WO2020006853A1 - 血管压力差修正方法、装置和设备 - Google Patents

血管压力差修正方法、装置和设备 Download PDF

Info

Publication number
WO2020006853A1
WO2020006853A1 PCT/CN2018/103783 CN2018103783W WO2020006853A1 WO 2020006853 A1 WO2020006853 A1 WO 2020006853A1 CN 2018103783 W CN2018103783 W CN 2018103783W WO 2020006853 A1 WO2020006853 A1 WO 2020006853A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood vessel
vascular
bifurcation
area
lumen
Prior art date
Application number
PCT/CN2018/103783
Other languages
English (en)
French (fr)
Inventor
涂圣贤
余炜
黄佳悦
陈韵岱
严福华
Original Assignee
博动医学影像科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 博动医学影像科技(上海)有限公司 filed Critical 博动医学影像科技(上海)有限公司
Priority to US17/266,253 priority Critical patent/US11288811B2/en
Priority to EP18925706.6A priority patent/EP3818927A4/en
Priority to JP2021507675A priority patent/JP7074952B2/ja
Publication of WO2020006853A1 publication Critical patent/WO2020006853A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/149Segmentation; Edge detection involving deformable models, e.g. active contour models
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0066Optical coherence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/004Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02007Evaluating blood vessel condition, e.g. elasticity, compliance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/0215Measuring pressure in heart or blood vessels by means inserted into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1076Measuring physical dimensions, e.g. size of the entire body or parts thereof for measuring dimensions inside body cavities, e.g. using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4887Locating particular structures in or on the body
    • A61B5/489Blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6867Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive specially adapted to be attached or implanted in a specific body part
    • A61B5/6876Blood vessel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/20Drawing from basic elements, e.g. lines or circles
    • G06T11/203Drawing of straight lines or curves
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/20Editing of 3D images, e.g. changing shapes or colours, aligning objects or positioning parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/04Measuring blood pressure
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10101Optical tomography; Optical coherence tomography [OCT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30172Centreline of tubular or elongated structure
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2219/00Indexing scheme for manipulating 3D models or images for computer graphics
    • G06T2219/008Cut plane or projection plane definition

Definitions

  • the invention belongs to the field of medical technology, and particularly relates to a method, a device, and a device for correcting a vascular pressure difference.
  • OCT optical coherence tomography
  • IVUS Intravascular Ultrasound
  • OCT optical coherence tomography
  • the technology uses near-infrared light as the light source and uses the interference rule of light waves for imaging.
  • the light signals of the tissue scanned by the light beam are converted into electrical signals.
  • After processing by the computer they are displayed as two-dimensional and three-dimensional images of gray or pseudo-color images. Because the wavelength of light is shorter than that of acoustic waves, optical coherence tomography has a higher resolution, which can reach 10-20um.
  • OCT optical coherence tomography
  • the method includes: receiving a plurality of cross-section data sets, the data set representing a cross-section geometry of a main branch covering a length of the main branch. Receive position data of the cutting plane of the main branch, the cutting plane intersecting at least partially with the side branches and the cutting plane, the cutting plane intersecting with the section at an angle; based on at least a portion of the data of the multiple section data sets, in the cutting plane Image data for the structural cross-section of the main branch.
  • the main branch refers to the main branch blood vessel in the coronary artery
  • the side branch is the side branch blood vessel communicating with the main branch blood vessel.
  • the vascular pressure difference can be calculated based on the vascular geometric parameters.
  • Vascular pressure difference is the pressure difference between the proximal start point and the distal end point of the vascular segment of interest. It is a parameter that can effectively reflect the blood supply function of the blood vessel. Since the FFR (Fractional Flow Reserve) is approximately equal to the ratio of the pressure P d and P a proximal end of the coronary artery distal pressure from the pressure vessel between P d and P a difference obtained from the measurement P a can be calculated FFR.
  • FFR Fractional Flow Reserve
  • patent document CN108022650A a method for calculating a vascular pressure difference based on the parameters of a main branch vessel and a side branch vessel is disclosed.
  • the geometric parameters of the side branch vessels are acquired and the geometric model of the ideal vessel lumen geometric model is disclosed.
  • the calculation problem but in this method, there is still a problem of how to correct the value of the vascular pressure difference.
  • the purpose of the present invention is to provide a method, a device and a device for correcting a vascular pressure difference.
  • An intracavity image imaging technology is used to acquire images in a main branch blood vessel, obtain multiple blood vessel cross sections through the image, and directly calculate the side branch blood vessel cuts from the blood vessel cross section The area of the plane, and this cut area is then used to correct the vascular pressure difference.
  • One of the embodiments of the present invention is a method for correcting a blood vessel pressure difference.
  • the blood vessels involved in the method include a first blood vessel and a second blood vessel.
  • the first blood vessel intersects and communicates with the second blood vessel.
  • the demarcation point is the bifurcation point.
  • the calculation method includes:
  • the proximal end point of the first blood vessel and the second blood vessel is taken as the second end point
  • the bifurcation point is taken as the first end point to obtain a plurality of points between the first end point and the second end point.
  • the blood vessel section forms a contour line on the first blood vessel tube wall and the second blood vessel tube wall;
  • a contour line formed on a first blood vessel tube wall by the blood vessel cross section surrounds a plurality of first blood vessel convex surfaces
  • a contour line formed on the wall of the second blood vessel tube by the blood vessel section surrounds a plurality of convex surfaces of the second blood vessel;
  • a first blood vessel cross section and a second blood vessel convex surface intersect to form a plurality of intersection lines;
  • the cutting plane is the cross section of the second blood vessel that crosses the bifurcation point perpendicular to the center line of the second blood vessel.
  • the area of the cutting plane is used to correct the vascular pressure difference.
  • the first blood vessel may be a main branch blood vessel in a coronary artery
  • the second blood vessel may be a side branch blood vessel in a coronary artery.
  • One of the embodiments of the present invention is a method for correcting vascular pressure difference.
  • the method includes:
  • an intraluminal tomographic image of a vessel segment of interest including a proximal start point, at least one bifurcation point, and a distal end point;
  • the centerline parameters of the lateral vessels are extracted.
  • the blood vessel pressure difference is corrected based on the cut area of the side branch vessels.
  • a vascular pressure difference correction device is used to correct a calculation result of a vascular pressure difference.
  • the device includes an image imaging probe, a memory, and one or more processors coupled to the memory.
  • the processor is configured to execute instructions stored in the memory, to perform imaging processing on the image data obtained by the image imaging probe,
  • the blood vessels involved in the calculation of the blood pressure difference include a first blood vessel and a second blood vessel.
  • the first blood vessel intersects and communicates with the second blood vessel.
  • the distal boundary point between the first blood vessel and the second blood vessel is a bifurcation point.
  • An image imaging probe is used to obtain the first endpoint and the second endpoint along the centerline of the first blood vessel, with the proximal boundary point between the first and second blood vessels as the second endpoint and the bifurcation point as the first endpoint.
  • Multiple vessel sections between endpoints; the processor does the following:
  • the blood vessel section forms a contour line on the first blood vessel tube wall and the second blood vessel tube wall;
  • a contour line formed on the first blood vessel tube wall by the blood vessel cross section surrounds a plurality of first blood vessel cross sections
  • a contour line formed on the wall of the second blood vessel tube by the blood vessel section surrounds a plurality of convex surfaces of the second blood vessel;
  • a first blood vessel cross section and a second blood vessel convex surface intersect to form a plurality of intersection lines;
  • the area of the cutting plane is used to correct the vascular pressure difference.
  • the image signal processing unit is connected to the image imaging probe through a feeder.
  • the feeder is used to provide power to the image imaging probe, and at the same time, the signal of the image imaging probe is transmitted back to the image signal processing unit.
  • the output end of the image signal processing unit is connected to the processor, so that the processor obtains image data in the first blood vessel and the second blood vessel.
  • the display is connected with the processor, and is used for displaying the intravascular image obtained by the image imaging probe and the data of the calculated cutting plane.
  • the operation input unit is connected to the processor and is used for setting operation parameters of the image imaging probe.
  • a vascular pressure difference correction device includes a vascular image data generating device, a vascular pressure difference calculation device, and a vascular pressure difference correction device.
  • the output end of the vascular image data generating device is connected to the input end of the vascular pressure difference calculation device and the input end of the vascular pressure difference correction device.
  • the blood vessel pressure difference calculation device obtains the blood vessel pressure difference value after obtaining the blood vessel image data from the blood vessel image data generating device,
  • the vascular pressure difference correction device calculates and obtains the area data of the cutting plane of the side branch blood vessel from the vascular image data generating device receiving the vascular image, receives the vascular pressure difference value from the vascular pressure difference calculating device, and calculates the value obtained according to the area data of the cutting plane
  • the vascular pressure difference value is corrected to obtain a corrected vascular pressure difference value.
  • One of the beneficial effects of the embodiments of the present invention is that the contour lines of the cross section of the main branch and the convex surface of the side branch are extracted from the sequence images directly obtained in the main branch blood vessel by the OCT or IVUS image imaging probe, and the two contour lines are formed by the intersection The sequence of intersection lines is fitted to the intersection surface, and the cutting plane of the side branch is converted from the intersection surface.
  • the calculation method in the prior art is improved, the estimation error in the existing calculation method is eliminated, and the calculation accuracy of the side branch geometric parameters is improved.
  • One of the beneficial effects of the embodiments of the present invention is that, by using the calculation method of the geometric parameters of the side branches provided by the embodiments, the vascular lumen geometric model is reconstructed by establishing the blood vessel segmentation.
  • the centerline parameters of the side branch vessels are extracted, and the cross section of the side branch vessels is made on the center line.
  • the area of the cross section is calculated as the cutting area of the side branch vessels.
  • the vascular pressure difference of the vascular segment is corrected based on the cut area, and the accuracy of calculating the blood flow reserve fraction FFR is improved.
  • a vascular geometric parameter detection device including an image imaging probe, a memory, an image signal processing unit, a display, a processor, and an operation input unit provides a cardiologist with a A tool to quickly detect and calculate the geometric parameters of the side support.
  • FIG. 1 is a schematic cross-sectional view of blood vessels of a main branch vessel and a side branch vessel in an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of multiple intersection lines in an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a cutting plane in the embodiment of the present invention.
  • FIG. 4 is a lateral side view of FIG. 1.
  • FIG. 5 is a schematic diagram of obtaining an intravascular image by an OCT probe according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of the intersection of the main convex surface and the edge convex surface of the cross section of the blood vessel in the embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a multifurcation vessel lumen model in the embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a composition of a vascular pressure difference correction device according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a composition of a vascular pressure difference correction device according to an embodiment of the present invention.
  • 300 the main branch centerline
  • 301 the first main convex surface
  • 302 the third main convex surface
  • 303 the nth main convex surface
  • 400 the centerline of the side support, 401—the first side convex surface, 402—the third side convex surface, 403—the nth side convex surface,
  • the first blood vessel is a main branch 100 and the second blood vessel is a side branch 200.
  • the main branch 100 intersects with the side branch 200 at an angle.
  • the distal end of the main branch 100 and the side branch 200 is a bifurcation point 500.
  • the vascular pressure difference correction method of the side branch 200 includes:
  • the proximal end point of the main branch 100 and the side branch 200 is used as the second endpoint, and the bifurcation point 500 is used as the first endpoint to obtain the multiple points between the first endpoint and the second endpoint.
  • the blood vessel section forms a contour line on the main branch wall 102 and the side branch wall 202.
  • a contour line formed on the main branch wall 102 of the blood vessel section surrounds a plurality of main convex surfaces, for example, the first main convex surface 301, the third main convex surface 302, and the n-th main convex surface 303 in FIG. 1.
  • the contour line formed on the side branch wall 202 of the blood vessel section surrounds a plurality of convex surfaces, such as the first convex surface 401, the third convex surface 402, and the n-th convex surface 403 in FIG.
  • the main section intersects with the convex surface to form a plurality of intersection lines, such as the first intersection line 601, the third intersection line 602, and the n-th intersection line 603 in FIG. 2.
  • intersection lines are fitted into an intersection surface, as shown in the intersection surface 600 shown in FIG. 2.
  • the area of the cutting plane 700 is calculated from the intersection surface.
  • the cutting plane 700 is shown in FIGS. 2 and 3.
  • the cutting plane 700 is a side branch cross section of the crossing bifurcation point 500 perpendicular to the side branch center line 400.
  • Area of the cutting plane 700 (area of the intersecting surface 600) * (sinusoidal value of the angle between the centerline 300 of the main branch blood vessel and the centerline 400 of the side branch blood vessel).
  • the area of the cutting plane 700 is used to correct the vascular pressure difference.
  • calculating the area of the cutting plane further includes:
  • the boundary formed by the cross sections of multiple blood vessels is intended to form a circular opening of the second blood vessel on the first blood vessel;
  • the included angle ⁇ can range from 0 to 180 degrees.
  • the spacing between the respective blood vessel sections is equal.
  • the blood vessel cross-section is obtained by scanning the probe 800 of the OCT along the centerline direction 300 of the main branch in the main branch.
  • the probe 800 of the OCT passes through the intersecting communication area between the main branch and the side branch at a constant speed.
  • the direction in which the OCT probe 800 moves is from the first endpoint to the second endpoint.
  • the method of operation is to first move the OCT probe 800 to the distal end of the main branch, then retreat at a constant speed, and pass through the area where the main branch and the side branch intersect to obtain multiple blood vessel cross-sectional images.
  • the diameters of the main branches are not uniform.
  • the OCT probe here can also be an IVUS probe.
  • a vascular pressure difference correction method includes:
  • an intraluminal tomographic image of a vessel segment of interest including a proximal start point, at least one bifurcation point, and a distal end point;
  • the centerline parameters of the lateral vessels are extracted.
  • the blood vessel pressure difference is corrected based on the cut area of the side branch vessels.
  • the vascular segment includes a main branch vessel and a side branch vessel.
  • the geometric parameters include the main branch vessel lumen area and the side branch vessel lumen area.
  • the side branch vessel lumen area is also referred to as the cutting plane of the side branch vessel.
  • the bifurcation point is perpendicular to the cross-section of the side branch vessel perpendicular to the center line of the side branch vessel.
  • the blood vessel segment has a plurality of side branch vessels, and the main branch vessel is divided into a plurality of blood vessel segments according to a bifurcation point of the side branch vessels. It is assumed that the geometric model parameters of the blood vessel segment are embodied by the radius or diameter of the cross section of the blood vessel.
  • the geometric model of the blood vessel lumen of the blood vessel segment may refer to the Murry formula, the Finet formula, the HK formula, or the energy conservation model to calculate the parameters step by step.
  • the vessel segment between the bifurcation and the proximal end of the vessel is normal, and the vessel segment between the bifurcation and the distal end of the vessel is narrow, refer to the following method
  • the geometric parameters of the lumen model were calculated.
  • the blood vessel segment has 1 side branch blood vessel, and the main branch blood vessel is divided into 2 blood vessel segments according to the bifurcation point of the side branch blood vessel.
  • R 0 represents the radius of the proximal lumen of the vessel
  • S0 represents the area of the proximal lumen of the vessel)
  • R 1 represents the radius of the distal lumen of the vessel
  • S1 represents the area of the distal lumen of the vessel
  • C1 represents the vessel Proximal bifurcation cutting plane area
  • r 1 represents the radius of the proximal bifurcation cutting plane of the blood vessel.
  • the ideal lumen radius, diameter, or area of the stenosed segment of the distal end of the blood vessel can be obtained. Calculated as follows:
  • the vessel segment between the bifurcation and the proximal end of the vessel is narrow
  • the vessel segment between the bifurcation and the distal end of the vessel is normal.
  • the geometric parameters of the model are calculated.
  • the proximal bifurcation cutting plane area C1 is obtained
  • the distal lumen normal lumen area S1 where According to the Murray formula of the bifurcation shunt theorem, the ideal lumen radius, diameter, or area of the proximal stenosis of the blood vessel can be obtained. Calculated as follows:
  • the parameters such as the ideal lumen radius, diameter, or area of the stenosed segment of the blood vessel can be calculated using the formulas such as Finet, HK, or the energy conservation model of the bifurcation shunt theorem. If the calculation method obtained from the Murray formula of the bifurcation and shunt theorem is used as the method (1), then,
  • the ideal lumen radius, diameter, or area of the stenosis at the distal end of the vessel is obtained from the Finet formula in the bifurcation shunt theorem.
  • the calculation formula is:
  • the geometric parameter calculation process of the vascular lumen model includes:
  • the ideal lumen radius, diameter, or area of the proximal stenosis of the vessel is obtained from the bifurcation shunt theorem.
  • the calculation formula is:
  • the ideal lumen radius, diameter, or area of the stenosed segment of the distal end of the vessel is obtained from the HK formula in the bifurcation shunt theorem.
  • the calculation formula is:
  • the geometric parameter calculation process of the vascular lumen model includes:
  • the ideal lumen radius, diameter, or area of the proximal stenosis of the vessel is obtained from the bifurcation shunt theorem.
  • the calculation formula is:
  • the geometric parameter calculation process of the vascular lumen model includes:
  • the energy conservation model is used to obtain the ideal lumen radius, diameter or area of the proximal stenosis of the blood vessel.
  • the calculation formula is:
  • R 0 represents the radius of the proximal lumen of the blood vessel
  • R 1 is the radius of the distal lumen of the vessel
  • C1 represents the area of the proximal bifurcation cutting plane of the blood vessel
  • r 1 represents the radius of the proximal bifurcation cutting plane of the blood vessel.
  • the ideal lumen radius, diameter, and area of the stenosed segment of the blood vessel can be calculated step by step according to the above-mentioned method by the bifurcation shunt theorem.
  • the geometric parameters of the vascular lumen geometric model of the plurality of vascular segments are one or a combination of the following parameters: the cross-sectional area of the vascular lumen, the diameter of the vascular lumen, and the radius of the vascular lumen.
  • the geometric parameters include a first geometric parameter, which represents the area or diameter of the cross section of the distal end of the vascular segment; a second geometric parameter, which represents the interval from the stenosed part to the distal end of the vascular segment.
  • the cross-sectional area or diameter of the first bifurcation; the third geometric parameter represents the cross-sectional area or diameter of the second bifurcation of the stenosis from the vascular segment to the distal end; ...; the 1 + n geometric parameter represents the The cross-sectional area or diameter of the n-th branch from the stenosis of the blood vessel segment to the distal end.
  • FIG. 8 is a schematic diagram of a composition of a vascular pressure difference correction device according to an embodiment of the present invention.
  • a vascular pressure difference correction device comprising an OCT probe, a memory, an image signal processing unit, a display and an operation input unit, and one or more processors coupled to the memory,
  • the image signal processing unit is connected to the OCT probe 800 through a feeder.
  • the feeder is used to provide power to the light source of the OCT probe 800, and at the same time, the signal of the OCT probe 800 is transmitted back to the image signal processing unit.
  • the output end of the image signal processing unit is connected to the processor, so that the processor obtains the image data in the main branch and the side branch.
  • the display is connected to the processor, and is configured to display the intravascular image obtained by the OCT probe 800 and the calculated data of the cutting plane 700.
  • the operation input unit is connected to the processor and is used to set the operating parameters of the OCT probe 800.
  • the processor is configured to execute instructions stored in the memory, and the processor performs the following operations:
  • the OCT probe 800 along the direction of the main branch center line 300, with the proximal end point of the main branch 100 and the side branch 200 as the second end point, and the bifurcation point 500 as the first end point, obtain the first end point and the third end point.
  • a contour line formed on the main branch wall 102 of the blood vessel section surrounds a plurality of main convex surfaces.
  • a contour line formed on the side branch wall 202 of the blood vessel section surrounds a plurality of side convex surfaces.
  • the main convex surface and the edge convex surface intersect to form a plurality of intersection lines.
  • the plurality of intersection lines are fitted into an intersection surface 600.
  • the area of the cutting plane 700 is calculated from the intersection plane 600.
  • Area of the cutting plane 700 (area of the intersecting surface 600) * (sinusoidal value of the angle between the centerline 300 of the main branch blood vessel and the centerline 400 of the side branch blood vessel). Then, the area of the cutting plane 700 is used to correct the blood vessel pressure difference.
  • the OCT probe here can also be an IVUS probe.
  • a vascular pressure difference correction device includes a vascular image data generation device, a vascular pressure difference calculation device, and a vascular pressure difference correction device.
  • the output end of the vascular image data generating device is connected to the input end of the vascular pressure difference calculation device and the input end of the vascular pressure difference correction device, and the other input end of the vascular pressure difference correction device is connected to the output end of the vascular pressure difference calculation device.
  • the blood vessel pressure difference calculation device obtains the blood vessel pressure difference value after obtaining the blood vessel image data from the blood vessel image data generating device,
  • the vascular pressure difference correction device receives from the vascular image data generation device the area data of the cutting plane of the side branch blood vessels calculated according to the method described in the first embodiment, and receives the vascular pressure difference value from the vascular pressure difference calculation device.
  • the area data of the cutting plane is used to correct the vascular pressure difference value that has been obtained to obtain a corrected vascular pressure difference value.
  • the blood vessel image data generating device includes a blood vessel image acquisition device, a blood vessel image transmission device, and a blood vessel image processing device.
  • the output end of the blood vessel image acquisition device is connected to the blood vessel image transmission device, the blood vessel image processing device, and the blood vessel image processing device in this order.
  • the output end is connected to the input end of the vascular pressure difference calculation device and the input end of the vascular pressure difference correction device.
  • the blood vessel image data generating device adopts a vascular lumen tomography imaging contrast method or an intravascular ultrasound contrast method to obtain geometrical data of the vascular lumen, including adopting OCT or IVUS technology.
  • the vascular pressure difference correction device may correct the vascular pressure difference value based on the data obtained from the vascular image processing device using the calculation method of the vascular official cavity geometric parameters (for example, the area of the side branch vessel cutting plane) involved in the first embodiment;
  • the vascular pressure difference correction device described in the third embodiment can also be used to independently obtain the geometric parameters of the vascular cavity (for example, the area of the cutting plane of the side branch blood vessels), and correct the vascular pressure difference value according to the set parameter.
  • the program can be stored in a computer-readable storage medium.
  • the program When executed, the processes of the embodiments of the methods described above may be included.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random, Access Memory, RAM).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Vascular Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physiology (AREA)
  • Cardiology (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computer Graphics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Architecture (AREA)
  • Artificial Intelligence (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Endoscopes (AREA)

Abstract

血管压力差修正方法,包括:沿第一血管(100)主轴方向,以第一血管(100)与第二血管(200)的近端分界点为第二端点,以分叉嵴点(500)为第一端点,获取第一端点与第二端点间的多个血管截面;血管截面在第一血管管壁(102)和第二血管管壁(202)上形成轮廓线;血管截面在第一血管管壁(102)上形成的轮廓线围成多个第一血管截面;血管截面在第二血管管壁(202)上形成的轮廓线围成多个第二血管凸面(401,402,403);第一血管截面与第二血管凸面(301,302,303)相交形成多条相交线(601,602,603);将多条相交线(601,602,603)拟合成相交面(600);根据相交面(600)计算获得切割平面(700)的面积,切割平面(700)是过分叉嵴点(500)垂直于第二血管中心线(400)的第二血管截面,用切割平面(700)的面积对血管压力差进行修正。

Description

血管压力差修正方法、装置和设备 技术领域
本发明属于医疗技术领域,特别涉及一种血管压力差修正方法、装置和设备。
背景技术
对于冠状动脉分叉病变的边支评估,在临床实践和科学上一直是具有挑战性的。在用造影技术进行这种边支评估过程中,使用的造影技术涉及光学相干断层成像(Optical Coherence Tomography,OCT),这是一种高分辨率断层成像技术,和血管内超声(Intravascular Ultrasound,IVUS)原理类似,该技术以近红外线作为光源,利用光波的干涉法则进行成像,将光束扫描组织的光信号转换成电信号,经过计算机处理后显示为灰色图或伪彩色图的二维和三维图像。由于光的波长较声波更短,光学相干断层成像具有更高的分辨率,可达10~20um。和血管内超声相比,光学相干断层成像能够提供更为快速、清晰的图像,并且更精确地显示血管壁的具体形态情况(内部是否堵塞、堵塞面积、大小等)。
与冠状动脉分叉病变的边支评估相关的,本申请的发明人在早先的美国专利申请公开的专利文献US20150238121A1中,公开了一种确定血管的主支的边支的至少一个几何参数的方法,该方法包括:接收多个横截面数据集,该数据集表示覆盖一段主支长度的主支截面几何形状。接收主支的切割平面的位置数据,该切割平面至少部分地与侧面分支和切割平面相交,所述切割平面与截面相交成一个角度;基于多个截面数据集的至少一部分数据,在切割平面中构建主支的构造横截面的图像数据。接收轮廓数据,该轮廓数据定义所构建的横截面中的轮廓,轮廓被设置在边支中。通过确定轮廓的几何参数来确定几何参数。主支是指冠状动脉中的主支血管,边支是与主支血管连通的边支血管。
在获得了包括血管直径或横截面积等的血管几何参数后,根据血管几何参数可以计算血管压力差。血管压力差是感兴趣血管段近端起点和远端终点之间的压力差值,是一个可以有效反应血管供血功能的参数。由于FFR(血流储备分数)约等于冠状动脉远端压力P d与冠状动脉近端压力P a的比值,从P d与P a间的血管压力差,从测量获得的P a即可计算出FFR。
在专利文献CN108022650A,公开了一种基于主支血管和边支血管参数计算血管压力 差的方法,在该方法中,涉及到对边支血管几何参数的获取,以及对理想血管管腔几何模型的计算问题,但在该方法中仍然存在对于血管压力差的数值如何修正的问题。
发明内容
本发明的目的是提供一种血管压力差修正方法、装置和设备,采用腔内图像成像技术在主支血管内采集影像,通过影像获得多个血管截面,由血管截面直接计算得到边支血管切割平面的面积,然后用该切割面积修正血管压力差。
本发明的实施例之一,一种血管压力差修正方法,给方法涉及的血管包括第一血管和第二血管,第一血管与第二血管相交连通,第一血管与第二血管的远端分界点为分叉嵴点。该计算方法包括:
沿第一血管中心线方向,以第一血管与第二血管的近端分界点为第二端点,以分叉嵴点为第一端点,获取第一端点与第二端点间的多个血管截面;
该血管截面在第一血管管壁和第二血管管壁上形成轮廓线;
所述血管截面在第一血管管壁上形成的轮廓线围成多个第一血管凸面;
所述血管截面在第二血管管壁上形成的轮廓线围成多个第二血管凸面;
第一血管截面与第二血管凸面相交形成多条相交线;
将所述的多条相交线拟合成相交面;
根据相交面计算获得切割平面的面积,切割平面是过分叉嵴点垂直于第二血管中心线的第二血管截面,
用所述切割平面的面积对血管压力差进行修正。
其中,第一血管可以是冠状动脉中的主支血管,第二血管可以是冠状动脉中的边支血管。
本发明的实施例之一,一种血管压力差修正方法,所述方法包括:
接收感兴趣的血管段腔内断层图像,该血管段包括近端起点、至少一个分叉嵴点、远端终点;
分割出断层图像中血管管腔轮廓,经过三维重建获得血管管腔几何模型;
根据所获得的血管管腔几何模型,提取出边支血管的中心线参数;
过分叉嵴点做垂直于边支血管中心线的截面;
计算边支血管在该截面上的面积S,即为边支血管的切割面积;
根据该边支血管的切割面积对血管压力差进行修正。
本发明实施例之一,一种血管压力差修正装置,用于对血管压力差的计算结果的修正,该装置包括图像成像探头、存储器,以及耦合到所述存储器的一个或多个处理器,处理器被配置为执行存储在所述存储器中的指令,对图像成像探头获得的图像数据进行成像处理,
涉及血管压力差计算的血管包括第一血管和第二血管,第一血管与第二血管相交连通,第一血管与第二血管的远端分界点为分叉嵴点,
采用图像成像探头,沿第一血管中心线方向,以第一血管与第二血管的近端分界点为第二端点,以分叉嵴点为第一端点,获取第一端点与第二端点间的多个血管截面;处理器执行以下操作:
该血管截面在第一血管管壁和第二血管管壁上形成轮廓线;
所述血管截面在第一血管管壁上形成的轮廓线围成多个第一血管截面;
所述血管截面在第二血管管壁上形成的轮廓线围成多个第二血管凸面;
第一血管截面与第二血管凸面相交形成多条相交线;
将所述的多条相交线拟合成相交面;
根据相交面计算获得切割平面的面积;
用所述切割平面的面积对血管压力差进行修正。
图像信号处理单元通过馈线与图像成像探头连接,馈线用于给图像成像探头提供电源,同时将图像成像探头的信号传输回图像信号处理单元。图像信号处理单元的输出端接入处理器,使得处理器获得第一血管和第二血管内的图像数据。显示器与处理器连接,用于显示图像成像探头获得的血管内图像以及计算得到的切割平面的数据。操作输入单元,与处理器连接,用于对图像成像探头的操作参数的设定。
本发明实施例之一,一种血管压力差修正设备,其包括血管图像数据生成装置、血管压力差计算装置和血管压力差修正装置,
血管图像数据生成装置的输出端分别接入血管压力差计算装置的输入端和血管压力差修正装置的输入端,血管压力差修正装置的另一个输入端与血管压力差计算装置的输出端连接,
血管压力差计算装置从血管图像数据生成装置获得血管图像数据后计算得到血管压力差数值,
血管压力差修正装置从血管图像数据生成装置接收血管图像中计算获得边支血管的切割平面的面积数据,从血管压力差计算装置接收血管压力差数值,根据所述切割平面的面积数据对已经获得的血管压力差数值进行修正,获得修正后的血管压力差数值。
本发明实施例的有益效果之一是,通过OCT或者IVUS图像成像探头在主支血管内直接获得的序列图像中,提取出主支截面和边支凸面的轮廓线,两种轮廓线相交形成的相交线序列拟合成相交面,从相交面换算出边支的切割平面。改进了现有技术中计算方法,修正排除了现有计算方法中的估算误差,提高了边支几何参数的计算精度。
本发明实施例的有益效果之一是,采用实施例提供的边支几何参数的计算方法,通过建立血管分段,重建出血管管腔几何模型。根据血管官腔几何模型提取出边支血管的中心线参数,在中心线上做边支血管截面,计算该截面的面积,即为边支血管的切割面积。根据该切割面积修正血管段的血管压力差,提高了计算血流储备分数FFR的准确度。
本发明实施例的有益效果之一是,通过包括图像成像探头、存储器、图像信号处理单元、显示器、处理器和操作输入单元的血管几何参数检测装置,为心脏病学工作者提供了一种可以快速检测计算边支几何参数的工具。
附图说明
通过参考附图阅读下文的详细描述,本发明示例性实施方式的上述以及其他目的、特征和优点将变得易于理解。在附图中,以示例性而非限制性的方式示出了本发明的若干实施方式,其中:
图1是本发明实施例中主支血管与边支血管的血管截面示意图。
图2是本发明实施例中多条相交线示意图。
图3是本发明实施例中切割平面示意图。
图4是图1的横侧视图。
图5是本发明实施例中OCT探头获取血管内图像示意图。
图6是本发明实施例中血管截面的主凸面与边凸面形成相交线示意图。
图7是本发明实施例中的多分叉血管管腔模型示意图。
图8是本发明实施例中血管压力差修正装置组成示意图。
图9是本发明实施例中血管压力差修正设备组成示意图。
100——主支,102——主支管壁,
200——边支,202——边支管壁,
300——主支中心线,301——第一主凸面,302——第三主凸面,303——第n主凸面,
400——边支中心线,401——第一边凸面,402——第三边凸面,403——第n边凸面,
500——分叉嵴点,
600——相交面,601——第一相交线,602——第三相交线,603——第n相交线,
700——切割平面,
800——OCT探头。
具体实施方式
实施例一
如图1和图4所示,第一血管是主支100,第二血管是边支200。主支100与边支200成角度相交连通,主支100与边支200的远端分界点为分叉嵴点500。边支200的血管压力差修正方法包括:
沿主支中心线300方向,以主支100与边支200的近端分界点为第二端点,以分叉嵴点500为第一端点,获取第一端点与第二端点间的多个血管截面。
血管截面在主支管壁102和边支管壁202上形成轮廓线。
血管截面在主支管壁102上形成的轮廓线围成多个主凸面,例如图1中的第一主凸面301、第三主凸面302和第n主凸面303。
血管截面在边支管壁202上形成的轮廓线围成多个边凸面,例如图1中第一边凸面401、第三边凸面402和第n边凸面403。
主截面与边凸面相交形成多条相交线,例如图2中第一相交线601、第三相交线602和第n相交线603。
将多条相交线拟合成相交面,如图2所示的相交面600。
根据相交面计算获得切割平面700的面积。如图2和3所示的切割平面700。切割平面700是过分叉嵴点500垂直于边支中心线400的边支截面。切割平面700的面积=(相交面600的面积)*(主支血管中心线300与边支血管中心线400的夹角的正弦值)。用切割平面700的面积对血管压力差进行修正。
根据一个或者多个实施例,如图1、4和6所示。在血管压力差修正计算中,计算切割平面的面积,进一步包括:
识别所述血管截面轮廓线上曲率变化最大的两个点,点A和点B;
将连接点A和点B的直线线段,作为第一血管和第二血管的交界线;
多个血管截面形成的交界线拟合成第二血管在第一血管上的圆形开口;
计算所述圆形开口的面积S 0
获取第一血管中心线与第二血管中心线之间的夹角θ,得到第二血管的切割平面的面积为:
S=S 0×sinθ    (1)
其中,夹角θ的取值范围可以是0~180度。
根据一个或多个实施例,如图4所示,各个血管截面之间的间距是相等的。
根据一个或多个实施例,如图5所示,所述血管截面是通过OCT的探头800在主支内沿主支中心线方向300扫描获得。OCT的探头800匀速通过主支内与边支的相交连通区域。OCT探头800移动的方向是从第一端点向第二端点移动。操作的方法是,首先将OCT探头800移动至主支的远端,然后以恒定速度回撤,经过主支与边支相交的区域,获得多个血管截面图像。实际上,主支血管的管径是不均匀的。这里的OCT探头也可以采用IVUS探头。
实施例二
根据一个或者多个实施例,一种血管压力差修正方法,该方法包括:
接收感兴趣的血管段腔内断层图像,该血管段包括近端起点、至少一个分叉嵴点、远端终点;
分割出断层图像中血管管腔轮廓,经过三维重建获得血管管腔几何模型;
根据所获得的血管管腔几何模型,提取出边支血管的中心线参数;
过分叉嵴点做垂直于边支血管中心线的截面;
计算边支血管在该截面上的面积S,即为边支血管的切割面积;
根据该边支血管的切割面积对血管压力差进行修正。
其中,血管段包括主支血管和边支血管,所述几何参数包括主支血管管腔面积和边支血管管腔面积,边支血管管腔面积也称为边支血管的切割平面,是过分叉嵴点垂直于边支血管中心线的边支血管截面。
根据一个或者多个实施例,所述血管段中具有多个边支血管,将主支血管按照边支血管的分叉嵴点分为多个血管分段。设血管段的几何模型参数以血管横截面的半径或直径进行体现,所述血管段的血管管腔的几何模型可以参考Murry公式、Finet公式、HK公式或者能量守恒模型对参数进行逐级计算。
如图7所示,当血管存在一个分叉,且分叉和血管近端起点之间的血管段正常,分叉 和血管远端终点之间的血管段存在狭窄时,可以参考以下方法对血管管腔模型的几何参数进行计算。血管段中具有1个边支血管,将主支血管按照边支血管的分叉嵴点分为2个血管分段。其中R 0表示血管近端管腔半径,R′ 0表示血管近端理想管腔半径(当血管近端管腔正常时,R 0=R′ 0,S0表示血管近端管腔面积);R 1表示血管远端管腔半径,R′ 1表示血管远端理想管腔半径(当血管远端管腔正常时,R 1=R′ 1,S1表示血管远端管腔面积);C1表示血管近端分叉切割平面面积,r 1表示血管近端分叉切割平面半径。
当获得近端分叉切割平面面积C1,血管近端正常管腔面积S0,其中
Figure PCTCN2018103783-appb-000001
Figure PCTCN2018103783-appb-000002
由分叉分流定理的Murray公式,可以求得血管远端狭窄段的理想管腔半径、直径或面积。计算公式如下:
Figure PCTCN2018103783-appb-000003
同样的,当血管存在一个分叉,且分叉和血管近端起点之间的血管段存在狭窄,分叉和血管远端终点之间的血管段正常时,可以参考上述类似方法对血管管腔模型的几何参数进行计算。当获得近端分叉切割平面面积C1,血管远端正常管腔面积S1,其中
Figure PCTCN2018103783-appb-000004
Figure PCTCN2018103783-appb-000005
由分叉分流定理的Murray公式,可以求得血管近端狭窄段的理想管腔半径、直径或面积。计算公式如下:
Figure PCTCN2018103783-appb-000006
进一步的,可以利用分叉分流定理的Finet、HK等公式或者能量守恒模型对血管狭窄段理想管腔半径、直径或面积等参数进行计算。如果将由分叉分流定理的Murray公式获得的计算方法作为方法(1),则有,
方法(2):当获得近端分叉切割平面面积C1,血管远端正常管腔面积S1,其中
Figure PCTCN2018103783-appb-000007
Figure PCTCN2018103783-appb-000008
由分叉分流定理中的Finet公式求得血管远端狭窄段的理想管腔半径、直径或面积,计算公式是:
R′ 1=1.475R 0-r 1    (4)
当血管存在一个分叉,且分叉和血管近端起点之间的血管段存在狭窄,分叉和血管远端终点之间的血管段正常时,血管管腔模型的几何参数计算过程包括:
当获得近端分叉切割平面面积C1,血管远端正常管腔面积S1,其中
Figure PCTCN2018103783-appb-000009
由分叉分流定理求得血管近端狭窄段的理想管腔半径、直径或面积,计算公式是:
R′ 0=0.678(R 1+r 1)    (5);
方法(3):当获得近端分叉切割平面面积C1,血管远端正常管腔面积S1,其中
Figure PCTCN2018103783-appb-000010
Figure PCTCN2018103783-appb-000011
由分叉分流定理中的HK公式求得血管远端狭窄段的理想管腔半径、直径或面积,计算公式是:
Figure PCTCN2018103783-appb-000012
当血管存在一个分叉,且分叉和血管近端起点之间的血管段存在狭窄,分叉和血管远端终点之间的血管段正常时,血管管腔模型的几何参数计算过程包括:
当获得近端分叉切割平面面积C1,血管远端正常管腔面积S1,其中
Figure PCTCN2018103783-appb-000013
由分叉分流定理求得血管近端狭窄段的理想管腔半径、直径或面积,计算公式是:
Figure PCTCN2018103783-appb-000014
方法(4):当获得近端分叉切割平面面积C1,血管远端正常管腔面积S1,其中
Figure PCTCN2018103783-appb-000015
Figure PCTCN2018103783-appb-000016
利用能量守恒模型,求得血管远端狭窄段的理想管腔半径、直径或面积,计算公式是:
Figure PCTCN2018103783-appb-000017
当血管存在一个分叉,且分叉和血管近端起点之间的血管段存在狭窄,分叉和血管远端终点之间的血管段正常时,血管管腔模型的几何参数计算过程包括:
当获得近端分叉切割平面面积C1,血管远端正常管腔面积S1,其中
Figure PCTCN2018103783-appb-000018
利用能量守恒模型,求得血管近端狭窄段的理想管腔半径、直径或面积,计算公式是:
Figure PCTCN2018103783-appb-000019
在上述公式(2)~(9)中,涉及的参数定义:
R 0表示血管近端管腔半径;
R′ 0表示血管近端理想管腔半径(当血管近端管腔正常时,R 0=R′ 0,S0表示血管近端管腔面积);
R 1表示血管远端管腔半径,
R′ 1表示血管远端理想管腔半径(当血管远端管腔正常时,R 1=R′ 1,S1表示血管远端管腔面积);
C1表示血管近端分叉切割平面面积;
r 1表示血管近端分叉切割平面半径。
进一步的,当血管存在多个分支,且部分血管段存在狭窄时,可以参照上述方式由分叉分流定理对血管狭窄段的理想管腔半径、直径和面积进行逐级计算。
进一步的,多个血管分段的血管段管腔几何模型的几何参数是以下参数的一种或其组合:血管管腔横截面积、血管管腔直径、血管管腔半径。考虑所述血管段中狭窄部位的情况,所述几何参数包括第一几何参数,代表该血管段远端横截面的面积或直径;第二几何参数,代表该血管段狭窄部位至远端终点区间第一分叉的横截面积或直径;第三几何参数,代表该血管段狭窄部位至远端终点区间第二分叉的横截面积或直径;……;第1+n几何参数,代表该血管段狭窄部位至远端终点区间第n分叉的横截面积或直径。
实施例三
如图8所示是本发明实施例中血管压力差修正装置组成示意图。
一种血管压力差修正装置,该装置包括OCT探头、存储器、图像信号处理单元、显示器和操作输入单元,以及耦合到所述存储器的一个或多个处理器,
图像信号处理单元通过馈线与OCT探头800连接,馈线用于给OCT探头800的光源提供电源,同时将OCT探头800的信号传输回图像信号处理单元。图像信号处理单元的输出端接入处理器,使得处理器获得主支和边支内的图像数据。显示器与处理器连接,用于显示OCT探头800获得的血管内图像以及计算得到的切割平面700的数据。操作输入单元与处理器连接,用于对OCT探头800操作参数的设定。
处理器被配置为执行存储在所述存储器中的指令,所述处理器执行以下操作:
采用OCT探头800,沿主支中心线300方向,以主支100与边支200的近端分界点为第二端点,以分叉嵴点500为第一端点,获取第一端点与第二端点间的多个血管截面。该血管截面在主支管壁102和边支管壁202上形成轮廓线。
所述血管截面在主支管壁102上形成的轮廓线围成多个主凸面。血管截面在边支管壁202上形成的轮廓线围成多个边凸面。
主凸面与边凸面相交形成多条相交线。将所述的多条相交线拟合成相交面600。根据 相交面600计算获得切割平面700的面积。切割平面700的面积=(相交面600的面积)*(主支血管中心线300与边支血管中心线400的夹角的正弦值)。然后,用切割平面700的面积对血管压力差进行修正。这里的OCT探头也可以采用IVUS探头。
实施例四
如图9所示,一种血管压力差修正设备,其包括血管图像数据生成装置、血管压力差计算装置和血管压力差修正装置,
血管图像数据生成装置的输出端分别接入血管压力差计算装置的输入端和血管压力差修正装置的输入端,血管压力差修正装置的另一个输入端与血管压力差计算装置的输出端连接,
血管压力差计算装置从血管图像数据生成装置获得血管图像数据后计算得到血管压力差数值,
血管压力差修正装置从血管图像数据生成装置接收血管图像中按照根据实施例一中所述方法计算获得的边支血管的切割平面的面积数据,从血管压力差计算装置接收血管压力差数值,根据所述切割平面的面积数据对已经获得的血管压力差数值进行修正,获得修正后的血管压力差数值,
优选的,所述血管图像数据生成装置包括血管图像采集装置、血管图像传输装置和血管图像处理装置,血管图像采集装置的输出端依次连接至血管图像传输装置、血管图像处理装置,血管图像处理装置的输出端分别连接血管压力差计算装置的输入端和血管压力差修正装置的输入端,
优选的,所述血管图像数据生成装置采用血管管腔断层成像造影方法或者血管内超声造影方法获得血管管腔几何数据,包括采用OCT或者IVUS技术。血管压力差修正装置可以根据从血管图像处理装置获得的数据,采用实施例一中涉及的血管官腔几何参数(例如,边支血管切割平面的面积)的计算方法,对血管压力差数值进行修正;也可以采用根据实施例三中所述的血管压力差修正装置,独立获取血管官腔几何参数(例如,边支血管切割平面的面积),根据该集合参数对血管压力差数值进行修正。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
值得说明的是,虽然前述内容已经参考若干具体实施方式描述了本发明创造的精神和原理。本发明并不限于所公开的具体实施方式,对各方面的划分也不意味着这些方面中的特征不能组合,这种划分仅是为了表述的方便。本发明旨在涵盖所附权利要求的精神和范围内所包括的各种修改和等同布置。

Claims (12)

  1. 一种血管压力差修正方法,该方法涉及的血管包括第一血管和第二血管,第一血管与第二血管相交连通,第一血管与第二血管的远端分界点为分叉嵴点,其特征在于,该方法包括:
    沿第一血管中心线方向,以第一血管与第二血管的近端分界点为第二端点,以分叉嵴点为第一端点,获取第一端点与第二端点间的多个血管截面;
    该血管截面在第一血管管壁和第二血管管壁上形成轮廓线;
    所述血管截面在第一血管管壁上形成的轮廓线围成多个第一血管凸面;
    所述血管截面在第二血管管壁上形成的轮廓线围成多个第二血管凸面;
    第一血管凸面与第二血管凸面相交形成多条相交线;
    将所述的多条相交线拟合成相交面;
    根据相交面计算获得切割平面的面积,切割平面是过分叉嵴点垂直于第二血管中心线的第二血管截面,
    用所述切割平面的面积对血管压力差进行修正。
  2. 根据权利要求1所述的血管压力差修正方法,其特征在于,所述计算切割平面的面积,进一步包括:
    识别所述血管截面轮廓线上曲率变化最大的两个点,点A和点B;
    将连接点A和点B的直线线段,作为第一血管和第二血管的交界线;
    多个血管截面形成的交界线拟合成第二血管在第一血管上的圆形开口;
    计算所述圆形开口的面积S 0
    获取第一血管中心线与第二血管中心线之间的夹角θ,得到第二血管的切割平面的面积为:
    S=S 0×sinθ       (1)
    优选的,夹角θ的取值范围是0~180度。
  3. 根据权利要求1所述的血管压力差修正方法,其特征在于,第一血管是冠状动脉中的主支血管,第二血管是冠状动脉中的边支血管。
  4. 根据权利要求1所述的血管压力差修正方法,其特征在于,所述血管截面是由血管内成像图像提取获得,
    优选的,血管腔内成像图像由图像成像探头在第一血管内沿第一血管中心线方向扫描获得。
    优选的,所述的图像成像探头是OCT图像传感器探头或者是IVUS图像传感器探头。
  5. 根据权利要求4所述的血管几何参数计算方法,其特征在于,图像成像探头移动通过第一血管内与第二血管的相交连通区域时,以等距离间隔获取第一血管内的图像,
    优选的,图像成像探头从第一端点向第二端点回撤移动时,获取多个血管截面。
  6. 一种血管压力差修正方法,其特征在于,所述方法包括:
    接收感兴趣的血管段腔内断层图像,该血管段包括近端起点、至少一个分叉嵴点、远端终点;
    分割出断层图像中血管管腔轮廓,经过三维重建获得血管管腔几何模型;
    根据所获得的血管管腔几何模型,提取出边支血管的中心线参数;
    过分叉嵴点做垂直于边支血管中心线的截面;
    计算边支血管在该截面上的面积S,即为边支血管的切割面积;
    根据该边支血管的切割面积对血管压力差进行修正。
  7. 根据权利要求6所述的血管压力差修正方法,其特征在于,所述血管段中存在至少一个分叉,且分叉和血管近端起点之间的血管段正常,分叉和血管远端终点之间的血管段存在狭窄时,或分叉和血管近端起点之间的血管段存在狭窄,分叉和血管远端终点之间的血管段正常时,血管管腔模型的几何参数计算过程包括下述多个方法中的一个或多个,
    其中涉及的参数定义包括:
    R 0表示血管近端管腔半径;
    R′ 0表示血管近端理想管腔半径,当血管近端管腔正常时,R 0=R′ 0,S0表示血管近端管腔面积;
    R 1表示血管远端管腔半径,
    R′ 1表示血管远端理想管腔半径,当血管远端管腔正常时,R 1=R′ 1,S1表示血管远端管腔面积;
    C1表示血管近端分叉切割平面面积;
    r 1表示血管近端分叉切割平面半径,
    方法(1):获得近端分叉切割平面面积C1,血管近端正常管腔面积S0,其中
    Figure PCTCN2018103783-appb-100001
    Figure PCTCN2018103783-appb-100002
    由分叉分流定理中的Murray公式,求得血管远端狭窄段的理想管腔半径、直径或面积,计算公式是:
    Figure PCTCN2018103783-appb-100003
    当血管存在一个分叉,且分叉和血管近端起点之间的血管段存在狭窄,分叉和血管远端终点之间的血管段正常时,血管管腔模型的几何参数计算过程包括:
    获得近端分叉切割平面面积C1,血管远端正常管腔面积S1,其中
    Figure PCTCN2018103783-appb-100004
    由分叉分流定理求得血管近端狭窄段的理想管腔半径、直径或面积,计算公式是:
    Figure PCTCN2018103783-appb-100005
    方法(2):获得近端分叉切割平面面积C1,血管近端正常管腔面积S0,其中
    Figure PCTCN2018103783-appb-100006
    Figure PCTCN2018103783-appb-100007
    由分叉分流定理中的Finet公式求得血管远端狭窄段的理想管腔半径、直径或面积,计算公式是:
    R′ 1=1.475R 0-r 1      (4)
    当血管存在一个分叉,且分叉和血管近端起点之间的血管段存在狭窄,分叉和血管远端终点之间的血管段正常时,血管管腔模型的几何参数计算过程包括:
    获得近端分叉切割平面面积C1,血管远端正常管腔面积S1,其中
    Figure PCTCN2018103783-appb-100008
    由分叉分流定理求得血管近端狭窄段的理想管腔半径、直径或面积,计算公式是:
    R′ 0=0.678(R 1+r 1)    (5);
    方法(3):获得近端分叉切割平面面积C1,血管近端正常管腔面积S0,其中
    Figure PCTCN2018103783-appb-100009
    Figure PCTCN2018103783-appb-100010
    由分叉分流定理中的HK公式求得血管远端狭窄段的理想管腔半径、直径或面积,计算公式是:
    Figure PCTCN2018103783-appb-100011
    当血管存在一个分叉,且分叉和血管近端起点之间的血管段存在狭窄,分叉和血管远端终点之间的血管段正常时,血管管腔模型的几何参数计算过程包括:
    获得近端分叉切割平面面积C1,血管远端正常管腔面积S1,其中
    Figure PCTCN2018103783-appb-100012
    由分叉分流定理求得血管近端狭窄段的理想管腔半径、直径或面积,计算公式是:
    Figure PCTCN2018103783-appb-100013
    方法(4):获得近端分叉切割平面面积C1,血管近端正常管腔面积S0,其中
    Figure PCTCN2018103783-appb-100014
    Figure PCTCN2018103783-appb-100015
    利用能量守恒模型,求得血管远端狭窄段的理想管腔半径、直径或面积,计算公式是:
    Figure PCTCN2018103783-appb-100016
    当血管存在一个分叉,且分叉和血管近端起点之间的血管段存在狭窄,分叉和血管远端终点之间的血管段正常时,血管管腔模型的几何参数计算过程包括:
    获得近端分叉切割平面面积C1,血管远端正常管腔面积S1,其中
    Figure PCTCN2018103783-appb-100017
    利用能量守恒模型,求得血管近端狭窄段的理想管腔半径、直径或面积,计算公式是:
    Figure PCTCN2018103783-appb-100018
  8. 根据权利要求7所述的血管压力差修正方法,其特征在于,血管段管腔几何模型的几何参数是以下参数的一种或其组合:血管管腔横截面积、血管管腔直径、血管管腔半径,
    优选的,考虑所述血管段中狭窄部位的情况,所述几何参数包括第一几何参数,代表该血管段远端横截面的面积或直径;
    第二几何参数,代表该血管段狭窄部位至远端终点区间第一分叉的横截面积或直径;
    第三几何参数,代表该血管段狭窄部位至远端终点区间第二分叉的横截面积或直径;……;
    第1+n几何参数,代表该血管段狭窄部位至远端终点区间第n分叉的横截面积或直径。
  9. 一种血管压力差修正装置,用于对血管压力差的计算结果的修正,其特征在于,该装置包括图像成像探头、存储器,以及耦合到所述存储器的一个或多个处理器,处理器被配置为执行存储在所述存储器中的指令,对图像成像探头获得的图像数据进行成像处理,
    涉及血管压力差计算的血管包括第一血管和第二血管,第一血管与第二血管相交连通,第一血管与第二血管的远端分界点为分叉嵴点,
    采用图像成像探头,沿第一血管中心线方向,以第一血管与第二血管的近端分界点为第二端点,以分叉嵴点为第一端点,获取第一端点与第二端点间的多个血管截面;
    处理器执行以下操作:
    计算血管截面在第一血管管壁和第二血管管壁上形成轮廓线;
    所述血管截面在第一血管管壁上形成的轮廓线围成多个第一血管截面;
    所述血管截面在第二血管管壁上形成的轮廓线围成多个第二血管凸面;
    第一血管截面与第二血管凸面相交形成多条相交线;
    将所述的多条相交线拟合成相交面;
    根据相交面计算获得切割平面的面积;
    用所述切割平面的面积对血管压力差进行修正。
  10. 根据权利要求9所述的血管压力差修正装置,其特征在于,所述检测装置还包括图像信号处理单元、显示器和操作输入单元,
    图像信号处理单元通过馈线与图像成像探头连接,馈线用于给图像成像探头提供电源,同时将图像成像探头的信号传输回图像信号处理单元,
    图像信号处理单元的输出端接入处理器,使得处理器获得第一血管和第二血管内的图像数据,
    显示器与处理器连接,用于显示图像成像探头获得的血管内图像以及计算得到的切割平面的数据,
    操作输入单元,与处理器连接,用于对图像成像探头的操作参数的设定。
  11. 一种血管压力差修正设备,其包括血管图像数据生成装置、血管压力差计算装置和血管压力差修正装置,
    血管图像数据生成装置的输出端分别接入血管压力差计算装置的输入端和血管压力差修正装置的输入端,血管压力差修正装置的另一个输入端与血管压力差计算装置的输出端连接,
    血管压力差计算装置从血管图像数据生成装置获得血管图像数据后计算得到血管压力差数值,
    血管压力差修正装置从血管图像数据生成装置接收血管图像中获得边支血管的切割平面的面积数据,从血管压力差计算装置接收血管压力差数值,根据所述切割平面的面积数据对已经获得的血管压力差数值进行修正,获得修正后的血管压力差数值。
  12. 根据权利要求11所述的血管压力差修正设备,其特征在于,所述血管图像数据生成装置包括血管图像采集装置、血管图像传输装置和血管图像处理装置,血管图像采集装置的输出端依次连接至血管图像传输装置、血管图像处理装置,血管图像处理装置的输出端分别连接血管压力差计算装置的输入端和血管压力差修正装置的输入端;或者,
    所述血管图像数据生成装置采用血管管腔造影方法获得血管管腔几何数据。
PCT/CN2018/103783 2018-07-02 2018-09-03 血管压力差修正方法、装置和设备 WO2020006853A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/266,253 US11288811B2 (en) 2018-07-02 2018-09-03 Vascular pressure difference correction method, device and apparatus
EP18925706.6A EP3818927A4 (en) 2018-07-02 2018-09-03 METHOD, DEVICE AND APPARATUS FOR VASCULAR PRESSURE DIFFERENCE CORRECTION
JP2021507675A JP7074952B2 (ja) 2018-07-02 2018-09-03 血管の圧力差の修正方法、装置及び設備

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810705804.X 2018-07-02
CN201810705804.XA CN109009001B (zh) 2018-07-02 2018-07-02 血管压力差修正方法、装置和设备

Publications (1)

Publication Number Publication Date
WO2020006853A1 true WO2020006853A1 (zh) 2020-01-09

Family

ID=65521198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/103783 WO2020006853A1 (zh) 2018-07-02 2018-09-03 血管压力差修正方法、装置和设备

Country Status (5)

Country Link
US (1) US11288811B2 (zh)
EP (1) EP3818927A4 (zh)
JP (1) JP7074952B2 (zh)
CN (1) CN109009001B (zh)
WO (1) WO2020006853A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4129197A4 (en) * 2020-03-30 2023-08-30 Terumo Kabushiki Kaisha COMPUTER PROGRAM, INFORMATION PROCESSING METHOD, INFORMATION PROCESSING DEVICE AND MODEL GENERATION METHOD

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113837985B (zh) * 2020-06-24 2023-11-07 上海博动医疗科技股份有限公司 用于血管造影图像处理的训练方法和装置、自动处理方法和装置
CN112842287B (zh) * 2021-01-05 2022-05-17 清华大学 测量血管硬化参数装置和方法
WO2023100979A1 (ja) * 2021-12-03 2023-06-08 テルモ株式会社 情報処理装置、情報処理方法およびプログラム
WO2023223087A1 (en) * 2022-05-20 2023-11-23 L&T Technology Services Limited Non-invasive blood pressure measurement

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140379269A1 (en) * 2011-08-03 2014-12-25 Lightlab Imaging, Inc. Systems, methods and apparatus for determining a fractional flow reserve
US20150238121A1 (en) 2014-02-25 2015-08-27 Medis Associated B.V. Method and device for determining a geometrical parameter of a blood vessel
CN105072980A (zh) * 2012-12-12 2015-11-18 光学实验室成像公司 用于自动确定血管内腔轮廓的方法及装置
CN106650029A (zh) * 2016-11-28 2017-05-10 博动医学影像科技(上海)有限公司 基于cfd仿真的分叉血管压力差及ffr的快速计算方法及系统
CN108022650A (zh) 2017-12-07 2018-05-11 博动医学影像科技(上海)有限公司 基于主支血管和边支血管参数的管腔建模及计算血管压力差的方法与系统

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8029558B2 (en) * 2006-07-07 2011-10-04 Abbott Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcations
US8888733B2 (en) 2008-12-19 2014-11-18 Cvdevices, Llc Devices, systems, and methods for autoretroperfusion
US8934690B2 (en) * 2009-10-28 2015-01-13 Siemens Aktiengesellschaft Method for processing vascular structure images
JP2012075702A (ja) * 2010-10-01 2012-04-19 Fujifilm Corp 管状構造物内画像再構成装置、管状構造物内画像再構成方法および管状構造物内画像再構成プログラム
EP2642922A1 (en) * 2010-11-24 2013-10-02 Boston Scientific Scimed, Inc. Systems and methods for detecting and displaying body lumen bifurcations
JP6091870B2 (ja) * 2012-12-07 2017-03-08 東芝メディカルシステムズ株式会社 血管解析装置、医用画像診断装置、血管解析方法、及び血管解析プログラム
US20160374710A1 (en) * 2014-03-12 2016-12-29 Yegor D. Sinelnikov Carotid body ablation with a transvenous ultrasound imaging and ablation catheter
WO2015136853A1 (ja) 2014-03-14 2015-09-17 テルモ株式会社 画像処理装置、画像処理方法及びプログラム
JP6243763B2 (ja) * 2014-03-14 2017-12-06 テルモ株式会社 画像処理装置、画像処理装置の作動方法、及びプログラム
NL2012459B1 (en) * 2014-03-18 2016-01-08 Medis Ass B V Method and device for determining deviation in pressure in a blood vessel.
US20160284080A1 (en) 2015-03-27 2016-09-29 Sabanci University Vasculature modeling
US10222956B2 (en) * 2015-05-17 2019-03-05 Lightlab Imaging, Inc. Intravascular imaging user interface systems and methods
US10593037B2 (en) * 2016-04-14 2020-03-17 Lightlab Imaging, Inc. Method, apparatus, and system to identify branches of a blood vessel
US10231784B2 (en) * 2016-10-28 2019-03-19 Medtronic Ardian Luxembourg S.A.R.L. Methods and systems for optimizing perivascular neuromodulation therapy using computational fluid dynamics
CN107115108B (zh) * 2017-04-27 2020-09-15 博动医学影像科技(上海)有限公司 快速计算血管压力差的方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140379269A1 (en) * 2011-08-03 2014-12-25 Lightlab Imaging, Inc. Systems, methods and apparatus for determining a fractional flow reserve
CN105072980A (zh) * 2012-12-12 2015-11-18 光学实验室成像公司 用于自动确定血管内腔轮廓的方法及装置
US20150238121A1 (en) 2014-02-25 2015-08-27 Medis Associated B.V. Method and device for determining a geometrical parameter of a blood vessel
CN106650029A (zh) * 2016-11-28 2017-05-10 博动医学影像科技(上海)有限公司 基于cfd仿真的分叉血管压力差及ffr的快速计算方法及系统
CN108022650A (zh) 2017-12-07 2018-05-11 博动医学影像科技(上海)有限公司 基于主支血管和边支血管参数的管腔建模及计算血管压力差的方法与系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3818927A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4129197A4 (en) * 2020-03-30 2023-08-30 Terumo Kabushiki Kaisha COMPUTER PROGRAM, INFORMATION PROCESSING METHOD, INFORMATION PROCESSING DEVICE AND MODEL GENERATION METHOD

Also Published As

Publication number Publication date
CN109009001A (zh) 2018-12-18
JP7074952B2 (ja) 2022-05-25
US11288811B2 (en) 2022-03-29
EP3818927A1 (en) 2021-05-12
CN109009001B (zh) 2019-07-09
US20210312636A1 (en) 2021-10-07
EP3818927A4 (en) 2022-03-30
JP2021531138A (ja) 2021-11-18

Similar Documents

Publication Publication Date Title
WO2020006853A1 (zh) 血管压力差修正方法、装置和设备
WO2019109607A1 (zh) 基于医学影像序列斑块稳定性指标的快速计算方法及系统
CA2266580C (en) Three-dimensional intraluminal ultrasound image reconstruction
CN107392994B (zh) 冠脉血管的三维重建方法、装置、设备及存储介质
AU2012242639B2 (en) Vascular characterization using ultrasound imaging
JP4116122B2 (ja) 超音波診断装置及び超音波画像処理装置
US20060276709A1 (en) System and method for reconstruction of the human ear canal from optical coherence tomography scans
JP5265810B2 (ja) 超音波診断装置、及び体内観察方法
CN108022650B (zh) 管腔建模方法及计算血管压力差的方法与系统
WO2013105197A1 (ja) 超音波診断装置、および、血管検出方法
CN108198174B (zh) 一种心血管ivoct与ivus自动配准方法与装置
CN108053429B (zh) 一种心血管oct与冠脉造影自动配准方法与装置
US10413317B2 (en) System and method for catheter steering and operation
CN109009061B (zh) 基于血压修正获取血流特征值的计算方法及装置
CN108742570B (zh) 基于冠脉优势类型获取血管压力差的装置
WO2014055923A2 (en) System and method for instant and automatic border detection
CN104688190A (zh) 检测冠状动脉内支架贴壁情况的装置
EP2082369B1 (en) Systems and methods for restoring a medical image affected by nonuniform rotational distortion
US10159467B2 (en) Method for seam elimination and reconstruction of coplanar images from intravascular ultrasonic data
US9519840B2 (en) Cardiovascular OCT image making method and method for detecting stents using thereof
CN108784676B (zh) 基于年龄信息获取压力差的方法及装置
CN108805815B (zh) 基于x射线血管造影图像的血管拉直重建方法
JP4769260B2 (ja) 超音波診断装置
JP6098641B2 (ja) 超音波診断装置、超音波診断装置の制御方法および超音波診断装置の制御器
EP4382052A1 (en) Determining a flow profile in an artery based on ultrasound imaging data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18925706

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018925706

Country of ref document: EP

Effective date: 20210202

ENP Entry into the national phase

Ref document number: 2021507675

Country of ref document: JP

Kind code of ref document: A