WO2019244243A1 - モータ及びバルブタイミング調整装置 - Google Patents

モータ及びバルブタイミング調整装置 Download PDF

Info

Publication number
WO2019244243A1
WO2019244243A1 PCT/JP2018/023291 JP2018023291W WO2019244243A1 WO 2019244243 A1 WO2019244243 A1 WO 2019244243A1 JP 2018023291 W JP2018023291 W JP 2018023291W WO 2019244243 A1 WO2019244243 A1 WO 2019244243A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
rotating shaft
motor
bearing
circuit board
Prior art date
Application number
PCT/JP2018/023291
Other languages
English (en)
French (fr)
Inventor
祥子 川崎
暁 長谷川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020525118A priority Critical patent/JP6914443B2/ja
Priority to PCT/JP2018/023291 priority patent/WO2019244243A1/ja
Publication of WO2019244243A1 publication Critical patent/WO2019244243A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/08Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using magnetic effect devices, e.g. Hall-plates, magneto-resistors

Definitions

  • the present invention relates to a motor and a valve timing adjusting device using the motor.
  • the rotor support structure is a double-supported structure in which both ends of a rotary shaft to which the rotor is fixed are supported by a pair of bearings. Therefore, the one bearing, the rotor, and the other bearing are arranged in this order along the axial direction of the rotating shaft, and the brushless motor becomes longer in the axial direction.
  • the presence of the bearings at both ends of the rotating shaft necessitates disposing the circuit board outside the bearing in the radial direction, and the brushless motor has increased in the radial direction.
  • the present invention has been made to solve the above-described problems, and has as its object to realize a motor integrated with a circuit board, in which the size of the rotating shaft in the axial direction and the radial direction is small.
  • a motor according to the present invention includes a rotor having a rotating shaft, a field magnet, a magnetic yoke, and a sensor magnet, the rotor rotating integrally with the rotating shaft, a stator positioned on the outer peripheral side of the rotor, and a rotating shaft.
  • a circuit board having a bearing for supporting, a housing for holding the stator and the bearing, a driving unit for driving the rotary shaft, and a position detecting element for detecting the position of the sensor magnet, and being located at one axial end of the rotary shaft;
  • the rotor has a concave portion on the inner peripheral side of the field magnet and the magnetic yoke, and on the opposite side to the one end side where the circuit board is arranged in the axial direction of the rotating shaft, a bearing, and a housing.
  • the bearing holding portion which is a portion for holding the bearing, is located in the concave portion.
  • the rotor has a recess on the inner peripheral side of the field magnet and the magnetic yoke, and on the side opposite to the one end side where the circuit board is arranged in the axial direction of the rotating shaft, Since the bearing holding portion of the housing is located in the concave portion, a motor integrated with a circuit board having a small size in the axial direction and the radial direction of the rotating shaft can be realized.
  • FIG. 2 is a cross-sectional view illustrating a configuration example of the motor according to the first embodiment.
  • FIG. 4 is a cross-sectional view illustrating a modification of the motor according to the first embodiment.
  • FIG. 2 is a plan view showing components related to a magnetic structure of a rotor and a stator in the motor according to the first embodiment.
  • FIG. 4 is a plan view showing components related to the magnetic structure of the surface-positioned rotor, which is a modification of the motor according to the first embodiment.
  • FIG. 5 is a plan view showing a modification of the motor according to Embodiment 1, showing components related to the magnetic structure of the embedded arrangement type rotor.
  • FIG. 3 is an exploded perspective view showing a configuration example of a circuit board and a holder in the motor according to the first embodiment.
  • FIG. 3 is a plan view illustrating an example of installation of a substrate terminal in the holder according to the first embodiment.
  • FIG. 7 is a cross-sectional view illustrating a configuration example of a valve timing adjustment device and a motor according to a second embodiment.
  • FIG. 5 is a schematic diagram of an engine equipped with a valve timing adjustment device according to a second embodiment.
  • FIG. 1A is a cross-sectional view illustrating a configuration example of the motor 10 according to the first embodiment.
  • the motor 10 holds the rotating shaft 20, the rotor 30 that rotates integrally with the rotating shaft 20, the stator 40 positioned on the outer peripheral side of the rotor 30, the bearing 51 that supports the rotating shaft 20, and the bearing 51 and the stator 40.
  • a cover 60 for covering the circuit board 61 is referred to as a non-output side, and the other end of the rotating shaft 20 on the bearing 51 side.
  • the rotor 30 is fixed to the non-output side of the rotating shaft 20.
  • the rotation of the rotating shaft 20 and the rotor 30 is supported by a bearing 51.
  • At least one, preferably two or more bearings 51 are provided.
  • the plurality of bearings 51 are arranged side by side in the axial direction of the rotating shaft 20. In the illustrated example, two single-row type rolling bearings are arranged on the output side of the rotating shaft 20 in the axial direction.
  • a seal member 53 is provided on the output side of the bearing 51 of the rotary shaft 20.
  • the housing 50 is a cylindrical structure having a bottom.
  • the stator 40 is fixed to the inner peripheral surface of the housing 50.
  • a bearing holding portion 52 having a shape surrounding the output side of the rotary shaft 20 is formed at the bottom of the housing 50, and the bearing holding portion 52 holds the bearing 51.
  • a holder 60 is fixed to the opening side of the housing 50.
  • the rotor 30 includes a field magnet 31, a magnetic yoke 32 that forms a magnetic path of a magnetic flux created by the field magnet 31, and a sensor that generates a magnetic flux to be detected by a Hall IC (Integrated Circuit) 63 described later. And a magnet 33.
  • a plurality of thin magnetic sheets such as electromagnetic steel sheets are stacked, and the thin sheets are fixed to each other by caulking or welding to form the magnetic yoke 32.
  • a non-magnetic protective member 37 is provided on the outer peripheral surface of the field magnet 31 in order to prevent the field magnet 31 from falling off and scattering of fragments when the field magnet 31 is damaged.
  • the rotor 30 is fixed to the rotating shaft 20 via a bush 34 made of metal.
  • the field magnet 31, the magnetic yoke 32, the sensor magnet 33, and the bush 34 are integrated by a resin 35.
  • the field magnet 31, the magnetic yoke 32, the sensor magnet 33, the bush 34, and the resin 35 may be integrally formed by insert molding or the like, or the field magnet 31, the magnetic yoke 32, the sensor magnet After some parts of the bush 34 or the bush 34 are formed integrally with the resin 35, the remaining parts may be fixed to the integrally formed product. 1A, after the magnetic yoke 32, the sensor magnet 33, the bush 34, and the resin 35 are integrally formed, the field magnet 31 is fixed to the outer peripheral surface of the magnetic yoke 32 with an adhesive or the like. Is done.
  • the bush 34 of the rotor 30 formed as described above is press-fitted into the rotary shaft 20 so that the rotor 30 is fixed to the rotary shaft 20.
  • a detent such as a knurl may be formed on the inner peripheral surface of the bush 34.
  • FIG. 1A has a configuration in which the rotating shaft 20 and the resin 35 of the rotor 30 are fixed via the bush 34, the rotation of the rotating shaft 20 and the rotor 30 can be performed without using the bush 34.
  • a configuration in which the resin 35 is directly fixed may be employed.
  • FIG. 1B is a cross-sectional view showing a modification of the motor 10 according to the first embodiment. In the configuration shown in FIG. 1B, for example, the rotating shaft 20, the field magnet 31, the magnetic yoke 32, the sensor magnet 33, and the resin 35 are integrally formed.
  • the rotor 30 integrally formed of the resin 35 has a substantially cylindrical concave portion 36 on the inner peripheral side of the magnetic yoke 32 and on the output side of the rotary shaft 20, as shown in FIGS. 1A and 1B.
  • the bearing 51 and the bearing holding portion 52 are arranged in a cavity formed on the outer peripheral side of the rotary shaft 20 by the concave portion 36.
  • FIG. 2 is a plan view showing components related to the magnetic structure of the rotor 30 and the stator 40 in the motor 10 according to the first embodiment.
  • FIG. 2 shows a state where the rotor 30 and the stator 40 are viewed in the axial direction of the rotating shaft 20. The illustration of the protection member 37 and the like is omitted.
  • the circuit board 61 and one or more Hall ICs 63 mounted on the circuit board 61 are indicated by two-dot chain lines.
  • the stator 40 has a configuration of 18 teeth
  • the rotor 30 has a configuration of 12 poles.
  • the stator 40 includes a magnetic core 41 for passing a magnetic flux, an armature coil 43 for passing a current for generating a magnetic flux, a bobbin 42 for electrically insulating the magnetic core 41 and the armature coil 43 from each other. Having. For example, a plurality of thin magnetic sheets such as electromagnetic steel sheets are stacked, and the thin sheets are fixed to each other by caulking or welding to form the magnetic core 41.
  • the bobbin 42 is a resin injection molded product.
  • the bobbin 42 may be integrally formed in a mold in which the magnetic core 41 is installed as an insert part.
  • the armature coil 43 is a coil wound around each bobbin 42 provided on each tooth of the magnetic core 41, and these coils constitute three phases of a U phase, a V phase, and a W phase.
  • the start and end of the armature coil 43 are electrically connected to a motor terminal 45 mounted on the connection board 44.
  • the joining method may be any of soldering and fusing.
  • the sensor magnet 33 of the rotor 30 has a cylindrical shape with a short axial length, and is, for example, a sintered ferrite magnet, a rare-earth bonded magnet, or a rare-earth sintered magnet.
  • the sensor magnet 33 is magnetized to the same number of poles as the field magnet 31 or an integral multiple of the number of poles.
  • the phase of the pole position between the sensor magnet 33 and the field magnet 31 can be adjusted by the control logic of the drive unit 64 provided on the circuit board 61, and thus may be arbitrary. In the example of FIG. 2, the pole position of the sensor magnet 33 and the pole position of the field magnet 31 are the same.
  • the field magnet 31 of the rotor 30 is formed of a group of magnets having the same number of poles and having a circular cross section. Each of the magnets having a circular cross section is formed between the outer peripheral surface of the magnetic yoke 32 and the protrusion 38. Be placed. As described above, each of the magnets having an arc-shaped cross section is fixed to the outer peripheral surface of the magnetic yoke 32 with an adhesive or the like.
  • the rotor 30 in the form shown in FIG. 2 is of a so-called surface arrangement type (Surface ⁇ Permanent ⁇ Magnet: SPM).
  • FIG. 3A is a modification of the motor 10 according to the first embodiment, and is a plan view showing components related to the magnetic structure of the surface-arranged rotor 30.
  • the illustration of the protection member 37 is omitted.
  • the rotor 30 shown in FIG. 3A is of a surface arrangement type in which a field magnet 31 is arranged on the outer peripheral surface of a magnetic yoke 32, similarly to the rotor 30 shown in FIG.
  • the field magnet 31 is segment-shaped, whereas in FIG. 3A, the field magnet 31 is one ring magnet.
  • the surface-arranged rotor 30 as shown in FIGS. 2 and 3A has the following advantages. Since the field magnet 31 is located at the outermost periphery of the rotor 30, the surface area of the field magnet 31 increases and the amount of magnetic flux generated increases, so that high torque can be easily obtained. Further, since the field magnet 31 is directly opposed to the stator 40, the magnetic flux easily links to the stator 40, and a high torque is easily obtained.
  • FIG. 3B is a modification of the motor 10 according to the first embodiment, and is a plan view showing components related to the magnetic structure of the embedded rotor 30.
  • the rotor 30 shown in FIG. 3B has a plurality of holes 39 formed in the magnetic yoke 32.
  • a flat field magnet 31 is embedded in each hole 39.
  • the rotor 30 in the form shown in FIG. 3B is a so-called embedded arrangement type (Interior Permanent Magnet: IPM).
  • the number of the field magnets 31 may be the same as the number of magnetic poles or an integral multiple thereof.
  • the shape of the field magnet 31 is a flat plate shape, but may be a cross-sectional shape of an arc or a semi-cylindrical shape.
  • flux barriers 39a are formed at both ends of the hole 39 in order to prevent a short circuit of the magnetic flux in the rotor 30.
  • the flux barrier 39a is a hole for increasing the magnetic resistance. Although illustration is omitted, a simple hole 39 without the flux barrier 39a may be used.
  • the embedded arrangement type rotor 30 as shown in FIG. 3B has the following advantages.
  • the surface arrangement type when the rotor 30 is rotated at a high speed, it is necessary to provide a protection member 37 as shown in FIG. 1 on the outer peripheral side of the field magnet 31. Since the member 37 is unnecessary, the number of parts can be reduced. Focusing on the magnetic resistance of the magnetic yoke 32, the magnetic resistance fluctuates depending on the rotational position of the rotor 30 due to the presence or absence of the hole 39.
  • the field magnet 31 and the magnetic yoke 32 constituting the rotor 30 there are a plurality of forms for the field magnet 31 and the magnetic yoke 32 constituting the rotor 30, and the forms can be appropriately selected according to the operating environment of the motor 10, the load to be operated by the motor 10, and the like. Just fine.
  • FIG. 4 is an exploded perspective view showing a configuration example of the circuit board 61 and the holder 60 in the motor 10 according to the first embodiment.
  • FIG. 5 is a plan view showing an installation example of the substrate terminal 62 in the holder 60 according to the first embodiment.
  • the circuit board 61 has the Hall IC 63 and the driving unit 64.
  • the motor terminal 45 is electrically connected to the circuit board 61. Specifically, the motor terminal 45 penetrates a through hole provided on the circuit board 61, and the penetrating portion is joined by solder or the like.
  • the Hall IC 63 is a position detecting element that detects the rotational position of the rotor 30 by detecting the magnetic flux of the sensor magnet 33 of the rotor 30.
  • the positional relationship between the sensor magnet 33 of the rotor 30 and the Hall IC 63 mounted on the circuit board 61 is shown in FIG.
  • the drive unit 64 has a switching element for switching the U-phase, V-phase, and W-phase of the armature coil 43 through the motor terminal 45.
  • the circuit board 61 is installed and fixed on the holder 60 made of resin.
  • the fixing method may be fastening with a screw 66, welding, or the like.
  • the circuit board 61 needs to join a motor control device (not shown) outside the motor 10 with a power supply, communication, ground, and the like.
  • a plurality of substrate terminals 62 serve. That is, as shown in FIG. 5, one end of each board terminal 62 passes through a through hole provided on the circuit board 61 and is joined with solder or the like, and the other end is exposed to the connector section 65. It is desirable that these substrate terminals 62 be insert-molded in the holder 60. By the insert molding, the number of parts when assembling the motor 10 can be reduced, and the circuit board 61 and the board terminal 62 can be easily joined.
  • a large component that is difficult to mount on the circuit board 61 may be mounted on the holder 60.
  • the capacitor 68 and the coil 69 constituting the noise filter are mounted not on the circuit board 61 but on the holder 60.
  • the capacitor 68 and the coil 69 are electrically connected to the circuit board 61 by the board terminal 62.
  • the motor 10 supports the rotating shaft 20, the rotor 30 that rotates integrally with the rotating shaft 20, the stator 40 positioned on the outer peripheral side of the rotor 30, and the rotating shaft 20.
  • the housing includes a bearing 51, a housing 50 that holds the stator 40 and the bearing 51, and a circuit board 61 that is located at one axial end of the rotating shaft 20.
  • the rotor 30 has a concave portion 36 on the inner peripheral side of the field magnet 31 and the magnetic yoke 32 and on the side opposite to the one end where the circuit board 61 is disposed in the axial direction of the rotary shaft 20.
  • the bearing 51 and the bearing holding part 52 of the housing 50 that holds the bearing 51 are located in the recess 36.
  • the bearing 51 cantileverly supports the rotary shaft 20 and is disposed in the concave portion 36, the motor 10 in which the size of the rotary shaft 20 in the axial direction and the radial direction is small and the circuit board 61 is integrated can be realized.
  • the rotating shaft 20 is cantilevered, the size and layout flexibility of the circuit board 61 disposed on the non-output side of the rotating shaft 20 can be increased.
  • the Hall IC 63 can be disposed near the rotary shaft 20, so that the diameter of the sensor magnet 33 can be reduced.
  • the size and weight of the rotor 30 can be reduced.
  • the Hall IC in the brushless motor described in Patent Document 1, bearings are arranged at both ends of the rotating shaft, so that the Hall IC must be arranged at a position distant from the rotating shaft. In that case, the diameter of the sensor magnet becomes large, the rotor becomes large, and the cost becomes high.
  • the rotational position of the rotor can be detected not by causing the Hall IC to detect the magnetic flux of the sensor magnet but by detecting the magnetic flux of the field magnet of the rotor. In that case, it is necessary to extend the field magnet toward the Hall IC on the circuit board, or to arrange the Hall IC not in the circuit board but in the gap between the rotor and the stator. In the former case, the size of the field magnet and the rotor is increased and the cost is increased. In the latter case, the structure for disposing the Hall IC becomes complicated.
  • the field magnet 31, the magnetic yoke 32, and the sensor magnet 33 of the rotor 30 are integrated by the resin 35.
  • the weight of the rotor 30 can be reduced, and the number of parts when assembling the motor 10 can be reduced.
  • the motor 10 includes a metal bush 34 fixed to the rotating shaft 20.
  • the field magnet 31, the magnetic yoke 32, the sensor magnet 33, and the bush 34 of the rotor 30 are integrated with the bush 34.
  • the rotating shaft 20 and the rotor 30 may be integrated with a resin 35.
  • the metal bush 34 becomes unnecessary, so that the motor 10 can be reduced in weight and the number of parts can be reduced.
  • the bearing 51 of the first embodiment is at least two rolling bearings. Thereby, the vibration resistance of the rotating shaft 20 and the rotor 30 is improved.
  • the motor 10 includes the holder 60 fixed to the housing 50 on the side opposite to the output side of the rotating shaft 20. Further, the circuit board 61 is fixed to the holder 60, and the Hall IC 63 is disposed on a surface of the circuit board 61 facing the sensor magnet 33. In this configuration, the holder 60 has a function of holding the circuit board 61 and a function of determining the position of the Hall IC 63 with respect to the sensor magnet 33 of the rotating rotor 30.
  • the holder 60 of the first embodiment is formed of resin, and has a substrate terminal 62 that is electrically connected to the circuit board 61 inside the resin. Since the board terminal 62 is integrally formed with the holder 60, the number of parts when assembling the motor 10 can be reduced, and the circuit board 61 and the board terminal 62 can be easily joined.
  • the holder 60 of the first embodiment has a connector portion 65 formed of resin. Thereby, when the holder 60 and the substrate terminal 62 are insert-molded, the connector portion 65 can be molded at the same time.
  • the field magnet 31 according to the first embodiment is attached to the magnetic yoke 32.
  • High torque can be obtained by making the rotor 30 a surface-arranged type.
  • the field magnet 31 according to the first embodiment may be arranged in a hole 39 formed in the magnetic yoke 32.
  • the protection member 37 becomes unnecessary, and the number of parts can be reduced. Also, high torque can be obtained.
  • Embodiment 2 FIG.
  • a valve timing adjusting device including the motor 10 according to the first embodiment will be exemplified.
  • the valve timing adjusting device adjusts the opening / closing timing of an intake valve and an exhaust valve of the engine.
  • FIG. 6 is a cross-sectional view illustrating a configuration example of the valve timing adjustment device 1 and the motor 10 according to the second embodiment.
  • FIG. 7 is a schematic diagram of an engine equipped with the valve timing adjustment device 1 according to the second embodiment.
  • the same or corresponding parts as those in FIGS. 1A to 5 are denoted by the same reference numerals, and description thereof will be omitted.
  • the valve timing adjusting device 1 includes an input shaft 100, a first rotating body 110, a second rotating body 120, and a planetary gear 130.
  • the input shaft 100 has a fitting portion 101 to which the rotating shaft 20 of the motor 10 fits, and rotates by receiving the torque of the motor 10.
  • the first rotating body 110 is formed by integrating a case 111, an internal gear 112, and a cover 113.
  • the second rotating body 120 has an output gear 121 and is fastened to the camshaft 3 by the center bolt 2.
  • the second rotating body 120 is supported by a slide bearing 114 formed on the inner peripheral surface of the case 111, and rotates relatively to the first rotating body 110.
  • the planet gear 130 meshes with the internal gear 112 and the output gear 121.
  • the bearing 102 rotatably supports the input shaft 100 and the first rotating body 110.
  • the bearing 103 rotatably supports the input shaft 100 and the second rotating body 120.
  • the bearing 104 rotatably supports the input shaft 100 and the planetary gear 130
  • the internal gear 112, the output gear 121, and the planetary gear 130 are reduction gears that function as a mysterious planetary gear mechanism.
  • the speed reducer used in the valve timing adjusting device 1 is not limited to the mysterious planetary gear mechanism shown in FIG. 6, but may be a hypocycloid speed reducer or the like.
  • the planetary gear 130 rotates on the eccentric shaft eccentric from the rotating shaft of the rotating shaft 20 while rotating the rotating shaft of the rotating shaft 20. Performs planetary motion that revolves around counterclockwise.
  • the output gear 121 since the output gear 121 is rotatably supported by the first rotating body 110, the output gear 121 rotates clockwise by receiving the reaction force of the revolving motion of the planetary gear 130.
  • the output gear 121 amplifies and outputs the torque input to the input shaft 100 by rotating clockwise by an angle corresponding to the difference in the number of teeth between the output gear 121 and the internal gear 112.
  • the annular chain 5 is wound around the outer peripheral surface of the first rotating body 110 and the outer peripheral surface of the crankshaft 4 of the valve timing adjusting device 1.
  • the rotational movement of the crankshaft 4 is transmitted to the first rotating body 110 of the valve timing adjustment device 1 via the chain 5, and rotates the first rotating body 110.
  • the second rotating body 120 rotates while maintaining a relative rotational position with respect to the first rotating body 110.
  • the camshaft 3 rotates integrally with the second rotating body 120.
  • the motor 10 is controlled by a motor control device (not shown) to rotate the input shaft 100 fitted to the rotating shaft 20.
  • the relative rotation position between the first rotating body 110 and the second rotating body 120 is adjusted according to the rotation of the input shaft 100 by the motor 10.
  • the motor 10 rotates the input shaft 100 at a rotation speed higher than the rotation speed of the first rotating body 110 when the valve timing adjustment device 1 performs the advance operation.
  • the second rotator 120 is relatively rotated in the advance direction with respect to the first rotator 110 by the operation principle of the mysterious planetary gear mechanism.
  • the input shaft 100 is rotated at a rotation speed smaller than the rotation speed of the first rotator 110 or in a direction opposite to the rotation direction of the first rotator 110. Rotate. At this time, due to the operation principle of the mysterious planetary gear mechanism, the second rotator 120 is rotationally moved in the retard direction relative to the first rotator 110.
  • the valve timing adjusting device 1 according to the second embodiment is configured to use the motor 10 according to the first embodiment for driving.
  • the valve timing adjusting device 1 can also be downsized.
  • the layout around the engine is improved.
  • the valve timing adjusting device 1 includes a speed reducer including an internal gear 112, an output gear 121, and a planetary gear 130, which is connected to the rotating shaft 20 of the motor 10. Since the speed reducer amplifies the torque of the motor 10, a motor 10 that outputs low torque, that is, a small motor 10 can be used.
  • the motor according to the present invention can be reduced in size and weight, and thus is suitable for use in a valve timing adjustment device or the like mounted on a vehicle.
  • Valve timing adjusting device 2 center bolt, 3 camshaft, 4 crankshaft, 5 chain, 10 motor, 20 rotary shaft, 30 rotor, 31 field magnet, 32 magnetic yoke, 33 sensor magnet, 34 bush, 35 Resin, 36 recess, 37 protection member, 38 projection, 39 hole, 39a flux barrier, 40 stator, 41 magnetic core, 42 bobbin, 43 armature coil, 44 connection plate, 45 motor terminal, 50 housing, 51 bearing, 52 bearing holder, 53 seal member, 60 holder, 61 circuit board, 62 board terminal, 63 Hall IC (position detecting element), 64 drive, 65 connector, 66 screw, 68 capacitor, 69 coil, 70 cover, 10 Input shaft, 101 fitting portion, 102, 103, 104 bearing, 110 rotating body, 111 case, 112 internal gear (reduction gear), 113 cover, 114 sliding bearing portion, 120 rotating body, 121 output gear (Reduction gear), 130 ° planetary gear (reduction gear).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Valve Device For Special Equipments (AREA)
  • Brushless Motors (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

モータ(10)は、回転シャフト(20)と、回転シャフト(20)と一体に回転するロータ(30)と、ロータ(30)の外周側に位置するステータ(40)と、回転シャフト(20)を支持する軸受(51)と、ステータ(40)及び軸受(51)を保持するハウジング(50)と、回転シャフト(20)の軸方向の一端側に位置する回路基板(61)とを備える。ロータ(30)は、界磁用磁石(31)及び磁性体ヨーク(32)の内周側、かつ、回転シャフト(20)の軸方向における回路基板(61)が配置された一端側とは反対側に凹部(36)を有する。軸受(51)、及びハウジング(50)のうちの軸受(51)を保持する軸受保持部(52)は、凹部(36)内に位置する。

Description

モータ及びバルブタイミング調整装置
 この発明は、モータ、及びこのモータを用いたバルブタイミング調整装置に関するものである。
 従来、特許文献1に記載されているような、回路基板が一体化されたブラシレスモータが知られている。
特開2016-220285号公報
 特許文献1記載のブラシレスモータにおいて、ロータの支持構造は、ロータが固定された回転シャフトの両端を一対の軸受で支持する両持ち構造であった。そのため、回転シャフトの軸方向に沿って、一方の軸受、ロータ、及び他方の軸受がこの順に並び、ブラシレスモータが軸方向に長くなってしまった。また、回転シャフトの両端に軸受が存在することにより、径方向において軸受より外側に回路基板を配置せざるを得ず、ブラシレスモータが径方向に大きくなってしまった。
 従来の回路基板一体型のモータは以上のように構成されているので、回転シャフトの軸方向及び径方向のサイズが大きいという課題があった。
 この発明は、上記のような課題を解決するためになされたもので、回転シャフトの軸方向及び径方向のサイズが小さい、回路基板一体型のモータを実現することを目的とする。
 この発明に係るモータは、回転シャフトと、界磁用磁石、磁性体ヨーク、及びセンサ磁石を有し、回転シャフトと一体に回転するロータと、ロータの外周側に位置するステータと、回転シャフトを支持する軸受と、ステータ及び軸受を保持するハウジングと、回転シャフトを駆動させる駆動部とセンサ磁石の位置を検出する位置検出素子とを有し、回転シャフトの軸方向の一端側に位置する回路基板とを備え、ロータは、界磁用磁石及び磁性体ヨークの内周側、かつ、回転シャフトの軸方向における回路基板が配置された一端側とは反対側に凹部を有し、軸受、及びハウジングのうちの軸受を保持する部位である軸受保持部は、凹部内に位置するものである。
 この発明によれば、ロータは、界磁用磁石及び磁性体ヨークの内周側、かつ、回転シャフトの軸方向における回路基板が配置された一端側とは反対側に凹部を有し、軸受及びハウジングの軸受保持部は、凹部内に位置するようにしたので、回転シャフトの軸方向及び径方向のサイズが小さい、回路基板一体型のモータを実現できる。
実施の形態1に係るモータの構成例を示す断面図である。 実施の形態1に係るモータの変形例を示す断面図である。 実施の形態1に係るモータにおいて、ロータ及びステータの磁気構造に関わる構成部品を示す平面図である。 実施の形態1に係るモータの変形例であり、表面配置型ロータの磁気構造に関わる構成部品を示す平面図である。 実施の形態1に係るモータの変形例であり、埋め込み配置型ロータの磁気構造に関わる構成部品を示す平面図である。 実施の形態1に係るモータにおいて、回路基板及びホルダの構成例を示す分解斜視図である。 実施の形態1のホルダにおける基板ターミナルの設置例を示す平面図である。 実施の形態2に係るバルブタイミング調整装置及びモータの構成例を示す断面図である。 実施の形態2に係るバルブタイミング調整装置を搭載したエンジンの概略図である。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1Aは、実施の形態1に係るモータ10の構成例を示す断面図である。モータ10は、回転シャフト20と、回転シャフト20と一体に回転するロータ30と、ロータ30の外周側に位置するステータ40と、回転シャフト20を支持する軸受51と、軸受51及びステータ40を保持するハウジング50と、回路基板61を保持するホルダ60と、回路基板61を覆うカバー70とを含む。以下では、回転シャフト20の回路基板61側の一端側を反出力側と呼び、回転シャフト20の軸受51側の他端側を出力側と呼ぶ。
 回転シャフト20の反出力側には、ロータ30が固定される。回転シャフト20及びロータ30は、軸受51により回転が支持される。軸受51は、少なくとも1つ、好ましくは2つ以上設けられる。複数の軸受51は、回転シャフト20の軸方向に並べて配置される。図示例では、単列式の転がり軸受が2つ、回転シャフト20の出力側に、軸方向に並べて配置されている。また、回転シャフト20の軸受51より出力側には、シール部材53が設けられる。
 ハウジング50は、底部を有する筒状の構造物である。ハウジング50の内周面には、ステータ40が固定される。ハウジング50の底部には、回転シャフト20の出力側を囲む形状の軸受保持部52が形成されており、この軸受保持部52は軸受51を保持する。ハウジング50の開口部側には、ホルダ60が固定される。
 ロータ30は、界磁用磁石31と、界磁用磁石31が作る磁束の磁路を形成する磁性体ヨーク32と、後述するホールIC(Integrated Circuit)63に検出させるための磁束を発生するセンサ磁石33とを有する。例えば、電磁鋼板等の磁性を有する薄板が複数枚積層され、カシメ又は溶着等によって薄板同士が固着され、磁性体ヨーク32が構成される。界磁用磁石31の外周面には、界磁用磁石31の脱落、及び界磁用磁石31が損傷した場合の破片飛散等を防止するために、非磁性体の保護部材37が設けられる。また、ロータ30は、金属製のブッシュ34を介して回転シャフト20に固定される。
 界磁用磁石31、磁性体ヨーク32、センサ磁石33、及びブッシュ34は、樹脂35により一体化される。界磁用磁石31、磁性体ヨーク32、センサ磁石33、及びブッシュ34と、樹脂35とは、インサート成形等により一体成形されてもよいし、界磁用磁石31、磁性体ヨーク32、センサ磁石33、又はブッシュ34のうちの一部の部品が樹脂35と一体成形された後に残りの部品が一体成形品に固着されてもよい。図1Aの構成例では、磁性体ヨーク32、センサ磁石33、及びブッシュ34と、樹脂35とが一体成形された後、接着剤等により界磁用磁石31が磁性体ヨーク32の外周面に固着される。このようにして形成されたロータ30のブッシュ34が、回転シャフト20に圧入されることにより、ロータ30が回転シャフト20に固定される。なお、高トルクに耐え得るロータ30を得るために、ブッシュ34の内周面にローレット等の回り止めが形成されてもよい。
 なお、図1Aに示されるモータ10は、回転シャフト20とロータ30の樹脂35とが、ブッシュ34を介して固定される構成であったが、ブッシュ34を用いずに回転シャフト20とロータ30の樹脂35とが直接固定される構成であってもよい。図1Bは、実施の形態1に係るモータ10の変形例を示す断面図である。図1Bに示される構成では、例えば、回転シャフト20、界磁用磁石31、磁性体ヨーク32、及びセンサ磁石33と、樹脂35とが、一体成形される。
 樹脂35により一体成形されたロータ30は、図1A及び図1Bに示されるように、磁性体ヨーク32の内周側、かつ、回転シャフト20の出力側に、略円筒状の凹部36を有する。この凹部36により回転シャフト20の外周側に形成される空洞内に、軸受51及び軸受保持部52が配置される。
 次に、モータ10の機能の説明を交えながら、ロータ30の複数の形態について説明する。
 図2は、実施の形態1に係るモータ10において、ロータ30及びステータ40の磁気構造に関わる構成部品を示す平面図である。図2は、ロータ30及びステータ40を、回転シャフト20の軸方向に見た状態である。なお、保護部材37等は図示を省略する。また、図2には、回路基板61と、回路基板61に実装された1つ以上のホールIC63とが、二点鎖線で示される。図2の例では、ステータ40は18ティースの構成であり、ロータ30は12極の構成である。
 ロータ30の外周側とステータ40の内周側との間には、所定の空隙が設けられる。ステータ40は、磁束を通すための磁性体コア41と、磁束を作るための電流を流す電機子コイル43と、磁性体コア41と電機子コイル43とを電気的に絶縁するためのボビン42とを有する。例えば、電磁鋼板等の磁性を有する薄板が複数枚積層され、カシメ又は溶接等によって薄板同士が固着され、磁性体コア41が構成される。ボビン42は、樹脂製の射出成形品である。なお、ボビン42は、磁性体コア41がインサート部品として設置された金型内で一体成形されてもよい。電機子コイル43は、磁性体コア41の各ティースに設けられた各ボビン42に集中巻きされたコイルであり、これらのコイルは、U相、V相、及びW相の三相を構成する。また、電機子コイル43の始端及び終端は、結線板44に搭載されたモータターミナル45と電気的に接合される。接合方法は、はんだ又はヒュージング等、いずれでもよい。
 ロータ30のセンサ磁石33は、軸方向の長さが短い円筒形状であり、例えば、フェライト焼結磁石、希土類ボンド磁石、又は希土類焼結磁石である。センサ磁石33は、界磁用磁石31の極数と同数又はその整数倍の数の極に磁化される。また、センサ磁石33と界磁用磁石31との極位置の位相は、回路基板61に設けられた駆動部64の制御ロジックによって調整可能であるため、任意でよい。図2の例では、センサ磁石33の極位置と界磁用磁石31の極位置は同じになっている。
 ロータ30の界磁用磁石31は、極数と同数の断面円弧状の磁石群で形成され、断面円弧状の磁石のそれぞれは、磁性体ヨーク32の外周面、かつ、突起部38の間に配置される。上述のように、断面円弧状の磁石のそれぞれは、磁性体ヨーク32の外周面に、接着剤等により固着される。図2に示される形態のロータ30は、いわゆる表面配置型(Surface Permanent Magnet:SPM)である。
 ここで、界磁用磁石31と磁性体ヨーク32の構成については、図2とは異なる構成例もあるので説明する。
 図3Aは、実施の形態1に係るモータ10の変形例であり、表面配置型のロータ30の磁気構造に関わる構成部品を示す平面図である。保護部材37は、図示を省略する。図3Aに示されるロータ30は、図2に示されるロータ30と同様に、磁性体ヨーク32の外周面に界磁用磁石31が配置された表面配置型である。ただし、図2では界磁用磁石31がセグメント状であるのに対し、図3Aでは界磁用磁石31が1つのリング磁石である点で異なる。
 図2及び図3Aに示されるような表面配置型のロータ30には、以下の利点がある。
 界磁用磁石31がロータ30の最外周に位置するので界磁用磁石31の表面積が大きくなり、発生する磁束量が増えるので、高トルクを得やすい。
 また、界磁用磁石31がステータ40と直接対向するので、磁束がステータ40に鎖交しやすく、高トルクを得やすい。
 図3Bは、実施の形態1に係るモータ10の変形例であり、埋め込み配置型のロータ30の磁気構造に関わる構成部品を示す平面図である。図3Bに示されるロータ30は、磁性体ヨーク32に複数の孔39が形成される。各孔39には、平板状の界磁用磁石31が埋め込まれる。図3Bに示される形態のロータ30は、いわゆる埋め込み配置型(Interior Permanent Magnet:IPM)である。
 図3Bの例では、1磁極につき2つの界磁用磁石31が、V字型に配置されているが、界磁用磁石31の個数は、磁極数と同数又はその整数倍のいずれでもよい。また、図3Bの例では、界磁用磁石31の形状は平板状であるが、断面円弧状又は半円筒状等の形状でもよい。また、図3Bの例では、ロータ30内での磁束の短絡を防ぐために、孔39の両端部にフラックスバリア39aが形成されている。このフラックスバリア39aは、磁気抵抗を上げるための孔である。図示は省略するが、フラックスバリア39aのない、単なる孔39であってもよい。
 図3Bに示されるような埋め込み配置型のロータ30には、以下の利点がある。
 表面配置型の場合、ロータ30を高速回転させる用途においては、界磁用磁石31の外周側に、図1に示されるような保護部材37を設ける必要があるが、埋め込み配置型の場合、保護部材37が不要であるため部品点数を削減できる。
 また、磁性体ヨーク32の磁気抵抗に着目すると、ロータ30の回転位置に応じて、孔39の有無による磁気抵抗の変動が生じる。そうすると、回路基板61の駆動部64が適切な位相でステータ40の電機子コイル43に電流を流したときに、界磁用磁石31との作用により生じるマグネットトルクのみならず、磁気抵抗の変動、即ち突極性を利用したリラクタンストルクも発生し、高トルクを得やすい。
 このように、ロータ30を構成する界磁用磁石31と磁性体ヨーク32については複数の形態があり、モータ10の運転環境及びモータ10が動作させる対象の負荷等に応じて、適宜形態を選べばよい。
 次に、回路基板61と、回路基板61を保持するホルダ60に関して説明する。
 図4は、実施の形態1に係るモータ10において、回路基板61及びホルダ60の構成例を示す分解斜視図である。図5は、実施の形態1のホルダ60における基板ターミナル62の設置例を示す平面図である。
 回路基板61は、ホールIC63及び駆動部64を有する。また、回路基板61には、モータターミナル45が電気的に接合にされる。具体的には、回路基板61上に設けられたスルーホールにモータターミナル45が貫通し、貫通部分がはんだ等で接合される。
 ホールIC63は、ロータ30のセンサ磁石33の磁束を検出することによって、ロータ30の回転位置を検出する位置検出素子である。ロータ30のセンサ磁石33と、回路基板61に実装されたホールIC63との位置関係は、図2に示される。駆動部64は、モータターミナル45を通じて電機子コイル43のU相、V相、及びW相への通電を切り替えるスイッチング素子等を有する。
 回路基板61は、樹脂により構成されるホルダ60に設置され、固定される。固定方法は、ねじ66による締結でもよいし、溶着等でもよい。また、回路基板61は、モータ10の外部にある不図示のモータ制御装置と、電源、通信、及びグラウンド等を接合する必要があり、これらの役割は、ホルダ60に設けられたコネクタ部65及び複数の基板ターミナル62が担う。即ち、図5に示されるように、各基板ターミナル62の一端は、回路基板61上に設けられたスルーホールを貫通してはんだ等で接合され、他端はコネクタ部65に露出する。これらの基板ターミナル62は、ホルダ60にインサート成形されることが望ましい。インサート成形により、モータ10を組み立てる際の部品点数を削減できると共に、回路基板61と基板ターミナル62との接合を容易に行うことができる。
 また、ホルダ60には、回路基板61上に実装しにくい大型の部品が搭載されてもよい。図4の例では、ノイズフィルタを構成するコンデンサ68及びコイル69が、回路基板61ではなくホルダ60に搭載される。コンデンサ68及びコイル69は、基板ターミナル62により、回路基板61に電気的に接合される。
 以上のように、実施の形態1に係るモータ10は、回転シャフト20と、回転シャフト20と一体に回転するロータ30と、ロータ30の外周側に位置するステータ40と、回転シャフト20を支持する軸受51と、ステータ40及び軸受51を保持するハウジング50と、回転シャフト20の軸方向の一端側に位置する回路基板61とを備える。ロータ30は、界磁用磁石31及び磁性体ヨーク32の内周側、かつ、回転シャフト20の軸方向における回路基板61が配置された一端側とは反対側に凹部36を有する。軸受51、及びハウジング50のうちの軸受51を保持する軸受保持部52は、凹部36内に位置する。軸受51が回転シャフト20を片持ち支持し、かつ、凹部36内に配置されることにより、回転シャフト20の軸方向及び径方向のサイズが小さい、回路基板61が一体のモータ10を実現できる。
 また、回転シャフト20が片持ち支持されることにより、回転シャフト20の反出力側に配置される回路基板61のサイズ及びレイアウトの自由度を高めることができる。例えば、回路基板61を回転シャフト20の軸方向の真上に配置した場合、ホールIC63を回転シャフト20の近くに配置することができるので、センサ磁石33の直径を小さくすることができる。これにより、ロータ30を小型化及び軽量化できる。
 これに対し、特許文献1記載のブラシレスモータは、回転シャフトの両端部に軸受が配置されるため、ホールICは回転シャフトから離れた位置に配置せざるを得ない。その場合、センサ磁石の直径が大きくなり、ロータが大型化すると共に高コストになる。あるいは、ホールICにセンサ磁石の磁束を検出させるのではなく、ロータの界磁用磁石の磁束を検出させることによってロータの回転位置を検出させることも可能である。その場合、回路基板上のホールICに向かって界磁用磁石を延長させるか、ホールICを回路基板上ではなくロータとステータとの間の空隙に配置させる必要がある。前者では界磁用磁石及びロータが大型化し高コストになり、後者ではホールICを配置するための構造が複雑になってしまう。
 また、実施の形態1によれば、ロータ30が有する界磁用磁石31、磁性体ヨーク32、及びセンサ磁石33は、樹脂35により一体化されている。これにより、ロータ30を軽量化できると共に、モータ10を組み立てる際の部品点数を削減できる。
 また、実施の形態1に係るモータ10は、回転シャフト20に固定された金属製のブッシュ34を備える。そして、ロータ30が有する界磁用磁石31、磁性体ヨーク32、及びセンサ磁石33と、ブッシュ34とは、樹脂35により一体化されている。これにより、回転シャフト20にロータ30を圧入する際、ロータ30の樹脂35が割れることなく組み立てが可能となる。また、ブッシュ34の内周面にローレット等の回り止めを設けることで、高トルクに耐え得るロータ30を得ることができる。
 なお、図1Bに示されるように、回転シャフト20とロータ30とが、樹脂35により一体化されてもよい。この構成の場合、金属製のブッシュ34が不要となるため、モータ10を軽量化できると共に、部品点数が削減できる。
 また、実施の形態1の軸受51は、少なくとも2つの転がり軸受である。これにより、回転シャフト20及びロータ30の耐振動性が向上する。
 また、実施の形態1に係るモータ10は、ハウジング50における、回転シャフト20の反出力側に固定されたホルダ60を備える。また、回路基板61は、ホルダ60に固定され、ホールIC63は、回路基板61におけるセンサ磁石33と対向する面に配置される。この構成において、ホルダ60は、回路基板61を保持する機能、及び、回転するロータ30のセンサ磁石33に対して、ホールIC63の位置を決める機能を果たす。
 また、実施の形態1のホルダ60は、樹脂により形成され、樹脂内部に、回路基板61と電気的に接合する基板ターミナル62を有する。基板ターミナル62がホルダ60と一体に構成されることにより、モータ10を組み立てる際の部品点数を削減できると共に、回路基板61と基板ターミナル62との接合を容易に行うことができる。
 また、実施の形態1のホルダ60は、樹脂により形成されたコネクタ部65を有する。これにより、ホルダ60と基板ターミナル62とをインサート成形する際に、同時にコネクタ部65を成形できる。
 また、実施の形態1の界磁用磁石31は、磁性体ヨーク32に貼り付いている。ロータ30を表面配置型とすることにより、高トルクを得ることができる。
 なお、実施の形態1の界磁用磁石31は、磁性体ヨーク32に形成された孔39内に配置されていてもよい。ロータ30を埋め込み配置型とすることにより、保護部材37が不要となり、部品点数を削減できる。また、高トルクを得ることができる。
実施の形態2.
 実施の形態2では、実施の形態1に係るモータ10を備えるバルブタイミング調整装置を例示する。バルブタイミング調整装置は、エンジンの吸気バルブ及び排気バルブの開閉タイミングを調整する。
 図6は、実施の形態2に係るバルブタイミング調整装置1及びモータ10の構成例を示す断面図である。図7は、実施の形態2に係るバルブタイミング調整装置1を搭載したエンジンの概略図である。なお、図6及び図7において、図1A~図5と同一又は相当する部分は、同一の符号を付し説明を省略する。
 バルブタイミング調整装置1は、入力シャフト100と、第一回転体110と、第二回転体120と、遊星ギヤ130とを備える。入力シャフト100は、モータ10の回転シャフト20が嵌合する嵌合部101を有し、モータ10のトルクを受けて回転する。第一回転体110は、ケース111、内歯ギヤ112、及びカバー113が一体化されて成る。第二回転体120は、出力ギヤ121を有し、センタボルト2によってカムシャフト3に締結される。第二回転体120は、ケース111の内周面に形成された滑り軸受部114により支持されており、第一回転体110に対して相対的に回転する。遊星ギヤ130は、内歯ギヤ112及び出力ギヤ121に噛合する。軸受102は、入力シャフト100と第一回転体110とを回転自在に支持する。軸受103は、入力シャフト100と第二回転体120とを回転自在に支持する。軸受104は、入力シャフト100と遊星ギヤ130とを回転自在に支持する。
 内歯ギヤ112、出力ギヤ121、及び遊星ギヤ130は、不思議遊星歯車機構として機能する減速機である。なお、バルブタイミング調整装置1に用いられる減速機は、図6に示される不思議遊星歯車機構に限定されるものではなく、ハイポサイクロイド減速機等であってもよい。
 回転シャフト20の回転に伴って入力シャフト100が時計回りに回転した場合、遊星ギヤ130は、回転シャフト20の回転軸から偏心した偏心軸に対して自転をしながら、回転シャフト20の回転軸の周りを反時計回りに公転する、遊星運動を行う。一方、出力ギヤ121は、第一回転体110に対して回転自在に支持されているため、遊星ギヤ130の公転運動の反力を受けて時計回りに回転する。この出力ギヤ121は、出力ギヤ121と内歯ギヤ112との歯数の差分に相当する角度だけ、時計回りに回転することにより、入力シャフト100に入力されたトルクを増幅して出力する。
 図7に示されるように、バルブタイミング調整装置1の第一回転体110の外周面及びクランクシャフト4の外周面に、環状のチェーン5が巻き掛けられる。クランクシャフト4の回転運動は、チェーン5を介してバルブタイミング調整装置1の第一回転体110に伝達され、第一回転体110を回転させる。第二回転体120は、第一回転体110に対して相対回転位置を保ちつつ回転する。カムシャフト3は、第二回転体120と一体に回転する。
 モータ10は、図示しないモータ制御装置により回転制御されることによって、回転シャフト20に嵌合した入力シャフト100を回転させる。モータ10による入力シャフト100の回転に応じて、第一回転体110と第二回転体120との相対回転位置が調整される。
 モータ10は、バルブタイミング調整装置1に進角動作をさせる場合、第一回転体110の回転数より大きな回転数で入力シャフト100を回転させる。このとき、上記不思議遊星歯車機構の動作原理により、第二回転体120が第一回転体110に対して相対的に進角方向へ回転移動する。
 モータ10は、バルブタイミング調整装置1に遅角動作をさせる場合、第一回転体110の回転数より小さい回転数で、又は第一回転体110の回転方向とは逆方向に、入力シャフト100を回転させる。このとき、上記不思議遊星歯車機構の動作原理により、第二回転体120が第一回転体110に対して相対的に遅角方向へ回転移動する。
 なお、モータ10が、第一回転体110の回転数と同じ回転数で入力シャフト100を回転させた場合、第二回転体120と第一回転体110との相対回転位置が保たれる。
 以上のように、実施の形態2に係るバルブタイミング調整装置1は、実施の形態1に係るモータ10を駆動用として用いる構成である。小型のモータ10を用いることにより、バルブタイミング調整装置1も小型化できる。バルブタイミング調整装置1が小型になることにより、エンジン回りのレイアウト性が向上する。
 また、実施の形態2に係るバルブタイミング調整装置1は、モータ10の回転シャフト20に連結された、内歯ギヤ112、出力ギヤ121、及び遊星ギヤ130から成る減速機を備える。減速機がモータ10のトルクを増幅するので、低トルクを出力するモータ10、即ち小型のモータ10を使用できる。
 なお、本発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、各実施の形態の任意の構成要素の変形、又は各実施の形態の任意の構成要素の省略が可能である。
 この発明に係るモータは、小型化及び軽量化が可能であるので、車両に搭載されるバルブタイミング調整装置等に用いるのに適している。
 1 バルブタイミング調整装置、2 センタボルト、3 カムシャフト、4 クランクシャフト、5 チェーン、10 モータ、20 回転シャフト、30 ロータ、31 界磁用磁石、32 磁性体ヨーク、33 センサ磁石、34 ブッシュ、35 樹脂、36 凹部、37 保護部材、38 突起部、39 孔、39a フラックスバリア、40 ステータ、41 磁性体コア、42 ボビン、43 電機子コイル、44 結線板、45 モータターミナル、50 ハウジング、51 軸受、52 軸受保持部、53 シール部材、60 ホルダ、61 回路基板、62 基板ターミナル、63 ホールIC(位置検出素子)、64 駆動部、65 コネクタ部、66 ねじ、68 コンデンサ、69 コイル、70 カバー、100 入力シャフト、101 嵌合部、102,103,104 軸受、110 第一回転体、111 ケース、112 内歯ギヤ(減速機)、113 カバー、114 滑り軸受部、120 第二回転体、121 出力ギヤ(減速機)、130 遊星ギヤ(減速機)。

Claims (12)

  1.  回転シャフトと、
     界磁用磁石、磁性体ヨーク、及びセンサ磁石を有し、前記回転シャフトと一体に回転するロータと、
     前記ロータの外周側に位置するステータと、
     前記回転シャフトを支持する軸受と、
     前記ステータ及び前記軸受を保持するハウジングと、
     前記回転シャフトを駆動させる駆動部と前記センサ磁石の位置を検出する位置検出素子とを有し、前記回転シャフトの軸方向の一端側に位置する回路基板とを備え、
     前記ロータは、前記界磁用磁石及び前記磁性体ヨークの内周側、かつ、前記回転シャフトの軸方向における前記回路基板が配置された前記一端側とは反対側に凹部を有し、
     前記軸受、及び前記ハウジングのうちの前記軸受を保持する部位である軸受保持部は、前記凹部内に位置することを特徴とするモータ。
  2.  前記ロータが有する前記界磁用磁石、前記磁性体ヨーク、及び前記センサ磁石は、樹脂により一体化されていることを特徴とする請求項1記載のモータ。
  3.  前記回転シャフトに固定された金属製のブッシュを備え、
     前記ロータが有する前記界磁用磁石、前記磁性体ヨーク、及び前記センサ磁石と、前記ブッシュとは、樹脂により一体化されていることを特徴とする請求項1記載のモータ。
  4.  前記ロータと前記回転シャフトとは、樹脂により一体化されていることを特徴とする請求項1記載のモータ。
  5.  前記軸受は、少なくとも2つの転がり軸受であることを特徴とする請求項1記載のモータ。
  6.  前記ハウジングにおける、前記回転シャフトの軸方向の前記一端側に固定されたホルダを備え、
     前記回路基板は、前記ホルダに固定され、前記位置検出素子は、前記回路基板における前記センサ磁石と対向する面に配置されていることを特徴とする請求項1記載のモータ。
  7.  前記ホルダは、樹脂により形成され、前記樹脂の内部に、前記回路基板と電気的に接合するターミナルを有することを特徴とする請求項6記載のモータ。
  8.  前記ホルダは、前記樹脂により形成されたコネクタ部を有することを特徴とする請求項7記載のモータ。
  9.  前記界磁用磁石は、前記磁性体ヨークに貼り付いていることを特徴とする請求項1記載のモータ。
  10.  前記界磁用磁石は、前記磁性体ヨークに形成された孔内に配置されていることを特徴とする請求項1記載のモータ。
  11.  請求項1記載のモータを備えるバルブタイミング調整装置。
  12.  前記モータの前記回転シャフトに連結された減速機を備えることを特徴とする請求項11記載のバルブタイミング調整装置。
PCT/JP2018/023291 2018-06-19 2018-06-19 モータ及びバルブタイミング調整装置 WO2019244243A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020525118A JP6914443B2 (ja) 2018-06-19 2018-06-19 モータ及びバルブタイミング調整装置
PCT/JP2018/023291 WO2019244243A1 (ja) 2018-06-19 2018-06-19 モータ及びバルブタイミング調整装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/023291 WO2019244243A1 (ja) 2018-06-19 2018-06-19 モータ及びバルブタイミング調整装置

Publications (1)

Publication Number Publication Date
WO2019244243A1 true WO2019244243A1 (ja) 2019-12-26

Family

ID=68982773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023291 WO2019244243A1 (ja) 2018-06-19 2018-06-19 モータ及びバルブタイミング調整装置

Country Status (2)

Country Link
JP (1) JP6914443B2 (ja)
WO (1) WO2019244243A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022029949A1 (ja) * 2020-08-06 2022-02-10
WO2022097320A1 (ja) * 2020-11-06 2022-05-12 日立Astemo株式会社 モータ駆動装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002252958A (ja) * 2001-02-23 2002-09-06 Mitsubishi Electric Corp ブラシレスdcモータ
JP2003088074A (ja) * 2001-09-17 2003-03-20 Nippon Densan Corp ファンモータ
US20060055270A1 (en) * 2004-09-15 2006-03-16 Petersen Technology Corporation Apparatus and method for dissipating a portion of the commutation derived collapsing field energy in a multi-phase unipolar electric motor
JP2007181314A (ja) * 2005-12-28 2007-07-12 Nippon Densan Corp モータ
JP2007221866A (ja) * 2006-02-15 2007-08-30 Mitsubishi Electric Corp 電動機の回転子及び電動機及び空気調和機
JP2010138736A (ja) * 2008-12-10 2010-06-24 Hitachi Automotive Systems Ltd 内燃機関のバルブタイミング制御装置
WO2012008135A1 (ja) * 2010-07-14 2012-01-19 パナソニック株式会社 ブラシレスモータおよびその製造方法
JP2016152676A (ja) * 2015-02-17 2016-08-22 三菱電機株式会社 回転電機

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002252958A (ja) * 2001-02-23 2002-09-06 Mitsubishi Electric Corp ブラシレスdcモータ
JP2003088074A (ja) * 2001-09-17 2003-03-20 Nippon Densan Corp ファンモータ
US20060055270A1 (en) * 2004-09-15 2006-03-16 Petersen Technology Corporation Apparatus and method for dissipating a portion of the commutation derived collapsing field energy in a multi-phase unipolar electric motor
JP2007181314A (ja) * 2005-12-28 2007-07-12 Nippon Densan Corp モータ
JP2007221866A (ja) * 2006-02-15 2007-08-30 Mitsubishi Electric Corp 電動機の回転子及び電動機及び空気調和機
JP2010138736A (ja) * 2008-12-10 2010-06-24 Hitachi Automotive Systems Ltd 内燃機関のバルブタイミング制御装置
WO2012008135A1 (ja) * 2010-07-14 2012-01-19 パナソニック株式会社 ブラシレスモータおよびその製造方法
JP2016152676A (ja) * 2015-02-17 2016-08-22 三菱電機株式会社 回転電機

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022029949A1 (ja) * 2020-08-06 2022-02-10
WO2022029949A1 (ja) * 2020-08-06 2022-02-10 三菱電機株式会社 モータ制御装置、ブラシレスdcモータ、アクチュエータ及びegrバルブ装置
JP7415012B2 (ja) 2020-08-06 2024-01-16 三菱電機株式会社 モータ制御装置、ブラシレスdcモータ、アクチュエータ及びegrバルブ装置
WO2022097320A1 (ja) * 2020-11-06 2022-05-12 日立Astemo株式会社 モータ駆動装置
JPWO2022097320A1 (ja) * 2020-11-06 2022-05-12
JP7486873B2 (ja) 2020-11-06 2024-05-20 日立Astemo株式会社 モータ駆動装置

Also Published As

Publication number Publication date
JP6914443B2 (ja) 2021-08-04
JPWO2019244243A1 (ja) 2021-01-14

Similar Documents

Publication Publication Date Title
US7193343B2 (en) Electric motor
US7772731B2 (en) Electric motor, rotary actuator and rotary apparatus
JP4560743B2 (ja) 回転式アクチュエータ
JP5598735B2 (ja) 回転式アクチュエータ
US10389212B2 (en) Motor device
JP2021145492A (ja) モータ装置
US11624424B2 (en) Rotation driving device
WO2019244243A1 (ja) モータ及びバルブタイミング調整装置
US11901779B2 (en) Motor and brushless wiper motor
US11916439B2 (en) Rotor, motor, and wiper motor having a structure for fixing a magnet to a rotor core
US11496031B2 (en) Motor and brushless wiper motor
WO2019202915A1 (ja) モータ、ブラシレスワイパーモータ、及びモータの駆動方法
JP2008236839A (ja) 電動機及び回転式アクチュエータ
JP2003032988A (ja) ブラシレスモータ、センサマグネットの取付構造及びセンサマグネットの着磁方法
JP2013096283A (ja) 電動オイルポンプ装置
JP2009261130A (ja) モータ装置及びモータアクチュエータ
JP5037827B2 (ja) 電気モータにおけるホールセンサの取付構造
JP2021052493A (ja) モータおよびモータの組立方法
JP7318556B2 (ja) ロータ
JP3372718B2 (ja) 減速機付きブラシレスモータ
CN116897492A (zh) 无刷电机
JPH1080098A (ja) クランク軸直結式発電機
JPH0715911A (ja) 直流同期モータ
JPH0898491A (ja) ブラシレスモータ
JP2005229688A (ja) Dcブラシレスモータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923074

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020525118

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18923074

Country of ref document: EP

Kind code of ref document: A1