclosure may be changed as long as there is no inconsistency. For example, for the methods described in this disclosure, elements of the various steps are presented in an exemplary order, and are not limited to the specific order presented.
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。 Each aspect / embodiment described in the present disclosure is applicable to LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication). system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access), GSM (Registered trademark) (Global System for Mobile Communications), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802. 20, UWB (Ultra-WideBand), Bluetooth (registered trademark) , A system using other appropriate wireless communication methods, a next-generation system extended based on these systems, and the like. A plurality of systems may be combined (for example, a combination of LTE or LTE-A and 5G) and applied.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 記載 The term "based on" as used in the present disclosure does not mean "based solely on" unless stated otherwise. In other words, the description "based on" means both "based only on" and "based at least on."
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 い か な る Any reference to elements using designations such as "first," "second," etc., as used in this disclosure, does not generally limit the quantity or order of those elements. These designations may be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not mean that only two elements can be employed or that the first element must precede the second element in some way.
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。 用語 The term "determining" as used in this disclosure may encompass a wide variety of actions. For example, "judgment (determination)" means judging, calculating, computing, processing, deriving, investigating, searching (up, search, inquiry) ( For example, a search in a table, database, or another data structure), ascertaining, etc., may be regarded as "deciding".
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。 In addition, “determination” includes receiving (eg, receiving information), transmitting (eg, transmitting information), input (input), output (output), and access ( accessing) (e.g., accessing data in a memory) or the like.
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。 Also, “judgment (decision)” is regarded as “judgment (decision)” of resolving, selecting, selecting, establishing, comparing, and the like. Is also good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of any operation.
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 判断 Also, “judgment (decision)” may be read as “assuming”, “expecting”, “considering”, or the like.
 本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。 The “maximum transmission power” described in the present disclosure may mean the maximum value of the transmission power, may mean the nominal maximum transmission power (the nominal UE maximum transmit power), or may refer to the rated maximum transmission power (the rated UE maximum transmit power).
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。 As used in this disclosure, the terms "connected," "coupled," or any variation thereof, refer to any direct or indirect connection or coupling between two or more elements. And may include the presence of one or more intermediate elements between two elements "connected" or "coupled" to each other. The coupling or connection between the elements may be physical, logical, or a combination thereof. For example, “connection” may be read as “access”.
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 In the present disclosure, where two elements are connected, using one or more wires, cables, printed electrical connections, etc., and as some non-limiting and non-exhaustive examples, the radio frequency domain, microwave It can be considered to be "connected" or "coupled" to each other using electromagnetic energy having a wavelength in the region, the light (both visible and invisible) regions, and the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 に お い て In the present disclosure, the term “A and B are different” may mean that “A and B are different from each other”. The term may mean that “A and B are different from C”. Terms such as "separate" and "coupled" may be construed similarly to "different."
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 Where the terms “include”, “including” and variations thereof are used in the present disclosure, these terms are as inclusive as the term “comprising” It is intended. Further, the term "or" as used in the present disclosure is not intended to be an exclusive or.
 本開示において、例えば、英語でのa、an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In the present disclosure, if articles are added by translation, for example, a, an, and the in English, the present disclosure may include that the nouns following these articles are plural.
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。 Although the invention according to the present disclosure has been described in detail above, it is obvious to those skilled in the art that the invention according to the present disclosure is not limited to the embodiments described in the present disclosure. The invention according to the present disclosure can be embodied as modifications and changes without departing from the spirit and scope of the invention determined based on the description in the claims. Therefore, the description of the present disclosure is intended to be illustrative and does not bring any restrictive meaning to the invention according to the present disclosure.

Claims (6)

  1.  複数のセルにそれぞれ対応する複数の上り共有チャネル送信を行う送信部と、
     実際の前記複数の上り共有チャネル送信にそれぞれ基づく複数のパワーヘッドルーム(PH)を、前記複数の上り共有チャネル送信の1つにおいて報告する制御部と、を有することを特徴とするユーザ端末。
    A transmitting unit that performs a plurality of uplink shared channel transmissions respectively corresponding to the plurality of cells,
    A user terminal, comprising: a control unit that reports a plurality of power headrooms (PHs) based on actual plurality of uplink shared channel transmissions in one of the plurality of uplink shared channel transmissions.
  2.  前記制御部は、前記複数のPHのそれぞれの計算の処理時間と、前記複数の上り共有チャネル送信のそれぞれが設定グラント上り共有チャネル送信であるかと、の少なくとも1つに基づいて、前記複数のPHが実際の前記複数の上り共有チャネル送信に基づくかを決定することを特徴とする請求項1に記載のユーザ端末。 The control unit is configured to calculate the plurality of PHs based on at least one of a processing time of each calculation of the plurality of PHs and whether each of the plurality of uplink shared channel transmissions is a set grant uplink shared channel transmission. 2. The user terminal according to claim 1, wherein it is determined whether or not is based on actual transmission of the plurality of uplink shared channels.
  3.  前記制御部は、前記設定グラント上り共有チャネル送信のタイプに基づいて、前記設定グラント上り共有チャネル送信が実際の前記複数の上り共有チャネル送信に基づくかを決定することを特徴とする請求項2に記載のユーザ端末。 The method according to claim 2, wherein the control unit determines whether the set grant uplink shared channel transmission is based on actual transmission of the plurality of uplink shared channels based on the type of the set grant uplink shared channel transmission. User terminal as described.
  4.  前記制御部は、前記上り共有チャネル送信のスケジューリングのための下り共有チャネルのタイミングと、前記上り共有チャネル送信のタイミングと、前記複数の上り共有チャネル送信のそれぞれが設定グラント上り共有チャネル送信であるかと、の少なくとも1つに基づいて、前記報告に用いられる上り共有チャネル送信を決定することを特徴とする請求項1から請求項3のいずれかに記載のユーザ端末。 The controller, the timing of the downlink shared channel for scheduling of the uplink shared channel transmission, the timing of the uplink shared channel transmission, and whether each of the plurality of uplink shared channel transmission is a set grant uplink shared channel transmission 4. The user terminal according to claim 1, wherein an uplink shared channel transmission used for the report is determined based on at least one of the following.
  5.  前記制御部は、前記設定グラント上り共有チャネル送信のサイズに基づいて、前記報告に用いられる上り共有チャネル送信を決定することを特徴とする請求項4に記載のユーザ端末。 The user terminal according to claim 4, wherein the control unit determines the uplink shared channel transmission used for the report based on the size of the set grant uplink shared channel transmission.
  6.  複数のセルにそれぞれ対応する複数の上り共有チャネル送信を受信する受信部と、
     実際の前記複数の上り共有チャネル送信にそれぞれ基づく複数のパワーヘッドルーム(PH)を、前記複数の上り共有チャネル送信の1つにおいて取得する制御部と、を有することを特徴とする基地局。
    A receiving unit that receives a plurality of uplink shared channel transmissions respectively corresponding to the plurality of cells,
    A base station, comprising: a control unit that acquires a plurality of power headrooms (PHs) based on actual plurality of uplink shared channel transmissions in one of the plurality of uplink shared channel transmissions.
PCT/JP2018/025781 2018-07-06 2018-07-06 User equipment and base station WO2020008645A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/025781 WO2020008645A1 (en) 2018-07-06 2018-07-06 User equipment and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/025781 WO2020008645A1 (en) 2018-07-06 2018-07-06 User equipment and base station

Publications (1)

Publication Number Publication Date
WO2020008645A1 true WO2020008645A1 (en) 2020-01-09

Family

ID=69060832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/025781 WO2020008645A1 (en) 2018-07-06 2018-07-06 User equipment and base station

Country Status (1)

Country Link
WO (1) WO2020008645A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016506199A (en) * 2013-01-03 2016-02-25 エルジー エレクトロニクス インコーポレイティド Method and apparatus for transmitting an uplink signal in a wireless communication system
JP2017507610A (en) * 2014-03-12 2017-03-16 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Power headroom reporting for MTC devices in extended coverage mode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016506199A (en) * 2013-01-03 2016-02-25 エルジー エレクトロニクス インコーポレイティド Method and apparatus for transmitting an uplink signal in a wireless communication system
JP2017507610A (en) * 2014-03-12 2017-03-16 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Power headroom reporting for MTC devices in extended coverage mode

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OPPO: "Discussion on PHR and other issues for LTE-NR dual connectivity", 3GPP TSG RAN WG1 MEETING 90BIS R1-1718056, 13 October 2017 (2017-10-13) *

Similar Documents

Publication Publication Date Title
WO2019244218A1 (en) User terminal
WO2019244221A1 (en) User terminal
WO2020053978A1 (en) User equipment and wireless communication method
WO2020026296A1 (en) User terminal and wireless communication method
WO2019193700A1 (en) User terminal and wireless base station
WO2019049282A1 (en) User terminal and radio communication method
WO2019087340A1 (en) User equipment and wireless communication method
WO2020016934A1 (en) User equipment
WO2020031353A1 (en) User terminal and wireless communication method
WO2020035947A1 (en) Radio communication device and radio communication method
WO2020053941A1 (en) User terminal and wireless communication method
WO2020039484A1 (en) User equipment
WO2020035956A1 (en) User terminal and wireless communication method
WO2020003443A1 (en) User equipment and radio base station
WO2020053942A1 (en) User terminal and wireless communication method
WO2020008649A1 (en) User equipment and wireless communication method
WO2020031387A1 (en) User equipment and wireless communication method
WO2019180886A1 (en) User equipment and wireless communication method
WO2020026291A1 (en) User terminal
WO2019193731A1 (en) User terminal and wireless base station
WO2020035954A1 (en) User equipment and radio communication method
WO2020016938A1 (en) User equipment
WO2020003523A1 (en) User terminal
WO2019142330A1 (en) User terminal and wireless communication method
WO2018124032A1 (en) User terminal and wireless communications method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18925498

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18925498

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP