WO2019244303A1 - 波面センサ、波面計測装置および波面計測方法 - Google Patents

波面センサ、波面計測装置および波面計測方法 Download PDF

Info

Publication number
WO2019244303A1
WO2019244303A1 PCT/JP2018/023674 JP2018023674W WO2019244303A1 WO 2019244303 A1 WO2019244303 A1 WO 2019244303A1 JP 2018023674 W JP2018023674 W JP 2018023674W WO 2019244303 A1 WO2019244303 A1 WO 2019244303A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavefront
lens array
lenses
microlens array
optical system
Prior art date
Application number
PCT/JP2018/023674
Other languages
English (en)
French (fr)
Inventor
佳史 三輪
貴雄 遠藤
彰裕 藤江
俊行 安藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018555781A priority Critical patent/JP6524357B1/ja
Priority to PCT/JP2018/023674 priority patent/WO2019244303A1/ja
Publication of WO2019244303A1 publication Critical patent/WO2019244303A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength

Definitions

  • the present invention relates to a wavefront sensor that detects a wavefront.
  • the Shack-Hartmann wavefront sensor is a sensor that condenses and splits a light beam transmitted through the optical system to be inspected or a light beam reflected by the optical system to be inspected by a microlens array. , The transmitted wavefront aberration of the test optical system or the reflected wavefront aberration of the test optical system is measured.
  • the wavefront sensor cannot acquire information exceeding the number of pixels of the two-dimensional detection element, there is a trade-off between the plane resolution and the inclination resolution of the wavefront. For example, the finer the pitch of the microlens array and the higher the plane resolution of the wavefront, the smaller the number of pixels per microlens, and the lower the tilt resolution of the wavefront.
  • Japanese Patent Application Laid-Open No. H11-157572 aims at high accuracy by shifting the irradiation position of a light beam on a two-dimensional detection element by a sub-pixel unit by using a liquid crystal provided between a microlens array and a two-dimensional detection element.
  • An optical sensor is described.
  • Patent Document 1 has a problem that the error of the liquid crystal cannot be calibrated in real time, and the plane resolution of the wavefront cannot be improved.
  • the present invention has been made to solve the above problems, and has as its object to obtain a wavefront sensor that can improve the planar resolution of a wavefront.
  • the wavefront sensor includes a lens array, an image sensor, and a linear motion mechanism.
  • the lens array is configured by receiving a light beam transmitted or reflected by the optical system to be measured, and arranging a plurality of lenses.
  • the imaging element captures an image of a plurality of condensed spots in which light beams passing through the plurality of lenses are condensed.
  • the translation mechanism scans the lens array by moving the lens array in a direction crossing the light beam toward the image sensor. In this configuration, the arrangement direction of the plurality of lenses is inclined with respect to the moving direction of the lens array.
  • the lens array in which the arrangement direction of the plurality of lenses is inclined with respect to the movement direction of the lens array is moved in the direction crossing the light beam toward the image sensor, and scanning is performed. Can be improved.
  • FIG. 1 is a block diagram illustrating a configuration of a wavefront measuring device according to Embodiment 1 of the present invention.
  • 5 is a flowchart illustrating a wavefront measuring method according to the first embodiment.
  • FIG. 3 is an explanatory diagram illustrating an outline of a wavefront measurement method according to the first embodiment. It is explanatory drawing which shows the case where a micro lens is receiving eclipse.
  • FIG. 5 is an explanatory diagram illustrating an outline of a modification of the wavefront measurement device according to the first embodiment.
  • FIG. 5 is an explanatory diagram illustrating a relationship between an angle formed by a scanning direction of a microlens array and an arrangement direction of the microlens in a modification of the wavefront measurement device according to the first embodiment.
  • FIG. 7 is a block diagram showing a configuration of a wavefront measuring device according to Embodiment 2 of the present invention.
  • FIG. 9 is a diagram illustrating a scanning mechanism of a microlens array in the wavefront sensor according
  • FIG. 1 is a block diagram showing a configuration of the wavefront measuring device according to Embodiment 1 of the present invention.
  • the wavefront measuring device shown in FIG. 1 measures the wavefront of the test optical system 2 based on the focused spot image of the light beam 2A detected by the wavefront sensor according to the first embodiment.
  • the light beam 2A is a light beam emitted from the light source 1 and transmitted or reflected by the test optical system 2.
  • the wavefront sensor according to the first embodiment includes a microlens array 3, an image sensor 4, and a linear motion mechanism 11.
  • the wavefront measuring device according to the first embodiment includes a local wavefront tilt calculator 21, a wavefront calculator 22, a resolution controller 23, and a device controller 24 in addition to the wavefront sensor.
  • the microlens array 3 is a lens array that splits the light beam 2A transmitted or reflected by the test optical system 2 and condenses the light beam 2A on the image sensor 4.
  • the image sensor 4 captures an image of the converging spot of the light beam 2A and outputs image data to the local wavefront tilt calculator 21.
  • the linear motion mechanism 11 moves the microlens array 3 in a direction crossing the light beam 2A toward the image sensor 4. For example, when the direction perpendicular to the imaging surface of the imaging device 4 is the optical axis direction of the light beam 2 ⁇ / b> A, the linear motion mechanism 11 determines the micro lens array 3 based on the position table 32 input from the resolution control unit 23.
  • the micro lens array 3 is moved and scanned in a direction in which the lens surface of the micro lens array 2 is orthogonal to the optical axis of the light beam 2A.
  • the arrangement direction of the plurality of microlenses is inclined with respect to the moving direction (scanning direction).
  • the local wavefront tilt calculation unit 21 calculates the tilt of the local wavefront of the test optical system 2 for each position in the moving direction of the microlens array 3 based on the imaging data of the plurality of condensed spots imaged by the imaging element 4. This is the first operation unit that performs the operation.
  • the plurality of local wavefront tilt data 31 calculated by the local wavefront tilt calculator 21 are output to the wavefront calculator 22.
  • the wavefront calculator 22 is a second calculator that calculates the wavefront of the optical system 2 based on the local wavefront tilt data 31 obtained for each position of the microlens array 3 in the movement direction.
  • the resolution control unit 23 creates the position table 32 based on the wavefront data calculated by the wavefront calculation unit 22.
  • the position table 32 is data in which a plurality of positions in the movement direction of the microlens array 3 are set, and is output to the device control unit 24.
  • the device control unit 24 controls the linear motion mechanism 11 to move the microlens array 3 for each position set in the position table 32.
  • the device control unit 24 controls the image sensor 4 to image the converging spot of the light beam 2A.
  • FIG. 2 is a flowchart illustrating a wavefront measuring method according to the first embodiment.
  • light from the light source 1 is incident on the test optical system 2 shown in FIG. 1, and the light beam 2A transmitted or reflected by the test optical system 2 is The light is incident on the lens array 3.
  • the linear motion mechanism 11 scans the microlens array 3 in a state where the arrangement direction of the plurality of microlenses is inclined with respect to the scanning direction in a direction crossing the light beam 2A toward the image sensor 4 (step ST1).
  • the local wavefront tilt calculation unit 21 calculates the tilt of the local wavefront of the test optical system 2 for each position in the scanning direction of the microlens array 3 based on the imaging data of the plurality of condensed spots imaged by the imaging device 4. (Step ST2).
  • the plurality of local wavefront tilt data 31 for each position in the scanning direction of the microlens array 3 is output to the wavefront calculation unit 22.
  • the wavefront calculator 22 receives a plurality of local wavefront tilt data 31 for each position in the scanning direction of the microlens array 3 from the local wavefront tilt calculator 21 and calculates a wavefront using the local wavefront tilt data 31. (Step ST3).
  • FIG. 3 is an explanatory diagram showing an outline of the wavefront measuring method according to the first embodiment.
  • the light beam 2A propagates from the front side to the back side of the paper.
  • the microlens array 3 is configured by arranging a plurality of microlenses in a two-dimensional square lattice, as shown in the left view of FIG.
  • the microlens array 3 is moved by the linear motion mechanism 11 shown in FIG. 1 in a scanning direction 11A indicated by an arrow in FIG.
  • the scanning direction 11A is a direction crossing the light beam 2A propagating from the front side to the back side of the paper surface.
  • the arrangement direction of the plurality of microlenses in the microlens array 3 is inclined at an angle ⁇ with respect to the scanning direction 11A.
  • the microlens array 3 is moved in the scanning direction 11A by the translation mechanism 11 while being inclined with respect to the scanning direction 11A.
  • the inclination angle ⁇ is 45 °
  • the microlens array 3 is moved by a constant moving amount by the linear motion mechanism 11, and the moving amount is 1/1 / the pitch size d of the microlenses in the microlens array 3. ⁇ 2 times.
  • the inclination angle ⁇ is 45 °
  • the microlens array 3 is moved by a constant moving amount by the linear motion mechanism 11, and the moving amount is 1/1 / the pitch size d of the microlenses in the microlens array 3. ⁇ 2 times.
  • the inclination angle ⁇ is tan -1 3
  • the microlens array 3 is moved to each predetermined amount of movement by the linear motion mechanism 11, the amount of movement, the micro in the microlens array 3 It is 1 / ⁇ 5 times the pitch size d of the lens.
  • the converging spot array 41A shown on the right side of FIG. 3 is an array of converging spots imaged by the image sensor 4 when the microlens array 3 moves to the first position.
  • the converging spot array 41B is an array of converging spots imaged by the imaging device 4 when the microlens array 3 has moved from the first position to the second position separated by the above-described movement amount.
  • the converging spot array 41C is an array of converging spots imaged by the image sensor 4 when the microlens array 3 has moved from the first position to the third position separated by the above-described movement amount.
  • the converging spot array 41D is an array of converging spots imaged by the imaging device 4 when the microlens array 3 has moved from the first position to the fourth position separated by the above-described movement amount.
  • the converging spot array 41E is an array of converging spots imaged by the image sensor 4 when the microlens array 3 has moved from the first position to the fifth position separated by the above-mentioned movement amount.
  • the local wavefront tilt calculator 21 calculates the local wavefront tilt data 31 based on the imaging data of the converging spot array 41A, calculates the local wavefront tilt data 31 based on the imaging data of the converging spot array 41B, and collects the light.
  • the local wavefront inclination data 31 is calculated based on the imaging data of the spot array 41C
  • the local wavefront inclination data 31 is calculated based on the imaging data of the converging spot array 41D
  • the local wavefront inclination data 31 is calculated based on the imaging data of the converging spot array 41E.
  • the wavefront inclination data 31 is calculated.
  • the wavefront calculator 22 calculates the wavefront of the test optical system 2 based on the five sets of local wavefront tilt data 31 corresponding to the first to fifth positions. This is equivalent to obtaining a condensed spot image at five times the density and calculating the wavefront, and can improve the plane resolution of the wavefront.
  • positions defined by 0, d / (N 2 +1) 1/2 ,..., N 2 d / (N 2 +1) 1/2 are set in the position table 32. .
  • the inclination of the local wavefront can be measured at equal intervals, and the plane resolution of the wavefront is improved. In other words, even higher order wavefront aberration components can be calculated.
  • the wavefront of the test optical system 2 can be accurately positioned, which is useful for inspection of a fine defect or transmittance of the test optical system 2.
  • FIG. 4 is an explanatory diagram showing a case where the microlens is subjected to pitting.
  • the pupil 2B of the test optical system 2 is circular
  • the microlens array 3 is completely removed from the optical axis, light is irradiated only inside the pupil 2B of the test optical system 2.
  • the microlens that is uniformly illuminated is different.
  • the inside of the pupil 2B of the test optical system 2 is uniformly illuminated, and a substantially condensed spot 42C is obtained. Therefore, it is included in the wavefront calculation, and the outside of the pupil 2B of the test optical system 2 is not uniformly illuminated. Since it becomes the converging spot 42D, it is excluded from the wavefront calculation.
  • the wavefront measurement is performed by moving the microlens array 3 to the position where the microlens is uniformly illuminated, so that the wavefront measurement accuracy is improved.
  • the (N + 2) th and subsequent measurement points may be added with a scanning amount d (N 2 +1) 1/2 .
  • the device control unit 24 controls the linear motion mechanism 11 to move the microlens array 3 at each position set in the position table 32, controls the image sensor 4, and moves the microlens array 3 (scanning position). An image of the converging spot of the light beam 2A is taken for each position).
  • the device control unit 24 may control the image-acquisition device 4 while continuously scanning the microlens array 3 by controlling the linear motion mechanism 11 to repeatedly image the converging spot.
  • a position sensor (not shown) detects the position of the microlens array 3 continuously scanned by the translation mechanism 11, and associates the detected position with image data sequentially imaged by the image sensor 4.
  • the local wavefront tilt calculation unit 21 calculates and interpolates the local wavefront tilt data 31 corresponding to a position that is not set in the position table 32 using the association data.
  • the wavefront measurement unit 22 measures the wavefront based on the inclination of the local wavefront measured at a high density in this manner, thereby speeding up the wavefront measurement.
  • a second light source (not shown) different from the light source 1 may be used as the position sensor described above.
  • the light beam emitted from the second light source is imaged by the image sensor 4 separately from the light beam from the light source 1.
  • the imaging device 4 can detect the scanning amount of the microlens array 3 by the translation mechanism 11.
  • FIG. 5 is an explanatory diagram illustrating an outline of a modification of the wavefront measurement device according to the first embodiment.
  • the wavefront sensor included in the modification of the wavefront measurement device according to the first embodiment includes a microlens array 3A shown in the left diagram of FIG. 5 instead of the microlens array 3 shown in FIG.
  • the wavefront sensor includes an image sensor 4 and a linear motion mechanism 11 in addition to the microlens array 3A.
  • the wavefront measuring apparatus according to Embodiment 1 includes a local wavefront tilt calculator 21, a wavefront calculator 22, a resolution controller 23, and a device controller 24 in addition to the wavefront sensor.
  • the light beam 2A propagates from the front side to the back side of the paper.
  • the microlens array 3A is a lens array that divides the light beam 2A transmitted or reflected by the test optical system 2 and condenses the light beam 2A on the image sensor 4, similarly to the microlens array 3 shown in FIG. However, unlike the microlens array 3, the microlens array 3A is configured by arranging a plurality of microlenses each having a regular hexagonal outer shape in a two-dimensional hexagonal lattice. The linear motion mechanism 11 moves the microlens array 3A in a direction crossing the light beam 2A toward the image sensor 4.
  • the linear motion mechanism 11 moves the micro lens array 3A based on the position table 32 input from the resolution control unit 23.
  • the microlens array 3A is moved and scanned in a direction in which the lens surface is orthogonal to the optical axis of the light beam 2A.
  • the arrangement direction of the plurality of microlenses is inclined with respect to the moving direction (scanning direction).
  • the microlens array 3A is moved by the linear motion mechanism 11 in the scanning direction 11A indicated by the arrow in the left-side view of FIG.
  • the scanning direction 11A is a direction crossing the light beam 2A propagating from the front side to the back side of the paper surface.
  • the arrangement direction of the plurality of microlenses in the microlens array 3A is inclined at an angle ⁇ with respect to the scanning direction 11A.
  • the microlens array 3A is moved in the scanning direction 11A by the translation mechanism 11 while being inclined with respect to the scanning direction 11A.
  • the inclination angle ⁇ is 30 °
  • the microlens array 3A is moved by a constant moving amount by the linear motion mechanism 11, and the moving amount is 1 / ⁇ 3 times the pitch size d of the microlenses in the microlens array 3A. It is.
  • the condensed spot array 43B is an array of condensed spots imaged by the image sensor 4 when the microlens array 3A moves from the first position to the second position separated by the above movement amount.
  • the condensed spot array 43C is an array of condensed spots imaged by the image sensor 4 when the microlens array 3A moves from the first position to the third position separated by the above-described movement amount.
  • the local wavefront tilt calculation unit 21 calculates the local wavefront tilt data 31 based on the imaging data of the condensing spot array 43A, calculates the local wavefront tilt data 31 based on the imaging data of the condensing spot array 43B, and collects the light.
  • the local wavefront inclination data 31 is calculated based on the imaging data of the spot array 43C.
  • the wavefront calculator 22 calculates the wavefront of the optical system 2 based on three sets of local wavefront tilt data 31 corresponding to the first position, the second position, and the third position. This is equivalent to obtaining a condensed spot image at three times the density and calculating the wavefront, and can improve the plane resolution of the wavefront.
  • FIG. 6 is an explanatory diagram illustrating a relationship between an angle ⁇ formed by the scanning direction of the microlens array 3A and the arrangement direction of the microlenses in the modification of the wavefront measurement device according to the first embodiment.
  • 0, d / (N 2 + N + 1) 1/2 ,..., (N 2 + N) d / (N 2 + N + 1) 1 / in the position table 32 in the modification of the wavefront measuring apparatus according to the first embodiment. 2 are set.
  • the local wavefront is N 2 + N + 1 times the planar resolution of the wavefront sensor when the microlens array 3A is not scanned and at equal intervals. Can be measured, and the plane resolution of the wavefront is improved. In other words, even higher order wavefront aberration components can be calculated.
  • the microlens array 3 or 3A in which the arrangement direction of the plurality of microlenses is inclined with respect to the scanning direction 11A crosses the light beam 2A toward the image sensor 4. Scan by moving in the direction. Thereby, imaging data for each scanning position of the microlens array 3 or 3A can be obtained, so that the wavefront plane resolution can be improved without lowering the wavefront tilt resolution and dynamic range.
  • the microlens array 3 is configured by arranging the microlenses in a two-dimensional square lattice shape, and the arrangement direction of the plurality of microlenses is in the scanning direction of the microlens array 3.
  • the inclination angle ⁇ has a relationship in which tan ⁇ is a positive natural number N of 1 or more.
  • the linear motion mechanism 11 is 0, d / (N 2 +1) 1/2 ,..., N 2 d / (N 2 +1) 1/2 respectively.
  • the micro lens array 3 is scanned to a specified position. As a result, imaging data having a density of N 2 +1 times the plane resolution of the wavefront sensor when the microlens array 3 is not scanned and having equal intervals are obtained.
  • microlens array 3A is configured by arranging microlenses in a two-dimensional hexagonal lattice shape, and the arrangement direction of the plurality of microlenses is in the moving direction of microlens array 3A.
  • the linear motion mechanism 11 sets the micro lens array 3A to 0, d / (N 2 + N + 1) 1/2 ,..., (N 2 + N). Scan to a position defined by d / (N 2 + N + 1) 1/2 .
  • imaging data with a density of N 2 + N + 1 times the planar resolution of the wavefront sensor when the microlens array 3A is not scanned and at equal intervals can be obtained.
  • the wavefront measuring device includes a local wavefront tilt calculator 21 and a wavefront calculator 22 in addition to the above-described wavefront sensor. This makes it possible to realize a wavefront measuring device in which the plane resolution of the wavefront is improved as compared with the wavefront sensor when the microlens array 3 or 3A is not scanned.
  • the planar resolution of the wavefront is improved as compared with the wavefront sensor when the microlens array 3 or 3A is not scanned.
  • FIG. 7 is a block diagram showing a configuration of the wavefront measuring device according to Embodiment 2 of the present invention. 7, the same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.
  • the wavefront measuring device shown in FIG. 7 measures the wavefront of the test optical system 2 based on the focused spot image of the light beam 2A detected by the wavefront sensor according to the second embodiment.
  • the wavefront sensor according to the second embodiment includes a microlens array 3, an image sensor 4, a linear motion mechanism 11, and a rotation mechanism 12.
  • the wavefront measuring device according to the second embodiment includes a local wavefront tilt calculator 21, a wavefront calculator 22, a resolution controller 23A, and a device controller 24A, in addition to the wavefront sensor.
  • the rotation mechanism 12 is a component that rotates the microlens array 3, and is realized using, for example, any one of a rotation stage, a motor, a gonio stage, and a tilt stage.
  • the rotation mechanism 12 By rotating the microlens array 3 by the rotation mechanism 12, the inclination angle ⁇ formed by the arrangement direction of the plurality of microlenses with respect to the moving direction of the microlens array 3 by the translation mechanism 11 is changed.
  • the resolution control unit 23A creates the position / angle table 33 based on the wavefront data calculated by the wavefront calculation unit 22.
  • the position angle table 33 is data in which the angle ⁇ of the microlens array 3 and a plurality of positions in the moving direction corresponding to the angle ⁇ are set.
  • the device control unit 24 ⁇ / b> A controls the linear motion mechanism 11 to move the microlens array 3 for each position set in the position / angle table 33, and controls the rotation mechanism 12 to set the position in the position / angle table 33.
  • the micro lens array 3 is rotated by the angle ⁇ .
  • the device control unit 24A controls the image pickup device 4 to image the converging spot of the light beam 2A.
  • FIG. 8 is a diagram illustrating a scanning mechanism of the microlens array 3 in the wavefront sensor according to the second embodiment.
  • the position angle table 33 in which the position specified by each 1/2 is set is created.
  • the device control unit 24A controls the rotation mechanism 12 to rotate the microlens array 3 to the angle ⁇ set in the position angle table 33, and in this state, controls the linear motion mechanism 11 to The micro-lens array 3 is moved for each position set in. At this time, the device control unit 24A controls the imaging element 4 to capture an image of the converging spot of the light beam 2A at each moving position of the microlens array 3.
  • the planar resolution of the wavefront can be increased, and as N is reduced, the measurement frequency can be increased.
  • the wavefront sensor according to the second embodiment rotates the microlens array 3 to change the inclination angle ⁇ formed by the arrangement direction of the plurality of microlenses with the moving direction of the microlens array 3.
  • a mechanism 12 is provided. By changing the angle ⁇ , it is possible to change between a wavefront measurement with high speed but low plane resolution and a wavefront measurement with low speed but high plane resolution.
  • the rotation mechanism 12 may be configured to rotate the microlens array 3A. Even with this configuration, the same effects as described above can be obtained.
  • the wavefront measuring device includes a local wavefront tilt calculator 21 and a wavefront calculator 22 in addition to the above-described wavefront sensor. This makes it possible to realize a wavefront measuring apparatus in which the plane resolution of the wavefront is improved as compared with a wavefront sensor when the microlens array 3 is not scanned.
  • the wavefront measurement method by changing the angle ⁇ by rotating the microlens array 3, it is possible to change between a high-speed but low-plane-resolution wavefront measurement and a low-speed but high-plane-resolution wavefront measurement. It is possible.
  • the wavefront sensor according to the present invention can improve the planar resolution of the wavefront, and can be used for wavefront measurement of various optical systems.

Abstract

走査方向(11A)に対して複数のマイクロレンズの配列方向が傾斜しているマイクロレンズアレイ(3)を、撮像素子(4)に向かう光束(2A)を横切る方向に移動させて走査する。

Description

波面センサ、波面計測装置および波面計測方法
 本発明は、波面を検出する波面センサに関する。
 シャックハルトマン方式の波面センサは、被検光学系を透過した光線または被検光学系で反射された光線を、マイクロレンズアレイによって集光および分割するセンサであり、2次元検出素子における集光スポット画像に基づいて、被検光学系の透過波面収差または被検光学系の反射波面収差を測定する。
 ただし、上記波面センサでは、2次元検出素子の画素数を超えた情報を取得することはできないため、波面の平面分解能と傾き分解能とがトレードオフの関係にある。
 例えば、マイクロレンズアレイのピッチを細かくして波面の平面分解能を上げるほど、1つのマイクロレンズあたりの画素数が減るため、波面の傾き分解能が低下する。
 例えば、特許文献1には、マイクロレンズアレイと2次元検出素子との間に設けられた液晶によって2次元検出素子への光線の照射位置をサブピクセル単位でシフトさせることで、高精度化を図った光学センサが記載されている。
特開2010-230834号公報
 特許文献1に記載されるセンサは、液晶の誤差分をリアルタイムに校正できず、波面の平面分解能が改善されないという課題があった。
 本発明は上記課題を解決するものであり、波面の平面分解能を改善できる波面センサを得ることを目的とする。
 本発明に係る波面センサは、レンズアレイ、撮像素子および直動機構を備える。レンズアレイは、被検光学系を透過または反射した光束が入射され、複数のレンズを配列して構成されている。撮像素子は、複数のレンズを通過した光束が集光された複数の集光スポットを撮像する。直動機構は、撮像素子に向かう光束を横切る方向にレンズアレイを移動させて走査する。この構成において、複数のレンズの配列方向は、レンズアレイの移動方向に対して傾いていることを特徴とする。
 本発明によれば、レンズアレイの移動方向に対して複数のレンズの配列方向が傾斜しているレンズアレイを、撮像素子に向かう光束を横切る方向に移動させて走査することで、波面の平面分解能を改善できる。
この発明の実施の形態1に係る波面計測装置の構成を示すブロック図である。 実施の形態1に係る波面計測方法を示すフローチャートである。 実施の形態1に係る波面計測方法の概要を示す説明図である。 マイクロレンズが開口食を受けている場合を示す説明図である。 実施の形態1に係る波面計測装置の変形例の概要を示す説明図である。 実施の形態1に係る波面計測装置の変形例におけるマイクロレンズアレイの走査方向とマイクロレンズの配列方向とがなす角度の関係を示す説明図である。 この発明の実施の形態2に係る波面計測装置の構成を示すブロック図である。 実施の形態2に係る波面センサにおけるマイクロレンズアレイの走査機構を示す図である。
 以下、本発明をより詳細に説明するため、本発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、この発明の実施の形態1に係る波面計測装置の構成を示すブロック図である。図1に示す波面計測装置は、実施の形態1に係る波面センサによって検出された光束2Aの集光スポット像に基づいて、被検光学系2の波面を計測する。光束2Aは、光源1から出射されて被検光学系2を透過または反射した光束である。図1において、実施の形態1に係る波面センサは、マイクロレンズアレイ3、撮像素子4および直動機構11を備えて構成される。実施の形態1に係る波面計測装置は、波面センサの他に、局所波面傾斜演算部21、波面演算部22、分解能制御部23および機器制御部24を備える。
 マイクロレンズアレイ3は、被検光学系2を透過または反射した光束2Aを分割して撮像素子4に集光させるレンズアレイである。撮像素子4は、光束2Aの集光スポットを撮像して撮像データを局所波面傾斜演算部21に出力する。直動機構11は、マイクロレンズアレイ3を、撮像素子4に向かう光束2Aを横切る方向に移動させる。例えば、撮像素子4の撮像面に対して垂直な方向が光束2Aの光軸方向である場合に、直動機構11は、分解能制御部23から入力した位置テーブル32に基づいて、マイクロレンズアレイ3のレンズ面が光束2Aの光軸に直交する方向に、マイクロレンズアレイ3を移動させて走査する。なお、マイクロレンズアレイ3は、移動方向(走査方向)に対して複数のマイクロレンズの配列方向が傾いている。
 局所波面傾斜演算部21は、撮像素子4によって撮像された複数の集光スポットの撮像データに基づいて、マイクロレンズアレイ3の移動方向の位置ごとに被検光学系2の局所波面の傾斜を演算する第1の演算部である。局所波面傾斜演算部21によって演算された複数の局所波面傾斜データ31は、波面演算部22に出力される。
 波面演算部22は、マイクロレンズアレイ3の移動方向の位置ごとに得られた局所波面傾斜データ31に基づいて、被検光学系2の波面を演算する第2の演算部である。分解能制御部23は、波面演算部22によって演算された波面データに基づいて、位置テーブル32を作成する。位置テーブル32は、マイクロレンズアレイ3の移動方向の複数の位置が設定されたデータであり、機器制御部24に出力される。機器制御部24は、直動機構11を制御して、位置テーブル32に設定された位置ごとにマイクロレンズアレイ3を移動させる。機器制御部24は、撮像素子4を制御して光束2Aの集光スポットを撮像させる。
 次に動作について説明する。
 図2は、実施の形態1に係る波面計測方法を示すフローチャートである。
 図2の一連の処理が実行される前段階で、図1に示した被検光学系2には光源1からの光が入射され、被検光学系2を透過または反射した光束2Aは、マイクロレンズアレイ3に入射されている。直動機構11は、走査方向に対して複数のマイクロレンズの配列方向が傾いた状態のマイクロレンズアレイ3を、撮像素子4に向かう光束2Aを横切る方向に走査する(ステップST1)。
 局所波面傾斜演算部21は、撮像素子4によって撮像された複数の集光スポットの撮像データに基づいて、マイクロレンズアレイ3の走査方向の位置ごとに被検光学系2の局所波面の傾斜を演算する(ステップST2)。マイクロレンズアレイ3の走査方向の位置ごとの複数の局所波面傾斜データ31は、波面演算部22に出力される。
 波面演算部22は、局所波面傾斜演算部21から、マイクロレンズアレイ3の走査方向の位置ごとの複数の局所波面傾斜データ31を入力し、これらの局所波面傾斜データ31を用いて波面を演算する(ステップST3)。
 図3は、実施の形態1に係る波面計測方法の概要を示す説明図である。図3の左側図において、光束2Aは紙面の表側から裏側に向けて伝播する。マイクロレンズアレイ3は、図3の左側図に示すように、複数のマイクロレンズが2次元正方格子状に配列されて構成されている。マイクロレンズアレイ3は、図1に示した直動機構11によって、図3の矢印で示す走査方向11Aに移動される。走査方向11Aは、紙面の表側から裏側に向けて伝播する光束2Aを横切る方向である。
 マイクロレンズアレイ3における複数のマイクロレンズの配列方向は、走査方向11Aに対して角度θで傾いている。このように、マイクロレンズアレイ3は、走査方向11Aに対して傾いた状態で、直動機構11によって走査方向11Aに移動される。
 例えば、傾き角度θが45°である場合、直動機構11によってマイクロレンズアレイ3が一定の移動量ごとに移動され、この移動量は、マイクロレンズアレイ3におけるマイクロレンズのピッチサイズdの1/√2倍である。なお、図3に示す例では、傾き角度θがtan-13であり、直動機構11によってマイクロレンズアレイ3が一定の移動量ごとに移動され、この移動量は、マイクロレンズアレイ3におけるマイクロレンズのピッチサイズdの1/√5倍である。
 図3の右側図に示す集光スポット配列41Aは、マイクロレンズアレイ3が第1の位置に移動したときに、撮像素子4によって撮像された集光スポットの配列である。集光スポット配列41Bは、マイクロレンズアレイ3が第1の位置から上記移動量離れた第2の位置に移動したときに、撮像素子4によって撮像された集光スポットの配列である。集光スポット配列41Cは、マイクロレンズアレイ3が第1の位置から上記移動量離れた第3の位置に移動したときに、撮像素子4によって撮像された集光スポットの配列である。集光スポット配列41Dは、マイクロレンズアレイ3が第1の位置から上記移動量離れた第4の位置に移動したときに、撮像素子4によって撮像された集光スポットの配列である。集光スポット配列41Eは、マイクロレンズアレイ3が第1の位置から上記移動量離れた第5の位置に移動したときに、撮像素子4によって撮像された集光スポットの配列である。
 局所波面傾斜演算部21は、集光スポット配列41Aの撮像データに基づいて局所波面傾斜データ31を算出し、集光スポット配列41Bの撮像データに基づいて局所波面傾斜データ31を算出し、集光スポット配列41Cの撮像データに基づいて局所波面傾斜データ31を算出し、集光スポット配列41Dの撮像データに基づいて局所波面傾斜データ31を算出し、集光スポット配列41Eの撮像データに基づいて局所波面傾斜データ31を算出する。波面演算部22は、第1の位置から第5の位置に対応する五組の局所波面傾斜データ31に基づいて、被検光学系2の波面を演算する。これは、5倍の密度で集光スポット像を得て波面を演算することに相当し、波面の平面分解能を改善することができる。
 走査方向11Aに対して複数のマイクロレンズの配列方向がなす角度θをtanθ=N(正の自然数、N=1,2,3,・・・)とする。これにより、位置テーブル32には、0,d/(N+1)1/2,・・・,Nd/(N+1)1/2の各々で規定される位置が設定されている。位置テーブル32に設定された位置ごとにマイクロレンズアレイ3を走査することで、マイクロレンズアレイ3を走査しないときの波面センサの平面分解能に対してN+1回の測定でN+1倍の密度であり、かつ等間隔に局所波面の傾斜を計測でき、波面の平面分解能が改善される。換言すると、より高次の波面収差成分まで演算可能である。
 また、光束2Aが外れるまでマイクロレンズアレイ3を走査することで、撮像素子4を用いて光束2Aの光強度分布を直接計測することができる。これにより、被検光学系2の波面の位置合わせを精度よく行えるので、被検光学系2の微細欠陥または透過率の検査に有用である。
 さらに、光束2Aが外れるまでマイクロレンズアレイ3を走査して撮像素子4を用いて光束2Aの光強度分布を直接計測することで、複数のマイクロレンズにおける照度分布が一様でないことを確認できる。図4は、マイクロレンズが開口食を受けている場合を示す説明図である。図4に示すように、被検光学系2の瞳2Bが円形である場合、マイクロレンズアレイ3を光軸から完全に外すと、被検光学系2の瞳2Bの内側にだけ光が照射される。図4に示す例では、マイクロレンズアレイ3が有する16個のマイクロレンズのうち、被検光学系2の瞳2Bの内側にある12個のマイクロレンズは均一に照明される。
 図4の右側図に示すように、マイクロレンズによる結像は、均一に照明された12個のマイクロレンズでほぼ点の集光スポット42Aが得られる。一方、被検光学系2の瞳2Bからレンズ領域が外れている4つのマイクロレンズには照度に段差があり、段差と垂直な方向に延びた集光スポット42Bが形成される。波面の局所傾斜は、マイクロレンズアレイ3の各々のマイクロレンズによる像の重心演算を用いて計算されるので、像が線状に延びた集光スポット42Bは誤差要因となる。そこで、集光スポット42Bを波面演算から除外する。マイクロレンズアレイ3を移動した位置では均一に照明されるマイクロレンズが異なる。被検光学系2の瞳2Bの内側では均一に照明されて、ほぼ点の集光スポット42Cが得られるので波面演算に含め、被検光学系2の瞳2Bの一部外側では均一に照明されない集光スポット42Dとなるので波面演算から除外する。このように、マイクロレンズが均一に照明される位置までマイクロレンズアレイ3を動かして波面計測することで、波面計測精度が高まる。
 マイクロレンズアレイ3の走査において、走査量d(N+1)1/2でN+2番目以降の測定点を追加してもよい。これにより、互いに異なるマイクロレンズを通過した光束を用いて同じ局所波面の傾斜を計測でき、マイクロレンズアレイにおけるマイクロレンズ間の個体差を検出し、これを校正することが可能である。例えば、波面センサによって計測された被検光学系2の波面の変化の要因には、被検光学系2の波面の経時変化に加えて、波面センサの経時変化も考えられる。そこで、前述したようにマイクロレンズの個体差を検出して校正することで、波面の変化の要因から波面センサの経時変化を切り分けることができる。
 機器制御部24は、直動機構11を制御して、位置テーブル32に設定された位置ごとにマイクロレンズアレイ3を移動させ、撮像素子4を制御して、マイクロレンズアレイ3の移動位置(走査位置)ごとに光束2Aの集光スポットを撮像させる。
 また、機器制御部24は、直動機構11を制御してマイクロレンズアレイ3を連続的に走査しながら撮像素子4を制御して集光スポットを繰り返し撮像してもよい。このとき、不図示の位置センサが、直動機構11により連続して走査されたマイクロレンズアレイ3の位置を検出し、検出した位置と撮像素子4によって逐次撮像された撮像データとを対応付ける。局所波面傾斜演算部21が、この対応付けデータを用いて、位置テーブル32に設定されていなかった位置に対応する局所波面傾斜データ31を演算して補間する。波面演算部22が、このように高密度で計測された局所波面の傾斜に基づいて波面を計測することで、波面計測が高速化される。
 なお、前述した位置センサとして、光源1とは異なる第2の光源(不図示)を利用したものであってもよい。例えば、第2の光源から出射された光束は、撮像素子4によって、光源1からの光束とは別に撮像される。第2の光源から出射された光束で直動機構11の動作をモニタすることで、撮像素子4が、直動機構11によるマイクロレンズアレイ3の走査量を検出することができる。
 次に、実施の形態1に係る波面計測装置の変形例について説明する。
 図5は、実施の形態1に係る波面計測装置の変形例の概要を示す説明図である。実施の形態1に係る波面計測装置の変形例が備える波面センサは、図3に示したマイクロレンズアレイ3の代わりに、図5の左側図に示すマイクロレンズアレイ3Aを備えている。
 上記波面センサは、マイクロレンズアレイ3Aの他、撮像素子4および直動機構11を備えている。また、実施の形態1に係る波面計測装置は、上記波面センサの他、局所波面傾斜演算部21、波面演算部22、分解能制御部23および機器制御部24を備える。
 なお、図5の左側図において、光束2Aは、紙面の表側から裏側に向けて伝播する。
 マイクロレンズアレイ3Aは、図3に示したマイクロレンズアレイ3と同様に、被検光学系2を透過または反射した光束2Aを分割して撮像素子4に集光させるレンズアレイである。ただし、マイクロレンズアレイ3と異なり、マイクロレンズアレイ3Aは、各々が正六角形の外形を有する複数のマイクロレンズが2次元六角格子状に配列されて構成されている。直動機構11は、マイクロレンズアレイ3Aを、撮像素子4に向かう光束2Aを横切る方向に移動させる。例えば、撮像素子4の撮像面に対して垂直な方向が光束2Aの光軸方向である場合、直動機構11は、分解能制御部23から入力した位置テーブル32に基づいて、マイクロレンズアレイ3Aのレンズ面が光束2Aの光軸に直交する方向に、マイクロレンズアレイ3Aを移動させて走査する。なお、マイクロレンズアレイ3Aは、移動方向(走査方向)に対して複数のマイクロレンズの配列方向が傾いている。
 次に動作について説明する。
 マイクロレンズアレイ3Aは、直動機構11によって、図5の左側図の矢印で示す走査方向11Aに移動される。走査方向11Aは、紙面の表側から裏側に向けて伝播する光束2Aを横切る方向である。
 マイクロレンズアレイ3Aにおける複数のマイクロレンズの配列方向は、走査方向11Aに対して角度θで傾いている。このように、マイクロレンズアレイ3Aは、走査方向11Aに対して傾いた状態で、直動機構11によって走査方向11Aに移動される。
 例えば、傾き角度θが30°であり、直動機構11によってマイクロレンズアレイ3Aが一定の移動量ごとに移動され、移動量がマイクロレンズアレイ3Aにおけるマイクロレンズのピッチサイズdの1/√3倍である。図5の右側図に示す集光スポット配列43Aは、マイクロレンズアレイ3Aが第1の位置に移動したときに、撮像素子4によって撮像された集光スポットの配列である。集光スポット配列43Bは、マイクロレンズアレイ3Aが第1の位置から上記移動量離れた第2の位置に移動したときに、撮像素子4によって撮像された集光スポットの配列である。集光スポット配列43Cは、マイクロレンズアレイ3Aが第1の位置から上記移動量離れた第3の位置に移動したときに、撮像素子4によって撮像された集光スポットの配列である。
 局所波面傾斜演算部21は、集光スポット配列43Aの撮像データに基づいて局所波面傾斜データ31を算出し、集光スポット配列43Bの撮像データに基づいて局所波面傾斜データ31を算出し、集光スポット配列43Cの撮像データに基づいて局所波面傾斜データ31を算出する。波面演算部22は、第1の位置、第2の位置および第3の位置に対応する三組の局所波面傾斜データ31に基づいて被検光学系2の波面を演算する。これは、3倍の密度で集光スポット像を得て波面を演算することに相当し、波面の平面分解能を改善することができる。
 走査方向11Aに対して複数のマイクロレンズの配列方向がなす角度θをtanθ=(N/(N+2))×√3(Nは正の自然数、N=1,2,3,・・・)とする。
 図6は、実施の形態1に係る波面計測装置の変形例におけるマイクロレンズアレイ3Aの走査方向とマイクロレンズの配列方向とがなす角度θの関係を示す説明図である。
 実施の形態1に係る波面計測装置の変形例における位置テーブル32には、0,d/(N+N+1)1/2,・・・,(N+N)d/(N+N+1)1/2の各々で規定される位置が設定されている。位置テーブル32に設定された位置ごとにマイクロレンズアレイ3Aを走査することにより、マイクロレンズアレイ3Aを走査しないときの波面センサの平面分解能に対してN+N+1倍の密度でかつ等間隔に局所波面の傾斜を計測でき、波面の平面分解能が改善される。換言すると、より高次の波面収差成分まで演算可能である。
 前述したように、実施の形態1に係る波面センサにおいて、走査方向11Aに対して複数のマイクロレンズの配列方向が傾斜しているマイクロレンズアレイ3または3Aを、撮像素子4に向かう光束2Aを横切る方向に移動させて走査する。これにより、マイクロレンズアレイ3または3Aの走査位置ごとの撮像データが得られるので、波面の傾き分解能とダイナミックレンジを下げることなく、波面の平面分解能を改善できる。
 実施の形態1に係る波面センサにおいて、マイクロレンズアレイ3は、マイクロレンズが2次元正方格子状に配列されて構成され、マイクロレンズアレイ3の走査方向に対して複数のマイクロレンズの配列方向がなす傾き角度θは、tanθが1以上の正の自然数Nとなる関係を有する。直動機構11は、マイクロレンズのピッチサイズがdである場合に、0,d/(N+1)1/2,・・・,Nd/(N+1)1/2のそれぞれで規定される位置にマイクロレンズアレイ3を走査する。これにより、マイクロレンズアレイ3を走査しないときの波面センサの平面分解能に対してN+1倍の密度でかつ等間隔な撮像データが得られる。
 実施の形態1に係る波面センサにおいて、マイクロレンズアレイ3Aは、マイクロレンズが2次元六角格子状に配列されて構成され、マイクロレンズアレイ3Aの移動方向に対して複数のマイクロレンズの配列方向がなす傾き角度θは、1以上の正の自然数Nについてtanθ=(N/(N+2))×√3となる関係を有する。直動機構11は、マイクロレンズアレイ3Aのマイクロレンズのピッチサイズがdである場合、マイクロレンズアレイ3Aを、0,d/(N+N+1)1/2,・・・,(N+N)d/(N+N+1)1/2のそれぞれで規定される位置に走査する。これにより、マイクロレンズアレイ3Aを走査しないときの波面センサの平面分解能に対してN+N+1倍の密度でかつ等間隔な撮像データが得られる。
 実施の形態1に係る波面計測装置は、前述した波面センサに加え、局所波面傾斜演算部21および波面演算部22を備える。これにより、マイクロレンズアレイ3または3Aを走査しないときの波面センサよりも、波面の平面分解能が改善された波面計測装置を実現することができる。
 実施の形態1に係る波面計測方法では、図2に示した処理が実行されるので、マイクロレンズアレイ3または3Aを走査しないときの波面センサよりも、波面の平面分解能が改善される。
実施の形態2.
 図7は、この発明の実施の形態2に係る波面計測装置の構成を示すブロック図である。図7において図1と同一の構成要素には同一の符号を付して説明を省略する。図7に示す波面計測装置は、実施の形態2に係る波面センサによって検出された光束2Aの集光スポット像に基づいて、被検光学系2の波面を計測する。実施の形態2に係る波面センサは、マイクロレンズアレイ3、撮像素子4、直動機構11および回転機構12を備えている。実施の形態2に係る波面計測装置は、波面センサの他に、局所波面傾斜演算部21、波面演算部22、分解能制御部23Aおよび機器制御部24Aを備える。
 回転機構12は、マイクロレンズアレイ3を回転させる構成要素であり、例えば、回転ステージ、モータ、ゴニオステージおよび傾斜ステージのいずれかを用いて実現される。回転機構12によってマイクロレンズアレイ3を回転させることで、直動機構11によるマイクロレンズアレイ3の移動方向に対して複数のマイクロレンズの配列方向がなす傾き角度θが変更される。
 分解能制御部23Aは、波面演算部22によって演算された波面データに基づいて位置角度テーブル33を作成する。位置角度テーブル33は、マイクロレンズアレイ3の角度θとこれに対応する移動方向の複数の位置とが設定されたデータである。機器制御部24Aは、直動機構11を制御して、位置角度テーブル33に設定された位置ごとにマイクロレンズアレイ3を移動させ、回転機構12を制御して、位置角度テーブル33に設定された角度θにマイクロレンズアレイ3を回転させる。機器制御部24Aは、撮像素子4を制御して光束2Aの集光スポットを撮像させる。
 次に動作について説明する。
 図8は、実施の形態2に係る波面センサにおけるマイクロレンズアレイ3の走査機構を示す図である。図7に示した分解能制御部23Aは、角度θ=tan-1N(正の自然数、N=1,2,3,・・・)と、0,d/(N+1)1/2,・・・,Nd/(N+1)1/2のそれぞれで規定される位置とが設定された位置角度テーブル33を作成する。
 機器制御部24Aは、回転機構12を制御して、位置角度テーブル33に設定された角度θにマイクロレンズアレイ3を回転させ、この状態で、直動機構11を制御して、位置角度テーブル33に設定された位置ごとに、マイクロレンズアレイ3を移動させる。このとき、機器制御部24Aは、撮像素子4を制御して、マイクロレンズアレイ3の移動位置ごとに光束2Aの集光スポットを撮像させる。
 実施の形態2に係る波面計測装置では、Nを大きくするほど波面の平面分解能を高めることができ、Nを小さくするほど測定頻度を高めることができる。
 前述したように、実施の形態2に係る波面センサは、マイクロレンズアレイ3の移動方向に対して複数のマイクロレンズの配列方向がなす傾き角度θを、マイクロレンズアレイ3を回転させて変更する回転機構12を備える。角度θを変更することにより、高速だが低い平面分解能の波面計測と低速だが高い平面分解能の波面計測とを変更することが可能である。なお、回転機構12が、マイクロレンズアレイ3Aを回転させるように構成してもよい。この構成であっても、上記と同様の効果が得られる。
 実施の形態2に係る波面計測装置は、前述した波面センサに加え、局所波面傾斜演算部21および波面演算部22を備える。これにより、マイクロレンズアレイ3を走査しないときの波面センサよりも、波面の平面分解能が改善された波面計測装置を実現することができる。
 実施の形態2に係る波面計測方法では、マイクロレンズアレイ3を回転させて角度θを変更することによって、高速だが低い平面分解能の波面計測と低速だが高い平面分解能の波面計測とを変更することが可能である。
 なお、本発明は上記実施の形態に限定されるものではなく、本発明の範囲内において、実施の形態のそれぞれの自由な組み合わせまたは実施の形態のそれぞれの任意の構成要素の変形もしくは実施の形態のそれぞれにおいて任意の構成要素の省略が可能である。
 本発明に係る波面センサは、波面の平面分解能を改善できるので、様々な光学系の波面計測に利用可能である。
 1 光源、2 被検光学系、2A 光束、2B 瞳、3,3A マイクロレンズアレイ、4 撮像素子、11 直動機構、11A 走査方向、12 回転機構、21 局所波面傾斜演算部、22 波面演算部、23,23A 分解能制御部、24,24A 機器制御部、31 局所波面傾斜データ、32 位置テーブル、33 位置角度テーブル、41A,41B,41C,41D,41E,43A,43B,43C 集光スポット配列、42A,42B,42C,42D 集光スポット。

Claims (7)

  1.  被検光学系を透過または反射した光束が入射され、複数のレンズを配列して構成されたレンズアレイと、
     複数の前記レンズを通過した前記光束が集光された複数の集光スポットを撮像する撮像素子と、
     前記撮像素子に向かう前記光束を横切る方向に前記レンズアレイを移動させて走査する直動機構とを備え、
     複数の前記レンズの配列方向は、前記レンズアレイの移動方向に対して傾いていること
     を特徴とする波面センサ。
  2.  前記レンズアレイは、前記レンズが2次元正方格子状に配列されて構成され、
     前記レンズアレイの移動方向に対して複数の前記レンズの配列方向がなす傾き角度θは、tanθが1以上の正の自然数Nとなる関係を有し、
     前記直動機構は、前記レンズアレイの前記レンズのピッチサイズがdである場合、前記レンズアレイを、0,d/(N+1)1/2,・・・,Nd/(N+1)1/2のそれぞれで規定される位置に走査すること
     を特徴とする請求項1記載の波面センサ。
  3.  前記レンズアレイは、前記レンズが2次元六角格子状に配列されて構成され、
     前記レンズアレイの移動方向に対して複数の前記レンズの配列方向がなす傾き角度θは、1以上の正の自然数Nについてtanθ=(N/(N+2))×√3となる関係を有し、
     前記直動機構は、前記レンズアレイの前記レンズのピッチサイズがdである場合、前記レンズアレイを、0,d/(N+N+1)1/2,・・・,(N+N)d/(N+N+1)1/2のそれぞれで規定される位置に走査すること
     を特徴とする請求項1記載の波面センサ。
  4.  前記レンズアレイの移動方向に対して複数の前記レンズの配列方向がなす傾き角度を、前記レンズアレイを回転させて変更する回転機構を備えたこと
     を特徴とする請求項1記載の波面センサ。
  5.  請求項1から請求項4のいずれか1項記載の波面センサと、
     前記撮像素子によって撮像された複数の集光スポットに基づいて、前記レンズアレイの移動方向の位置ごとに前記被検光学系の局所波面の傾斜を演算する第1の演算部と、
     前記第1の演算部によって演算された局所波面の傾斜に基づいて、前記被検光学系の波面を演算する第2の演算部とを備えたこと
     を特徴とする波面計測装置。
  6.  被検光学系を透過または反射した光束が入射され、複数のレンズを配列して構成されたレンズアレイと、複数の前記レンズを通過した前記光束が集光された複数の集光スポットを撮像する撮像素子とを備えた波面センサを用いた波面計測方法であって、
     直動機構が、前記レンズアレイの移動方向に対して複数の前記レンズの配列方向が傾いた状態の前記レンズアレイを、前記撮像素子に向かう前記光束を横切る方向に移動させて走査するステップと、
     第1の演算部が、前記レンズアレイの移動方向の位置ごとに前記撮像素子によって撮像された複数の集光スポットに基づいて、前記被検光学系の局所波面の傾斜を演算するステップと、
     第2の演算部が、前記第1の演算部によって演算された局所波面の傾斜に基づいて、前記被検光学系の波面を演算するステップとを備えたこと
     を特徴とする波面計測方法。
  7.  回転機構が、前記レンズアレイの移動方向に対して複数の前記レンズの配列方向がなす傾き角度を、前記レンズアレイを回転させて変更するステップを備えたこと
     を特徴とする請求項6記載の波面計測方法。
PCT/JP2018/023674 2018-06-21 2018-06-21 波面センサ、波面計測装置および波面計測方法 WO2019244303A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018555781A JP6524357B1 (ja) 2018-06-21 2018-06-21 波面センサ、波面計測装置および波面計測方法
PCT/JP2018/023674 WO2019244303A1 (ja) 2018-06-21 2018-06-21 波面センサ、波面計測装置および波面計測方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/023674 WO2019244303A1 (ja) 2018-06-21 2018-06-21 波面センサ、波面計測装置および波面計測方法

Publications (1)

Publication Number Publication Date
WO2019244303A1 true WO2019244303A1 (ja) 2019-12-26

Family

ID=66730586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023674 WO2019244303A1 (ja) 2018-06-21 2018-06-21 波面センサ、波面計測装置および波面計測方法

Country Status (2)

Country Link
JP (1) JP6524357B1 (ja)
WO (1) WO2019244303A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210081767A (ko) 2019-12-24 2021-07-02 삼성전자주식회사 이미지 장치 및 이미지 센싱 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090152453A1 (en) * 2005-12-13 2009-06-18 Agency For Science, Technology And Research Optical wavefront sensor
JP2009192412A (ja) * 2008-02-15 2009-08-27 Nikon Corp 波面計測装置およびプログラム
JP2012088267A (ja) * 2010-10-22 2012-05-10 Nikon Corp 検査装置
JP2014236795A (ja) * 2013-06-06 2014-12-18 浜松ホトニクス株式会社 補償光学システムの対応関係特定方法、補償光学システム、および補償光学システム用プログラム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6289001B2 (ja) * 2013-09-24 2018-03-07 キヤノン株式会社 形状測定方法、形状測定装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090152453A1 (en) * 2005-12-13 2009-06-18 Agency For Science, Technology And Research Optical wavefront sensor
JP2009192412A (ja) * 2008-02-15 2009-08-27 Nikon Corp 波面計測装置およびプログラム
JP2012088267A (ja) * 2010-10-22 2012-05-10 Nikon Corp 検査装置
JP2014236795A (ja) * 2013-06-06 2014-12-18 浜松ホトニクス株式会社 補償光学システムの対応関係特定方法、補償光学システム、および補償光学システム用プログラム

Also Published As

Publication number Publication date
JP6524357B1 (ja) 2019-06-05
JPWO2019244303A1 (ja) 2020-06-25

Similar Documents

Publication Publication Date Title
US9606071B2 (en) Defect inspection method and device using same
US9976966B2 (en) Defect inspection method and its device
US8885037B2 (en) Defect inspection method and apparatus therefor
KR101223881B1 (ko) 이미지 형성 방법 및 이미지 형성 장치
KR101547649B1 (ko) 검사 장치
JP2008275612A (ja) 半導体製造用のサブストレート上の構造体を測定する高解像度を備えた装置及び測定装置におけるアパーチャの使用
JP5585615B2 (ja) 検査装置および検査方法
WO2013081072A1 (ja) 測定装置、測定方法および半導体デバイス製造方法
JP2010539469A (ja) 周期パターン照明及びtdiによる結像測定システム
KR20100090657A (ko) 패턴 검사 방법, 패턴 검사 장치, 포토마스크 제조 방법, 및 패턴 전사 방법
JPH05249656A (ja) マスク検査装置
JP2008198966A (ja) ウエーハ欠陥検査装置
JP5208896B2 (ja) 欠陥検査装置およびその方法
JP2014240766A (ja) 表面検査方法および表面検査装置
KR101826127B1 (ko) 광학적 웨이퍼 검사 장치
WO2019244303A1 (ja) 波面センサ、波面計測装置および波面計測方法
JP5500427B2 (ja) 表面検査装置および表面検査方法
JP2009109263A (ja) 検査装置及び検査方法
JP5301293B2 (ja) 欠陥検査装置およびその方法
CN111855662B (zh) 一种晶圆缺陷检测装置及方法
JP2008128770A (ja) レンズ性能検査装置及びレンズ性能検査方法
JP2006003168A (ja) 表面形状の測定方法およびその装置
JPH0682373A (ja) 欠陥検査方法
KR101391837B1 (ko) 웨이퍼의 워프(Warp) 인스펙션 장치
JP2012093116A (ja) レンズ検査装置及びチャート板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018555781

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18923675

Country of ref document: EP

Kind code of ref document: A1