WO2020003946A1 - 蒸着フィルムおよび蒸着フィルムの製造方法 - Google Patents

蒸着フィルムおよび蒸着フィルムの製造方法 Download PDF

Info

Publication number
WO2020003946A1
WO2020003946A1 PCT/JP2019/022390 JP2019022390W WO2020003946A1 WO 2020003946 A1 WO2020003946 A1 WO 2020003946A1 JP 2019022390 W JP2019022390 W JP 2019022390W WO 2020003946 A1 WO2020003946 A1 WO 2020003946A1
Authority
WO
WIPO (PCT)
Prior art keywords
vapor
deposited film
substrate
deposited
pulse
Prior art date
Application number
PCT/JP2019/022390
Other languages
English (en)
French (fr)
Inventor
大西 潤
直美 有村
Original Assignee
尾池工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 尾池工業株式会社 filed Critical 尾池工業株式会社
Priority to JP2020527340A priority Critical patent/JP7373854B2/ja
Publication of WO2020003946A1 publication Critical patent/WO2020003946A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated

Definitions

  • the present invention relates to a vapor deposition film and a method for producing the vapor deposition film. More specifically, the present invention relates to a vapor-deposited film having excellent barrier properties and adhesion, and a method for producing the vapor-deposited film.
  • the packaging film may be laminated with a metal film or the like in order to impart various characteristics, for example.
  • a laminated film has a barrier property for preventing permeation of oxygen, water vapor and the like for preventing deterioration of the contents, and a metal film laminated at the time of hot water treatment of the contents (especially in the case of food etc.). Adhesiveness or the like is required to prevent the peeling off.
  • Patent Document 1 As a method of laminating a metal film or the like on a substrate, a vacuum deposition method, a sputtering method using a DC (direct current) power supply or an RF (high frequency) power supply, or an IE (ion etching) treatment using plasma on the substrate surface is performed.
  • a method Patent Document 1 is known.
  • any of the above methods has a problem that the adhesion of the obtained laminated film (vapor-deposited film) after the hot water treatment is apt to decrease. Therefore, there is room for improvement in the above-mentioned conventional vapor-deposited film in order to use it in a field in which adhesion is required (for example, a food field requiring hot water treatment) while maintaining barrier properties.
  • the present invention has been made in view of such conventional inventions, and maintains a barrier property for preventing permeation of oxygen, water vapor, and the like, while laminating contents (particularly, foods, etc.) during hot water treatment. It is an object of the present invention to provide a vapor-deposited film exhibiting excellent adhesion so that a deposited metal film does not peel off, and a method for producing the vapor-deposited film.
  • the present inventors have assiduously studied, as a result, when a metal-containing vapor deposition layer is provided on a substrate and the concentration of oxygen atoms contained in the vapor deposition layer is equal to or less than a predetermined amount, the vapor deposition film has an excellent barrier property. , And found that the adhesion after hot water treatment was excellent, and completed the present invention.
  • the present inventors require that a negative high-voltage pulse be applied at a predetermined duty to the base material before the deposition layer is provided as a pretreatment so that the deposition layer has such an oxygen atom concentration. It has been found that it is effective to apply the electrode so that the ratio is not more than the ratio, and the present invention has been completed.
  • a vapor-deposited film including a substrate and a vapor-deposited layer provided on the substrate, the vapor-deposited layer containing a metal, and X-ray photoelectron spectroscopy in a thickness direction.
  • a vapor-deposited film having an average concentration of oxygen atoms of 8.0 atomic% or less as measured by the method described above.
  • the method for manufacturing a vapor-deposited film according to one embodiment of the present invention for solving the above-described problems is a method for manufacturing a vapor-deposited film including a substrate and a vapor-deposited layer provided on the substrate, wherein the substrate is subjected to plasma treatment.
  • the maximum pulse power density of 0.5 ⁇ 20 (W / cm 2 ), the ratio (T on of the pulse repetition time (T on + T off) with respect to the pulse time (T on) / T on + T off ) is a method for producing a vapor-deposited film, including a step of periodically supplying the cathode to the cathode so as to be 0.15 or less to generate plasma.
  • FIG. 1 is a graph showing the measurement results obtained by measuring the average concentration of oxygen atoms by XPS of a vapor-deposited film (an aluminum vapor-deposited layer formed on a PET substrate) according to one embodiment of the present invention.
  • FIG. 2 shows the measurement results obtained by measuring the average concentration of oxygen atoms by XPS of a vapor-deposited film (a vapor-deposited film described in Patent Literature 1) in which an aluminum vapor-deposited layer is provided on a PET base material that has not been subjected to a pretreatment step. It is a graph.
  • FIG. 3 is a schematic diagram for explaining the plasma processing.
  • FIG. 4 is a schematic diagram for explaining a pulse applied to an electrode in a pretreatment step.
  • FIG. 5 is a schematic diagram for explaining the configuration of the pulse power supply.
  • the vapor deposition film according to one embodiment of the present invention includes a substrate and a vapor deposition layer provided on the substrate.
  • the deposition layer includes a metal.
  • the average concentration of oxygen atoms measured by X-ray photoelectron spectroscopy in the thickness direction is 8.0 atomic% or less.
  • the vapor deposition film of the present embodiment has an excellent barrier property for preventing permeation of oxygen, water vapor, and the like. Further, the deposited film has excellent adhesion of the deposited layer after the hot water treatment. Therefore, the vapor deposition film is required to have a barrier property and can be suitably used in applications that require hot water treatment (for example, applications such as food packaging films that require hot water treatment).
  • each configuration will be described.
  • the substrate is not particularly limited.
  • the substrate may be a substrate on which a vapor deposition layer described later can be formed.
  • the base material is polyethylene terephthalate (PET), nylon, unstretched polypropylene (CPP), biaxially stretched polypropylene film (OPP), linear low-density polyethylene (LLDPE), high-density polyethylene (HDPE), Polyethylene naphthalate (PEN), polyolefin (COP), polycarbonate (PC), polystyrene film, polyethersulfone (PES), biodegradable resin (lactic acid-based BDP), polyacrylonitrile, polyimide (PI), liquid crystal polymer (LCP) ), Ethylene vinyl alcohol (EVOH), fluororesin (FL), polyamide imide (PAI), polyarylate (PAR), polyallyl sulfone (PASF), polyetheretherketone (PEEK), polyetherimide (P I), a methacrylic resin (PMMA), poly
  • the substrate is preferably a resin substrate from the viewpoint of excellent barrier properties of the obtained vapor-deposited film and excellent adhesion after hot water treatment, and PET, PP, or nylon. Is more preferable, and PET is more preferable.
  • the substrate is made of a resin, the vapor-deposited film can be more suitably used in various applications using the resin-made substrate (for example, a packaging film for a food container).
  • Known additives such as an antistatic agent, an ultraviolet absorber, a plasticizer, a lubricant, and a coloring agent may be added to these organic polymers.
  • the thickness of the substrate is not particularly limited.
  • the thickness of the substrate is preferably 5 ⁇ m or more, more preferably 8 ⁇ m or more.
  • the thickness of the base material is preferably 200 ⁇ m or less, more preferably 30 ⁇ m or less.
  • the thickness of the substrate is within the above range, the substrate is less likely to be damaged in a pretreatment step or a vapor deposition step described later.
  • the obtained vapor-deposited film shows moderate flexibility and is easy to handle.
  • the base material of the present embodiment is, as described later in connection with a method for manufacturing a vapor-deposited film, as a pretreatment step before forming a vapor-deposited layer, such that a pulse of a negative high voltage is equal to or less than a predetermined duty ratio. Applied to the electrode. According to such a method, a large amount of heat is hardly applied to the substrate, and the substrate is hardly damaged. Therefore, even if the base material of the present embodiment is a relatively weak resin film of the above-mentioned thin film, a vapor-deposited layer can be formed, and a vapor-deposited film having excellent barrier properties and adhesion can be obtained.
  • the substrate of the present embodiment is preferably processed so that the surface on which the deposition layer is provided has a predetermined surface roughness.
  • the surface of the base material before the deposition layer is formed within a 1 ⁇ m square observed by using an atomic force microscope (PSM-0600, manufactured by Shimadzu Corporation, scanning probe microscope) (provided that protrusions such as fillers are present). It is preferable that the surface is processed so that Ra is 0.7 to 2.0 nm and Rz is 8.0 to 20.0 nm. Since the surface of the base material is processed to have the above surface roughness, the deposited film has particularly excellent adhesion between the base material and the deposited layer.
  • the deposition layer includes a metal.
  • the metal is not particularly limited.
  • the metal is at least one metal selected from the group consisting of various light metals, silicon, tin, zinc, and indium.
  • Light metals are aluminum, magnesium, beryllium, titanium, alkali metals, alkaline earth metals and the like.
  • the metal is preferably aluminum, titanium, silicon, or copper, and more preferably aluminum.
  • the average concentration of oxygen atoms is 8.0 atomic% or less.
  • the average concentration of oxygen atoms may be 8.0 atomic% or less, and preferably 6.0 atomic% or less. Further, the average concentration of oxygen atoms is preferably 2.0 atomic% or more, more preferably 4.0 atomic% or more.
  • the average concentration of the oxygen atoms can be measured by X-ray photoelectron spectroscopy (XPS). Specifically, the average concentration of oxygen atoms is measured by the following method. The sample is sputtered for 30 seconds to perform an etching process. Details of the etching process will be described later. Thereafter, the atomic concentration is measured by X-ray photoelectron spectroscopy (XPS) (details of the measurement conditions are as follows). By repeating this step, the average concentration (atomic%) of oxygen atoms in the thickness direction and the peak concentration of oxygen atoms in the thickness direction can be measured.
  • XPS X-ray photoelectron spectroscopy
  • a region from the bottom portion of the oxygen abundance ratio on the vapor deposition surface side to the interface between the base material and the vapor deposition layer is defined as a vapor deposition layer.
  • the part where the carbon content ratio is 5 atomic% is defined as the interface between the base material and the deposited layer.
  • the average concentration of oxygen atoms is calculated from the bottom portion of the oxygen abundance ratio on the vapor deposition surface side in order to exclude oxygen contained in the oxidized region on the outermost surface of the vapor deposition layer.
  • FIG. 1 is a graph showing the measurement results obtained by measuring the average concentration of oxygen atoms by XPS of the vapor-deposited film of this embodiment (an aluminum vapor-deposited layer formed on a PET substrate) (Example 1 described later).
  • FIG. 2 is a graph showing a measurement result obtained by measuring an average concentration of oxygen atoms by XPS of a vapor-deposited film provided with an aluminum vapor-deposited layer on a PET base material that has not been subjected to a pretreatment step (Comparative Example 1 described later).
  • the abscissa indicates the sputtering time (minute) and the ordinate indicates the atomic%.
  • the sputtering time is from 0 to 30 minutes.
  • the average concentration of oxygen atoms shown in FIG. 1 is calculated to be 4.9 atomic%.
  • the average concentration of oxygen atoms shown in FIG. 2 is calculated as 10.5 atomic%.
  • the vapor-deposited film of this embodiment has a low average concentration of oxygen atoms in the vapor-deposited layer, and is 8.0 atomic% or less.
  • the vapor-deposited film (FIG. 2) in which the pretreatment step is not performed has a high average concentration of oxygen atoms in the vapor-deposited layer.
  • the vapor-deposited film of the present embodiment has an average concentration of oxygen atoms of 8.0 atomic% or less in the vapor-deposited layer, and as a result, the adhesiveness of the vapor-deposited film after the hydrothermal treatment as compared with the conventional vapor-deposited film Is excellent.
  • the vapor-deposited film of the present embodiment has a substrate whose surface is modified and oxygen contained in the substrate is reduced, whereby the influence of oxygen on the vapor-deposited layer is reduced, and the adhesion of the vapor-deposited film changes. Guessed.
  • the peak concentration of oxygen atoms in the thickness direction of the vapor deposition layer is preferably 15.0 atomic% or less, more preferably 13.0 atomic% or less. Further, the peak concentration of oxygen atoms is preferably at least 7.0 atomic%. Since the vapor-deposited film of the present embodiment has a peak concentration of oxygen atoms in the vapor-deposited layer within the above range, as a result, the adhesion of the vapor-deposited film after the hydrothermal treatment is superior to the conventional vapor-deposited film.
  • the deposition film of the present embodiment as described below in connection with the method of manufacturing the deposition film, as a pretreatment step, a pulse of a negative high voltage, applied to the electrode so as to be less than a predetermined duty ratio, such a An evaporation layer is formed on the base material that has been subjected to a pretreatment.
  • a pulse of a negative high voltage, applied to the electrode so as to be less than a predetermined duty ratio, such a An evaporation layer is formed on the base material that has been subjected to a pretreatment.
  • the concentration of oxygen atoms contained in the vapor deposition layer formed on the substrate can be reduced by a conventional method by performing the pretreatment of the substrate in the vapor deposition film of the present embodiment. It is lower than the concentration of oxygen atoms contained in the deposited film provided.
  • the mechanism is not clear, as a result, such a vapor-deposited film has excellent adhesion after hot water treatment as well as barrier properties as a result of the low concentration of oxygen
  • the thickness of the deposition layer is not particularly limited.
  • the thickness of the vapor deposition layer is preferably 7 nm or more, more preferably 20 nm or more. Further, the thickness of the deposition layer is preferably 100 nm or less, more preferably 80 nm or less. When the thickness of the vapor-deposited layer is within the above range, the obtained vapor-deposited film exhibits excellent barrier properties, exhibits appropriate flexibility, and is easy to handle.
  • the vapor-deposited film of the present embodiment is excellent in barrier properties for preventing permeation of oxygen, water vapor, and the like. Further, the deposited film has excellent adhesion of the deposited layer after the hot water treatment. Therefore, the vapor deposition film can be suitably used in applications where barrier properties are required and hot water treatment is required.
  • the vapor-deposited film is suitably used as a packaging film for packaging foods produced by a production method including a hot water treatment step (eg, a retort sterilization step), foods subjected to hot water treatment during eating, and the like. obtain.
  • the vapor-deposited film since the vapor-deposited film exhibits excellent barrier properties and adhesion, it can be used as a packaging film for packaging these foods, thereby preventing the permeation of oxygen and water vapor to the foods as contents. In addition, it is difficult for defects to occur even after the hot water treatment.
  • the deposited film of the present embodiment is obtained by subjecting the deposited film to a T-shaped peeling at a pulling speed of 300 mm / min after a hot water treatment (retort test, that is, a condition of immersion in hot water of 125 ° C. for 30 minutes).
  • the laminate strength when peeled off may be 50 gf / 15 mm or more.
  • the lamination strength is preferably at least 50 gf / 15 mm, more preferably at least 100 gf / 15 mm.
  • the carbon present ratio at the peeling interface on the side of the deposited layer is preferably 50 atomic% or more, more preferably 80 atomic% or more, with respect to the peeled vapor deposited layer.
  • the carbon abundance ratio can be measured by X-ray photoelectron spectroscopy (XPS) of the separation interface on the deposition layer side after separation and the surface light.
  • XPS X-ray photoelectron spectroscopy
  • a high carbon abundance ratio means that the exfoliation is caused not by the vicinity of the interface between the base material and the vapor deposition layer but by internal fracture of the base material.
  • the method for producing a vapor-deposited film according to one embodiment of the present invention includes a pre-treatment step of plasma-treating a substrate and a vapor-deposition step of forming a vapor-deposited layer on the substrate after the pre-treatment step.
  • the vapor deposition step is a step of forming a vapor-deposited layer containing a metal on the base material after the pretreatment step.
  • a pulse having a maximum power density of 0.5 to 20 (W / cm 2 ) is applied to the pulse repetition time (T on + T off ) in proportion to the pulse time (T on ) (T on / T on + T on ).
  • the above-described plasma treatment is performed on the base material in the pretreatment step.
  • a vapor deposition layer having excellent adhesion is formed on the substrate by a subsequent vapor deposition step.
  • the obtained vapor-deposited film has an excellent barrier property for preventing permeation of oxygen, water vapor and the like. Therefore, the vapor deposition film is required to have a barrier property and can be suitably used in applications that require hot water treatment (for example, applications such as food packaging films that require hot water treatment).
  • applications that require hot water treatment for example, applications such as food packaging films that require hot water treatment.
  • FIG. 3 is a schematic diagram for explaining the plasma processing.
  • the plasma treatment is a treatment for performing a surface treatment on a base material using plasma.
  • the pretreatment step is a step of subjecting the base material to a plasma treatment.
  • a pulse having a maximum power density of 0.5 to 20 (W / cm 2 ) is applied to the pulse time (T on + T off ) for a pulse time (T on + T off ).
  • on ) is applied to the electrodes periodically to generate plasma so that the ratio (T on / T on + T off ) becomes 0.15 or less.
  • FIG. 4 is a schematic diagram for explaining a pulse applied to an electrode in a pretreatment step.
  • the pulse shown in FIG. 4 is a square wave in which a negative high voltage is generated only for a predetermined pulse time (T on ).
  • such a square wave is generated at every predetermined pulse repetition time (T on + T off ), and the ratio of the pulse time (T on ) to the pulse repetition time (T on + T off ) (T on / T on + T off ) is adjusted to be 0.15 or less.
  • a high pressure is applied to the surface of the base material under an atmosphere of 1 ⁇ 10 -3 to 1 ⁇ 10 -1 Torr under an atmosphere gas.
  • Plasma treatment is performed using a pulse of power density.
  • Ambient gas is not particularly limited.
  • the atmosphere gas is a rare gas, nitrogen, oxygen, air, or the like.
  • the atmosphere gas is preferably argon from the viewpoint of discharge stability and economy.
  • the atmosphere gas is introduced into a discharge space in the vacuum chamber, and is activated by a discharge between the electrodes.
  • FIG. 5 is a schematic diagram for explaining the configuration of the pulse power supply 1.
  • the pulse power supply 1 is a power supply for applying a negative voltage of a pulse waveform between the electrodes, and includes a DC power supply 2, a capacitor 3, and a pulse unit 5 including a switch 4.
  • the pulse power supply 1 can instantaneously output the electric power charged in the capacitor 3 as negative high electric power.
  • the pulse of the present embodiment is generated by such a pulse power supply 1 so as to have a pulse-like waveform (a so-called square wave) having a predetermined pause period.
  • the pulse has a maximum power density of 0.5 (W / cm 2 ) or more, and preferably 1.0 (W / cm 2 ) or more.
  • the pulse may have a maximum power density of 20 (W / cm 2 ) or less, and preferably 15 (W / cm 2 ) or less.
  • the maximum power density of the pulse is less than 0.5 (W / cm 2 )
  • the maximum power density exceeds 20 (W / cm 2 )
  • the substrate is easily damaged.
  • the average power density of the pulse is preferably 2.0 (W / cm 2 ) or less, and more preferably 1.5 (W / cm 2 ) or less.
  • the average power density of the pulse is preferably 0.01 (W / cm 2 ) or more, and more preferably 0.1 (W / cm 2 ) or more.
  • the ratio of the maximum power density to the average power density of the pulse is preferably 5 or more, and more preferably 10 or more. Further, the ratio of the maximum power density to the average power density of the pulse is preferably 200 or less, and more preferably 100 or less. When the ratio of the maximum power density to the average power density of the pulse is within the above range, the obtained vapor-deposited film shows more excellent barrier properties and adhesion.
  • the maximum current value of the pulse is preferably 6.0 (A) or less, and more preferably 4.0 (A) or less. Further, the maximum current value of the pulse is preferably 0.1 (A) or more, and more preferably 0.5 (A) or more. When the maximum current value of the pulse is within the above range, the vapor-deposited film obtained by performing the pretreatment using such a pulse exhibits more excellent barrier properties and adhesion.
  • Each pulse is set so that the ratio of the pulse time (T on ) to the pulse repetition time (T on + T off ) (T on / T on + T off , also called “duty ratio”) is 0.15 or less. Is adjusted and the interval between successive pulses is adjusted.
  • the duty ratio may be 0.15 or less, and is preferably 0.1 or less. Further, the duty ratio is preferably 0.005 or more, and more preferably 0.01 or more. When the duty ratio is less than 0.15, a long time is required for pretreatment of the base material, and the production efficiency of the vapor-deposited film tends to decrease. On the other hand, if the duty ratio is too large, the substrate tends to be heated to a high temperature by the pulse, and tends to be damaged.
  • the pulse time (T on ) may be adjusted to satisfy the duty ratio.
  • the pulse time (T on ) is preferably 30 ⁇ sec or more, and more preferably 50 ⁇ sec or more. Further, the pulse time (T on ) is preferably 1000 ⁇ sec or less, and more preferably 500 ⁇ sec or less. When the pulse time (T on ) is within the above range, a pulse satisfying the duty ratio is easily generated.
  • the pulse frequency (pulse repetition time (T on + T off )) may be adjusted to satisfy the duty ratio.
  • the frequency of the pulse is preferably 50 Hz or more, and more preferably 100 Hz or more.
  • the frequency of the pulse is preferably 1000 Hz or less, more preferably 500 Hz or less.
  • the pulse waveform is not limited to the square wave described above.
  • the pulse waveform may be another waveform as long as the above-mentioned maximum power density and duty ratio are satisfied.
  • the pulse waveform may be a sawtooth wave, a triangular wave, or the like.
  • the base material surface can be processed to have a predetermined surface roughness as compared with before the pretreatment step.
  • the pretreatment step is performed within a 1 ⁇ m square area (excluding protrusions such as fillers) by observation using an atomic force microscope (PSM-0600, manufactured by Shimadzu Corporation, scanning probe microscope). It is preferable that the surface is processed so that Ra is 0.7 to 2.0 nm and Rz is 8.0 to 20.0 nm when measured.
  • Ra is preferably at least 0.7 nm, more preferably at least 0.8 nm.
  • Ra is preferably 2.0 nm or less, more preferably 1.5 nm or less.
  • Rz is preferably at least 8.0 nm, more preferably at least 10 nm.
  • Rz is preferably 20.0 nm or less, more preferably 15 nm or less.
  • a vapor-deposited layer is formed on the substrate that has been subjected to the pretreatment step.
  • the vapor deposition step is a step of forming a vapor deposition layer on the pre-processed base material, and forms a metal-containing vapor deposition layer on the base material after the pre-process step.
  • the method of depositing the metal on the substrate is not particularly limited.
  • a conventionally known physical vapor deposition method such as a vacuum vapor deposition method, a sputtering method, an ion plating method, or a chemical vapor deposition method can be appropriately adopted.
  • a vapor-deposited layer is provided by a vacuum vapor-deposition method because of high productivity.
  • the evaporation conditions conventionally known conditions can be appropriately adopted based on the material of the evaporation layer and the desired thickness of the evaporation layer.
  • the metal material When a metal is deposited, the metal material contains few impurities and preferably has a purity of 99% by weight or more, more preferably 99.5% by weight or more. Further, the metal material is preferably processed into a granular shape, a rod shape, a tablet shape, a wire shape, or a crucible shape to be used.
  • Heating methods for evaporating the metal material include a method in which the metal material is put into a crucible to perform resistance heating or high-frequency heating, a method in which electron beam heating is performed, and a method in which the metal material is directly put into a ceramic board such as boron nitride. A known method such as a method of performing resistance heating can be used.
  • the crucible used for vacuum deposition is desirably made of carbon, and may be an alumina, magnesia, titania, or beryllia crucible.
  • a vapor-deposited film having a vapor-deposited layer formed on a substrate is produced.
  • the average concentration of oxygen atoms in the vapor-deposited layer measured by X-ray photoelectron spectroscopy (XPS) is 8.0 atomic% or less. I have. That is, the vapor-deposited film produced by the method for producing a vapor-deposited film of the present embodiment has a concentration of oxygen atoms contained in a vapor-deposited layer formed on the substrate by the substrate being pre-treated in the pre-treatment step. Is lower than the concentration of oxygen atoms contained in the deposited film provided by the conventional method. As a result, such a deposited film has not only excellent barrier properties but also excellent adhesion after hot water treatment.
  • the substrate is subjected to the above-described plasma treatment as a pretreatment step.
  • a vapor deposition layer having excellent adhesion is formed on the substrate by a subsequent vapor deposition step.
  • the obtained vapor-deposited film has an excellent barrier property for preventing permeation of oxygen, water vapor and the like. Therefore, the vapor deposition film is required to have a barrier property and can be suitably used in applications that require hot water treatment (for example, applications such as food packaging films that require hot water treatment).
  • the vapor-deposited film has an excellent barrier property for preventing permeation of oxygen, water vapor, and the like. Further, the deposited film has excellent adhesion of the deposited layer after the hot water treatment. Therefore, the vapor deposition film is required to have a barrier property and can be suitably used in applications that require hot water treatment (for example, applications such as food packaging films that require hot water treatment).
  • the obtained vapor-deposited film can exhibit more excellent barrier properties and adhesion.
  • the obtained vapor-deposited film can exhibit more excellent barrier properties and adhesion.
  • the obtained vapor-deposited film can exhibit more excellent barrier properties and adhesion.
  • the obtained vapor-deposited film can exhibit more excellent barrier properties and adhesion.
  • the obtained vapor-deposited film can exhibit more excellent barrier properties and adhesion.
  • the substrate of the obtained vapor-deposited film is a resin-made substrate. Therefore, the vapor deposition film can be suitably used in various applications using a resin base material (for example, a packaging film for a food container).
  • a resin base material for example, a packaging film for a food container.
  • the vapor-deposited film exhibits excellent barrier properties and adhesiveness, and is used as a packaging film for packaging food, thereby preventing the transmission of oxygen and water vapor to the content food. It is possible to prevent the occurrence of defects even after hot water treatment.
  • a method for producing a vapor-deposited film comprising a base material and a vapor-deposited layer provided on the base material, wherein the base material is subjected to a pre-treatment step of performing a plasma treatment and the base material after the pre-treatment step.
  • a vapor deposition step of forming the vapor deposition layer wherein the vapor deposition step is a step of forming a vapor deposition layer containing a metal on the base material after the pretreatment step, wherein the pretreatment step has a maximum power density of 0.
  • a method for producing a vapor-deposited film comprising a step of generating a plasma by supplying the plasma to a cathode.
  • the substrate is subjected to the above-described plasma processing as a pretreatment.
  • a vapor deposition layer having excellent adhesion is formed on the substrate by a subsequent vapor deposition step.
  • the obtained vapor-deposited film has an excellent barrier property for preventing permeation of oxygen, water vapor and the like. Therefore, the vapor deposition film is required to have a barrier property and can be suitably used in applications that require hot water treatment (for example, applications such as food packaging films that require hot water treatment).
  • the surface roughness of the base material measured by an atomic force microscope is Ra of 0.7 to 2.0 nm and Rz of 8.0 to 20.0 nm.
  • Example 1 Using a biaxially stretched polyethylene terephthalate film (“Tetron” (registered trademark) HPE, manufactured by Teijin Film Solutions Ltd., HPE, thickness: 12 ⁇ m) as a base material, and using a high-voltage pulse power supply on the base material in a vacuum chamber, An Ar plasma treatment was performed under the following pretreatment conditions (pretreatment step). Subsequently, vacuum evaporation of aluminum was performed using a resistance heating type evaporation machine (evaporation step). In vacuum deposition, a carbon crucible was filled with granular aluminum (purity: 99.99%), and the aluminum was evaporated while heating and melting to form an aluminum film (deposition layer) having a thickness of 80 nm.
  • Tetron registered trademark
  • HPE thickness: 12 ⁇ m
  • Example 2 Except that the pretreatment time was set to be 4.5 seconds, a vapor deposition film was produced in the same manner as in Example 1.
  • Example 3> Except having changed into the following pretreatment conditions, the vapor deposition film was produced by the method similar to Example 1.
  • Preprocessing time 4.5 (seconds)
  • Example 2 A vapor deposition film was produced in the same manner as in Example 1 except that the pretreatment step was performed by a steady Ar plasma treatment using a direct current instead of a pulse.
  • Pretreatment conditions Average power density: 0.24 (W / cm 2 ) DC voltage: 2 (kV) DC current: 0.1 (A) Preprocessing time: 4.5 (seconds)
  • Oxygen content ratio in a vapor deposition layer The oxygen content ratio contained in a vapor deposition layer was measured on condition of the following. The oxygen content ratio was determined based on the oxygen content of the smallest amount in the vapor deposition layer.
  • the oxygen permeability (cc / m 2 day) was measured using an oxygen permeability measuring device (OX-TRAN 2/20, manufactured by Modern Control) according to JIS K 7126-2. When the oxygen permeability was 1.2 (cc / m 2 day) or less, it was determined that the material was suitable as a packaging material.
  • the water vapor transmission rate (g / m 2 day) was measured using a water vapor transmission rate measuring apparatus (Permatran-W3 / 31, manufactured by Modern Control) according to JIS K 7129B. When the water vapor transmission rate was 1.5 (g / m 2 day) or less, it was determined to be suitable as a packaging material.
  • Lamination strength (adhesion)
  • a polyester two-component adhesive is applied so as to have a coating thickness of 2 ⁇ m, laminated on a 60 ⁇ m unstretched PP film, aged in a 40 ° C. atmosphere for 72 hours, and cut into a size of 15 mm ⁇ 200 mm.
  • A-type peeling tester AGS-100A, manufactured by Shimadzu Corporation
  • the adhesion strength at the time of T-type peeling was measured at a pulling speed of 300 mm / min, and the lamination strength was obtained.
  • the samples obtained by the same method as described above were also measured for the laminar strength after immersion in hot water at 100 ° C., 115 ° C., and 125 ° C. for 30 minutes.
  • the dry laminating strength was 100 (gf / 15 mm) or more and the wet laminating strength was 100 (gf / 15 mm) or more, it was judged to be suitable as a packaging material.
  • a cotton swab having 2-3 drops of distilled water dropped on the peeling interface was kept on the peeling interface in a wet state, and the wet lamination strength was similarly evaluated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)
  • Wrappers (AREA)

Abstract

基材と、基材上に設けられた蒸着層とを備え、蒸着層は、金属を含み、厚み方向におけるX線光電子分光法によって測定される酸素原子の平均濃度が、8.0原子%以下である、蒸着フィルム。

Description

蒸着フィルムおよび蒸着フィルムの製造方法
 本発明は、蒸着フィルムおよび蒸着フィルムの製造方法に関する。より詳細には、本発明は、バリア性および密着性が優れた蒸着フィルムおよび蒸着フィルムの製造方法に関する。
 従来、フィルムの技術分野において、食品等の内容物を包装するための種々の包装用フィルムが開発されている。包装用フィルムは、たとえば種々の特性を付与するために金属膜等が積層される場合がある。また、このような積層フィルムは、内容物の劣化等を防ぐための、酸素や水蒸気等の透過を防ぐバリア性や、内容物(特に食品等である場合)の熱水処理時に積層した金属膜等が剥離しないための密着性等が求められる。
 金属膜等を基材に積層させる方法として、真空蒸着法、DC(直流)電源やRF(高周波)電源を用いたスパッタリング法や、基材表面にプラズマを用いたIE(イオンエッチング)処理を行う方法(特許文献1)が知られている。
特開2004-203022号公報
 しかしながら、上記いずれの方法も、得られる積層フィルム(蒸着フィルム)の、熱水処理後における密着性が低下しやすいという問題がある。そのため、上記従来の蒸着フィルムは、バリア性を維持しつつ、かつ、密着性が求められる分野(たとえば熱水処理を要する食品分野)に使用するためには、改良の余地があった。
 本発明は、このような従来の発明に鑑みてなされたものであり、酸素や水蒸気等の透過を防ぐバリア性を維持しつつ、内容物(特に食品等である場合)の熱水処理時に積層した金属膜が剥離しないための優れた密着性を示す蒸着フィルムおよび蒸着フィルムの製造方法を提供することを目的とする。
 本発明者らは、鋭意検討した結果、基材に金属を含む蒸着層が設けられ、かつ、蒸着層に含まれる酸素原子の濃度が所定量以下である場合に、蒸着フィルムが優れたバリア性を維持しつつ、かつ、熱水処理後の密着性も優れることを見出し、本発明を完成させた。また、本発明者らは、蒸着層がこのような酸素原子濃度となるためには、蒸着層を設ける前の基材に対して、前処理として、負の高電圧のパルスを、所定のデューティー比以下となるよう電極に印可することが有効であることを見出し、本発明を完成させた。
 上記課題を解決する本発明の一態様の蒸着フィルムは、基材と、前記基材上に設けられた蒸着層とを備え、前記蒸着層は、金属を含み、厚み方向におけるX線光電子分光法によって測定される酸素原子の平均濃度が、8.0原子%以下である、蒸着フィルムである。
 上記課題を解決する本発明の一態様の蒸着フィルムの製造方法は、基材と、前記基材上に設けられた蒸着層とを備える蒸着フィルムの製造方法であり、前記基材を、プラズマ処理する前処理工程と、前記前処理工程後の基材に前記蒸着層を形成する蒸着工程とを含み、前記蒸着工程は、金属を含む蒸着層を前記前処理工程後の基材に形成する工程であり、前記前処理工程は、最大電力密度が0.5~20(W/cm2)であるパルスを、パルス繰り返し時間(Ton+Toff)に対するパルス時間(Ton)の割合(Ton/Ton+Toff)が0.15以下となるよう周期的にカソードに供給してプラズマを生成する工程を含む、蒸着フィルムの製造方法である。
図1は、本発明の一実施形態の蒸着フィルム(PET基材にアルミニウム蒸着層を形成)の、XPSによる酸素原子の平均濃度を測定した測定結果を示すグラフである。 図2は、前処理工程を実施していないPET基材にアルミニウム蒸着層を設けた蒸着フィルム(特許文献1に記載の蒸着フィルム)の、XPSによる酸素原子の平均濃度を測定した測定結果を示すグラフである。 図3は、プラズマ処理を説明するための模式図である。 図4は、前処理工程において電極に印可されるパルスを説明するための模式図である。 図5は、パルス電源の構成を説明するための模式図である。
<蒸着フィルム>
 本発明の一実施形態の蒸着フィルムは、基材と、基材上に設けられた蒸着層とを備える。蒸着層は、金属を含む。また、金属層は、厚み方向におけるX線光電子分光法によって測定される酸素原子の平均濃度が、8.0原子%以下である。本実施形態の蒸着フィルムは、酸素や水蒸気等の透過を防ぐバリア性が優れる。また、蒸着フィルムは、熱水処理時後における蒸着層の密着性が優れる。そのため、蒸着フィルムは、バリア性が求められ、かつ、熱水処理を要する用途(たとえば熱水処理を要する食品用の包装フィルム等の用途)において、好適に使用され得る。以下、それぞれの構成について説明する。
(基材)
 基材は特に限定されない。基材は、後述する蒸着層を形成し得る基材であればよい。一例を挙げると、基材は、ポリエチレンテレフタレート(PET)、ナイロン、無延伸ポリプロピレン(CPP)、2軸延伸ポリプロピレンフィルム(OPP)、直鎖状低密度ポリエチレン(LLDPE)、高密度ポリエチレン(HDPE)、ポリエチレンナフタレート(PEN)、ポリオレフィン(COP)、ポリカーボネート(PC)、ポリスチレンフィルム、ポリエーテルスルホン(PES)、生分解性樹脂(乳酸系BDP)、ポリアクリルニトリル、ポリイミド(PI)、液晶ポリマー(LCP)、エチレン・ビニルアルコール(EVOH)、フッ素系樹脂(FL)、ポリアミドイミド(PAI)、ポリアリレート(PAR)、ポリアリルサルホン(PASF)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルイミド(PEI)、メタクリル樹脂(PMMA)、ポリ塩化ビニル(PVC)、ポリブチレンテレフタレート(PBT)等である。これらの中でも、基材は、得られる蒸着フィルムのバリア性が優れ、かつ、熱水処理後の密着性が優れる点から、樹脂製基材であることが好ましく、PET、PP、ナイロンであることがより好ましく、PETであることがさらに好ましい。また、基材が樹脂製であることにより、蒸着フィルムは、樹脂製基材を用いる種々の用途(たとえば食品用容器の包装フィルム等)において、より好適に使用され得る。これらの有機重合体に公知の添加剤、たとえば、帯電防止剤、紫外線吸収剤、可塑剤、滑剤、着色剤などが添加されても良い。
 基材の厚みは特に限定されない。一例を挙げると、基材の厚みは、5μm以上であることが好ましく、8μm以上であることがより好ましい。また、基材の厚みは、200μm以下であることが好ましく、30μm以下であることがより好ましい。基材の厚みが上記範囲内であることにより、基材は、後述する前処理工程や蒸着工程において破損しにくい。また、得られる蒸着フィルムは、適度な可撓性を示し、取り扱い易い。
 本実施形態の基材は、蒸着フィルムの製造方法に関連して後述するように、蒸着層を形成する前の前処理工程として、負の高電圧のパルスが、所定のデューティー比以下となるよう電極に印可される。このような方法によれば、基材は、大きな熱が付与されにくく、損傷しにくい。そのため、本実施形態の基材は、比較的脆弱な上記薄膜の樹脂フィルムであっても、蒸着層を形成することができ、優れたバリア性や密着性を示す蒸着フィルムが得られる。
 本実施形態の基材は、蒸着層が設けられる表面が、所定の表面粗さとなるよう加工されていることが好ましい。すなわち、蒸着層を設ける前の基材表面は、原子間力顕微鏡(PSM-0600、(株)島津製作所製、走査型プローブ顕微鏡)を用いた観察による1μm平方内部において(但しフィラー等の突起物を除く)測定した際の表面荒さが、Raが0.7~2.0nm、Rzが8.0~20.0nmとなるよう加工されていることが好ましい。基材の表面が上記表面粗さとなるよう加工されていることにより、蒸着フィルムは、基材と蒸着層の密着性が特に優れる。
(蒸着層)
 蒸着層は、金属を含む。金属は特に限定されない。一例を挙げると、金属は、各種軽金属、珪素、スズ、亜鉛、インジウムからなる群から選択される少なくとも1つの金属である。軽金属は、アルミニウム、マグネシウム、ベリリウム、チタン、アルカリ金属、アルカリ土類金属等である。これらの中でも、金属は、アルミニウム、チタン、珪素、銅であることが好ましく、アルミニウムであることがより好ましい。蒸着層がアルミニウムからなることにより、得られる蒸着フィルムは、バリア性および基材と蒸着層との密着性が特に優れる。
 本実施形態の蒸着層は、酸素原子の平均濃度が、8.0原子%以下である。酸素原子の平均濃度は、8.0原子%以下であればよく、6.0原子%以下であることが好ましい。また、酸素原子の平均濃度は、2.0原子%以上であることが好ましく、4.0原子%以上であることがより好ましい。
 ここで、本実施形態において、上記酸素原子の平均濃度は、X線光電子分光法(XPS)によって測定することができる。具体的には、酸素原子の平均濃度は、次の方法により測定する。試料に対してスパッタリングを30秒間行いエッチング処理を施す。エッチング処理の詳細は後述する。その後、X線光電子分光法(XPS)によって原子濃度を測定する(測定条件の詳細は以下のとおりである。)。この工程を繰り返すことで、厚み方向における酸素原子の平均濃度(原子%)と、厚み方向における酸素原子のピーク濃度を測定することができる。なお、本実施形態においては、蒸着表面側の酸素存在比率のボトム部位から、基材と蒸着層の界面までの領域を蒸着層と定義する。炭素存在比率が5原子%の部位を基材と蒸着層の界面と定義する。蒸着表面側の酸素存在比率のボトム部位から、酸素原子の平均濃度を算出するのは、蒸着層最表面の酸化領域に含まれる酸素を計算上除くためである。
(X線光電子分光法(XPS)深さ方向分析の測定条件)
 ・装置:X線光電子分光分析装置(XPS)
 ・メーカー/型番:アルバック・ファイ(株)/PHI5000VersaProbeII
 ・X線ビーム径(測定範囲):φ100μm
エッチング条件(蒸着層側から基材深さ方向へスパッタリング条件)
 ・Arイオン銃加速電圧:4kV
 ・エッチング範囲:3mm×3mm平方内部
 ・エッチング時間:30秒/1回
 図1は、本実施形態の蒸着フィルム(PET基材にアルミニウム蒸着層を形成)の、XPSによる酸素原子の平均濃度を測定した測定結果を示すグラフである(後述する実施例1)。図2は、前処理工程を実施していないPET基材にアルミニウム蒸着層を設けた蒸着フィルムの、XPSによる酸素原子の平均濃度を測定した測定結果を示すグラフである(後述する比較例1)。図1および図2において、横軸はスパッタ時間(分)を示し、縦軸は原子%を示している。スパッタ時間は、0分から30分である。図1に示される酸素原子の平均濃度は4.9原子%と算出される。一方、図2に示される酸素原子の平均濃度は、10.5原子%と算出される。
 このように、本実施形態の蒸着フィルム(図1)は、蒸着層における酸素原子の平均濃度が低く、8.0原子%以下である。一方、前処理工程を実施していない蒸着フィルム(図2)は、蒸着層における酸素原子の平均濃度が高い。本実施形態の蒸着フィルムは、蒸着層における酸素原子の平均濃度が8.0原子%以下であることにより、結果として、従来の蒸着フィルムと比較して、熱水処理後における蒸着フィルムの密着性が優れる。本実施形態の蒸着フィルムは、基材が表面改質され、基材に含まれる酸素が低減されたことで、蒸着層への酸素の影響が低減され、蒸着フィルムの密着性が変化したものと推量される。
 本実施形態の蒸着層は、蒸着層の厚み方向における酸素原子のピーク濃度が、15.0原子%以下であることが好ましく、13.0原子%以下であることがより好ましい。また、酸素原子のピーク濃度は、7.0原子%以上であることが好ましい。本実施形態の蒸着フィルムは、蒸着層における酸素原子のピーク濃度が上記範囲内であることにより、結果として、従来の蒸着フィルムと比較して、熱水処理後における蒸着フィルムの密着性が優れる。
 本実施形態の蒸着フィルムは、蒸着フィルムの製造方法に関連して後述するように、前処理工程として、負の高電圧のパルスを、所定のデューティー比以下となるよう電極に印可し、そのような前処理を施した基材に、蒸着層が形成されている。機序は明らかでないが、このように、本実施形態の蒸着フィルムは、基材の前処理を行うことにより、基材上に形成される蒸着層に含まれる酸素原子の濃度が従来の方法により設けた蒸着フィルムに含まれる酸素原子の濃度よりも低くなっている。さらに、機序は明らかでないが、結果的に、このような蒸着フィルムは、蒸着フィルムに含まれる酸素原子の濃度が低い結果、バリア性のみでなく、熱水処理後における密着性も優れたものとなっている。
 蒸着層の厚みは特に限定されない。一例を挙げると、蒸着層の厚みは、7nm以上であることが好ましく、20nm以上であることがより好ましい。また、蒸着層の厚みは、100nm以下であることが好ましく、80nm以下であることがより好ましい。蒸着層の厚みが上記範囲内であることにより、得られる蒸着フィルムは、優れたバリア性を示し、かつ、適度な可撓性を示し、取り扱い易い。
 以上、本実施形態の蒸着フィルムは、酸素や水蒸気等の透過を防ぐバリア性が優れる。また、蒸着フィルムは、熱水処理後における蒸着層の密着性が優れる。そのため、蒸着フィルムは、バリア性が求められ、かつ、熱水処理を要する用途において、好適に使用され得る。特に、蒸着フィルムは、熱水処理工程(たとえばレトルト殺菌工程)を含む製造方法によって製造される食品や、喫食時に熱水処理が行われる食品等を包装するための包装用フィルムとして好適に使用され得る。すなわち、蒸着フィルムは、優れたバリア性と密着性を示すため、これらの食品を包装するための包装用フィルムとして用いられることにより、内容物である食品に対する酸素や水蒸気の透過を防ぐことができ、かつ、熱水処理後にも不良を発生させにくい。
 具体的には、本実施形態の蒸着フィルムは、熱水処理(レトルト試験、すなわち125℃の熱水に30分間浸漬という条件)後に、引張り速度300mm/分でT字剥離という条件で蒸着フィルムを剥離した際のラミネート強度が50gf/15mm以上となり得る。ラミネート強度は、50gf/15mm以上であることが好ましく、100gf/15mm以上であることがより好ましい。
 また、蒸着フィルムは、剥離した蒸着層に関して、蒸着層側の剥離界面における炭素存在比率が50原子%以上であることが好ましく、80原子%以上であることがより好ましい。なお、炭素存在比率は、剥離後の蒸着層側の剥離界面、表層光をX線光電子分光法(XPS)によって測定し得る。炭素存在比率が高いことは、剥離が基材と蒸着層の界面近傍ではなく、基材の内部破断で生じていることを意味する。
(X線光電子分光法(XPS)測定条件)
XPS測定条件
 ・装置:X線光電子分光分析装置(XPS)
 ・メーカー/型番:アルバック・ファイ(株)/PHI5000VersaProbeII
 ・X線ビーム径(測定範囲):φ100μm
<蒸着フィルムの製造方法>
 本発明の一実施形態の蒸着フィルムの製造方法は、基材をプラズマ処理する前処理工程と、前処理工程後の基材に蒸着層を形成する蒸着工程とからなる。蒸着工程は、金属を含む蒸着層を、前処理工程後の基材に形成する工程である。前処理工程は、最大電力密度が0.5~20(W/cm2)であるパルスを、パルス繰り返し時間(Ton+Toff)に対するパルス時間(Ton)の割合(Ton/Ton+Toff)が0.15以下となるよう周期的に電極に印加しプラズマを生成する工程を含む。本実施形態の蒸着フィルムの製造方法は、前処理工程において、基材に対して上記プラズマ処理が行われる。このような前処理が行われた基材は、後続する蒸着工程によって、基材上に、密着性が優れた蒸着層が形成される。また、得られた蒸着フィルムは、酸素や水蒸気等の透過を防ぐバリア性が優れる。そのため、蒸着フィルムは、バリア性が求められ、かつ、熱水処理を要する用途(たとえば熱水処理を要する食品用の包装フィルム等の用途)において、好適に使用され得る。以下、それぞれの構成について説明する。なお、以下の説明において、基材および蒸着層の詳細は、蒸着フィルムの実施形態に関連して上記したものと同様である。そのため、重複する説明は、適宜省略される。また、図3は、プラズマ処理を説明するための模式図である。図3に示されるように、プラズマ処理は、プラズマを用いて基材への表面処理をする処理である。
(前処理工程)
 前処理工程は、基材を、プラズマ処理する工程であり、最大電力密度が0.5~20(W/cm2)であるパルスを、パルス繰り返し時間(Ton+Toff)に対するパルス時間(Ton)の割合(Ton/Ton+Toff)が0.15以下となるよう周期的に電極に印加してプラズマを生成する工程を含む。図4は、前処理工程において電極に印可されるパルスを説明するための模式図である。図4に示されるパルスは、所定のパルス時間(Ton)のみ負の高電圧を発生させた方形波である。また、本実施形態では、このような方形波を、所定のパルス繰り返し時間(Ton+Toff)ごとに発生させており、パルス繰り返し時間(Ton+Toff)に対するパルス時間(Ton)の割合(Ton/Ton+Toff)が0.15以下となるよう調整されていることを特徴とする。
 具体的には、前処理工程は、まず、真空チャンバ内において、基材の表面に対し、雰囲気ガス導入下において、気圧1×10-3~1×10-1Torrの環境下にて、高電力密度のパルスによるプラズマ処理を施す。
 雰囲気ガスは特に限定されない。一例を挙げると、雰囲気ガスは、希ガス、窒素、酸素、空気等である。これらの中でも、雰囲気ガスは、放電の安定性や経済性から、アルゴンであることが好ましい。雰囲気ガスは、真空チャンバ内の放電空間に導入され、電極間の放電により活性化される。
 ここで、本実施形態では、上記パルスを発生するためのパルス電源を用いることが好ましい。図5は、パルス電源1の構成を説明するための模式図である。パルス電源1は、電極間にパルス波形の負の電圧を印可するための電源であり、直流電源2、コンデンサ3およびスイッチ4を含むパルスユニット5を備える。パルス電源1は、コンデンサ3に充電した電力を、瞬間的に負の高電力として出力し得る。本実施形態のパルスは、このようなパルス電源1によって、所定の休止区間を持つパルス状の波形(いわゆる方形波)となるよう生成される。パルスは、最大電力密度が0.5(W/cm2)以上であればよく、1.0(W/cm2)以上であることが好ましい。また、パルスは、最大電力密度が20(W/cm2)以下であればよく、15(W/cm2)以下であることが好ましい。パルスの最大電力密度が0.5(W/cm2)未満である場合、電子密度の高いプラズマが生成されにくい。一方、最大電力密度が20(W/cm2)を超える場合、基材は、損傷しやすい。
 パルスの平均電力密度は、2.0(W/cm2)以下であることが好ましく、1.5(W/cm2)以下であることがより好ましい。また、パルスの平均電力密度は、0.01(W/cm2)以上であることが好ましく、0.1(W/cm2)以上であることがより好ましい。パルスの平均電力密度が上記範囲内であることにより、このようなパルスを用いて前処理が施されて得られる蒸着フィルムは、より優れたバリア性および密着性を示す。
 また、パルスの平均電力密度に対する最大電力密度の割合は、5以上であることが好ましく、10以上であることがより好ましい。また、パルスの平均電力密度に対する最大電力密度の割合は、200以下であることが好ましく、100以下であることがより好ましい。パルスの平均電力密度に対する最大電力密度の割合が上記範囲内であることにより、得られる蒸着フィルムは、より優れたバリア性および密着性を示す。
 パルスの最大電流値は、6.0(A)以下であることが好ましく、4.0(A)以下であることがより好ましい。また、パルスの最大電流値は、0.1(A)以上であることが好ましく、0.5(A)以上であることがより好ましい。パルスの最大電流値が上記範囲内であることにより、このようなパルスを用いて前処理が施されて得られる蒸着フィルムは、より優れたバリア性および密着性を示す。
 また、パルスは、パルス繰り返し時間(Ton+Toff)に対するパルス時間(Ton)の割合(Ton/Ton+Toff、「デューティー比」ともいう)が0.15以下となるよう個々のパルスの発生期間および連続するパルスの間隔が調整される。デューティー比は、0.15以下であればよく、0.1以下であることが好ましい。また、デューティー比は、0.005以上であることが好ましく、0.01以上であることがより好ましい。デューティー比が0.15未満である場合、基材の前処理に長時間を要し、蒸着フィルムの製造効率が低下しやすい。一方、デューティー比が大きくなり過ぎると、基材は、パルスによって高温となりやすく、損傷する傾向がある。
 パルス時間(Ton)は上記デューティー比を満たすよう調整されればよい。一例を挙げると、パルス時間(Ton)は、30μ秒以上であることが好ましく、50μ秒以上であることがより好ましい。また、パルス時間(Ton)は、1000μ秒以下であることが好ましく、500μ秒以下であることがより好ましい。パルス時間(Ton)が上記範囲内であることにより、上記デューティー比を満たすパルスが生成されやすい。
 パルスの周波数(パルス繰り返し時間(Ton+Toff))は上記デューティー比を満たすよう調整されればよい。一例を挙げると、パルスの周波数は、50Hz以上であることが好ましく、100Hz以上であることがより好ましい。また、パルスの周波数は、1000Hz以下であることが好ましく、500Hz以下であることがより好ましい。パルスの周波数が上記範囲内であることにより、上記デューティー比を満たすパルスが生成されやすい。
 なお、パルスの波形は、上記した方形波に限定されない。パルスの波形は、上記した最大電力密度およびデューティー比を満たす限りにおいて、適宜他の波形であってもよい。たとえば、パルスの波形は、鋸歯状波、三角波等であってもよい。
 このような前処理工程によれば、基材表面は、前処理工程前と比較して、所定の表面粗さとなるよう加工され得る。具体的には、前処理工程は、原子間力顕微鏡(PSM-0600、(株)島津製作所製、走査型プローブ顕微鏡)を用いた観察による1μm平方内部において(但しフィラー等の突起物を除く)測定した際の表面荒さが、Raが0.7~2.0nm、Rzが8.0~20.0nmとなるよう加工されていることが好ましい。Raは、0.7nm以上であることが好ましく、0.8nm以上であることがより好ましい。また、Raは、2.0nm以下であることが好ましく、1.5nm以下であることがより好ましい。Rzは、8.0nm以上であることが好ましく、10nm以上であることがより好ましい。また、Rzは、20.0nm以下であることが好ましく、15nm以下であることがより好ましい。RaおよびRzが上記範囲となるよう基材の表面粗さが加工されることにより、得られる蒸着フィルムは、基材と蒸着層の密着性が特に優れる。
 前処理工程が行われた基材は、次いで、蒸着層が形成される。
(蒸着工程)
 蒸着工程は、前処理後の基材に蒸着層を形成する工程であり、金属を含む蒸着層を、前処理工程後の基材に形成する。
 蒸着工程において、上記金属を基材に蒸着する方法は特に限定されない。蒸着方法は、従来公知の真空蒸着法、スパッタリング法、イオンプレーティング法等の物理蒸着法、または、化学蒸着法等を適宜採用し得る。これらの中でも、本実施形態の蒸着フィルムの製造方法は、生産性が高いという理由により、真空蒸着法により蒸着層が設けられることが好ましい。蒸着条件は、蒸着層の材料や、所望する蒸着層の厚みに基づいて、従来公知の条件が適宜採用され得る。なお、金属を蒸着する場合において、金属材料は、不純物が少なく、純度が99重量%以上であることが好ましく、99.5重量%以上であることがより好ましい。また、金属材料は、粒状、ロッド状、タブレット状、ワイヤー状あるいは使用するルツボ形状に加工したものであることが好ましい。金属材料を蒸発させるための加熱方法は、ルツボ中に金属材料を入れて抵抗加熱あるいは高周波加熱を行う方式や、電子ビーム加熱を行う方法、窒化硼素などのセラミック製のボードに金属材料を入れ直接抵抗加熱を行う方法など、周知の方法を用いることができる。真空蒸着に用いるルツボは、カーボン製であることが望ましく、アルミナやマグネシア、チタニア、ベリリア性のルツボであってもよい。
 蒸着工程が行われることにより、基材に蒸着層が形成された蒸着フィルムが作製される。得られた蒸着フィルムは、上記のとおり、機序は不明であるが、蒸着層におけるX線光電子分光法(XPS)によって測定される酸素原子の平均濃度が、8.0原子%以下となっている。すなわち、本実施形態の蒸着フィルムの製造方法によって作製される蒸着フィルムは、基材が上記前処理工程によって前処理されることにより、基材上に形成される蒸着層に含まれる酸素原子の濃度が従来の方法により設けた蒸着フィルムに含まれる酸素原子の濃度よりも低くなっている。そして、結果的に、このような蒸着フィルムは、バリア性のみでなく、熱水処理後における密着性も優れたものとなっている。
 以上、本実施形態の蒸着フィルムの製造方法によれば、基材は、前処理工程として上記プラズマ処理が行われる。このような前処理が行われた基材は、後続する蒸着工程によって、基材上に、密着性が優れた蒸着層が形成される。また、得られた蒸着フィルムは、酸素や水蒸気等の透過を防ぐバリア性が優れる。そのため、蒸着フィルムは、バリア性が求められ、かつ、熱水処理を要する用途(たとえば熱水処理を要する食品用の包装フィルム等の用途)において、好適に使用され得る。
 (1)基材と、前記基材上に設けられた蒸着層とを備え、前記蒸着層は、金属を含み、厚み方向におけるX線光電子分光法によって測定される酸素原子の平均濃度が、8.0原子%以下である、蒸着フィルム。
 このような構成によれば、蒸着フィルムは、酸素や水蒸気等の透過を防ぐバリア性が優れる。また、蒸着フィルムは、熱水処理時後における蒸着層の密着性が優れる。そのため、蒸着フィルムは、バリア性が求められ、かつ、熱水処理を要する用途(たとえば熱水処理を要する食品用の包装フィルム等の用途)において、好適に使用され得る。
 (2)前記平均濃度は、4.0~6.0原子%である、(1)記載の蒸着フィルム。
 このような構成によれば、得られる蒸着フィルムは、より優れたバリア性および密着性を示し得る。
 (3)前記蒸着層の厚み方向におけるX線光電子分光法によって測定される酸素原子のピーク濃度は、15.0原子%以下である、(1)または(2)記載の蒸着フィルム。
 このような構成によれば、得られる蒸着フィルムは、より優れたバリア性および密着性を示し得る。
 (4)熱水処理後のラミネート強度が50gf/15mm以上である、(1)~(3)のいずれかに記載の蒸着フィルム。
 このような構成によれば、得られる蒸着フィルムは、より優れたバリア性および密着性を示し得る。
 (5)蒸着層側の剥離界面における炭素存在比率が50原子%以上である、(1)~(4)のいずれかに記載の蒸着フィルム。
 このような構成によれば、得られる蒸着フィルムは、より優れたバリア性および密着性を示し得る。
 (6)前記蒸着層は、アルミニウムを含む、(1)~(5)のいずれかに記載の蒸着フィルム。
 このような構成によれば、得られる蒸着フィルムは、より優れたバリア性および密着性を示し得る。
 (7)前記基材は、樹脂製基材である、(1)~(6)のいずれかに記載の蒸着フィルム。
 このような構成によれば、得られる蒸着フィルムは、基材が樹脂製基材である。そのため、蒸着フィルムは、樹脂製基材を用いる種々の用途(たとえば食品用容器の包装フィルム等)において、好適に使用され得る。
 (8)食品を包装するための包装用フィルムである、(1)~(7)のいずれかに記載の蒸着フィルム。
 このような構成によれば、蒸着フィルムは、優れたバリア性と密着性を示すため、食品を包装するための包装用フィルムとして用いられることにより、内容物である食品に対する酸素や水蒸気の透過を防ぐことができ、かつ、熱水処理後にも不良を発生させにくい。
 (9)基材と、前記基材上に設けられた蒸着層とを備える蒸着フィルムの製造方法であり、前記基材を、プラズマ処理する前処理工程と、前記前処理工程後の基材に前記蒸着層を形成する蒸着工程とを含み、前記蒸着工程は、金属を含む蒸着層を前記前処理工程後の基材に形成する工程であり、前記前処理工程は、最大電力密度が0.5~20(W/cm2)であるパルスを、パルス繰り返し時間(Ton+Toff)に対するパルス時間(Ton)の割合(Ton/Ton+Toff)が0.15以下となるよう周期的にカソードに供給してプラズマを生成する工程を含む、蒸着フィルムの製造方法。
 このような構成によれば、基材は、前処理として上記プラズマ処理が行われる。このような前処理が行われた基材は、後続する蒸着工程によって、基材上に、密着性が優れた蒸着層が形成される。また、得られた蒸着フィルムは、酸素や水蒸気等の透過を防ぐバリア性が優れる。そのため、蒸着フィルムは、バリア性が求められ、かつ、熱水処理を要する用途(たとえば熱水処理を要する食品用の包装フィルム等の用途)において、好適に使用され得る。
 (10)前記前処理工程における前記パルスの最大電流値は、6.0(A)以下である、(9)記載の蒸着フィルムの製造方法。
 このような構成によれば、より優れたバリア性および密着性を示す蒸着フィルムが得られ得る。
 (11)前記前処理工程は、前記基材の原子間力顕微鏡で測定した表面荒さが、Raが0.7~2.0nm、Rzが8.0~20.0nmとなるまで前記基材の表面を処理する工程である、(9)または(10)記載の蒸着フィルムの製造方法。
 このような構成によれば、特に優れた密着性を示す蒸着フィルムが得られ得る。
 以下、実施例により本発明をより具体的に説明する。本発明は、これら実施例に何ら限定されない。なお、特に制限のない限り、「%」は「質量%」を意味し、「部」は「質量部」を意味する。
<実施例1>
 二軸延伸ポリエチレンテレフタレートフィルム(帝人フィルムソリューション(株)製「テトロン」(登録商標)HPE、厚さ12μm)を基材とし、真空チャンバ内にて、基材上に、高圧パルス電源を用いて、以下の前処理条件にてArプラズマ処理を行った(前処理工程)。次いで、抵抗加熱式蒸着機を用い、アルミニウムの真空蒸着を行った(蒸着工程)。真空蒸着は、カーボンルツボに粒状アルミニウムを(純度99.99%)を充填し、アルミニウムを加熱溶融しながら蒸発させて、膜厚80nmのアルミニウム膜(蒸着層)を形成した。
(前処理条件)
 パルスの最大電力密度:2.4(W/cm2
 パルスの平均電力密度:0.24(W/cm2
 パルスの平均電力密度に対する最大電力密度の割合:10.0
 パルスの最大電流値:0.9(A)
 パルス繰り返し時間(Ton+Toff):5ms
 パルス時間(Ton):500μs
 デューティー比:0.10
 周波数:200Hz
 パルス波形:方形波
 前処理の時間:6.5(秒)
<実施例2>
 前処理時間が4.5秒になるように処理した以外は、実施例1と同様の方法により、蒸着フィルムを作製した。
<実施例3>
 以下の前処理条件に変更した以外は、実施例1と同様の方法により、蒸着フィルムを作製した。
(前処理条件)
 パルスの最大電力密度:2.4(W/cm2
 パルスの平均電力密度:0.12(W/cm2
 パルスの平均電力密度に対する最大電力密度の割合:20.0
 パルスの最大電流値:0.9(A)
 パルス繰り返し時間(Ton+Toff):10ms
 パルス時間(Ton):500μs
 デューティー比:0.05
 周波数:100Hz
 パルス波形:方形波
 前処理の時間:4.5(秒)
<比較例1>
 前処理工程を行わなかった以外は、実施例1と同様の方法により、蒸着フィルムを作製した。
<比較例2>
 前処理工程をパルスではない定常の直流によるArプラズマ処理を行った以外は、実施例1と同様の方法により、蒸着フィルムを作製した。
(前処理条件)
 平均電力密度:0.24(W/cm2
 直流電圧:2(kV)
 直流電流:0.1(A)
 前処理の時間:4.5(秒)
 実施例1~3および比較例1~2において得られた前処理工程後の基材(比較例1は前処理工程を実施していない基材)および得られた蒸着フィルムについて、以下の方法に沿って、各種評価を行った。結果を表1に示す。
(1)蒸着層中の酸素含有比率
 蒸着層に含まれる酸素含有比率を、以下の条件にて測定した。酸素含有比率は、蒸着層中の酸素の最も少ない酸素比率をベースラインとした。
X線光電子分光法(XPS)深さ方向分析の測定条件
XPS測定条件
 ・装置:X線光電子分光分析装置(XPS)
 ・メーカー/型番:アルバック・ファイ(株)/PHI5000VersaProbeII
 ・X線ビーム径(測定範囲):φ100μm
エッチング条件(Al蒸着層側から基材深さ方向へスパッタリング条件)
 ・Arイオン銃加速電圧:4kV
 ・エッチング範囲:3mm×3mm平方内部
 ・エッチング時間:30秒/1回
(2)基材の表面粗さ
 前処理工程後の基材の表面粗さ(RaおよびRz、nm)を、走査型プローブ顕微鏡(AFM)(PSM-9600、(株)島津製作所製)を用いて測定した。
(3)酸素ガスバリア性
 酸素透過率(cc/m2day)をJIS K 7126-2に準じて、酸素透過率測定装置(OX-TRAN2/20、モダンコントロール社製)を用いて測定した。酸素透過率が1.2(cc/m2day)以下である場合、包材として適していると判断した。
(4)水蒸気バリア性
 水蒸気透過率(g/m2day)をJIS K 7129Bに準じて、水蒸気透過率測定装置(Permatran-W3/31、モダンコントロール社製)を用いて測定した。水蒸気透過率が1.5(g/m2day)以下である場合、包材として適していると判断した。
(5)ラミネート強度(密着性)
 蒸着層に対して、ポリエステル2液型接着剤を塗布厚み2μmとなるよう塗工し、60μmの未延伸PPフィルムに積層し、40℃雰囲気で72時間エージング後、15mm×200mmの大きさに切り出し、T型剥離試験機(AGS-100A、(株)島津製作所製)を用い、引張り速度300mm/分でT型剥離時の密着強度を測定し、ラミ強度とした。さらに、上記と同様の方法により得られたサンプルを100℃、115℃、125℃の熱水に30分間浸漬した後のラミ強度についても測定した。ドライラミネート強度は、100(gf/15mm)以上、ウェットラミネート強度は100(gf/15mm)以上である場合、包材として適していると判断した。また、90°剥離時剥離界面に蒸留水を2~3滴滴下した綿棒を当て剥離界面を濡れた状態に保ち、同様にウェットラミネート強度を評価した。
(6)蒸着層側の剥離界面における炭素存在比率
 剥離後の蒸着層側の剥離界面、表層光をX線光電子分光法(XPS)によって測定した。炭素存在比率が高いことは、剥離が基材と蒸着層の界面近傍ではなく、基材の内部破断で生じていることを意味する。
(X線光電子分光法(XPS)測定条件)
XPS測定条件
 ・装置:X線光電子分光分析装置(XPS)
 ・メーカー/型番:アルバック・ファイ(株)/PHI5000VersaProbeII
 ・X線ビーム径(測定範囲):φ100μm
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、酸素原子の平均濃度が8.0原子%以下であった実施例1~3の蒸着フィルムは、いずれも優れたラミネート強度およびバリア性を示した。一方、前処理工程を行わなかった比較例1の蒸着フィルムは、熱水処理によってラミネート強度が大きく低下し、バリア性との両立ができなかった。
 1 パルス電源
 2 直流電源
 3 コンデンサ
 4 スイッチ
 5 パルスユニット

Claims (11)

  1.  基材と、前記基材上に設けられた蒸着層とを備え、
     前記蒸着層は、金属を含み、厚み方向におけるX線光電子分光法によって測定される酸素原子の平均濃度が、8.0原子%以下である、蒸着フィルム。
  2.  前記平均濃度は、4.0~6.0原子%である、請求項1記載の蒸着フィルム。
  3.  前記蒸着層の厚み方向におけるX線光電子分光法によって測定される酸素原子のピーク濃度は、15.0原子%以下である、請求項1または2記載の蒸着フィルム。
  4.  熱水処理後のラミネート強度が50gf/15mm以上である、請求項1~3のいずれか1項に記載の蒸着フィルム。
  5.  蒸着層側の剥離界面における炭素存在比率が50原子%以上である、請求項1~4のいずれか1項に記載の蒸着フィルム。
  6.  前記蒸着層は、アルミニウムを含む、請求項1~5のいずれか1項に記載の蒸着フィルム。
  7.  前記基材は、樹脂製基材である、請求項1~6のいずれか1項に記載の蒸着フィルム。
  8.  食品を包装するための包装用フィルムである、請求項1~7のいずれか1項に記載の蒸着フィルム。
  9.  基材と、前記基材上に設けられた蒸着層とを備える蒸着フィルムの製造方法であり、
     前記基材を、プラズマ処理する前処理工程と、前記前処理工程後の基材に前記蒸着層を形成する蒸着工程とを含み、
     前記蒸着工程は、金属を含む蒸着層を前記前処理工程後の基材に形成する工程であり、
     前記前処理工程は、
      最大電力密度が0.5~20(W/cm2)であるパルスを、パルス繰り返し時間(Ton+Toff)に対するパルス時間(Ton)の割合(Ton/Ton+Toff)が0.15以下となるよう周期的にカソードに供給してプラズマを生成する工程を含む、蒸着フィルムの製造方法。
  10.  前記前処理工程における前記パルスの最大電流値は、6.0(A)以下である、請求項9記載の蒸着フィルムの製造方法。
  11.  前記前処理工程は、前記基材の原子間力顕微鏡で測定した表面荒さが、Raが0.7~2.0nm、Rzが8.0~20.0nmとなるまで前記基材の表面を処理する工程である、請求項9または10記載の蒸着フィルムの製造方法。
PCT/JP2019/022390 2018-06-25 2019-06-05 蒸着フィルムおよび蒸着フィルムの製造方法 WO2020003946A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020527340A JP7373854B2 (ja) 2018-06-25 2019-06-05 蒸着フィルムおよび蒸着フィルムの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018119880 2018-06-25
JP2018-119880 2018-06-25

Publications (1)

Publication Number Publication Date
WO2020003946A1 true WO2020003946A1 (ja) 2020-01-02

Family

ID=68986564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022390 WO2020003946A1 (ja) 2018-06-25 2019-06-05 蒸着フィルムおよび蒸着フィルムの製造方法

Country Status (3)

Country Link
JP (1) JP7373854B2 (ja)
TW (1) TW202000953A (ja)
WO (1) WO2020003946A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021210478A1 (ja) * 2020-04-17 2021-10-21 株式会社クラレ 金属被覆液晶ポリマーフィルム
JP7519691B2 (ja) 2021-09-06 2024-07-22 尾池工業株式会社 フレキシブル基板
US12089327B2 (en) 2020-04-17 2024-09-10 Kuraray Co., Ltd. Metal-coated liquid-crystal polymer film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI784310B (zh) * 2020-09-02 2022-11-21 國立中興大學 蔬果包裝的主動氣調保鮮膜及其製備方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327931A (ja) * 2003-04-28 2004-11-18 Matsushita Electric Ind Co Ltd 金属被膜ポリイミド基板及びその製造方法
JP2009006439A (ja) * 2007-06-27 2009-01-15 Kyocera Corp 切削工具
WO2014050951A1 (ja) * 2012-09-28 2014-04-03 大日本印刷株式会社 透明蒸着フィルム
JP2018001584A (ja) * 2016-06-30 2018-01-11 株式会社麗光 金属積層フイルム、及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990003266A1 (en) * 1988-09-28 1990-04-05 Toray Industries, Inc. Aluminium vacuum evaporation film and its production method
JP2003071985A (ja) * 2001-09-05 2003-03-12 Kakogawa Plastic Kk 薄膜形成法
JP5351204B2 (ja) * 2011-04-05 2013-11-27 尾池工業株式会社 熱水耐性を有するガスバリアフィルムの製造方法及び熱水耐性を有するガスバリアフィルム
US20140311409A1 (en) * 2011-12-28 2014-10-23 Dai Nippon Printing Co., Ltd. Vapor deposition apparatus having pretreatment device that uses plasma
WO2018163883A1 (ja) * 2017-03-07 2018-09-13 東洋紡株式会社 蒸着基材用ポリエチレン系フィルム及びそれを用いた蒸着フィルム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327931A (ja) * 2003-04-28 2004-11-18 Matsushita Electric Ind Co Ltd 金属被膜ポリイミド基板及びその製造方法
JP2009006439A (ja) * 2007-06-27 2009-01-15 Kyocera Corp 切削工具
WO2014050951A1 (ja) * 2012-09-28 2014-04-03 大日本印刷株式会社 透明蒸着フィルム
JP2018001584A (ja) * 2016-06-30 2018-01-11 株式会社麗光 金属積層フイルム、及びその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021210478A1 (ja) * 2020-04-17 2021-10-21 株式会社クラレ 金属被覆液晶ポリマーフィルム
JPWO2021210478A1 (ja) * 2020-04-17 2021-10-21
CN115461216A (zh) * 2020-04-17 2022-12-09 株式会社可乐丽 金属被覆液晶聚合物膜
JP7378107B2 (ja) 2020-04-17 2023-11-13 株式会社クラレ 金属被覆液晶ポリマーフィルム
US12089327B2 (en) 2020-04-17 2024-09-10 Kuraray Co., Ltd. Metal-coated liquid-crystal polymer film
JP7519691B2 (ja) 2021-09-06 2024-07-22 尾池工業株式会社 フレキシブル基板

Also Published As

Publication number Publication date
JPWO2020003946A1 (ja) 2021-08-26
JP7373854B2 (ja) 2023-11-06
TW202000953A (zh) 2020-01-01

Similar Documents

Publication Publication Date Title
WO2020003946A1 (ja) 蒸着フィルムおよび蒸着フィルムの製造方法
CN112201389B (zh) 一种替代铝箔的导电膜及其制备方法
JP4433794B2 (ja) 蒸着フィルム
JPWO2019087960A1 (ja) 積層フィルム、バリア性積層フィルム及び該バリア性積層フィルムを用いたガスバリア性包装材料、ガスバリア性包装体
JP7079008B2 (ja) 積層フィルムおよび積層フィルムの製造方法
JPWO2019182017A1 (ja) バリア性積層フィルム及び該バリア性積層フィルムを用いた包装材料
JP5919260B2 (ja) ガスバリア積層フィルムとその製造方法
JP5399352B2 (ja) 圧電性積層体及びその製造方法
CN1331836A (zh) 用于产生等离子体的空心阴极阵列
JPWO2012133703A1 (ja) ガスバリア積層フィルムとその製造方法
JP2013253319A (ja) ガスバリア性フィルム及びその製造方法
JP2014114467A (ja) ガスバリア性フィルムの製造方法
CN115044879B (zh) 一种微孔镀膜装置及镀膜方法
JP5251388B2 (ja) 積層体製造装置
JP2007297712A (ja) プラズマを利用して堆積された薄いシード層を介してのメタライゼーション
JP2021130208A (ja) アルミニウム蒸着フィルム及びそれを用いた積層体
JP2012196918A (ja) 加圧加熱殺菌用包装材料
WO2013168739A1 (ja) ガスバリア性フィルム及びその製造方法
JP2016186106A (ja) 蒸着フィルムの製造方法
JP2008168498A (ja) ガスバリア性積層体およびその製造方法
JP2021041697A (ja) バリアフィルム、該バリアフィルムを用いた積層体、該積層体を用いた包装製品
JP2004137419A (ja) ポリエチレンテレフタレートフィルム及び積層体
JP5729072B2 (ja) 蒸着用材料及びガスバリア性蒸着フィルム及び該蒸着フィルムの製造方法
JP7519691B2 (ja) フレキシブル基板
JP2018069477A (ja) ガスバリア積層体及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19825768

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2020527340

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19825768

Country of ref document: EP

Kind code of ref document: A1