WO2020004936A1 - Multiplex target gene expression inhibition system based on synthesis regulator srna and method of producing same - Google Patents

Multiplex target gene expression inhibition system based on synthesis regulator srna and method of producing same Download PDF

Info

Publication number
WO2020004936A1
WO2020004936A1 PCT/KR2019/007729 KR2019007729W WO2020004936A1 WO 2020004936 A1 WO2020004936 A1 WO 2020004936A1 KR 2019007729 W KR2019007729 W KR 2019007729W WO 2020004936 A1 WO2020004936 A1 WO 2020004936A1
Authority
WO
WIPO (PCT)
Prior art keywords
target gene
srna
genes
expression
gene
Prior art date
Application number
PCT/KR2019/007729
Other languages
French (fr)
Korean (ko)
Inventor
이상엽
유승민
양동수
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2020004936A1 publication Critical patent/WO2020004936A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/65Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression using markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/10Nitrogen as only ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.

Definitions

  • the present invention relates to a multiplex target gene expression suppression system and its preparation based on synthetic sRNA, and more particularly, to a combination and preparation of a vector comprising a variety of antibiotic resistance genes, origins of replication and synthetic regulatory sRNA, the vector It relates to an sRNA library consisting of a combination of and screening methods for producing useful substances using the same.
  • the technology overcomes many of the shortcomings and limitations of traditional genome-based engineering, including knockout techniques (long time, labor intensive, skilled skill requirements, low success rates, and the difficulty of concurrent large-volume experiments).
  • the time, efficiency and possibility of large-scale experiments could all be dramatically improved (Datsenko et al, Proc. Natl. Acad. Sci. USA (2000), 97 (12), 6640-6645).
  • the present inventors have made efforts to develop a variety of synthetic regulatory sRNA expression platforms.
  • the synthetically regulated sRNA expression vectors differ from antibiotic resistance genes and origins of replication. (golden gate assembly), ligation, homologous recombination, sequence and ligation-independent cloning (SLIC), seamless ligation cloning extract (SLiCE), circular polymerase extension cloning (CPEC), or gene synthesis methods
  • SLIC homologous recombination
  • SLiCE seamless ligation cloning extract
  • CPEC circular polymerase extension cloning
  • An object of the present invention is to provide a recombinant microorganism having a synthetic sRNA-based simultaneous multiple target gene expression suppression system and a recombinant microorganism having improved threonine, proline, indigo or violaserine production capacity using the recombinant microorganism having the system. will be.
  • the present invention is a first antibiotic resistance gene; First replication origin; A first vector comprising a synthetic sRNA coding region that inhibits expression of a first target gene; And n antibiotic resistance genes; Mth replication origin; A recombinant microorganism into which a host multi-target gene expression suppression system is introduced, wherein the host vector is introduced, comprising: a q vector comprising a synthetic sRNA coding region that inhibits expression of the p target gene;
  • the first antibiotic resistance gene and the n antibiotic resistance gene, the first replication origin and the m replication origin and the first target gene and the p target gene are different from each other,
  • n is an integer from 2 to 50
  • m is an integer from 2 to 10
  • q is an integer from 2 to 500
  • p is an integer from 2 to 20000
  • the antibiotics are ampicillin, kanamycin, kanamycin, chloroamphenicol, apramycin, streptomycin, specrepomycin, spectinomycin, tetracycline and erythromycin.
  • the replication origin is selected from the group consisting of CloDF13 (CDF), pBBR1, ColA, ColE1, pUC, pBR322, SC101, RSF1030 (RSF), and RK2,
  • the synthetic sRNA coding region comprises a promoter; Hfq binding site derived from sRNA of any of MicC, SgrS and MicF; A region forming complementary binding with a target gene mRNA; And a terminator
  • Simultaneous multiple target gene expression suppression systems provide recombinant microorganisms introduced into host cells.
  • the present invention also provides a method for improving a strain of useful substance producing strain comprising the following steps:
  • step (c) introducing the first vector library into a target strain to produce a useful material and identifying a candidate group of genes whose expression is suppressed when the production of the useful material is improved, and determining 2 to 500 expression inhibitory genes. step;
  • the first antibiotic resistance gene and the n antibiotic resistance gene, the first replication origin and the m replication origin and the first target gene and 2 to 500 expression suppression genes are different from each other,
  • n is an integer from 2 to 50
  • m is an integer from 2 to 10
  • q is an integer from 2 to 500
  • q is an integer from 2 to 500.
  • the present invention also relates to a host cell having a threonine biosynthetic pathway
  • Antibiotic resistance genes First replication origin; A first vector comprising a synthetic sRNA coding region that inhibits expression of a first target gene; And n antibiotic resistance genes; Mth replication origin; A recombinant microorganism into which a simultaneous multi-target gene expression suppression system of a prokaryote is introduced, comprising: a q vector comprising a synthetic sRNA coding region that inhibits p-target gene expression;
  • the first antibiotic resistance gene and the n antibiotic resistance gene, the first replication origin and the m replication origin, and the first target gene and the p target gene are different from each other,
  • n is an integer from 2 to 50
  • m is an integer from 2 to 10
  • q is an integer from 2 to 500
  • p is an integer from 2 to 20000
  • the antibiotics are ampicillin, kanamycin, kanampycin, chloramphenicol, apramycin, streptomycin, spectiomycin, tetracycline, tetracycline and erythromycin.
  • the origin of replication is selected from the group consisting of CloDF13 (CDF), pBBR1, ColA, ColE1, pUC, pBR322, SC101, RSF1030 (RSF), and RK2,
  • the synthetic sRNA coding region comprises a promoter; Hfq binding site derived from sRNA of any of MicC, SgrS and MicF; A region forming complementary binding with a target gene mRNA; And terminator,
  • the present invention also provides a host cell having a proline biosynthetic pathway
  • Antibiotic resistance genes First replication origin; A first vector comprising a synthetic sRNA coding region that inhibits expression of a first target gene; And n antibiotic resistance genes; Mth replication origin; A recombinant microorganism into which a simultaneous multi-target gene expression suppression system of a prokaryote is introduced, comprising: a q vector comprising a synthetic sRNA coding region that inhibits p-target gene expression;
  • the first antibiotic resistance gene and the n antibiotic resistance gene, the first replication origin and the m replication origin, and the first target gene and the p target gene are different from each other,
  • n is an integer from 2 to 50
  • m is an integer from 2 to 10
  • q is an integer from 2 to 500
  • p is an integer from 2 to 20000
  • the antibiotics are ampicillin, kanamycin, kanampycin, chloramphenicol, apramycin, streptomycin, spectiomycin, tetracycline, tetracycline and erythromycin.
  • the origin of replication is selected from the group consisting of CloDF13 (CDF), pBBR1, ColA, ColE1, pUC, pBR322, SC101, RSF1030 (RSF), and RK2,
  • the synthetic sRNA coding region comprises a promoter; Hfq binding site derived from sRNA of any of MicC, SgrS and MicF; A region forming complementary binding with a target gene mRNA; And terminator,
  • the vector prepared by inserting a sequence complementary to the mRNA of the serC, murE, aspC, metB, fadR, fur or chpA gene in the region complementary to the mRNA of the target gene of the first to q vector Introduced, the expression of two or more genes selected from the group consisting of serC, murE, aspC, metB, fadR, fur and chpA is suppressed to provide a recombinant microorganism characterized by improved proline production capacity.
  • the present invention also provides a proline production method comprising culturing the recombinant microorganism through fed-batch fermentation in a medium containing a trace metal solution.
  • the present invention also provides a host cell having an indigo biosynthetic pathway, asnA, hisJ, yneH, to a region complementarily binding to the mRNA of the target gene of the first to q vectors of the simultaneous multiple target gene expression suppression system.
  • a vector prepared by inserting a sequence complementarily binding to mRNA of the napG, kdsA, ygfA, ftsl, aceF or ostB genes is introduced, and asnA, hisJ, yneH, napG, kdsA, ygfA, ftsl, aceF and ostB It provides a recombinant microorganism with improved indigo production capacity, characterized in that the expression of two or more genes selected from the group consisting of is suppressed.
  • the invention also relates to a host cell having an indigo biosynthetic pathway
  • Antibiotic resistance genes First replication origin; A first vector comprising a synthetic sRNA coding region that inhibits expression of a first target gene; And n antibiotic resistance genes; Mth replication origin; A recombinant microorganism into which a simultaneous multi-target gene expression suppression system of a prokaryote is introduced, comprising: a q vector comprising a synthetic sRNA coding region that inhibits p-target gene expression;
  • the first antibiotic resistance gene and the n antibiotic resistance gene, the first replication origin and the m replication origin, and the first target gene and the p target gene are different from each other,
  • n is an integer from 2 to 50
  • m is an integer from 2 to 10
  • q is an integer from 2 to 500
  • p is an integer from 2 to 20000
  • the antibiotics are ampicillin, kanamycin, kanampycin, chloramphenicol, apramycin, streptomycin, spectiomycin, tetracycline, tetracycline and erythromycin.
  • the origin of replication is selected from the group consisting of CloDF13 (CDF), pBBR1, ColA, ColE1, pUC, pBR322, SC101, RSF1030 (RSF), and RK2,
  • the synthetic sRNA coding region comprises a promoter; Hfq binding site derived from sRNA of any of MicC, SgrS and MicF; A region forming complementary binding with a target gene mRNA; And terminator,
  • the invention also relates to a first antibiotic resistance gene; First replication origin; A first vector comprising a synthetic sRNA coding region that inhibits expression of a first target gene; And n antibiotic resistance genes; Mth replication origin; A recombinant microorganism into which a simultaneous multi-target gene expression suppression system of a prokaryote is introduced, comprising: a q vector comprising a synthetic sRNA coding region that inhibits p-target gene expression;
  • the first antibiotic resistance gene and the n antibiotic resistance gene, the first replication origin and the m replication origin, and the first target gene and the p target gene are different from each other,
  • n is an integer from 2 to 50
  • m is an integer from 2 to 10
  • q is an integer from 2 to 500
  • p is an integer from 2 to 20000
  • the antibiotics are ampicillin, kanamycin, kanampycin, chloramphenicol, apramycin, streptomycin, spectiomycin, tetracycline, tetracycline and erythromycin.
  • the replication origin is selected from the group consisting of CloDF13 (CDF), pBBR1, ColA, ColE1, pUC, pBR322, SC101, RSF1030 (RSF), and RK2,
  • the synthetic sRNA coding region comprises a promoter; Hfq binding site derived from sRNA of any of MicC, SgrS and MicF; A region forming complementary binding with a target gene mRNA; And a terminator
  • the host cell has a violacein (violacein) biosynthesis pathway
  • a vector prepared by inserting a binding sequence has been introduced so that expression of two or more genes selected from the group consisting of ytfR, hybG, ampG, potG, caiF, minD, ilvM, yfbR, rfe, atpH, tiaE and murI
  • a vector prepared by inserting a binding sequence has been introduced so that expression of two or more genes selected from the group consisting of ytfR, hybG, ampG, potG, caiF, minD, ilvM, yfbR, rfe, atpH, tiaE and murI
  • a recombinant microorganism having improved violacein / deoxybiolacein production capacity, which is inhibited.
  • the present invention also provides a violacein / deoxybiolacein production method comprising culturing the recombinant microorganism through fed-batch fermentation in a medium containing a trace metal solution.
  • the present invention also provides a method for screening multiple inhibitor gene combinations comprising the following steps:
  • the first antibiotic resistance gene and the n antibiotic resistance gene, the first replication origin and the m replication origin and the first target gene and the p target gene are different from each other,
  • n is an integer from 2 to 50
  • m is an integer from 2 to 10
  • q is an integer from 2 to 500
  • p is an integer from 2 to 20000
  • r and s are an integer from 2 to 500.
  • Figure 2 compares the efficiency of DsRed2 fluorescent protein knockdown of each of the sRNA-regulated sRNA platforms for (A) pACYC184-DsRed2 (pLac), (B) pTac15K-DsRed2 (pTrc), (C) pTrc99A-DsRed2 (pTac) reporter plasmids.
  • A pACYC184-DsRed2 (pLac)
  • B pTac15K-DsRed2
  • pTrc pTrc99A-DsRed2
  • Figure 3 is a graph of the time-dependent growth curve measured after introduction of synthetically regulated sRNA expression platform plasmids (a) one by one, (b) two by two (c) three in the E. coli strain carrying a fluorescent protein reporter plasmid .
  • Reporter plasmids were expressed as pTac notation: pTac15K-dsRed2, pTrc notation: pTrc99A-dsRed2, pACYC: pACYC184-dsRed2.
  • Each graph is divided into three parts (blue, gray and red boxes), each representing Day 1, Day 2 (first pass) and Day 3 (second pass) from the front.
  • Colony PCR was performed after (a) 1st day, (b) 2nd day, and (c) 3rd day passage culture of the strains used in the experiment of FIG. 3 to confirm the presence of sRNA platform plasmids in the strain.
  • A represents pACYC184-DsRed2 (pLac)
  • R represents pTrc99A-DsRed2 (pTrc)
  • T represents pTac15K-DsRed2 (pTac) plasmid, 1: ColA-Sm, 2: pBBR1-Am, 3: pBBR1-Tc, 4: pBBR1-Sm, 5: CDF-Tc, 6: CDF-Sm.
  • the dashed combination means that the plasmids were transformed at the same time.
  • colony PCR was performed targeting the origin of replication on each plasmid, and the size of the PCR product was as follows: pBBR1, 1 kb; ColA, 0.6 kb; CDF, 0.3 kb.
  • 5 is a diagram showing the change in the threonine production according to the application of the synthetic regulatory sRNA library.
  • Figure 6 is a diagram showing the change in threonine production through the application of a double combination of synthetic regulatory sRNAs showing increased threonine production in FIG.
  • Figure 7 is a diagram showing the change in proline production according to the application of synthetic regulatory sRNA library.
  • FIG. 8 is a diagram showing a change in proline yield through the application of a double combination of synthetic regulatory sRNAs showing increased proline production in FIG. 7.
  • (d) shows the results when the strain NMH26 p15PP3533 pKKtrcSargF-trcSglnA was cultured under the fermentation conditions of (c) as a control experiment.
  • the red circle represents cell growth (OD600) and the blue triangle represents proline concentration (g / L).
  • FIG. 10 shows the result of fermenting four strains showing the highest production capacity in FIG. 7 (single knockdown application) under optimized fermentation conditions.
  • (a) is NMH26 p15PP3533 pKKtrcSargF-trcSglnA pCDFTc-fur strain
  • (b) is NMH26 p15PP3533 pKKtrcSargF-trcSglnA pCDFTc-fadR strain
  • (c) is NMH26 p15PPgl33 pKKtFTScArc-pCrcTrcSargAsp trcSglnA pCDFTc-mazF strain.
  • the red circle shows cell growth and the blue triangle shows proline concentration.
  • FIG. 11 shows the results of fermentation under optimized fermentation conditions of four strains showing the highest productivity in FIG.
  • (a) is NMH26 p15PP3533 pKKtrcSargF-trcSglnA pCDFTc-fur pColASm-metB strain
  • (b) is NMH26 p15PP3533 pKKtrcSargF-trcSglnA pCDFTc-fur pColASm-murE strain pKtCDSrc p pt15
  • the red circle represents cell growth (OD600) and the blue triangle represents proline concentration (g / L).
  • Figure 12 shows the colony PCR results to confirm the retention status of the sRNA plasmids in the exponential phase (E) and stationary phase (S) state of all proline-producing strains subjected to fermentation.
  • strains 1 to 9 are the same as the strain numbers in Table 2.
  • the upper DNA band represented by the red triangle indicates the presence of ColA-Sm platform based sRNA
  • the lower DNA band indicates the presence of CDF-Tc platform based sRNA.
  • FIG. 13 is a diagram showing a method for transferring a synthetic regulatory sRNA library of Escherichia coli genome level to a novel sRNA expression platform in the present invention and applying it to strains.
  • Figure 14 shows the results of culturing in a test tube after introduction of the E. coli genome-level synthetic regulatory sRNA library based on the ColA-Sm platform, and screening the strains through color screening.
  • FIG. 15 is a result of culturing nine strains showing high yield in FIG. 14 in a flask containing 50 mL MR medium.
  • Figure 16 shows the results of culturing in a test tube after introduction of the E. coli genome-level synthetic regulatory sRNA library based on the ColA-Sm platform, and screening the strains through color screening.
  • FIG. 17 is a graph in which 12 strains showing a high yield in FIG. 16 are cultured in a flask containing 50 mL MR medium, and (a) is a graph measuring the yield of each strain. (b) is a photograph of each flask after incubation. Strains that produce high concentrations of violacein / deoxybiolacein are darker in color.
  • FIG. 18 is a result of fed-batch fermentation of strains showing high violacein / deoxybiolacein production ability in FIG. 17.
  • (a) is a strain in which the pColA-ytfR plasmid is inserted into the E. coli BL21 pSB1C3-vioABDE pTac15K-Jli-vioC strain, and
  • the pColA-minD plasmid is added to the E. coli BL21 pSB1C3-vioABDE pTac15K-Jli-vioC strain. Inserted strain.
  • the red circle represents cell growth
  • the blue triangle represents the violacein concentration
  • the purple triangle represents the deoxybiolacein concentration.
  • the red arrows in (a) and (b) indicate the time points induced by IPTG.
  • (c) shows the colony PCR results to confirm the retention status of the sRNA plasmids in the exponential phase (E) and stationary phase (S) state of all the violacein producing strains subjected to fermentation.
  • strain 1 control strain
  • strain 2 strain of (a)
  • strain 3 strain of (b).
  • the DNA band represented by the red triangle indicates the presence of the ColA-Sm platform based sRNA.
  • Figure 19 shows the results of the stability test of the synthetic regulatory sRNA expression plasmids in each strain, two E. coli W3110 strains carrying two reporter plasmids, pTac15K-DsRed2 ("Tac”) and pTrc99A-DsRed2 (“Trc”), respectively.
  • Tac pTac15K-DsRed2
  • Trc pTrc99A-DsRed2
  • sRNA small RNA
  • sRNA small RNA
  • ribosome binding site refers to the site where the ribosomes bind on the mRNA for transcription of the mRNA.
  • gene should be considered in the broadest sense and may encode a structural or regulatory protein.
  • the regulatory protein includes a transcription factor, a heat shock protein or a protein involved in DNA / RNA replication, transcription and / or translation.
  • the target gene to be suppressed expression may exist as an extrachromosomal component.
  • the present invention is intended to develop a synthetic regulatory sRNA-based expression control system that can be applied to various kinds of prokaryotes and at the same time can suppress the expression of a plurality of target genes.
  • sRNAs which are independently included and complementarily binds to the RBS of DsRed2 mRNA, is formed by Gibson assembly, golden gate assembly, ligation, homologous recombination, and SLIC (A combination of sequence and ligation-independent cloning (SLiCE), seamless ligation cloning extract (SLiCE), circular polymerase extension cloning (CPEC), or gene synthesis was used to prepare a total of nine types of synthetically regulated sRNA expression vectors for inhibiting DsRed2 expression (Fig.
  • the present invention provides in one aspect, a first antibiotic resistance gene; First replication origin; A first vector comprising a synthetic sRNA coding region that inhibits expression of a first target gene; And n antibiotic resistance genes; Mth replication origin; P-target vector expression suppression system of a prokaryotic organism comprising a q vector comprising a synthetic sRNA coding region that inhibits p-target gene expression, wherein the first antibiotic resistance gene, the n-antibiotic resistance gene, and the first copy
  • the origin, the m replication origin, the first target gene and the p target gene are different from each other, n is an integer of 2 to 50, m is an integer of 2 to 10, q is 2 to It is characterized in that the integer of 500, p is an integer of 2 to 20000 relates to a simultaneous multiple target gene expression suppression system.
  • p refers to the number of target genes
  • the target gene may include an integer range of 2 to 20000 since all genes may be used as target genes regardless of the type of vector.
  • the antibiotic may be used without limitation as long as it is an antibiotic for inducing prokaryotic death, preferably ampicillin, kanamycin, chloroamphenicol, apramycin ), Streptomycin, spectyomycin, tetracycline, erythromycin, neomycin, penicillin, actinomycin, actinomycin, and gavenicillin garbenicillin, gentamicin, blasticidin, mycophenolic acid, puromycin, zeocin, borrelidin, ionomycin, Daunorubicin, doxorubicin, ivermectin, evermectin, mitramycin, mitomycin, mitomycin, nalidixic acid, novobiocin , Nystatin ( nystatin, oxytetracycline, paclitaxel, polymyxin, rifampicin, salinomycin, tylosin, valinomycin, banomycin Comycin (van
  • the origin of replication can be used without limitation as long as the sequence can start replication of the plasmid introduced into the prokaryote, but preferably CloDF13 (CDF), pBBR1, ColA, ColE1, pUC, pBR322, SC101 , RSF1030 (RSF), and may be selected from the group consisting of RK2, but is not limited thereto.
  • CDF CloDF13
  • pBBR1, ColA, ColE1, pUC, pBR322, SC101 , RSF1030 (RSF) and may be selected from the group consisting of RK2, but is not limited thereto.
  • the prokaryote may be used as long as it is a prokaryote capable of expressing sRNA, without limitation, E. coli, Rhizobium, Bifidobacterium, Rhodococcus, Candida (Candida), Erwinia, Enterobacter, Pasterella, Mannheimia, Actinobacillus, Aggregatibacter, Xanthomonas , Vibrio, Pseudomonas, Azotobacter, Acinetobacter, Ralstonia, Agrobacterium, Rhodobacter, Zimomonas Zymomonas, Bacillus, Staphylococcus, Lactococcus, Streptococcus, Lactobacillus, Clostridium, Corynebacterium, Streptobacterium Mises (Streptomyces), Bifidobacterium (Bifidobacterium), Cyanobacterium (cyanobacterium) and cyclobacterium (Cy
  • the synthetic sRNA coding region is a promoter; Hfq binding site derived from sRNA of any of MicC, SgrS and MicF; A region forming complementary binding with a target gene mRNA; And it may be characterized in that it comprises a terminator.
  • the promoter is available to all kinds of promoters capable of inducing the expression of sRNA, preferably selected from the group consisting of tac, trc, T7, BAD, ⁇ PR and Anderson synthetic promoter And, most preferably, it may be characterized by being represented by the nucleotide sequence of SEQ ID NO: 7.
  • the Hfq binding site may be preferably derived from MicC, and most preferably may be represented by the nucleotide sequence of SEQ ID NO: 8.
  • terminators capable of terminating transcription of the sRNA are available, and preferably the T1 / TE terminator, and most preferably, those represented by the nucleotide sequence of SEQ ID NO. It can be characterized.
  • the region forming the complementary bond with the target gene mRNA is sufficient if the minimum length that can form a complementary bond according to the target gene, for example 20 to 50 base, preferably 19 It may be characterized by being at least 37 bases.
  • the region forming the complementary binding with the target gene mRNA forms a complementary binding in whole or in part with the protein coding sequence starting with the ribosome binding site or the start codon of the target gene mRNA It may be characterized by.
  • complementary binding refers to basepairing between nucleic acid sequences, wherein the sequence of some regions of the mRNA of the target gene and the region forming the complementary bond with the target gene mRNA is about 70-80%. Or more preferably about 80-90% or more, even more preferably about 95-99% or more complementary to each other.
  • vector refers to a DNA preparation containing a DNA sequence operably linked to a suitable regulatory sequence capable of expressing DNA in a suitable host.
  • Vectors can be plasmids, phage particles or simply potential genomic inserts. Once transformed into the appropriate host, the vector can replicate and function independently of the host genome, or in some cases can be integrated into the genome itself. Since plasmids are the most commonly used form of current vectors, "plasmid” and “vector” are sometimes used interchangeably in the context of the present invention. For the purposes of the present invention, it is preferred to use plasmid vectors.
  • Typical plasmid vectors that can be used for this purpose include (a) the origin of replication so that replication can be efficiently performed to include several to hundreds of plasmid vectors per host cell, and (b) host cells transformed with plasmid vectors will be selected. It has a structure that includes an antibiotic resistance gene that allows it and (c) a restriction enzyme cleavage site into which foreign DNA fragments can be inserted. Although no suitable restriction enzyme cleavage site is present, synthetic oligonucleotide adapters or linkers according to conventional methods can be used to facilitate ligation of the vector and foreign DNA. After ligation, the vector should be transformed into the appropriate host cell.
  • Transformation can be readily accomplished using calcium chloride methods or electroporation (Neumann, et al., EMBO J., 1: 841, 1982) and the like.
  • an expression vector known in the art may be used as the vector used for the expression of the sRNA according to the present invention.
  • nucleotide sequences are "operably linked” when placed in a functional relationship with other nucleic acid sequences.
  • This may be genes and regulatory sequence (s) linked in such a way as to enable gene expression when appropriate molecules (eg, transcriptional activating proteins) bind to regulatory sequence (s).
  • the DNA for a pre-sequence or secretion leader is operably linked to the DNA for the polypeptide when expressed as a shear protein that participates in the secretion of the polypeptide;
  • a promoter or enhancer is operably linked to a coding sequence when it affects the transcription of the sequence;
  • the ribosomal binding site is operably linked to a coding sequence when it affects the transcription of the sequence;
  • the ribosomal binding site is operably linked to a coding sequence when positioned to facilitate translation.
  • "operably linked” means that the linked DNA sequence is in contact, and in the case of a secretory leader, is in contact and present within the reading frame.
  • enhancers do not need to touch. Linking of these sequences is performed by ligation (linking) at convenient restriction enzyme sites. If such sites do not exist, synthetic oligonucleotide adapters or linkers according to conventional methods are used.
  • the target gene may be present in the prokaryote or may be introduced without limitation, preferably DsRed2, LuxR, AraC, KanR (kanamycin resistance gene), tyrR (tyrosine regulator), ppc (phosphoenolpyruvate) carboxylase), csrA (carbon storage regulator), pgi (glucose-6-phosphate isomerase), glt (citrate synthase), accA (acetyl-CoA carboxyltransferase, alpha-subunit), accB (biotinylated biotin-carboxyl carrier protein), accC ( acetyl-CoA carboxylase), accD (acetyl-CoA carboxyltransferase, beta-subunit), aceE (subunit of E1p component of pyruvate dehydrogenase complex), aceF (pyruvate dehydrogenase), ackA (propionate kina
  • CsiD is the product of a gene induced by carbon starvation), csiR (DNA-binding transcriptional repressor), cytR (transcription factor required for transport and utilization of ribonucleosides and deoxyribonucleosides), dcuA (The DcuA transporter is one of three transporters known to be responsible for the uptake of C4-dicarboxylates such as fumarate under anaerobic conditions), deoB (phosphopentomutase), deoC (deoxyribose-phosphate aldolase), deoR (The transcriptional repressor DeoR, for "Deoxyribose Regulator,” is involved in the negative expression of genes related to transport and catabolism of deoxyribonucleoside nucleotides, fabH (KASIII, -ketoacyl-ACP synthases), fadD (fatty acyl-CoA synthetase), fadR (Fa
  • phoQ / phoP Member of the two-component regulatory system phoQ / phoP involved in adaptation to low Mg2 + environments and the control of acid resistance genes
  • pnuC PnuC NMN transporter
  • ppsA phosphoenolpyruvate synthetase
  • pta Phosphate acetyltransferase
  • purA adenylosuccinate synthetase
  • purB adenylosuccinate lyase
  • purR PurRHypoxanthine DNA-binding transcriptional repressor.PurR dimer controls several genes involved in purine nucleotide biosynthesis and its own synthesis
  • puuE (4-aminobutyrate aminotransferase
  • rbsA ribose ABC transporter
  • rbsB ribose ABC transporter
  • rbsD ribose pyranase
  • zwf glucose 6-phosphate-1-dehydrogenase
  • tktA transketolase I
  • tktB transketolase II
  • pgi glucose-6-phosphate isomerase
  • fbp fructose-1,6-bisphosphatase
  • serC phosphohydroxythreonine aminotransferase / 3-phosphoserine aminotransferase
  • murE UP-N-acetylmuramoylalanyl-Dglutamate 2,6-diaminopimelate ligase
  • pps phosphoenolpyruvate synthetase
  • aceE subunit of E1p component of pyruvate dehydrogenasetransfer
  • pta purA
  • ackA propionate kinase / acetate kinase activity
  • pck phosphoenolpyruvate synthe
  • genes are involved in amino acid biosynthesis and catabolism, nutrient) transport, pili synthesis, and other cellular functions, including 1-carbon metabolism), gltA (citrate synthase), pdhR (PdhR, "pyruvate dehydrogenase complex regulator,” regulates genes involved in the pyruvate dehydrogenase complex, tyrR (tyrosine regulator), csrA (carbon storage regulator), lexA (LexA represses the transcription of several genes involved in the cellular response to DNA damage), aroF (3-deoxy-D-arabino-heptulosonate -7-phosphate synthase, tyrosine-repressible), aroA (5-enolpyruvylshikimate-3-phosphate synthetase), aroC (Chorismate synthase), pheA (chorismate mutase and prephenate dehydratase, P-protein), trp
  • the present invention also relates to a nucleic acid fragment comprising: a first nucleic acid fragment encoding a first antibiotic resistance gene; A second nucleic acid fragment encoding a first replication origin; And a third nucleic acid fragment encoding a synthetic sRNA coding region that inhibits the expression of a first target gene, the Gibson assembly, golden gate assembly, ligation, homologous recombination,
  • the present invention relates to a method for producing a simultaneous multiple target gene expression suppression system comprising the step of connecting by sequence and ligation-independent cloning (SLIC), seamless ligation cloning extract (SLiCE), circular polymerase extension cloning (CPEC), or gene synthesis.
  • SLIC sequence and ligation-independent cloning
  • SLiCE seamless ligation cloning extract
  • CPEC circular polymerase extension cloning
  • the present invention also relates to a recombinant microorganism in which the simultaneous multiple target gene expression suppression system is introduced.
  • transformation means introducing DNA into a host so that the DNA is replicable as an extrachromosomal factor or by chromosomal integration.
  • the present invention also provides a method of introducing a co-targeted gene expression inhibitory system into a prokaryote or expressing in a prokaryote; And it relates to a method for inhibiting simultaneous expression of multiple target genes comprising the step of inhibiting the mRNA expression of the target gene.
  • the present invention also relates to a composition for inhibiting simultaneous expression of a target gene comprising the system for inhibiting expression of a target expression gene.
  • the present invention in another aspect, (a) preparing any base sequence having 20 to 50 bases; (b) inserting the nucleotide sequence into a region complementarily binding to the target gene mRNA of the first vector of the simultaneous multiple target gene expression suppression system to prepare a first vector library comprising a first sRNA library; (c) introducing the first vector library into a target strain to produce a useful material and identifying a candidate group of genes whose expression is suppressed when the production of the useful material is improved, and determining 2 to 500 expression inhibitory genes.
  • q relates to a method for improving a useful substance producing strain, characterized in that the integer of 2 to 500.
  • the improvement method of the useful substance producing strain including the step can also be elicited, and the method of improving the useful substance producing strain can be elicited.
  • q, r and s may be an integer of 2 to 500.
  • the present invention by introducing a simultaneous multi-target gene expression suppression system according to the present invention to the modified prokaryote, which has been improved metabolically and introduced plasmid, to confirm whether the production of the target substance can be further improved. It was.
  • a strain that enhances the threonine production pathway in the conventional threonine production research improves the enzyme on the threonine production pathway with a feedback-resistant enzyme and prevents the activity from being inhibited by the product, and overexpresses the threonine transporter.
  • T28C-pBRThrABCR3, KH Lee et al., Mol. Syst. Biol. 2007, 3 (149) when processing the sRNA library produced in the present invention, found eight genes that further increase the threonine production (FIG. 5), through the combination of these, the most excellent combination of threonine production capacity was found to find a gene combination, and it was confirmed that 30% or more of threonine transpiration was possible (FIG. 6).
  • the present invention provides a host cell having a threonine biosynthetic pathway, which is complementarily bound to an mRNA of a target gene of the first to q vectors of the simultaneous multiple target gene expression suppression system.
  • a vector prepared by inserting a sequence complementarily binding to the mRNA of the tktA, aroF, pta, ilvH, ilvE, glnA, fur or chpA genes was introduced, and thus, tktA, aroF, pta, ilvH, ilvE, glnA fur and chpA It relates to a recombinant microorganism with improved threonine production capacity, characterized in that the expression of two or more genes selected from the group consisting of is suppressed.
  • the recombinant microorganism is lactose operon repressor (lacI), homoserine O-succinyltransferase (metA), lysA (Diaminopimelate decarboxylase), tdh (L-threonine dehydrogenase), iclR (AceBAK operon repressor) and tdcC (Threonine / ser).
  • lacI lactose operon repressor
  • metalA homoserine O-succinyltransferase
  • metalA homoserine O-succinyltransferase
  • lysA Diaminopimelate decarboxylase
  • tdh L-threonine dehydrogenase
  • iclR AceBAK operon repressor
  • tdcC Threonine / ser
  • the recombinant microorganism is a mutation in which the 1034 base sequence of thrA (Bifunctional aspartokinase / homoserine dehydrogenase 1) is changed from C to T, and the 1055 base sequence of lysine-lysine-sensitive aspartokinase 3 (lysC) is changed from C to T, ilvA ( thrABC operon, ppc (phosphoenolpyruvate carboxylase), characterized by the manipulation of one or more genes selected from the group consisting of mutations in which the 290th sequence of l-threonine dehydratase, biosynthetic; also known as threonine deaminase has been changed from C to T , characterized in that the promoter of one or more genes selected from the group consisting of acs (acetyl-CoA synthetase) is substituted with trc promoter, rhtA (threonine and
  • the host cell is E. coli, Rhizobium, Bifidobacterium, Rhodococcus, Candida, Erwinia, Enterobacter, Pasteur Pastaella, Mannheimia, Actinobacillus, Aggregatibacter, Xanthomonas, Vibrio, Pseudomonas, Azotobacter, Azotobacter Acinetobacter, Ralstonia, Agrobacterium, Rhodobacter, Zymomonas, Bacillus, Staphylococcus, Lactococcus (Lactococcus) Lactococcus, Streptococcus, Lactobacillus, Clostridium, Corynebacterium, Streptomyces, Bifidobacterium, Bifidobacterium cyanoba cterium) and cyclobacterium (Cyclobacterium) may be characterized in that it is selected from the group consisting of.
  • E. coli strains (NMH26-p15PP3533, pKKtrcSargF-trcSglnA, M. Noh et al., Cell Systems (2017), 5, 1-9), which increased the production of proline by introducing a conventional synthetic regulatory sRNA
  • seven candidate gene groups were derived (FIG. 8), and a combination of these to discover gene combinations that further improve proline production is possible to further increase proline production of 30% or more. It was confirmed (Fig. 8).
  • the present invention is directed to a region of the host cell having a proline biosynthetic pathway, which complementarily binds to the mRNA of the target gene of the first to q vectors of the simultaneous multiple target gene expression suppression system.
  • a vector prepared by inserting a sequence that complementarily binds to the mRNA of the serC, murE, aspC, metB, fadR, fur, or chpA genes has been introduced, and is a group consisting of serC, murE, aspC, metB, fadR, fur, and chpA. It relates to a recombinant microorganism having improved proline production capacity, characterized in that the expression of two or more genes selected from is suppressed.
  • the recombinant microorganism is characterized in that one or more genes selected from the group consisting of lacI, speE, speG, argI, puuP, puuA, putA, putP, proP, speC, potE, and speF are further deleted. can do.
  • the recombinant microorganism may be characterized in that the promoter of one or more genes selected from the group consisting of argECBH operon, speF-potE, and argD is substituted with trc promoter.
  • the recombinant microorganism may be characterized in that the PP3533 gene is introduced or amplified.
  • the recombinant microorganism may be characterized in that the expression of the argF and glnA gene is further suppressed, the expression of the gene is characterized in that it is made through a synthetic regulatory sRNA in the present invention
  • the host cells are Escherichia coli, Rhizobium, Bifidobacterium, Rhodococcus, Candida, Erwinia, Enterobacter, Pasteurella , Mannheimia, Actinobacillus, Aggregatibacter, Xanthomonas, Vibrio, Pseudomonas, Azotobacter, Acinetobacter (Acinetobacter), Ralstonia, Agrobacterium, Rhodobacter, Zymomonas, Bacillus, Staphylococcus, Lactococcus (Lactococcus), Streptococcus, Lactobacillus, Clostridium, Corynebacterium, Streptomyces, Bifidobacterium, B
  • the present invention also relates to a method for producing proline comprising culturing the recombinant microorganism having improved proline production capacity through fed-batch fermentation in a medium containing a trace metal solution.
  • the existing constructed sRNA library is transferred to the sRNA expression vector according to the present invention quickly, accurately and efficiently using Gibson assembly, and then indigo or via viola screening for indigo and violacein producing strains.
  • the production capacity of indigo or violacein significantly increased (Figs. 16 to 18).
  • the present invention provides a host cell having an indigo biosynthetic pathway, which is complementarily bound to an mRNA of a target gene of the first to q vectors of the simultaneous multiple target gene expression suppression system.
  • a vector prepared by inserting a sequence complementarily binding to mRNA of the asnA, hisJ, yneH, napG, kdsA, ygfA, ftsl, aceF or ostB genes was introduced, and asnA, hisJ, yneH, napG, kdsA, ygfA, It relates to a recombinant microorganism having improved indigo production capacity, characterized in that the expression of two or more genes selected from the group consisting of ftsl, aceF and ostB is suppressed.
  • the recombinant microorganism is further deleted one or more genes selected from the group consisting of trpR, pykF and pykA, the promoter of tktA is substituted with the trc promoter, tnaA, fmo, aroGfbr, trpEfbr, and aroL
  • genes selected from the group consisting of may be characterized in that the introduced or amplified.
  • the fbr means no feedback resistance (feedback resistance).
  • the host cell is E. coli, Rhizobium, Bifidobacterium, Rhodococcus, Candida, Erwinia, Enterobacter, Pasteur Pastaella, Mannheimia, Actinobacillus, Aggregatibacter, Xanthomonas, Vibrio, Pseudomonas, Azotobacter, Azotobacter Acinetobacter, Ralstonia, Agrobacterium, Rhodobacter, Zymomonas, Bacillus, Staphylococcus, Lactococcus (Lactococcus) Lactococcus, Streptococcus, Lactobacillus, Clostridium, Corynebacterium, Streptomyces, Bifidobacterium, Bifidobacterium cyanoba cterium) and cyclobacterium (Cyclobacterium) may be characterized in that it is selected from the group consisting of.
  • the present invention provides a host cell having a violasine biosynthetic pathway, ytfR in a region complementarily binding to mRNA of a target gene of the first to q-vectors of the simultaneous multiple target gene expression suppression system.
  • a vector prepared by inserting a sequence complementarily binding to mRNA of hybG, ampG, potG, caiF, minD, ilvM, yfbR, rfe, atpH, tiaE or murI gene was introduced, and ytfR, hybG, ampG, potG , caiF, minD, ilvM, yfbR, rfe, atpH, tiaE and murI expression of two or more genes selected from the group is suppressed in the recombinant microorganism with improved violacein / deoxybiolacein production capacity It is about.
  • the recombinant microorganism may be characterized in that one or more genes selected from the group consisting of vioA, vioB, vioC, vioD and vioE are introduced or amplified.
  • the host cell is E. coli, Rhizobium, Bifidobacterium, Rhodococcus, Candida, Erwinia, Enterobacter, Pasteur Pastaella, Mannheimia, Actinobacillus, Aggregatibacter, Xanthomonas, Vibrio, Pseudomonas, Azotobacter, Azotobacter Acinetobacter, Ralstonia, Agrobacterium, Rhodobacter, Zymomonas, Bacillus, Staphylococcus, Lactococcus (Lactococcus) Lactococcus, Streptococcus, Lactobacillus, Clostridium, Corynebacterium, Streptomyces, Bifidobacterium, Bifidobacterium cyanoba cterium) and cyclobacterium (Cyclobacterium) may be characterized in that it is selected from the group consisting of.
  • the present invention also relates to a violacein / deoxybiolacein production method comprising culturing the recombinant microorganism through fed-batch fermentation in a medium containing a trace metal solution.
  • [SEQ ID NO 1] is the CDF replication origin
  • [SEQ ID NO 2] is the pBBR1 replication origin
  • [SEQ ID NO 3] is the ColA replication origin
  • [SEQ ID NO 4] is the Am antibiotic marker
  • [SEQ ID NO 5] is the Sm antibiotic
  • the marker, [SEQ ID NO: 6] refers to Tc antibiotic marker DNA sequences.
  • Synthetic regulatory sRNA used in the present invention utilized a micC scaffold (SEQ ID NO: 8) and T1 / TE terminator (SEQ ID NO: 9) based on the PR promoter (SEQ ID NO: 7).
  • the nine synthetic regulatory sRNA platform plasmids were constructed via a Gibson assembly consisting of three DNA fragments consisting of sRNA fragments, antibiotic marker (antibiotic resistance gene) fragments and origin of replication fragments (DGGibson et al., Nature Methods). (2009), 6 (5), 343-345.
  • sRNA fragments were obtained by PCR using [SEQ ID NO: 10 / SEQ ID NO: 11] as a template using the pWAS plasmid in the existing patent (KR 10-1575587 B1).
  • the Am fragment is via [SEQ ID NO: 12 / SEQ ID NO: 13]
  • the Sm fragment is via [SEQ ID NO: 14 / SEQ ID NO: 15]
  • the Tc fragment is via [SEQ ID NO: 16 / SEQ ID NO: 17]. Obtained.
  • the CDF fragments of the replication origin fragments are through [SEQ ID NO: 18 / SEQ ID NO: 19]
  • the pBBR1 fragments are through [SEQ ID NO: 20 / SEQ ID NO: 21]
  • the ColA fragments are [SEQ ID NO: 22 / SEQ ID NO: 23]. Obtained.
  • reporter plasmids containing the DsRed2 gene were first constructed.
  • pACYC184-DsRed2 utilized the same plasmid as produced in the literature (M. Noh et al., Cell Systems (2017), 5, 1-9).
  • pTac15K-DsRed2 (p15A replication origin, kanamycin -Km-antibiotic marker), pTrc99A-DsRed2 (ColE1 replication origin, ampicilin -Ap-antibiotic marker) Construction of the reporter plasmid was performed using pTac15K and pTrc99A as a template.
  • Example 1-1 Using various synthetic sRNA platform plasmids and DsRed2 fluorescent protein expression reporter plasmids constructed in Example 1-1, the knockdown test for DsRed2 fluorescent protein of synthetic sRNA and the performance of each platform were performed as follows.
  • the base strain was Escherichia coli W3110.
  • various synthetic regulatory sRNA platform plasmids were used as templates, using an inverse PCR reaction using [SEQ ID NO 28 / SEQ ID NO 29].
  • the template was removed with DpnI restriction enzyme (Engineics, Korea), and the anti-completed reaction was completed by reaction with T4 polynucleotide kinase (Engineics, Korea) and T4 ligase (Elpis Biotech, Korea).
  • DsRed2-sRNA plasmids were constructed.
  • DNA sequence identification on all cloning was carried out through Cosmogenetech (South Korea). Using nine anti-DsRed2-sRNA plasmids and three DsRed2-reporter plasmids constructed as specified above for three reporter plasmids frequently used in metabolic engineering, each with three different antibiotic markers To determine the knockdown performance of various synthetic regulatory sRNAs.
  • OD600 2 fluorescent protein
  • emission wavelength 603 nm
  • cutoff value was set at 590 nm.
  • the nine anti-DsRed2-sRNAs were transformed into the E. coli W3110 strain together with the pTac15K-DsRed2 reporter plasmid and cultured, and the fluorescence intensity was measured as described above.
  • the nine anti-DsRed2-sRNAs were transformed into the E. coli W3110 strain along with the pTrc15K-DsRed2 reporter plasmid and cultured, and the fluorescence intensity was measured as described above.
  • a total of six platforms (CDF-Sm, CDF-Tc, pBBR1-Am, pBBR1-Sm, pBBR1-Tc, ColA-Sm) were selected as platform candidates that can be used in actual metabolic engineering.
  • Selected platforms showed effective target gene expression inhibition in all of the DsRed2 expressing strains in various environments (FIG. 2).
  • ColA-Tc and ColA-Am platforms were less stable when transformed with reporter plasmids during cloning, CDF-Am platforms exhibited growth inhibition problems in liquid media and poor knockdown performance for pTrc99A-DsRed2 reporters. Excluded from platform candidates.
  • strains were prepared: Tac-pBBR1Am, Tac-pBBR1Tc, Tac-pBBR1Sm, Tac-ColASm, Tac-CDFTc, Tac-CDFSm, Trc-pBBR1Am, Trc-pBBR1Tc, Trc-pBBR1Sm, Trc-ColASc , Trc-CDFSm, ACYC-pBBR1Am, ACYC-pBBR1Tc, ACYC-pBBR1Sm, ACYC-ColASm, ACYC-CDFTc, ACYC-CDFSm.
  • the prepared strains and the respective control strains (indicated by Ctrl; strains in which only the reporter plasmid was introduced without introducing the sRNA platform) were inoculated into test tubes containing 5 mL of LB medium, respectively, at 37 ° C for 16 hours. , 200 RPM, and all strains were tested by inoculating three species. Subsequently, all the strains were passaged for 24 hours on a microplate in which 200 ⁇ L of LB medium was introduced into each well (day 1). At this time, OD600 of all strains was simultaneously agitated using Bioscreen C. Measurement was made every hour. After 24 hours of incubation, all strains were further passaged for 24 hours on the same microplate (day 2). At this time, strain growth was also measured using Bioscreen C. Day 3 passages were also performed in the same way.
  • Example 1.4 each time the 1st day, 2nd day, and 3rd day culture was terminated, a certain amount of each cell was obtained and colony PCR was performed to test whether the sRNA platforms were stably present in the strain.
  • the different origins of replication used the following six primers to produce PCR products of different lengths.
  • [SEQ ID NO: 30], [SEQ ID NO: 31] are specific to the CDF replication origin, and generate a PCR product of 0.34 kb.
  • [SEQ ID NO: 32] and [SEQ ID NO: 33] are specific to the pBBR1 replication origin. kb PCR products were generated, and [SEQ ID NO: 34] and [SEQ ID NO: 35] were specific to ColA replication origin and designed to generate 0.65 kb PCR products.
  • the experiment was carried out as follows. First, the strain was incubated in a 25 mL test tube containing 5 mL LB medium at 37 degrees Celsius for at least 12 hours, and about 1000 cells were passaged in freshly prepared LB medium and cultured at 37 degrees Celsius for about 20 generations. It was. Appropriate concentrations of antibiotics were used as needed. Subsequently, the cultures were incubated by diluting them on LB agar plates containing no antibiotics, and 50 colonies of each plate were randomly selected and incubated on LB agar plates containing respective antibiotics (Tc, Sm, or Am). It was.
  • the plasmid retention rate was determined using the colony viability of each strain on LB agar plates containing each antibiotic. The result is shown in FIG. 19. As can be seen in Figure 19, most of the strains (25 of 28 strains) showed a plasmid retention of 90% or more in more than 80 generations. The other three strains (strains with the following plasmid combinations: pColA-SmR-pBBR1-AmR, pCDF-SmR-pBBR1-TcR, and pCDF-TcR-pBBR1-SmR) also showed plasmid retention of at least 80%. .
  • the platform vectors for constructing the library were selected as ColA-Sm and CDF-Tc, and a synthetic regulatory sRNA was constructed to inhibit the expression of a total of 61 major genes on each of these platforms.
  • Target genes of the synthetic regulatory sRNA were screened for genes involved in 1) major metabolic pathways (major pathways derived from that pathway and the TCA circuit), 2) metabolite transporters, 3) cell death, and 4) metabolic circuit regulation (Table 1).
  • the same method as in the anti-DsRed2 sRNA was constructed in Example 1.3. In other words, the target binding sequence 24mer was inserted between promoter and micC by inverse PCR, followed by ligation by DpnI restriction enzyme and T4 PNK and T4 ligase, and then the correct clone was selected through sequencing.
  • the target genes corresponding to the 61 types of sRNAs thus constructed and the corresponding target binding sequences are disclosed in Table 1 below.
  • sRNA library prepared in Example 2 Using the sRNA library prepared in Example 2, a production strain that was not easily engineered using the existing pWAS based sRNA library was developed. It is difficult to apply the existing sRNA system, as described in the background. 1) The antibiotic resistance marker or the replication origin of the plasmid contained in the production strain is overlapped, or 2) The multiple knockdown gene targets are easily applied in various combinations. It means when you want to. The researchers solved these limitations using the new sRNA platform.
  • the threonine (L-threonine) producing strain is a strain showing a very high threonine production capacity of 82.4 g / L through fed-batch fermentation despite the 100% rational metabolic improved strain. It was anticipated that the production capacity would be improved by applying the randomized-regulated sRNA of the random-rational method to strains that already produce high concentrations of threonine by the 100% rational method.
  • Threonine production has been successful with high g / L concentrations and high yields of 0.393 g / g (threonine / glucose) (KH Lee et a., Mol. Syst. Biol. (2007), 3 ( 149)).
  • Flask culture was performed by applying 55 synthetic regulatory sRNA libraries applicable to threonine overproduction among the CDF-Tc based sRNA libraries constructed in Example 2 to the threonine producing strain.
  • Glycerol cell stock was inoculated into a test tube containing 5 mL LB for threonine flask culture, and passaged into flask after 16 hours of incubation.
  • Flask incubation was performed at 31 ° C., 250 rpm, for 48 hours in a baffle flask containing 30 mL of 50 g / L glucose added TPM1 medium, TPM1 medium containing the following components per liter: 2 g yeast extract, 4 g KH 2 PO 4, 14 g (NH 4 ) 2 SO 4 , 30 g CaCO 3 , 2 g MgSO 4 , 1 g betaine, 5 mL trace metal solution, 2 mM L-methionine, 2 mM L-lysine.
  • a single gene expression inhibition experiment was able to select eight gene targets to increase the threonine 20% or more out of a total of 55 gene targets. These eight knockdown targets are: tktA, aroF, pta, ilvH, ilvE, glnA, fur, chpA.
  • tktA aroF
  • pta ilvH
  • ilvE glnA
  • fur chpA
  • strains corresponding to a total of 28 double gene knockdown combinations were produced very easily, and flask culture results of the thus constructed strains are disclosed in FIG. 6.
  • the simultaneous double gene expression inhibition experiment was able to observe an increase of more than 30% compared to the existing parent strain in three of the total 28 strains.
  • about 37% of the increased threonine was obtained in the strains simultaneously down-glnA-tktA, and a maximum of 22.94 g / L of threonine was obtained.
  • the three gene knockdown combinations mentioned are: ilvE-tktA, glnA-tktA, chpA-pta.
  • the synthetically regulated sRNA platform was used to develop proline transcripts.
  • E. coli strains (NMH26-p15PP3533, pKKtrcSargF-trcSglnA strains) capable of producing large amounts of proline (L-proline), which are recently used in the animal feed, food additives, medicine and compound markets, have been developed using synthetic sRNA.
  • KR 10-1750855 B1 M. Noh et al., Cell Systems (2017), 5, 1-9.
  • This strain has two plasmids, one is a pTac15K based vector for the production of proline, and the other is a synthetic sRNA platform vector with ColE1 origin of replication and Ap antibiotics. Therefore, the researchers introduced a newly constructed synthetic regulatory sRNA platform to the above strains, but tried to increase the production capacity even though the strain was already expanded by the synthetic regulatory sRNA.
  • Previously reported strains (NMH26-p15PP3533, pKKtrcSargF-trcSglnA strains) produced 12.7 g / L of proline at 195 g / L, fed-batch fermentation on flasks (KR 10-1750855 B1, M. Noh et al. , Cell Systems (2017), 5, 1-9).
  • the flask culture was carried out by applying 60 sRNA libraries applicable to proline overproduction among CDF-Tc based sRNA libraries already constructed.
  • glycerol cell stock was preferentially inoculated into a test tube containing 5 mL LB, and cultured for 16 hours before passage to the flask.
  • the flask culture was carried out for 24 hours at 37 ° C., 200 rpm in a baffle flask containing 50 mL of R / 2 medium (pH 6.8) added with 10 g / L glucose, 3 g / L (NH 4 ) 2 SO 4 .
  • R / 2 medium contains the following components per liter: 6.75 g KH 2 PO 4 , 2 g (NH 4 ) 2 HPO 4 , 0.8 g MgSO 4 .7H 2 O, 0.85 g citric acid, and 5 mL trace metal solution.
  • the gene knockdown targets corresponding to these strains were as follows: serC, murE, aspC, metB, fadR, fur, and chpA. .
  • the fur-down strain showed an increased proline production capacity of about 38.4% compared to the existing strain, confirming that it can produce up to 2.72 g / L on the flask (FIG. 7).
  • the fed-batch fermentation was performed on strains with greatly improved proline production ability.
  • the fur drop down strain which produced the highest transpiration by suppressing single gene expression, was used.
  • the fed-batch fermentation was carried out using the previously reported proline strain fermentation conditions (KR 10-1750855 B1).
  • NMH26 p15PP3533 pKKtrcSargF-trcSglnA strain contains the corresponding antibiotic (Km, Ap, Tc) containing the pCDFTc-fur plasmid (sRNA vector for fur knockdown) Inoculated into a test tube containing 5 mL LB was incubated for 16 hours at 37 ° C. Subsequently, passage in two baffle flasks containing 50 mL of R / 2 medium (pH 6.8) with 10 g / L glucose and 3 g / L (NH 4 ) 2 SO 4 until OD600 reached 2 Cultivation was performed. 100 mL of this strain was inoculated into a fermentor containing 1.9 L of R / 2 (pH 6.8) medium supplemented with 10 g / L glucose and 3 g / L (NH 4 ) 2 SO 4 .
  • the pH was fixed at 6.8 through 28% (v / v) ammonia solution and the dissolved oxygen concentration (DO) was set to 40% of air saturation, at which point the speed of the stirrer and air to oxygen entering the fermentor DO was constantly adjusted by the ratio of.
  • DO dissolved oxygen concentration
  • the feeding solution in fed-batch fermentation was entered according to the pH-stat strategy.
  • the pH of the fermenter system rose above 6.83, a certain amount of feeding solution was set to be automatically introduced.
  • the feeding solution for fermentation contains the following components per liter: 650 g glucose, 85 g (NH 4 ) 2 SO 4 , 8 g / L MgSO 4 ⁇ 7H 2 O.
  • the fed-batch fermentation was carried out on the double knockdown strains, and the result was NMH26 p15PP3533 pKKtrcSargF-trcSglnA pCDFTc-fur pColASm-metB strain (55.3 g / L) of FIG. 11-a, and NMH26 p15PP3533 pKKtrcSargF- of FIG. 11-b.
  • the most proline-producing strain at this time was NMH26 p15PP3533 pKKtrcSargF-trcSglnA pCDFTc-fur pColASm-metB strain (strain with double knockdown of fur and metB), high production concentration of 55.3 g / L, 1.053 g / L / h High production capacity of, and yield of 0.200 g proline / g glucose. In terms of production concentration, this is a 63.6% increase in production compared to the previously reported proline production (33.8 g / L) (Noh et al., Cell Systems, 2017, KR 10-1750855 B1). The results for fed-batch fermentations for all mentioned strains are summarized in Table 2 below.
  • colony PCR was performed to confirm that sRNA remained stable in cells in the exponential and stationary phases during the fed-batch fermentation of the proline-producing strains. As shown in FIG. 12, all sRNA vectors were stably maintained. It was confirmed to be maintained.
  • FIG. 13 a method for easily transferring the genome-level sRNA expression platform to another platform was developed (FIG. 13).
  • a synthetic sRNA was transferred from a platform plasmid (pWAS) having a ColE1 origin of replication and an Ap antibiotic marker (pWAS) to a newly prepared ColA-Sm platform plasmid.
  • pWAS platform plasmid
  • pWAS Ap antibiotic marker
  • This strategy uses the Gibson assembly and PCR amplifies the ColA-Sm platform plasmid using the [SEQ ID NO: 36] and [SEQ ID NO: 37] primers.
  • all other DNA sequences except for the mRNA target binding sequence 24 bp are identical among the different sRNA vectors, so that the pWAS sRNA library is used as a template [SEQ ID NO 38] / [SEQ ID NO 39]
  • the primers were used to PCR amplify sRNA fragments containing 1,858 different mRNA target binding sequences. Thereafter, the sRNA library fragments and the ColA-Sm fragments were combined into a circular vector through a gibson assembly, and then transformed into the E. coli DH5 ⁇ strain.
  • the sRNA library constructed in Example 4 was introduced into indigo producing strains to select indigo producing strains with increased production capacity.
  • Indigo is a natural dye produced by Indigofera plant and is an aromatic amino acid compound mainly used for dyeing jeans. Originally produced through natural extraction, almost all demand is now met by chemical synthesis.
  • Previously reported indigo producing strains (IND5-pTrc-TF1, pTac-GEL strains) produced indigo at a concentration of 0.640 g / L in fed-batch fermentation and 0.108 g / L at the flask level (J. Du et. al., J Biotechnol., 2018, 267, 19-28).
  • Previously reported indigo-producing strains (IND5-pTrc-TF1, pTac-GEL strains) are not immediately applicable because they have the same vector as the origin of replication and the pWAS and antibiotic resistance markers.
  • the colony was blue color has the advantage that you can easily see the increase and decrease of production capacity. Therefore, a newly constructed sRNA library was introduced into an indigo producing strain to select an improved strain having improved indigo productivity through colony screening.
  • the (ColA-Sm) sRNA library of the platform constructed in Example 4 was transformed into an indigo producing strain, and about 20,000 or more colonies were obtained. Of these, 84 colonies of darker color were selected, and the selected strains were pre-cultivated for 16 hours at 37 ° C 200 rpm in 3 mL LB medium, followed by 3 mL of 10 g / L glucose.
  • MR medium was incubated at 250 RPM for 48 hours at 30 ° C through small scale cultivation. When the OD600 of the cells reached about 0.6-0.8, foreign gene expression was induced with 1 mM IPTG. At this time, MR medium was used as the MR medium of the composition as reported in the previous paper (J.
  • MR medium was Contains: 6.67 g of KH 2 PO 4, 4 g of (NH 4 ) 2 HPO 4 , 0.8 g of MgSO 4 7H 2 O, 0.8 g of citric acid, 5 mL of trace metal solution.
  • the culture results are as shown in Figure 14, through this initial screening was able to select up to 246% increased strain (81.9 mg / L compared to the existing strain production of 33.3 mg / L). At this time, the top 9 strains with the highest indigo production capacity were selected and incubated for 72 hours at 30 ° C and 200 rpm in 50 mL MR medium to which 10 g / L glucose was added. At about 0.6-0.8, foreign gene expression was induced with 1 mM IPTG.
  • Example 6 Violacein transpiration using platform transferred sRNA library and high speed screening
  • the E. coli genome level sRNA library transferred to the ColA-Sm platform prepared in Example 4 was applied to another secondary metabolite, violacein.
  • Violacein (violacein) and its isomer deoxyviolacein (deoxyviolacein) has many medical effects, such as anti-cancer effects, but the research has been lacking in power due to too low production. Therefore, we tried to solve the above problem through the excessive production of violacein and deoxybiolacein.
  • iGEM fragment containing vioABDE was used (Part BBa_K598019; MIT Registry of Standard Biological Parts).
  • the plasmid is based on pSB1C3 (chloramphenicol resistant antibiotic marker, pUC-based replication origin). Therefore, the following method was used to clone the remaining necessary vioC gene into pTac15K vector.
  • genomic DNA of Janthonobacterium lividum was extracted, and then amplified vioC DNA fragment using [SEQ ID NO 40] and [SEQ ID NO 41] as a primer. Then, vioC fragments were inserted through Gibson assembly through EcoRI and KpnI sites.
  • E. coli BL21 pSB1C3-vioABDE pTac15K-Jli-vioC strain was used as the base strain, and the strain was transformed into the ColA-Sm-based E. coli genome level sRNA library prepared in Example 4, followed by more than 20,000 colonies. Got. Afterwards, the strain selection process with improved violacein production was carried out in the same manner as in Example 5. More specifically, 32 of the darker purple colonies could be selected, and the selected strains were pre-cultivated for 16 hours at 37 ° C 200 rpm in 3 mL LB medium, followed by 3 mL of 10 g / L. MR medium supplemented with glucose was incubated at 250 RPM for 48 hours at 30 ° C through small scale cultivation.
  • the culture results are as shown in Figure 16, through this initial screening was able to select strains maximal 545% of viola sane, up to 784% deoxybiolasein. At this time, the top 12 strains with the highest violacein / deoxybiolacein production capacity were selected and incubated for 48 hours at 30 ° C and 200 rpm in 50 mL MR medium to which 10 g / L glucose was added. When the OD600 of the cells was about 0.6-0.8, foreign gene expression was induced with 1 mM IPTG.
  • the strain with the highest increase in violacein production was the ytfR knockdown strain, which showed increased violacein production capacity up to 0.656 g / L (based strain production of 0.116 g / L).
  • the strain showing the highest deoxybiolacein production capacity was a minD knockdown strain and showed a deoxybiolacein production capacity increased to 52.1 mg / L (based strain 21.7 mg / L production).
  • the fed-batch fermentation was carried out on strains with greatly improved violasane production ability.
  • the ytfR knockdown strain having the best violacein production capacity and the minD knockdown strain having the best dioxybiolacein production ability were each subjected to fed-batch fermentation.
  • PColA-ytfR plasmid sRNA vector for ytfR knockdown
  • coli BL21 pSB1C3-vioABDE pTac15K-Jli-vioC strain (sRNA vector for minD knockdown) was inoculated into a test tube containing 5 mL LB containing the corresponding antibiotics (Cm, Km, Spc) and incubated for 16 hours at 30 ° C. Subsequently, passages were performed in two baffle flasks containing 50 mL of MR medium (pH 7.0) added with 20 g / L glucose and 3 g / L (NH 4 ) 2 SO 4 until the OD600 reached 4. Was performed. 100 mL of this strain was inoculated into a fermentor containing 1.9 L of MR (pH 7.0) medium containing 20 g / L glucose and 3 g / L (NH 4 ) 2 SO 4 .
  • the pH was fixed at 7.0 through 28% (v / v) ammonia solution and the DO (dissolved oxygen concentration) was set to 40% of air saturation, at which time the speed of the stirrer and the air to oxygen entering the fermentor DO was constantly adjusted by the ratio of.
  • the feeding solution in fed-batch fermentation was entered according to the pH-stat strategy. When the pH of the fermenter system rose above 7.05, a certain amount of feeding solution was set to be automatically introduced. At this time, the feeding solution for fermentation contains the following components per liter: 650 g glucose, 85 g (NH 4 ) 2 SO 4 , 8 g / L MgSO 4 ⁇ 7H 2 O, 6 mL trace metal solution.
  • colony PCR was performed to confirm that sRNA remained stable in cells in the exponential phase and stationary phase during the fed-batch fermentation of the violacein-producing strains. As shown in FIG. 18-C, all sRNA vectors were disclosed. It was confirmed that they remained stable.
  • Simultaneous multiple target gene expression suppression system of the present invention unlike the existing gene deletion method is a synthetic regulatory sRNA-based gene expression control system that can effectively suppress the expression of a specific gene without modifying the sequence of the target gene, a variety of vectors It can be used to be compatible with other plasmids available in prokaryotes, including, and designed to enable simultaneous multi-introduction is useful for fast and efficient recombinant microbial production.
  • Recombinant microorganisms for the production of high efficiency proline or threonine developed through microbial metabolic flow regulation according to the present invention is useful as animal feed and industrial microorganisms.
  • E. coli genome-level synthetic regulatory sRNA library transfer technology with the high-speed screening technique, a dramatic increase in productivity was impossible.
  • Indigo or violacein highly efficient production strains according to the invention are also very useful as pharmaceutical and industrial microorganisms. Therefore, the present invention is useful because it can be used for the production of recombinant strains for the efficient production of a variety of industrial and medically useful metabolites and to establish an efficient production method.

Abstract

The present invention relates to a multiplex expression inhibition system based on a synthesis regulator sRNA and a method of producing same, and more specifically, to a combination of vectors comprising a variety of antibiotic-resistance genes, an origins of replication, and a synthesis regulator sRNA; a method of producing same; an sRNA library consisting of said combination of vectors; and a method of screening for a bacterial strain producing an useful substance by using same. The multiplex target gene expression inhibition system according to the present invention is a gene expression regulation system based on a synthesis regulator sRNA that, unlike existing gene knock-out methods, can effectively inhibit the expression of a specific gene without altering the sequence of a target gene; comprises various vectors and thus can be used compatibly with other plasmids usable in prokaryotes; and is designed to enable multiplex introduction, and thus is advantageous in a fast and efficient production of recombinant microorganisms. Furthermore, the present invention provides a technology that enables simple and fast transferring a genome-level synthesis regulation sRNA library to a new platform, and said technology is useful in selection of recombinant microorganisms producing useful substances in high capacity. Accordingly, the present invention is useful in the production of recombinant bacterial strains capable of dramatically increasing the production efficiency of a variety of medically useful metabolites.

Description

합성조절 SRNA 기반 동시다중 표적유전자 발현억제 시스템 및 그 제법Synthesis-regulated SRNA-based simultaneous multiple target gene expression suppression system and its preparation
본 발명은 합성조절 sRNA 기반의 동시다중(multiplex) 표적유전자 발현억제 시스템 및 그 제법에 관한 것으로, 보다 자세하게는 다양한 항생제 내성 유전자, 복제원점 및 합성조절 sRNA를 포함하는 벡터의 조합 및 제법, 상기 벡터의 조합으로 구성된 sRNA 라이브러리 및 이를 이용한 유용물질 생산 균주의 스크리닝 방법에 관한 것이다.The present invention relates to a multiplex target gene expression suppression system and its preparation based on synthetic sRNA, and more particularly, to a combination and preparation of a vector comprising a variety of antibiotic resistance genes, origins of replication and synthetic regulatory sRNA, the vector It relates to an sRNA library consisting of a combination of and screening methods for producing useful substances using the same.
전 세계적인 환경문제, 한정된 자원고갈, 친환경 에너지원에 대한 수요로 인해 재생산 가능한 생물체 기반의 세포 공장 구축에 대한 관심이 증가하고 있다. 이런 세포 공장은 세포 내의 대사회로 (metabolic network)를 목적대사산물 (바이오 에너지, 친환경 화학물질, 신약 제재 등) 생산에 최적화하여 제조할 수 있는데, 이 기술 과정에 다양한 분자생물학 기술이 요구되고 있다.Due to global environmental problems, limited resource depletion and demand for environmentally friendly energy sources, there is a growing interest in building cell plants based on reproducible organisms. These cell factories can manufacture a metabolic network within cells to optimize their production of metabolites (bio-energy, green chemicals, new drug formulations, etc.), which require a variety of molecular biology techniques.
생물체가 목적대사산물을 높은 효율로 생산하기 위해서는 대사 흐름의 최적화가 필수적이며, 이는 결국 필요한 효소의 발현을 최적화를 통해 가능하다. 반응이 빠르고 다량으로 일어나야 하는 경우 효소의 양이 많아야 하고, 반응성이 떨어지는 효소의 경우 반응속도 향상을 위해서는 다량으로 발현이 이루어져야 하며, 세포의 생존에는 필수적이나 목적 산물의 생산을 저해하는 대사반응을 일으키는 효소의 발현은 낮은 수준으로 최적화를 해야 할 필요가 있다.In order for the organism to produce the desired metabolites with high efficiency, optimization of metabolic flow is essential, which is possible through optimization of expression of necessary enzymes. If the reaction is to occur quickly and in large quantities, the amount of enzyme must be large, and the less reactive enzyme must be expressed in large amounts to improve the reaction rate, which is essential for cell survival, but causes metabolic reactions that inhibit the production of the desired product. The expression of enzymes needs to be optimized at low levels.
최근 합성조절 sRNA 시스템들이 개발되고 이를 다양한 종류의 미생물에 적용함으로써 시스템적으로 대사회로상의 유전자들을 손쉽게 낙다운시킬 수 있게 되어 효율적인 유전자 발현 조절이 가능하게 되었다(KR 10-1575587 B1, US 9388417, EP 13735942.8, CN 201380012767.X, KR 10-1690780 B1, KR 10-1750855 B1, US 15317939, CN 201480081132.X, D. Na et al., Nat. Biotechnol. (2013), 31(2), 170-174, S.M. Yoo et al., Nat. Protoc. (2013), 8(9), 1694-707, C. Cho et al., Biotechnol. Bioeng. (2017), 11(2), 374-383, M. Noh et al., Cell Systems (2017), 5, 1-9).Recently, synthetic regulatory sRNA systems have been developed and applied to various kinds of microorganisms, so that the genes in the metabolic circuits can be easily knocked down, enabling efficient gene expression control (KR 10-1575587 B1, US 9388417, EP 13735942.8, CN 201380012767.X, KR 10-1690780 B1, KR 10-1750855 B1, US 15317939, CN 201480081132.X, D. Na et al., Nat.Biotechnol. (2013), 31 (2), 170-174 , SM Yoo et al., Nat. Protoc. (2013), 8 (9), 1694-707, C. Cho et al., Biotechnol. Bioeng. (2017), 11 (2), 374-383, M. Noh et al., Cell Systems (2017), 5, 1-9).
상기 기술은 낙아웃 기법을 포함한 기존의 게놈 기반 엔지니어링이 지닌 여러 단점 및 한계점들 (오랜 시간, 노동집약, 숙련된 기술 필요, 낮은 성공률 및 동시 다발 대용량 실험의 어려움)을 획기적으로 극복한 기술로서, 소요되는 시간, 효율 및 대용량 실험 가능성을 모두 획기적으로 개선할 수 있었다(Datsenko et al, Proc. Natl. Acad. Sci. USA (2000), 97(12), 6640-6645). 또한, 기존의 유전자 결실 엔지니어링에서는 불가능하거나 어려웠던 생존 필수 유전자 (essential gene)에 대한 낙다운도 가능하여 시스템적인 적용을 통해 예상치 않게 타겟 화합물의 생산성을 증가시킬 수 있는 낙다운 목표 유전자의 발견도 가능하였다.  The technology overcomes many of the shortcomings and limitations of traditional genome-based engineering, including knockout techniques (long time, labor intensive, skilled skill requirements, low success rates, and the difficulty of concurrent large-volume experiments). The time, efficiency and possibility of large-scale experiments could all be dramatically improved (Datsenko et al, Proc. Natl. Acad. Sci. USA (2000), 97 (12), 6640-6645). In addition, it was possible to downgrade survival essential genes, which were impossible or difficult in the existing gene deletion engineering, and thus, it was possible to find a knockdown target gene that can unexpectedly increase the productivity of the target compound through systemic application. .
이러한 장점들을 가지고 있는 합성조절 sRNA 시스템을 보다 다양한 균주 개발에 활용하기 위해서는 다양한 발현 플랫폼이 필수적이다. 만약, 합성조절 sRNA 발현 플랫폼내의 복제원점 또는 항생제 마커가 대사공학적으로 이미 개량된 균주 내에 존재하는 플라스미드의 복제원점 또는 항생제 마커와 동일하다면 sRNA 라이브러리 시스템을 바로 적용하기가 어렵기 때문이다. 따라서 기존의 합성 조절 sRNA 플랫폼 하에서는, 다양한 균주에 바로 적용이 어려웠고 상황에 따라 새롭게 클로닝을 진행해야 했다. 또한, 하나의 세포 내에 여러 유전자의 동시 낙다운 효과를 확인하기 위해서는 그에 해당하는 합성조절 sRNA 라이브러리를 한꺼번에 적용하는 것이 바람직하나, 이 라이브러리 내 복제원점과 항생제 마커가 모두 동일하기 때문에 이를 위해서는 하나의 플라스미드에 여러 합성조절 sRNA를 일일이 클로닝하는 추가적인 작업이 필요하다. 이 역시 상황에 따라 새로운 클로닝 작업이 필요하였으므로 경우에 따라 많은 시간이 소요되는 어려움이 있었다.Various expression platforms are necessary to utilize the synthetic regulatory sRNA system having these advantages in the development of more various strains. If the origin or antibiotic marker in the synthetic regulatory sRNA expression platform is the same as the origin or antibiotic marker of the plasmid already present in the metabolically improved strain, it is difficult to apply the sRNA library system directly. Therefore, under the existing synthetic regulatory sRNA platform, it was difficult to immediately apply to various strains, and new cloning had to be carried out depending on the situation. In addition, in order to confirm the simultaneous knockdown effect of several genes in one cell, it is preferable to apply a corresponding synthetic regulatory sRNA library at once, but since both the origin of replication and the antibiotic marker in this library are the same, Additional work is needed to clone several synthetic regulatory sRNAs. This also required a new cloning operation depending on the situation, there was a difficult time consuming in some cases.
이러한 한계들은 1) 자주 사용되는 대부분의 플라스미드들과 호환성 있고 동시다중 도입 가능한 다양한 합성조절 sRNA 발현 플랫폼을 개발하고 2) 대장균 유전체 수준의 합성조절 sRNA 라이브러리를 다양한 합성조절 sRNA 발현 플랫폼에 쉽고 간편하게 이전하는 기술이 개발된다면 극복 가능할 것이다. 이러한 기술들이 개발이 된다면, 보다 다양한 환경에서의 유전자 발현 조절이 가능하고, 더 나아가 보다 손쉽고 간편하게 빠른 시일 내에 유용한 화학물질을 효율적으로 생산할 수 있는 미생물 세포 공장 개발 역시 가능할 것이며, 합성조절 sRNA의 활용성을 극대화시킬 수 있을 것이다. 본 발명에서는 다양한 복제 원점 및 항생제 마커들을 선별하고 이들을 조합하여 기존의 벡터 사용에 있어서 호환성이 있는 합성조절 sRNA 발현 플라스미드들을 구축하였다.These limitations include: 1) developing a variety of synthetic regulatory sRNA expression platforms that are compatible and compatible with most commonly used plasmids; and 2) transferring E. coli genome-level synthetic regulatory sRNA libraries to various synthetic regulatory sRNA expression platforms easily and conveniently. If the technology is developed, it will be overcome. If these technologies are developed, it will be possible to control gene expression in a wider variety of environments. Furthermore, it will be possible to develop microbial cell plants that can produce useful chemicals more easily and conveniently in a short time. Will be able to maximize. In the present invention, various replication origin and antibiotic markers were selected and combined to construct synthetic regulatory sRNA expression plasmids that are compatible for use with existing vectors.
이에 본 발명자들은 다양한 합성조절 sRNA 발현 플랫폼을 개발하기 위해 예의 노력한 결과, 합성조절 sRNA 발현 벡터마다 항생제 내성 유전자 및 복제원점을 서로 달리하여 합성조절 sRNA 발현벡터를 깁슨 어셈블리(Gibson assembly), 골든게이트 어셈블리(golden gate assembly), 라이게이션(ligation), 상동재조합(homologous recombination), SLIC(sequence and ligation-independent cloning), SLiCE(seamless ligation cloning extract), CPEC(circular polymerase extension cloning) 또는 유전자 합성 방법을 이용하여 제조할 경우, 동시다중 표적유전자의 효율적인 발현억제가 가능할 뿐만 아니라, 대상 미생물의 성장에도 영향을 끼치지 않으며, 대상 미생물 내에서 안정성이 높은 것을 확인함으로써 본 발명을 완성하였다. Accordingly, the present inventors have made efforts to develop a variety of synthetic regulatory sRNA expression platforms. As a result, the synthetically regulated sRNA expression vectors differ from antibiotic resistance genes and origins of replication. (golden gate assembly), ligation, homologous recombination, sequence and ligation-independent cloning (SLIC), seamless ligation cloning extract (SLiCE), circular polymerase extension cloning (CPEC), or gene synthesis methods When prepared by the present invention, not only efficient expression inhibition of multiple target genes is possible, but also does not affect the growth of the target microorganism, and completed the present invention by confirming that the stability is high in the target microorganism.
본 배경기술 부분에 기재된 상기 정보는 오직 본 발명의 배경에 대한 이해를 향상시키기 위한 것이며, 이에 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자에게 있어 이미 알려진 선행기술을 형성하는 정보를 포함하지 않을 수 있다.The above information described in this Background section is only for improving the understanding of the background of the present invention, and therefore does not include information that forms a prior art known to those of ordinary skill in the art. You may not.
발명의 요약Summary of the Invention
본 발명의 목적은 합성조절 sRNA 기반의 동시다중 표적유전자 발현억제 시스템이 도입되어 있는 재조합 미생물 및 상기 시스템이 도입되어 있는 재조합 미생물을 이용한 트레오닌, 프롤린, 인디고 또는 비올라세린 생산능이 향상된 재조합 미생물을 제공하는 것이다.Disclosure of the Invention An object of the present invention is to provide a recombinant microorganism having a synthetic sRNA-based simultaneous multiple target gene expression suppression system and a recombinant microorganism having improved threonine, proline, indigo or violaserine production capacity using the recombinant microorganism having the system. will be.
상기 목적을 달성하기 위하여, 본 발명은 제1항생제 내성 유전자; 제1복제원점; 제1 표적유전자 발현을 억제하는 합성 sRNA 암호화 영역을 포함하는 제1벡터; 및 제n항생제 내성 유전자; 제m복제원점; 제p 표적유전자 발현을 억제하는 합성 sRNA 암호화영역을 포함하는 제q벡터;를 포함하는 원핵생물의 동시다중 표적유전자 발현억제 시스템이 숙주세포 도입되어 있는 재조합 미생물로, In order to achieve the above object, the present invention is a first antibiotic resistance gene; First replication origin; A first vector comprising a synthetic sRNA coding region that inhibits expression of a first target gene; And n antibiotic resistance genes; Mth replication origin; A recombinant microorganism into which a host multi-target gene expression suppression system is introduced, wherein the host vector is introduced, comprising: a q vector comprising a synthetic sRNA coding region that inhibits expression of the p target gene;
상기 제1항생제 내성 유전자와 제n항생제 내성 유전자, 제1복제원점과 제m복제원점 및 제1표적 유전자와 제p표적 유전자는 서로 각각 상이하며, The first antibiotic resistance gene and the n antibiotic resistance gene, the first replication origin and the m replication origin and the first target gene and the p target gene are different from each other,
n은 2 내지 50의 정수이고, m은 2 내지 10의 정수이며, q는 2 내지 500의 정수이고, p는 2 내지 20000의 정수이며, n is an integer from 2 to 50, m is an integer from 2 to 10, q is an integer from 2 to 500, p is an integer from 2 to 20000,
상기 항생제는 앰피실린(ampicillin), 카나마이신(Kanamycin), 클로로암페니콜(chloramphenicol), 아프라마이신(apramycin), 스트렙토마이신(streptomycin), 스펙티도마이신(spectinomycin), 테트라사이클린(tetracyclin), 에리트로마이신(erythromycin), 네오마이신(neomycin), 페니실린(penicillin), 액시노마이신(actinomycin), 가베니실린(garbenicillin), 겐타미신(gentamicin), 블라스티시딘(blasticidin), 마이코페놀릭산(mycophenolic acid), 퓨로마이신(puromycin), 제오신(zeocin), 보렐리딘(borrelidin), 이오노마이신(ionomycin), 다우노루비신(daunorubicin), 독소루비신(doxorubicin), 이버멕틴(ivermectin), 에버멕틴(avermectin), 미트라마이신(mithramycin), 미토마이신(mitomycin), 나리딕식산(nalidixic acid), 노보비오신(novobiocin), 니스타틴(nystatin), 옥시테트라라시클린(oxytetracycline), 팩리택셀(paclitaxel), 폴리마이신(polymyxin), 리팜피신(rifampicin), 살리노마이신(salinomycin), 타일로신(tylosin), 발리노마이신(valinomycin), 밴코마이신(vancomycin), 빈블라스틴(vinblastine), 및 빈크리스틴(vincristine) 으로 구성된 군에서 선택되고,The antibiotics are ampicillin, kanamycin, kanamycin, chloroamphenicol, apramycin, streptomycin, specrepomycin, spectinomycin, tetracycline and erythromycin. Erythromycin, neomycin, penicillin, axinomycin, actinomycin, garbenicillin, gentamicin, blasticidin, mycophenolic acid ), Puromycin, zeocin, borelidin, borrelidin, ionomycin, daunorubicin, doxorubicin, doxorubicin, ivermectin, avermectin Mithramycin, mitomycin, mitomycin, nalidixic acid, novobiocin, nystatin, oxytetracycline, paclitaxel, polymycin (polymyxin), rifampicin in, salinomycin, tylosin, valinomycin, vancomycin, vinblastine, and vincristine, ,
상기복제원점은 CloDF13(CDF), pBBR1, ColA, ColE1, pUC, pBR322, SC101, RSF1030(RSF), 및 RK2로 구성된 군에서 선택되며,The replication origin is selected from the group consisting of CloDF13 (CDF), pBBR1, ColA, ColE1, pUC, pBR322, SC101, RSF1030 (RSF), and RK2,
상기 합성 sRNA 암호화 영역은 프로모터; MicC, SgrS 및 MicF 중 어느 하나의 sRNA 유래의 Hfq 결합 부위(Hfq binding site); 표적 유전자 mRNA와 상보적 결합을 형성하는 영역; 및 터미네이터를 포함하는 것을 특징으로 하는 The synthetic sRNA coding region comprises a promoter; Hfq binding site derived from sRNA of any of MicC, SgrS and MicF; A region forming complementary binding with a target gene mRNA; And a terminator
동시다중 표적 유전자 발현 억제 시스템이 숙주세포에 도입되어 있는 재조합 미생물을 제공한다.Simultaneous multiple target gene expression suppression systems provide recombinant microorganisms introduced into host cells.
본 발명은 또한, 다음의 단계를 포함하는 유용물질 생산균주의 개량방법을 제공한다:The present invention also provides a method for improving a strain of useful substance producing strain comprising the following steps:
(a) 20~50bp 크기를 가지는 임의의 염기서열을 제조하는 단계;(A) preparing any base sequence having a size of 20 ~ 50bp;
(b) 상기 염기서열을 제1항생제 내성 유전자; 제1복제원점; 제1 표적유전자 발현을 억제하는 합성 sRNA 암호화 영역을 포함하는 제1벡터의 표적유전자 mRNA와 상보적으로 결합하는 영역에 삽입하여 제1 sRNA 라이브러리를 포함하는 제1벡터 라이브러리를 제조하는 단계;(b) the nucleotide sequence of the first antibiotic resistance gene; First replication origin; Preparing a first vector library comprising a first sRNA library by inserting into a region complementarily binding to a target gene mRNA of a first vector comprising a synthetic sRNA coding region that inhibits expression of the first target gene;
(c) 상기 제1벡터 라이브러리를 유용물질을 생산하고자 하는 대상 균주에 도입하여, 유용물질 생산량이 향상되는 경우, 발현이 억제된 유전자 후보군을 동정하여, 2 내지 500개의 발현억제 대상 유전자로 결정하는 단계;(c) introducing the first vector library into a target strain to produce a useful material and identifying a candidate group of genes whose expression is suppressed when the production of the useful material is improved, and determining 2 to 500 expression inhibitory genes. step;
(d) 상기 결정된 2 내지 500개의 발현억제 대상 유전자를 제n항생제 내성 유전자; 제m복제원점; 상기 2 내지 500개의 발현억제 대상 유전자 발현을 억제하는 합성 sRNA 암호화영역을 포함하는 제q 벡터에 각각 삽입하는 단계; 및(d) the 2 to 500 expression inhibitory genes determined as the n antibiotic resistance genes; Mth replication origin; Inserting each of the q-vectors including the synthetic sRNA coding region that inhibits the expression of the 2 to 500 genes to inhibit expression; And
(e) 상기 발현억제 대상 유전자를 포함하는 q개의 벡터가 도입된 재조합 균주를 제조하는 단계,(e) preparing a recombinant strain into which q vectors containing the expression inhibitory gene are introduced,
여기서, here,
상기 제1항생제 내성 유전자와 제n항생제 내성 유전자, 제1복제원점과 제m복제원점 및 제1표적유전자와 2 내지 500개의 발현억제 대상 유전자는 서로 각각 상이하며, The first antibiotic resistance gene and the n antibiotic resistance gene, the first replication origin and the m replication origin and the first target gene and 2 to 500 expression suppression genes are different from each other,
n은 2 내지 50의 정수이고, m은 2 내지 10의 정수이며, q는 2 내지 500의 정수이고, q는 2 내지 500의 정수인 것을 특징으로 함.n is an integer from 2 to 50, m is an integer from 2 to 10, q is an integer from 2 to 500, q is an integer from 2 to 500.
본 발명은 또한, 트레오닌(Threonine) 생합성 경로를 가지는 숙주세포에, The present invention also relates to a host cell having a threonine biosynthetic pathway,
제1항생제 내성 유전자; 제1복제원점; 제1 표적유전자 발현을 억제하는 합성 sRNA 암호화 영역을 포함하는 제1벡터; 및 제n항생제 내성 유전자; 제m복제원점; 제p 표적유전자 발현을 억제하는 합성 sRNA 암호화영역을 포함하는 제q벡터;를 포함하는 원핵생물의 동시다중 표적유전자 발현억제 시스템이 도입되어 있는 재조합 미생물로,Antibiotic resistance genes; First replication origin; A first vector comprising a synthetic sRNA coding region that inhibits expression of a first target gene; And n antibiotic resistance genes; Mth replication origin; A recombinant microorganism into which a simultaneous multi-target gene expression suppression system of a prokaryote is introduced, comprising: a q vector comprising a synthetic sRNA coding region that inhibits p-target gene expression;
상기 제1항생제 내성 유전자와 제n항생제 내성 유전자, 제1복제원점과 제m복제원점 및 제1표적유전자와 제p표적유전자는 서로 각각 상이하며, The first antibiotic resistance gene and the n antibiotic resistance gene, the first replication origin and the m replication origin, and the first target gene and the p target gene are different from each other,
n은 2 내지 50의 정수이고, m은 2 내지 10의 정수이며, q는 2 내지 500의 정수이고, p는 2 내지 20000의 정수이며,n is an integer from 2 to 50, m is an integer from 2 to 10, q is an integer from 2 to 500, p is an integer from 2 to 20000,
상기 항생제는앰피실린(ampicillin), 카나마이신(Kanamycin), 클로로암페니콜(chloramphenicol), 아프라마이신(apramycin), 스트렙토마이신(streptomycin), 스펙티도마이신(spectinomycin), 테트라사이클린(tetracyclin), 에리트로마이신(erythromycin), 네오마이신(neomycin), 페니실린(penicillin), 액시노마이신(actinomycin), 가베니실린(garbenicillin), 겐타미신(gentamicin), 블라스티시딘(blasticidin), 마이코페놀릭산(mycophenolic acid), 퓨로마이신(puromycin), 제오신(zeocin), 보렐리딘(borrelidin), 이오노마이신(ionomycin), 다우노루비신(daunorubicin), 독소루비신(doxorubicin), 이버멕틴(ivermectin), 에버멕틴(avermectin), 미트라마이신(mithramycin), 미토마이신(mitomycin), 나리딕식산(nalidixic acid), 노보비오신(novobiocin), 니스타틴(nystatin), 옥시테트라라시클린(oxytetracycline), 팩리택셀(paclitaxel), 폴리마이신(polymyxin), 리팜피신(rifampicin), 살리노마이신(salinomycin), 타일로신(tylosin), 발리노마이신(valinomycin), 밴코마이신(vancomycin), 빈블라스틴(vinblastine), 및 빈크리스틴(vincristine) 으로 구성된 군에서 선택되고,The antibiotics are ampicillin, kanamycin, kanampycin, chloramphenicol, apramycin, streptomycin, spectiomycin, tetracycline, tetracycline and erythromycin. Erythromycin, neomycin, penicillin, axinomycin, actinomycin, garbenicillin, gentamicin, blasticidin, mycophenolic acid ), Puromycin, zeocin, borelidin, borrelidin, ionomycin, daunorubicin, doxorubicin, doxorubicin, ivermectin, avermectin Mithramycin, mitomycin, mitomycin, nalidixic acid, novobiocin, nystatin, oxytetracycline, paclitaxel, polymycin (polymyxin), rifampicin n), salinomycin, tylosin, valinomycin, vancomycin, vinblastine, and vincristine; ,
상기 복제원점은 CloDF13(CDF), pBBR1, ColA, ColE1, pUC, pBR322, SC101, RSF1030(RSF), 및 RK2로 구성된 군에서 선택되며,The origin of replication is selected from the group consisting of CloDF13 (CDF), pBBR1, ColA, ColE1, pUC, pBR322, SC101, RSF1030 (RSF), and RK2,
상기 합성 sRNA 암호화 영역은 프로모터; MicC, SgrS 및 MicF 중 어느 하나의 sRNA 유래의 Hfq 결합 부위(Hfq binding site); 표적 유전자 mRNA와 상보적 결합을 형성하는 영역; 및 터미네이터를 포함하고, The synthetic sRNA coding region comprises a promoter; Hfq binding site derived from sRNA of any of MicC, SgrS and MicF; A region forming complementary binding with a target gene mRNA; And terminator,
상기 제1 내지 제q벡터의 표적유전자의 mRNA와 상보적으로 결합하는 영역에 tktA, aroF, pta, ilvH, ilvE, glnA, fur 또는 chpA 유전자의 mRNA와 상보적으로 결합하는 서열을 삽입하여 제조된 벡터가 도입되어 있어, tktA, aroF, pta, ilvH, ilvE, glnA fur 및 chpA로 구성된 군에서 선택되는 2개 이상의 유전자의 발현이 억제되어 있어 트레오닌 생산능력이 향상된 것을 특징으로 하는 재조합 미생물을 제공한다.A sequence prepared by inserting a sequence complementarily binding to mRNA of a tktA, aroF, pta, ilvH, ilvE, glnA, fur, or chpA gene into a region complementarily binding to mRNAs of the target genes of the first to q vectors Since the vector is introduced, expression of two or more genes selected from the group consisting of tktA, aroF, pta, ilvH, ilvE, glnA fur and chpA is suppressed, thereby providing a recombinant microorganism characterized by improved threonine production capacity. .
본 발명은 또한, 프롤린(proline) 생합성 경로를 가지는 숙주세포에, The present invention also provides a host cell having a proline biosynthetic pathway,
제1항생제 내성 유전자; 제1복제원점; 제1 표적유전자 발현을 억제하는 합성 sRNA 암호화 영역을 포함하는 제1벡터; 및 제n항생제 내성 유전자; 제m복제원점; 제p 표적유전자 발현을 억제하는 합성 sRNA 암호화영역을 포함하는 제q벡터;를 포함하는 원핵생물의 동시다중 표적유전자 발현억제 시스템이 도입되어 있는 재조합 미생물로, Antibiotic resistance genes; First replication origin; A first vector comprising a synthetic sRNA coding region that inhibits expression of a first target gene; And n antibiotic resistance genes; Mth replication origin; A recombinant microorganism into which a simultaneous multi-target gene expression suppression system of a prokaryote is introduced, comprising: a q vector comprising a synthetic sRNA coding region that inhibits p-target gene expression;
상기 제1항생제 내성 유전자와 제n항생제 내성 유전자, 제1복제원점과 제m복제원점 및 제1표적유전자와 제p표적유전자는 서로 각각 상이하며, The first antibiotic resistance gene and the n antibiotic resistance gene, the first replication origin and the m replication origin, and the first target gene and the p target gene are different from each other,
n은 2 내지 50의 정수이고, m은 2 내지 10의 정수이며, q는 2 내지 500의 정수이고, p는 2 내지 20000의 정수이며,n is an integer from 2 to 50, m is an integer from 2 to 10, q is an integer from 2 to 500, p is an integer from 2 to 20000,
상기 항생제는앰피실린(ampicillin), 카나마이신(Kanamycin), 클로로암페니콜(chloramphenicol), 아프라마이신(apramycin), 스트렙토마이신(streptomycin), 스펙티도마이신(spectinomycin), 테트라사이클린(tetracyclin), 에리트로마이신(erythromycin), 네오마이신(neomycin), 페니실린(penicillin), 액시노마이신(actinomycin), 가베니실린(garbenicillin), 겐타미신(gentamicin), 블라스티시딘(blasticidin), 마이코페놀릭산(mycophenolic acid), 퓨로마이신(puromycin), 제오신(zeocin), 보렐리딘(borrelidin), 이오노마이신(ionomycin), 다우노루비신(daunorubicin), 독소루비신(doxorubicin), 이버멕틴(ivermectin), 에버멕틴(avermectin), 미트라마이신(mithramycin), 미토마이신(mitomycin), 나리딕식산(nalidixic acid), 노보비오신(novobiocin), 니스타틴(nystatin), 옥시테트라라시클린(oxytetracycline), 팩리택셀(paclitaxel), 폴리마이신(polymyxin), 리팜피신(rifampicin), 살리노마이신(salinomycin), 타일로신(tylosin), 발리노마이신(valinomycin), 밴코마이신(vancomycin), 빈블라스틴(vinblastine), 및 빈크리스틴(vincristine) 으로 구성된 군에서 선택되고,The antibiotics are ampicillin, kanamycin, kanampycin, chloramphenicol, apramycin, streptomycin, spectiomycin, tetracycline, tetracycline and erythromycin. Erythromycin, neomycin, penicillin, axinomycin, actinomycin, garbenicillin, gentamicin, blasticidin, mycophenolic acid ), Puromycin, zeocin, borelidin, borrelidin, ionomycin, daunorubicin, doxorubicin, doxorubicin, ivermectin, avermectin Mithramycin, mitomycin, mitomycin, nalidixic acid, novobiocin, nystatin, oxytetracycline, paclitaxel, polymycin (polymyxin), rifampicin n), salinomycin, tylosin, valinomycin, vancomycin, vinblastine, and vincristine; ,
상기 복제원점은 CloDF13(CDF), pBBR1, ColA, ColE1, pUC, pBR322, SC101, RSF1030(RSF), 및 RK2로 구성된 군에서 선택되며,The origin of replication is selected from the group consisting of CloDF13 (CDF), pBBR1, ColA, ColE1, pUC, pBR322, SC101, RSF1030 (RSF), and RK2,
상기 합성 sRNA 암호화 영역은 프로모터; MicC, SgrS 및 MicF 중 어느 하나의 sRNA 유래의 Hfq 결합 부위(Hfq binding site); 표적 유전자 mRNA와 상보적 결합을 형성하는 영역; 및 터미네이터를 포함하고,The synthetic sRNA coding region comprises a promoter; Hfq binding site derived from sRNA of any of MicC, SgrS and MicF; A region forming complementary binding with a target gene mRNA; And terminator,
상기 제1 내지 제q벡터의 표적유전자의 mRNA와 상보적으로 결합하는 영역에 serC, murE, aspC, metB, fadR, fur 또는 chpA 유전자의 mRNA와 상보적으로 결합하는 서열을 삽입하여 제조된 벡터가 도입되어 있어, serC, murE, aspC, metB, fadR, fur 및 chpA 로 구성된 군에서 선택되는 2개 이상의 유전자의 발현이 억제되어 있어 프롤린 생산능력이 향상된 것을 특징으로 하는 재조합 미생물을 제공한다.The vector prepared by inserting a sequence complementary to the mRNA of the serC, murE, aspC, metB, fadR, fur or chpA gene in the region complementary to the mRNA of the target gene of the first to q vector Introduced, the expression of two or more genes selected from the group consisting of serC, murE, aspC, metB, fadR, fur and chpA is suppressed to provide a recombinant microorganism characterized by improved proline production capacity.
본 발명은 또한, 상기 재조합 미생물을 트레이스 메탈 용액(trace metal solution)을 포함하는 배지에서 유가식 발효를 통해 배양하는 단계를 포함하는 프롤린 생산 방법을 제공한다.The present invention also provides a proline production method comprising culturing the recombinant microorganism through fed-batch fermentation in a medium containing a trace metal solution.
본 발명은 또한, 인디고(indigo) 생합성 경로를 가지는 숙주세포에서, 상기 동시다중 표적유전자 발현억제 시스템의 제1 내지 제q벡터의 표적유전자의 mRNA와 상보적으로 결합하는 영역에 asnA, hisJ, yneH, napG, kdsA, ygfA, ftsl, aceF 또는 ostB 유전자의 mRNA와 상보적으로 결합하는 서열을 삽입하여 제조된 벡터가 도입되어 있어, asnA, hisJ, yneH, napG, kdsA, ygfA, ftsl, aceF 및 ostB 로 구성된 군에서 선택되는 2개 이상의 유전자의 발현이 억제되어 있는 것을 특징으로 하는 인디고 생산능력이 향상된 재조합 미생물을 제공한다.The present invention also provides a host cell having an indigo biosynthetic pathway, asnA, hisJ, yneH, to a region complementarily binding to the mRNA of the target gene of the first to q vectors of the simultaneous multiple target gene expression suppression system. A vector prepared by inserting a sequence complementarily binding to mRNA of the napG, kdsA, ygfA, ftsl, aceF or ostB genes is introduced, and asnA, hisJ, yneH, napG, kdsA, ygfA, ftsl, aceF and ostB It provides a recombinant microorganism with improved indigo production capacity, characterized in that the expression of two or more genes selected from the group consisting of is suppressed.
본 발명은 또한, 인디고(indigo) 생합성 경로를 가지는 숙주세포에, The invention also relates to a host cell having an indigo biosynthetic pathway,
제1항생제 내성 유전자; 제1복제원점; 제1 표적유전자 발현을 억제하는 합성 sRNA 암호화 영역을 포함하는 제1벡터; 및 제n항생제 내성 유전자; 제m복제원점; 제p 표적유전자 발현을 억제하는 합성 sRNA 암호화영역을 포함하는 제q벡터;를 포함하는 원핵생물의 동시다중 표적유전자 발현억제 시스템이 도입되어 있는 재조합 미생물로, Antibiotic resistance genes; First replication origin; A first vector comprising a synthetic sRNA coding region that inhibits expression of a first target gene; And n antibiotic resistance genes; Mth replication origin; A recombinant microorganism into which a simultaneous multi-target gene expression suppression system of a prokaryote is introduced, comprising: a q vector comprising a synthetic sRNA coding region that inhibits p-target gene expression;
상기 제1항생제 내성 유전자와 제n항생제 내성 유전자, 제1복제원점과 제m복제원점 및 제1표적유전자와 제p표적유전자는 서로 각각 상이하며, The first antibiotic resistance gene and the n antibiotic resistance gene, the first replication origin and the m replication origin, and the first target gene and the p target gene are different from each other,
n은 2 내지 50의 정수이고, m은 2 내지 10의 정수이며, q는 2 내지 500의 정수이고, p는 2 내지 20000의 정수이며,n is an integer from 2 to 50, m is an integer from 2 to 10, q is an integer from 2 to 500, p is an integer from 2 to 20000,
상기 항생제는앰피실린(ampicillin), 카나마이신(Kanamycin), 클로로암페니콜(chloramphenicol), 아프라마이신(apramycin), 스트렙토마이신(streptomycin), 스펙티도마이신(spectinomycin), 테트라사이클린(tetracyclin), 에리트로마이신(erythromycin), 네오마이신(neomycin), 페니실린(penicillin), 액시노마이신(actinomycin), 가베니실린(garbenicillin), 겐타미신(gentamicin), 블라스티시딘(blasticidin), 마이코페놀릭산(mycophenolic acid), 퓨로마이신(puromycin), 제오신(zeocin), 보렐리딘(borrelidin), 이오노마이신(ionomycin), 다우노루비신(daunorubicin), 독소루비신(doxorubicin), 이버멕틴(ivermectin), 에버멕틴(avermectin), 미트라마이신(mithramycin), 미토마이신(mitomycin), 나리딕식산(nalidixic acid), 노보비오신(novobiocin), 니스타틴(nystatin), 옥시테트라라시클린(oxytetracycline), 팩리택셀(paclitaxel), 폴리마이신(polymyxin), 리팜피신(rifampicin), 살리노마이신(salinomycin), 타일로신(tylosin), 발리노마이신(valinomycin), 밴코마이신(vancomycin), 빈블라스틴(vinblastine), 및 빈크리스틴(vincristine) 으로 구성된 군에서 선택되고,The antibiotics are ampicillin, kanamycin, kanampycin, chloramphenicol, apramycin, streptomycin, spectiomycin, tetracycline, tetracycline and erythromycin. Erythromycin, neomycin, penicillin, axinomycin, actinomycin, garbenicillin, gentamicin, blasticidin, mycophenolic acid ), Puromycin, zeocin, borelidin, borrelidin, ionomycin, daunorubicin, doxorubicin, doxorubicin, ivermectin, avermectin Mithramycin, mitomycin, mitomycin, nalidixic acid, novobiocin, nystatin, oxytetracycline, paclitaxel, polymycin (polymyxin), rifampicin n), salinomycin, tylosin, valinomycin, vancomycin, vinblastine, and vincristine; ,
상기 복제원점은 CloDF13(CDF), pBBR1, ColA, ColE1, pUC, pBR322, SC101, RSF1030(RSF), 및 RK2로 구성된 군에서 선택되며,The origin of replication is selected from the group consisting of CloDF13 (CDF), pBBR1, ColA, ColE1, pUC, pBR322, SC101, RSF1030 (RSF), and RK2,
상기 합성 sRNA 암호화 영역은 프로모터; MicC, SgrS 및 MicF 중 어느 하나의 sRNA 유래의 Hfq 결합 부위(Hfq binding site); 표적 유전자 mRNA와 상보적 결합을 형성하는 영역; 및 터미네이터를 포함하고,The synthetic sRNA coding region comprises a promoter; Hfq binding site derived from sRNA of any of MicC, SgrS and MicF; A region forming complementary binding with a target gene mRNA; And terminator,
상기 제1 내지 제q벡터의 표적유전자의 mRNA와 상보적으로 결합하는 영역에 asnA, hisJ, yneH, napG, kdsA, ygfA, ftsl, aceF 또는 ostB 유전자의 mRNA와 상보적으로 결합하는 서열을 삽입하여 제조된 벡터가 도입되어 있어, asnA, hisJ, yneH, napG, kdsA, ygfA, ftsl, aceF 및 ostB 로 구성된 군에서 선택되는 2개 이상의 유전자의 발현이 억제되어 있어 인디고 생산능력이 향상된 것을 특징으로 하는 재조합 미생물을 제공한다.Inserting a sequence complementary to the mRNA of the asnA, hisJ, yneH, napG, kdsA, ygfA, ftsl, aceF or ostB gene in the region complementary to the mRNA of the target gene of the first to q vector Since the prepared vector is introduced, expression of two or more genes selected from the group consisting of asnA, hisJ, yneH, napG, kdsA, ygfA, ftsl, aceF, and ostB is suppressed, thereby improving indigo production capacity. Provide a recombinant microorganism.
본 발명은 또한, 제1항생제 내성 유전자; 제1복제원점; 제1 표적유전자 발현을 억제하는 합성 sRNA 암호화 영역을 포함하는 제1벡터; 및 제n항생제 내성 유전자; 제m복제원점; 제p 표적유전자 발현을 억제하는 합성 sRNA 암호화영역을 포함하는 제q벡터;를 포함하는 원핵생물의 동시다중 표적유전자 발현억제 시스템이 도입되어 있는 재조합 미생물로, The invention also relates to a first antibiotic resistance gene; First replication origin; A first vector comprising a synthetic sRNA coding region that inhibits expression of a first target gene; And n antibiotic resistance genes; Mth replication origin; A recombinant microorganism into which a simultaneous multi-target gene expression suppression system of a prokaryote is introduced, comprising: a q vector comprising a synthetic sRNA coding region that inhibits p-target gene expression;
상기 제1항생제 내성 유전자와 제n항생제 내성 유전자, 제1복제원점과 제m복제원점 및 제1표적유전자와 제p표적유전자는 서로 각각 상이하며, The first antibiotic resistance gene and the n antibiotic resistance gene, the first replication origin and the m replication origin, and the first target gene and the p target gene are different from each other,
n은 2 내지 50의 정수이고, m은 2 내지 10의 정수이며, q는 2 내지 500의 정수이고, p는 2 내지 20000의 정수이며,n is an integer from 2 to 50, m is an integer from 2 to 10, q is an integer from 2 to 500, p is an integer from 2 to 20000,
상기 항생제는앰피실린(ampicillin), 카나마이신(Kanamycin), 클로로암페니콜(chloramphenicol), 아프라마이신(apramycin), 스트렙토마이신(streptomycin), 스펙티도마이신(spectinomycin), 테트라사이클린(tetracyclin), 에리트로마이신(erythromycin), 네오마이신(neomycin), 페니실린(penicillin), 액시노마이신(actinomycin), 가베니실린(garbenicillin), 겐타미신(gentamicin), 블라스티시딘(blasticidin), 마이코페놀릭산(mycophenolic acid), 퓨로마이신(puromycin), 제오신(zeocin), 보렐리딘(borrelidin), 이오노마이신(ionomycin), 다우노루비신(daunorubicin), 독소루비신(doxorubicin), 이버멕틴(ivermectin), 에버멕틴(avermectin), 미트라마이신(mithramycin), 미토마이신(mitomycin), 나리딕식산(nalidixic acid), 노보비오신(novobiocin), 니스타틴(nystatin), 옥시테트라라시클린(oxytetracycline), 팩리택셀(paclitaxel), 폴리마이신(polymyxin), 리팜피신(rifampicin), 살리노마이신(salinomycin), 타일로신(tylosin), 발리노마이신(valinomycin), 밴코마이신(vancomycin), 빈블라스틴(vinblastine), 및 빈크리스틴(vincristine) 으로 구성된 군에서 선택되고,The antibiotics are ampicillin, kanamycin, kanampycin, chloramphenicol, apramycin, streptomycin, spectiomycin, tetracycline, tetracycline and erythromycin. Erythromycin, neomycin, penicillin, axinomycin, actinomycin, garbenicillin, gentamicin, blasticidin, mycophenolic acid ), Puromycin, zeocin, borelidin, borrelidin, ionomycin, daunorubicin, doxorubicin, doxorubicin, ivermectin, avermectin Mithramycin, mitomycin, mitomycin, nalidixic acid, novobiocin, nystatin, oxytetracycline, paclitaxel, polymycin (polymyxin), rifampicin n), salinomycin, tylosin, valinomycin, vancomycin, vinblastine, and vincristine; ,
상기복제원점은 CloDF13(CDF), pBBR1, ColA, ColE1, pUC, pBR322, SC101, RSF1030(RSF), 및 RK2로 구성된 군에서 선택되며,The replication origin is selected from the group consisting of CloDF13 (CDF), pBBR1, ColA, ColE1, pUC, pBR322, SC101, RSF1030 (RSF), and RK2,
상기 합성 sRNA 암호화 영역은 프로모터; MicC, SgrS 및 MicF 중 어느 하나의 sRNA 유래의 Hfq 결합 부위(Hfq binding site); 표적 유전자 mRNA와 상보적 결합을 형성하는 영역; 및 터미네이터를 포함하는 것을 특징으로 하는 The synthetic sRNA coding region comprises a promoter; Hfq binding site derived from sRNA of any of MicC, SgrS and MicF; A region forming complementary binding with a target gene mRNA; And a terminator
동시다중 표적 유전자 발현억제 시스템이 숙주세포에 도입되어 있는 재조합 미생물에서,In recombinant microorganisms in which a simultaneous multiple target gene expression suppression system is introduced into a host cell,
상기 숙주세포는 비올라세인(violacein) 생합성 경로를 가지고, The host cell has a violacein (violacein) biosynthesis pathway,
상기 제1 내지 제q벡터의 표적유전자의 mRNA와 상보적으로 결합하는 영역에 ytfR, hybG, ampG, potG, caiF, minD, ilvM, yfbR, rfe, atpH, tiaE 또는 murI 유전자의 mRNA와 상보적으로 결합하는 서열을 삽입하여 제조된 벡터가 도입되어 있어, ytfR, hybG, ampG, potG, caiF, minD, ilvM, yfbR, rfe, atpH, tiaE 및 murI로 구성된 군에서 선택되는 2개 이상의 유전자의 발현이 억제되어 있는 것을 특징으로 하는 비올라세인/디옥시비올라세인 생산능력이 향상된 재조합 미생물을 제공한다.Complementary to the mRNA of the target gene of the first to q vector complementary to the mRNA of ytfR, hybG, ampG, potG, caiF, minD, ilvM, yfbR, rfe, atpH, tiaE or murI gene A vector prepared by inserting a binding sequence has been introduced so that expression of two or more genes selected from the group consisting of ytfR, hybG, ampG, potG, caiF, minD, ilvM, yfbR, rfe, atpH, tiaE and murI Provided is a recombinant microorganism having improved violacein / deoxybiolacein production capacity, which is inhibited.
본 발명은 또한 상기 재조합 미생물을 트레이스 메탈 용액(trace metal solution)을 포함하는 배지에서 유가식 발효를 통해 배양하는 단계를 포함하는 비올라세인/디옥시비올라세인 생산 방법을 제공한다.The present invention also provides a violacein / deoxybiolacein production method comprising culturing the recombinant microorganism through fed-batch fermentation in a medium containing a trace metal solution.
본 발명은 또한, 다음의 단계를 포함하는 다중억제 유전자 조합의 스크리닝 방법을 제공한다:The present invention also provides a method for screening multiple inhibitor gene combinations comprising the following steps:
(a) 20 ~ 50bp 크기를 가지는 임의의 염기서열을 제조하는 단계;(A) preparing any base sequence having a size of 20 ~ 50bp;
(b) 상기 염기서열을 제1항생제 내성 유전자; 제1복제원점; 제1 표적유전자 발현을 억제하는 합성 sRNA 암호화 영역을 포함하는 제1벡터; 내지 제n항생제 내성 유전자; 제m복제원점; 제p 표적유전자 발현을 억제하는 합성 sRNA 암호화영역을 포함하는 제q벡터;의 표적유전자 mRNA와 상보적으로 결합하는 영역에 삽입하여 제1 내지 제r sRNA 라이브러리를 포함하는 제1 내지 제r 벡터 라이브러리를 제조하는 단계; 및(b) the nucleotide sequence of the first antibiotic resistance gene; First replication origin; A first vector comprising a synthetic sRNA coding region that inhibits expression of a first target gene; To n-n antibiotic resistance genes; Mth replication origin; A q vector comprising a synthetic sRNA coding region that inhibits p target gene expression; a first to r vector library comprising first to r sRNA libraries inserted into a region complementarily binding to a target gene mRNA Preparing a; And
(c) 상기 제1 내지 제r 벡터 라이브러리를 유용물질을 생산하고자 하는 대상 균주에 도입하여, 유용물질 생산량이 향상되는 경우, 발현이 억제된 유전자 후보군을 동정하여, s개의 발현억제 대상 유전자 조합을 결정하는 단계;(c) introducing the first to r vector library into the target strain to produce a useful material, and when the production of the useful material is improved, to identify a group of gene candidates with suppressed expression, s expression suppression gene combinations are identified Determining;
여기서, 상기 제1항생제 내성 유전자와 제n항생제 내성 유전자, 제1복제원점과 제m복제원점 및 제1표적유전자와 제p표적유전자는 서로 각각 상이하고, Here, the first antibiotic resistance gene and the n antibiotic resistance gene, the first replication origin and the m replication origin and the first target gene and the p target gene are different from each other,
n은 2 내지 50의 정수이며, m은 2 내지 10의 정수이고, q는 2 내지 500의 정수이며, p는 2 내지 20000의 정수이고, r 및 s 는 2 내지 500의 정수임.n is an integer from 2 to 50, m is an integer from 2 to 10, q is an integer from 2 to 500, p is an integer from 2 to 20000, r and s are an integer from 2 to 500.
도 1은 다양한 합성조절 sRNA 발현 플랫폼 제작을 위해 사용된 각 복제 원점 및 항생제 마커들과 이들의 조합을 나타낸다. 1 shows each replication origin and antibiotic markers used in combination with various synthetic regulatory sRNA expression platforms.
도 2는 (A) pACYC184-DsRed2 (pLac), (B) pTac15K-DsRed2 (pTrc), (C) pTrc99A-DsRed2 (pTac) 리포터 플라스미드에 대한 합성조절 sRNA 각 플랫폼의 DsRed2 형광단백질 낙다운 효율을 비교한 그래프들이다.Figure 2 compares the efficiency of DsRed2 fluorescent protein knockdown of each of the sRNA-regulated sRNA platforms for (A) pACYC184-DsRed2 (pLac), (B) pTac15K-DsRed2 (pTrc), (C) pTrc99A-DsRed2 (pTac) reporter plasmids. One graph.
도 3은 형광단백질 리포터 플라스미드를 보유하고 있는 대장균 균주에 합성조절 sRNA 발현 플랫폼 플라스미드들을 (a) 1개씩, (b) 2개씩, (c) 3개씩 조합으로 도입시킨 후 측정한 시간별 성장 곡선 그래프들이다. 이 때 리포터 플라스미드들은 pTac표기: pTac15K-dsRed2, pTrc표기: pTrc99A-dsRed2, pACYC로 표기: pACYC184-dsRed2로 표기되었다. 각 그래프는 세 가지 부분으로 나누어져 있는데 (푸른색, 회색, 붉은색 박스), 각각 앞에서부터 1일차, 2일차 (첫 번째 계대배양), 3일차 (두 번째 계대배양)을 나타낸다.Figure 3 is a graph of the time-dependent growth curve measured after introduction of synthetically regulated sRNA expression platform plasmids (a) one by one, (b) two by two (c) three in the E. coli strain carrying a fluorescent protein reporter plasmid . Reporter plasmids were expressed as pTac notation: pTac15K-dsRed2, pTrc notation: pTrc99A-dsRed2, pACYC: pACYC184-dsRed2. Each graph is divided into three parts (blue, gray and red boxes), each representing Day 1, Day 2 (first pass) and Day 3 (second pass) from the front.
도 4는 합성조절 sRNA 발편 플랫폼 플라스미드의 안정성 (stability)을 확인한 결과이다. 도 3의 실험에 사용된 균주들의 (a) 1일 차, (b) 2일 차, (c) 3일 차 계대 배양 후 colony PCR을 수행하여 균주내 sRNA 플랫폼 플라스미드들의 존재 유무를 확인하였다. 여기에서 A는 pACYC184-DsRed2 (pLac), R는 pTrc99A-DsRed2 (pTrc), T는 pTac15K-DsRed2 (pTac) 플라스미드를 나타내며, 1: ColA-Sm, 2: pBBR1-Am, 3: pBBR1-Tc, 4: pBBR1-Sm, 5: CDF-Tc, 6: CDF-Sm을 나타낸다. 대시로 연결된 조합은 해당 플라스미드들이 동시에 형질전환되었다는 것을 뜻한다. 또한, colony PCR은 각 플라스미드 상의 복제 원점을 타겟으로 수행되었으며, PCR 산물의 크기는 다음과 같다: pBBR1, 1 kb; ColA, 0.6 kb; CDF, 0.3 kb.4 is a result confirming the stability (stability) of the synthetic regulatory sRNA fragment platform plasmid. Colony PCR was performed after (a) 1st day, (b) 2nd day, and (c) 3rd day passage culture of the strains used in the experiment of FIG. 3 to confirm the presence of sRNA platform plasmids in the strain. Where A represents pACYC184-DsRed2 (pLac), R represents pTrc99A-DsRed2 (pTrc), T represents pTac15K-DsRed2 (pTac) plasmid, 1: ColA-Sm, 2: pBBR1-Am, 3: pBBR1-Tc, 4: pBBR1-Sm, 5: CDF-Tc, 6: CDF-Sm. The dashed combination means that the plasmids were transformed at the same time. In addition, colony PCR was performed targeting the origin of replication on each plasmid, and the size of the PCR product was as follows: pBBR1, 1 kb; ColA, 0.6 kb; CDF, 0.3 kb.
도 5는 합성조절 sRNA 라이브러리 적용에 따른 트레오닌 생산량의 변화를 나타낸 그림이다.5 is a diagram showing the change in the threonine production according to the application of the synthetic regulatory sRNA library.
도 6은 도 5에서 트레오닌 생산 증가를 보인 합성조절 sRNA들의 이중 조합 적용을 통해 트레오닌 생산량 변화를 나타낸 그림이다.Figure 6 is a diagram showing the change in threonine production through the application of a double combination of synthetic regulatory sRNAs showing increased threonine production in FIG.
도 7은 합성조절 sRNA 라이브러리 적용에 따른 프롤린 생산량의 변화를 나타낸 그림이다.Figure 7 is a diagram showing the change in proline production according to the application of synthetic regulatory sRNA library.
도 8은 도 7에서 프롤린 생산 증가를 보인 합성조절 sRNA들의 이중 조합 적용을 통해 프롤린 생산량 변화를 나타낸 그림이다.FIG. 8 is a diagram showing a change in proline yield through the application of a double combination of synthetic regulatory sRNAs showing increased proline production in FIG. 7.
도 9는 프롤린 생산 균주의 유가식 발효 조건 최적화 과정을 통해 얻은 그래프들이다. NMH26 p15PP3533 pKKtrcSargF-trcSglnA pCDFTc-fur 균주를 사용하여 (a)는 기존 특허 및 논문에서의 발효 조건에서 (10 g/L glucose, 3 g/L (NH4)2SO4 첨가 2 L R/2 배지), (b)는 기존 배지에 1.6 g/L yeast extract 첨가하였을 때, (c)는 기존 배지에 3 g/L yeast extract를 첨가 및 기존 feeding 용액에 6 mL trace metal solution 첨가한 발효 조건에서 각각 유가식 발효를 진행하였다. (d)는 컨트롤 실험으로서, 기반 균주인 NMH26 p15PP3533 pKKtrcSargF-trcSglnA 균주를 (c)의 발효 조건에서 배양하였을 때의 결과를 나타낸다. 각 그래프들에서 붉은 색 원은 세포 성장(OD600)을, 푸른 색 삼각형은 프롤린 농도(g/L)를 나타낸다.9 are graphs obtained through the fed-batch fermentation conditions optimization process of proline production strains. Using the NMH26 p15PP3533 pKKtrcSargF-trcSglnA pCDFTc-fur strain (a) under fermentation conditions in the existing patents and articles (10 g / L glucose, 3 g / L (NH 4 ) 2 SO 4 addition 2 LR / 2 medium) , (b) added 1.6 g / L yeast extract to the existing medium, (c) added 3 g / L yeast extract to the existing medium and added 6 mL trace metal solution to the existing feeding solution. Expression fermentation was carried out. (d) shows the results when the strain NMH26 p15PP3533 pKKtrcSargF-trcSglnA was cultured under the fermentation conditions of (c) as a control experiment. In each graph, the red circle represents cell growth (OD600) and the blue triangle represents proline concentration (g / L).
도 10는 도 7에서 가장 높은 생산능을 보인 4종의 균주들 (단일 낙다운 적용)을 최적화된 발효 조건하에서 발효한 결과이다. (a)는 NMH26 p15PP3533 pKKtrcSargF-trcSglnA pCDFTc-fur 균주, (b)는 NMH26 p15PP3533 pKKtrcSargF-trcSglnA pCDFTc-fadR 균주, (c)는 NMH26 p15PP3533 pKKtrcSargF-trcSglnA pCDFTc-aspC 균주, (d)는 NMH26 p15PP3533 pKKtrcSargF-trcSglnA pCDFTc-mazF 균주. 각 그래프들에서 붉은 색 원은 세포 성장을, 푸른 색 삼각형은 프롤린 농도를 나타낸다.FIG. 10 shows the result of fermenting four strains showing the highest production capacity in FIG. 7 (single knockdown application) under optimized fermentation conditions. (a) is NMH26 p15PP3533 pKKtrcSargF-trcSglnA pCDFTc-fur strain, (b) is NMH26 p15PP3533 pKKtrcSargF-trcSglnA pCDFTc-fadR strain, (c) is NMH26 p15PPgl33 pKKtFTScArc-pCrcTrcSargAsp trcSglnA pCDFTc-mazF strain. In each graph, the red circle shows cell growth and the blue triangle shows proline concentration.
도 11은 도 8에서 가장 높은 생산능을 보인 4종의 균주들 (이중 낙다운 조합 적용)을 최적화된 발효 조건하에서 발효를 수행한 결과이다. (a)는 NMH26 p15PP3533 pKKtrcSargF-trcSglnA pCDFTc-fur pColASm-metB 균주, (b)는 NMH26 p15PP3533 pKKtrcSargF-trcSglnA pCDFTc-fur pColASm-murE 균주, (c)는 NMH26 p15PP3533 pKKtrcSargF-trcSglnA pCDFTc-chpA pColASm-fur 균주, (d)는 NMH26 p15PP3533 pKKtrcSargF-trcSglnA pCDFTc-chpA pColASm-fadR 균주. 각 그래프들에서 붉은 색 원은 세포 성장(OD600)을, 푸른 색 삼각형은 프롤린 농도(g/L)를 나타낸다.FIG. 11 shows the results of fermentation under optimized fermentation conditions of four strains showing the highest productivity in FIG. (a) is NMH26 p15PP3533 pKKtrcSargF-trcSglnA pCDFTc-fur pColASm-metB strain, (b) is NMH26 p15PP3533 pKKtrcSargF-trcSglnA pCDFTc-fur pColASm-murE strain pKtCDSrc p pt15 , (d) NMH26 p15PP3533 pKKtrcSargF-trcSglnA pCDFTc-chpA pColASm-fadR strain. In each graph, the red circle represents cell growth (OD600) and the blue triangle represents proline concentration (g / L).
도 12는 발효를 수행한 모든 프롤린 생산 균주들의 exponential phase (E)와 stationary phase (S) 상태일 때 sRNA 플라스미드들의 보유 상태를 확인하기 위한 colony PCR 결과를 나타낸다. 이 때 균주 1부터 9까지는 표 2의 균주 번호와 동일하다. 이 때 붉은색 삼각형으로 표현된 위쪽 DNA 밴드는 ColA-Sm 플랫폼 기반 sRNA의 존재를, 아랫쪽 DNA 밴드는 CDF-Tc 플랫폼 기반 sRNA의 존재를 나타낸다.Figure 12 shows the colony PCR results to confirm the retention status of the sRNA plasmids in the exponential phase (E) and stationary phase (S) state of all proline-producing strains subjected to fermentation. In this case, strains 1 to 9 are the same as the strain numbers in Table 2. At this time, the upper DNA band represented by the red triangle indicates the presence of ColA-Sm platform based sRNA, and the lower DNA band indicates the presence of CDF-Tc platform based sRNA.
도 13은 대장균 유전체 수준의 합성조절 sRNA 라이브러리를 본 발명에서의 신규 sRNA 발현 플랫폼에 이전하고 이를 균주에 적용하여 스크리닝하는 방법을 나타낸 그림이다.FIG. 13 is a diagram showing a method for transferring a synthetic regulatory sRNA library of Escherichia coli genome level to a novel sRNA expression platform in the present invention and applying it to strains.
도 14는 ColA-Sm 플랫폼 기반의 대장균 유전체 수준의 합성조절 sRNA 라이브러리를 인디고 생산 균주에 도입하고 색깔 스크리닝을 거쳐 균주들을 선별한 후 테스트 튜브에서 배양한 결과이다.Figure 14 shows the results of culturing in a test tube after introduction of the E. coli genome-level synthetic regulatory sRNA library based on the ColA-Sm platform, and screening the strains through color screening.
도 15는 도 14에서 높은 생산량을 보인 9종의 균주들을 50 mL MR 배지가 담긴 플라스크에서 배양한 결과이다.FIG. 15 is a result of culturing nine strains showing high yield in FIG. 14 in a flask containing 50 mL MR medium.
도 16은 ColA-Sm 플랫폼 기반의 대장균 유전체 수준의 합성조절 sRNA 라이브러리를 비올라세인 생산 균주에 도입하고 색깔 스크리닝을 거쳐 균주들을 선별한 후 테스트 튜브에서 배양한 결과이다.Figure 16 shows the results of culturing in a test tube after introduction of the E. coli genome-level synthetic regulatory sRNA library based on the ColA-Sm platform, and screening the strains through color screening.
도 17는 도 16에서 높은 생산량을 보인 12종의 균주들을 50 mL MR 배지가 담긴 플라스크에서 배양하고 (a) 는 각 균주들의 생산량을 측정한 그래프이다. (b) 는 배양 후 각 플라스크를 찍은 사진이다. 비올라세인/디옥시비올라세인을 고농도로 생산하는 균주일수록 더 짙은 색깔을 띠게 된다.FIG. 17 is a graph in which 12 strains showing a high yield in FIG. 16 are cultured in a flask containing 50 mL MR medium, and (a) is a graph measuring the yield of each strain. (b) is a photograph of each flask after incubation. Strains that produce high concentrations of violacein / deoxybiolacein are darker in color.
도 18은 도 17에서 높은 비올라세인/디옥시비올라세인 생산능을 보이는 균주들을 유가식 발효한 결과이다. (a)는 E. coli BL21 pSB1C3-vioABDE pTac15K-Jli-vioC 균주에 pColA-ytfR 플라스미드가 삽입된 균주, (b)는 E. coli BL21 pSB1C3-vioABDE pTac15K-Jli-vioC 균주에 pColA-minD 플라스미드가 삽입된 균주. 각 그래프들에서 붉은 색 원은 세포 성장을, 푸른 색 삼각형은 비올라세인 농도를, 보라색 삼각형은 디옥시비올라세인 농도를 나타낸다. (a)와 (b)에서 붉은색 화살표는 IPTG에 의해 유도된 시점을 나타낸다. (c)는 발효를 수행한 모든 비올라세인 생산 균주들의 exponential phase (E)와 stationary phase (S) 상태일 때 sRNA 플라스미드들의 보유 상태를 확인하기 위한 colony PCR 결과를 나타낸다. 이 때 균주 1: 대조군 균주, 균주 2: (a)의 균주, 균주 3: (b)의 균주. 이 때 붉은색 삼각형으로 표현된 DNA 밴드는 ColA-Sm 플랫폼 기반 sRNA의 존재를 나타낸다.FIG. 18 is a result of fed-batch fermentation of strains showing high violacein / deoxybiolacein production ability in FIG. 17. (a) is a strain in which the pColA-ytfR plasmid is inserted into the E. coli BL21 pSB1C3-vioABDE pTac15K-Jli-vioC strain, and (b) the pColA-minD plasmid is added to the E. coli BL21 pSB1C3-vioABDE pTac15K-Jli-vioC strain. Inserted strain. In each of the graphs, the red circle represents cell growth, the blue triangle represents the violacein concentration, and the purple triangle represents the deoxybiolacein concentration. The red arrows in (a) and (b) indicate the time points induced by IPTG. (c) shows the colony PCR results to confirm the retention status of the sRNA plasmids in the exponential phase (E) and stationary phase (S) state of all the violacein producing strains subjected to fermentation. At this time, strain 1: control strain, strain 2: strain of (a), strain 3: strain of (b). At this time, the DNA band represented by the red triangle indicates the presence of the ColA-Sm platform based sRNA.
도 19는 각 균주에서의 합성 조절 sRNA 발현 플라스미드들의 안정성 테스트 결과로서, 두 종류의 리포터 플라스미드들인 pTac15K-DsRed2 (“Tac”)과 pTrc99A-DsRed2 (“Trc”)를 각각 보유하고 있는 두 대장균 W3110 균주들에 (A)-(F) 단일, (G)-(M) 이중, (N) 삼중 조합의 해당 sRNA 플라스미드들을 형질전환하여 성장곡선을 측정한 그래프이다. 이 때 각 sRNA들은 표적 부착 서열을 포함하고 있지 않다. 각 실험은 두 번씩 행해져 그 평균을 나타내었다.Figure 19 shows the results of the stability test of the synthetic regulatory sRNA expression plasmids in each strain, two E. coli W3110 strains carrying two reporter plasmids, pTac15K-DsRed2 ("Tac") and pTrc99A-DsRed2 ("Trc"), respectively. These are graphs measuring the growth curve by transforming the corresponding sRNA plasmids of (A)-(F) single, (G)-(M) double, and (N) triple combinations. At this time, each sRNA does not contain the target attachment sequence. Each experiment was done twice to show the average.
발명의 상세한 설명 및 바람직한 구현예Detailed Description of the Invention and Preferred Embodiments
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로 본 명세서에서 사용된 명명법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein is well known and commonly used in the art.
본 발명의 상세한 설명 등에서 사용되는 주요 용어의 정의는 다음과 같다.Definitions of main terms used in the detailed description of the present invention are as follows.
본원에서 "sRNA (small RNA)"란, 단백질로 번역되지 않으며 상보적 결합을 통해 특정 mRNA의 번역을 효과적으로 억제하는, 보통 염기 서열의 길이가 200개 이하의 짧은 길이의 RNA이다.As used herein, “sRNA (small RNA)” is short RNA, usually no more than 200 nucleotides in length, that is not translated into protein and effectively inhibits translation of a particular mRNA through complementary binding.
본원에서 "리보좀 결합 부위(ribosome binding site)"란, mRNA의 전사를 위하여 리보좀이 mRNA상에 결합하는 부위를 말한다.As used herein, the term "ribosome binding site" refers to the site where the ribosomes bind on the mRNA for transcription of the mRNA.
본원에서 "유전자"란 최광의의 의미로 간주되어야 하며, 구조 단백질 또는 조절 단백질을 암호화할 수 있다. 이때, 조절단백질은 전사인자, 열 충격단백질 또는 DNA/RNA 복제, 전사 및/또는 번역에 관여하는 단백질을 포함한다. 본 발명에 있어서, 발현 억제의 대상이 되는 표적유전자는 염색체 외 구성요소로서 존재할 수 있다. As used herein, "gene" should be considered in the broadest sense and may encode a structural or regulatory protein. At this time, the regulatory protein includes a transcription factor, a heat shock protein or a protein involved in DNA / RNA replication, transcription and / or translation. In the present invention, the target gene to be suppressed expression may exist as an extrachromosomal component.
본 발명에서는 다양한 종류의 원핵생물에 적용가능하고, 동시에 다수의 표적유전자 발현을 억제할 수 있는 합성조절 sRNA 기반의 발현 조절 시스템을 개발하고자 하였다. In the present invention, it is intended to develop a synthetic regulatory sRNA-based expression control system that can be applied to various kinds of prokaryotes and at the same time can suppress the expression of a plurality of target genes.
즉, 본 발명의 일 실시예에서는 서로 공존 가능한 세 가지 항생제 마커(아프라마이신, 스트렙토마이신(또는 스펙티도마이신) 및 테트라사이클린)와 서로 공존 가능한 세 가지 복제원점(CDF, pBBR1 및 ColA)을 각각 독립적으로 포함하고, DsRed2 mRNA의 RBS와 상보적으로 결합하도록 하는 sRNA를 깁슨 어셈블리(Gibson assembly), 골든게이트 어셈블리(golden gate assembly), 라이게이션(ligation), 상동재조합(homologous recombination), SLIC(sequence and ligation-independent cloning), SLiCE(seamless ligation cloning extract), CPEC(circular polymerase extension cloning) 또는 유전자 합성으로 조합하여 총 9가지 종류의 DsRed2 발현 억제용 합성조절 sRNA 발현 벡터를 제작한 다음(도 1), 대장균에 리포터 플라스미드와 함께 도입하여 배양할 경우, 3 종류의 합성조절 sRNA 발현 벡터가 도입되더라도, 대장균의 생장이나, 발현 벡터의 안정성에 아무런 문제가 없다는 것을 확인하였다(도 2 내지 도 4).That is, in one embodiment of the present invention, three antibiotic markers (apramycin, streptomycin (or specidomycin) and tetracycline) that can coexist with each other and three origins of replication (CDF, pBBR1 and ColA) that can coexist with each other Each of the sRNAs, which are independently included and complementarily binds to the RBS of DsRed2 mRNA, is formed by Gibson assembly, golden gate assembly, ligation, homologous recombination, and SLIC ( A combination of sequence and ligation-independent cloning (SLiCE), seamless ligation cloning extract (SLiCE), circular polymerase extension cloning (CPEC), or gene synthesis was used to prepare a total of nine types of synthetically regulated sRNA expression vectors for inhibiting DsRed2 expression (Fig. 1). When cultured by introducing the reporter plasmid into Escherichia coli, the growth and expression of Escherichia coli may be achieved even if three kinds of synthetic regulatory sRNA expression vectors are introduced. It was confirmed that there is no problem in the stability of the emitter (2 to 4).
따라서, 본 발명은 일 관점에서, 제1항생제 내성 유전자; 제1복제원점; 제1 표적유전자 발현을 억제하는 합성 sRNA 암호화 영역을 포함하는 제1벡터; 및 제n항생제 내성 유전자; 제m복제원점; 제p 표적유전자 발현을 억제하는 합성 sRNA 암호화영역을 포함하는 제q벡터;를 포함하는 원핵생물의 동시다중 표적유전자 발현억제 시스템으로, 상기 제1항생제 내성 유전자와 제n항생제 내성 유전자, 제1복제원점과 제m복제원점 및 제1표적유전자와 제p표적유전자는 서로 각각 상이하며, n은 2 내지 50의 정수인 것을 특징으로 하고, m은 2 내지 10의 정수인 것을 특징으로 하며, q는 2 내지 500의 정수인 것을 특징으로 하고, p는 2 내지 20000의 정수인 것을 특징으로 하는 동시다중 표적유전자 발현억제 시스템에 관한 것이다.Accordingly, the present invention provides in one aspect, a first antibiotic resistance gene; First replication origin; A first vector comprising a synthetic sRNA coding region that inhibits expression of a first target gene; And n antibiotic resistance genes; Mth replication origin; P-target vector expression suppression system of a prokaryotic organism comprising a q vector comprising a synthetic sRNA coding region that inhibits p-target gene expression, wherein the first antibiotic resistance gene, the n-antibiotic resistance gene, and the first copy The origin, the m replication origin, the first target gene and the p target gene are different from each other, n is an integer of 2 to 50, m is an integer of 2 to 10, q is 2 to It is characterized in that the integer of 500, p is an integer of 2 to 20000 relates to a simultaneous multiple target gene expression suppression system.
본 발명에서 상기 p는 표적유전자의 개수를 의미하며, 표적유전자는 벡터의 종류와 상관없이 모든 유전자를 표적유전자로 할 수 있기 때문에 2 내지 20000의 정수 범위를 포함할 수 있다.In the present invention, p refers to the number of target genes, and the target gene may include an integer range of 2 to 20000 since all genes may be used as target genes regardless of the type of vector.
본 발명에 있어서, 상기 항생제는 원핵생물의 사멸을 유도하는 항생제이면 제한없이 이용가능하나, 바람직하게는 앰피실린(ampicillin), 카나마이신(Kanamycin), 클로로암페니콜(chloramphenicol), 아프라마이신(apramycin), 스트렙토마이신(streptomycin), 스펙티도마이신(spectinomycin), 테트라사이클린(tetracyclin), 에리트로마이신(erythromycin), 네오마이신(neomycin), 페니실린(penicillin), 액시노마이신(actinomycin), 가베니실린(garbenicillin), 겐타미신(gentamicin), 블라스티시딘(blasticidin), 마이코페놀릭산(mycophenolic acid), 퓨로마이신(puromycin), 제오신(zeocin), 보렐리딘(borrelidin), 이오노마이신(ionomycin), 다우노루비신(daunorubicin), 독소루비신(doxorubicin), 이버멕틴(ivermectin), 에버멕틴(avermectin), 미트라마이신(mithramycin), 미토마이신(mitomycin), 나리딕식산(nalidixic acid), 노보비오신(novobiocin), 니스타틴(nystatin), 옥시테트라라시클린(oxytetracycline), 팩리택셀(paclitaxel), 폴리마이신(polymyxin), 리팜피신(rifampicin), 살리노마이신(salinomycin), 타일로신(tylosin), 발리노마이신(valinomycin), 밴코마이신(vancomycin), 빈블라스틴(vinblastine), 및 빈크리스틴(vincristine) 으로 구성된 군에서 선택되는 것을 특징으로 할 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the antibiotic may be used without limitation as long as it is an antibiotic for inducing prokaryotic death, preferably ampicillin, kanamycin, chloroamphenicol, apramycin ), Streptomycin, spectyomycin, tetracycline, erythromycin, neomycin, penicillin, actinomycin, actinomycin, and gavenicillin garbenicillin, gentamicin, blasticidin, mycophenolic acid, puromycin, zeocin, borrelidin, ionomycin, Daunorubicin, doxorubicin, ivermectin, evermectin, mitramycin, mitomycin, mitomycin, nalidixic acid, novobiocin , Nystatin ( nystatin, oxytetracycline, paclitaxel, polymyxin, rifampicin, salinomycin, tylosin, valinomycin, banomycin Comycin (vancomycin), vinblastine (vinblastine), and vincristine (vincristine) may be characterized in that it is selected from the group consisting of, but is not limited thereto.
본 발명에 있어서, 상기 복제원점은 원핵생물의 내부로 도입된 플라스미드의 복제를 시작할 수 있는 서열이면 제한없이 이용가능하나, 바람직하게는 CloDF13(CDF), pBBR1, ColA, ColE1, pUC, pBR322, SC101, RSF1030(RSF), 및 RK2 으로 구성된 군에서 선택되는 것을 특징으로 할 수 있으나, 이에 한정되는 것은 아니다. In the present invention, the origin of replication can be used without limitation as long as the sequence can start replication of the plasmid introduced into the prokaryote, but preferably CloDF13 (CDF), pBBR1, ColA, ColE1, pUC, pBR322, SC101 , RSF1030 (RSF), and may be selected from the group consisting of RK2, but is not limited thereto.
본 발명에 있어서, 상기 원핵생물은 sRNA를 발현할 수 있는 원핵생물이면 제한없이 이용가능하나, 바람직하게는 대장균, 리조비움(Rhizobium), 비피도박테리움 (Bifidobacterium), 로도코커스 (Rhodococcus), 칸디다 (Candida), 에르위니아(Erwinia), 엔테로박터 (Enterobacter), 파스테렐라(Pasteurella), 맨하이미아 (Mannheimia), 액티노바실러스 (Actinobacillus), 아그레가티박터(Aggregatibacter), 잔토모나스(Xanthomonas), 비브리오(Vibrio), 슈도모나스(Pseudomonas), 아조토박터(Azotobacter), 애시네토박터(Acinetobacter), 랄스토니아(Ralstonia), 아그로박테리움(Agrobacterium), 로도박터(Rhodobacter), 자이모모나스(Zymomonas), 바실러스(Bacillus), 스테필로코커스(Staphylococcus), 락토코커스(Lactococcus), 스트렙토코커스(Streptococcus), 락토바실러스(Lactobacillus), 클로스트리디움(Clostridium), 코리네박테리움(Corynebacterium), 스트렙토마이세스(Streptomyces), 비피도박테리움(Bifidobacterium), 사이아노박테리움(cyanobacterium) 및 사이클로박테리움(Cyclobacterium)로 구성되는 군에서 선택되는 것을 특징으로 할 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the prokaryote may be used as long as it is a prokaryote capable of expressing sRNA, without limitation, E. coli, Rhizobium, Bifidobacterium, Rhodococcus, Candida (Candida), Erwinia, Enterobacter, Pasterella, Mannheimia, Actinobacillus, Aggregatibacter, Xanthomonas , Vibrio, Pseudomonas, Azotobacter, Acinetobacter, Ralstonia, Agrobacterium, Rhodobacter, Zimomonas Zymomonas, Bacillus, Staphylococcus, Lactococcus, Streptococcus, Lactobacillus, Clostridium, Corynebacterium, Streptobacterium Mises (Streptomyces), Bifidobacterium (Bifidobacterium), Cyanobacterium (cyanobacterium) and cyclobacterium (Cyclobacterium) may be characterized in that it is selected from the group consisting of, but is not limited thereto.
본 발명에 있어서, 상기 합성 sRNA 암호화 영역은 프로모터; MicC, SgrS 및 MicF 중 어느 하나의 sRNA 유래의 Hfq 결합 부위(Hfq binding site); 표적 유전자 mRNA와 상보적 결합을 형성하는 영역; 및 터미네이터를 포함하는 것을 특징으로 할 수 있다.In the present invention, the synthetic sRNA coding region is a promoter; Hfq binding site derived from sRNA of any of MicC, SgrS and MicF; A region forming complementary binding with a target gene mRNA; And it may be characterized in that it comprises a terminator.
본 발명에 있어서, 상기 프로모터는 sRNA의 발현을 유도할 수 있는 모든 종류의 프로모터가 이용가능하며, 바람직하게는 tac, trc, T7, BAD, λPR 및 앤더슨 합성 프로모터로 구성된 군에서 선택되는 것을 특징으로 할 수 있으며, 가장 바람직하게는 서열번호 7의 염기서열로 표시되는 것을 특징으로 할 수 있다.In the present invention, the promoter is available to all kinds of promoters capable of inducing the expression of sRNA, preferably selected from the group consisting of tac, trc, T7, BAD, λPR and Anderson synthetic promoter And, most preferably, it may be characterized by being represented by the nucleotide sequence of SEQ ID NO: 7.
본 발명에 있어서, 상기 Hfq 결합부위는 바람직하게는 MicC 유래인 것을 특징으로 할 수 있고, 가장 바람직하게는 서열번호 8의 염기서열로 표시되는 것을 특징으로 할 수 있다.In the present invention, the Hfq binding site may be preferably derived from MicC, and most preferably may be represented by the nucleotide sequence of SEQ ID NO: 8.
본 발명에 있어서, 상기 터미네이터는 sRNA의 전사를 종료할 수 있는 모든 종류의 터미네이터가 이용가능하며, 바람직하게는 T1/TE 터미네이터일 수 있으며, 가장 바람직하게는 서열번호 9의 염기서열로 표시되는 것을 특징으로 할 수 있다.In the present invention, all kinds of terminators capable of terminating transcription of the sRNA are available, and preferably the T1 / TE terminator, and most preferably, those represented by the nucleotide sequence of SEQ ID NO. It can be characterized.
본 발명에 있어서, 상기 표적유전자 mRNA와 상보적 결합을 형성하는 영역은 표적유전자에 따라 상보적 결합을 형성할 수 있는 최소한의 길이이면 족하며, 예시로서 20 염기 이상 50 염기 이하, 바람직하게는 19 염기 이상 37 염기 이하인 것을 특징으로 할 수 있다.In the present invention, the region forming the complementary bond with the target gene mRNA is sufficient if the minimum length that can form a complementary bond according to the target gene, for example 20 to 50 base, preferably 19 It may be characterized by being at least 37 bases.
본 발명에 있어서, 상기 표적 유전자 mRNA와 상보적 결합을 형성하는 영역은 표적 유전자 mRNA의 리보좀 결합 부위 (Ribosome binding site) 또는 개시 코돈으로 시작하는 단백질 코딩 서열과 전체적으로 또는 부분적으로 상보적 결합을 형성하는 것을 특징으로 할 수 있다.In the present invention, the region forming the complementary binding with the target gene mRNA forms a complementary binding in whole or in part with the protein coding sequence starting with the ribosome binding site or the start codon of the target gene mRNA It may be characterized by.
본원에서 "상보적 결합"이란, 핵산서열간 서로 염기짝짓기(basepairing)하는 것을 의미하며, 표적유전자의 mRNA의 일부 영역과 표적 유전자 mRNA와 상보적 결합을 형성하는 영역의 서열이 약 70-80% 이상, 바람직하게는 약 80-90% 이상, 보다 더 바람직하게는 약 95-99% 이상 서로 상보적인 것을 특징으로 할 수 있다.As used herein, “complementary binding” refers to basepairing between nucleic acid sequences, wherein the sequence of some regions of the mRNA of the target gene and the region forming the complementary bond with the target gene mRNA is about 70-80%. Or more preferably about 80-90% or more, even more preferably about 95-99% or more complementary to each other.
본원에서, "벡터(vector)"는 적합한 숙주 내에서 DNA를 발현시킬 수 있는 적합한 조절 서열에 작동가능하게 연결된 DNA 서열을 함유하는 DNA 제조물을 의미한다. 벡터는 플라스미드, 파지 입자 또는 간단하게 잠재적 게놈삽입물일 수 있다. 적당한 숙주로 형질전환되면, 벡터는 숙주 게놈과 무관하게 복제하고 기능할 수 있거나, 또는 일부 경우에 게놈 그 자체에 통합될 수 있다. 플라스미드가 현재 벡터의 가장 통상적으로 사용되는 형태이므로, 본 발명의 명세서에서 "플라스미드(plasmid)" 및 "벡터(vector)"는 때로 상호 교환적으로 사용된다. 본 발명의 목적상, 플라스미드 벡터를 이용하는 게 바람직하다. 이러한 목적에 사용될 수 있는 전형적인 플라스미드 벡터는 (a) 숙주세포당 수 개에서 수백 개의 플라스미드 벡터를 포함하도록 복제가 효율적으로 이루어지도록 하는 복제 원점, (b) 플라스미드 벡터로 형질전환된 숙주세포가 선발될 수 있도록 하는 항생제 내성 유전자 및 (c) 외래 DNA 절편이 삽입될 수 있는 제한효소 절단부위를 포함하는 구조를 지니고 있다. 적절한 제한효소 절단 부위가 존재하지 않을지라도, 통상의 방법에 따른 합성 올리고뉴클레오타이드 어댑터(oligonucleotide adaptor) 또는 링커(linker)를 사용하면 벡터와 외래 DNA를 용이하게 라이게이션(ligation)할 수 있다. 라이게이션 후에, 벡터는 적절한 숙주세포로 형질전환되어야 한다. 형질전환은 칼슘 클로라이드 방법 또는 전기천공법(electroporation) (Neumann, et al., EMBO J., 1:841, 1982) 등을 사용해서 용이하게 달성될 수 있다. 본 발명에 따른 sRNA의 발현을 위하여 사용되는 벡터는 당업계에 공지된 발현 벡터가 사용될 수 있다.As used herein, "vector" refers to a DNA preparation containing a DNA sequence operably linked to a suitable regulatory sequence capable of expressing DNA in a suitable host. Vectors can be plasmids, phage particles or simply potential genomic inserts. Once transformed into the appropriate host, the vector can replicate and function independently of the host genome, or in some cases can be integrated into the genome itself. Since plasmids are the most commonly used form of current vectors, "plasmid" and "vector" are sometimes used interchangeably in the context of the present invention. For the purposes of the present invention, it is preferred to use plasmid vectors. Typical plasmid vectors that can be used for this purpose include (a) the origin of replication so that replication can be efficiently performed to include several to hundreds of plasmid vectors per host cell, and (b) host cells transformed with plasmid vectors will be selected. It has a structure that includes an antibiotic resistance gene that allows it and (c) a restriction enzyme cleavage site into which foreign DNA fragments can be inserted. Although no suitable restriction enzyme cleavage site is present, synthetic oligonucleotide adapters or linkers according to conventional methods can be used to facilitate ligation of the vector and foreign DNA. After ligation, the vector should be transformed into the appropriate host cell. Transformation can be readily accomplished using calcium chloride methods or electroporation (Neumann, et al., EMBO J., 1: 841, 1982) and the like. As the vector used for the expression of the sRNA according to the present invention, an expression vector known in the art may be used.
본 발명에서 염기서열은 다른 핵산 서열과 기능적 관계로 배치될 때 "작동가능하게 연결(operably linked)"된다. 이것은 적절한 분자(예를 들면, 전사 활성화 단백질)가 조절 서열(들)에 결합될 때 유전자 발현을 가능하게 하는 방식으로 연결된 유전자 및 조절 서열(들)일 수 있다. 예를 들면, 전서열(pre-sequence) 또는 분비 리더 (leader)에 대한 DNA는 폴리펩타이드의 분비에 참여하는 전단백질로서 발현되는 경우 폴리펩타이드에 대한 DNA에 작동가능하게 연결되고; 프로모터 또는 인핸서는 서열의 전사에 영향을 끼치는 경우 코딩서열에 작동가능하게 연결되거나; 또는 리보좀 결합 부위는 서열의 전사에 영향을 끼치는 경우 코딩 서열에 작동가능하게 연결되거나; 또는 리보좀 결합 부위는 번역을 용이하게 하도록 배치되는 경우 코딩 서열에 작동가능하게 연결된다. 일반적으로, "작동가능하게 연결된"은 연결된 DNA 서열이 접촉하고, 또한 분비 리더의 경우 접촉하고 리딩 프레임 내에 존재하는 것을 의미한다. 그러나, 인핸서(enhancer)는 접촉할 필요가 없다. 이들 서열의 연결은 편리한 제한 효소 부위에서 라이게이션(연결)에 의해 수행된다. 그러한 부위가 존재하지 않는 경우, 통상의 방법에 따른 합성 올리고뉴클레오티드 어댑터(oligonucleotide adaptor) 또는 링커(linker)를 사용한다.In the present invention, nucleotide sequences are "operably linked" when placed in a functional relationship with other nucleic acid sequences. This may be genes and regulatory sequence (s) linked in such a way as to enable gene expression when appropriate molecules (eg, transcriptional activating proteins) bind to regulatory sequence (s). For example, the DNA for a pre-sequence or secretion leader is operably linked to the DNA for the polypeptide when expressed as a shear protein that participates in the secretion of the polypeptide; A promoter or enhancer is operably linked to a coding sequence when it affects the transcription of the sequence; Or the ribosomal binding site is operably linked to a coding sequence when it affects the transcription of the sequence; Or the ribosomal binding site is operably linked to a coding sequence when positioned to facilitate translation. In general, "operably linked" means that the linked DNA sequence is in contact, and in the case of a secretory leader, is in contact and present within the reading frame. However, enhancers do not need to touch. Linking of these sequences is performed by ligation (linking) at convenient restriction enzyme sites. If such sites do not exist, synthetic oligonucleotide adapters or linkers according to conventional methods are used.
본 발명에 있어서, 상기 표적유전자는 원핵생물 내에 존재하거나, 도입될 수 있으면 제한없이 이용가능하며, 바람직하게는 DsRed2, LuxR, AraC, KanR (kanamycin resistance gene), tyrR(tyrosine regulator), ppc (phosphoenolpyruvate carboxylase), csrA (carbon storage regulator), pgi (glucose-6-phosphate isomerase), glt (citrate synthase), accA (acetyl-CoA carboxyltransferase, alpha-subunit), accB (biotinylated biotin-carboxyl carrier protein), accC (acetyl-CoA carboxylase), accD (acetyl-CoA carboxyltransferase, beta-subunit), aceE (subunit of E1p component of pyruvate dehydrogenase complex), aceF (pyruvate dehydrogenase), ackA (propionate kinase / acetate kinase activity), adiY (AdiY is a positive DNA-binding transcriptional regulator that controls the arginine) decarboxylase (adi) system), argB (acetylglutamate kinase), argC (N-acetylglutamylphosphate reductase), argG (argininosuccinate synthase), argH (argininosuccinate lyase), asnC (transcriptional regulator that activates the expression of asnA, a gene involved in the synthesis of asparagine), aspA (aspartate ammonia-lyase), crp (CRP transcriptional dual regulator), csiD (predicted protein. CsiD is the product of a gene induced by carbon starvation), csiR (DNA-binding transcriptional repressor), cytR (transcription factor required for transport and utilization of ribonucleosides and deoxyribonucleosides), dcuA (The DcuA transporter is one of three transporters known to be responsible for the uptake of C4-dicarboxylates such as fumarate under anaerobic conditions), deoB (phosphopentomutase), deoC (deoxyribose-phosphate aldolase), deoR (The transcriptional repressor DeoR, for "Deoxyribose Regulator," is involved in the negative expression of genes related to transport and catabolism of deoxyribonucleoside nucleotides), fabH (KASIII, -ketoacyl-ACP synthases), fadD (fatty acyl-CoA synthetase), fadR (FadR Fatty acid degradation Regulon, is a multifunctional dual regulator that exerts negative control over the fatty acid degradative regulon [Simons80, Simons80a] and acetate metabolism), fbp (fructose-1,6-bisphosphatase), fnr (FNR is the primary transcriptional regulator that mediates the transition from aerobic to anaerobic growth), fruR (FruR is a dual transcriptional regulator that plays a pleiotropic role to modulate the direction of carbon flow through the different metabolic pathways of energy metabolism, but independently of the CRP regulator) , ftsL (essential cell division protein FtsL), ftsQ (essential cell division protein FtsQ), ftsW (essential cell division protein FtsW), ftsZ (essential cell division protein FtsZ), fur (Fur-Fe+2 DNA-binding transcriptional dual regulator), gabD (succinate semialdehyde dehydrogenase, NADP+-dependent), gabP (APC transporter), gabT (4-aminobutyrate aminotransferase), gadA (glutamate decarboxylase A subunit), gadB (glutamate decarboxylase B subunit), gadC (GABA APC transporter), glcC (GntR family transcriptional regulator, glc operon transcriptional activator), glpK (glycerol kinase), glpR (sn-Glycerol-3-phosphate repressor), glpX (fructose 1,6-bisphosphatase II), gltA (citrate synthase), hflD (lysogenization regulator), ihfA (IHF, Integration host factor, is a global regulatory protein), ihfB (IHF, Integration host factor, is a global regulatory protein), ilvB (acetohydroxybutanoate synthase/acetolactate synthase), ilvC (acetohydroxy acid isomeroreductase), ilvD (dihydroxy acid dehydratase), ilvG_1 (acetolactate synthase II, large subunit, N-ter fragment (pseudogene)), ilvG_2 (acetolactate synthase II, large subunit, C-ter fragment (pseudogene)), ilvH (acetolactate synthase/acetohydroxybutanoate synthase), ilvL (ilvGEDA operon leader peptide), ilvM (acetohydroxybutanoate synthase/acetolactate synthase), ilvN (acetohydroxybutanoate synthase / acetolactate synthase), ilvX (Predicted small protein), lexA (LexA represses the transcription of several genes involved in the cellular response to DNA damage), lpxC (UDP-3-O-acyl-N-acetylglucosamine deacetylase), marA (MarA participates in controlling several genes involved in resistance to antibiotics, oxidative stress, organic solvents and heavy metals.), metJ (MetJ transcriptional repressor), modE (ModE is the principal regulator that controls the transcription of operons involved in the transport of molybdenum and synthesis of molybdoenzymes and molybdate-related functions), nadB (L-aspartate oxidase), narL(nitrate/nitrite response regulator), pck (phosphoenolpyruvate carboxykinase), PdhR (PdhR, "pyruvate dehydrogenase complex regulator," regulates genes involved in the pyruvate dehydrogenase complex), phoP (PhoP-Phosphorylated DNA-binding transcriptional dual regulator. Member of the two-component regulatory system phoQ/phoP involved in adaptation to low Mg2+ environments and the control of acid resistance genes), pnuC (PnuC NMN transporter), ppsA (phosphoenolpyruvate synthetase), pta (Phosphate acetyltransferase), purA (adenylosuccinate synthetase), purB (adenylosuccinate lyase), purR (PurRHypoxanthine DNA-binding transcriptional repressor. PurR dimer controls several genes involved in purine nucleotide biosynthesis and its own synthesis), puuE (4-aminobutyrate aminotransferase), rbsA (ribose ABC transporter), rbsB (ribose ABC transporter), rbsD (ribose pyranase), rbsK (ribokinase), rbsR (The transcription factor RbsR, for "Ribose Repressor," is negatively autoregulated and controls the transcription of the operon involved in ribose catabolism and transport), rcsB (RcsB-BglJ DNAbinding transcriptional activator. RcsB protein for "Regulator capsule synthesis B," is a response regulator that belongs to the multicomponent RcsF/RcsC/RcsD/RcsA-RcsB phosphorelay system and is involved in the regulation of the synthesis of colanic acid capsule, cell division, periplasmic proteins, motility, and a small RNA) , rutR (RutR regulates genes directly or indirectly involved in the complex pathway of pyrimidine metabolism), serA (alpha-ketoglutarate reductase / D-3-phosphoglycerate dehydrogenase), serC (phosphohydroxythreonine aminotransferase / 3-phosphoserine aminotransferase), soxS (dual transcriptional activator and participates in the removal of superoxide and nitric oxide), sroD (SroD small RNA), zwf (glucose 6-phosphate-1-dehydrogenase), asnA (asparagine synthetase A), asnB (asparagine synthetase B), carA (carbamoyl phosphate synthetase), carB (carbamoyl phosphate synthetase), ddlB (D-alanine-D-alanine ligase B), deoA (thymidine phosphorylase / uracil phosphorylase), deoD (purine nucleoside phosphorylase deoD-type), dpiA (dual transcriptional regulator involved in anaerobic citrate catabolism), fis (Fis, "factor for inversion stimulation", is a small DNA-binding and bending protein whose main role appears to be the organization and maintenance of nucleoid structure), gadE (GadE controls the transcription of genes involved in glutamate dependent system), gadW (GadW controls the transcription of genes involved in glutamate dependent system), gadX (GadX controls the transcription of genes involved in glutamate dependent system), glpF (GlpF glycerol MIP channel), ilvY (IlvY DNA-binding transcriptional dual regulator), ivbL (The ilvB operon leader peptide (IvbL)), lhgO (L-2-hydroxyglutarate oxidase), lpd (Lipoamide dehydrogenase), lrp (Lrp is a dual transcriptional regulator for at least 10% of the genes in Escherichia coli. These genes are involved in amino acid biosynthesis and catabolism, nutrient) transport, pili synthesis, and other cellular functions, including 1-carbon metabolism), metB (O-succinylhomoserine lyase / Osuccinylhomoserine(thiol)-lyase), metL (aspartate kinase / homoserine dehydrogenase), mraY (phospho-Nacetylmuramoyl-pentapeptide transferase), mraZ (Unknown function), murE (UDP-N-acetylmuramoylalanyl-Dglutamate 2,6-diaminopimelate ligase), murF (D-alanyl-D-alanine-adding enzyme), murG (Nacetylglucosaminyl transferase), nac (Nacregulates, without a coeffector, genes involved in nitrogen metabolism under nitrogen-limiting conditions), nadA (quinolinate synthase), nsrR (NsrR, the "nitritesensitive repressor" regulates genes involved in cell protection against nitric oxide (NO) ), panC (pantothenate synthetase), panD (Aspartate 1-decarboxylase), pgl (6-phosphogluconolactonase), pyrB (aspartate carbamoyltransferase, PyrB subunit), pyrC (dihydroorotase), pyrL (aspartate carbamoyltransferase, PyrI subunit), rob (Rob is a transcriptional dual regulator. Its N-terminal domain shares 49% identity with MarA and SoxS. These proteins activate a common set of about 50 target genes, the marA/soxS/rob regulon, involved in antibiotic resistance, superoxide resistance, and tolerance to organic solvents and heavy metals.) , rpe (ribulose phosphate 3-epimerase), talA (transaldolase A), thrA (aspartate kinase / homoserine dehydrogenase), thrB (homoserine kinase), thrC (threonine synthase), thrL (thr operon leader peptide), tktA (transketolase I), tktB (transketolase II), torR (two-component system, OmpR family, torCAD operon response regulator TorR), aroF (3-deoxy-D-arabino-heptulosonate-7-phosphate synthase, tyrosine-repressible), aroA (5-enolpyruvylshikimate-3-phosphate synthetase), aroC (Chorismate synthase), pheA (chorismate mutase and prephenate dehydratase, P-protein), trpD (fused glutamine amidotransferase (component II) of anthranilate synthase/anthranilate phosphoribosyl transferase), dapA (4-hydroxy-tetrahydrodipicolinate synthase), ilvE (Branched-chain-amino-acid aminotransferase), lysA (Diaminopimelate decarboxylase), gltA (cistrate synthase), fumA (Fumarate hydratase class I, aerobic), glnA (glutamine synthetase), mdh (malate dehydrogenase), gdhA (NADP-specific glutamate dehydrogenase), argA (amino acid N-acetyltransferase and inactive acetylglutamate kinase), metA (Homoserine O-succinyltransferase), tdh (L-threonine dehydrogenase), livJ (branched-chain amino acid ABC transporter periplasmic binding protein), rhtC (Threonine efflux protein), yohJ (UPF0299 membrane protein), chpA (antitoxin of the ChpA-ChpR toxin-antitoxin system), aspC (aspartate aminotransferase), pfkA (ATP-dependent 6-phosphofructokinase isozyme 1), parE (DNA topoisomerase 4 subunit B), ytfR (predicted sugar transporter subunit), ilvA (L-threonine dehydratase, biosynthetic; also known as threonine deaminase), ilvG(Acetolactate synthase), minD (inhibitor of FtsZ ring polymerization; chromosome-membrane tethering protein; membrane ATPase of the MinCDEE system), hisJ(histidine transport system substrate-binding protein), yneH(Glutaminase), napG(Ferredoxin-type protein NapG), kdsA(2-dehydro-3-deoxyphosphooctonate aldolase), ygfA(5-formyltetrahydrofolate cyclo-ligase), ftsI(cell division protein FtsI (penicillin-binding protein 3)), ostB(trehalose 6-phosphate phosphatase), hybG(hydrogenase expression/formation protein HypC), ampG(MFS transporter, PAT family, beta-lactamase induction signal transducer AmpG), potG(spermidine/putrescine transport system permease protein), caiF(transcriptional activator CaiF), yfbR(5'-deoxynucleotidase YfbR), rfe(UDP-GlcNAc:undecaprenyl-phosphate/decaprenyl-phosphate GlcNAc-1-phosphate transferase), atpH(F-type H+-transporting ATPase subunit delta), tiaE(glyoxylate/hydroxypyruvate/2-ketogluconate reductase) 및 murI(Glutamate racemase)로 구성된 군에서 선택될 수 있으며,In the present invention, the target gene may be present in the prokaryote or may be introduced without limitation, preferably DsRed2, LuxR, AraC, KanR (kanamycin resistance gene), tyrR (tyrosine regulator), ppc (phosphoenolpyruvate) carboxylase), csrA (carbon storage regulator), pgi (glucose-6-phosphate isomerase), glt (citrate synthase), accA (acetyl-CoA carboxyltransferase, alpha-subunit), accB (biotinylated biotin-carboxyl carrier protein), accC ( acetyl-CoA carboxylase), accD (acetyl-CoA carboxyltransferase, beta-subunit), aceE (subunit of E1p component of pyruvate dehydrogenase complex), aceF (pyruvate dehydrogenase), ackA (propionate kinase / acetate kinase activity), adiY (AdiY is a positive DNA-binding transcriptional regulator that controls the arginine) decarboxylase (adi) system, argB (acetylglutamate kinase), argC (N-acetylglutamylphosphate reductase), argG (argininosuccinate synthase), argH (argininosuccinate lyase), asnC (transcriptiona) regulator that activates the expression of asnA, a gene involved in the synthesis of asparagine), aspA (aspartate ammonia-lyase), crp (CRP transcriptional dual regulator), csiD (predicted protein. CsiD is the product of a gene induced by carbon starvation), csiR (DNA-binding transcriptional repressor), cytR (transcription factor required for transport and utilization of ribonucleosides and deoxyribonucleosides), dcuA (The DcuA transporter is one of three transporters known to be responsible for the uptake of C4-dicarboxylates such as fumarate under anaerobic conditions), deoB (phosphopentomutase), deoC (deoxyribose-phosphate aldolase), deoR (The transcriptional repressor DeoR, for "Deoxyribose Regulator," is involved in the negative expression of genes related to transport and catabolism of deoxyribonucleoside nucleotides, fabH (KASIII, -ketoacyl-ACP synthases), fadD (fatty acyl-CoA synthetase), fadR (FadR Fatty acid degradation Regulon, is a multifunctional dual regulator that exerts negative control over the fatty acid degradative regulon [Simons80, Simons80a] and acetate metabolism), fbp (fructose-1,6-bisphosphatase), fnr (FNR is the primary transcriptional regulator that me diates the transition from aerobic to anaerobic growth), fruR (FruR is a dual transcriptional regulator that plays a pleiotropic role to modulate the direction of carbon flow through the different metabolic pathways of energy metabolism, but independently of the CRP regulator), ftsL (essential cell division protein FtsL), ftsQ (essential cell division protein FtsQ), ftsW (essential cell division protein FtsW), ftsZ (essential cell division protein FtsZ), fur (Fur-Fe + 2 DNA-binding transcriptional dual regulator), gabD ( succinate semialdehyde dehydrogenase, NADP + -dependent), gabP (APC transporter), gabT (4-aminobutyrate aminotransferase), gadA (glutamate decarboxylase A subunit), gadB (glutamate decarboxylase B subunit), gadC (GABA APC transporter), glcC (GntR family transcriptional regulator, glc operon transcriptional activator, glpK (glycerol kinase), glpR (sn-Glycerol-3-phosphate repressor), glpX (fructose 1,6-bisphosphatase II), gltA (citrate synthase), hflD (lysogenization regula tor), ihfA (IHF, Integration host factor, is a global regulatory protein), ihfB (IHF, Integration host factor, is a global regulatory protein), ilvB (acetohydroxybutanoate synthase / acetolactate synthase), ilvC (acetohydroxy acid isomeroreductase), ilvD (dihydroxy acid dehydratase), ilvG_1 (acetolactate synthase II, large subunit, N-ter fragment (pseudogene)), ilvG_2 (acetolactate synthase II, large subunit, C-ter fragment (pseudogene)), ilvH (acetolactate synthase / acetohydroxybutanoate synthase) , ilvL (ilvGEDA operon leader peptide), ilvM (acetohydroxybutanoate synthase / acetolactate synthase), ilvN (acetohydroxybutanoate synthase / acetolactate synthase), ilvX (Predicted small protein), lexA (LexA represses the transcription of several genes involved in the cellular response to DNA damage), lpxC (UDP-3-O-acyl-N-acetylglucosamine deacetylase), marA (MarA participates in controlling several genes involved in resistance to antibiotics, oxidative stress, organic solvents and heavy metals.) , metJ (MetJ transcriptional repressor), modE (ModE is the principal regulator that controls the transcription of operons involved in the transport of molybdenum and synthesis of molybdoenzymes and molybdate-related functions), nadB (L-aspartate oxidase), narL (nitrate / nitrite response regulator), pck (phosphoenolpyruvate carboxykinase), PdhR (PdhR, "pyruvate dehydrogenase complex regulator," regulates genes involved in the pyruvate dehydrogenase complex), phoP (PhoP-Phosphorylated DNA-binding transcriptional dual regulator. Member of the two-component regulatory system phoQ / phoP involved in adaptation to low Mg2 + environments and the control of acid resistance genes), pnuC (PnuC NMN transporter), ppsA (phosphoenolpyruvate synthetase), pta (Phosphate acetyltransferase), purA (adenylosuccinate synthetase) , purB (adenylosuccinate lyase), purR (PurRHypoxanthine DNA-binding transcriptional repressor.PurR dimer controls several genes involved in purine nucleotide biosynthesis and its own synthesis), puuE (4-aminobutyrate aminotransferase), rbsA (ribose ABC transporter), rbsB ( ribose ABC transporter), rbsD (ribose pyranase), rbsK (ribokinase), rbsR (The transcription factor RbsR, for "Ribose Repressor," is negatively autoregulated and controls the transcription of the operon involved in ribose catabolism and transport), rcsB (RcsB -BglJ DNAbinding transcriptional activator.RcsB protein for "Regulator capsule synthesis B," is a response regulator that belongs to the multicomponent RcsF / RcsC / RcsD / RcsA-RcsB phosph orelay system and is involved in the regulation of the synthesis of colanic acid capsule, cell division, periplasmic proteins, motility, and a small RNA), rutR (RutR regulates genes directly or indirectly involved in the complex pathway of pyrimidine metabolism), serA ( alpha-ketoglutarate reductase / D-3-phosphoglycerate dehydrogenase), serC (phosphohydroxythreonine aminotransferase / 3-phosphoserine aminotransferase), soxS (dual transcriptional activator and participates in the removal of superoxide and nitric oxide), sroD (SroD small RNA), zwf ( glucose 6-phosphate-1-dehydrogenase), asnA (asparagine synthetase A), asnB (asparagine synthetase B), carA (carbamoyl phosphate synthetase), carB (carbamoyl phosphate synthetase), ddlB (D-alanine-D-alanine ligase B) , deoA (thymidine phosphorylase / uracil phosphorylase), deoD (purine nucleoside phosphorylase deoD-type), dpiA (dual transcriptional regulator involved in anaerobic citrate catabolism), fis (Fis, "factor for inversion stimulation" , is a small DNA-binding and bending protein whose main role appears to be the organization and maintenance of nucleoid structure), gadE (GadE controls the transcription of genes involved in glutamate dependent system), gadW (GadW controls the transcription of genes involved in glutamate dependent system), gadX (GadX controls the transcription of genes involved in glutamate dependent system), glpF (GlpF glycerol MIP channel), ilvY (IlvY DNA-binding transcriptional dual regulator), ivbL (The ilvB operon leader peptide (IvbL)) , lhgO (L-2-hydroxyglutarate oxidase), lpd (Lipoamide dehydrogenase), lrp (Lrp is a dual transcriptional regulator for at least 10% of the genes in Escherichia coli. These genes are involved in amino acid biosynthesis and catabolism, nutrient) transport, pili synthesis, and other cellular functions, including 1-carbon metabolism), metB (O-succinylhomoserine lyase / Osuccinylhomoserine (thiol) -lyase), metL (aspartate kinase / homoserine dehydrogenase), mraY (phospho-Nacetylmuramoyl-pentapeptide transferase), mraZ (Unknown function), murE (UDP-N-acetylmuramoylalanyl-Dglutamate 2,6-diaminopimelate ligase), murF (D-alanyl-D-alanine-adding enzyme) , murG (Nacetylglucosaminyl transferase), nac (Nacregulates, without a coeffector, genes involved in nitrogen metabolism under nitrogen-limiting conditions), nadA (quinolinate synthase), nsrR (NsrR, the "nitritesensitive repressor" regulates genes involved in cell protection against nitric oxide (NO)), panC (pantothenate synthetase), panD (Aspartate 1-decarboxylase), pgl (6-phosphogluconolactonase), pyrB (aspartate carbamoyltransferase, PyrB subunit), pyrC (dihydroorotase), pyrL (aspartate carbamoyltransferase, PyrI subunit), rob (Rob is a transcriptional dual regulator. Its N-terminal domain shares 49% identity with MarA and SoxS. These proteins activate a common set of about 50 target genes, the marA / soxS / rob regulon, involved in antibiotic resistance, superoxide resistance, and tolerance to organic solvents and heavy metals.), Rpe (ribulose phosphate 3-epimerase), talA ( transaldolase A), thrA (aspartate kinase / homoserine dehydrogenase), thrB (homoserine kinase), thrC (threonine synthase), thrL (thr operon leader peptide), tthrA (transketolase I), tktB (transketolase II), torR (two-component system, OmpR family, torCAD operon response regulator TorR), aroF (3-deoxy-D-arabino-heptulosonate-7-phosphate synthase, tyrosine-repressible), aroA (5-enolpyruvylshikimate-3-phosphate synthetase), aroC (Chorismate synthase ), pheA (chorismate mutase and prephenate dehydratase, P-protein), trpD (fused glutamine amidotransferase (component II) of anthranilate synthase / anthranilate phosphoribosyl transferase), dapA (4-hydroxy-tetrahydrodipicolinate synthase), ilvE (Branched-chain-amino -acid aminotransferase), lysA (Diaminopi melate decarboxylase), gltA (cistrate synthase), fumA (Fumarate hydratase class I, aerobic), glnA (glutamine synthetase), mdh (malate dehydrogenase), gdhA (NADP-specific glutamate dehydrogenase), argA (amino acid N-acetyltransferase and inactive acetylglutamate kinase, metA (Homoserine O-succinyltransferase), tdh (L-threonine dehydrogenase), livJ (branched-chain amino acid ABC transporter periplasmic binding protein), rhtC (Threonine efflux protein), yohJ (UPF0299 membrane protein), chpA ( antitoxin of the ChpA-ChpR toxin-antitoxin system), aspC (aspartate aminotransferase), pfkA (ATP-dependent 6-phosphofructokinase isozyme 1), parE (DNA topoisomerase 4 subunit B), ytfR (predicted sugar transporter subunit), ilvA (L -threonine dehydratase, biosynthetic; also known as threonine deaminase, ilvG (Acetolactate synthase), minD (inhibitor of FtsZ ring polymerization; chromosome-membrane tethering protein; membrane ATPase of the MinCDEE system), hisJ (histidine transport system substrate-binding protein), yneH (Glutaminase) , ferpedoxin-type protein NapG (napG), 2-dehydro-3-deoxyphosphooctonate aldolase (kdsA), ygfA (5-formyltetrahydrofolate cyclo-ligase), cell division protein FtsI (penicillin-binding protein 3) ftsI, trehalose 6-phosphate phosphatase, hybG (hydrogenase expression / formation protein HypC), ampG (MFS transporter, PAT family, beta-lactamase induction signal transducer AmpG), potG (spermidine / putrescine transport system permease protein), caiF (transcriptional activator CaiF) , yfbR (5'-deoxynucleotidase YfbR), rfe (UDP-GlcNAc: undecaprenyl-phosphate / decaprenyl-phosphate GlcNAc-1-phosphate transferase), atpH (F-type H + -transporting ATPase subunit delta), tiaE (glyoxylate / hydroxypyruvate 2-ketogluconate reductase) and murI (glutamate rac) emase) can be selected from the group consisting of
더욱 바람직하게는 zwf (glucose 6-phosphate-1-dehydrogenase), tktA (transketolase I), tktB (transketolase II), pgi (glucose-6-phosphate isomerase, fbp (fructose-1,6-bisphosphatase), serC (phosphohydroxythreonine aminotransferase / 3-phosphoserine aminotransferase), murE (UDP-N-acetylmuramoylalanyl-Dglutamate 2,6-diaminopimelate ligase), pps (phosphoenolpyruvate synthetase), aceE (subunit of E1p component of pyruvate dehydrogenase complex), pta (Phosphate acetyltransferase), purA (adenylosuccinate synthetase), ackA (propionate kinase / acetate kinase activity), pck (phosphoenolpyruvate carboxykinase), ppc (phosphoenolpyruvate carboxylase), accA (acetyl-CoA carboxyltransferase, alpha-subunit), fadD (fatty acyl-CoA synthetase), fabH (KASIII, -ketoacyl-ACP synthases), aspA (aspartate ammonia-lyase), carB (carbamoyl phosphate synthetase), ilvH (acetolactate synthase/acetohydroxybutanoate synthase), ilvM (acetohydroxybutanoate synthase/acetolactate synthase), ilvN (acetohydroxybutanoate synthase / acetolactate synthase), ilvC (acetohydroxy acid isomeroreductase), asnA (asparagine synthetase A), asnB (asparagine synthetase B), argH (argininosuccinate lyase), deoA (thymidine phosphorylase / uracil phosphorylase), thrA (aspartate kinase / homoserine dehydrogenase), metB (O-succinylhomoserine lyase / Osuccinylhomoserine(thiol)-lyase), metA, tdh, ilvL (ilvGEDA operon leader peptide), crp (CRP transcriptional dual regulator), fadR (FadR Fatty acid degradation Regulon, is a multifunctional dual regulator that exerts negative control over the fatty acid degradative regulon [Simons80, Simons80a] and acetate metabolism), fur (Fur-Fe+2 DNA-binding transcriptional dual regulator), lrp (Lrp is a dual transcriptional regulator for at least 10% of the genes in Escherichia coli. These genes are involved in amino acid biosynthesis and catabolism, nutrient) transport, pili synthesis, and other cellular functions, including 1-carbon metabolism), gltA (citrate synthase), pdhR (PdhR, "pyruvate dehydrogenase complex regulator," regulates genes involved in the pyruvate dehydrogenase complex), tyrR(tyrosine regulator), csrA (carbon storage regulator), lexA (LexA represses the transcription of several genes involved in the cellular response to DNA damage), aroF (3-deoxy-D-arabino-heptulosonate-7-phosphate synthase, tyrosine-repressible), aroA (5-enolpyruvylshikimate-3-phosphate synthetase), aroC (Chorismate synthase), pheA (chorismate mutase and prephenate dehydratase, P-protein), trpD (fused glutamine amidotransferase (component II) of anthranilate synthase/anthranilate phosphoribosyl transferase), dapA (4-hydroxy-tetrahydrodipicolinate synthase), ilvE (Branched-chain-amino-acid aminotransferase), lysA (Diaminopimelate decarboxylase), gltA (cistrate synthase), fumA (Fumarate hydratase class I, aerobic), glnA (glutamine synthetase), mdh (malate dehydrogenase), gdhA (NADP-specific glutamate dehydrogenase), argA (amino acid N-acetyltransferase and inactive acetylglutamate kinase), metA (Homoserine O-succinyltransferase), tdh (L-threonine dehydrogenase), livJ (branched-chain amino acid ABC transporter periplasmic binding protein), rhtC (Threonine efflux protein), yohJ (UPF0299 membrane protein), chpA (antitoxin of the ChpA-ChpR toxin-antitoxin system), aspC (aspartate aminotransferase), pfkA (ATP-dependent 6-phosphofructokinase isozyme 1), parE (DNA topoisomerase 4 subunit B), ytfR (predicted sugar transporter subunit), ilvA (L-threonine dehydratase, biosynthetic; also known as threonine deaminase), ilvG(Acetolactate synthase), minD (inhibitor of FtsZ ring polymerization; chromosome-membrane tethering protein; membrane ATPase of the MinCDEE system), hisJ(histidine transport system substrate-binding protein), yneH(Glutaminase), napG(Ferredoxin-type protein NapG), kdsA(2-dehydro-3-deoxyphosphooctonate aldolase), ygfA(5-formyltetrahydrofolate cyclo-ligase), ftsI(cell division protein FtsI (penicillin-binding protein 3)), ostB(trehalose 6-phosphate phosphatase), hybG(hydrogenase expression/formation protein HypC), ampG(MFS transporter, PAT family, beta-lactamase induction signal transducer AmpG), potG(spermidine/putrescine transport system permease protein), caiF(transcriptional activator CaiF), yfbR(5'-deoxynucleotidase YfbR), rfe(UDP-GlcNAc:undecaprenyl-phosphate/decaprenyl-phosphate GlcNAc-1-phosphate transferase), atpH(F-type H+-transporting ATPase subunit delta), tiaE(glyoxylate/hydroxypyruvate/2-ketogluconate reductase) 및 murI(Glutamate racemase)로 구성된 군에서 선택되는 것을 특징으로 할 수 있으나 이에 한정되는 것은 아니다.More preferably zwf (glucose 6-phosphate-1-dehydrogenase), tktA (transketolase I), tktB (transketolase II), pgi (glucose-6-phosphate isomerase, fbp (fructose-1,6-bisphosphatase), serC ( phosphohydroxythreonine aminotransferase / 3-phosphoserine aminotransferase), murE (UDP-N-acetylmuramoylalanyl-Dglutamate 2,6-diaminopimelate ligase), pps (phosphoenolpyruvate synthetase), aceE (subunit of E1p component of pyruvate dehydrogenasetransfer) pta, pta purA (adenylosuccinate synthetase), ackA (propionate kinase / acetate kinase activity), pck (phosphoenolpyruvate carboxykinase), ppc (phosphoenolpyruvate carboxylase), accA (acetyl-CoA carboxyltransferase, alpha-subunit), fadD (fatthetylase-CoA synfabase) (KASIII, -ketoacyl-ACP synthases), aspA (aspartate ammonia-lyase), carB (carbamoyl phosphate synthetase), ilvH (acetolactate synthase / acetohydroxybutanoate synthase), ilvM (acetohydroxybutanoate synthase / acetolactate synthase), ilvM te synthase / acetolactate synthase), ilvC (acetohydroxy acid isomeroreductase), asnA (asparagine synthetase A), asnB (asparagine synthetase B), argH (argininosuccinate lyase), deoA (thymidine phosphorylase / uracil phosphorylase (partase deserine) ), metB (O-succinylhomoserine lyase / Osuccinylhomoserine (thiol) -lyase), metA, tdh, ilvL (ilvGEDA operon leader peptide), crp (CRP transcriptional dual regulator), fadR (FadR Fatty acid degradation Regulon, is a multifunctional dual regulator that exerts negative control over the fatty acid degradative regulon [Simons80, Simons80a] and acetate metabolism), fur (Fur-Fe + 2 DNA-binding transcriptional dual regulator), lrp (Lrp is a dual transcriptional regulator for at least 10% of the genes in Escherichia coli. These genes are involved in amino acid biosynthesis and catabolism, nutrient) transport, pili synthesis, and other cellular functions, including 1-carbon metabolism), gltA (citrate synthase), pdhR (PdhR, "pyruvate dehydrogenase complex regulator," regulates genes involved in the pyruvate dehydrogenase complex, tyrR (tyrosine regulator), csrA (carbon storage regulator), lexA (LexA represses the transcription of several genes involved in the cellular response to DNA damage), aroF (3-deoxy-D-arabino-heptulosonate -7-phosphate synthase, tyrosine-repressible), aroA (5-enolpyruvylshikimate-3-phosphate synthetase), aroC (Chorismate synthase), pheA (chorismate mutase and prephenate dehydratase, P-protein), trpD (fused glutamine amidotransferase (component II ) of anthranilate synthase / anthranilate phosphoribosyl transferase), dapA (4-hydroxy-tetrahydrodipicolinate synthase), ilvE (Branched-chain-amino-acid aminotransferase), lysA (Diaminopimelate decarboxylase), gltA (cistrate synthase), fumA (F umarate hydratase class I, aerobic), glnA (glutamine synthetase), mdh (malate dehydrogenase), gdhA (NADP-specific glutamate dehydrogenase), argA (amino acid N-acetyltransferase and inactive acetylglutamate kinase), metA (Homoserine O-succinyltransase) tdh (L-threonine dehydrogenase), livJ (branched-chain amino acid ABC transporter periplasmic binding protein), rhtC (Threonine efflux protein), yohJ (UPF0299 membrane protein), chpA (antitoxin of the ChpA-ChpR toxin-antitoxin system), aspate (aspartate aminotransferase), pfkA (ATP-dependent 6-phosphofructokinase isozyme 1), parE (DNA topoisomerase 4 subunit B), ytfR (predicted sugar transporter subunit), ilvA (L-threonine dehydratase, biosynthetic; also known as threonine deaminase, ilvG (Acetolactate synthase), minD (inhibitor of FtsZ ring polymerization; chromosome-membrane tethering protein; membrane ATPase of the MinCDEE system), hisJ (histidine transport system substrate-binding protein), yneH (Glutaminase) , ferpedoxin-type protein NapG (napG), 2-dehydro-3-deoxyphosphooctonate aldolase (kdsA), ygfA (5-formyltetrahydrofolate cyclo-ligase), cell division protein FtsI (penicillin-binding protein 3) ftsI, trehalose 6-phosphate phosphatase, hybG (hydrogenase expression / formation protein HypC), ampG (MFS transporter, PAT family, beta-lactamase induction signal transducer AmpG), potG (spermidine / putrescine transport system permease protein), caiF (transcriptional activator CaiF) , yfbR (5'-deoxynucleotidase YfbR), rfe (UDP-GlcNAc: undecaprenyl-phosphate / decaprenyl-phosphate GlcNAc-1-phosphate transferase), atpH (F-type H + -transporting ATPase subunit delta), tiaE (glyoxylate / hydroxypyruvate 2-ketogluconate reductase) and murI (glutamate rac) emase) may be selected from the group consisting of, but is not limited thereto.
본 발명은 또한, 제1항생제 내성 유전자를 코딩하는 제1핵산 조각; 제1복제원점를 코딩하는 제2핵산 조각; 및 제1 표적유전자 발현을 억제하는 합성 sRNA 암호화 영역을 코딩하는 제3핵산 조각을 깁슨 어셈블리(Gibson assembly), 골든게이트 어셈블리(golden gate assembly), 라이게이션(ligation), 상동재조합(homologous recombination), SLIC(sequence and ligation-independent cloning), SLiCE(seamless ligation cloning extract), CPEC(circular polymerase extension cloning) 또는 유전자 합성으로 연결하는 단계를 포함하는 동시다중 표적유전자 발현억제 시스템의 제조방법에 관한 것이다.The present invention also relates to a nucleic acid fragment comprising: a first nucleic acid fragment encoding a first antibiotic resistance gene; A second nucleic acid fragment encoding a first replication origin; And a third nucleic acid fragment encoding a synthetic sRNA coding region that inhibits the expression of a first target gene, the Gibson assembly, golden gate assembly, ligation, homologous recombination, The present invention relates to a method for producing a simultaneous multiple target gene expression suppression system comprising the step of connecting by sequence and ligation-independent cloning (SLIC), seamless ligation cloning extract (SLiCE), circular polymerase extension cloning (CPEC), or gene synthesis.
본 발명은 또한, 상기 동시다중 표적유전자 발현억제 시스템이 도입되어 있는 재조합 미생물에 관한 것이다.The present invention also relates to a recombinant microorganism in which the simultaneous multiple target gene expression suppression system is introduced.
본원 명세서에 사용된 용어 "형질전환"은 DNA를 숙주로 도입하여 DNA가 염색체 외 인자로서 또는 염색체 통합완성에 의해 복제 가능하게 되는 것을 의미한다.As used herein, the term “transformation” means introducing DNA into a host so that the DNA is replicable as an extrachromosomal factor or by chromosomal integration.
본 발명은 또한, 상기 동시다중 표적유전자 발현억제 시스템을 원핵생물 내로 도입하거나, 원핵생물 내에서 발현시키는 단계; 및 표적 유전자의 mRNA 발현을 억제하는 단계를 포함하는 표적유전자의 동시다중 발현억제 방법에 관한 것이다.The present invention also provides a method of introducing a co-targeted gene expression inhibitory system into a prokaryote or expressing in a prokaryote; And it relates to a method for inhibiting simultaneous expression of multiple target genes comprising the step of inhibiting the mRNA expression of the target gene.
본 발명은 또한, 상기 동시다중 표적유전자 발현억제 시스템을 포함하는 표적유전자의 동시다중 발현억제용 조성물에 관한 것이다.The present invention also relates to a composition for inhibiting simultaneous expression of a target gene comprising the system for inhibiting expression of a target expression gene.
본 발명은 다른 관점에서, (a) 20 염기 내지 50 염기를 가지는 임의의 염기서열을 제조하는 단계; (b) 상기 염기서열을 상기 동시다중 표적유전자 발현억제 시스템의 제1벡터의 표적유전자 mRNA와 상보적으로 결합하는 영역에 삽입하여 제1 sRNA 라이브러리를 포함하는 제1벡터 라이브러리를 제조하는 단계; (c) 상기 제1벡터 라이브러리를 유용물질을 생산하고자 하는 대상 균주에 도입하여, 유용물질 생산량이 향상되는 경우, 발현이 억제된 유전자 후보군을 동정하여, 2 내지 500개의 발현억제 대상 유전자로 결정하는 단계; (d) 상기 결정된 2 내지 500개의 발현억제 대상 유전자를 상기 동시다중 표적유전자 발현억제 시스템의 제q 벡터에 각각 삽입하는 단계; 및 (e) 상기 발현억제 대상 유전자를 포함하는 q개의 벡터가 도입된 재조합 균주를 제조하는 단계; 여기서, q는 2 내지 500의 정수인 것을 특징으로 하는 유용물질 생산 균주의 개량방법에 관한 것이다.In another aspect, the present invention, (a) preparing any base sequence having 20 to 50 bases; (b) inserting the nucleotide sequence into a region complementarily binding to the target gene mRNA of the first vector of the simultaneous multiple target gene expression suppression system to prepare a first vector library comprising a first sRNA library; (c) introducing the first vector library into a target strain to produce a useful material and identifying a candidate group of genes whose expression is suppressed when the production of the useful material is improved, and determining 2 to 500 expression inhibitory genes. step; (d) inserting the determined 2 to 500 expression inhibitory genes into the q vector of the simultaneous multiple target gene expression suppression system, respectively; And (e) preparing a recombinant strain into which q vectors including the expression inhibitory gene are introduced; Here, q relates to a method for improving a useful substance producing strain, characterized in that the integer of 2 to 500.
또한, 당업자는 본 발명의 방법을 통해, (a) 20 염기 내지 50 염기를 가지는 임의의 염기서열을 제조하는 단계; (b) 상기 임의의 염기서열을 상기 동시다중 표적유적자 발현억제 시스템의 제1벡터 내지 제q벡터의 표적유전자 mRNA와 상보적으로 결합하는 영역에 삽입하여 제1 내지 제r sRNA 라이브러리를 포함하는 제1 내지 제r벡터 라이브러리를 제조하는 단계; (c) 상기 제1 내지 제r벡터 라이브러리를 유용물질을 생산하고자 하는 대상 균주에 도입하여 유용물질 생산량이 향상되는 경우, 발현이 억제된 유전자 후보군을 동정하여 s 개의 발현억제 대상 유전자 조합을 결정하는 단계를 포함하는 유용물질 생산 균주의 개량방법 역시 자명하게 도출할 수 있으며, 이를 기반으로 한 유용물질 생산 균주의 개량방법 역시 자명하게 도출할 수 있다.In addition, those skilled in the art, through the method of the present invention, the steps of (a) preparing any base sequence having 20 to 50 bases; (b) inserting an arbitrary base sequence into a region complementarily binding to the target gene mRNA of the first vector to the q-th vector of the simultaneous multiple target droplet expression suppression system to include a first to r sRNA library Preparing a first to r-th vector library; (c) When the first to r-vector library is introduced into a target strain to produce a useful material to improve the production of the useful material, identifying a candidate group of genes whose expression is suppressed to determine s expression suppression gene combinations The improvement method of the useful substance producing strain including the step can also be elicited, and the method of improving the useful substance producing strain can be elicited.
여기서, q, r 및 s는 2 내지 500의 정수인 것을 특징으로 할 수 있다.Here, q, r and s may be an integer of 2 to 500.
이는 동시에 다수의 라이브러리를 스크리닝하여 가장 효과가 좋은 유전자 조합을 복잡한 단계 없이 한 번의 스크리닝으로 바로 도출할 수 있어 기존의 유전자 회로 개선방법을 획기적으로 개량할 수 있다는 것을 의미한다.This means that multiple libraries can be screened at the same time, so that the most effective gene combinations can be directly derived in one screening without complicated steps, thereby dramatically improving the existing genetic circuit improvement method.
한편 본 발명에서는 기존의 대사공학적으로 개량되어 플라스미드가 도입된 개조된 원핵생물에 본 발명에 따른 동시다중 표적유전자 발현억제 시스템을 추가로 도입하여, 목적 물질의 생산량을 더욱 향상시킬 수 있을지를 확인하고자 하였다.On the other hand, in the present invention, by introducing a simultaneous multi-target gene expression suppression system according to the present invention to the modified prokaryote, which has been improved metabolically and introduced plasmid, to confirm whether the production of the target substance can be further improved. It was.
즉 본 발명의 다른 실시예에서는 기존 트레오닌 생산 연구에서 트레오닌 생산 경로를 강화시키고, 트레오닌 생산 경로상의 효소들이 생산물에 의한 활성 저해를 받지 않도록 피드백 저항성 효소로 개량을 함과 더불어 트레오닌 트랜스포터를 과발현한 균주(TH28C-pBRThrABCR3, KH Lee et al., Mol. Syst. Biol. 2007, 3(149))에, 본 발명에서 제작한 sRNA 라이브러리를 처리한 결과, 트레오닌 생산량을 추가로 증가시키는 8개의 유전자를 발굴하였으며(도 5), 이들의 조합을 통해 가장 트레오닌 생산능의 향상이 뛰어난 유전자 조합을 발굴하여, 30% 이상의 트레오닌 증산이 가능한 것을 확인하였다(도 6). That is, in another embodiment of the present invention, a strain that enhances the threonine production pathway in the conventional threonine production research, improves the enzyme on the threonine production pathway with a feedback-resistant enzyme and prevents the activity from being inhibited by the product, and overexpresses the threonine transporter. (TH28C-pBRThrABCR3, KH Lee et al., Mol. Syst. Biol. 2007, 3 (149)), when processing the sRNA library produced in the present invention, found eight genes that further increase the threonine production (FIG. 5), through the combination of these, the most excellent combination of threonine production capacity was found to find a gene combination, and it was confirmed that 30% or more of threonine transpiration was possible (FIG. 6).
따라서, 본 발명은 또 다른 관점에서, 트레오닌(Threonine) 생합성 경로를 가지는 숙주세포에서, 상기 동시다중 표적유전자 발현억제 시스템의 제1 내지 제q벡터의 표적유전자의 mRNA와 상보적으로 결합하는 영역에 tktA, aroF, pta, ilvH, ilvE, glnA, fur 또는 chpA 유전자의 mRNA와 상보적으로 결합하는 서열을 삽입하여 제조된 벡터가 도입되어 있어, tktA, aroF, pta, ilvH, ilvE, glnA fur 및 chpA로 구성된 군에서 선택되는 2개 이상의 유전자의 발현이 억제되어 있는 것을 특징으로 하는 트레오닌 생산능력이 향상된 재조합 미생물에 관한 것이다.Accordingly, in another aspect, the present invention provides a host cell having a threonine biosynthetic pathway, which is complementarily bound to an mRNA of a target gene of the first to q vectors of the simultaneous multiple target gene expression suppression system. A vector prepared by inserting a sequence complementarily binding to the mRNA of the tktA, aroF, pta, ilvH, ilvE, glnA, fur or chpA genes was introduced, and thus, tktA, aroF, pta, ilvH, ilvE, glnA fur and chpA It relates to a recombinant microorganism with improved threonine production capacity, characterized in that the expression of two or more genes selected from the group consisting of is suppressed.
본 발명에 있어서, 상기 재조합 미생물은 lacI(lactose operon repressor), metA(Homoserine O-succinyltransferase), lysA(Diaminopimelate decarboxylase), tdh(L-threonine dehydrogenase), iclR(AceBAK operon repressor) 및 tdcC(Threonine/serine transporter)로 구성된 군에서 선택되는 하나 이상의 유전자가 추가로 결실된 것을 특징으로 할 수 있다.In the present invention, the recombinant microorganism is lactose operon repressor (lacI), homoserine O-succinyltransferase (metA), lysA (Diaminopimelate decarboxylase), tdh (L-threonine dehydrogenase), iclR (AceBAK operon repressor) and tdcC (Threonine / ser One or more genes selected from the group consisting of transporters may be further deleted.
또한 상기 재조합 미생물은 thrA(Bifunctional aspartokinase/homoserine dehydrogenase 1)의 1034번째 염기 서열이 C에서 T로 바뀐 돌연변이, lysC(lysine-sensitive aspartokinase 3)의 1055번째 염기 서열이 C에서 T로 바뀐 돌연변이, ilvA(l-threonine dehydratase, biosynthetic; also known as threonine deaminase)의 290번째 염기 서열이 C에서 T로 바뀐 돌연변이로 구성된 군에서 선택되는 하나 이상의 유전자가 조작된 것을 특징으로 하며, thrABC 오페론, ppc(phosphoenolpyruvate carboxylase), acs(acetyl-CoA synthetase)로 구성된 군에서 선택되는 하나 이상의 유전자의 프로모터가 trc 프로모터로 치환된 것을 특징으로 하며, 또한 rhtA(threonine and homoserine efflux system), rhtB(homoserine, homoserine lactone and S-methyl-methionine efflux pump), rhtC(threonine efflux pump), thrAC1034T, thrB(homoserine kinase), thrC(L-threonine synthase)로 구성된 군에서 선택되는 하나 이상의 유전자가 플라스미드 기반 과발현된 것을 특징으로 할 수 있다.In addition, the recombinant microorganism is a mutation in which the 1034 base sequence of thrA (Bifunctional aspartokinase / homoserine dehydrogenase 1) is changed from C to T, and the 1055 base sequence of lysine-lysine-sensitive aspartokinase 3 (lysC) is changed from C to T, ilvA ( thrABC operon, ppc (phosphoenolpyruvate carboxylase), characterized by the manipulation of one or more genes selected from the group consisting of mutations in which the 290th sequence of l-threonine dehydratase, biosynthetic; also known as threonine deaminase has been changed from C to T , characterized in that the promoter of one or more genes selected from the group consisting of acs (acetyl-CoA synthetase) is substituted with trc promoter, rhtA (threonine and homoserine efflux system), rhtB (homoserine, homoserine lactone and S-methyl one selected from the group consisting of -methionine efflux pump, rhtC (threonine efflux pump), thrAC1034T, thrB (homoserine kinase), and thrC (L-threonine synthase) On the gene it can be characterized in that the plasmid-based overexpression.
본 발명에 있어서, 상기 숙주세포는 대장균, 리조비움(Rhizobium), 비피도박테리움 (Bifidobacterium), 로도코커스 (Rhodococcus), 칸디다 (Candida), 에르위니아(Erwinia), 엔테로박터 (Enterobacter), 파스테렐라(Pasteurella), 맨하이미아 (Mannheimia), 액티노바실러스 (Actinobacillus), 아그레가티박터(Aggregatibacter), 잔토모나스(Xanthomonas), 비브리오(Vibrio), 슈도모나스(Pseudomonas), 아조토박터(Azotobacter), 애시네토박터(Acinetobacter), 랄스토니아(Ralstonia), 아그로박테리움(Agrobacterium), 로도박터(Rhodobacter), 자이모모나스(Zymomonas), 바실러스(Bacillus), 스테필로코커스(Staphylococcus), 락토코커스(Lactococcus), 스트렙토코커스(Streptococcus), 락토바실러스(Lactobacillus), 클로스트리디움(Clostridium), 코리네박테리움(Corynebacterium), 스트렙토마이세스(Streptomyces), 비피도박테리움(Bifidobacterium), 사이아노박테리움(cyanobacterium) 및 사이클로박테리움(Cyclobacterium)로 구성되는 군에서 선택되는 것을 특징으로 할 수 있다.In the present invention, the host cell is E. coli, Rhizobium, Bifidobacterium, Rhodococcus, Candida, Erwinia, Enterobacter, Pasteur Pastaella, Mannheimia, Actinobacillus, Aggregatibacter, Xanthomonas, Vibrio, Pseudomonas, Azotobacter, Azotobacter Acinetobacter, Ralstonia, Agrobacterium, Rhodobacter, Zymomonas, Bacillus, Staphylococcus, Lactococcus (Lactococcus) Lactococcus, Streptococcus, Lactobacillus, Clostridium, Corynebacterium, Streptomyces, Bifidobacterium, Bifidobacterium cyanoba cterium) and cyclobacterium (Cyclobacterium) may be characterized in that it is selected from the group consisting of.
본 발명의 다른 실시예에서는 기존의 합성조절 sRNA를 도입하여 프롤린 생산량을 증가시킨 대장균 균주(NMH26-p15PP3533, pKKtrcSargF-trcSglnA, M. Noh et al., Cell Systems (2017), 5, 1-9)에 본 발명에 따른 sRNA 라이브러리를 처리하여, 7개의 후보 유전자 군을 도출하였으며(도 8), 이들의 조합을 통해 프롤린 생산을 추가로 향상시키는 유전자 조합을 발굴하여 30%이상의 프롤린 증산이 추가로 가능한 것을 확인하였다(도 8).In another embodiment of the present invention, E. coli strains (NMH26-p15PP3533, pKKtrcSargF-trcSglnA, M. Noh et al., Cell Systems (2017), 5, 1-9), which increased the production of proline by introducing a conventional synthetic regulatory sRNA By processing the sRNA library according to the present invention, seven candidate gene groups were derived (FIG. 8), and a combination of these to discover gene combinations that further improve proline production is possible to further increase proline production of 30% or more. It was confirmed (Fig. 8).
따라서, 본 발명은 또 다른 관점에서, 프롤린(proline) 생합성 경로를 가지는 숙주세포에서, 상기 동시다중 표적유전자 발현억제 시스템의 제1 내지 제q벡터의 표적유전자의 mRNA와 상보적으로 결합하는 영역에 serC, murE, aspC, metB, fadR, fur 또는 chpA 유전자의 mRNA와 상보적으로 결합하는 서열을 삽입하여 제조된 벡터가 도입되어 있어, serC, murE, aspC, metB, fadR, fur 및 chpA 로 구성된 군에서 선택되는 2개 이상의 유전자의 발현이 억제되어 있는 것을 특징으로 하는 프롤린 생산능력이 향상된 재조합 미생물에 관한 것이다.Therefore, in another aspect, the present invention is directed to a region of the host cell having a proline biosynthetic pathway, which complementarily binds to the mRNA of the target gene of the first to q vectors of the simultaneous multiple target gene expression suppression system. A vector prepared by inserting a sequence that complementarily binds to the mRNA of the serC, murE, aspC, metB, fadR, fur, or chpA genes has been introduced, and is a group consisting of serC, murE, aspC, metB, fadR, fur, and chpA. It relates to a recombinant microorganism having improved proline production capacity, characterized in that the expression of two or more genes selected from is suppressed.
본 발명에 있어서, 상기 재조합 미생물은 lacI, speE, speG, argI, puuP, puuA, putA, putP, proP, speC, potE, 및 speF로 구성된 군에서 선택되는 하나 이상의 유전자가 추가로 결실된 것을 특징으로 할 수 있다.In the present invention, the recombinant microorganism is characterized in that one or more genes selected from the group consisting of lacI, speE, speG, argI, puuP, puuA, putA, putP, proP, speC, potE, and speF are further deleted. can do.
본 발명에 있어서, 상기 재조합 미생물은 argECBH 오페론, speF-potE, 및 argD로 구성된 군에서 선택되는 하나 이상의 유전자의 프로모터가 trc 프로모터로 치환된 것을 특징으로 할 수 있다.In the present invention, the recombinant microorganism may be characterized in that the promoter of one or more genes selected from the group consisting of argECBH operon, speF-potE, and argD is substituted with trc promoter.
본 발명에 있어서, 상기 재조합 미생물은 PP3533 유전자가 도입 또는 증폭되어 있는 것을 특징으로 할 수 있다.In the present invention, the recombinant microorganism may be characterized in that the PP3533 gene is introduced or amplified.
본 발명에 있어서, 상기 재조합 미생물은 argF 및 glnA 유전자의 발현이 추가로 억제되어 있는 것을 특징으로 할 수 있으며, 상기 유전자의 발현 억제는 합성조절 sRNA를 통해 이루어지는 것을 특징으로 할 수 있다본 발명에 있어서, 상기 숙주세포는 대장균, 리조비움(Rhizobium), 비피도박테리움 (Bifidobacterium), 로도코커스 (Rhodococcus), 칸디다 (Candida), 에르위니아(Erwinia), 엔테로박터 (Enterobacter), 파스테렐라(Pasteurella), 맨하이미아 (Mannheimia), 액티노바실러스 (Actinobacillus), 아그레가티박터(Aggregatibacter), 잔토모나스(Xanthomonas), 비브리오(Vibrio), 슈도모나스(Pseudomonas), 아조토박터(Azotobacter), 애시네토박터(Acinetobacter), 랄스토니아(Ralstonia), 아그로박테리움(Agrobacterium), 로도박터(Rhodobacter), 자이모모나스(Zymomonas), 바실러스(Bacillus), 스테필로코커스(Staphylococcus), 락토코커스(Lactococcus), 스트렙토코커스(Streptococcus), 락토바실러스(Lactobacillus), 클로스트리디움(Clostridium), 코리네박테리움(Corynebacterium), 스트렙토마이세스(Streptomyces), 비피도박테리움(Bifidobacterium), 사이아노박테리움(cyanobacterium) 및 사이클로박테리움(Cyclobacterium)로 구성되는 군에서 선택되는 것을 특징으로 할 수 있다.In the present invention, the recombinant microorganism may be characterized in that the expression of the argF and glnA gene is further suppressed, the expression of the gene is characterized in that it is made through a synthetic regulatory sRNA in the present invention The host cells are Escherichia coli, Rhizobium, Bifidobacterium, Rhodococcus, Candida, Erwinia, Enterobacter, Pasteurella , Mannheimia, Actinobacillus, Aggregatibacter, Xanthomonas, Vibrio, Pseudomonas, Azotobacter, Acinetobacter (Acinetobacter), Ralstonia, Agrobacterium, Rhodobacter, Zymomonas, Bacillus, Staphylococcus, Lactococcus (Lactococcus), Streptococcus, Lactobacillus, Clostridium, Corynebacterium, Streptomyces, Bifidobacterium, Bifidobacterium It may be characterized in that it is selected from the group consisting of (cyanobacterium) and cyclobacterium (Cyclobacterium).
본 발명은 또한, 상기 프롤린 생산능이 향상된 재조합 미생물을 트레이스 메탈 용액(trace metal solution)을 포함하는 배지에서 유가식 발효를 통해 배양하는 단계를 포함하는 프롤린 생산 방법에 관한 것이다.The present invention also relates to a method for producing proline comprising culturing the recombinant microorganism having improved proline production capacity through fed-batch fermentation in a medium containing a trace metal solution.
본 발명의 다른 실시예에서는 기존의 구축된 sRNA 라이브러리를 본 발명에 따른 sRNA 발현 벡터로 깁슨 어셈블리를 이용하여 빠르고 정확하며 효율적으로 이전한 다음, 인디고 및 비올라세인 생산 균주에 대하여 라이브러리 스크리닝을 통하여 인디고 또는 비올라세인 생산능을 향상시킬 수 있는 유전자 조합을 발굴하여, 인디고 또는 비올라세인의 생산능이 획기적으로 증가하는 것을 확인하였다(도 16 내지 도 18).In another embodiment of the present invention, the existing constructed sRNA library is transferred to the sRNA expression vector according to the present invention quickly, accurately and efficiently using Gibson assembly, and then indigo or via viola screening for indigo and violacein producing strains. By discovering a gene combination that can improve the violacein production capacity, it was confirmed that the production capacity of indigo or violacein significantly increased (Figs. 16 to 18).
따라서, 본 발명은 또 다른 관점에서, 인디고(indigo) 생합성 경로를 가지는 숙주세포에서, 상기 동시다중 표적유전자 발현억제 시스템의 제1 내지 제q벡터의 표적유전자의 mRNA와 상보적으로 결합하는 영역에 asnA, hisJ, yneH, napG, kdsA, ygfA, ftsl, aceF 또는 ostB 유전자의 mRNA와 상보적으로 결합하는 서열을 삽입하여 제조된 벡터가 도입되어 있어, asnA, hisJ, yneH, napG, kdsA, ygfA, ftsl, aceF 및 ostB 로 구성된 군에서 선택되는 2개 이상의 유전자의 발현이 억제되어 있는 것을 특징으로 하는 인디고 생산능력이 향상된 재조합 미생물에 관한 것이다.Accordingly, in another aspect, the present invention provides a host cell having an indigo biosynthetic pathway, which is complementarily bound to an mRNA of a target gene of the first to q vectors of the simultaneous multiple target gene expression suppression system. A vector prepared by inserting a sequence complementarily binding to mRNA of the asnA, hisJ, yneH, napG, kdsA, ygfA, ftsl, aceF or ostB genes was introduced, and asnA, hisJ, yneH, napG, kdsA, ygfA, It relates to a recombinant microorganism having improved indigo production capacity, characterized in that the expression of two or more genes selected from the group consisting of ftsl, aceF and ostB is suppressed.
본 발명에 있어서, 상기 재조합 미생물은 trpR, pykF 및 pykA로 구성된 군에서 선택되는 하나 이상의 유전자가 추가로 결실되고, tktA의 프로모터가 trc 프로모터로 치환되어 있으며, tnaA, fmo, aroGfbr, trpEfbr, 및 aroL로 구성된 군에서 선택되는 하나 이상의 유전자가 도입 또는 증폭되어 있는 것을 특징으로 할 수 있다. 상기 fbr은 피드백 저항을 받지 않는다는 것을 뜻한다(feedback resistance).In the present invention, the recombinant microorganism is further deleted one or more genes selected from the group consisting of trpR, pykF and pykA, the promoter of tktA is substituted with the trc promoter, tnaA, fmo, aroGfbr, trpEfbr, and aroL One or more genes selected from the group consisting of may be characterized in that the introduced or amplified. The fbr means no feedback resistance (feedback resistance).
본 발명에 있어서, 상기 숙주세포는 대장균, 리조비움(Rhizobium), 비피도박테리움 (Bifidobacterium), 로도코커스 (Rhodococcus), 칸디다 (Candida), 에르위니아(Erwinia), 엔테로박터 (Enterobacter), 파스테렐라(Pasteurella), 맨하이미아 (Mannheimia), 액티노바실러스 (Actinobacillus), 아그레가티박터(Aggregatibacter), 잔토모나스(Xanthomonas), 비브리오(Vibrio), 슈도모나스(Pseudomonas), 아조토박터(Azotobacter), 애시네토박터(Acinetobacter), 랄스토니아(Ralstonia), 아그로박테리움(Agrobacterium), 로도박터(Rhodobacter), 자이모모나스(Zymomonas), 바실러스(Bacillus), 스테필로코커스(Staphylococcus), 락토코커스(Lactococcus), 스트렙토코커스(Streptococcus), 락토바실러스(Lactobacillus), 클로스트리디움(Clostridium), 코리네박테리움(Corynebacterium), 스트렙토마이세스(Streptomyces), 비피도박테리움(Bifidobacterium), 사이아노박테리움(cyanobacterium) 및 사이클로박테리움(Cyclobacterium)로 구성되는 군에서 선택되는 것을 특징으로 할 수 있다.In the present invention, the host cell is E. coli, Rhizobium, Bifidobacterium, Rhodococcus, Candida, Erwinia, Enterobacter, Pasteur Pastaella, Mannheimia, Actinobacillus, Aggregatibacter, Xanthomonas, Vibrio, Pseudomonas, Azotobacter, Azotobacter Acinetobacter, Ralstonia, Agrobacterium, Rhodobacter, Zymomonas, Bacillus, Staphylococcus, Lactococcus (Lactococcus) Lactococcus, Streptococcus, Lactobacillus, Clostridium, Corynebacterium, Streptomyces, Bifidobacterium, Bifidobacterium cyanoba cterium) and cyclobacterium (Cyclobacterium) may be characterized in that it is selected from the group consisting of.
본 발명은 또 다른 관점에서, 비올라세인(violacein) 생합성 경로를 가지는 숙주세포에서, 상기 동시다중 표적유전자 발현억제 시스템의 제1 내지 제q벡터의 표적유전자의 mRNA와 상보적으로 결합하는 영역에 ytfR, hybG, ampG, potG, caiF, minD, ilvM, yfbR, rfe, atpH, tiaE 또는 murI 유전자의 mRNA와 상보적으로 결합하는 서열을 삽입하여 제조된 벡터가 도입되어 있어, ytfR, hybG, ampG, potG, caiF, minD, ilvM, yfbR, rfe, atpH, tiaE 및 murI로 구성된 군에서 선택되는 2개 이상의 유전자의 발현이 억제되어 있는 것을 특징으로 하는 비올라세인/디옥시비올라세인 생산능력이 향상된 재조합 미생물에 관한 것이다.In another aspect, the present invention provides a host cell having a violasine biosynthetic pathway, ytfR in a region complementarily binding to mRNA of a target gene of the first to q-vectors of the simultaneous multiple target gene expression suppression system. A vector prepared by inserting a sequence complementarily binding to mRNA of hybG, ampG, potG, caiF, minD, ilvM, yfbR, rfe, atpH, tiaE or murI gene was introduced, and ytfR, hybG, ampG, potG , caiF, minD, ilvM, yfbR, rfe, atpH, tiaE and murI expression of two or more genes selected from the group is suppressed in the recombinant microorganism with improved violacein / deoxybiolacein production capacity It is about.
본 발명에 있어서, 상기 재조합 미생물은 vioA, vioB, vioC, vioD 및 vioE로 구성된 군에서 선택되는 하나 이상의 유전자가 도입 또는 증폭되어 있는 것을 특징으로 할 수 있다.In the present invention, the recombinant microorganism may be characterized in that one or more genes selected from the group consisting of vioA, vioB, vioC, vioD and vioE are introduced or amplified.
본 발명에 있어서, 상기 숙주세포는 대장균, 리조비움(Rhizobium), 비피도박테리움 (Bifidobacterium), 로도코커스 (Rhodococcus), 칸디다 (Candida), 에르위니아(Erwinia), 엔테로박터 (Enterobacter), 파스테렐라(Pasteurella), 맨하이미아 (Mannheimia), 액티노바실러스 (Actinobacillus), 아그레가티박터(Aggregatibacter), 잔토모나스(Xanthomonas), 비브리오(Vibrio), 슈도모나스(Pseudomonas), 아조토박터(Azotobacter), 애시네토박터(Acinetobacter), 랄스토니아(Ralstonia), 아그로박테리움(Agrobacterium), 로도박터(Rhodobacter), 자이모모나스(Zymomonas), 바실러스(Bacillus), 스테필로코커스(Staphylococcus), 락토코커스(Lactococcus), 스트렙토코커스(Streptococcus), 락토바실러스(Lactobacillus), 클로스트리디움(Clostridium), 코리네박테리움(Corynebacterium), 스트렙토마이세스(Streptomyces), 비피도박테리움(Bifidobacterium), 사이아노박테리움(cyanobacterium) 및 사이클로박테리움(Cyclobacterium)로 구성되는 군에서 선택되는 것을 특징으로 할 수 있다.In the present invention, the host cell is E. coli, Rhizobium, Bifidobacterium, Rhodococcus, Candida, Erwinia, Enterobacter, Pasteur Pastaella, Mannheimia, Actinobacillus, Aggregatibacter, Xanthomonas, Vibrio, Pseudomonas, Azotobacter, Azotobacter Acinetobacter, Ralstonia, Agrobacterium, Rhodobacter, Zymomonas, Bacillus, Staphylococcus, Lactococcus (Lactococcus) Lactococcus, Streptococcus, Lactobacillus, Clostridium, Corynebacterium, Streptomyces, Bifidobacterium, Bifidobacterium cyanoba cterium) and cyclobacterium (Cyclobacterium) may be characterized in that it is selected from the group consisting of.
본 발명은 또한 상기 재조합 미생물을 트레이스 메탈 용액(trace metal solution)을 포함하는 배지에서 유가식 발효를 통해 배양하는 단계를 포함하는 비올라세인/디옥시비올라세인 생산 방법에 관한 것이다.The present invention also relates to a violacein / deoxybiolacein production method comprising culturing the recombinant microorganism through fed-batch fermentation in a medium containing a trace metal solution.
실시예Example
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention, it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as being limited by these examples.
실시예 1. 동시다중 표적유전자 발현억제 시스템의 성능 확인Example 1 Performance Verification of a Simultaneous Multiple Target Gene Expression Suppression System
1.1. 다양한 합성조절 sRNA 플랫폼 제작1.1. Production of various synthetic regulatory sRNA platforms
본 발명에서는 다양한 합성조절 sRNA 플랫폼들을 구축하기 위하여 다음과 같은 실험을 실시하였다. 유용한 화합물의 생산을 위한 여러 종류의 플라스미드들과 동시에 사용될 수 있도록 설계하였는데, 보다 구체적으로 서로 공존 가능한 세 가지 항생제 마커 (Apramycin, Am로 표기; streptomycin 또는 spectinomycin, Sm으로 표기; tetracycline, Tc로 표기)를 사용하였고, 서로 공존 가능한 세 가지 복제원점 (CDF, pBBR1, ColA)을 이용하여 총 아홉 가지 벡터 (CDF-Am, CDF-Sm, CDF-Tc, pBBR1-Am, pBBR1-Sm, pBBR1-Tc, ColA-Am, ColA-Sm, ColA-Tc) 를 구축하였다(도 1). 이 때 [서열번호1]은 CDF 복제원점, [서열번호2]는 pBBR1 복제원점, [서열번호3]은 ColA 복제원점, [서열번호4]는 Am 항생제 마커, [서열번호5]는 Sm 항생제 마커, [서열번호6]은 Tc 항생제 마커 DNA 서열들을 의미한다. In the present invention, the following experiments were conducted to construct various synthetic regulatory sRNA platforms. Designed to be used simultaneously with several plasmids for the production of useful compounds, more specifically three antibiotic markers that can coexist with each other (denoted Apramycin, Am; streptomycin or spectinomycin, Sm; tetracycline, Tc) In total, nine vectors (CDF-Am, CDF-Sm, CDF-Tc, pBBR1-Am, pBBR1-Sm, pBBR1-Tc, using three coexisting replication origins (CDF, pBBR1, ColA)) were used. ColA-Am, ColA-Sm, ColA-Tc) were constructed (FIG. 1). At this time, [SEQ ID NO 1] is the CDF replication origin, [SEQ ID NO 2] is the pBBR1 replication origin, [SEQ ID NO 3] is the ColA replication origin, [SEQ ID NO 4] is the Am antibiotic marker, and [SEQ ID NO 5] is the Sm antibiotic The marker, [SEQ ID NO: 6], refers to Tc antibiotic marker DNA sequences.
본 발명에서 사용된 합성조절 sRNA는 PR 프로모터(서열번호7)를 기반으로 micC scaffold(서열번호8)와 T1/TE 터미네이터(서열번호9)를 활용하였다. 상기 아홉 개의 합성조절 sRNA 플랫폼 플라스미드들을 sRNA 조각, 항생제 마커(항생제 내성 유전자) 조각 및 복제원점 조각으로 구성된 세 개의 DNA 조각을 깁슨 어셈블리(gibson assembly)를 통해 제작하였다(D.G.Gibson et al., Nature Methods (2009), 6(5), 343-345). Synthetic regulatory sRNA used in the present invention utilized a micC scaffold (SEQ ID NO: 8) and T1 / TE terminator (SEQ ID NO: 9) based on the PR promoter (SEQ ID NO: 7). The nine synthetic regulatory sRNA platform plasmids were constructed via a Gibson assembly consisting of three DNA fragments consisting of sRNA fragments, antibiotic marker (antibiotic resistance gene) fragments and origin of replication fragments (DGGibson et al., Nature Methods). (2009), 6 (5), 343-345.
sRNA 조각은 기존 특허(KR 10-1575587 B1)에서의 pWAS 플라스미드를 템플릿으로 삼아 [서열번호10/서열번호11]을 이용하여 PCR을 통해 수득하였다. 항생제 마커 조각들 중 Am 조각은 [서열번호12/서열번호13]를 통해, Sm 조각은 [서열번호14/서열번호15]을 통해, 그리고 Tc 조각은 [서열번호16/서열번호17]를 통해 수득하였다. 복제원점 조각들 중 CDF 조각은 [서열번호18/서열번호19]을 통해, pBBR1 조각은 [서열번호20/서열번호21]을 통해, 그리고 ColA 조각은 [서열번호22/서열번호23]를 통해 수득하였다.sRNA fragments were obtained by PCR using [SEQ ID NO: 10 / SEQ ID NO: 11] as a template using the pWAS plasmid in the existing patent (KR 10-1575587 B1). Among the antibiotic marker fragments, the Am fragment is via [SEQ ID NO: 12 / SEQ ID NO: 13], the Sm fragment is via [SEQ ID NO: 14 / SEQ ID NO: 15], and the Tc fragment is via [SEQ ID NO: 16 / SEQ ID NO: 17]. Obtained. The CDF fragments of the replication origin fragments are through [SEQ ID NO: 18 / SEQ ID NO: 19], the pBBR1 fragments are through [SEQ ID NO: 20 / SEQ ID NO: 21], and the ColA fragments are [SEQ ID NO: 22 / SEQ ID NO: 23]. Obtained.
Figure PCTKR2019007729-appb-I000001
Figure PCTKR2019007729-appb-I000001
Figure PCTKR2019007729-appb-I000002
Figure PCTKR2019007729-appb-I000002
Figure PCTKR2019007729-appb-I000003
Figure PCTKR2019007729-appb-I000003
Figure PCTKR2019007729-appb-I000004
Figure PCTKR2019007729-appb-I000004
Figure PCTKR2019007729-appb-I000005
Figure PCTKR2019007729-appb-I000005
Figure PCTKR2019007729-appb-I000006
Figure PCTKR2019007729-appb-I000006
Figure PCTKR2019007729-appb-I000007
Figure PCTKR2019007729-appb-I000007
Figure PCTKR2019007729-appb-I000008
Figure PCTKR2019007729-appb-I000008
Figure PCTKR2019007729-appb-I000009
Figure PCTKR2019007729-appb-I000009
Figure PCTKR2019007729-appb-I000010
Figure PCTKR2019007729-appb-I000010
Figure PCTKR2019007729-appb-I000011
Figure PCTKR2019007729-appb-I000011
Figure PCTKR2019007729-appb-I000012
Figure PCTKR2019007729-appb-I000012
Figure PCTKR2019007729-appb-I000013
Figure PCTKR2019007729-appb-I000013
Figure PCTKR2019007729-appb-I000014
Figure PCTKR2019007729-appb-I000014
1.2. 다양한 합성조절 sRNA 효율 테스트를 위한 리포터 플라스미드 제작1.2. Reporter plasmid construction for various synthetic regulatory sRNA efficiency tests
다양한 플랫폼 sRNA들의 유전자 발현 억제능을 확인하기 위해서 우선 DsRed2 유전자를 포함하고 있는 리포터 플라스미드들을 제작하였다. 리포터 플라스미드들 중 pACYC184-DsRed2는 기존 문헌에서 제작된 바와 동일한 플라스미드를 활용하였다(M. Noh et al., Cell Systems (2017), 5, 1-9).In order to confirm gene expression inhibition of various platform sRNAs, reporter plasmids containing the DsRed2 gene were first constructed. Among the reporter plasmids, pACYC184-DsRed2 utilized the same plasmid as produced in the literature (M. Noh et al., Cell Systems (2017), 5, 1-9).
pTac15K-DsRed2 (p15A 복제원점, kanamycin -Km으로 표기- 항생제 마커), pTrc99A-DsRed2 (ColE1 복제원점, ampicilin -Ap로 표기- 항생제 마커) 리포터 플라스미드 구축은 먼저 pTac15K와 pTrc99A를 템플릿으로 하여 [서열번호24/서열번호25]를 통하여 PCR을 통해 깁슨 어셈블리(gibson assembly)를 위한 플라스미드 조각을 제조한 다음, DsRed2 유전자를 [서열번호26/서열번호27]을 통하여 PCR 반응으로 수득한 다음, 상기 두 조각을 깁슨 어셈블리를 통해 조립함으로써 pTac15K-DsRed2, pTrc99A-DsRed2 리포터 플라스미드를 구축하였다.pTac15K-DsRed2 (p15A replication origin, kanamycin -Km-antibiotic marker), pTrc99A-DsRed2 (ColE1 replication origin, ampicilin -Ap-antibiotic marker) Construction of the reporter plasmid was performed using pTac15K and pTrc99A as a template. 24 / SEQ ID NO 25] to prepare a plasmid fragment for gibson assembly by PCR, and then obtain the DsRed2 gene by PCR reaction via [SEQ ID NO 26 / SEQ ID NO 27], and then the two fragments PTac15K-DsRed2, pTrc99A-DsRed2 reporter plasmids were constructed by assembling through a Gibson assembly.
Figure PCTKR2019007729-appb-I000015
Figure PCTKR2019007729-appb-I000015
1.3. 다양한 합성조절 sRNA의 DsRed2 형광 단백질에 대한 낙다운 효율 테스트 및 성능 조사1.3. Knockdown efficiency test and performance investigation of DsRed2 fluorescent protein of various synthetic regulatory sRNAs
실시예 1-1에서 구축한 다양한 합성조절 sRNA 플랫폼 플라스미드와 DsRed2 형광단백질 발현 리포터 플라스미드를 이용하여 합성조절 sRNA의 DsRed2 형광 단백질에 대한 낙다운 테스트 및 각 플랫폼의 성능 조사를 아래와 같이 진행하였다. Using various synthetic sRNA platform plasmids and DsRed2 fluorescent protein expression reporter plasmids constructed in Example 1-1, the knockdown test for DsRed2 fluorescent protein of synthetic sRNA and the performance of each platform were performed as follows.
기반 균주는 Escherichia coli W3110을 사용하였다. 우선 DsRed2 형광단백질의 발현을 낙다운 하기 위한 합성조절 sRNA를 구축함에 있어, 다양한 합성조절 sRNA 플랫폼 플라스미드들을 템플릿으로 삼아 [서열번호28/서열번호29]를 이용한 inverse PCR 반응을 이용하였다. PCR을 통해 생성된 DNA 중 DpnI 제한효소 (엔지노믹스, 대한민국)로 템플릿을 제거하였으며, 뒤따른 T4 polynucleotide kinase (엔지노믹스, 대한민국)와 T4 ligase (엘피스 바이오텍, 대한민국)에 의한 반응을 통해 완성된 anti-DsRed2-sRNA 플라스미드를 제작하였다. The base strain was Escherichia coli W3110. First, in constructing synthetic regulatory sRNAs to down-express the expression of DsRed2 fluorescent protein, various synthetic regulatory sRNA platform plasmids were used as templates, using an inverse PCR reaction using [SEQ ID NO 28 / SEQ ID NO 29]. Among the DNA generated by PCR, the template was removed with DpnI restriction enzyme (Engineics, Korea), and the anti-completed reaction was completed by reaction with T4 polynucleotide kinase (Engineics, Korea) and T4 ligase (Elpis Biotech, Korea). DsRed2-sRNA plasmids were constructed.
모든 클로닝 상의 DNA 서열 확인 작업은 Cosmogenetech사 (대한민국)를 통하여 진행하였다. 상기에서 명시한 바와 같이 구축된 9개의 anti-DsRed2-sRNA 플라스미드들과 세 가지 DsRed2- 리포터 플라스미드들을 이용하여 대사공학에서 자주 사용되는 세 가지 리포터 플라스미드들 - 각각 세 가지 다른 항생제 마커를 지니고 있는 - 에 대한 다양한 합성조절 sRNA의 낙다운 성능을 판단하고자 하였다. DNA sequence identification on all cloning was carried out through Cosmogenetech (South Korea). Using nine anti-DsRed2-sRNA plasmids and three DsRed2-reporter plasmids constructed as specified above for three reporter plasmids frequently used in metabolic engineering, each with three different antibiotic markers To determine the knockdown performance of various synthetic regulatory sRNAs.
구축한 9개의 anti-DsRed2-sRNA - 각각 CDF-Am, CDF-Sm, CDF-Tc, pBBR1-Am, pBBR1-Sm, pBBR1-Tc, ColA-Am, ColA-Sm, ColA-Tc 플랫폼 플라스미드에 삽입 - 를 pACYC184-DsRed2 리포터 플라스미드와 함께 E. coli W3110 균주에 형질전환하였으며, 5 mL의 LB (Luria-Bertani) 배지가 담긴 테스트 튜브에 접종된 채로 24시간 동안 섭씨 37도씨에서 200 RPM으로 배양한 다음, OD600이 보정된 채로 (OD600=2) 96 well standard opaque 마이크로플레이트에 옮긴 후, microplate reader을 통해 형광 세기를 측정하였다. DsRed2 형광 단백질의 excitation 파장은 562 nm, emission 파장은 603 nm, 그리고 cutoff 값은 590 nm로 설정하고 측정하였다. Constructed 9 anti-DsRed2-sRNAs-inserted into CDF-Am, CDF-Sm, CDF-Tc, pBBR1-Am, pBBR1-Sm, pBBR1-Tc, ColA-Am, ColA-Sm, ColA-Tc platform plasmids, respectively Was transformed into the E. coli W3110 strain with the pACYC184-DsRed2 reporter plasmid, incubated at 37 ° C. at 200 RPM for 24 hours inoculated into a test tube containing 5 mL of LB (Luria-Bertani) medium. After OD600 was calibrated (OD600 = 2) to 96 well standard opaque microplates, fluorescence intensity was measured through a microplate reader. The excitation wavelength of DsRed2 fluorescent protein was set to 562 nm, emission wavelength was 603 nm, and cutoff value was set at 590 nm.
또한, 상기 9개의 anti-DsRed2-sRNA를 pTac15K-DsRed2 리포터 플라스미드와 함께 E. coli W3110 균주에 형질전환 한 뒤 배양하여, 상기와 동일하게 형광 세기를 측정한 하였다 In addition, the nine anti-DsRed2-sRNAs were transformed into the E. coli W3110 strain together with the pTac15K-DsRed2 reporter plasmid and cultured, and the fluorescence intensity was measured as described above.
또한, 상기 9개의 anti-DsRed2-sRNA를 pTrc15K-DsRed2 리포터 플라스미드와 함께 E. coli W3110 균주에 형질전환 한 뒤 배양하여, 상기와 동일하게 형광세기를 측정하였다. In addition, the nine anti-DsRed2-sRNAs were transformed into the E. coli W3110 strain along with the pTrc15K-DsRed2 reporter plasmid and cultured, and the fluorescence intensity was measured as described above.
그 결과, 총 6가지의 플랫폼 (CDF-Sm, CDF-Tc, pBBR1-Am, pBBR1-Sm, pBBR1-Tc, ColA-Sm) 들을 실제 대사공학에서 사용될 수 있는 플랫폼 후보로 선정하였다. 선정된 플랫폼들은 다양한 환경의 DsRed2 발현 균주들에서 모두 효과적인 목표 유전자 발현 억제능을 보여주었다 (도2). ColA-Tc, ColA-Am 플랫폼은 클로닝과정에서 리포터 플라스미드와 함께 형질전환하였을 경우 안정성이 떨어졌고, CDF-Am 플랫폼은 액체 배지에서 성장 저해 문제를 나타내고 pTrc99A-DsRed2 리포터에 대한 낙다운 성능이 떨어졌기에 플랫폼 후보에서 제외하였다. As a result, a total of six platforms (CDF-Sm, CDF-Tc, pBBR1-Am, pBBR1-Sm, pBBR1-Tc, ColA-Sm) were selected as platform candidates that can be used in actual metabolic engineering. Selected platforms showed effective target gene expression inhibition in all of the DsRed2 expressing strains in various environments (FIG. 2). ColA-Tc and ColA-Am platforms were less stable when transformed with reporter plasmids during cloning, CDF-Am platforms exhibited growth inhibition problems in liquid media and poor knockdown performance for pTrc99A-DsRed2 reporters. Excluded from platform candidates.
본 발명은 균주내의 3가지 유전자를 동시에 낙다운 하기 위해 ColA-Sm, CDF-Tc, pBBR1-Am 3가지 플랫폼을 선정하여 추후 대사공학적 실시예에서 사용하였다. 이들 중 하나의 플랫폼을 일차 라이브러리 제작 대상으로 선정하였다. 이 때 일차 스크리닝 플랫폼이라 함은 일반적으로 사용에 편리하도록 본 발명자들이 지정한 것이지, 본 발명의 용법에 한정을 주는 것이 아님은 자명할 것이다.In the present invention, three platforms of ColA-Sm, CDF-Tc, and pBBR1-Am were selected in order to simultaneously knock down three genes in a strain and used in a later metabolic example. One of these platforms was selected for primary library production. At this time, the primary screening platform is generally designated by the present inventors for convenience of use, and it will be obvious that the usage of the present invention is not limited.
Figure PCTKR2019007729-appb-I000016
Figure PCTKR2019007729-appb-I000016
1.4. 다양한 조합의 합성조절 sRNA 플랫폼이 숙주 대장균의 성장에 미치는 영향1.4. Effects of Various Combination Synthetic Regulatory sRNA Platforms on Growth of Host Escherichia Coli
1) 단일 sRNA 플랫폼 1) single sRNA platform
실시예 1-3에서 제조한 합성조절 sRNA 플랫폼 플라스미드가 여러 조합으로 대장균 균주에 도입되었을 때, 숙주 세포의 성장에 미치는 영향을 알아보고자하였다. 먼저 단일 sRNA 플랫폼 도입 후 균주 생장 테스트를 하였는데, 대사공학적으로 사용되는 실제 환경과 최대한 유사한 환경에서 테스트하고자 리포터 플라스미드 각각 한 종이 이미 도입된 대장균 균주에 각 sRNA 플랫폼을 도입하였다. 따라서 상기 실시예에서 언급된 pTac15K-dsRed2, pTrc99A-dsRed2, pACYC184-dsRed2 리포터 플라스미드를 각각 보유하고 있는 E. coli W3110 균주 세 종에 실시예 1.3에서 선정한 6가지 sRNA 플랫폼을 각각 도입하여 다음과 같은 18종의 균주를 제작하였다: Tac-pBBR1Am, Tac-pBBR1Tc, Tac-pBBR1Sm, Tac-ColASm, Tac-CDFTc, Tac-CDFSm, Trc-pBBR1Am, Trc-pBBR1Tc, Trc-pBBR1Sm, Trc-ColASm, Trc-CDFTc, Trc-CDFSm, ACYC-pBBR1Am, ACYC-pBBR1Tc, ACYC-pBBR1Sm, ACYC-ColASm, ACYC-CDFTc, ACYC-CDFSm. When the synthetic regulatory sRNA platform plasmids prepared in Examples 1-3 were introduced into E. coli strains in various combinations, the effect on the growth of host cells was examined. First, the strain growth test was performed after the introduction of a single sRNA platform, and each sRNA platform was introduced into an E. coli strain, in which one species of reporter plasmid was already introduced to test in an environment as close as possible to the actual environment used for metabolic engineering. Therefore, each of the six E. coli W3110 strains carrying the pTac15K-dsRed2, pTrc99A-dsRed2, and pACYC184-dsRed2 reporter plasmids mentioned in the above examples was introduced into each of the six sRNA platforms selected in Example 1.3. Species of strains were prepared: Tac-pBBR1Am, Tac-pBBR1Tc, Tac-pBBR1Sm, Tac-ColASm, Tac-CDFTc, Tac-CDFSm, Trc-pBBR1Am, Trc-pBBR1Tc, Trc-pBBR1Sm, Trc-ColASc , Trc-CDFSm, ACYC-pBBR1Am, ACYC-pBBR1Tc, ACYC-pBBR1Sm, ACYC-ColASm, ACYC-CDFTc, ACYC-CDFSm.
제작한 균주들과 각 대조군 균주들 (Ctrl로 표기; sRNA 플랫폼이 도입되지 않고 각각의 리포터 플라스미드만 도입된 균주)을 각기 5 mL의 LB 배지가 들어있는 테스트 튜브에 접종하여 16시간동안 37°C, 200 RPM에서 배양하였으며, 모든 균주들은 세 종씩 접종하여 테스트하였다. 그 후, 각 well에 200 μL의 LB 배지가 유입된 microplate에 모든 균주들을 24 시간동안 계대 배양을 진행하였는데 (1일 차), 이 때 Bioscreen C를 이용하여 교반이 이루어짐과 동시에 모든 균주들의 OD600을 1시간마다 측정하도록 하였다. 이렇게 24 시간동안의 배양이 종료된 후, 다시 동일한 조건의 microplate 상에 모든 균주들을 24 시간동안 계대 배양을 진행하였다 (2일 차). 이 때 역시 Bioscreen C를 이용하여 균주 생장을 측정하였다. 3일 차 계대 배양 또한 동일하게 수행하였다. The prepared strains and the respective control strains (indicated by Ctrl; strains in which only the reporter plasmid was introduced without introducing the sRNA platform) were inoculated into test tubes containing 5 mL of LB medium, respectively, at 37 ° C for 16 hours. , 200 RPM, and all strains were tested by inoculating three species. Subsequently, all the strains were passaged for 24 hours on a microplate in which 200 μL of LB medium was introduced into each well (day 1). At this time, OD600 of all strains was simultaneously agitated using Bioscreen C. Measurement was made every hour. After 24 hours of incubation, all strains were further passaged for 24 hours on the same microplate (day 2). At this time, strain growth was also measured using Bioscreen C. Day 3 passages were also performed in the same way.
그 결과, 도 3의 상단 세 개의 그래프 (a) 에 개시된 바와 같이 단일 sRNA 플랫폼의 도입은 숙주 대장균의 성장에 영향을 끼치지 않는 것을 확인하였다.As a result, it was confirmed that the introduction of a single sRNA platform does not affect the growth of host E. coli, as disclosed in the top three graphs (a) of FIG.
2) 이중 sRNA 플랫폼 2) dual sRNA platform
본 연구진은 나아가 대장균 균주가 두 종의 sRNA 플랫폼을 동시에 보유하고 있을 때의 생장 곡선 또한 분석하고자 하였다. 따라서 상기에서 언급된 바와 같이 세 종의 리포터 플라스미드가 도입된 E. coli W3110 균주에 다음과 같은 조합으로 sRNA 플랫폼을 형질전환한 균주들 21종을 제작하였다: Tac-ColASm-pBBR1Am, Tac-ColASm-pBBR1Tc, Tac-ColASm-CDFTc, Tac-CDFSm-pBBR1Am, Tac-CDFSm-pBBR1Tc, Tac-CDFTc-pBBR1Am, Tac-CDFTc-pBBR1Sm, Trc-ColASm-pBBR1Am, Trc-ColASm-pBBR1Tc, Trc-ColASm-CDFTc, Trc-CDFSm-pBBR1Am, Trc-CDFSm-pBBR1Tc, Trc-CDFTc-pBBR1Am, Trc-CDFTc-pBBR1Sm, ACYC-ColASm-pBBR1Am, ACYC-ColASm-pBBR1Tc, ACYC-ColASm-CDFTc, ACYC-CDFSm-pBBR1Am, ACYC-CDFSm-pBBR1Tc, ACYC-CDFTc-pBBR1Am, ACYC-CDFTc-pBBR1Sm. We also wanted to analyze the growth curve when E. coli strains had two sRNA platforms simultaneously. Therefore, as mentioned above, 21 strains transformed with the sRNA platform in the E. coli W3110 strain into which three reporter plasmids were introduced were prepared: Tac-ColASm-pBBR1Am and Tac-ColASm-. pBBR1Tc, Tac-ColASm-CDFTc, Tac-CDFSm-pBBR1Am, Tac-CDFSm-pBBR1Tc, Tac-CDFTc-pBBR1Am, Tac-CDFTc-pBBR1Sm, Trc-ColASm-pBBR1Am, Trc-ColASc-TcB-ColASc Trc-CDFSm-pBBR1Am, Trc-CDFSm-pBBR1Tc, Trc-CDFTc-pBBR1Am, Trc-CDFTc-pBBR1Sm, ACYC-ColASm-pBBR1Am, ACYC-ColASm-pBBR1Tc, ACYCFTCmA-ColAm-ColAm CDFSm-pBBR1Tc, ACYC-CDFTc-pBBR1Am, ACYC-CDFTc-pBBR1Sm.
제작한 균주들에 대한 생장 테스트는 상기 단일 sRNA 플랫폼에 대한 테스트와 동일한 방식으로 수행하였다. Growth tests on the produced strains were performed in the same manner as the test on the single sRNA platform.
그 결과, 도 3의 중앙 세 개의 그래프 (b)에 개시된 바와 같이 두 종의 sRNA 플랫폼들의 도입은 숙주 대장균 균주의 생장에 큰 영향을 미치지 않는 것을 확인하였다.As a result, it was confirmed that the introduction of two sRNA platforms did not significantly affect the growth of the host E. coli strain, as disclosed in the middle three graphs (b) of FIG. 3.
3) 삼중 sRNA 플랫폼 3) Triple sRNA Platform
본 연구진은 마지막으로 세 종의 sRNA 플랫폼의 동시 도입이 숙주 대장균 균주의 생장에 미치는 영향을 알아보고자 하였다. 따라서 상기에서 언급된 바와 같이 세 종의 리포터 플라스미드가 도입된 E. coli W3110 균주에 다음과 같은 조합으로 sRNA 플랫폼을 형질전환한 균주들 3종을 제작하였다: Tac-ColASm-pBBR1Am-CDFTc, Trc-ColASm-pBBR1Am-CDFTc, ACYC-ColASm-pBBR1Am-CDFTc.Finally, we wanted to investigate the effect of simultaneous introduction of three sRNA platforms on the growth of host E. coli strains. Therefore, three strains transformed with the sRNA platform in the E. coli W3110 strain into which three reporter plasmids were introduced as mentioned above were prepared: Tac-ColASm-pBBR1Am-CDFTc, Trc- ColASm-pBBR1Am-CDFTc, ACYC-ColASm-pBBR1Am-CDFTc.
제작한 균주들에 대한 생장 테스트는 상기 단일 sRNA 플랫폼에 대한 테스트와 동일한 방식으로 수행하였다.Growth tests on the produced strains were performed in the same manner as the test on the single sRNA platform.
그 결과, 도 3의 하단 세 개의 그래프 (c)에 개시된 바와 같이 세 종의 sRNA 플랫폼들의 도입은 숙주 대장균 균주의 생장에 큰 영향을 미치지 않는 것을 확인하였다.As a result, as shown in the bottom three graphs (c) of FIG. 3, the introduction of three sRNA platforms did not significantly affect the growth of the host E. coli strain.
1.5. 다양한 조합의 합성조절 sRNA 플랫폼들의 대장균 숙주 내에서의 안정성1.5. Stability in Escherichia coli Hosts of Various Combinations of Synthetic Regulatory sRNA Platforms
실시예 1.4를 진행함에 있어서, 1일 차, 2일 차, 3일 차 배양이 종료될 때마다 각 세포를 일정량 수득하여 colony PCR을 진행하여 해당 균주에 sRNA 플랫폼들이 안정하게 존재하는지를 테스트하였다. 이 때, 보다 쉽게 각 플랫폼들을 구분하고자 서로 다른 복제 원점은 서로 다른 길이의 PCR 산물을 제작하도록 하는 아래의 프라이머들 6종을 사용하였다. 이 때 [서열번호30], [서열번호31]은 CDF 복제원점에 특이적인 것으로 0.34 kb의 PCR 산물을 생성하고, [서열번호 32], [서열번호 33]은 pBBR1 복제원점에 특이적인 것으로 1.08 kb의 PCR 산물을 생성하며, [서열번호 34], [서열번호 35]는 ColA 복제원점에 특이적인 것으로 0.65 kb의 PCR 산물을 생성하도록 설계하였다.In proceeding with Example 1.4, each time the 1st day, 2nd day, and 3rd day culture was terminated, a certain amount of each cell was obtained and colony PCR was performed to test whether the sRNA platforms were stably present in the strain. At this time, in order to distinguish each platform more easily, the different origins of replication used the following six primers to produce PCR products of different lengths. [SEQ ID NO: 30], [SEQ ID NO: 31] are specific to the CDF replication origin, and generate a PCR product of 0.34 kb. [SEQ ID NO: 32] and [SEQ ID NO: 33] are specific to the pBBR1 replication origin. kb PCR products were generated, and [SEQ ID NO: 34] and [SEQ ID NO: 35] were specific to ColA replication origin and designed to generate 0.65 kb PCR products.
Figure PCTKR2019007729-appb-I000017
Figure PCTKR2019007729-appb-I000017
PCR 산물을 전기영동으로 확인한 결과, 도 4에 개시된 바와 같이 3일 차 계대 전까지는 모두 sRNA를 보유하고 있었지만 3일 차에는 몇 몇 균주에서 sRNA가 소실된다는 것을 알 수 있다. 하지만 대부분의 균주들은 sRNA 플랫폼들을 안정하게 지니고 있다는 것을 확인하였다. As a result of confirming the PCR product by electrophoresis, as shown in FIG. 4, all of the sRNAs were retained until the 3rd day of passage, but on the 3rd day, sRNA was lost in several strains. However, most strains were confirmed to have stable sRNA platforms.
상기와 같이 숙주세포 내에서의 본 발명의 합성조절 sRNA 플랫폼들의 안정성을 테스트 하였지만, 여러 개의 합성 조절 sRNA 발현 벡터들의 동시 적용이 하나의 벡터를 활용하는 것과 비교하여 더욱 안정하거나 최소 비슷하게 안정하다는 것을 증명하기 위해 다음과 같은 실험을 수행하였다. Although the stability of the synthetic regulatory sRNA platforms of the present invention in the host cell was tested as described above, the simultaneous application of several synthetic regulatory sRNA expression vectors proved to be more stable or at least similarly stable compared to utilizing one vector. In order to perform the following experiment.
본 특허 명세서 상에서 예시로 보여준 바와 같이 최대 세 개의 합성 조절 sRNA 플랫폼 벡터들이 (이미 숙주세포가 포함하고 있는 벡터 제외) 동시에 형질전환된 경우를 살펴보았다. pTac15K-dsRed2와 pTrc99A-dsRed2 두 가지 리포터 플라스미드를 각각 지니고 있는 두 종류의 대장균 W3110 균주에 합성 조절 sRNA 발현 플라스미드들을 단일, 이중, 삼중의 조합으로 형질전환하여 28종의 균주들을 제작하였다. 이렇게 제작된 균주들은 >80 세대 동안 계대 배양되었고, 약 20 세대 당 한 번씩 계대 및 플라스미드 보유 비율을 측정하였다. As shown by way of example in this patent specification, up to three synthetic regulatory sRNA platform vectors (except for vectors that are already included in host cells) were transformed simultaneously. Two strains of Escherichia coli W3110, each containing two reporter plasmids, pTac15K-dsRed2 and pTrc99A-dsRed2, were transformed into a single, double, and triple combinations to synthesize 28 strains. The thus prepared strains were passaged for> 80 generations and the passage and plasmid retention rates were measured about once every 20 generations.
플라스미드 보유 비율 측정을 위해서는 다음과 같이 실험을 진행하였다. 먼저 해당 균주를 5 mL LB 배지가 함유된 25 mL test tube에 섭씨 37도에서 12시간 이상 배양하였고, 약 1000개의 세포를 새로 준비한 LB 배지에 계대 접종하여 섭씨 37도에서 약 20 세대 동안 배양을 진행하였다. 이 때 적절한 농도의 항생제가 필요에 따라 이용되었다. 그 후, 배양액은 항생제가 포함되지 않은 LB 아가 플레이트 위에 묽혀서 배양되었고, 각 플레이트 당 50 개의 콜로니씩을 무작위로 선별하여 각각의 항생제(Tc, Sm, 또는 Am)가 함유된 LB 아가 플레이트 위에 찍어 배양하였다. In order to measure the plasmid retention ratio, the experiment was carried out as follows. First, the strain was incubated in a 25 mL test tube containing 5 mL LB medium at 37 degrees Celsius for at least 12 hours, and about 1000 cells were passaged in freshly prepared LB medium and cultured at 37 degrees Celsius for about 20 generations. It was. Appropriate concentrations of antibiotics were used as needed. Subsequently, the cultures were incubated by diluting them on LB agar plates containing no antibiotics, and 50 colonies of each plate were randomly selected and incubated on LB agar plates containing respective antibiotics (Tc, Sm, or Am). It was.
각 항생제가 함유된 LB 아가 플레이트 상에서의 각 균주들의 콜로니 생존율을 이용하여 플라스미드 보유 비율을 측정하였다. 그 결과는 도 19와 같다. 도 19에서 확인할 수 있는 바와 같이 대부분의 균주들(28 균주 중 25 균주)은 80세대 이상에서 90% 이상의 플라스미드 보유율을 보였다. 나머지 세 균주들 (다음의 플라스미드 조합을 보유하고 있는 균주들: pColA-SmR-pBBR1-AmR, pCDF-SmR-pBBR1-TcR, 그리고 pCDF-TcR-pBBR1-SmR) 또한 80% 이상의 플라스미드 보유율을 보여주었다. The plasmid retention rate was determined using the colony viability of each strain on LB agar plates containing each antibiotic. The result is shown in FIG. 19. As can be seen in Figure 19, most of the strains (25 of 28 strains) showed a plasmid retention of 90% or more in more than 80 generations. The other three strains (strains with the following plasmid combinations: pColA-SmR-pBBR1-AmR, pCDF-SmR-pBBR1-TcR, and pCDF-TcR-pBBR1-SmR) also showed plasmid retention of at least 80%. .
이로써 본 발명에서 개발된 동시다중 합성 조절 sRNA 발현 플라스미드들은 굉장히 높은 안정성을 보여준다는 점이 증명되었다. 본 실시예에서는 약 80 세대까지 세포를 배양하였는데, 이는 보통 산업계에서 배양되는 세대 수(유가식 배양이 세포 OD600 0.05에서 시작하여 1,000에서 종료된다고 가정하였을 때)인 약 15보다 훨씬 큰 숫자로써 대부분의 바이오 프로세스에서도 해당 sRNA 발현 플라스미드들이 안정할 수 있다는 점을 보여준다.This proved that the co-synthesized regulatory sRNA expression plasmids developed in the present invention showed very high stability. In this example, cells were cultured up to about 80 generations, which is much larger than about 15, which is usually the number of generations grown in industry (assuming fed-batch cultures start at 0.05 cells OD600 and end at 1,000). Bioprocesses also show that the corresponding sRNA expression plasmids can be stable.
실시예 2. 주요 대사 회로 상의 유전자들에 대한 ColA-Sm 및 CDF-Tc 플랫폼을 이용한 sRNA 라이브러리 구축Example 2 sRNA Library Construction Using ColA-Sm and CDF-Tc Platforms for Genes on Main Metabolic Circuits
실시예 1-3에서 선별한 합성조절 sRNA 발현 플랫폼의 실제 유용물질 생산 균주에의 활용 가능성을 확인하고자 대장균 내의 주요 대사회로상의 유전자들을 선별하고 이 유전자의 발현을 억제시키는 합성조절 sRNA 라이브러리를 구축하였다. In order to confirm the applicability of the synthetically regulated sRNA expression platform selected in Examples 1-3 to the practically useful substance producing strain, genes on major metabolic circuits in Escherichia coli were selected and a synthetic regulatory sRNA library was constructed to suppress the expression of these genes. .
먼저, 라이브러리를 구축할 플랫폼 벡터는 ColA-Sm과 CDF-Tc 로 선정하였고, 이렇게 선정한 각각의 플랫폼에 총 61가지의 주요 유전자들의 발현을 억제시킬 합성조절 sRNA 를 구축하였다. 합성조절 sRNA 의 목표 유전자들은 1) 주요 대사 경로 (해당 경로 및 TCA 회로 상에서 파생되는 주요 경로), 2) 대사 물질 transporter, 3) 세포 사멸, 4) 대사 회로 조절에 관여되는 유전자들을 선별하였다 (표 1). sRNA 라이브러리 구축시에는 상기 실시예 1.3에서 anti-DsRed2 sRNA를 구축하였을 때와 동일한 방법을 사용하였다. 즉, 우선 inverse PCR을 통하여 promoter와 micC 사이에 target binding sequence 24mer를 삽입하고, 뒤따른 DpnI 제한 효소 및 T4 PNK와 T4 ligase에 의하여 ligation 된 후 시퀀싱을 통하여 올바른 클론을 선택할 수 있었다. First, the platform vectors for constructing the library were selected as ColA-Sm and CDF-Tc, and a synthetic regulatory sRNA was constructed to inhibit the expression of a total of 61 major genes on each of these platforms. Target genes of the synthetic regulatory sRNA were screened for genes involved in 1) major metabolic pathways (major pathways derived from that pathway and the TCA circuit), 2) metabolite transporters, 3) cell death, and 4) metabolic circuit regulation (Table 1). One). In constructing the sRNA library, the same method as in the anti-DsRed2 sRNA was constructed in Example 1.3. In other words, the target binding sequence 24mer was inserted between promoter and micC by inverse PCR, followed by ligation by DpnI restriction enzyme and T4 PNK and T4 ligase, and then the correct clone was selected through sequencing.
이렇게 구축한 61 종류의 sRNA에 해당하는 타겟 유전자와 그에 해당하는 target binding sequence는 하기 표 1에 개시하였다.The target genes corresponding to the 61 types of sRNAs thus constructed and the corresponding target binding sequences are disclosed in Table 1 below.
Figure PCTKR2019007729-appb-T000001
Figure PCTKR2019007729-appb-T000001
Figure PCTKR2019007729-appb-I000018
Figure PCTKR2019007729-appb-I000018
Figure PCTKR2019007729-appb-I000019
Figure PCTKR2019007729-appb-I000019
실시예 3. 구축한 sRNA 라이브러리를 이용한 유용물질 생산 미생물 공장 생산능 향상Example 3. Production of useful materials using the constructed sRNA library Improvement of microbial plant production capacity
실시예 2에서 제조한 sRNA 라이브러리를 이용하여 기존의 pWAS 기반 sRNA 라이브러리를 이용하여 쉽게 엔지니어링하지 못하였던 생산 균주를 개발하였다. 기존의 sRNA 시스템을 적용하기 어렵다고 함은 배경기술에 개시된 바와 같이 1) 생산 균주가 포함하고 있는 플라스미드의 항생제 저항성 마커 또는 복제 원점이 중복되거나, 2) 여러 개의 낙다운 유전자 타겟을 여러 조합으로 쉽게 적용하고자 할 때를 뜻한다. 본 연구진은 새로운 sRNA 플랫폼을 이용하여 위와 같은 한계들을 해결하였다.   Using the sRNA library prepared in Example 2, a production strain that was not easily engineered using the existing pWAS based sRNA library was developed. It is difficult to apply the existing sRNA system, as described in the background. 1) The antibiotic resistance marker or the replication origin of the plasmid contained in the production strain is overlapped, or 2) The multiple knockdown gene targets are easily applied in various combinations. It means when you want to. The researchers solved these limitations using the new sRNA platform.
3.1. 다양한 합성조절 sRNA 플랫폼을 이용한 트레오닌 (L-threonine) 증산3.1. Enrichment of L-threonine Using Various Synthetic Regulatory sRNA Platforms
1) 단일 sRNA 플랫폼 1) single sRNA platform
기존에 개발되었던 균주들 중 트레오닌 (L-threonine) 생산 균주는 100% rational하게 대사공학적으로 개량된 균주임에도 불구하고 유가식 발효를 통해 82.4 g/L의 매우 높은 트레오닌 생산능을 보이는 균주이다. 100% rational한 방법으로 이미 트레오닌을 매우 고농도로 생산하는 균주에 random-rational한 방법의 합성조절 sRNA를 적용하였을 때의 생산능은 개선될 수 있을 것이라 예상하였다. Among the previously developed strains, the threonine (L-threonine) producing strain is a strain showing a very high threonine production capacity of 82.4 g / L through fed-batch fermentation despite the 100% rational metabolic improved strain. It was anticipated that the production capacity would be improved by applying the randomized-regulated sRNA of the random-rational method to strains that already produce high concentrations of threonine by the 100% rational method.
기존 트레오닌 생산 연구에서 트레오닌 생산 경로를 강화시키고, 트레오닌 생산 경로상의 효소들이 생산물에 의한 활성 저해를 받지 않도록 피드백 저항성 효소로 개량을 함과 더불어 트레오닌 트랜스포터 과발현등의 전략을 통하여 유가식 발효를 통하여 82.4 g/L의 고농도와 0.393 g/g (트레오닌/포도당)의 높은 수득률로 트레오닌 생산(TH28C - pBRThrABCR3 균주)에 성공한 바 있다 (K.H. Lee et a., Mol. Syst. Biol. (2007), 3(149)).Existing threonine production studies strengthened the threonine production pathway, improved it with feedback-resistant enzymes to prevent enzymes in the threonine production pathway from being inhibited by the product, and through fed-batch fermentation through strategies such as threonine transporter overexpression. 82.4 Threonine production (TH28C-pBRThrABCR3 strain) has been successful with high g / L concentrations and high yields of 0.393 g / g (threonine / glucose) (KH Lee et a., Mol. Syst. Biol. (2007), 3 ( 149)).
상기 트레오닌 생산 균주에 실시예 2에서 구축한 CDF-Tc 기반의 sRNA 라이브러리 중 트레오닌 과생산에 적용 가능한 55개의 합성조절 sRNA 라이브러리를 적용하여 플라스크 배양을 진행하였다. 트레오닌 플라스크 배양을 위하여 글리세롤 세포 스탁을 5 mL LB가 포함된 테스트 튜브에 접종하였고, 16시간 배양 후 플라스크로 계대 배양하였다. 플라스크 배양은 30 mL의 50 g/L glucose가 첨가된 TPM1 배지를 포함하고 있는 배플 플라스크에서 31°C, 250 rpm, 48 시간 동안 진행되었으며, TPM1 배지는 1L 당 다음의 성분들을 포함하고 있다: 2 g yeast extract, 4 g KH2PO4, 14 g (NH4)2SO4, 30 g CaCO3, 2 g MgSO4, 1 g betaine, 5 mL trace metal solution, 2 mM L-methionine, 2 mM L-lysine. Flask culture was performed by applying 55 synthetic regulatory sRNA libraries applicable to threonine overproduction among the CDF-Tc based sRNA libraries constructed in Example 2 to the threonine producing strain. Glycerol cell stock was inoculated into a test tube containing 5 mL LB for threonine flask culture, and passaged into flask after 16 hours of incubation. Flask incubation was performed at 31 ° C., 250 rpm, for 48 hours in a baffle flask containing 30 mL of 50 g / L glucose added TPM1 medium, TPM1 medium containing the following components per liter: 2 g yeast extract, 4 g KH 2 PO 4, 14 g (NH 4 ) 2 SO 4 , 30 g CaCO 3 , 2 g MgSO 4 , 1 g betaine, 5 mL trace metal solution, 2 mM L-methionine, 2 mM L-lysine.
플라스크 배양 결과, 도 5에 개시된 바와 같이 기존에 보고된 생산 균주(TH28C - pBRThrABCR3 균주)에 대하여 플라스크 배양을 수행함으로써 약 16.68 g/L의 트레오닌을 수득한 반면, 55개의 합성조절 sRNA 라이브러리를 적용할 경우, 트레오닌 생산량이 21.68 g/L 까지 증가할 수 있다는 것을 확인하였다.As a result of the flask culture, about 16.68 g / L of threonine was obtained by performing flask culture on the previously reported production strain (TH28C-pBRThrABCR3 strain) as disclosed in FIG. 5, while applying 55 synthetic regulatory sRNA libraries. In this case, it was confirmed that threonine production could increase to 21.68 g / L.
가장 트레오닌을 증산시킬 수 있었던 낙다운 유전자 타겟은 aroF 이고 pheA 또한 상당한 증산을 이루어냈다는 것을 감안하였을 때, 방향족 생산물로의 대사 흐름을 억제함으로써 트레오닌으로의 대사 흐름을 상당히 증가시킬 수 있었다고 판단된다(도 5). 뿐만 아니라, 트레오닌으로부터 이소루신을 생산하는 대사 경로 상의 ilvH, 아세트산의 축적에 관여하는 pta 등의 발현을 억제하였을 때에도 괄목할 만한 트레오닌 증산을 관찰할 수 있었다.Given that the most prolific knockdown gene target for a threonine was aroF and pheA also produced significant transpiration, it was thought that the metabolic flow to threonine could be significantly increased by inhibiting metabolic flow to aromatic products (Fig. 5). In addition, remarkable threonine transpiration was observed when ilvH on the metabolic pathway that produces isoleucine from threonine and pta involved in acetic acid accumulation were suppressed.
2) 다중 sRNA 플랫폼 2) multiple sRNA platform
이렇게 단일 유전자 발현 억제를 통하여서도 상당한 증산을 관찰할 수 있었음에도, 본 연구진은 개발된 합성조절 sRNA 플랫폼을 최대한 활용하기 위하여 호환 가능한 두 가지 합성조절 sRNA 플라스미드를 이용하여 동시 이중 낙다운을 통한 트레오닌 증산을 관찰하고자 하였다.Although significant transpiration could be observed even through the inhibition of single gene expression, the team used two compatible synthetic sRNA plasmids to maximize the development of the synthetic sRNA platform. Was to be observed.
단일 유전자 발현 억제 실험을 통하여 총 55개의 유전자 타겟 중 트레오닌을 20% 이상 증산시키도록 하는 8개의 유전자 타겟을 선별할 수 있었다. 이 8개의 낙다운 타겟은 다음과 같다: tktA, aroF, pta, ilvH, ilvE, glnA, fur, chpA. 본 연구진이 구축한 합성조절 sRNA 플랫폼을 활용하면 언급된 8개의 낙다운 유전자 타겟들을 2개씩 조합하여 동시 이중 낙다운을 손쉽게 테스트할 수 있으며, 이를 통하여 트레오닌을 더욱 높은 수율로 생산해내는 균주를 선별할 수 있을 것으로 예상하였다.A single gene expression inhibition experiment was able to select eight gene targets to increase the threonine 20% or more out of a total of 55 gene targets. These eight knockdown targets are: tktA, aroF, pta, ilvH, ilvE, glnA, fur, chpA. Using our synthetic sRNA platform, we can easily test for simultaneous double-knockdown by combining two of the eight knockdown gene targets mentioned above, thereby selecting strains that produce higher yields of threonine. Expected to be able.
기존의 합성조절 sRNA 플랫폼에서는 동시 다발적 낙다운을 위해서는 단일 벡터에 sRNA를 하나씩 새로이 재조합을 해야 하므로 시간이 오래 걸리며 여러 균주를 한 번에 제작하기 어려운 단점이 있었지만, 본 플랫폼을 활용하면 단순 형질전환을 통하여 유전자 재조합 없이 여러 균주를 한 번에 제작이 가능하다는 장점이 부각된다. Existing synthetically regulated sRNA platform has a disadvantage in that it takes a long time and it is difficult to produce several strains at once because of multiple recombination of single sRNA in a single vector for simultaneous multiple knockdown, but using this platform, simple transformation Through this, the advantage of being able to produce several strains at once without genetic recombination is highlighted.
따라서 총 28개의 이중 유전자 낙다운 조합에 해당하는 균주들을 매우 손쉽게 제작하였으며, 이렇게 구축한 균주들에 대한 flask 배양 결과를 도 6에 개시하였다. 흥미롭게도, 동시 이중 유전자 발현 억제 실험을 통해서 총 28개의 균주들 중 3개의 균주에서 기존 모균주 대비 30% 이상 증산된 결과를 관찰할 수 있었다. 특히, glnA-tktA를 동시 낙다운한 균주에서는 약 37%의 증산된 트레오닌을 얻을 수 있었으며, 최대 22.94 g/L의 트레오닌을 수득하였다. 언급된 세 가지 유전자 낙다운 조합은 다음과 같다: ilvE-tktA, glnA-tktA, chpA-pta. Therefore, strains corresponding to a total of 28 double gene knockdown combinations were produced very easily, and flask culture results of the thus constructed strains are disclosed in FIG. 6. Interestingly, the simultaneous double gene expression inhibition experiment was able to observe an increase of more than 30% compared to the existing parent strain in three of the total 28 strains. In particular, about 37% of the increased threonine was obtained in the strains simultaneously down-glnA-tktA, and a maximum of 22.94 g / L of threonine was obtained. The three gene knockdown combinations mentioned are: ilvE-tktA, glnA-tktA, chpA-pta.
상기 실시예를 통해 서술한 바와 같이, CDF-Tc와 ColA-Sm 플랫폼 상에 미리 구축해둔 합성 조절 sRNA 라이브러리를 활용하여 이미 대사공학적으로 개량된 균주에 대한 다중 낙다운 테스트를 손쉽고 빠르며 효과적으로 진행할 수 있었다. 또한, 이미 rational하게, 산업 균주와 견줄 정도로 높은 농도의 트레오닌을 이미 생산하는 균주에 새로 구축한 sRNA를 적용하여 37% 가량 생산능을 끌어올린 것은 산업계에서도 가히 주목할 만하다고 할 수 있다.As described in the above examples, multiple knockdown tests on already metabolically modified strains could be performed easily, quickly and effectively by utilizing the synthetic regulatory sRNA libraries previously built on CDF-Tc and ColA-Sm platforms. . In addition, it is remarkable that the industry has increased the production capacity by 37% by applying the newly constructed sRNA to the strain that already produces rational high concentration of threonine comparable to the industrial strain.
3.2. 다양한 합성조절 sRNA 플랫폼을 이용한 프롤린 (L-proline) 증산3.2. Proliferation of Proline (L-proline) Using Various Synthetic Regulatory sRNA Platforms
1) 단일 sRNA 플랫폼 1) single sRNA platform
본 발명에서는 합성조절 sRNA 플랫폼을 이용하여 프롤린 증산 균주를 개발하는데 활용하고자 하였다. 최근 가축 사료, 식품 첨가제, 의약 및 화합물 시장 등에서 매우 유용하게 사용되고 있는 프롤린 (L-proline)을 대량으로 생산할 수 있는 대장균 균주(NMH26 - p15PP3533, pKKtrcSargF-trcSglnA 균주)를 합성조절 sRNA를 이용하여 개발된 보고가 있다(KR 10-1750855 B1, M. Noh et al., Cell Systems (2017), 5, 1-9). In the present invention, the synthetically regulated sRNA platform was used to develop proline transcripts. E. coli strains (NMH26-p15PP3533, pKKtrcSargF-trcSglnA strains) capable of producing large amounts of proline (L-proline), which are recently used in the animal feed, food additives, medicine and compound markets, have been developed using synthetic sRNA. There are reports (KR 10-1750855 B1, M. Noh et al., Cell Systems (2017), 5, 1-9).
이 균주는 2개의 플라스미드를 가지고 있는데 하나는 프롤린의 생산을 위한 pTac15K 기반의 벡터이고, 또 하나는 ColE1 복제원점과 Ap 항생제를 갖는 합성조절 sRNA 플랫폼 벡터이다. 따라서 본 연구진은 위의 균주에 새로 구축된 합성조절 sRNA 플랫폼을 도입하여 이미 합성조절 sRNA를 통하여 증산이 된 균주임에도 불구하고 더욱 생산능을 끌어올리고자 하였다. 기존에 보고된 균주(NMH26 - p15PP3533, pKKtrcSargF-trcSglnA 균주)는 플라스크 상에서 1.95 g/L, 유가식 발효를 통하여 32.7 g/L의 프롤린을 생산하였다(KR 10-1750855 B1, M. Noh et al., Cell Systems (2017), 5, 1-9).This strain has two plasmids, one is a pTac15K based vector for the production of proline, and the other is a synthetic sRNA platform vector with ColE1 origin of replication and Ap antibiotics. Therefore, the researchers introduced a newly constructed synthetic regulatory sRNA platform to the above strains, but tried to increase the production capacity even though the strain was already expanded by the synthetic regulatory sRNA. Previously reported strains (NMH26-p15PP3533, pKKtrcSargF-trcSglnA strains) produced 12.7 g / L of proline at 195 g / L, fed-batch fermentation on flasks (KR 10-1750855 B1, M. Noh et al. , Cell Systems (2017), 5, 1-9).
이미 구축한 CDF-Tc 기반의 sRNA 라이브러리 중 프롤린 과생산에 적용 가능한 60개의 sRNA 라이브러리를 적용하여 플라스크 배양을 진행하였다. 플라스크 배양을 위하여 우선적으로 글리세롤 세포 스탁을 5 mL LB가 함유된 테스트 튜브에 접종하였고, 16시간 컬쳐 후, 플라스크에 계대배양 하였다. 플라스크 배양은 10 g/L glucose, 3 g/L (NH4)2SO4가 첨가된 50 mL의 R/2 배지(pH 6.8)를 함유하는 배플 플라스크에서 37°C, 200 rpm에서 24 시간동안 진행하였으며, R/2 배지는 1L당 다음의 성분들을 포함하고 있다: 6.75 g KH2PO4, 2 g (NH4)2HPO4, 0.8 g MgSO4·7H2O, 0.85 g citric acid, and 5 mL trace metal solution. The flask culture was carried out by applying 60 sRNA libraries applicable to proline overproduction among CDF-Tc based sRNA libraries already constructed. For flask culture, glycerol cell stock was preferentially inoculated into a test tube containing 5 mL LB, and cultured for 16 hours before passage to the flask. The flask culture was carried out for 24 hours at 37 ° C., 200 rpm in a baffle flask containing 50 mL of R / 2 medium (pH 6.8) added with 10 g / L glucose, 3 g / L (NH 4 ) 2 SO 4 . R / 2 medium contains the following components per liter: 6.75 g KH 2 PO 4 , 2 g (NH 4 ) 2 HPO 4 , 0.8 g MgSO 4 .7H 2 O, 0.85 g citric acid, and 5 mL trace metal solution.
플라스크 배양 결과, 도 7에 개시된 바와 같이 20% 이상 증산된 균주는 총 7종이었으며, 이 균주들에 해당하는 유전자 낙다운 타겟은 다음과 같다: serC, murE, aspC, metB, fadR, fur, chpA. 특히 fur이 낙다운된 균주는 기존 균주 대비 약 38.4% 정도 증가된 프롤린 생산능을 보여주었는데, 플라스크 상에서 최대 2.72 g/L까지 생산 가능한 것을 확인하였다(도 7). As a result of the flask culture, as shown in FIG. 7, a total of seven strains increased 20% or more, and the gene knockdown targets corresponding to these strains were as follows: serC, murE, aspC, metB, fadR, fur, and chpA. . In particular, the fur-down strain showed an increased proline production capacity of about 38.4% compared to the existing strain, confirming that it can produce up to 2.72 g / L on the flask (FIG. 7).
2) 다중 sRNA 플랫폼 2) multiple sRNA platform
합성조절 sRNA 플랫폼을 활용하여 프롤린을 더욱 증산시키고자, 호환 가능한 두 가지 합성조절 sRNA 플라스미드를 이용하여 동시 이중 낙다운을 통한 프롤린 증산을 관찰하였다. 프롤린이 20% 이상 증산된 결과를 보인 7개의 유전자 타겟들을 2개씩 조합하여 동시 이중 낙다운을 테스트하였고, 이들 균주들에 대한 플라스크 배양 결과는 도 8에 개시되어 있다. To further increase proline by utilizing a synthetic sRNA platform, we observed proline transpiration through simultaneous double knockdown using two compatible synthetic regulatory sRNA plasmids. Simultaneous double knockdown was tested by combining two of the seven gene targets showing proline 20% increase in yield, and flask culture results for these strains are shown in FIG. 8.
그 결과, fur-metB가 동시 낙다운된 균주가 플라스크 배양시 40.8% (2.90 g/L)의 프롤린 증산을 나타내는 것을 확인하였다(도 8). As a result, it was confirmed that the strain in which fur-metB was simultaneously knocked down showed proline transpiration of 40.8% (2.90 g / L) in flask culture (FIG. 8).
종합적으로 보면, 총 21개의 균주들 중 5개의 균주에서 기존 모균주 대비 30% 이상 증산된 결과를 관찰할 수 있었다. 언급된 다섯 가지 유전자 낙다운 조합은 다음과 같다: fur-murE, fur-metB, fur-fadR, chpA-fadR, fur-chpA. 이는 본래 모균주에 포함되어 있는 sRNA 플라스미드를 포함하여 총 세 개의 sRNA 플라스미드가 도입된 것으로써, 동시 다중 sRNA 낙다운 시스템을 통해 빠르고 쉽게 고효율 생산 균주를 제작할 수 있다는 점을 나타낸다Taken together, 5 out of a total of 21 strains were observed to be increased more than 30% compared to the existing parent strain. The five gene knockdown combinations mentioned are: fur-murE, fur-metB, fur-fadR, chpA-fadR, fur-chpA. This indicates that a total of three sRNA plasmids, including the sRNA plasmids originally contained in the parent strain, were introduced, and thus a high efficiency production strain can be produced quickly and easily through a simultaneous multiple sRNA knockdown system.
3.3. 합성조절 sRNA 플랫폼을 이용하여 증산된 프롤린 (L-proline) 생산 균주의 유가식 발효 공정 개발3.3. Development of a fed-batch fermentation process for the production of expanded proline (L-proline) strains using synthetic sRNA platform
1) 단일 sRNA 플랫폼1) single sRNA platform
프롤린 생성능이 크게 향상된 균주들을 대상으로 유가식 발효를 진행하였다. 먼저 발효 공정을 최적화하기 위해 단일 유전자 발현 억제를 통해 가장 높은 증산을 이루어낸 fur 낙다운 균주를 사용하였다. 먼저 기존에 보고된 프롤린 균주 발효 조건을 활용하여 유가식 발효를 진행하였다(KR 10-1750855 B1). The fed-batch fermentation was performed on strains with greatly improved proline production ability. In order to optimize the fermentation process, the fur drop down strain, which produced the highest transpiration by suppressing single gene expression, was used. First, the fed-batch fermentation was carried out using the previously reported proline strain fermentation conditions (KR 10-1750855 B1).
NMH26 p15PP3533 pKKtrcSargF-trcSglnA 균주(기존 특허 KR 10-1750855 B1에서의 프롤린 생산 균주)에 pCDFTc-fur 플라스미드(fur 낙다운을 위한 sRNA 벡터)가 삽입된 균주를 해당 항생제 (Km, Ap, Tc)가 함유된 5 mL LB가 들어있는 테스트 튜브에 접종한 후 37°C에서 16시간동안 배양하였다. 그 후, 10 g/L glucose, 3 g/L (NH4)2SO4가 첨가된 R/2 배지 (pH 6.8) 50 mL이 들어있는 배플 플라스크 2개에 OD600이 2에 도달할 때까지 계대 배양을 수행하였다. 이렇게 키운 균주 100 mL은 10 g/L glucose, 3 g/L (NH4)2SO4가 첨가된 1.9 L의 R/2 (pH 6.8) 배지가 들어있는 발효기에 접종하였다.NMH26 p15PP3533 pKKtrcSargF-trcSglnA strain (proline-producing strain in existing patent KR 10-1750855 B1) contains the corresponding antibiotic (Km, Ap, Tc) containing the pCDFTc-fur plasmid (sRNA vector for fur knockdown) Inoculated into a test tube containing 5 mL LB was incubated for 16 hours at 37 ° C. Subsequently, passage in two baffle flasks containing 50 mL of R / 2 medium (pH 6.8) with 10 g / L glucose and 3 g / L (NH 4 ) 2 SO 4 until OD600 reached 2 Cultivation was performed. 100 mL of this strain was inoculated into a fermentor containing 1.9 L of R / 2 (pH 6.8) medium supplemented with 10 g / L glucose and 3 g / L (NH 4 ) 2 SO 4 .
발효 시 28% (v/v) 암모니아 용액을 통하여 pH는 6.8로 고정하였고, DO (dissolved oxygen concentration)는 공기로 인한 포화도의 40%로 설정하였는데, 이 때 교반기의 속도와 발효기로 들어가는 공기 대 산소의 비율로써 DO를 일정하게 조절하였다. 또한, 유가식 발효에서의 feeding 용액은 pH-stat 전략에 따라 들어갔는데, 발효기 시스템 상 pH가 6.83 이상으로 올라갔을 시 일정량의 feeding 용액이 자동으로 유입되도록 설정하였다. 이 때 발효용 feeding 용액은 1 L당 다음의 성분들을 포함하고 있다: 650 g glucose, 85 g (NH4)2SO4, 8 g/L MgSO7H2O. 그 결과, 도 9-a에 개시된 바와 같이 발효기에 접종한 균주는 거의 자라지 못하고 성장을 멈추었다. 이번에는 flask와 발효 배지에 각각 1.6 g/L의 yeast extract를 첨가해주었는데, 균주의 성장이 다소 회복이 되긴 했지만 아직은 상대적으로 낮은 수준인 것을 확인하였다(도 9-b). 추가적으로 발효 배지에 3 g/L yeast extract를 추가하였고 fur이 낙다운 될 시 세포 내 금속 이온 관련 대사 회로가 제대로 작동하지 않을 수 있으므로 feeding 용액에 6 mL trace metal solution을 첨가하였다. During fermentation, the pH was fixed at 6.8 through 28% (v / v) ammonia solution and the dissolved oxygen concentration (DO) was set to 40% of air saturation, at which point the speed of the stirrer and air to oxygen entering the fermentor DO was constantly adjusted by the ratio of. In addition, the feeding solution in fed-batch fermentation was entered according to the pH-stat strategy. When the pH of the fermenter system rose above 6.83, a certain amount of feeding solution was set to be automatically introduced. At this time, the feeding solution for fermentation contains the following components per liter: 650 g glucose, 85 g (NH 4 ) 2 SO 4 , 8 g / L MgSO 4 · 7H 2 O. As a result, Fig. 9-a As disclosed in the strain fermented to the fermenter almost did not grow and stopped growing. This time, 1.6 g / L yeast extract was added to the flask and the fermentation medium, respectively. Although the growth of the strain was somewhat recovered, it was confirmed that the level is still relatively low (Fig. 9-b). In addition, 3 g / L yeast extract was added to the fermentation medium, and 6 mL trace metal solution was added to the feeding solution because the intracellular metal ion-related metabolic circuit could not work properly when the fur fell down.
그 결과, 도 9-c에 개시된 바와 같이 획기적으로 향상된 세포 생장을 관찰할 수 있었고, 프롤린의 농도 또한 51.6 g/L로 크게 증산되었다. 이는 기존에 보고된 프롤린 생산량 (33.8 g/L) 에 비교하여 52.7% 증산된 결과이다 (Noh et al., Cell Systems, 2017, KR 10-1750855 B1). As a result, as shown in Fig. 9-c it was possible to observe a significantly improved cell growth, the concentration of proline was also greatly increased to 51.6 g / L. This is a 52.7% increase in production compared to the previously reported proline production (33.8 g / L) (Noh et al., Cell Systems, 2017, KR 10-1750855 B1).
이렇게 최적화된 유가식 발효 조건에서 기존의 보고된 균주를 배양하였을 때도 기존에 보고된 농도와 비슷한 프롤린이 생산되는 것을 확인하였다(도 9-d). In this optimized fed-batch fermentation conditions, it was confirmed that even when the previously reported strain was cultured, proline similar to the previously reported concentration was produced (FIG. 9-d).
본 연구진은 최적화된 유가식 발효 조건에서 상기 실시예 3.2를 통하여 제작 프롤린 고생산능 균주들을 배양하고 프롤린 생산량을 측정하였다. 단일 낙다운 균주들 4종에 대하여 유가식 발효를 진행하였는데, 그 결과는 도 10-a의 NMH26 p15PP3533 pKKtrcSargF-trcSglnA pCDFTc-fur 균주 (51.6 g/L), 도 10-b의 NMH26 p15PP3533 pKKtrcSargF-trcSglnA pCDFTc-fadR 균주 (33.8 g/L), 도 10-c의 NMH26 p15PP3533 pKKtrcSargF-trcSglnA pCDFTc-aspC 균주 (41.4 g/L), 도 10-d의 NMH26 p15PP3533 pKKtrcSargF-trcSglnA pCDFTc-mazF 균주 (25.2 g/L) 와 같다. The researchers cultured the high-proline production strains produced in Example 3.2 under optimized fed-batch fermentation conditions and measured proline production. The fed-batch fermentation was performed on four single knockdown strains, and the result was NMH26 p15PP3533 pKKtrcSargF-trcSglnA pCDFTc-fur strain (51.6 g / L) of FIG. 10-a, and NMH26 p15PP3533 pKKtrcSargF-trcSglnA of FIG. 10-b. pCDFTc-fadR strain (33.8 g / L), NMH26 p15PP3533 pKKtrcSargF-trcSglnA pCDFTc-aspC strain (41.4 g / L) of FIGS. Same as L).
2) 이중 sRNA 플랫폼 2) dual sRNA platform
이중 낙다운 균주들에 대한 유가식 발효를 진행하였고, 그 결과는 도 11-a의 NMH26 p15PP3533 pKKtrcSargF-trcSglnA pCDFTc-fur pColASm-metB 균주 (55.3 g/L), 도 11-b의 NMH26 p15PP3533 pKKtrcSargF-trcSglnA pCDFTc-fur pColASm-murE 균주 (41.3 g/L), 도 11-c의 NMH26 p15PP3533 pKKtrcSargF-trcSglnA pCDFTc-chpA pColASm-fur 균주 (47.1 g/L), 도 11-d의 NMH26 p15PP3533 pKKtrcSargF-trcSglnA pCDFTc-chpA pColASm-fadR 균주 (38.6 g/L) 와 같다. The fed-batch fermentation was carried out on the double knockdown strains, and the result was NMH26 p15PP3533 pKKtrcSargF-trcSglnA pCDFTc-fur pColASm-metB strain (55.3 g / L) of FIG. 11-a, and NMH26 p15PP3533 pKKtrcSargF- of FIG. 11-b. trcSglnA pCDFTc-fur pColASm-murE strain (41.3 g / L), NMH26 p15PP3533 pKKtrcSargF-trcSglnA pCDFTc-chpA pColASm-fur strain (47.1 g / L) in FIGS. -chpA pColASm-fadR strain (38.6 g / L).
이 때 가장 프롤린 생산능이 좋은 균주는 NMH26 p15PP3533 pKKtrcSargF-trcSglnA pCDFTc-fur pColASm-metB 균주 (fur과 metB가 이중으로 낙다운 되어 있는 균주), 55.3 g/L의 높은 생산 농도, 1.053 g/L/h의 높은 생산능, 그리고 0.200 g proline/g glucose의 수율을 나타내었다. 생산 농도 면에서, 이는 기존에 보고된 프롤린 생산량 (33.8 g/L) 에 비교하여 63.6% 증산된 결과이다 (Noh et al., Cell Systems, 2017, KR 10-1750855 B1). 언급한 모든 균주들에 대한 유가식 발효들에 대한 결과를 하기 표 2에 정리하였다. The most proline-producing strain at this time was NMH26 p15PP3533 pKKtrcSargF-trcSglnA pCDFTc-fur pColASm-metB strain (strain with double knockdown of fur and metB), high production concentration of 55.3 g / L, 1.053 g / L / h High production capacity of, and yield of 0.200 g proline / g glucose. In terms of production concentration, this is a 63.6% increase in production compared to the previously reported proline production (33.8 g / L) (Noh et al., Cell Systems, 2017, KR 10-1750855 B1). The results for fed-batch fermentations for all mentioned strains are summarized in Table 2 below.
또한, 상기 프롤린 생산 균주들의 유가식 발효 과정 동안 exponential phase와 stationary phase 상태에 있는 세포들에 sRNA가 안정히 남아있는지 확인하기 위하여 colony PCR을 진행한 결과, 도 12에 개시된 바와 같이 모든 sRNA 벡터들이 안정적으로 유지된 것을 확인하였다.In addition, colony PCR was performed to confirm that sRNA remained stable in cells in the exponential and stationary phases during the fed-batch fermentation of the proline-producing strains. As shown in FIG. 12, all sRNA vectors were stably maintained. It was confirmed to be maintained.
상기 실시예를 통해 서술한 바와 같이, CDF-Tc와 ColA-Sm 플랫폼 상에 미리 구축해둔 합성 조절 sRNA 라이브러리를 활용하여 이미 대사공학적으로 개량된 균주에 대한 다중 낙다운 테스트를 손쉽고 빠르며 효과적으로 진행할 수 있었으며, 이렇게 구축된 균주는 유가식 발효에서도 매우 뛰어난 성능을 보임으로써 산업 균주로의 개발에 매우 큰 가능성을 보여주었다. 더욱이 기존 대사공학적 전략을 통하여 도입된 두 개의 합성 조절 sRNA와 새로이 도입된 두 개의 합성 조절 sRNA까지 총 네 개의 합성 조절 sRNA를 포함한 균주가 유가식 배양에서 매우 양호한 성장을 보이며 매우 높은 프롤린 생산능을 보여주었다는 점은 당업계에서도 매우 주목할 만 하며, 향후 산업 균주로의 활용성을 보여주는 단적인 예시라 할 수 있다.As described in the above examples, multiple knockdown tests for already metabolically modified strains could be easily, quickly and effectively carried out using the synthetic regulatory sRNA libraries previously built on CDF-Tc and ColA-Sm platforms. The strains thus constructed showed very good performance in fed-batch fermentation, showing great potential for development into industrial strains. Moreover, strains containing a total of four synthetic regulatory sRNAs, up to two synthetic regulatory sRNAs introduced through existing metabolic strategies and two newly introduced synthetic regulatory sRNAs, showed very good growth and very high proline production in fed-batch cultures. It is very noteworthy in the art, it can be seen as an example showing the utility as an industrial strain in the future.
Figure PCTKR2019007729-appb-T000002
Figure PCTKR2019007729-appb-T000002
실시예 4. 유전체 수준 sRNA 라이브러리의 플랫폼 이전 기술 및 이를 이용한 고속 스크리닝 기법Example 4 Platform Transfer of Genome-Level sRNA Libraries and Fast Screening Techniques Using the Same
합성조절 sRNA를 다양한 환경 및 다양한 생산균주에 적용하기 위해서 유전체 수준의 sRNA 발현 플랫폼을 다른 플랫폼으로 손쉽게 이전할 수 있는 방법을 개발하였다(도 13). 본 실시예에서는 ColE1 복제원점과 Ap 항생제 마커를 가지고 있는 플랫폼 플라스미드 (pWAS)로부터 본 발명에서 새로이 만든 ColA-Sm 플랫폼 플라스미드로 합성조절 sRNA 를 이전하는 것으로 예시로 사용하였다. 본 연구진은 기존 연구를 통하여 대장균 유전체 수준 합성 조절 sRNA 라이브러리 (1,858개의 타겟 유전자에 대한)를 구축한 바 있다 (D. Yang et al., Proc Natl Acad Sci USA (2018), 115(40): 9835-9844).In order to apply the synthetic regulatory sRNA to various environments and various production strains, a method for easily transferring the genome-level sRNA expression platform to another platform was developed (FIG. 13). In this example, a synthetic sRNA was transferred from a platform plasmid (pWAS) having a ColE1 origin of replication and an Ap antibiotic marker (pWAS) to a newly prepared ColA-Sm platform plasmid. We have established an E. coli genome-level synthetic regulatory sRNA library (for 1,858 target genes) (D. Yang et al., Proc Natl Acad Sci USA (2018), 115 (40): 9835). -9844).
본 전략은 깁슨 어셈블리를 이용한 것으로 ColA-Sm 플랫폼 플라스미드를 [서열번호36]와 [서열번호37] 프라이머를 이용하여 PCR 증폭하였다. sRNA 라이브러리의 각 개체끼리 비교하였을 때, 서로 다른 sRNA 벡터들 사이에는 mRNA target binding sequence 24 bp를 제외한 모든 다른 DNA 서열이 동일하므로, pWAS sRNA library를 템플릿으로 하여 [서열번호38] / [서열번호39] 프라이머를 이용하여 1,858개의 서로 다른 mRNA target binding sequence를 포함하고 있는 sRNA 조각들을 PCR 증폭시켰다. 그 후, sRNA 라이브러리 조각들과 ColA-Sm 조각이 gibson assembly를 통하여 원형 벡터로 합친 후, E. coli DH5α 균주에 형질 전환하였다. This strategy uses the Gibson assembly and PCR amplifies the ColA-Sm platform plasmid using the [SEQ ID NO: 36] and [SEQ ID NO: 37] primers. As compared to each individual in the sRNA library, all other DNA sequences except for the mRNA target binding sequence 24 bp are identical among the different sRNA vectors, so that the pWAS sRNA library is used as a template [SEQ ID NO 38] / [SEQ ID NO 39] The primers were used to PCR amplify sRNA fragments containing 1,858 different mRNA target binding sequences. Thereafter, the sRNA library fragments and the ColA-Sm fragments were combined into a circular vector through a gibson assembly, and then transformed into the E. coli DH5α strain.
이 때 1,858개의 모든 sRNA를 새로운 플랫폼에 수용하기 위하여 약 25,000개 (library 사이즈의 약 13.5배)의 콜로니를 얻을 때까지 반복 수행하였고, 얻어진 모든 콜로니를 섞은 후 maxiprep을 통하여 새로운 ColA-Sm 플랫폼 기반의 sRNA 라이브러리를 얻는데 성공하였다 (도 13). 이 때 유전체 수준 합성 조절 sRNA 라이브러리를 새로운 플랫폼으로 이전하는데 걸린 시간은 2일로, 이는 한정된 인력으로 새로이 유전체 수준 합성 조절 sRNA 라이브러리를 구축하게 된다면 걸리는 시간인 수 주 ~ 수 개월과 비교한다면 획기적으로 시간, 인력 및 자원을 절약할 수 있다는 점에서 주목할 만하다.In order to accommodate all 1,858 sRNAs on the new platform, it was repeated until about 25,000 colonies (approximately 13.5 times library size) were obtained. After mixing all the colonies, the maxiprep based on the new ColA-Sm platform was used. Successfully obtained sRNA library (FIG. 13). The time required to transfer the genome-level synthetic regulatory sRNA library to the new platform is two days, which is significantly longer than the weeks or months required to build a new genome-level synthetic regulatory sRNA library with limited manpower. It is noteworthy in that it saves manpower and resources.
Figure PCTKR2019007729-appb-I000020
Figure PCTKR2019007729-appb-I000020
실시예 5. 플랫폼 이전된 sRNA 라이브러리와 고속 스크리닝을 활용한 인디고 (indigo) 증산Example 5 Indigo Expansion Using Platform-Transferd sRNA Libraries and Fast Screening
실시예 4에서 구축한 sRNA 라이브러리를 인디고 생산 균주에 도입하여 증가된 생성능을 갖는 인디고 생산 균주를 선별하고자 하였다. 인디고는 Indigofera 계통의 식물에서 생산되는 천연 염료로써 청바지 등의 염색에 주로 사용되는 방향족 아미노산 계통의 화합물이다. 기존에는 자연 추출법을 통해 생산되며, 현재는 화학적 합성법에 의해 거의 모든 수요가 충당된다. The sRNA library constructed in Example 4 was introduced into indigo producing strains to select indigo producing strains with increased production capacity. Indigo is a natural dye produced by Indigofera plant and is an aromatic amino acid compound mainly used for dyeing jeans. Originally produced through natural extraction, almost all demand is now met by chemical synthesis.
기존에 보고된 인디고 생산 균주(IND5 - pTrc-TF1, pTac-GEL 균주)는 유가식 발효에서는 0.640 g/L의 농도 및 플라스크 수준에서는 0.108 g/L의 농도로 인디고를 생산하였다(J. Du et al., J Biotechnol., 2018, 267, 19-28). 기존에 보고된 인디고 생산 균주(IND5 - pTrc-TF1, pTac-GEL 균주)는 pWAS와 항생제 저항성 마커와 복제 원점이 동일한 벡터를 지니고 있어 바로 적용이 불가능하다. 또한, 콜로니가 푸른색을 띰으로써 손쉽게 생산능의 증감을 눈으로 확인할 수 있다는 장점을 지니고 있었다. 따라서 새로이 구축된 sRNA 라이브러리를 인디고 생산 균주에 도입하여 콜로니 스크리닝을 통하여 인디고 생산능이 향상된 개량 균주를 선별하였다. Previously reported indigo producing strains (IND5-pTrc-TF1, pTac-GEL strains) produced indigo at a concentration of 0.640 g / L in fed-batch fermentation and 0.108 g / L at the flask level (J. Du et. al., J Biotechnol., 2018, 267, 19-28). Previously reported indigo-producing strains (IND5-pTrc-TF1, pTac-GEL strains) are not immediately applicable because they have the same vector as the origin of replication and the pWAS and antibiotic resistance markers. In addition, the colony was blue color has the advantage that you can easily see the increase and decrease of production capacity. Therefore, a newly constructed sRNA library was introduced into an indigo producing strain to select an improved strain having improved indigo productivity through colony screening.
먼저 실시예 4에서 구축한 플랫폼의 (ColA-Sm) sRNA 라이브러리를 인디고 생산 균주에 형질전환시켰고, 약 20,000개 이상의 콜로니를 얻을 수 있었다. 이들 중 더욱 진한 색을 띄는 84종의 콜로니를 선별할 수 있었고, 선별된 균주들을 3 mL LB 배지에서 37°C 200rpm에서 16시간동안 pre-cultivation, 그리고 잇따른 3 mL의 10 g/L glucose가 첨가된 MR 배지 small scale cultivation을 통하여 30°C에서 48시간동안 250 RPM에서 배양하였다. 세포들의 OD600이 약 0.6-0.8이 되었을 때 1 mM IPTG로 외래 유전자 발현을 유도시켰다. 이 때, MR 배지는 기존 논문 (J. Du et al., J Biotechnol., 2018, 267, 19-28) 에서 보고된 바와 같은 조성의 MR 배지를 사용하였으며, MR 배지는 1L당 다음의 성분들을 포함하고 있다: 6.67 g of KH2PO4, 4 g of (NH4)2HPO4, 0.8 g of MgSO4·7H2O, 0.8 g of citric acid, 5 mL of trace metal solution. First, the (ColA-Sm) sRNA library of the platform constructed in Example 4 was transformed into an indigo producing strain, and about 20,000 or more colonies were obtained. Of these, 84 colonies of darker color were selected, and the selected strains were pre-cultivated for 16 hours at 37 ° C 200 rpm in 3 mL LB medium, followed by 3 mL of 10 g / L glucose. MR medium was incubated at 250 RPM for 48 hours at 30 ° C through small scale cultivation. When the OD600 of the cells reached about 0.6-0.8, foreign gene expression was induced with 1 mM IPTG. At this time, MR medium was used as the MR medium of the composition as reported in the previous paper (J. Du et al., J Biotechnol., 2018, 267, 19-28), MR medium was Contains: 6.67 g of KH 2 PO 4, 4 g of (NH 4 ) 2 HPO 4 , 0.8 g of MgSO 4 7H 2 O, 0.8 g of citric acid, 5 mL of trace metal solution.
배양 결과는 도 14에 개시된 바와 같으며, 이러한 초기 스크리닝을 통하여 최대 246% 증산된 균주를 선별할 수 있었다 (기존 균주 생산량인 33.3 mg/L 대비 81.9 mg/L까지 증산). 이 때, 가장 높은 인디고 생산능을 지닌 상위 9개의 균주들을 선정하여 10 g/L glucose가 첨가된 50 mL MR 배지에서 30°C, 200 rpm에서 72시간동안 배양을 수행한 다음, 세포들의 OD600이 약 0.6-0.8이 되었을 때 1 mM IPTG로 외래 유전자 발현을 유도시켰다.The culture results are as shown in Figure 14, through this initial screening was able to select up to 246% increased strain (81.9 mg / L compared to the existing strain production of 33.3 mg / L). At this time, the top 9 strains with the highest indigo production capacity were selected and incubated for 72 hours at 30 ° C and 200 rpm in 50 mL MR medium to which 10 g / L glucose was added. At about 0.6-0.8, foreign gene expression was induced with 1 mM IPTG.
그 결과, 도 15에 개시된 바와 같이 asnA 낙다운 균주에서 134.84 mg/L까지 인디고 생산량이 증가하는 것을 확인하였다.As a result, it was confirmed that the indigo yield increased to 134.84 mg / L in the asnA knockdown strain as disclosed in FIG. 15.
실시예 6. 플랫폼 이전된 sRNA 라이브러리와 고속 스크리닝을 활용한 비올라세인 (violacein) 증산Example 6. Violacein transpiration using platform transferred sRNA library and high speed screening
실시예 4에서 제작한 ColA-Sm 플랫폼으로 이전된 대장균 유전체 수준 sRNA 라이브러리를 다른 이차 대사 산물인 비올라세인에 적용하였다. 비올라세인(violacein)과 그 이성질체인 디옥시비올라세인(deoxyviolacein)은 항암 효과 등 많은 의학적 효능을 지니고 있으나, 그 동안 너무 낮은 생산량으로 인하여 연구의 동력이 부족한 실정이었다. 따라서 비올라세인과 디옥시비올라세인의 과량 생산을 통하여 위 문제를 해결하고자 하였다. The E. coli genome level sRNA library transferred to the ColA-Sm platform prepared in Example 4 was applied to another secondary metabolite, violacein. Violacein (violacein) and its isomer deoxyviolacein (deoxyviolacein) has many medical effects, such as anti-cancer effects, but the research has been lacking in power due to too low production. Therefore, we tried to solve the above problem through the excessive production of violacein and deoxybiolacein.
6.1. 플랫폼 이전된 sRNA 라이브러리와 고속 스크리닝을 활용한 비올라세인 (violacein) 증산6.1. Production of violacein using platform-shifted sRNA libraries and high-speed screening
비올라세인의 생산을 위해서는 vioABCDE의 다섯가지 유전자가 필요한데, 우선적으로 vioABDE를 포함하고 있는 iGEM fragment를 활용하기로 하였다 (Part BBa_K598019; MIT Registry of Standard Biological Parts). 본 플라스미드는 pSB1C3 (chloramphenicol 저항 항생제 마커, pUC 기반 복제원점)를 기반 벡터로 삼고 있다. 따라서 나머지 필요한 vioC 유전자를 pTac15K 벡터에 클로닝하고자 다음과 같은 방법을 사용하였다. 우선 Janthonobacterium lividum의 genomic DNA를 추출 후, 이를 템플릿으로 활용하여 [서열번호 40], [서열번호 41]를 프라이머로 사용하여 vioC DNA 조각을 증폭하였다. 그 후 EcoRI, KpnI site를 통해 vioC 조각을 Gibson assembly를 활용하여 삽입하였다. Five genes of vioABCDE are required for the production of viola sane. First of all, iGEM fragment containing vioABDE was used (Part BBa_K598019; MIT Registry of Standard Biological Parts). The plasmid is based on pSB1C3 (chloramphenicol resistant antibiotic marker, pUC-based replication origin). Therefore, the following method was used to clone the remaining necessary vioC gene into pTac15K vector. First, genomic DNA of Janthonobacterium lividum was extracted, and then amplified vioC DNA fragment using [SEQ ID NO 40] and [SEQ ID NO 41] as a primer. Then, vioC fragments were inserted through Gibson assembly through EcoRI and KpnI sites.
Figure PCTKR2019007729-appb-I000021
Figure PCTKR2019007729-appb-I000021
E. coli BL21 pSB1C3-vioABDE pTac15K-Jli-vioC 균주를 기반 균주로 활용하기로 하였고, 해당 균주에 실시예 4에서 제작한 ColA-Sm 기반 대장균 유전체 수준 sRNA 라이브러리를 형질전환한 후, 20,000개 이상의 콜로니를 얻었다. 이 후 향상된 비올라세인 생산능을 지닌 균주 선별 과정은 실시예 5와 동일하게 수행하였다. 보다 자세히는 이들 중 더욱 진한 보라색을 띄는 32종의 콜로니를 선별할 수 있었고, 선별된 균주들을 3 mL LB 배지에서 37°C 200rpm에서 16시간동안 pre-cultivation, 그리고 잇따른 3 mL의 10 g/L glucose가 첨가된 MR 배지 small scale cultivation을 통하여 30°C에서 48시간동안 250 RPM에서 배양하였다. E. coli BL21 pSB1C3-vioABDE pTac15K-Jli-vioC strain was used as the base strain, and the strain was transformed into the ColA-Sm-based E. coli genome level sRNA library prepared in Example 4, followed by more than 20,000 colonies. Got. Afterwards, the strain selection process with improved violacein production was carried out in the same manner as in Example 5. More specifically, 32 of the darker purple colonies could be selected, and the selected strains were pre-cultivated for 16 hours at 37 ° C 200 rpm in 3 mL LB medium, followed by 3 mL of 10 g / L. MR medium supplemented with glucose was incubated at 250 RPM for 48 hours at 30 ° C through small scale cultivation.
배양 결과는 도 16에 개시된 바와 같으며, 이러한 초기 스크리닝을 통하여 비올라세인이 최대 545%, 디옥시비올라세인이 최대 784% 증산된 균주를 선별할 수 있었다. 이 때, 가장 높은 비올라세인/디옥시비올라세인 생산능을 지닌 상위 12개의 균주들을 선정하여 10 g/L glucose가 첨가된 50 mL MR 배지에서 30°C, 200 rpm에서 48시간동안 배양한 다음, 세포들의 OD600이 약 0.6-0.8이 되었을 때 1 mM IPTG로 외래 유전자 발현을 유도하였다.The culture results are as shown in Figure 16, through this initial screening was able to select strains maximal 545% of viola sane, up to 784% deoxybiolasein. At this time, the top 12 strains with the highest violacein / deoxybiolacein production capacity were selected and incubated for 48 hours at 30 ° C and 200 rpm in 50 mL MR medium to which 10 g / L glucose was added. When the OD600 of the cells was about 0.6-0.8, foreign gene expression was induced with 1 mM IPTG.
그 결과, 도 17에 개시된 바와 같이 비올라세인 생산량이 가장 많이 증가한 균주는 ytfR 낙다운 균주였으며 0.656 g/L까지 증산된 비올라세인 생산능을 나타내었다(기반 균주 0.116 g/L 생산). 또한, 가장 높은 디옥시비올라세인 생산능을 보인 균주는 minD 낙다운 균주였으며 52.1 mg/L까지 증산된 디옥시비올라세인 생산능을 나타내었다(기반 균주 21.7 mg/L 생산). As a result, as shown in FIG. 17, the strain with the highest increase in violacein production was the ytfR knockdown strain, which showed increased violacein production capacity up to 0.656 g / L (based strain production of 0.116 g / L). In addition, the strain showing the highest deoxybiolacein production capacity was a minD knockdown strain and showed a deoxybiolacein production capacity increased to 52.1 mg / L (based strain 21.7 mg / L production).
6.2. 합성조절 sRNA 플랫폼을 이용하여 증산된 비올라세인 (violacein) 생산 균주의 유가식 발효 공정 개발6.2. Development of fed-batch fermentation process of violacein-producing strains cultivated using synthetic sRNA platform
비올라세인 생성능이 크게 향상된 균주들을 대상으로 유가식 발효를 진행하였다. 이 때 실시예 6.1에서 플라스크 배양 결과 비올라세인 생산능이 제일 좋았던 ytfR 낙다운 균주와 디옥시비올라세인 생산능이 제일 좋았던 minD 낙다운 균주에 대하여 각각 유가식 발효를 진행하고자 하였다. E. coli BL21 pSB1C3-vioABDE pTac15K-Jli-vioC 균주에 pColA-ytfR 플라스미드(ytfR 낙다운을 위한 sRNA 벡터)가 삽입된 균주와 E. coli BL21 pSB1C3-vioABDE pTac15K-Jli-vioC 균주에 pColA-minD 플라스미드(minD 낙다운을 위한 sRNA 벡터)가 삽입된 균주를 해당 항생제 (Cm, Km, Spc)가 함유된 5 mL LB가 들어있는 테스트 튜브에 접종한 후 30°C에서 16시간동안 배양하였다. 그 후, 20 g/L glucose, 3 g/L (NH4)2SO4가 첨가된 MR 배지 (pH 7.0) 50 mL이 들어있는 배플 플라스크 2개에 OD600이 4에 도달할 때까지 계대 배양을 수행하였다. 이렇게 키운 균주 100 mL은 20 g/L glucose, 3 g/L (NH4)2SO4가 첨가된 1.9 L의 MR (pH 7.0) 배지가 들어있는 발효기에 접종하였다.The fed-batch fermentation was carried out on strains with greatly improved violasane production ability. At this time, in the flask culture in Example 6.1, the ytfR knockdown strain having the best violacein production capacity and the minD knockdown strain having the best dioxybiolacein production ability were each subjected to fed-batch fermentation. PColA-ytfR plasmid (sRNA vector for ytfR knockdown) inserted into E. coli BL21 pSB1C3-vioABDE pTac15K-Jli-vioC strain and pColA-minD plasmid into E. coli BL21 pSB1C3-vioABDE pTac15K-Jli-vioC strain (sRNA vector for minD knockdown) was inoculated into a test tube containing 5 mL LB containing the corresponding antibiotics (Cm, Km, Spc) and incubated for 16 hours at 30 ° C. Subsequently, passages were performed in two baffle flasks containing 50 mL of MR medium (pH 7.0) added with 20 g / L glucose and 3 g / L (NH 4 ) 2 SO 4 until the OD600 reached 4. Was performed. 100 mL of this strain was inoculated into a fermentor containing 1.9 L of MR (pH 7.0) medium containing 20 g / L glucose and 3 g / L (NH 4 ) 2 SO 4 .
발효 시 28% (v/v) 암모니아 용액을 통하여 pH는 7.0로 고정하였고, DO (dissolved oxygen concentration)는 공기로 인한 포화도의 40%로 설정하였는데, 이 때 교반기의 속도와 발효기로 들어가는 공기 대 산소의 비율로써 DO를 일정하게 조절하였다. 또한, 유가식 발효에서의 feeding 용액은 pH-stat 전략에 따라 들어갔는데, 발효기 시스템 상 pH가 7.05 이상으로 올라갔을 시 일정량의 feeding 용액이 자동으로 유입되도록 설정하였다. 이 때 발효용 feeding 용액은 1 L당 다음의 성분들을 포함하고 있다: 650 g glucose, 85 g (NH4)2SO4, 8 g/L MgSO4·7H2O, 6 mL trace metal solution.During fermentation, the pH was fixed at 7.0 through 28% (v / v) ammonia solution and the DO (dissolved oxygen concentration) was set to 40% of air saturation, at which time the speed of the stirrer and the air to oxygen entering the fermentor DO was constantly adjusted by the ratio of. In addition, the feeding solution in fed-batch fermentation was entered according to the pH-stat strategy. When the pH of the fermenter system rose above 7.05, a certain amount of feeding solution was set to be automatically introduced. At this time, the feeding solution for fermentation contains the following components per liter: 650 g glucose, 85 g (NH 4 ) 2 SO 4 , 8 g / L MgSO 4 · 7H 2 O, 6 mL trace metal solution.
E. coli BL21 pSB1C3-vioABDE pTac15K-Jli-vioC 균주에 pColA-ytfR 플라스미드가 삽입된 균주의 유가식 발효 결과, 도 18-a에 개시된 바와 같이 1.80 g/L의 비올라세인과 0.55 g/L의 디옥시비올라세인이 생산되었다. 또한, E. coli BL21 pSB1C3-vioABDE pTac15K-Jli-vioC 균주에 pColA-minD 플라스미드가 삽입된 균주의 유가식 발효 결과, 도 18-b에 개시된 바와 같이 1.10 g/L의 비올라세인과 0.78 g/L의 디옥시비올라세인이 생산되었다.As a result of fed-batch fermentation of the strain in which the pColA-ytfR plasmid was inserted into the E. coli BL21 pSB1C3-vioABDE pTac15K-Jli-vioC strain, 1.80 g / L of violasane and 0.55 g / L of diol as shown in FIG. Oxyviolacein was produced. In addition, as a result of fed-batch fermentation of the strain in which the pColA-minD plasmid was inserted into the E. coli BL21 pSB1C3-vioABDE pTac15K-Jli-vioC strain, as described in Fig. 18-b, 0.78 g / L of 1.10 g / L of violacein Of deoxybiolacein was produced.
또한, 상기 비올라세인 생산 균주들의 유가식 발효 과정 동안 exponential phase와 stationary phase 상태에 있는 세포들에 sRNA가 안정히 남아있는지 확인하기 위하여 colony PCR을 진행한 결과, 도 18-c에 개시된 바와 같이 모든 sRNA 벡터들이 안정적으로 유지된 것을 확인하였다.In addition, colony PCR was performed to confirm that sRNA remained stable in cells in the exponential phase and stationary phase during the fed-batch fermentation of the violacein-producing strains. As shown in FIG. 18-C, all sRNA vectors were disclosed. It was confirmed that they remained stable.
상기 실시예에서 서술한 바와 같이, 매우 빠른 시일 내에 유전체 수준 합성 조절 sRNA 라이브러리를 새로운 플랫폼으로 이전할 수 있었으며, 이는 인디고와 비올라세인의 증산에 매우 효과적임이 증명되었다. 더욱이, 비올라세인 생산 균주의 경우, 스크리닝된 합성 조절 sRNA를 포함하고 있는 균주의 유가식 발효를 통하여 본 스크리닝 방법이 매우 효과적이라는 점이 증명되었으며, 기존 대사공학적 균주 개발법을 통하여 수 개월 ~ 수 년동안 실험을 수행하여 얻을 수 있는 비올라세인/디옥시비올라세인 생산 농도를 수 일만에 얻을 수 있었다는 점은 당업계에서는 가히 주목할 만하다.As described in the above examples, it was possible to transfer genome level synthetic regulatory sRNA libraries to new platforms in a very short time, which proved very effective in the production of indigo and violacein. Moreover, in the case of violasane producing strains, the screening method was proved to be very effective through fed-batch fermentation of strains containing the screened synthetic regulatory sRNA, and experimented for several months to several years through existing metabolic strain development methods. It is remarkable in the art that the violacein / deoxybiolacein production concentrations obtained by performing were obtained in a matter of days.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As described above in detail specific parts of the present invention, it will be apparent to those skilled in the art that these specific descriptions are merely preferred embodiments, and thus the scope of the present invention is not limited thereto. will be. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.
본 발명의 동시다중 표적유전자 발현억제 시스템은 기존의 유전자 결실방법과는 달리 타겟 유전자의 서열을 변형하지 않으면서 특정 유전자의 발현을 효과적으로 억제할 수 있는 합성조절 sRNA 기반 유전자 발현조절 시스템으로서, 다양한 벡터를 포함하여 원핵생물에서 활용 가능한 다른 플라스미드들과 호환성 있게 사용될 수 있고 동시다중 도입이 가능하도록 설계하여 빠르고 효율적인 재조합 미생물 제조에 유용하다. Simultaneous multiple target gene expression suppression system of the present invention, unlike the existing gene deletion method is a synthetic regulatory sRNA-based gene expression control system that can effectively suppress the expression of a specific gene without modifying the sequence of the target gene, a variety of vectors It can be used to be compatible with other plasmids available in prokaryotes, including, and designed to enable simultaneous multi-introduction is useful for fast and efficient recombinant microbial production.
본 발명에 따른 미생물 대사 흐름 조절을 통해 개발된 프롤린 또는 트레오닌 고효율 생산용 재조합 미생물은 축산용 사료 및 산업용제 미생물로 유용하다. 또한, 본 발명에서 개발한 대장균 유전체 수준의 합성조절 sRNA 라이브러리 이전 기술을 고속 스크리닝 기법과 접목함으로써 기존 기술에서는 불가능했던 획기적인 생산능 증가를 이룩하였다. 본 발명에 따른 인디고 또는 비올라세인 고효율 생산 균주 역시 의약품 및 산업용제 미생물로 매우 유용하다. 따라서, 본 발명은 산업적, 의학적으로 유용한 다양한 대사 산물의 효율적 생산을 위한 재조합 균주의 제작 및 효율적 생산 방법 확립에 사용할 수 있어 유용하다.Recombinant microorganisms for the production of high efficiency proline or threonine developed through microbial metabolic flow regulation according to the present invention is useful as animal feed and industrial microorganisms. In addition, by incorporating the E. coli genome-level synthetic regulatory sRNA library transfer technology with the high-speed screening technique, a dramatic increase in productivity was impossible. Indigo or violacein highly efficient production strains according to the invention are also very useful as pharmaceutical and industrial microorganisms. Therefore, the present invention is useful because it can be used for the production of recombinant strains for the efficient production of a variety of industrial and medically useful metabolites and to establish an efficient production method.
전자파일 첨부하였음.Electronic file attached.

Claims (29)

  1. 제1항생제 내성 유전자; 제1복제원점; 제1 표적유전자 발현을 억제하는 합성 sRNA 암호화 영역을 포함하는 제1벡터; 및 제n항생제 내성 유전자; 제m복제원점; 제p 표적유전자 발현을 억제하는 합성 sRNA 암호화영역을 포함하는 제q벡터;를 포함하는 원핵생물의 동시다중 표적유전자 발현억제 시스템이 숙주세포 도입되어 있는 재조합 미생물로, Antibiotic resistance genes; First replication origin; A first vector comprising a synthetic sRNA coding region that inhibits expression of a first target gene; And n antibiotic resistance genes; Mth replication origin; A recombinant microorganism into which a host multi-target gene expression suppression system is introduced, wherein the host vector is introduced, comprising: a q vector comprising a synthetic sRNA coding region that inhibits expression of the p target gene;
    상기 제1항생제 내성 유전자와 제n항생제 내성 유전자, 제1복제원점과 제m복제원점 및 제1표적 유전자와 제p표적 유전자는 서로 각각 상이하며, The first antibiotic resistance gene and the n antibiotic resistance gene, the first replication origin and the m replication origin and the first target gene and the p target gene are different from each other,
    n은 2 내지 50의 정수이고, m은 2 내지 10의 정수이며, q는 2 내지 500의 정수이고, p는 2 내지 20000의 정수이며, n is an integer from 2 to 50, m is an integer from 2 to 10, q is an integer from 2 to 500, p is an integer from 2 to 20000,
    상기 항생제는 앰피실린(ampicillin), 카나마이신(Kanamycin), 클로로암페니콜(chloramphenicol), 아프라마이신(apramycin), 스트렙토마이신(streptomycin), 스펙티도마이신(spectinomycin), 테트라사이클린(tetracyclin), 에리트로마이신(erythromycin), 네오마이신(neomycin), 페니실린(penicillin), 액시노마이신(actinomycin), 가베니실린(garbenicillin), 겐타미신(gentamicin), 블라스티시딘(blasticidin), 마이코페놀릭산(mycophenolic acid), 퓨로마이신(puromycin), 제오신(zeocin), 보렐리딘(borrelidin), 이오노마이신(ionomycin), 다우노루비신(daunorubicin), 독소루비신(doxorubicin), 이버멕틴(ivermectin), 에버멕틴(avermectin), 미트라마이신(mithramycin), 미토마이신(mitomycin), 나리딕식산(nalidixic acid), 노보비오신(novobiocin), 니스타틴(nystatin), 옥시테트라라시클린(oxytetracycline), 팩리택셀(paclitaxel), 폴리마이신(polymyxin), 리팜피신(rifampicin), 살리노마이신(salinomycin), 타일로신(tylosin), 발리노마이신(valinomycin), 밴코마이신(vancomycin), 빈블라스틴(vinblastine), 및 빈크리스틴(vincristine) 으로 구성된 군에서 선택되고,The antibiotics are ampicillin, kanamycin, kanamycin, chloroamphenicol, apramycin, streptomycin, specrepomycin, spectinomycin, tetracycline and erythromycin. Erythromycin, neomycin, penicillin, axinomycin, actinomycin, garbenicillin, gentamicin, blasticidin, mycophenolic acid ), Puromycin, zeocin, borelidin, borrelidin, ionomycin, daunorubicin, doxorubicin, doxorubicin, ivermectin, avermectin Mithramycin, mitomycin, mitomycin, nalidixic acid, novobiocin, nystatin, oxytetracycline, paclitaxel, polymycin (polymyxin), rifampicin in, salinomycin, tylosin, valinomycin, vancomycin, vinblastine, and vincristine, ,
    상기복제원점은 CloDF13(CDF), pBBR1, ColA, ColE1, pUC, pBR322, SC101, RSF1030(RSF), 및 RK2로 구성된 군에서 선택되며,The replication origin is selected from the group consisting of CloDF13 (CDF), pBBR1, ColA, ColE1, pUC, pBR322, SC101, RSF1030 (RSF), and RK2,
    상기 합성 sRNA 암호화 영역은 프로모터; MicC, SgrS 및 MicF 중 어느 하나의 sRNA 유래의 Hfq 결합 부위(Hfq binding site); 표적 유전자 mRNA와 상보적 결합을 형성하는 영역; 및 터미네이터를 포함하는 것을 특징으로 하는 The synthetic sRNA coding region comprises a promoter; Hfq binding site derived from sRNA of any of MicC, SgrS and MicF; A region forming complementary binding with a target gene mRNA; And a terminator
    동시다중 표적 유전자 발현 억제 시스템이 숙주세포에 도입되어 있는 재조합 미생물.A recombinant microorganism in which a simultaneous multiple target gene expression suppression system is introduced into a host cell.
  2. 다음의 단계를 포함하는 유용물질 생산균주의 개량방법:Method of improving strains of useful material production comprising the following steps:
    (a) 20~50bp 크기를 가지는 임의의 염기서열을 제조하는 단계;(A) preparing any base sequence having a size of 20 ~ 50bp;
    (b) 상기 염기서열을 제1항생제 내성 유전자; 제1복제원점; 제1 표적유전자 발현을 억제하는 합성 sRNA 암호화 영역을 포함하는 제1벡터의 표적유전자 mRNA와 상보적으로 결합하는 영역에 삽입하여 제1 sRNA 라이브러리를 포함하는 제1벡터 라이브러리를 제조하는 단계;(b) the nucleotide sequence of the first antibiotic resistance gene; First replication origin; Preparing a first vector library comprising a first sRNA library by inserting into a region complementarily binding to a target gene mRNA of a first vector comprising a synthetic sRNA coding region that inhibits expression of the first target gene;
    (c) 상기 제1벡터 라이브러리를 유용물질을 생산하고자 하는 대상 균주에 도입하여, 유용물질 생산량이 향상되는 경우, 발현이 억제된 유전자 후보군을 동정하여, 2 내지 500개의 발현억제 대상 유전자로 결정하는 단계;(c) introducing the first vector library into a target strain to produce a useful material and identifying a candidate group of genes whose expression is suppressed when the production of the useful material is improved, and determining 2 to 500 expression inhibitory genes. step;
    (d) 상기 결정된 2 내지 500개의 발현억제 대상 유전자를 제n항생제 내성 유전자; 제m복제원점; 상기 2 내지 500개의 발현억제 대상 유전자 발현을 억제하는 합성 sRNA 암호화영역을 포함하는 제q 벡터에 각각 삽입하는 단계; 및(d) the 2 to 500 expression inhibitory genes determined as the n antibiotic resistance genes; Mth replication origin; Inserting each of the q-vectors including the synthetic sRNA coding region that inhibits the expression of the 2 to 500 genes to inhibit expression; And
    (e) 상기 발현억제 대상 유전자를 포함하는 q개의 벡터가 도입된 재조합 균주를 제조하는 단계,(e) preparing a recombinant strain into which q vectors containing the expression inhibitory gene are introduced,
    여기서, here,
    상기 제1항생제 내성 유전자와 제n항생제 내성 유전자, 제1복제원점과 제m복제원점 및 제1표적유전자와 2 내지 500개의 발현억제 대상 유전자는 서로 각각 상이하며, The first antibiotic resistance gene and the n antibiotic resistance gene, the first replication origin and the m replication origin and the first target gene and 2 to 500 expression suppression genes are different from each other,
    n은 2 내지 50의 정수이고, m은 2 내지 10의 정수이며, q는 2 내지 500의 정수이고, q는 2 내지 500의 정수인 것을 특징으로 함.n is an integer from 2 to 50, m is an integer from 2 to 10, q is an integer from 2 to 500, q is an integer from 2 to 500.
  3. 제1항에 있어서, 상기 원핵생물은 대장균, 리조비움(Rhizobium), 비피도박테리움 (Bifidobacterium), 로도코커스 (Rhodococcus), 칸디다 (Candida), 에르위니아(Erwinia), 엔테로박터 (Enterobacter), 파스테렐라(Pasteurella), 맨하이미아 (Mannheimia), 액티노바실러스 (Actinobacillus), 아그레가티박터(Aggregatibacter), 잔토모나스(Xanthomonas), 비브리오(Vibrio), 슈도모나스(Pseudomonas), 아조토박터(Azotobacter), 애시네토박터(Acinetobacter), 랄스토니아(Ralstonia), 아그로박테리움(Agrobacterium), 로도박터(Rhodobacter), 자이모모나스(Zymomonas), 바실러스(Bacillus), 스테필로코커스(Staphylococcus), 락토코커스(Lactococcus), 스트렙토코커스(Streptococcus), 락토바실러스(Lactobacillus), 클로스트리디움(Clostridium), 코리네박테리움(Corynebacterium), 스트렙토마이세스(Streptomyces), 비피도박테리움(Bifidobacterium), 사이아노박테리움(cyanobacterium) 및 사이클로박테리움(Cyclobacterium)로 구성되는 군에서 선택되는 것을 특징으로 하는 동시다중 표적유전자 발현억제 시스템이 숙주세포에 도입되어 잇는 재조합 미생물.The method of claim 1, wherein the prokaryote is Escherichia coli, Rhizobium, Bifidobacterium, Rhodococcus, Candida, Erwinia, Enterobacter, Parfait. Pasteurella, Mannheimia, Actinobacillus, Aggregatibacter, Xanthomonas, Vibrio, Pseudomonas, Azotobacter , Acinetobacter, Ralstonia, Agrobacterium, Rhodobacter, Zymomonas, Bacillus, Staphylococcus, Lactococcus (Lactococcus), Streptococcus, Lactobacillus, Clostridium, Corynebacterium, Streptomyces, Bifidobacterium, Cyanobacterium (cyanobacte Recombinant microorganisms having a simultaneous multi-target gene expression suppression system introduced into the host cell, characterized in that selected from the group consisting of rium) and Cyclobacterium.
  4. 제1항에 있어서, 상기 프로모터는 tac, trc, T7, BAD, λPR 및 앤더슨 합성 프로모터로 구성된 군에서 선택되는 것을 특징으로 하는 동시다중 표적유전자 발현억제 시스템이 숙주세포에 도입되어 잇는 재조합 미생물.The recombinant microorganism of claim 1, wherein the promoter is selected from the group consisting of tac, trc, T7, BAD, λPR, and Anderson synthetic promoters.
  5. 제4항에 있어서, 상기 프로모터는 서열번호 7의 염기서열로 표시되는 것을 특징으로 하는 동시다중 표적유전자 발현억제 시스템이 숙주세포에 도입되어 잇는 재조합 미생물.5. The recombinant microorganism of claim 4, wherein the promoter is expressed by a nucleotide sequence of SEQ ID NO. 7.
  6. 제1항에 있어서, 상기 Hfq 결합부위는 서열번호 8의 염기서열로 표시되는 것을 특징으로 하는 동시다중 표적유전자 발현억제 시스템이 숙주세포에 도입되어 있는 재조합 미생물.The recombinant microorganism according to claim 1, wherein the Hfq binding site is represented by a nucleotide sequence of SEQ ID NO: 8.
  7. 제1항에 있어서, 상기 터미네이터는 서열번호 9의 염기서열로 표시되는 것을 특징으로 하는 동시다중 표적유전자 발현억제 시스템이 숙주세포에 도입되어 잇는 재조합 미생물.The recombinant microorganism of claim 1, wherein the terminator is represented by a nucleotide sequence of SEQ ID NO: 9. A multi-target gene expression suppression system is introduced into a host cell.
  8. 제1항에 있어서, 상기 표적유전자는 DsRed2, LuxR, AraC, KanR (kanamycin resistance gene), tyrR(tyrosine regulator), ppc (phosphoenolpyruvate carboxylase), csrA (carbon storage regulator), pgi (glucose-6-phosphate isomerase), glt (citrate synthase), accA (acetyl-CoA carboxyltransferase, alpha-subunit), accB (biotinylated biotin-carboxyl carrier protein), accC (acetyl-CoA carboxylase), accD (acetyl-CoA carboxyltransferase, beta-subunit), aceE (subunit of E1p component of pyruvate dehydrogenase complex), aceF (pyruvate dehydrogenase), ackA (propionate kinase / acetate kinase activity), adiY (AdiY is a positive DNA-binding transcriptional regulator that controls the arginine) decarboxylase (adi) system), argB (acetylglutamate kinase), argC (N-acetylglutamylphosphate reductase), argG (argininosuccinate synthase), argH (argininosuccinate lyase), asnC (transcriptional regulator that activates the expression of asnA, a gene involved in the synthesis of asparagine), aspA (aspartate ammonia-lyase), crp (CRP transcriptional dual regulator), csiD (predicted protein. CsiD is the product of a gene induced by carbon starvation), csiR (DNA-binding transcriptional repressor), cytR (transcription factor required for transport and utilization of ribonucleosides and deoxyribonucleosides), dcuA (The DcuA transporter is one of three transporters known to be responsible for the uptake of C4-dicarboxylates such as fumarate under anaerobic conditions), deoB (phosphopentomutase), deoC (deoxyribose-phosphate aldolase), deoR (The transcriptional repressor DeoR, for "Deoxyribose Regulator," is involved in the negative expression of genes related to transport and catabolism of deoxyribonucleoside nucleotides), fabH (KASIII, -ketoacyl-ACP synthases), fadD (fatty acyl-CoA synthetase), fadR (FadR Fatty acid degradation Regulon, is a multifunctional dual regulator that exerts negative control over the fatty acid degradative regulon [Simons80, Simons80a] and acetate metabolism), fbp (fructose-1,6-bisphosphatase), fnr (FNR is the primary transcriptional regulator that mediates the transition from aerobic to anaerobic growth), fruR (FruR is a dual transcriptional regulator that plays a pleiotropic role to modulate the direction of carbon flow through the different metabolic pathways of energy metabolism, but independently of the CRP regulator) , ftsL (essential cell division protein FtsL), ftsQ (essential cell division protein FtsQ), ftsW (essential cell division protein FtsW), ftsZ (essential cell division protein FtsZ), fur (Fur-Fe+2 DNA-binding transcriptional dual regulator), gabD (succinate semialdehyde dehydrogenase, NADP+-dependent), gabP (APC transporter), gabT (4-aminobutyrate aminotransferase), gadA (glutamate decarboxylase A subunit), gadB (glutamate decarboxylase B subunit), gadC (GABA APC transporter), glcC (GntR family transcriptional regulator, glc operon transcriptional activator), glpK (glycerol kinase), glpR (sn-Glycerol-3-phosphate repressor), glpX (fructose 1,6-bisphosphatase II), gltA (citrate synthase), hflD (lysogenization regulator), ihfA (IHF, Integration host factor, is a global regulatory protein), ihfB (IHF, Integration host factor, is a global regulatory protein), ilvB (acetohydroxybutanoate synthase/acetolactate synthase), ilvC (acetohydroxy acid isomeroreductase), ilvD (dihydroxy acid dehydratase), ilvG_1 (acetolactate synthase II, large subunit, N-ter fragment (pseudogene)), ilvG_2 (acetolactate synthase II, large subunit, C-ter fragment (pseudogene)), ilvH (acetolactate synthase/acetohydroxybutanoate synthase), ilvL (ilvGEDA operon leader peptide), ilvM (acetohydroxybutanoate synthase/acetolactate synthase), ilvN (acetohydroxybutanoate synthase / acetolactate synthase), ilvX (Predicted small protein), lexA (LexA represses the transcription of several genes involved in the cellular response to DNA damage), lpxC (UDP-3-O-acyl-N-acetylglucosamine deacetylase), marA (MarA participates in controlling several genes involved in resistance to antibiotics, oxidative stress, organic solvents and heavy metals.), metJ (MetJ transcriptional repressor), modE (ModE is the principal regulator that controls the transcription of operons involved in the transport of molybdenum and synthesis of molybdoenzymes and molybdate-related functions), nadB (L-aspartate oxidase), narL(nitrate/nitrite response regulator), pck (phosphoenolpyruvate carboxykinase), PdhR (PdhR, "pyruvate dehydrogenase complex regulator," regulates genes involved in the pyruvate dehydrogenase complex), phoP (PhoP-Phosphorylated DNA-binding transcriptional dual regulator. Member of the two-component regulatory system phoQ/phoP involved in adaptation to low Mg2+ environments and the control of acid resistance genes), pnuC (PnuC NMN transporter), ppsA (phosphoenolpyruvate synthetase), pta (Phosphate acetyltransferase), purA (adenylosuccinate synthetase), purB (adenylosuccinate lyase), purR (PurR Hypoxanthine DNA-binding transcriptional repressor. PurR dimer controls several genes involved in purine nucleotide biosynthesis and its own synthesis), puuE (4-aminobutyrate aminotransferase), rbsA (ribose ABC transporter), rbsB (ribose ABC transporter), rbsD (ribose pyranase), rbsK (ribokinase), rbsR (The transcription factor RbsR, for "Ribose Repressor," is negatively autoregulated and controls the transcription of the operon involved in ribose catabolism and transport), rcsB (RcsB-BglJ DNAbinding transcriptional activator. RcsB protein for "Regulator capsule synthesis B," is a response regulator that belongs to the multicomponent RcsF/RcsC/RcsD/RcsA-RcsB phosphorelay system and is involved in the regulation of the synthesis of colanic acid capsule, cell division, periplasmic proteins, motility, and a small RNA) , rutR (RutR regulates genes directly or indirectly involved in the complex pathway of pyrimidine metabolism), serA (alpha-ketoglutarate reductase / D-3-phosphoglycerate dehydrogenase), serC (phosphohydroxythreonine aminotransferase / 3-phosphoserine aminotransferase), soxS (dual transcriptional activator and participates in the removal of superoxide and nitric oxide), sroD (SroD small RNA), zwf (glucose 6-phosphate-1-dehydrogenase), asnA (asparagine synthetase A), asnB (asparagine synthetase B), carA (carbamoyl phosphate synthetase), carB (carbamoyl phosphate synthetase), ddlB (D-alanine-D-alanine ligase B), deoA (thymidine phosphorylase / uracil phosphorylase), deoD (purine nucleoside phosphorylase deoD-type), dpiA (dual transcriptional regulator involved in anaerobic citrate catabolism), fis (Fis, "factor for inversion stimulation", is a small DNA-binding and bending protein whose main role appears to be the organization and maintenance of nucleoid structure), gadE (GadE controls the transcription of genes involved in glutamate dependent system), gadW (GadW controls the transcription of genes involved in glutamate dependent system), gadX (GadX controls the transcription of genes involved in glutamate dependent system), glpF (GlpF glycerol MIP channel), ilvY (IlvY DNA-binding transcriptional dual regulator), ivbL (The ilvB operon leader peptide (IvbL)), lhgO (L-2-hydroxyglutarate oxidase), lpd (Lipoamide dehydrogenase), lrp (Lrp is a dual transcriptional regulator for at least 10% of the genes in Escherichia coli. These genes are involved in amino acid biosynthesis and catabolism, nutrient) transport, pili synthesis, and other cellular functions, including 1-carbon metabolism), metB (O-succinylhomoserine lyase / Osuccinylhomoserine(thiol)-lyase), metL (aspartate kinase / homoserine dehydrogenase), mraY (phospho-Nacetylmuramoyl-pentapeptide transferase), mraZ (Unknown function), murE (UDP-N-acetylmuramoylalanyl-Dglutamate 2,6-diaminopimelate ligase), murF (D-alanyl-D-alanine-adding enzyme), murG (Nacetylglucosaminyl transferase), nac (Nacregulates, without a coeffector, genes involved in nitrogen metabolism under nitrogen-limiting conditions), nadA (quinolinate synthase), nsrR (NsrR, the "nitritesensitive repressor" regulates genes involved in cell protection against nitric oxide (NO) ), panC (pantothenate synthetase), panD (Aspartate 1-decarboxylase), pgl (6-phosphogluconolactonase), pyrB (aspartate carbamoyltransferase, PyrB subunit), pyrC (dihydroorotase), pyrL (aspartate carbamoyltransferase, PyrI subunit), rob (Rob is a transcriptional dual regulator. Its N-terminal domain shares 49% identity with MarA and SoxS. These proteins activate a common set of about 50 target genes, the marA/soxS/rob regulon, involved in antibiotic resistance, superoxide resistance, and tolerance to organic solvents and heavy metals.) , rpe (ribulose phosphate 3-epimerase), talA (transaldolase A), thrA (aspartate kinase / homoserine dehydrogenase), thrB (homoserine kinase), thrC (threonine synthase), thrL (thr operon leader peptide), tktA (transketolase I), tktB (transketolase II), torR (two-component system, OmpR family, torCAD operon response regulator TorR), aroF (3-deoxy-D-arabino-heptulosonate-7-phosphate synthase, tyrosine-repressible), aroA (5-enolpyruvylshikimate-3-phosphate synthetase), aroC (Chorismate synthase), pheA (chorismate mutase and prephenate dehydratase, P-protein), trpD (fused glutamine amidotransferase (component II) of anthranilate synthase/anthranilate phosphoribosyl transferase), dapA (4-hydroxy-tetrahydrodipicolinate synthase), ilvE (Branched-chain-amino-acid aminotransferase), lysA (Diaminopimelate decarboxylase), gltA (cistrate synthase), fumA (Fumarate hydratase class I, aerobic), glnA (glutamine synthetase), mdh (malate dehydrogenase), gdhA (NADP-specific glutamate dehydrogenase), argA (amino acid N-acetyltransferase and inactive acetylglutamate kinase), metA (Homoserine O-succinyltransferase), tdh (L-threonine dehydrogenase), livJ (branched-chain amino acid ABC transporter periplasmic binding protein), rhtC (Threonine efflux protein), yohJ (UPF0299 membrane protein), chpA (antitoxin of the ChpA-ChpR toxin-antitoxin system), aspC (aspartate aminotransferase), pfkA (ATP-dependent 6-phosphofructokinase isozyme 1), parE (DNA topoisomerase 4 subunit B), ytfR (predicted sugar transporter subunit), ilvA (L-threonine dehydratase, biosynthetic; also known as threonine deaminase), ilvG(Acetolactate synthase), minD (inhibitor of FtsZ ring polymerization; chromosome-membrane tethering protein; membrane ATPase of the MinCDEE system), hisJ(histidine transport system substrate-binding protein), yneH(Glutaminase), napG(Ferredoxin-type protein NapG), kdsA(2-dehydro-3-deoxyphosphooctonate aldolase), ygfA(5-formyltetrahydrofolate cyclo-ligase), ftsI(cell division protein FtsI (penicillin-binding protein 3)), ostB(trehalose 6-phosphate phosphatase), hybG(hydrogenase expression/formation protein HypC), ampG(MFS transporter, PAT family, beta-lactamase induction signal transducer AmpG), potG(spermidine/putrescine transport system permease protein), caiF(transcriptional activator CaiF), yfbR(5'-deoxynucleotidase YfbR), rfe(UDP-GlcNAc:undecaprenyl-phosphate/decaprenyl-phosphate GlcNAc-1-phosphate transferase), atpH(F-type H+-transporting ATPase subunit delta), tiaE(glyoxylate/hydroxypyruvate/2-ketogluconate reductase) 및 murI(Glutamate racemase)로 구성된 군에서 선택되는 것을 특징으로 하는 동시다중 표적유전자 발현억제 시스템이 숙주세포에 도입되어 잇는 재조합 미생물.The method of claim 1, wherein the target gene is DsRed2, LuxR, AraC, KanR (kanamycin resistance gene), tyrR (tyrosine regulator), ppc (phosphoenolpyruvate carboxylase), csrA (carbon storage regulator), pgi (glucose-6-phosphate isomerase) ), glt (citrate synthase), accA (acetyl-CoA carboxyltransferase, alpha-subunit), accB (biotinylated biotin-carboxyl carrier protein), accC (acetyl-CoA carboxylase), accD (acetyl-CoA carboxyltransferase, beta-subunit), aceE (subunit of E1p component of pyruvate dehydrogenase complex), aceF (pyruvate dehydrogenase), ackA (propionate kinase / acetate kinase activity), adiY (AdiY is a positive DNA-binding transcriptional regulator that controls the arginine) decarboxylase (adi) system) , argB (acetylglutamate kinase), argC (N-acetylglutamylphosphate reductase), argG (argininosuccinate synthase), argH (argininosuccinate lyase), asnC (transcriptional regulator that activates the expression of asnA, a gene involved in the synthesis of asparagine), aspA ( aspartate ammonia-lyase), crp (CRP transcriptional dual regulator), and csiD (predicted protein. CsiD is the product of a gene induced by carbon starvation), csiR (DNA-binding transcriptional repressor), cytR (transcription factor required for transport and utilization of ribonucleosides and deoxyribonucleosides), dcuA (The DcuA transporter is one of three transporters known to be responsible for the uptake of C4-dicarboxylates such as fumarate under anaerobic conditions), deoB (phosphopentomutase), deoC (deoxyribose-phosphate aldolase), deoR (The transcriptional repressor DeoR, for "Deoxyribose Regulator," is involved in the negative expression of genes related to transport and catabolism of deoxyribonucleoside nucleotides, fabH (KASIII, -ketoacyl-ACP synthases), fadD (fatty acyl-CoA synthetase), fadR (FadR Fatty acid degradation Regulon, is a multifunctional dual regulator that exerts negative control over the fatty acid degradative regulon [Simons80, Simons80a] and acetate metabolism), fbp (fructose-1,6-bisphosphatase), fnr (FNR is the primary transcriptional regulator that me diates the transition from aerobic to anaerobic growth), fruR (FruR is a dual transcriptional regulator that plays a pleiotropic role to modulate the direction of carbon flow through the different metabolic pathways of energy metabolism, but independently of the CRP regulator), ftsL (essential cell division protein FtsL), ftsQ (essential cell division protein FtsQ), ftsW (essential cell division protein FtsW), ftsZ (essential cell division protein FtsZ), fur (Fur-Fe + 2 DNA-binding transcriptional dual regulator), gabD ( succinate semialdehyde dehydrogenase, NADP + -dependent), gabP (APC transporter), gabT (4-aminobutyrate aminotransferase), gadA (glutamate decarboxylase A subunit), gadB (glutamate decarboxylase B subunit), gadC (GABA APC transporter), glcC (GntR family transcriptional regulator, glc operon transcriptional activator, glpK (glycerol kinase), glpR (sn-Glycerol-3-phosphate repressor), glpX (fructose 1,6-bisphosphatase II), gltA (citrate synthase), hflD (lysogenization regula tor), ihfA (IHF, Integration host factor, is a global regulatory protein), ihfB (IHF, Integration host factor, is a global regulatory protein), ilvB (acetohydroxybutanoate synthase / acetolactate synthase), ilvC (acetohydroxy acid isomeroreductase), ilvD (dihydroxy acid dehydratase), ilvG_1 (acetolactate synthase II, large subunit, N-ter fragment (pseudogene)), ilvG_2 (acetolactate synthase II, large subunit, C-ter fragment (pseudogene)), ilvH (acetolactate synthase / acetohydroxybutanoate synthase) , ilvL (ilvGEDA operon leader peptide), ilvM (acetohydroxybutanoate synthase / acetolactate synthase), ilvN (acetohydroxybutanoate synthase / acetolactate synthase), ilvX (Predicted small protein), lexA (LexA represses the transcription of several genes involved in the cellular response to DNA damage), lpxC (UDP-3-O-acyl-N-acetylglucosamine deacetylase), marA (MarA participates in controlling several genes involved in resistance to antibiotics, oxidative stress, organic solvents and heavy metals.) , metJ (MetJ transcriptional repressor), modE (ModE is the principal regulator that controls the transcription of operons involved in the transport of molybdenum and synthesis of molybdoenzymes and molybdate-related functions), nadB (L-aspartate oxidase), narL (nitrate / nitrite response regulator), pck (phosphoenolpyruvate carboxykinase), PdhR (PdhR, "pyruvate dehydrogenase complex regulator," regulates genes involved in the pyruvate dehydrogenase complex), phoP (PhoP-Phosphorylated DNA-binding transcriptional dual regulator. Member of the two-component regulatory system phoQ / phoP involved in adaptation to low Mg2 + environments and the control of acid resistance genes), pnuC (PnuC NMN transporter), ppsA (phosphoenolpyruvate synthetase), pta (Phosphate acetyltransferase), purA (adenylosuccinate synthetase) ), purB (adenylosuccinate lyase), purR (PurR Hypoxanthine DNA-binding transcriptional repressor.PurR dimer controls several genes involved in purine nucleotide biosynthesis and its own synthesis), puuE (4-aminobutyrate aminotransferase), rbsA (ribose ABC transporter), rbsB (ribose ABC transporter), rbsD (ribose pyranase), rbsK (ribokinase), rbsR (The transcription factor RbsR, for "Ribose Repressor," is negatively autoregulated and controls the transcription of the operon involved in ribose catabolism and transport), rcsB ( RcsB-BglJ DNAbinding transcriptional activator.RcsB protein for "Regulator capsule synthesis B," is a response regulator that belongs to the multicomponent RcsF / RcsC / RcsD / RcsA-RcsB phosp horelay system and is involved in the regulation of the synthesis of colanic acid capsule, cell division, periplasmic proteins, motility, and a small RNA), rutR (RutR regulates genes directly or indirectly involved in the complex pathway of pyrimidine metabolism), serA ( alpha-ketoglutarate reductase / D-3-phosphoglycerate dehydrogenase), serC (phosphohydroxythreonine aminotransferase / 3-phosphoserine aminotransferase), soxS (dual transcriptional activator and participates in the removal of superoxide and nitric oxide), sroD (SroD small RNA), zwf ( glucose 6-phosphate-1-dehydrogenase), asnA (asparagine synthetase A), asnB (asparagine synthetase B), carA (carbamoyl phosphate synthetase), carB (carbamoyl phosphate synthetase), ddlB (D-alanine-D-alanine ligase B) , deoA (thymidine phosphorylase / uracil phosphorylase), deoD (purine nucleoside phosphorylase deoD-type), dpiA (dual transcriptional regulator involved in anaerobic citrate catabolism), fis (Fis, "factor for inversion stimulation ", is a small DNA-binding and bending protein whose main role appears to be the organization and maintenance of nucleoid structure), gadE (GadE controls the transcription of genes involved in glutamate dependent system), gadW (GadW controls the transcription of genes involved in glutamate dependent system), gadX (GadX controls the transcription of genes involved in glutamate dependent system), glpF (GlpF glycerol MIP channel), ilvY (IlvY DNA-binding transcriptional dual regulator), ivbL (The ilvB operon leader peptide (IvbL) ), lhgO (L-2-hydroxyglutarate oxidase), lpd (Lipoamide dehydrogenase), lrp (Lrp is a dual transcriptional regulator for at least 10% of the genes in Escherichia coli. These genes are involved in amino acid biosynthesis and catabolism, nutrient) transport, pili synthesis, and other cellular functions, including 1-carbon metabolism), metB (O-succinylhomoserine lyase / Osuccinylhomoserine (thiol) -lyase), metL (aspartate kinase / homoserine dehydrogenase), mraY (phospho-Nacetylmuramoyl-pentapeptide transferase), mraZ (Unknown function), murE (UDP-N-acetylmuramoylalanyl-Dglutamate 2,6-diaminopimelate ligase), murF (D-alanyl-D-alanine-adding enzyme) , murG (Nacetylglucosaminyl transferase), nac (Nacregulates, without a coeffector, genes involved in nitrogen metabolism under nitrogen-limiting conditions), nadA (quinolinate synthase), nsrR (NsrR, the "nitritesensitive repressor" regulates genes involved in cell protection against nitric oxide (NO)), panC (pantothenate synthetase), panD (Aspartate 1-decarboxylase), pgl (6-phosphogluconolactonase), pyrB (aspartate carbamoyltransferase, PyrB subunit), pyrC (dihydroorotase), pyrL (aspartate carbamoyltransferase, PyrI subunit), rob (Rob is a transcriptional dual regulator. Its N-terminal domain shares 49% identity with MarA and SoxS. These proteins activate a common set of about 50 target genes, the marA / soxS / rob regulon, involved in antibiotic resistance, superoxide resistance, and tolerance to organic solvents and heavy metals.), Rpe (ribulose phosphate 3-epimerase), talA ( transaldolase A), thrA (aspartate kinase / homoserine dehydrogenase), thrB (homoserine kinase), thrC (threonine synthase), thrL (thr operon leader peptide), tthrA (transketolase I), tktB (transketolase II), torR (two-component system, OmpR family, torCAD operon response regulator TorR), aroF (3-deoxy-D-arabino-heptulosonate-7-phosphate synthase, tyrosine-repressible), aroA (5-enolpyruvylshikimate-3-phosphate synthetase), aroC (Chorismate synthase ), pheA (chorismate mutase and prephenate dehydratase, P-protein), trpD (fused glutamine amidotransferase (component II) of anthranilate synthase / anthranilate phosphoribosyl transferase), dapA (4-hydroxy-tetrahydrodipicolinate synthase), ilvE (Branched-chain-amino -acid aminotransferase), lysA (Diaminopi melate decarboxylase), gltA (cistrate synthase), fumA (Fumarate hydratase class I, aerobic), glnA (glutamine synthetase), mdh (malate dehydrogenase), gdhA (NADP-specific glutamate dehydrogenase), argA (amino acid N-acetyltransferase and inactive acetylglutamate kinase, metA (Homoserine O-succinyltransferase), tdh (L-threonine dehydrogenase), livJ (branched-chain amino acid ABC transporter periplasmic binding protein), rhtC (Threonine efflux protein), yohJ (UPF0299 membrane protein), chpA ( antitoxin of the ChpA-ChpR toxin-antitoxin system), aspC (aspartate aminotransferase), pfkA (ATP-dependent 6-phosphofructokinase isozyme 1), parE (DNA topoisomerase 4 subunit B), ytfR (predicted sugar transporter subunit), ilvA (L -threonine dehydratase, biosynthetic; also known as threonine deaminase, ilvG (Acetolactate synthase), minD (inhibitor of FtsZ ring polymerization; chromosome-membrane tethering protein; membrane ATPase of the MinCDEE system), hisJ (histidine transport system substrate-binding protein), yneH (Glutaminase) , ferpedoxin-type protein NapG (napG), 2-dehydro-3-deoxyphosphooctonate aldolase (kdsA), ygfA (5-formyltetrahydrofolate cyclo-ligase), cell division protein FtsI (penicillin-binding protein 3) ftsI, trehalose 6-phosphate phosphatase, hybG (hydrogenase expression / formation protein HypC), ampG (MFS transporter, PAT family, beta-lactamase induction signal transducer AmpG), potG (spermidine / putrescine transport system permease protein), caiF (transcriptional activator CaiF) , yfbR (5'-deoxynucleotidase YfbR), rfe (UDP-GlcNAc: undecaprenyl-phosphate / decaprenyl-phosphate GlcNAc-1-phosphate transferase), atpH (F-type H + -transporting ATPase subunit delta), tiaE (glyoxylate / hydroxypyruvate 2-ketogluconate reductase) and murI (glutamate rac) E. coli is a recombinant microorganism which is introduced into the host cell is a simultaneous multiple target gene expression suppression system, characterized in that selected from the group consisting of.
  9. 제8항에 있어서, 상기 표적유전자는 zwf (glucose 6-phosphate-1-dehydrogenase), tktA (transketolase I), tktB (transketolase II), pgi (glucose-6-phosphate isomerase, fbp (fructose-1,6-bisphosphatase), serC (phosphohydroxythreonine aminotransferase / 3-phosphoserine aminotransferase), murE (UDP-N-acetylmuramoylalanyl-Dglutamate 2,6-diaminopimelate ligase), pps (phosphoenolpyruvate synthetase), aceE (subunit of E1p component of pyruvate dehydrogenase complex), pta (Phosphate acetyltransferase), purA (adenylosuccinate synthetase), ackA (propionate kinase / acetate kinase activity), pck (phosphoenolpyruvate carboxykinase), ppc (phosphoenolpyruvate carboxylase), accA (acetyl-CoA carboxyltransferase, alpha-subunit), fadD (fatty acyl-CoA synthetase), fabH (KASIII, -ketoacyl-ACP synthases), aspA (aspartate ammonia-lyase), carB (carbamoyl phosphate synthetase), ilvH (acetolactate synthase/acetohydroxybutanoate synthase), ilvM (acetohydroxybutanoate synthase/acetolactate synthase), ilvN (acetohydroxybutanoate synthase / acetolactate synthase), ilvC (acetohydroxy acid isomeroreductase), asnA (asparagine synthetase A), asnB (asparagine synthetase B), argH (argininosuccinate lyase), deoA (thymidine phosphorylase / uracil phosphorylase), thrA (aspartate kinase / homoserine dehydrogenase), metB (O-succinylhomoserine lyase / Osuccinylhomoserine(thiol)-lyase), metA, tdh, ilvL (ilvGEDA operon leader peptide), crp (CRP transcriptional dual regulator), fadR (FadR Fatty acid degradation Regulon, is a multifunctional dual regulator that exerts negative control over the fatty acid degradative regulon [Simons80, Simons80a] and acetate metabolism), fur (Fur-Fe+2 DNA-binding transcriptional dual regulator), lrp (Lrp is a dual transcriptional regulator for at least 10% of the genes in Escherichia coli. These genes are involved in amino acid biosynthesis and catabolism, nutrient) transport, pili synthesis, and other cellular functions, including 1-carbon metabolism), gltA (citrate synthase), pdhR (PdhR, "pyruvate dehydrogenase complex regulator," regulates genes involved in the pyruvate dehydrogenase complex), tyrR(tyrosine regulator), csrA (carbon storage regulator), lexA (LexA represses the transcription of several genes involved in the cellular response to DNA damage), aroF (3-deoxy-D-arabino-heptulosonate-7-phosphate synthase, tyrosine-repressible), aroA (5-enolpyruvylshikimate-3-phosphate synthetase), aroC (Chorismate synthase), pheA (chorismate mutase and prephenate dehydratase, P-protein), trpD (fused glutamine amidotransferase (component II) of anthranilate synthase/anthranilate phosphoribosyl transferase), dapA (4-hydroxy-tetrahydrodipicolinate synthase), ilvE (Branched-chain-amino-acid aminotransferase), lysA (Diaminopimelate decarboxylase), gltA (cistrate synthase), fumA (Fumarate hydratase class I, aerobic), glnA (glutamine synthetase), mdh (malate dehydrogenase), gdhA (NADP-specific glutamate dehydrogenase), argA (amino acid N-acetyltransferase and inactive acetylglutamate kinase), metA (Homoserine O-succinyltransferase), tdh (L-threonine dehydrogenase), livJ (branched-chain amino acid ABC transporter periplasmic binding protein), rhtC (Threonine efflux protein), yohJ (UPF0299 membrane protein), chpA (antitoxin of the ChpA-ChpR toxin-antitoxin system), aspC (aspartate aminotransferase), pfkA (ATP-dependent 6-phosphofructokinase isozyme 1), parE (DNA topoisomerase 4 subunit B), ytfR (predicted sugar transporter subunit), ilvA (L-threonine dehydratase, biosynthetic; also known as threonine deaminase), ilvG(Acetolactate synthase), minD (inhibitor of FtsZ ring polymerization; chromosome-membrane tethering protein; membrane ATPase of the MinCDEE system), hisJ(histidine transport system substrate-binding protein), yneH(Glutaminase), napG(Ferredoxin-type protein NapG), kdsA(2-dehydro-3-deoxyphosphooctonate aldolase), ygfA(5-formyltetrahydrofolate cyclo-ligase), ftsI(cell division protein FtsI (penicillin-binding protein 3)), ostB(trehalose 6-phosphate phosphatase), hybG(hydrogenase expression/formation protein HypC), ampG(MFS transporter, PAT family, beta-lactamase induction signal transducer AmpG), potG(spermidine/putrescine transport system permease protein), caiF(transcriptional activator CaiF), yfbR(5'-deoxynucleotidase YfbR), rfe(UDP-GlcNAc:undecaprenyl-phosphate/decaprenyl-phosphate GlcNAc-1-phosphate transferase), atpH(F-type H+-transporting ATPase subunit delta), tiaE(glyoxylate/hydroxypyruvate/2-ketogluconate reductase) 및 murI(Glutamate racemase)로 구성된 군에서 선택되는 것을 특징으로 하는 동시다중 표적유전자 발현억제 시스템이 숙주세포에 도입되어 잇는 재조합 미생물.The method of claim 8, wherein the target gene is zwf (glucose 6-phosphate-1-dehydrogenase), tktA (transketolase I), tktB (transketolase II), pgi (glucose-6-phosphate isomerase, fbp (fructose-1,6) -bisphosphatase), serC (phosphohydroxythreonine aminotransferase / 3-phosphoserine aminotransferase), murE (UDP-N-acetylmuramoylalanyl-Dglutamate 2,6-diaminopimelate ligase), pps (phosphoenolpyruvate synthetase), aceE (subunit of E1p component of pyruvate) pta (Phosphate acetyltransferase), purA (adenylosuccinate synthetase), ackA (propionate kinase / acetate kinase activity), pck (phosphoenolpyruvate carboxykinase), ppc (phosphoenolpyruvate carboxylase), accA (acetyl-CoA carboxyltransunitty -CoA synthetase), fabH (KASIII, -ketoacyl-ACP synthases), aspA (aspartate ammonia-lyase), carB (carbamoyl phosphate synthetase), ilvH (acetolactate synthase / acetohydroxybutanoate synthase), ilvM (acetohydroxyaceanotolacase synthase synthase N (acetohydroxybutanoate synthase / acetolactate synthase), ilvC (acetohydroxy acid isomeroreductase), asnA (asparagine synthetase A), asnB (asparagine synthetase B), argH (argininosuccinate lyase), deoA (thymidine phosphorylase / part, uracil kinase homoserine dehydrogenase), metB (O-succinylhomoserine lyase / Osuccinylhomoserine (thiol) -lyase), metA, tdh, ilvL (ilvGEDA operon leader peptide), crp (CRP transcriptional dual regulator), fadR (FadR Fatty acid degradation Regulon, is a multifunctional dual regulator that exerts negative control over the fatty acid degradative regulon [Simons80, Simons80a] and acetate metabolism), fur (Fur-Fe + 2 DNA-binding transcriptional dual regulator), lrp (Lrp is a dual transcriptional regulator for at least 10% of the genes in Escherichia coli. These genes are involved in amino acid biosynthesis and catabolism, nutrient) transport, pili synthesis, and other cellular functions, including 1-carbon metabolism), gltA (citrate synthase), pdhR (PdhR, "pyruvate dehydrogenase complex regulator," regulates genes involved in the pyruvate dehydrogenase complex, tyrR (tyrosine regulator), csrA (carbon storage regulator), lexA (LexA represses the transcription of several genes involved in the cellular response to DNA damage), aroF (3-deoxy-D-arabino-heptulosonate -7-phosphate synthase, tyrosine-repressible), aroA (5-enolpyruvylshikimate-3-phosphate synthetase), aroC (Chorismate synthase), pheA (chorismate mutase and prephenate dehydratase, P-protein), trpD (fused glutamine amidotransferase (component II ) of anthranilate synthase / anthranilate phosphoribosyl transferase), dapA (4-hydroxy-tetrahydrodipicolinate synthase), ilvE (Branched-chain-amino-acid aminotransferase), lysA (Diaminopimelate decarboxylase), gltA (cistrate synthase), fumA (F umarate hydratase class I, aerobic), glnA (glutamine synthetase), mdh (malate dehydrogenase), gdhA (NADP-specific glutamate dehydrogenase), argA (amino acid N-acetyltransferase and inactive acetylglutamate kinase), metA (Homoserine O-succinyltransase) tdh (L-threonine dehydrogenase), livJ (branched-chain amino acid ABC transporter periplasmic binding protein), rhtC (Threonine efflux protein), yohJ (UPF0299 membrane protein), chpA (antitoxin of the ChpA-ChpR toxin-antitoxin system), aspate (aspartate aminotransferase), pfkA (ATP-dependent 6-phosphofructokinase isozyme 1), parE (DNA topoisomerase 4 subunit B), ytfR (predicted sugar transporter subunit), ilvA (L-threonine dehydratase, biosynthetic; also known as threonine deaminase, ilvG (Acetolactate synthase), minD (inhibitor of FtsZ ring polymerization; chromosome-membrane tethering protein; membrane ATPase of the MinCDEE system), hisJ (histidine transport system substrate-binding protein), yneH (Glutaminase) , ferpedoxin-type protein NapG (napG), 2-dehydro-3-deoxyphosphooctonate aldolase (kdsA), ygfA (5-formyltetrahydrofolate cyclo-ligase), cell division protein FtsI (penicillin-binding protein 3) ftsI, trehalose 6-phosphate phosphatase, hybG (hydrogenase expression / formation protein HypC), ampG (MFS transporter, PAT family, beta-lactamase induction signal transducer AmpG), potG (spermidine / putrescine transport system permease protein), caiF (transcriptional activator CaiF) , yfbR (5'-deoxynucleotidase YfbR), rfe (UDP-GlcNAc: undecaprenyl-phosphate / decaprenyl-phosphate GlcNAc-1-phosphate transferase), atpH (F-type H + -transporting ATPase subunit delta), tiaE (glyoxylate / hydroxypyruvate 2-ketogluconate reductase) and murI (glutamate rac) E. coli is a recombinant microorganism in which a simultaneous multiple target gene expression suppression system is introduced into a host cell.
  10. 제1항 및 제3항 내지 제9항 중 어느 한 항의 동시다중 표적유전자 발현억제 시스템이 숙주세포에 도입되어 있는 재조합 미생물을 배양하는 단계; 및 제1 및 제p 표적유전자의 mRNA 발현을 억제하는 단계를 포함하는 표적유전자의 동시다중 발현억제 방법.Culturing a recombinant microorganism having the simultaneous multiple target gene expression suppression system of any one of claims 1 and 3 to 9 introduced into a host cell; And inhibiting mRNA expression of the first and p target genes.
  11. 트레오닌(Threonine) 생합성 경로를 가지는 숙주세포에, In a host cell having a threonine biosynthetic pathway,
    제1항생제 내성 유전자; 제1복제원점; 제1 표적유전자 발현을 억제하는 합성 sRNA 암호화 영역을 포함하는 제1벡터; 및 제n항생제 내성 유전자; 제m복제원점; 제p 표적유전자 발현을 억제하는 합성 sRNA 암호화영역을 포함하는 제q벡터;를 포함하는 원핵생물의 동시다중 표적유전자 발현억제 시스템이 도입되어 있는 재조합 미생물로,Antibiotic resistance genes; First replication origin; A first vector comprising a synthetic sRNA coding region that inhibits expression of a first target gene; And n antibiotic resistance genes; Mth replication origin; A recombinant microorganism into which a simultaneous multi-target gene expression suppression system of a prokaryote is introduced, comprising: a q vector comprising a synthetic sRNA coding region that inhibits p-target gene expression;
    상기 제1항생제 내성 유전자와 제n항생제 내성 유전자, 제1복제원점과 제m복제원점 및 제1표적유전자와 제p표적유전자는 서로 각각 상이하며, The first antibiotic resistance gene and the n antibiotic resistance gene, the first replication origin and the m replication origin, and the first target gene and the p target gene are different from each other,
    n은 2 내지 50의 정수이고, m은 2 내지 10의 정수이며, q는 2 내지 500의 정수이고, p는 2 내지 20000의 정수이며,n is an integer from 2 to 50, m is an integer from 2 to 10, q is an integer from 2 to 500, p is an integer from 2 to 20000,
    상기 항생제는앰피실린(ampicillin), 카나마이신(Kanamycin), 클로로암페니콜(chloramphenicol), 아프라마이신(apramycin), 스트렙토마이신(streptomycin), 스펙티도마이신(spectinomycin), 테트라사이클린(tetracyclin), 에리트로마이신(erythromycin), 네오마이신(neomycin), 페니실린(penicillin), 액시노마이신(actinomycin), 가베니실린(garbenicillin), 겐타미신(gentamicin), 블라스티시딘(blasticidin), 마이코페놀릭산(mycophenolic acid), 퓨로마이신(puromycin), 제오신(zeocin), 보렐리딘(borrelidin), 이오노마이신(ionomycin), 다우노루비신(daunorubicin), 독소루비신(doxorubicin), 이버멕틴(ivermectin), 에버멕틴(avermectin), 미트라마이신(mithramycin), 미토마이신(mitomycin), 나리딕식산(nalidixic acid), 노보비오신(novobiocin), 니스타틴(nystatin), 옥시테트라라시클린(oxytetracycline), 팩리택셀(paclitaxel), 폴리마이신(polymyxin), 리팜피신(rifampicin), 살리노마이신(salinomycin), 타일로신(tylosin), 발리노마이신(valinomycin), 밴코마이신(vancomycin), 빈블라스틴(vinblastine), 및 빈크리스틴(vincristine) 으로 구성된 군에서 선택되고,The antibiotics are ampicillin, kanamycin, kanampycin, chloramphenicol, apramycin, streptomycin, spectiomycin, tetracycline, tetracycline and erythromycin. Erythromycin, neomycin, penicillin, axinomycin, actinomycin, garbenicillin, gentamicin, blasticidin, mycophenolic acid ), Puromycin, zeocin, borelidin, borrelidin, ionomycin, daunorubicin, doxorubicin, doxorubicin, ivermectin, avermectin Mithramycin, mitomycin, mitomycin, nalidixic acid, novobiocin, nystatin, oxytetracycline, paclitaxel, polymycin (polymyxin), rifampicin n), salinomycin, tylosin, valinomycin, vancomycin, vinblastine, and vincristine; ,
    상기 복제원점은 CloDF13(CDF), pBBR1, ColA, ColE1, pUC, pBR322, SC101, RSF1030(RSF), 및 RK2로 구성된 군에서 선택되며,The origin of replication is selected from the group consisting of CloDF13 (CDF), pBBR1, ColA, ColE1, pUC, pBR322, SC101, RSF1030 (RSF), and RK2,
    상기 합성 sRNA 암호화 영역은 프로모터; MicC, SgrS 및 MicF 중 어느 하나의 sRNA 유래의 Hfq 결합 부위(Hfq binding site); 표적 유전자 mRNA와 상보적 결합을 형성하는 영역; 및 터미네이터를 포함하고, The synthetic sRNA coding region comprises a promoter; Hfq binding site derived from sRNA of any of MicC, SgrS and MicF; A region forming complementary binding with a target gene mRNA; And terminator,
    상기 제1 내지 제q벡터의 표적유전자의 mRNA와 상보적으로 결합하는 영역에 tktA, aroF, pta, ilvH, ilvE, glnA, fur 또는 chpA 유전자의 mRNA와 상보적으로 결합하는 서열을 삽입하여 제조된 벡터가 도입되어 있어, tktA, aroF, pta, ilvH, ilvE, glnA fur 및 chpA로 구성된 군에서 선택되는 2개 이상의 유전자의 발현이 억제되어 있어 트레오닌 생산능력이 향상된 것을 특징으로 하는 재조합 미생물.A sequence prepared by inserting a sequence complementarily binding to mRNA of a tktA, aroF, pta, ilvH, ilvE, glnA, fur, or chpA gene into a region complementarily binding to mRNAs of the target genes of the first to q vectors A recombinant microorganism, wherein a vector is introduced and the expression of two or more genes selected from the group consisting of tktA, aroF, pta, ilvH, ilvE, glnA fur, and chpA is suppressed to improve threonine production capacity.
  12. 제11항에 있어서, lacI(Lactose-inducible lac operon transcriptional repressor), metA(Homoserine O-succinyltransferase/O-acetyltransferase), lysA(Diaminopimelate decarboxylase), tdh(L-threonine dehydrogenase), iclR(AceBAK operon repressor) 및 tdcC(Threonine/serine transporter)로 구성된 군에서 선택되는 하나 이상의 유전자가 추가로 결실된 것을 특징으로 하는 재조합 미생물.The method of claim 11, wherein the lacI (Lactose-inducible lac operon transcriptional repressor), metA (Homoserine O-succinyltransferase / O-acetyltransferase), lysA (Diaminopimelate decarboxylase), tdh (L-threonine dehydrogenase), iclR (AceBAK operon repressor) Recombinant microorganisms, characterized in that one or more genes selected from the group consisting of tdcC (Threonine / serine transporter) is further deleted.
  13. 제12항에 있어서, thrA(Bifunctional aspartokinase/homoserine dehydrogenase 1)의 1034번째 염기 서열이 C에서 T로 바뀐 돌연변이, lysC(lysine-sensitive aspartokinase 3)의 1055번째 염기 서열이 C에서 T로 바뀐 돌연변이, ilvA(l-threonine dehydratase, biosynthetic; also known as threonine deaminase)의 290번째 염기 서열이 C에서 T로 바뀐 돌연변이로 구성된 군에서 선택되는 하나 이상의 유전자가 조작된 것을 특징으로 하고, thrABC 오페론, ppc(phosphoenolpyruvate carboxylase), acs(acetyl-CoA synthetase)로 구성된 군에서 선택되는 하나 이상의 유전자의 프로모터가 trc 프로모터로 치환된 것을 특징으로 하며, rhtA(threonine and homoserine efflux system), rhtB(homoserine, homoserine lactone and S-methyl-methionine efflux pump), rhtC(threonine efflux pump), thrAC1034T, thrB(homoserine kinase), thrC(L-threonine synthase)로 구성된 군에서 선택되는 하나 이상의 유전자가 플라스미드 기반 과발현된 것을 특징으로 하는 재조합 미생물.The mutation of claim 10, wherein the 1034 base sequence of thrA (Bifunctional aspartokinase / homoserine dehydrogenase 1) is changed from C to T, the 1055 base sequence of lysine-sensitive aspartokinase 3 (lysC) is changed from C to T, ilvA (l-threonine dehydratase, biosynthetic; also known as threonine deaminase), characterized in that one or more genes selected from the group consisting of mutations in which the 290th sequence of the nucleotide sequence is changed from C to T has been engineered, thrABC operon, ppc ), a promoter of one or more genes selected from the group consisting of acs (acetyl-CoA synthetase) is substituted with trc promoter, rhtA (threonine and homoserine efflux system), rhtB (homoserine, homoserine lactone and S-methyl One or more genes selected from the group consisting of -methionine efflux pump, rhtC (threonine efflux pump), thrAC1034T, thrB (homoserine kinase), and thrC (L-threonine synthase) Recombinant microorganisms, characterized in that plasmid-based overexpression.
  14. 제11항에 있어서, 상기 숙주세포는 대장균, 리조비움(Rhizobium), 비피도박테리움 (Bifidobacterium), 로도코커스 (Rhodococcus), 칸디다 (Candida), 에르위니아(Erwinia), 엔테로박터 (Enterobacter), 파스테렐라(Pasteurella), 맨하이미아 (Mannheimia), 액티노바실러스 (Actinobacillus), 아그레가티박터(Aggregatibacter), 잔토모나스(Xanthomonas), 비브리오(Vibrio), 슈도모나스(Pseudomonas), 아조토박터(Azotobacter), 애시네토박터(Acinetobacter), 랄스토니아(Ralstonia), 아그로박테리움(Agrobacterium), 로도박터(Rhodobacter), 자이모모나스(Zymomonas), 바실러스(Bacillus), 스테필로코커스(Staphylococcus), 락토코커스(Lactococcus), 스트렙토코커스(Streptococcus), 락토바실러스(Lactobacillus), 클로스트리디움(Clostridium), 코리네박테리움(Corynebacterium), 스트렙토마이세스(Streptomyces), 비피도박테리움(Bifidobacterium), 사이아노박테리움(cyanobacterium) 및 사이클로박테리움(Cyclobacterium)로 구성되는 군에서 선택되는 것을 특징으로 하는 재조합 미생물.The host cell of claim 11, wherein the host cell is Escherichia coli, Rhizobium, Bifidobacterium, Rhodococcus, Candida, Erwinia, Enterobacter, or Farobacter. Pasteurella, Mannheimia, Actinobacillus, Aggregatibacter, Xanthomonas, Vibrio, Pseudomonas, Azotobacter , Acinetobacter, Ralstonia, Agrobacterium, Rhodobacter, Zymomonas, Bacillus, Staphylococcus, Lactococcus (Lactococcus), Streptococcus, Lactobacillus, Clostridium, Corynebacterium, Streptomyces, Bifidobacterium, Cyanobacterium (cyanobact erium) and cyclobacterium (Cyclobacterium) is selected from the group consisting of recombinant microorganisms.
  15. 프롤린(proline) 생합성 경로를 가지는 숙주세포에, In host cells with a proline biosynthetic pathway,
    제1항생제 내성 유전자; 제1복제원점; 제1 표적유전자 발현을 억제하는 합성 sRNA 암호화 영역을 포함하는 제1벡터; 및 제n항생제 내성 유전자; 제m복제원점; 제p 표적유전자 발현을 억제하는 합성 sRNA 암호화영역을 포함하는 제q벡터;를 포함하는 원핵생물의 동시다중 표적유전자 발현억제 시스템이 도입되어 있는 재조합 미생물로, Antibiotic resistance genes; First replication origin; A first vector comprising a synthetic sRNA coding region that inhibits expression of a first target gene; And n antibiotic resistance genes; Mth replication origin; A recombinant microorganism into which a simultaneous multi-target gene expression suppression system of a prokaryote is introduced, comprising: a q vector comprising a synthetic sRNA coding region that inhibits p-target gene expression;
    상기 제1항생제 내성 유전자와 제n항생제 내성 유전자, 제1복제원점과 제m복제원점 및 제1표적유전자와 제p표적유전자는 서로 각각 상이하며, The first antibiotic resistance gene and the n antibiotic resistance gene, the first replication origin and the m replication origin, and the first target gene and the p target gene are different from each other,
    n은 2 내지 50의 정수이고, m은 2 내지 10의 정수이며, q는 2 내지 500의 정수이고, p는 2 내지 20000의 정수이며,n is an integer from 2 to 50, m is an integer from 2 to 10, q is an integer from 2 to 500, p is an integer from 2 to 20000,
    상기 항생제는앰피실린(ampicillin), 카나마이신(Kanamycin), 클로로암페니콜(chloramphenicol), 아프라마이신(apramycin), 스트렙토마이신(streptomycin), 스펙티도마이신(spectinomycin), 테트라사이클린(tetracyclin), 에리트로마이신(erythromycin), 네오마이신(neomycin), 페니실린(penicillin), 액시노마이신(actinomycin), 가베니실린(garbenicillin), 겐타미신(gentamicin), 블라스티시딘(blasticidin), 마이코페놀릭산(mycophenolic acid), 퓨로마이신(puromycin), 제오신(zeocin), 보렐리딘(borrelidin), 이오노마이신(ionomycin), 다우노루비신(daunorubicin), 독소루비신(doxorubicin), 이버멕틴(ivermectin), 에버멕틴(avermectin), 미트라마이신(mithramycin), 미토마이신(mitomycin), 나리딕식산(nalidixic acid), 노보비오신(novobiocin), 니스타틴(nystatin), 옥시테트라라시클린(oxytetracycline), 팩리택셀(paclitaxel), 폴리마이신(polymyxin), 리팜피신(rifampicin), 살리노마이신(salinomycin), 타일로신(tylosin), 발리노마이신(valinomycin), 밴코마이신(vancomycin), 빈블라스틴(vinblastine), 및 빈크리스틴(vincristine) 으로 구성된 군에서 선택되고,The antibiotics are ampicillin, kanamycin, kanampycin, chloramphenicol, apramycin, streptomycin, spectiomycin, tetracycline, tetracycline and erythromycin. Erythromycin, neomycin, penicillin, axinomycin, actinomycin, garbenicillin, gentamicin, blasticidin, mycophenolic acid ), Puromycin, zeocin, borelidin, borrelidin, ionomycin, daunorubicin, doxorubicin, doxorubicin, ivermectin, avermectin Mithramycin, mitomycin, mitomycin, nalidixic acid, novobiocin, nystatin, oxytetracycline, paclitaxel, polymycin (polymyxin), rifampicin n), salinomycin, tylosin, valinomycin, vancomycin, vinblastine, and vincristine; ,
    상기 복제원점은 CloDF13(CDF), pBBR1, ColA, ColE1, pUC, pBR322, SC101, RSF1030(RSF), 및 RK2로 구성된 군에서 선택되며,The origin of replication is selected from the group consisting of CloDF13 (CDF), pBBR1, ColA, ColE1, pUC, pBR322, SC101, RSF1030 (RSF), and RK2,
    상기 합성 sRNA 암호화 영역은 프로모터; MicC, SgrS 및 MicF 중 어느 하나의 sRNA 유래의 Hfq 결합 부위(Hfq binding site); 표적 유전자 mRNA와 상보적 결합을 형성하는 영역; 및 터미네이터를 포함하고,The synthetic sRNA coding region comprises a promoter; Hfq binding site derived from sRNA of any of MicC, SgrS and MicF; A region forming complementary binding with a target gene mRNA; And terminator,
    상기 제1 내지 제q벡터의 표적유전자의 mRNA와 상보적으로 결합하는 영역에 serC, murE, aspC, metB, fadR, fur 또는 chpA 유전자의 mRNA와 상보적으로 결합하는 서열을 삽입하여 제조된 벡터가 도입되어 있어, serC, murE, aspC, metB, fadR, fur 및 chpA 로 구성된 군에서 선택되는 2개 이상의 유전자의 발현이 억제되어 있어 프롤린 생산능력이 향상된 것을 특징으로 하는 재조합 미생물.The vector prepared by inserting a sequence complementary to the mRNA of the serC, murE, aspC, metB, fadR, fur or chpA gene in the region complementary to the mRNA of the target gene of the first to q vector A recombinant microorganism which is introduced, wherein the expression of two or more genes selected from the group consisting of serC, murE, aspC, metB, fadR, fur, and chpA is suppressed to improve proline production capacity.
  16. 제15항에 있어서, lacI, speE, speG, argI, puuP, puuA, putA, putP, proP, speC, potE, 및 speF로 구성된 군에서 선택되는 하나 이상의 유전자가 추가로 결실된 것을 특징으로 하는 재조합 미생물.The recombinant microorganism according to claim 15, wherein at least one gene selected from the group consisting of lacI, speE, speG, argI, puuP, puuA, putA, putP, proP, speC, potE, and speF is further deleted. .
  17. 제15항에 있어서, PP3533 유전자가 도입 또는 증폭되어 있는 것을 특징으로 하는 재조합 미생물.The recombinant microorganism according to claim 15, wherein the PP3533 gene is introduced or amplified.
  18. 제15항에 있어서, argF 및 glnA 유전자의 발현이 추가로 억제되어 있는 것을 특징으로 하는 재조합 미생물.The recombinant microorganism according to claim 15, wherein expression of the argF and glnA genes is further inhibited.
  19. 제15항에 있어서, argECBH 오페론, speF-potE, 및 argD로 구성된 군에서 선택되는 하나 이상의 유전자의 프로모터가 trc 프로모터로 치환된 것을 특징으로 하는 재조합 미생물.16. The recombinant microorganism of claim 15, wherein the promoter of at least one gene selected from the group consisting of argECBH operon, speF-potE, and argD is substituted with trc promoter.
  20. 제15항의 재조합 미생물을 트레이스 메탈 용액(trace metal solution)을 포함하는 배지에서 유가식 발효를 통해 배양하는 단계를 포함하는 프롤린 생산 방법. A proline production method comprising culturing the recombinant microorganism of claim 15 through a fed-batch fermentation in a medium containing a trace metal solution.
  21. 제15항에 있어서, 상기 숙주세포는 대장균, 리조비움(Rhizobium), 비피도박테리움 (Bifidobacterium), 로도코커스 (Rhodococcus), 칸디다 (Candida), 에르위니아(Erwinia), 엔테로박터 (Enterobacter), 파스테렐라(Pasteurella), 맨하이미아 (Mannheimia), 액티노바실러스 (Actinobacillus), 아그레가티박터(Aggregatibacter), 잔토모나스(Xanthomonas), 비브리오(Vibrio), 슈도모나스(Pseudomonas), 아조토박터(Azotobacter), 애시네토박터(Acinetobacter), 랄스토니아(Ralstonia), 아그로박테리움(Agrobacterium), 로도박터(Rhodobacter), 자이모모나스(Zymomonas), 바실러스(Bacillus), 스테필로코커스(Staphylococcus), 락토코커스(Lactococcus), 스트렙토코커스(Streptococcus), 락토바실러스(Lactobacillus), 클로스트리디움(Clostridium), 코리네박테리움(Corynebacterium), 스트렙토마이세스(Streptomyces), 비피도박테리움(Bifidobacterium), 사이아노박테리움(cyanobacterium) 및 사이클로박테리움(Cyclobacterium)로 구성되는 군에서 선택되는 것을 특징으로 하는 재조합 미생물.The host cell of claim 15, wherein the host cell is Escherichia coli, Rhizobium, Bifidobacterium, Rhodococcus, Candida, Erwinia, Enterobacter, or Farobacter. Pasteurella, Mannheimia, Actinobacillus, Aggregatibacter, Xanthomonas, Vibrio, Pseudomonas, Azotobacter , Acinetobacter, Ralstonia, Agrobacterium, Rhodobacter, Zymomonas, Bacillus, Staphylococcus, Lactococcus (Lactococcus), Streptococcus, Lactobacillus, Clostridium, Corynebacterium, Streptomyces, Bifidobacterium, Bifidobacterium (cyanobact erium) and cyclobacterium (Cyclobacterium) is selected from the group consisting of recombinant microorganisms.
  22. 인디고(indigo) 생합성 경로를 가지는 숙주세포에, In a host cell having an indigo biosynthetic pathway,
    제1항생제 내성 유전자; 제1복제원점; 제1 표적유전자 발현을 억제하는 합성 sRNA 암호화 영역을 포함하는 제1벡터; 및 제n항생제 내성 유전자; 제m복제원점; 제p 표적유전자 발현을 억제하는 합성 sRNA 암호화영역을 포함하는 제q벡터;를 포함하는 원핵생물의 동시다중 표적유전자 발현억제 시스템이 도입되어 있는 재조합 미생물로, Antibiotic resistance genes; First replication origin; A first vector comprising a synthetic sRNA coding region that inhibits expression of a first target gene; And n antibiotic resistance genes; Mth replication origin; A recombinant microorganism into which a simultaneous multi-target gene expression suppression system of a prokaryote is introduced, comprising: a q vector comprising a synthetic sRNA coding region that inhibits p-target gene expression;
    상기 제1항생제 내성 유전자와 제n항생제 내성 유전자, 제1복제원점과 제m복제원점 및 제1표적유전자와 제p표적유전자는 서로 각각 상이하며, The first antibiotic resistance gene and the n antibiotic resistance gene, the first replication origin and the m replication origin, and the first target gene and the p target gene are different from each other,
    n은 2 내지 50의 정수이고, m은 2 내지 10의 정수이며, q는 2 내지 500의 정수이고, p는 2 내지 20000의 정수이며,n is an integer from 2 to 50, m is an integer from 2 to 10, q is an integer from 2 to 500, p is an integer from 2 to 20000,
    상기 항생제는앰피실린(ampicillin), 카나마이신(Kanamycin), 클로로암페니콜(chloramphenicol), 아프라마이신(apramycin), 스트렙토마이신(streptomycin), 스펙티도마이신(spectinomycin), 테트라사이클린(tetracyclin), 에리트로마이신(erythromycin), 네오마이신(neomycin), 페니실린(penicillin), 액시노마이신(actinomycin), 가베니실린(garbenicillin), 겐타미신(gentamicin), 블라스티시딘(blasticidin), 마이코페놀릭산(mycophenolic acid), 퓨로마이신(puromycin), 제오신(zeocin), 보렐리딘(borrelidin), 이오노마이신(ionomycin), 다우노루비신(daunorubicin), 독소루비신(doxorubicin), 이버멕틴(ivermectin), 에버멕틴(avermectin), 미트라마이신(mithramycin), 미토마이신(mitomycin), 나리딕식산(nalidixic acid), 노보비오신(novobiocin), 니스타틴(nystatin), 옥시테트라라시클린(oxytetracycline), 팩리택셀(paclitaxel), 폴리마이신(polymyxin), 리팜피신(rifampicin), 살리노마이신(salinomycin), 타일로신(tylosin), 발리노마이신(valinomycin), 밴코마이신(vancomycin), 빈블라스틴(vinblastine), 및 빈크리스틴(vincristine) 으로 구성된 군에서 선택되고,The antibiotics are ampicillin, kanamycin, kanampycin, chloramphenicol, apramycin, streptomycin, spectiomycin, tetracycline, tetracycline and erythromycin. Erythromycin, neomycin, penicillin, axinomycin, actinomycin, garbenicillin, gentamicin, blasticidin, mycophenolic acid ), Puromycin, zeocin, borelidin, borrelidin, ionomycin, daunorubicin, doxorubicin, doxorubicin, ivermectin, avermectin Mithramycin, mitomycin, mitomycin, nalidixic acid, novobiocin, nystatin, oxytetracycline, paclitaxel, polymycin (polymyxin), rifampicin n), salinomycin, tylosin, valinomycin, vancomycin, vinblastine, and vincristine; ,
    상기 복제원점은 CloDF13(CDF), pBBR1, ColA, ColE1, pUC, pBR322, SC101, RSF1030(RSF), 및 RK2로 구성된 군에서 선택되며,The origin of replication is selected from the group consisting of CloDF13 (CDF), pBBR1, ColA, ColE1, pUC, pBR322, SC101, RSF1030 (RSF), and RK2,
    상기 합성 sRNA 암호화 영역은 프로모터; MicC, SgrS 및 MicF 중 어느 하나의 sRNA 유래의 Hfq 결합 부위(Hfq binding site); 표적 유전자 mRNA와 상보적 결합을 형성하는 영역; 및 터미네이터를 포함하고,The synthetic sRNA coding region comprises a promoter; Hfq binding site derived from sRNA of any of MicC, SgrS and MicF; A region forming complementary binding with a target gene mRNA; And terminator,
    상기 제1 내지 제q벡터의 표적유전자의 mRNA와 상보적으로 결합하는 영역에 asnA, hisJ, yneH, napG, kdsA, ygfA, ftsl, aceF 또는 ostB 유전자의 mRNA와 상보적으로 결합하는 서열을 삽입하여 제조된 벡터가 도입되어 있어, asnA, hisJ, yneH, napG, kdsA, ygfA, ftsl, aceF 및 ostB 로 구성된 군에서 선택되는 2개 이상의 유전자의 발현이 억제되어 있어 인디고 생산능력이 향상된 것을 특징으로 하는 재조합 미생물.Inserting a sequence complementary to the mRNA of the asnA, hisJ, yneH, napG, kdsA, ygfA, ftsl, aceF or ostB gene in the region complementary to the mRNA of the target gene of the first to q vector Since the prepared vector is introduced, expression of two or more genes selected from the group consisting of asnA, hisJ, yneH, napG, kdsA, ygfA, ftsl, aceF, and ostB is suppressed, thereby improving indigo production capacity. Recombinant microorganisms.
  23. 제22항에 있어서, trpR, pykF 및 pykA로 구성된 군에서 선택되는 하나 이상의 유전자가 추가로 결실되고, tktA의 프로모터가 trc 프로모터로 치환되어 있으며, tnaA, fmo, aroGfbr, trpEfbr, 및 aroL로 구성된 군에서 선택되는 하나 이상의 유전자가 도입 또는 증폭되어 있는 것을 특징으로 하는 재조합 미생물.The group of claim 22, wherein at least one gene selected from the group consisting of trpR, pykF and pykA is further deleted, the promoter of tktA is substituted with the trc promoter, and the group consisting of tnaA, fmo, aroGfbr, trpEfbr, and aroL Recombinant microorganisms, characterized in that one or more genes selected from the introduced or amplified.
  24. 제22항에 있어서, 상기 숙주세포는 대장균, 리조비움(Rhizobium), 비피도박테리움 (Bifidobacterium), 로도코커스 (Rhodococcus), 칸디다 (Candida), 에르위니아(Erwinia), 엔테로박터 (Enterobacter), 파스테렐라(Pasteurella), 맨하이미아 (Mannheimia), 액티노바실러스 (Actinobacillus), 아그레가티박터(Aggregatibacter), 잔토모나스(Xanthomonas), 비브리오(Vibrio), 슈도모나스(Pseudomonas), 아조토박터(Azotobacter), 애시네토박터(Acinetobacter), 랄스토니아(Ralstonia), 아그로박테리움(Agrobacterium), 로도박터(Rhodobacter), 자이모모나스(Zymomonas), 바실러스(Bacillus), 스테필로코커스(Staphylococcus), 락토코커스(Lactococcus), 스트렙토코커스(Streptococcus), 락토바실러스(Lactobacillus), 클로스트리디움(Clostridium), 코리네박테리움(Corynebacterium), 스트렙토마이세스(Streptomyces), 비피도박테리움(Bifidobacterium), 사이아노박테리움(cyanobacterium) 및 사이클로박테리움(Cyclobacterium)로 구성되는 군에서 선택되는 것을 특징으로 하는 재조합 미생물.The host cell of claim 22, wherein the host cell is Escherichia coli, Rhizobium, Bifidobacterium, Rhodococcus, Candida, Erwinia, Enterobacter, or Farobacter. Pasteurella, Mannheimia, Actinobacillus, Aggregatibacter, Xanthomonas, Vibrio, Pseudomonas, Azotobacter , Acinetobacter, Ralstonia, Agrobacterium, Rhodobacter, Zymomonas, Bacillus, Staphylococcus, Lactococcus (Lactococcus), Streptococcus, Lactobacillus, Clostridium, Corynebacterium, Streptomyces, Bifidobacterium, Bifidobacterium (cyanobact erium) and cyclobacterium (Cyclobacterium) is selected from the group consisting of recombinant microorganisms.
  25. 제1항생제 내성 유전자; 제1복제원점; 제1 표적유전자 발현을 억제하는 합성 sRNA 암호화 영역을 포함하는 제1벡터; 및 제n항생제 내성 유전자; 제m복제원점; 제p 표적유전자 발현을 억제하는 합성 sRNA 암호화영역을 포함하는 제q벡터;를 포함하는 원핵생물의 동시다중 표적유전자 발현억제 시스템이 도입되어 있는 재조합 미생물로, Antibiotic resistance genes; First replication origin; A first vector comprising a synthetic sRNA coding region that inhibits expression of a first target gene; And n antibiotic resistance genes; Mth replication origin; A recombinant microorganism into which a simultaneous multi-target gene expression suppression system of a prokaryote is introduced, comprising: a q vector comprising a synthetic sRNA coding region that inhibits p-target gene expression;
    상기 제1항생제 내성 유전자와 제n항생제 내성 유전자, 제1복제원점과 제m복제원점 및 제1표적유전자와 제p표적유전자는 서로 각각 상이하며, The first antibiotic resistance gene and the n antibiotic resistance gene, the first replication origin and the m replication origin, and the first target gene and the p target gene are different from each other,
    n은 2 내지 50의 정수이고, m은 2 내지 10의 정수이며, q는 2 내지 500의 정수이고, p는 2 내지 20000의 정수이며,n is an integer from 2 to 50, m is an integer from 2 to 10, q is an integer from 2 to 500, p is an integer from 2 to 20000,
    상기 항생제는앰피실린(ampicillin), 카나마이신(Kanamycin), 클로로암페니콜(chloramphenicol), 아프라마이신(apramycin), 스트렙토마이신(streptomycin), 스펙티도마이신(spectinomycin), 테트라사이클린(tetracyclin), 에리트로마이신(erythromycin), 네오마이신(neomycin), 페니실린(penicillin), 액시노마이신(actinomycin), 가베니실린(garbenicillin), 겐타미신(gentamicin), 블라스티시딘(blasticidin), 마이코페놀릭산(mycophenolic acid), 퓨로마이신(puromycin), 제오신(zeocin), 보렐리딘(borrelidin), 이오노마이신(ionomycin), 다우노루비신(daunorubicin), 독소루비신(doxorubicin), 이버멕틴(ivermectin), 에버멕틴(avermectin), 미트라마이신(mithramycin), 미토마이신(mitomycin), 나리딕식산(nalidixic acid), 노보비오신(novobiocin), 니스타틴(nystatin), 옥시테트라라시클린(oxytetracycline), 팩리택셀(paclitaxel), 폴리마이신(polymyxin), 리팜피신(rifampicin), 살리노마이신(salinomycin), 타일로신(tylosin), 발리노마이신(valinomycin), 밴코마이신(vancomycin), 빈블라스틴(vinblastine), 및 빈크리스틴(vincristine) 으로 구성된 군에서 선택되고,The antibiotics are ampicillin, kanamycin, kanampycin, chloramphenicol, apramycin, streptomycin, spectiomycin, tetracycline, tetracycline and erythromycin. Erythromycin, neomycin, penicillin, axinomycin, actinomycin, garbenicillin, gentamicin, blasticidin, mycophenolic acid ), Puromycin, zeocin, borelidin, borrelidin, ionomycin, daunorubicin, doxorubicin, doxorubicin, ivermectin, avermectin Mithramycin, mitomycin, mitomycin, nalidixic acid, novobiocin, nystatin, oxytetracycline, paclitaxel, polymycin (polymyxin), rifampicin n), salinomycin, tylosin, valinomycin, vancomycin, vinblastine, and vincristine; ,
    상기복제원점은 CloDF13(CDF), pBBR1, ColA, ColE1, pUC, pBR322, SC101, RSF1030(RSF), 및 RK2로 구성된 군에서 선택되며,The replication origin is selected from the group consisting of CloDF13 (CDF), pBBR1, ColA, ColE1, pUC, pBR322, SC101, RSF1030 (RSF), and RK2,
    상기 합성 sRNA 암호화 영역은 프로모터; MicC, SgrS 및 MicF 중 어느 하나의 sRNA 유래의 Hfq 결합 부위(Hfq binding site); 표적 유전자 mRNA와 상보적 결합을 형성하는 영역; 및 터미네이터를 포함하는 것을 특징으로 하는 The synthetic sRNA coding region comprises a promoter; Hfq binding site derived from sRNA of any of MicC, SgrS and MicF; A region forming complementary binding with a target gene mRNA; And a terminator
    동시다중 표적 유전자 발현억제 시스템이 숙주세포에 도입되어 있는 재조합 미생물에서,In recombinant microorganisms in which a simultaneous multiple target gene expression suppression system is introduced into a host cell,
    상기 숙주세포는 비올라세인(violacein) 생합성 경로를 가지고, The host cell has a violacein (violacein) biosynthesis pathway,
    상기 제1 내지 제q벡터의 표적유전자의 mRNA와 상보적으로 결합하는 영역에 ytfR, hybG, ampG, potG, caiF, minD, ilvM, yfbR, rfe, atpH, tiaE 또는 murI 유전자의 mRNA와 상보적으로 결합하는 서열을 삽입하여 제조된 벡터가 도입되어 있어, ytfR, hybG, ampG, potG, caiF, minD, ilvM, yfbR, rfe, atpH, tiaE 및 murI로 구성된 군에서 선택되는 2개 이상의 유전자의 발현이 억제되어 있는 것을 특징으로 하는 비올라세인/디옥시비올라세인 생산능력이 향상된 재조합 미생물.Complementary to the mRNA of the target gene of the first to q vector complementary to the mRNA of ytfR, hybG, ampG, potG, caiF, minD, ilvM, yfbR, rfe, atpH, tiaE or murI gene A vector prepared by inserting a binding sequence has been introduced so that expression of two or more genes selected from the group consisting of ytfR, hybG, ampG, potG, caiF, minD, ilvM, yfbR, rfe, atpH, tiaE and murI A recombinant microorganism having improved violacein / deoxybiolacein production capacity, which is inhibited.
  26. 제25항에 있어서, vioA, vioB, vioC, vioD 및 vioE로 구성된 군에서 선택되는 하나 이상의 유전자가 도입 또는 증폭되어 있는 것을 특징으로 하는 재조합 미생물.The recombinant microorganism according to claim 25, wherein at least one gene selected from the group consisting of vioA, vioB, vioC, vioD, and vioE is introduced or amplified.
  27. 제25항에 있어서, 상기 숙주세포는 대장균, 리조비움(Rhizobium), 비피도박테리움 (Bifidobacterium), 로도코커스 (Rhodococcus), 칸디다 (Candida), 에르위니아(Erwinia), 엔테로박터 (Enterobacter), 파스테렐라(Pasteurella), 맨하이미아 (Mannheimia), 액티노바실러스 (Actinobacillus), 아그레가티박터(Aggregatibacter), 잔토모나스(Xanthomonas), 비브리오(Vibrio), 슈도모나스(Pseudomonas), 아조토박터(Azotobacter), 애시네토박터(Acinetobacter), 랄스토니아(Ralstonia), 아그로박테리움(Agrobacterium), 로도박터(Rhodobacter), 자이모모나스(Zymomonas), 바실러스(Bacillus), 스테필로코커스(Staphylococcus), 락토코커스(Lactococcus), 스트렙토코커스(Streptococcus), 락토바실러스(Lactobacillus), 클로스트리디움(Clostridium), 코리네박테리움(Corynebacterium), 스트렙토마이세스(Streptomyces), 비피도박테리움(Bifidobacterium), 사이아노박테리움(cyanobacterium) 및 사이클로박테리움(Cyclobacterium)로 구성되는 군에서 선택되는 것을 특징으로 하는 재조합 미생물.The host cell of claim 25, wherein the host cell is Escherichia coli, Rhizobium, Bifidobacterium, Rhodococcus, Candida, Erwinia, Enterobacter, Parfait. Pasteurella, Mannheimia, Actinobacillus, Aggregatibacter, Xanthomonas, Vibrio, Pseudomonas, Azotobacter , Acinetobacter, Ralstonia, Agrobacterium, Rhodobacter, Zymomonas, Bacillus, Staphylococcus, Lactococcus (Lactococcus), Streptococcus, Lactobacillus, Clostridium, Corynebacterium, Streptomyces, Bifidobacterium, Bifidobacterium (cyanobact erium) and cyclobacterium (Cyclobacterium) is selected from the group consisting of recombinant microorganisms.
  28. 제25항의 재조합 미생물을 트레이스 메탈 용액(trace metal solution)을 포함하는 배지에서 유가식 발효를 통해 배양하는 단계를 포함하는 비올라세인/디옥시비올라세인 생산 방법. A method for producing a violacein / deoxybiolacein comprising culturing the recombinant microorganism of claim 25 through a fed-batch fermentation in a medium containing a trace metal solution.
  29. 다음의 단계를 포함하는 다중억제 유전자 조합의 스크리닝 방법:Screening method for multiple inhibitory gene combinations comprising the following steps:
    (a) 20 ~ 50bp 크기를 가지는 임의의 염기서열을 제조하는 단계;(A) preparing any base sequence having a size of 20 ~ 50bp;
    (b) 상기 염기서열을 제1항생제 내성 유전자; 제1복제원점; 제1 표적유전자 발현을 억제하는 합성 sRNA 암호화 영역을 포함하는 제1벡터; 내지 제n항생제 내성 유전자; 제m복제원점; 제p 표적유전자 발현을 억제하는 합성 sRNA 암호화영역을 포함하는 제q벡터;의 표적유전자 mRNA와 상보적으로 결합하는 영역에 삽입하여 제1 내지 제r sRNA 라이브러리를 포함하는 제1 내지 제r 벡터 라이브러리를 제조하는 단계; 및(b) the nucleotide sequence of the first antibiotic resistance gene; First replication origin; A first vector comprising a synthetic sRNA coding region that inhibits expression of a first target gene; To n-n antibiotic resistance genes; Mth replication origin; A q vector comprising a synthetic sRNA coding region that inhibits p target gene expression; a first to r vector library comprising first to r sRNA libraries inserted into a region complementarily binding to a target gene mRNA Preparing a; And
    (c) 상기 제1 내지 제r 벡터 라이브러리를 유용물질을 생산하고자 하는 대상 균주에 도입하여, 유용물질 생산량이 향상되는 경우, 발현이 억제된 유전자 후보군을 동정하여, s개의 발현억제 대상 유전자 조합을 결정하는 단계;(c) introducing the first to r vector library into the target strain to produce a useful material, and when the production of the useful material is improved, to identify a group of gene candidates with suppressed expression, s expression suppression gene combinations are identified Determining;
    여기서, 상기 제1항생제 내성 유전자와 제n항생제 내성 유전자, 제1복제원점과 제m복제원점 및 제1표적유전자와 제p표적유전자는 서로 각각 상이하고, Here, the first antibiotic resistance gene and the n antibiotic resistance gene, the first replication origin and the m replication origin and the first target gene and the p target gene are different from each other,
    n은 2 내지 50의 정수이며, m은 2 내지 10의 정수이고, q는 2 내지 500의 정수이며, p는 2 내지 20000의 정수이고, r 및 s 는 2 내지 500의 정수임.n is an integer from 2 to 50, m is an integer from 2 to 10, q is an integer from 2 to 500, p is an integer from 2 to 20000, r and s are an integer from 2 to 500.
PCT/KR2019/007729 2018-06-27 2019-06-26 Multiplex target gene expression inhibition system based on synthesis regulator srna and method of producing same WO2020004936A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180073970A KR102037958B1 (en) 2018-06-27 2018-06-27 Multiplex Gene Expression Inhibition System based on Synthetic Regulatory Small RNA and Method of Preparing the Same
KR10-2018-0073970 2018-06-27

Publications (1)

Publication Number Publication Date
WO2020004936A1 true WO2020004936A1 (en) 2020-01-02

Family

ID=68731316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/007729 WO2020004936A1 (en) 2018-06-27 2019-06-26 Multiplex target gene expression inhibition system based on synthesis regulator srna and method of producing same

Country Status (2)

Country Link
KR (1) KR102037958B1 (en)
WO (1) WO2020004936A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111471638A (en) * 2020-05-22 2020-07-31 江南大学 Construction and application of corynebacterium glutamicum mutant strain capable of producing L-homoserine
CN110306213B (en) * 2019-07-08 2020-08-04 广州三孚新材料科技股份有限公司 Tin plating solution for solar cell and preparation method thereof
CN111505292A (en) * 2020-04-03 2020-08-07 青岛大学附属医院 Use of PCK 1-based modulation of lipid metabolism as a target for cancer therapy, diagnosis and prognosis prediction
CN114438003A (en) * 2020-11-02 2022-05-06 韩国科学技术院 Recombinant microorganism having improved ability to produce hydrophobic substance and cell membrane engineering method for production
CN114517197A (en) * 2022-02-16 2022-05-20 河南科技大学 Escherichia coli sRNA120, DNA molecule, recombinant vector and application of recombinant vector in regulation and control of bacterial drug resistance

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102384173B1 (en) * 2020-05-22 2022-04-06 인천대학교 산학협력단 Screening method of bacterial artificial chromosomes recombineering
CN111549012B (en) * 2020-06-08 2022-05-13 石家庄创组生物科技有限公司 Ribose kinase mutant and application thereof
CN112143751B (en) * 2020-09-22 2022-05-06 廊坊梅花生物技术开发有限公司 Bacillus subtilis engineering bacterium for high nucleoside yield, and construction method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014190627A1 (en) * 2013-05-31 2014-12-04 京东方科技集团股份有限公司 Drive method for liquid crystal panel, and liquid crystal panel
KR101575587B1 (en) * 2012-01-11 2015-12-09 한국과학기술원 Novel Synthetic Regulatory Small RNA and Method of Preparing the Same
KR101690780B1 (en) * 2014-06-11 2016-12-29 한국과학기술원 Method for Regulating Gene Expression Using Synthetic Regulatory Small RNA in Clostridia
KR101750855B1 (en) * 2014-06-11 2017-06-27 한국과학기술원 Method for Fine-Tuning Gene Expression Using Synthetic Regulatory Small RNA

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101575587B1 (en) * 2012-01-11 2015-12-09 한국과학기술원 Novel Synthetic Regulatory Small RNA and Method of Preparing the Same
WO2014190627A1 (en) * 2013-05-31 2014-12-04 京东方科技集团股份有限公司 Drive method for liquid crystal panel, and liquid crystal panel
KR101690780B1 (en) * 2014-06-11 2016-12-29 한국과학기술원 Method for Regulating Gene Expression Using Synthetic Regulatory Small RNA in Clostridia
KR101750855B1 (en) * 2014-06-11 2017-06-27 한국과학기술원 Method for Fine-Tuning Gene Expression Using Synthetic Regulatory Small RNA

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHO, C. ET AL.: "Efficient gene knockdown in Clostridium acetobutylicum by synthetic small regulatory RNAs", BIOTECHNOLOGY AND BIOENGINEERING, vol. 114, no. 2, February 2017 (2017-02-01), pages 374 - 383, XP055668368 *
LEE, SANG YEOB: "Universal Synthetic Regulatory sRNA Technology for Development of Microbe for Chemicals Mass Production", KAIST CORE TECH TRANSFER DAY, vol. 317, 10 September 2018 (2018-09-10), Seoul, Republic of Korea, pages 1 - 13 *
NA, D. ET AL.: "Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs", NATURE BIOTECHNOLOGY, vol. 31, no. 2, February 2013 (2013-02-01), pages 170 - 174, XP055142165, DOI: 10.1038/nbt.2461 *
NOH, M. ET AL.: "Gene expression knockdown by modulating synthetic small RNA expression in Escherichia coli Cell Systems", CELL SYSTEMS, vol. 5, 25 October 2017 (2017-10-25), pages 418 - 426, XP055668375 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110306213B (en) * 2019-07-08 2020-08-04 广州三孚新材料科技股份有限公司 Tin plating solution for solar cell and preparation method thereof
CN111505292A (en) * 2020-04-03 2020-08-07 青岛大学附属医院 Use of PCK 1-based modulation of lipid metabolism as a target for cancer therapy, diagnosis and prognosis prediction
CN111471638A (en) * 2020-05-22 2020-07-31 江南大学 Construction and application of corynebacterium glutamicum mutant strain capable of producing L-homoserine
CN111471638B (en) * 2020-05-22 2021-11-23 江南大学 Construction and application of corynebacterium glutamicum mutant strain capable of producing L-homoserine
CN114438003A (en) * 2020-11-02 2022-05-06 韩国科学技术院 Recombinant microorganism having improved ability to produce hydrophobic substance and cell membrane engineering method for production
JP2022074140A (en) * 2020-11-02 2022-05-17 コリア アドバンスト インスティチュート オブ サイエンス アンド テクノロジー Recombinant microorganisms with improved production ability of hydrophobic substances and cell membrane engineering method for manufacturing the same
EP4001406A3 (en) * 2020-11-02 2022-08-03 Korea Advanced Institute of Science and Technology Recombinant microorganism having increased ability to produce hydrophobic material and cell-membrane engineering method for preparation thereof
CN114517197A (en) * 2022-02-16 2022-05-20 河南科技大学 Escherichia coli sRNA120, DNA molecule, recombinant vector and application of recombinant vector in regulation and control of bacterial drug resistance
CN114517197B (en) * 2022-02-16 2023-08-29 河南科技大学 Coli sRNA120, DNA molecule, recombinant vector and application thereof in regulating and controlling bacterial drug resistance

Also Published As

Publication number Publication date
KR102037958B1 (en) 2019-11-26

Similar Documents

Publication Publication Date Title
WO2020004936A1 (en) Multiplex target gene expression inhibition system based on synthesis regulator srna and method of producing same
WO2013105807A2 (en) Novel synthesis-regulating srna and method for preparing same
Becker et al. Metabolically engineered Corynebacterium glutamicum for bio-based production of chemicals, fuels, materials, and healthcare products
Wang et al. Enhancing surfactin production by using systematic CRISPRi repression to screen amino acid biosynthesis genes in Bacillus subtilis
Wu et al. Metabolic engineering of Escherichia coli for high-yield uridine production
WO2015190627A1 (en) Method for minutely regulating gene expression using synthesis-regulating srna
WO2014142463A1 (en) Strain having enhanced l-valine productivity and l-valine production method using same
RU2571932C2 (en) Method of producing l-ornithine using lyse overexpressing bacteria
Ma et al. Systems metabolic engineering strategies for the production of amino acids
WO2009125924A2 (en) Mutant microorganism with high ability of producing putrescine and preparation of putrescine using same
US8735132B2 (en) Mutations and genetic targets for enhanced L-tyrosine production
CN109136295B (en) Method for biologically synthesizing glutaric acid
WO2015186990A1 (en) Microorganism for producing o-acetyl-homoserine and method for producing o-acetyl-homoserine by using same
Chen et al. Effect of Tween 40 and DtsR1 on l-arginine overproduction in Corynebacterium crenatum
Qiao et al. Metabolic profiles of cysteine, methionine, glutamate, glutamine, arginine, aspartate, asparagine, alanine and glutathione in Streptococcus thermophilus during pH-controlled batch fermentations
Liu et al. Increasing L-homoserine production in Escherichia coli by engineering the central metabolic pathways
Reimmann et al. PchC thioesterase optimizes nonribosomal biosynthesis of the peptide siderophore pyochelin in Pseudomonas aeruginosa
WO2016182321A1 (en) Microorganisms of genus escherichia having l-tryptophan producing ability and method for producing l-tryptophan using same
Tyagi et al. Designing an Escherichia coli strain for phenylalanine overproduction by metabolic engineering
Zhao et al. Switching metabolic flux by engineering tryptophan operon-assisted CRISPR interference system in Klebsiella pneumoniae
KR20150142304A (en) Method for Fine-Tuning Gene Expression Using Synthetic Regulatory Small RNA
WO2015199406A1 (en) Escherichia sp. microorganism having l-tryptophan production capacity and method for producing l-tryptophan using same
Chung et al. Enhanced production of difficult‐to‐express proteins through knocking down rnpA gene expression
WO2018208120A2 (en) Novel microorganism strain for high-performance metabolism of biomass-derived carbon source
Dietrich et al. Regulation of ldh expression during biotin-limited growth of Corynebacterium glutamicum

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19824901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19824901

Country of ref document: EP

Kind code of ref document: A1