WO2019239853A1 - Ultrapure water producing device and ultrapure water producing method - Google Patents

Ultrapure water producing device and ultrapure water producing method Download PDF

Info

Publication number
WO2019239853A1
WO2019239853A1 PCT/JP2019/020676 JP2019020676W WO2019239853A1 WO 2019239853 A1 WO2019239853 A1 WO 2019239853A1 JP 2019020676 W JP2019020676 W JP 2019020676W WO 2019239853 A1 WO2019239853 A1 WO 2019239853A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion exchange
ultrapure water
branch
water production
water
Prior art date
Application number
PCT/JP2019/020676
Other languages
French (fr)
Japanese (ja)
Inventor
清一 中村
Original Assignee
野村マイクロ・サイエンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 野村マイクロ・サイエンス株式会社 filed Critical 野村マイクロ・サイエンス株式会社
Priority to CN201980033935.0A priority Critical patent/CN112203988A/en
Priority to KR1020207031433A priority patent/KR20210018207A/en
Publication of WO2019239853A1 publication Critical patent/WO2019239853A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0031Degasification of liquids by filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0036Flash degasification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/04Non-contaminated water, e.g. for industrial water supply for obtaining ultra-pure water

Definitions

  • the present invention relates to an ultrapure water production apparatus and an ultrapure water production method.
  • ultrapure water used in a semiconductor manufacturing process or the like is manufactured using an ultrapure water manufacturing apparatus.
  • the ultrapure water production equipment is, for example, a pretreatment section for producing pretreated water by removing suspended substances in raw water, a reverse osmosis membrane device and an ion exchange device for all organic carbon components and ion components in the pretreated water. It is mainly composed of a primary pure water production department that produces primary pure water by removing it, and a secondary pure water production department that produces ultrapure water by removing trace amounts of impurities in the primary pure water. (For example, refer to Patent Document 1).
  • As raw water in addition to city water, well water, ground water, industrial water, etc., used ultrapure water (recovered water) collected at a use point where ultrapure water is used is used.
  • the secondary pure water production department is equipped with an ion exchange device (polisher) to which an ion exchange resin is attached, in addition to an ultraviolet oxidation device and an ultrafiltration membrane device.
  • an ion exchange device for example, 4 to 5 devices are arranged in parallel with respect to the flow path of the water to be treated. That is, the plurality of ion exchange devices are respectively provided for the plurality of branch flow paths that once branch the flow path of the water to be treated and merge downstream.
  • the ion exchange resin needs to be replaced at a cycle of, for example, about one year with the deterioration of performance over time.
  • the ion exchange resin of the ion exchange device is exchanged. Even in the process of exchanging the ion exchange resin in one ion exchange device, the production of ultra pure water is continued while operating other plural ion exchange devices that have not exchanged the ion exchange resin. Done.
  • the pressure loss increases as the flow rate increases in the branch flow path provided with the ion exchange device in operation.
  • the pressure and flow rate vary greatly.
  • the operation is performed manually and the above-mentioned valve of the ion exchange resin device is manually operated, and the discharge valve of the inlet side pump is manually operated while observing the pressure and flow fluctuations in the flow path downstream of the ion exchange device. The operation of keeping the flow path pressure and flow rate downstream of the ion exchange device constant was performed carefully.
  • the present invention has been made to solve the above-mentioned problems, and continuously produces ultrapure water having a desired water quality even when the ion exchange resin provided in the ultrapure water production apparatus is replaced.
  • An object of the present invention is to provide an ultrapure water production apparatus and a method for producing ultrapure water.
  • the ultrapure water production apparatus of the present invention includes a plurality of branch channels, a plurality of ion exchange devices, a plurality of on-off valves, and an opening degree changing unit.
  • the plurality of branch flow paths branch the flow path of the water to be treated and merge on the downstream side.
  • the plurality of ion exchange devices are respectively provided on the plurality of branch channels and each have an ion exchange resin.
  • the plurality of on-off valves are respectively provided before and after each ion exchange device on each branch flow path.
  • the opening degree changing unit changes the opening degree of the on-off valve as the set time elapses.
  • the ultrapure water production apparatus of the present invention includes a primary pure water production unit and a secondary pure water production unit.
  • the primary pure water production unit removes organic components and ionic components from the pretreated water obtained by pretreating raw water to produce primary pure water.
  • the secondary pure water production section produces secondary pure water that becomes ultrapure water by removing impurities in the produced primary pure water.
  • the plurality of branch channels, the plurality of ion exchange devices, and the plurality of on-off valves described above are provided in the secondary pure water production unit.
  • the opening degree change unit in the ultrapure water production apparatus of the present invention individually sets a time interval for changing the opening degree and a change amount of the opening degree. Further, the opening degree changing unit selectively changes the opening degree of any one of the plurality of on-off valves.
  • the ultrapure water production apparatus of the present invention includes a pump, a measuring instrument, and an inverter.
  • the pump is provided on the pre-branch channel upstream of the plurality of branch channels.
  • the measuring instrument is provided on the flow path that merges on the downstream side of the plurality of branch flow paths, and measures the flow rate or pressure in the merged flow path.
  • the inverter controls the operation of the pump based on the measurement result by the measuring instrument.
  • the ultrapure water production method of the present invention provides ultrapure water using the ultrapure water production apparatus comprising the plurality of branch channels, the plurality of ion exchange devices, the plurality of on-off valves, and the opening changing unit.
  • the opening / closing valves before and after the ion exchange device provided in one of the plurality of branch channels through which the water to be treated circulate are all opened by the opening changing unit.
  • a step of fully opening each part is
  • the ultrapure water manufacturing apparatus and ultrapure water manufacture which can manufacture continuously the ultrapure water with which the desired water quality was ensured also at the time of replacement
  • FIG. 4 is a diagram schematically showing valve opening gradient control over time by the opening changing unit of FIG. 3.
  • the block diagram which shows the structure of the control system in the secondary pure water manufacturing part with which the ultrapure water manufacturing apparatus of the comparative example was equipped.
  • the figure which shows the fluctuation
  • the ultrapure water production apparatus 10 includes a pretreatment unit 12, a primary pure water production unit 14, a tank 16, and a secondary pure water production unit 18.
  • the pretreatment unit 12 introduces city water, well water, industrial water, and the like as raw water.
  • This pretreatment part 12 is suitably constituted according to the quality of raw water, etc., and removes suspended matter of raw water and generates pretreatment water.
  • the pretreatment unit 12 includes, for example, a sand filtration device or a microfiltration device, and further includes a heat exchanger for adjusting the temperature of the water to be treated as necessary.
  • the primary pure water production unit 14 produces primary pure water by removing organic components, ionic components, dissolved gas, and the like in the pretreatment water, and supplies the primary pure water to the tank 16.
  • the primary pure water production unit 14 includes, for example, a reverse osmosis membrane device, an ion exchange device (a cation exchange device, an anion exchange device, a mixed bed ion exchange device, etc.), an ultraviolet oxidation device, and a deaeration device (vacuum deaeration). One or more of a device, a degassing membrane device, etc.).
  • the primary pure water has, for example, a total organic carbon (TOC) concentration of 5 ⁇ g C / L or less and a resistivity of 17 M ⁇ ⁇ cm or more.
  • the tank 16 stores primary pure water and supplies the necessary amount to the secondary pure water production unit 18.
  • the secondary pure water production unit 18 produces secondary pure water that becomes ultrapure water by removing impurities in the primary pure water produced by the primary pure water production unit 14, and uses the ultrapure water.
  • POU Point Of Use
  • the extra ultrapure water that has passed through the use point POU is collected in the tank 16.
  • the secondary pure water production unit 18 includes a circle pump (treated water supply pump) 11, a heat exchanger 17, an ultraviolet oxidizer (TOC-UV) 19, an treated object. .., 8n, a plurality of on-off valves 3a, 3b,... 3n and outlet valves 4a, 4b,... 4n, a plurality of ion exchangers, polishers 1a, 1b. ... 1n, a deaeration device 21, a pressure gauge (PI) 23 as a measuring instrument, and a flow meter (FI) 24 are provided.
  • PI pressure gauge
  • FI flow meter
  • the secondary pure water production unit 18 includes a pressure switch 15 as a measuring instrument, a booster pump (treated water pressurizing pump) 20, a plurality of branch channels 9a, 9b,. .., 5n and outlet valves 6a, 6b... 6n, polishers 2a, 2b... 2n as a plurality of ion exchange devices, an ultrafiltration membrane device 22, a flow meter 26 as a measuring instrument, A pressure control valve (automatic pressure control valve: PCV) 29 and a pressure gauge 27 are provided.
  • a pressure switch 15 as a measuring instrument
  • a booster pump treated water pressurizing pump
  • branch channels 9a, 9b,. .., 5n and outlet valves 6a, 6b... 6n polishers 2a, 2b... 2n as a plurality of ion exchange devices
  • an ultrafiltration membrane device 22 as a measuring instrument
  • a pressure control valve (automatic pressure control valve: PCV) 29 and a pressure gauge 27 are provided.
  • the circle pump 11 is provided on the pre-branch channel 7 upstream of the plurality of branch channels 8a, 8b,.
  • the circle pump 11 supplies primary pure water (treated water) accommodated in the tank 16 to the heat exchanger 17.
  • the heat exchanger 17 adjusts the temperature of primary pure water supplied from the circle pump 11. At this time, the temperature of the primary pure water is preferably adjusted to, for example, 25 ⁇ 3 ° C. by the heat exchanger 17.
  • the ultraviolet oxidizer 19 irradiates the primary pure water whose temperature is adjusted by the heat exchanger 17 with ultraviolet rays, and decomposes and removes trace organic substances in the water.
  • the ultraviolet oxidizer (TOC-UV) 19 includes, for example, an ultraviolet lamp, and generates ultraviolet rays having a wavelength of around 185 nm.
  • the ultraviolet oxidation device 19 may generate an ultraviolet ray having a wavelength near 254 nm.
  • the ultraviolet rays decompose the water to be treated to generate OH radicals, which oxidize and decompose organic substances in the water to be treated.
  • polishers 1a, 1b... 1n are respectively provided on a plurality of branch flow paths 8a, 8b. 2b... 2n are respectively provided on a plurality of branch channels 9a, 9b.
  • Polishers 1a, 1b... 1n and 2a, 2b... 2n have a mixed bed type ion exchange resin in which a cation exchange resin and an anion exchange resin are mixed, and a small amount of cation components in the water to be treated. And a non-regenerative mixed bed type ion exchange resin apparatus that adsorbs and removes anion components.
  • the lower limit number of branch flow paths is at least 2 and preferably 3.
  • the number of branch flow paths exceeds 9, for example, the number of installed devices such as inlet valves, outlet valves, and polishers increases, and the management of these devices becomes complicated. As a result, restrictions on the installation space and the like will increase, and the practicality of operating the ultrapure water production apparatus 10 will be reduced.
  • the number of branch flow paths is larger, when the inlet and outlet valves are opened and closed, fluctuations in the flow rate and pressure in the downstream flow path can be reduced, but the number of branch flow paths is larger. If the flow rate per branch flow path is less than 10 m 3 / h, for example, the size of the polisher (accommodation amount of the ion exchange resin) corresponding to the flow rate becomes too small, and the practicality is lacking. On the other hand, when the flow rate per branch flow path is, for example, more than 100 m 3 / h, the size of the corresponding polisher becomes too large, and there are problems in terms of practicality in consideration of replacement work of the ion exchange resin. It will be.
  • Examples of the cation exchange resins possessed by the polishers 1a, 1b... 1n and 2a, 2b... 2n include strong acid cation exchange resins and weak acid cation exchange resins. Examples thereof include ion exchange resins and weakly basic anion exchange resins. As a commercial product of mixed bed type ion exchange resin, for example, N-Lite MBSP, MBGP manufactured by Nomura Micro Science Co., Ltd. can be applied.
  • the inlet valves 3a, 3b ... 3n and the outlet valves 4a, 4b ... 4n are respectively provided before and after the polishers 1a, 1b ... 1n (ion exchange devices) arranged on the branch flow paths 8a, 8b ... 8n. .., 5n and outlet valves 6a, 6b... 6n are respectively provided before and after the polishers 2a, 2b... 2n (ion exchange devices) arranged on the branch flow paths 9a, 9b. Yes.
  • the above-described flow path 7 of the water to be treated includes a circle pump 11, an ultraviolet oxidation device 19, branch flow paths 8 a, 8 b... 8 n, polishers 1 a, 1 b.
  • a circulation flow path that returns to the tank 16 through the booster pump 20, the branch flow paths 9 a, 9 b, 9 n, the polishers 2 a, 2 b, 2 n, the ultrafiltration membrane device 22, the use point POU and the like is configured.
  • the degassing device 21 depressurizes the secondary side of the gas permeable membrane, and removes only the dissolved gas in the water flowing through the primary side by passing it to the secondary side, for example, a device such as a degassing membrane device. It is.
  • a device such as a degassing membrane device.
  • the deaerator 21 for example, commercially available products such as 3M X50 and X40 and DIC Separel can be used.
  • the deaeration device 21 removes dissolved oxygen in the water to be treated, and generates treated water having a dissolved oxygen concentration of 1 ⁇ g / L or less, for example.
  • the pressure gauge 23 and the flow meter 24 are provided on the flow path 7 joined on the downstream side of the deaeration device 21, that is, on the downstream side of the plurality of branch flow paths 8a, 8b,. Measure the pressure and flow rate at 7 respectively.
  • the booster pump 20 supplements the water supply by the circle pump 11.
  • the pressure switch 15 monitors an insufficient supply water pressure in the flow path before the booster pump 20.
  • the ultrafiltration membrane device 2 removes fine particles having a particle diameter of 50 nm or more, preferably 20 nm or more, more preferably 10 nm or more by treating the water to be treated by the polishers 2a, 2b,. Secondary pure water) is obtained.
  • the quality of ultrapure water is, for example, that the number of fine particles having a particle diameter of 50 nm or more is 50 pcs. / L or less, the total organic carbon (TOC) concentration is 1 ⁇ g C / L or less, and the resistivity is 18 M ⁇ ⁇ cm or more.
  • the flow meter 26 is provided on the flow path 7 joined between the ultrafiltration membrane 22 and the use point POU, that is, on the downstream side of the plurality of branch flow paths 9a, 9b... 9n.
  • the flow rate in the path 7 is measured.
  • the pressure gauge 27 is provided on the flow path 7 between the use point POU and the pressure control valve 29. In the pressure control valve 29, the opening degree of the valve of the main body is automatically controlled so that the pressure measured by the pressure gauge 27 becomes a predetermined constant pressure (pressure of design value).
  • the ultrapure water production apparatus 10 of the present embodiment has a control panel 31, and the secondary pure water production unit 18 functions as a controller 32 and an opening changing unit.
  • the controller 33 and the inverter 34 are provided.
  • the control panel 31 supplies electric power to each part of the ultrapure water production apparatus main body including the controllers 32 and 33 and the inverter 34 and controls these parts in an integrated manner.
  • the controller 32 acquires the measurement results from the pressure gauge 23 and the flow meter 24. Based on the measurement result obtained by the pressure gauge 23 or the flow meter 24 obtained from the controller 32, the inverter 34 adjusts the circle pump 11 so that the measured pressure or flow rate becomes a predetermined constant pressure or constant flow rate. Controls the operation (number of rotations of the pump drive motor). Further, although not shown in the figure, the controller 32 can also acquire the measurement result by the flow meter 26. The inverter 34 operates the booster pump 20 based on the measurement result obtained by the flow meter 26 obtained from the controller 32 so that the flow rate measured by the flow meter 26 becomes a predetermined constant flow rate (of the pump drive motor). The number of revolutions is also controlled.
  • the inlet valves 3a, 3b ... 3n and 5a, 5b ... 5n and the outlet valves 4a, 4b ... 4n and 6a, 6b ... 6n provided before and after the polishers 1a, 1b ... 1n and 2a, 2b ... 2n are: A positioner type opening / closing valve (opening adjustment valve) having the above-described positioner 35.
  • This positioner 35 is controlled by a controller (opening changing section) 33, and the above-described inlet valves 3a, 3b,... 3n and outlet valves 4a, 4b,... 4n, inlet valves 5a, 5b,. It is an electronic opening controller that controls the opening of 6n.
  • the positioner 35 moves the position of the actuator for adjusting the opening degree of the inlet valves 3a, 3b,... 3n and the outlet valves 4a, 4b,.
  • the controller (opening changing unit) 33 sets the opening of the inlet valves 3a, 3b,... 3n, the outlet valves 4a, 4b,... 4n, and the inlet valves 5a, 5b,. Can be changed over time.
  • the controller (opening changing unit) 33 has a plurality of inlet valves 3a, 3b ... 3n and outlet valves 4a, 4b ... 4n, and inlet valves 5a, 5b ... 5n and outlet valves 6a, 6b ...
  • the opening degree of any one set of the inlet valve and the outlet valve of 6n is selectively changed. Further, the controller 33 individually sets a time interval for changing the opening degree of any one set of the inlet valve and the outlet valve and a change amount of the opening degree.
  • the controller 33 accepts an input operation from a user via a predetermined interface, and sets the time interval and the change amount corresponding to the input value.
  • the controller 33 changes the opening.
  • an amount (increase / decrease amount) for example, an amount such as 1%, 3%, 5%, 10% is set, and for example, as a time interval (increase / decrease period) required for the amount of change in the opening, a time such as 6 seconds or 60 seconds
  • a time such as 6 seconds or 60 seconds
  • a controller 33 receives a valve open signal or a close signal from the control panel 31, a plurality of inlet valves 3a, 3b... 3n and outlet valves 4a, 4b. Apply a relatively long time, such as 10 to 20 minutes (or more than 20 minutes), for example, to set the opening of any one of the 4n valves. Control that gradually changes from closed (0%) to fully open (100%) or control that gradually changes the valve opening from fully open to fully closed is performed. Moreover, in FIG. 4, although the case where an opening degree is changed continuously is illustrated, you may perform this discontinuously and in steps.
  • the ion exchange resins of the polishers 1a, 1b... 1n and 2a, 2b... 2n need to be replaced with a period of about one year, for example, with the deterioration of performance over time.
  • the inlet and outlet valves before and after the polisher provided on one of the plurality of branch channels 8a, 8b ... 8n and 9a, 9b ... 9n are controlled.
  • the ion exchange resin of the polisher is replaced. Even in the process of exchanging the ion exchange resin in the polisher, the production of ultrapure water is continuously performed while operating a plurality of other polishers that have not exchanged the ion exchange resin.
  • the ultrapure water production apparatus 10 of the present embodiment uses the above-described positioner-type inlet and outlet valves, and a controller (opening changing unit) 33 that is an electronic opening controller. As shown in FIG. 5, it is possible to change the opening of the inlet valve or the like from fully open (Open) to fully closed (Close) over a relatively long time, for example, 10 to 20 minutes.
  • the valve to be applied is not limited to the positioner type, and any other valve can be used as long as the opening can be adjusted over the above time. From the viewpoint of ease of fine adjustment, a positioner type is most preferable.
  • FIG. 6 is a block diagram showing the configuration of the control system including the control panel 81 in the secondary pure water production unit provided in the ultrapure water production apparatus of the comparative example.
  • the inlet valves 83a, 83b... 83n and the outlet valves 84a, 84b... 84n provided before and after the polisher are conventional air-driven on-off valves.
  • These conventional inlet valves and outlet valves do not have a function of adjusting the opening according to the passage of time, and when a closing signal or an opening signal is transmitted from the control panel 81, a biasing force such as a spring is applied. For example, from fully open to fully closed in a short time such as 3 to 5 seconds.
  • the transition time from fully open to fully closed is, for example, 10 seconds to 15 Time such as seconds.
  • the fluctuating flow rate and pressure are inverter-controlled by the water supply amount of the circle pump 11 via the inverter 34 according to the measurement values of the flow meter 23 and the pressure gauge 24, the above-described conventional Because of the mechanism of the inlet valve 83a and the like, the inlet valve 83a is suddenly closed in a short time such as 3 seconds to 5 seconds, for example, so that the above inverter control cannot follow the rapid flow rate and pressure fluctuation. Become.
  • the ultrapure water production apparatus 10 of the present embodiment can close the on / off valves before and after the polisher over a relatively long time, the water quality is reduced even when the ion exchange resin is replaced. It becomes possible to produce ultrapure water while suppressing.
  • the time taken to close the on-off valve is preferably 5 minutes to 30 minutes, and more preferably 10 to 20 minutes. If it is shorter than 5 minutes, fluctuations in flow rate and pressure cannot be suppressed. Moreover, when it exceeds 30 minutes, since operation takes time too much, practicality will fall.
  • the optimum value for the valve opening / closing time varies depending on the number of branches in the flow path, but even if this is taken into consideration, it can be handled in the above range regardless of the number of branches. It is.
  • ultrapure water is produced by a normal operation using the ultrapure water production apparatus 10 shown in FIG.
  • the performance of the ion exchange resin deteriorates with time as described above, so that it is replaced at an appropriate timing.
  • the exchange of the ion exchange resin as shown in FIGS. 2 and 3, first, one of the plurality of branch flow paths 8a, 8b... 8n, 9a, 9b.
  • the polisher to be replaced is, for example, the polisher 1a provided on the branch flow path 8a will be described as an example.
  • the inlet valve 3a and the outlet valve 4a which are provided before and after the polisher 1a in which the water to be treated is circulated and which are to be replaced, are fully opened, are connected to the controller (opening changing unit) 33.
  • the opening is gradually changed over a long period of time such as 20 minutes, and then fully closed.
  • the outlet valve 4a is further fully closed. By fully closing the outlet valve 4a, it becomes possible to prevent the backflow of water to be treated to the polisher 1a.
  • the ion exchange resin of the polisher 1a in which the front and rear inlet valves 3a and the outlet valve 4a are fully closed is replaced with a new ion exchange resin.
  • the controller 33 fully opens the outlet valve 4a over a long time such as 20 minutes, and further opens the inlet valve 3a over a long time.
  • the polisher 1a can process a to-be-processed water with a new ion exchange resin.
  • the exchange of ion exchange resins in the other polishers 1b to 1n and the polishers 2a to 2n is sequentially performed one by one. Thereby, the ion exchange resin which a polisher has can be replaced
  • the inlet and outlet valves before and after the polisher are Since it can be closed slowly over time, it is possible to suppress fluctuations in pressure and flow rate in the flow path downstream of the polisher. Therefore, the degradation of the quality of the water to be treated by the secondary pure water production unit 18 is suppressed, and thus ultrapure water with a desired water quality can be continuously produced.
  • the ultrapure water production apparatus 10 of the present embodiment provides ultrapure water at the use point POU when the measured value by the pressure switch 15 on the upstream side of the booster pump 20 falls below a prescribed minimum pressure.
  • the control panel 31 has a function of forcibly stopping the supply.
  • the ultrapure water production apparatus 10 as described above, even when the inlet and outlet valves before and after the polishers 1a, 1b,. Therefore, it is possible to reduce the risk of stopping the supply of ultrapure water at the use point POU due to the detection of the drop by the pressure switch 15 on the upstream side of the booster pump 20.
  • 1a to 1n, 2a to 2n Polishers (ion exchange devices), 3a to 3n, 5a to 5n ... Inlet valves (open / close valves), 4a to 4n, 6a to 6n ... Outlet valves (open / close valves), 10 ... Ultrapure water Production apparatus, 11 ... Circle pump, 14 ... Primary pure water production department, 18 ... Secondary pure water production department, 19 ... Ultraviolet oxidizer (TOC-UV), 20 ... Booster pump, 23 ... Pressure gauge (measuring instrument), 24, 26 ... flow meter (measuring instrument), 31 ... control panel, 32 ... controller, 33 ... controller (opening changing section), 34 ... inverter, 35 ... positioner.
  • Polishers ion exchange devices
  • 3a to 3n 5a to 5n
  • Inlet valves open / close valves
  • 4a to 4n 6a to 6n
  • Outlet valves open / close valves
  • 10 Ultrapure water Production apparatus, 11

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Physical Water Treatments (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Abstract

Provided is an ultrapure water producing device that can continuously produce ultrapure water, ensuring a desired water quality, even while ion exchange resins are being replaced. This ultrapure water producing device is provided with a plurality of branch channels, a plurality of ion exchange devices, a plurality of opening/closing valves, and an aperture changing unit. The plurality of branch channels branch from a channel for water to be treated and converge on the downstream side. Each of the plurality of ion exchange devices is disposed in one of the plurality of branch channels, and each includes an ion exchange resin. Each of the plurality of opening/closing valves is disposed before and after the ion exchange device in each individual branch path. The aperture changing unit changes the apertures of the opening and closing valves along with the passage of a set time.

Description

超純水製造装置及び超純水製造方法Ultrapure water production apparatus and ultrapure water production method
 本発明は、超純水製造装置及び超純水製造方法に関する。 The present invention relates to an ultrapure water production apparatus and an ultrapure water production method.
 従来、半導体の製造工程などで使用される超純水は、超純水製造装置を用いて製造されている。超純水製造装置は、例えば原水中の懸濁物質を除去して前処理水を製造する前処理部、前処理水中の全有機炭素成分やイオン成分を、逆浸透膜装置やイオン交換装置を用いて除去して一次純水を製造する一次純水製造部、及び一次純水中の極微量の不純物を除去して超純水を製造する二次純水製造部から主に構成されている(例えば特許文献1参照)。原水としては、市水、井水、地下水、工業用水などが用いられる他、超純水の使用場所であるユースポイントで回収された使用済みの超純水(回収水)などが用いられる。 Conventionally, ultrapure water used in a semiconductor manufacturing process or the like is manufactured using an ultrapure water manufacturing apparatus. The ultrapure water production equipment is, for example, a pretreatment section for producing pretreated water by removing suspended substances in raw water, a reverse osmosis membrane device and an ion exchange device for all organic carbon components and ion components in the pretreated water. It is mainly composed of a primary pure water production department that produces primary pure water by removing it, and a secondary pure water production department that produces ultrapure water by removing trace amounts of impurities in the primary pure water. (For example, refer to Patent Document 1). As raw water, in addition to city water, well water, ground water, industrial water, etc., used ultrapure water (recovered water) collected at a use point where ultrapure water is used is used.
 ここで、二次純水製造部は、紫外線酸化装置や限外ろ過膜装置などの他、イオン交換樹脂が取り付けられたイオン交換装置(ポリッシャ)を備えている。イオン交換装置は、被処理水の流路に対して例えば4~5台の装置が並列的に配置されている。つまり、複数台のイオン交換装置は、被処理水の流路を一旦分岐させて下流側で合流させる複数の分岐流路に対してそれぞれ設けられている。 Here, the secondary pure water production department is equipped with an ion exchange device (polisher) to which an ion exchange resin is attached, in addition to an ultraviolet oxidation device and an ultrafiltration membrane device. In the ion exchange device, for example, 4 to 5 devices are arranged in parallel with respect to the flow path of the water to be treated. That is, the plurality of ion exchange devices are respectively provided for the plurality of branch flow paths that once branch the flow path of the water to be treated and merge downstream.
 ところで、イオン交換樹脂は、経時的な性能の劣化に伴い例えば1年程度の周期で交換する必要性がある。イオン交換樹脂を交換する際には、分岐流路中における1台のイオン交換装置の前後に設けられたバルブを閉じた後、そのイオン交換装置のイオン交換樹脂が交換される。なお、1台のイオン交換装置におけるイオン交換樹脂を交換している過程においても、イオン交換樹脂を交換していない他の複数台のイオン交換装置を稼働させつつ、超純水の製造は、継続的に行われる。 By the way, the ion exchange resin needs to be replaced at a cycle of, for example, about one year with the deterioration of performance over time. When exchanging the ion exchange resin, after closing valves provided before and after one ion exchange device in the branch flow path, the ion exchange resin of the ion exchange device is exchanged. Even in the process of exchanging the ion exchange resin in one ion exchange device, the production of ultra pure water is continued while operating other plural ion exchange devices that have not exchanged the ion exchange resin. Done.
特許第5135654号公報Japanese Patent No. 5135654
 しかしながら、イオン交換樹脂を交換する過程において、上記したバルブを閉じた際に、稼働中のイオン交換装置が設けられた分岐流路では流量の増加に伴い圧力損失が増大し、この結果、イオン交換装置の下流側の流路では圧力や流量が大きく変動することになる。従来はその操作を手動にて行いイオン交換樹脂装置の上記したバルブを手動にて操作し、イオン交換装置の下流側の流路で圧力や流量の変動を見ながら入口側ポンプの吐出バルブを手動にてイオン交換装置下流側の流路圧力や流量を一定に保つ操作を慎重に行っていた。近年は、変動する流量や圧力は、流量計や圧力計の計測値に応じたポンプの給水量などによって制御されてはいるものの、従来のバルブの機構上、例えば3~5秒などの短時間でバルブが急激に閉じられてしまうことから、急速な流量や圧力の変動に上記した制御が追従できない結果となる。 However, when the valve is closed in the process of exchanging the ion exchange resin, the pressure loss increases as the flow rate increases in the branch flow path provided with the ion exchange device in operation. In the flow path on the downstream side of the apparatus, the pressure and flow rate vary greatly. Conventionally, the operation is performed manually and the above-mentioned valve of the ion exchange resin device is manually operated, and the discharge valve of the inlet side pump is manually operated while observing the pressure and flow fluctuations in the flow path downstream of the ion exchange device. The operation of keeping the flow path pressure and flow rate downstream of the ion exchange device constant was performed carefully. In recent years, the fluctuating flow rate and pressure are controlled by the amount of water supplied to the pump in accordance with the flow meter and pressure gauge measurement value, but due to the conventional valve mechanism, the flow rate and pressure are short, such as 3 to 5 seconds. As a result, the valve is suddenly closed, so that the above-described control cannot follow the rapid flow rate and pressure fluctuation.
 被処理水や製造対象の超純水の流路における流量や圧力が大きく変動した場合、その変動の影響で、例えば紫外線酸化装置やポンプなどの金属製の水流接触面から、金属コロイドなどの微粒子が発生する。発生した金属コロイドなどの微粒子は、その金属成分が徐々にイオン化して水中に溶解してくる場合がある。この際、溶解した金属イオンにより、水中の残留イオン量が増大するため、製造される超純水の水質の低下を招くことになる。 When the flow rate or pressure in the flow path of treated water or ultrapure water to be manufactured fluctuates significantly, fine particles such as metal colloids from the water flow contact surface made of metal such as an ultraviolet oxidizer or pump Will occur. In the generated fine particles such as metal colloid, the metal component may be gradually ionized and dissolved in water. At this time, the amount of residual ions in the water increases due to the dissolved metal ions, which leads to a deterioration in the quality of the ultrapure water produced.
 又、被処理水や製造対象の超純水の流路における流量や圧力が大きく変動した場合、その変動の影響で、例えば紫外線酸化装置やポンプなどの構造上の溜まり部、配管やバルブ部材の溜まり部に安定水流により留まっていた微粒子等の水質を悪化させる物質が流出する場合がある。この際、製造される超純水の水質の低下を招くことになる。さらに、例えば、製造する超純水の供給圧力が変動することにより、使用場所(POU)に接続された半導体製造機器等における純水の流量等が変動することにより、歩留まり等へ影響する場合もある。 In addition, when the flow rate or pressure in the flow path of treated water or ultrapure water to be manufactured fluctuates greatly, the fluctuations cause the structural reservoirs such as ultraviolet oxidizers and pumps, pipes and valve members, etc. Substances that deteriorate the water quality, such as fine particles remaining in the reservoir due to the stable water flow, may flow out. At this time, the quality of the produced ultrapure water is deteriorated. Furthermore, for example, when the supply pressure of the ultrapure water to be manufactured fluctuates, the flow rate of pure water in the semiconductor manufacturing equipment connected to the place of use (POU) fluctuates, which may affect the yield. is there.
 本発明は、上記課題を解決するためになされたものであり、超純水製造装置に設けられたイオン交換樹脂の交換時においても、所望の水質が確保された超純水を継続的に製造できる超純水製造装置及び超純水製造方法の提供を目的とする。 The present invention has been made to solve the above-mentioned problems, and continuously produces ultrapure water having a desired water quality even when the ion exchange resin provided in the ultrapure water production apparatus is replaced. An object of the present invention is to provide an ultrapure water production apparatus and a method for producing ultrapure water.
 本発明の超純水製造装置は、複数の分岐流路、複数のイオン交換装置、複数の開閉弁、及び開度変更部を備えている。複数の分岐流路は、被処理水の流路を分岐させて下流側で合流させる。複数のイオン交換装置は、複数の分岐流路上に各々設けられており、イオン交換樹脂をそれぞれ有している。複数の開閉弁は、個々の分岐流路上におけるイオン交換装置毎の前後にそれぞれ設けられている。開度変更部は、開閉弁の開度を、設定した時間の経過に応じて変更する。 The ultrapure water production apparatus of the present invention includes a plurality of branch channels, a plurality of ion exchange devices, a plurality of on-off valves, and an opening degree changing unit. The plurality of branch flow paths branch the flow path of the water to be treated and merge on the downstream side. The plurality of ion exchange devices are respectively provided on the plurality of branch channels and each have an ion exchange resin. The plurality of on-off valves are respectively provided before and after each ion exchange device on each branch flow path. The opening degree changing unit changes the opening degree of the on-off valve as the set time elapses.
 また、本発明の超純水製造装置は、一次純水製造部及び二次純水製造部を備えている。一次純水製造部は、原水を前処理した前処理水中の有機成分及びイオン成分を除去して一次純水を製造する。一方、二次純水製造部は、前記製造された一次純水中の不純物を除去して超純水となる二次純水を製造する。前述した複数の分岐流路、複数のイオン交換装置及び複数の開閉弁は、二次純水製造部に設けられている。 Moreover, the ultrapure water production apparatus of the present invention includes a primary pure water production unit and a secondary pure water production unit. The primary pure water production unit removes organic components and ionic components from the pretreated water obtained by pretreating raw water to produce primary pure water. On the other hand, the secondary pure water production section produces secondary pure water that becomes ultrapure water by removing impurities in the produced primary pure water. The plurality of branch channels, the plurality of ion exchange devices, and the plurality of on-off valves described above are provided in the secondary pure water production unit.
 さらに、本発明の超純水製造装置における前記開度変更部は、前記開度を変更させる時間間隔と前記開度の変更量とを個別に設定する。また、前記開度変更部は、前記複数の開閉弁のうちのいずれか1つの開閉弁の開度を選択的に変更する。 Furthermore, the opening degree change unit in the ultrapure water production apparatus of the present invention individually sets a time interval for changing the opening degree and a change amount of the opening degree. Further, the opening degree changing unit selectively changes the opening degree of any one of the plurality of on-off valves.
 さらに、本発明の超純水製造装置は、ポンプ、計測器及びインバータを備えている。ポンプは、複数の分岐流路よりも上流側の分岐前の流路上に設けられている。計測器は、複数の分岐流路の下流側で合流した流路上に設けられており、当該合流した流路における流量又は圧力を計測する。インバータは、計測器による計測結果に基づいて、ポンプの動作を制御する。 Furthermore, the ultrapure water production apparatus of the present invention includes a pump, a measuring instrument, and an inverter. The pump is provided on the pre-branch channel upstream of the plurality of branch channels. The measuring instrument is provided on the flow path that merges on the downstream side of the plurality of branch flow paths, and measures the flow rate or pressure in the merged flow path. The inverter controls the operation of the pump based on the measurement result by the measuring instrument.
 さらに、本発明の超純水製造方法は、上記した複数の分岐流路、複数のイオン交換装置、複数の開閉弁、及び開度変更部を備える前記超純水製造装置を用いた超純水製造方法であって、前記被処理水が流通する前記複数の分岐流路のうちの1つの分岐流路中に設けられたイオン交換装置の前後の開閉弁を、前記開度変更部によりそれぞれ全閉させる工程と、前記前後の開閉弁が全閉されたイオン交換装置のイオン交換樹脂を交換する工程と、前記イオン交換樹脂の交換後、全閉された前記前後の開閉弁を前記開度変更部によりそれぞれ全開させる工程と、を有している。 Furthermore, the ultrapure water production method of the present invention provides ultrapure water using the ultrapure water production apparatus comprising the plurality of branch channels, the plurality of ion exchange devices, the plurality of on-off valves, and the opening changing unit. In the manufacturing method, the opening / closing valves before and after the ion exchange device provided in one of the plurality of branch channels through which the water to be treated circulate are all opened by the opening changing unit. A step of closing, a step of exchanging the ion exchange resin of the ion exchange device in which the front and rear on-off valves are fully closed, and a change in the opening of the front and rear on-off valves that are fully closed after the exchange of the ion exchange resin. And a step of fully opening each part.
 本発明によれば、超純水製造装置に設けられたイオン交換樹脂の交換時においても、所望の水質が確保された超純水を継続的に製造できる超純水製造装置及び超純水製造方法を提供することが可能である。 ADVANTAGE OF THE INVENTION According to this invention, the ultrapure water manufacturing apparatus and ultrapure water manufacture which can manufacture continuously the ultrapure water with which the desired water quality was ensured also at the time of replacement | exchange of the ion exchange resin provided in the ultrapure water manufacturing apparatus. It is possible to provide a method.
本発明の実施形態に係る超純水製造装置の構成を概略的に示すブロック図。The block diagram which shows roughly the structure of the ultrapure water manufacturing apparatus which concerns on embodiment of this invention. 図1の超純水製造装置が備える二次純水製造部の構成を示すブロック図。The block diagram which shows the structure of the secondary pure water manufacturing part with which the ultrapure water manufacturing apparatus of FIG. 1 is provided. 図1の超純水製造装置が備える開度変更部を含む制御系の構成を示すブロック図。The block diagram which shows the structure of the control system containing the opening degree change part with which the ultrapure water manufacturing apparatus of FIG. 1 is provided. 図3の開度変更部による時間経過に伴う弁開度勾配制御を概略的に示す図。FIG. 4 is a diagram schematically showing valve opening gradient control over time by the opening changing unit of FIG. 3. 図2の二次純水製造部が備える1つのポリッシャの弁を全閉する過程において、その下流側の流路における圧力(又は流量)及びインバータ出力の変動を示す図。The figure which shows the fluctuation | variation of the pressure (or flow volume) and inverter output in the flow path of the downstream in the process of fully closing the valve of one polisher with which the secondary pure water manufacturing part of FIG. 2 is provided. 比較例の超純水製造装置が備えた二次純水製造部における制御系の構成を示すブロック図。The block diagram which shows the structure of the control system in the secondary pure water manufacturing part with which the ultrapure water manufacturing apparatus of the comparative example was equipped. 図6の二次純水製造部が備える1つのポリッシャの弁を全閉する過程において、その下流側の流路における圧力(又は流量)及びインバータ出力の変動を示す図。The figure which shows the fluctuation | variation of the pressure (or flow volume) and inverter output in the flow path of the downstream in the process of fully closing the valve of one polisher with which the secondary pure water manufacturing part of FIG. 6 is provided.
 以下、本発明の実施の形態を図面に基づき説明する。
 図1に示すように、本実施形態に係る超純水製造装置10は、前処理部12、一次純水製造部14、タンク16及び二次純水製造部18を備えている。前処理部12は、原水として、市水、井水、工業用水などを導入する。この前処理部12は、原水の水質などに応じて適宜構成されており、原水の懸濁物質を除去して前処理水を生成する。前処理部12は、例えば砂ろ過装置や精密ろ過装置などを備え、さらに必要に応じて被処理水の温度を調節するための熱交換器などを有している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the ultrapure water production apparatus 10 according to the present embodiment includes a pretreatment unit 12, a primary pure water production unit 14, a tank 16, and a secondary pure water production unit 18. The pretreatment unit 12 introduces city water, well water, industrial water, and the like as raw water. This pretreatment part 12 is suitably constituted according to the quality of raw water, etc., and removes suspended matter of raw water and generates pretreatment water. The pretreatment unit 12 includes, for example, a sand filtration device or a microfiltration device, and further includes a heat exchanger for adjusting the temperature of the water to be treated as necessary.
 一次純水製造部14は、前処理水中の有機成分、イオン成分、溶存ガスなどを除去して一次純水を製造し、この一次純水をタンク16に供給する。一次純水製造部14は、例えば、逆浸透膜装置、イオン交換装置(陽イオン交換装置、陰イオン交換装置、混床式イオン交換装置など)、紫外線酸化装置、及び脱気装置(真空脱気装置、脱気膜装置など)のうちの1つ以上を適宜組み合わせて構成される。一次純水は、例えば全有機炭素(TOC)濃度が5μgC/L以下、抵抗率が17MΩ・cm以上である。タンク16は、一次純水を貯留し、その必要量を二次純水製造部18に供給する。 The primary pure water production unit 14 produces primary pure water by removing organic components, ionic components, dissolved gas, and the like in the pretreatment water, and supplies the primary pure water to the tank 16. The primary pure water production unit 14 includes, for example, a reverse osmosis membrane device, an ion exchange device (a cation exchange device, an anion exchange device, a mixed bed ion exchange device, etc.), an ultraviolet oxidation device, and a deaeration device (vacuum deaeration). One or more of a device, a degassing membrane device, etc.). The primary pure water has, for example, a total organic carbon (TOC) concentration of 5 μg C / L or less and a resistivity of 17 MΩ · cm or more. The tank 16 stores primary pure water and supplies the necessary amount to the secondary pure water production unit 18.
 一方、二次純水製造部18は、一次純水製造部14により製造された一次純水中の不純物を除去して超純水となる二次純水を製造し、超純水の使用場所であるユースポイントPOU(Point Of Use)に供給する。なお、ユースポイントPOUを通過した余剰分の超純水は、タンク16にて回収される。 On the other hand, the secondary pure water production unit 18 produces secondary pure water that becomes ultrapure water by removing impurities in the primary pure water produced by the primary pure water production unit 14, and uses the ultrapure water. To the use point POU (Point Of Use). The extra ultrapure water that has passed through the use point POU is collected in the tank 16.
 より具体的には、図2に示すように、二次純水製造部18は、サークルポンプ(被処理水供給ポンプ)11、熱交換器17、紫外線酸化装置(TOC-UV)19、被処理水の流路7、複数の分岐流路8a、8b…8n、複数の開閉弁である入口弁3a、3b…3n及び出口弁4a、4b…4n、複数のイオン交換装置であるポリッシャ1a、1b…1n、脱気装置21、計測器としての圧力計(PI:pressure indicator)23及び流量計(FI:Flow Indicator)24、を備えている。 More specifically, as shown in FIG. 2, the secondary pure water production unit 18 includes a circle pump (treated water supply pump) 11, a heat exchanger 17, an ultraviolet oxidizer (TOC-UV) 19, an treated object. .., 8n, a plurality of on-off valves 3a, 3b,... 3n and outlet valves 4a, 4b,... 4n, a plurality of ion exchangers, polishers 1a, 1b. ... 1n, a deaeration device 21, a pressure gauge (PI) 23 as a measuring instrument, and a flow meter (FI) 24 are provided.
 さらに、二次純水製造部18は、図2に示すように、計測器としての圧力スイッチ15、ブースタポンプ(被処理水加圧ポンプ)20、複数の分岐流路9a、9b…9n、複数の開閉弁である入口弁5a、5b…5n及び出口弁6a、6b…6n、複数のイオン交換装置であるポリッシャ2a、2b…2n、限外ろ過膜装置22、計測器としての流量計26、圧力制御弁(自動圧力制御弁:PCV)29、圧力計27、を有している。 Further, as shown in FIG. 2, the secondary pure water production unit 18 includes a pressure switch 15 as a measuring instrument, a booster pump (treated water pressurizing pump) 20, a plurality of branch channels 9a, 9b,. .., 5n and outlet valves 6a, 6b... 6n, polishers 2a, 2b... 2n as a plurality of ion exchange devices, an ultrafiltration membrane device 22, a flow meter 26 as a measuring instrument, A pressure control valve (automatic pressure control valve: PCV) 29 and a pressure gauge 27 are provided.
 サークルポンプ11は、複数の分岐流路8a、8b…8nよりも上流側の分岐前の流路7上に設けられている。このサークルポンプ11は、タンク16内に収容された一次純水(被処理水)を熱交換器17に供給する。熱交換器17は、サークルポンプ11から供給された一次純水の温度を調節する。この際、一次純水は、熱交換器17によって例えば25±3℃に温度調節されることが好ましい。 The circle pump 11 is provided on the pre-branch channel 7 upstream of the plurality of branch channels 8a, 8b,. The circle pump 11 supplies primary pure water (treated water) accommodated in the tank 16 to the heat exchanger 17. The heat exchanger 17 adjusts the temperature of primary pure water supplied from the circle pump 11. At this time, the temperature of the primary pure water is preferably adjusted to, for example, 25 ± 3 ° C. by the heat exchanger 17.
 紫外線酸化装置19は、熱交換器17で温度調節された一次純水に紫外線を照射して、水中の微量有機物を分解除去する。紫外線酸化装置(TOC-UV)19は、例えば紫外線ランプを有し、波長185nm付近の紫外線を発生させる。紫外線酸化装置19は、波長254nm付近の紫外線を発生させるものであってもよい。紫外線酸化装置19内で被処理水に紫外線が照射されると紫外線が被処理水を分解してOHラジカルを生成し、このOHラジカルが、被処理水中の有機物を酸化分解する。 The ultraviolet oxidizer 19 irradiates the primary pure water whose temperature is adjusted by the heat exchanger 17 with ultraviolet rays, and decomposes and removes trace organic substances in the water. The ultraviolet oxidizer (TOC-UV) 19 includes, for example, an ultraviolet lamp, and generates ultraviolet rays having a wavelength of around 185 nm. The ultraviolet oxidation device 19 may generate an ultraviolet ray having a wavelength near 254 nm. When the water to be treated is irradiated with ultraviolet rays in the ultraviolet oxidizer 19, the ultraviolet rays decompose the water to be treated to generate OH radicals, which oxidize and decompose organic substances in the water to be treated.
 図2に示すように、ポリッシャ1a、1b…1nは、被処理水の流路7を分岐させて下流側で合流させる複数の分岐流路8a、8b…8n上に各々設けられ、ポリッシャ2a、2b…2nは、被処理水の流路7を分岐させて下流側で合流させる複数の分岐流路9a、9b…9n上に各々設けられている。ポリッシャ1a、1b…1n及び2a、2b…2nは、陽イオン交換樹脂と陰イオン交換樹脂とが混合された混床式のイオン交換樹脂を有し、被処理水の中の微量の陽イオン成分及び陰イオン成分を吸着除去する非再生型混床式イオン交換樹脂装置である。ここで、分岐流路8a、8b…8nの数、及び、分岐流路9a、9b…9nの数は、それぞれ、2~9(n=2~9)であることが好ましく、3~8であることがより好ましく、3~4であればさらに好ましい。 As shown in FIG. 2, the polishers 1a, 1b... 1n are respectively provided on a plurality of branch flow paths 8a, 8b. 2b... 2n are respectively provided on a plurality of branch channels 9a, 9b. Polishers 1a, 1b... 1n and 2a, 2b... 2n have a mixed bed type ion exchange resin in which a cation exchange resin and an anion exchange resin are mixed, and a small amount of cation components in the water to be treated. And a non-regenerative mixed bed type ion exchange resin apparatus that adsorbs and removes anion components. Here, the number of branch channels 8a, 8b... 8n and the number of branch channels 9a, 9b... 9n are preferably 2 to 9 (n = 2 to 9), respectively. More preferably, it is more preferably 3-4.
 つまり、イオン交換樹脂の交換時においても、超純水製造装置10の連続運転を可能にするためには、分岐流路の下限の数は、最低2好ましくは3であることが望ましい。一方、分岐流路の数が、例えば9を超えると、これに伴い、入口弁、出口弁、ポリッシャなどの各機器の設置数も増加して、これらの機器の管理が煩雑になると共に、機器の設置スペースの制約なども増え、超純水製造装置10を運用するうえでの実用性を低下させることになる。 That is, in order to enable continuous operation of the ultrapure water production apparatus 10 even at the time of exchanging the ion exchange resin, it is desirable that the lower limit number of branch flow paths is at least 2 and preferably 3. On the other hand, if the number of branch flow paths exceeds 9, for example, the number of installed devices such as inlet valves, outlet valves, and polishers increases, and the management of these devices becomes complicated. As a result, restrictions on the installation space and the like will increase, and the practicality of operating the ultrapure water production apparatus 10 will be reduced.
 また、分岐流路の数は多い方が入口弁、出口弁を開閉動作させたときに、下流側の流路における流量及び圧力の変動を小さく抑えることができるものの、分岐流路の数が多過ぎて1つの分岐流路当たりの流量が例えば10m3/h未満の場合、これに対応するポリッシャのサイズ(イオン交換樹脂の収容量)が小さくなり過ぎて実用性を欠くことになる。一方、1つの分岐流路当たりの流量が例えば100m3/h超の場合、これに対応するポリシャのサイズが大きくなり過ぎ、イオン交換樹脂の交換作業などを考慮すると実用性の面で課題が生じることとなる。 In addition, when the number of branch flow paths is larger, when the inlet and outlet valves are opened and closed, fluctuations in the flow rate and pressure in the downstream flow path can be reduced, but the number of branch flow paths is larger. If the flow rate per branch flow path is less than 10 m 3 / h, for example, the size of the polisher (accommodation amount of the ion exchange resin) corresponding to the flow rate becomes too small, and the practicality is lacking. On the other hand, when the flow rate per branch flow path is, for example, more than 100 m 3 / h, the size of the corresponding polisher becomes too large, and there are problems in terms of practicality in consideration of replacement work of the ion exchange resin. It will be.
 ポリッシャ1a、1b…1n及び2a、2b…2nの有する、陽イオン交換樹脂として、強酸性陽イオン交換樹脂や弱酸性陽イオン交換樹脂が例示され、一方、陰イオン交換樹脂として、強塩基性陰イオン交換樹脂や弱塩基性陰イオン交換樹脂が挙げられる。混床式のイオン交換樹脂の市販品としては、例えば野村マイクロ・サイエンス製 N-Lite MBSP、MBGPなどを適用することが可能である。 Examples of the cation exchange resins possessed by the polishers 1a, 1b... 1n and 2a, 2b... 2n include strong acid cation exchange resins and weak acid cation exchange resins. Examples thereof include ion exchange resins and weakly basic anion exchange resins. As a commercial product of mixed bed type ion exchange resin, for example, N-Lite MBSP, MBGP manufactured by Nomura Micro Science Co., Ltd. can be applied.
 入口弁3a、3b…3n及び出口弁4a、4b…4nは、分岐流路8a、8b…8n上に配置された各ポリッシャ1a、1b…1n(イオン交換装置)の前後にそれぞれ設けられており、入口弁5a、5b…5n及び出口弁6a、6b…6nは、分岐流路9a、9b…9n上に配置された各ポリッシャ2a、2b…2n(イオン交換装置)の前後にそれぞれ設けられている。ここで、上記した被処理水の流路7は、図2に示すように、タンク16から、サークルポンプ11、紫外線酸化装置19、分岐流路8a、8b…8n、ポリッシャ1a、1b…1n、ブースタポンプ20、分岐流路9a、9b…9n、ポリッシャ2a、2b…2n、限外ろ過膜装置22、ユースポイントPOU、などを経てタンク16へと返送する循環流路を構成している。 The inlet valves 3a, 3b ... 3n and the outlet valves 4a, 4b ... 4n are respectively provided before and after the polishers 1a, 1b ... 1n (ion exchange devices) arranged on the branch flow paths 8a, 8b ... 8n. .., 5n and outlet valves 6a, 6b... 6n are respectively provided before and after the polishers 2a, 2b... 2n (ion exchange devices) arranged on the branch flow paths 9a, 9b. Yes. Here, as shown in FIG. 2, the above-described flow path 7 of the water to be treated includes a circle pump 11, an ultraviolet oxidation device 19, branch flow paths 8 a, 8 b... 8 n, polishers 1 a, 1 b. A circulation flow path that returns to the tank 16 through the booster pump 20, the branch flow paths 9 a, 9 b, 9 n, the polishers 2 a, 2 b, 2 n, the ultrafiltration membrane device 22, the use point POU and the like is configured.
 脱気装置21は、気体透過性の膜の二次側を減圧して、一次側を通流する水中の溶存ガスのみを二次側に透過させて除去する、例えば脱気膜装置などの装置である。脱気装置21には、例えば3M社製のX50、X40、DIC社製のSeparelなどの市販品を用いることができる。脱気装置21は、被処理水の中の溶存酸素を除去して、例えば溶存酸素濃度が1μg/L以下の処理水を生成する。 The degassing device 21 depressurizes the secondary side of the gas permeable membrane, and removes only the dissolved gas in the water flowing through the primary side by passing it to the secondary side, for example, a device such as a degassing membrane device. It is. As the deaerator 21, for example, commercially available products such as 3M X50 and X40 and DIC Separel can be used. The deaeration device 21 removes dissolved oxygen in the water to be treated, and generates treated water having a dissolved oxygen concentration of 1 μg / L or less, for example.
 圧力計23及び流量計24は、脱気装置21の下流側、つまり、複数の分岐流路8a、8b…8nの下流側で合流した流路7上に設けられており、当該合流した流路7における圧力及び流量をそれぞれ計測する。ブースタポンプ20は、サークルポンプ11による給水を補足する。圧力スイッチ15は、ブースタポンプ20の手前の流路における給水圧不足を監視する。 The pressure gauge 23 and the flow meter 24 are provided on the flow path 7 joined on the downstream side of the deaeration device 21, that is, on the downstream side of the plurality of branch flow paths 8a, 8b,. Measure the pressure and flow rate at 7 respectively. The booster pump 20 supplements the water supply by the circle pump 11. The pressure switch 15 monitors an insufficient supply water pressure in the flow path before the booster pump 20.
 限外ろ過膜装置2は、ポリッシャ2a、2b…2nによる被処理水を処理することにより、例えば粒子径50nm以上、好ましくは20nm以上、より好ましくは10nm以上の微粒子を除去して超純水(二次純水)を得る。超純水の水質は、例えば粒子径50nm以上の微粒子数が50pcs./L以下、全有機炭素(TOC)濃度が1μgC/L以下、抵抗率が18MΩ・cm以上である。 The ultrafiltration membrane device 2 removes fine particles having a particle diameter of 50 nm or more, preferably 20 nm or more, more preferably 10 nm or more by treating the water to be treated by the polishers 2a, 2b,. Secondary pure water) is obtained. The quality of ultrapure water is, for example, that the number of fine particles having a particle diameter of 50 nm or more is 50 pcs. / L or less, the total organic carbon (TOC) concentration is 1 μg C / L or less, and the resistivity is 18 MΩ · cm or more.
 流量計26は、限外ろ過膜22とユースポイントPOUとの間、つまり、複数の分岐流路9a、9b…9nの下流側で合流した流路7上に設けられており、当該合流した流路7における流量を計測する。圧力計27は、ユースポイントPOUと圧力制御弁29との間の流路7上に設けられている。圧力制御弁29は、圧力計27により計測される圧力が、予め決められた一定の圧力(設計値の圧力)になるように、本体の弁の開度が自動制御される。 The flow meter 26 is provided on the flow path 7 joined between the ultrafiltration membrane 22 and the use point POU, that is, on the downstream side of the plurality of branch flow paths 9a, 9b... 9n. The flow rate in the path 7 is measured. The pressure gauge 27 is provided on the flow path 7 between the use point POU and the pressure control valve 29. In the pressure control valve 29, the opening degree of the valve of the main body is automatically controlled so that the pressure measured by the pressure gauge 27 becomes a predetermined constant pressure (pressure of design value).
 また、図3に示すように、本実施形態の超純水製造装置10は、制御盤31を有し、さらに、二次純水製造部18は、制御機32と、開度変更部として機能する制御機33と、インバータ34と、を備えている。制御盤31は、制御機32、33、インバータ34を含む超純水製造装置本体の各部に電力を供給すると共にこれら各部を統括的に制御する。 Moreover, as shown in FIG. 3, the ultrapure water production apparatus 10 of the present embodiment has a control panel 31, and the secondary pure water production unit 18 functions as a controller 32 and an opening changing unit. The controller 33 and the inverter 34 are provided. The control panel 31 supplies electric power to each part of the ultrapure water production apparatus main body including the controllers 32 and 33 and the inverter 34 and controls these parts in an integrated manner.
 制御機32は、圧力計23及び流量計24による計測結果を取得する。インバータ34は、制御機32から得た圧力計23又は流量計24による計測結果に基づき、計測される圧力又は流量が予め決められた一定の圧力又は一定の流量になるように、サークルポンプ11の動作(ポンプ駆動モータの回転数)を制御する。さらに、図示を省略しているが、制御機32は、流量計26による測定結果も取得できるようになっている。インバータ34は、制御機32から得た流量計26による計測結果に基づき、流量計26で計測される流量が予め決められた一定の流量になるように、ブースタポンプ20の動作(ポンプ駆動モータの回転数)も制御する。 The controller 32 acquires the measurement results from the pressure gauge 23 and the flow meter 24. Based on the measurement result obtained by the pressure gauge 23 or the flow meter 24 obtained from the controller 32, the inverter 34 adjusts the circle pump 11 so that the measured pressure or flow rate becomes a predetermined constant pressure or constant flow rate. Controls the operation (number of rotations of the pump drive motor). Further, although not shown in the figure, the controller 32 can also acquire the measurement result by the flow meter 26. The inverter 34 operates the booster pump 20 based on the measurement result obtained by the flow meter 26 obtained from the controller 32 so that the flow rate measured by the flow meter 26 becomes a predetermined constant flow rate (of the pump drive motor). The number of revolutions is also controlled.
 ここで、ポリッシャ1a、1b…1n及び2a、2b…2nの前後に設けられた入口弁3a、3b…3n及び5a、5b…5n、並びに出口弁4a、4b…4n及び6a、6b…6nは、上記したポジショナ35を有するポジショナ式の開閉弁(開度調節弁)である。このポジショナ35は、制御機(開度変更部)33により制御され、上記した入口弁3a、3b…3n及び出口弁4a、4b…4n並びに入口弁5a、5b…5n及び出口弁6a、6b…6nの開度を制御する電子式開度コントローラである。制御機33からの指示に基づき、ポジショナ35は、入口弁3a、3b…3n及び出口弁4a、4b…4nの開度を調節するためのアクチュエータの位置を、例えばエアによる駆動力で移動させる。 Here, the inlet valves 3a, 3b ... 3n and 5a, 5b ... 5n and the outlet valves 4a, 4b ... 4n and 6a, 6b ... 6n provided before and after the polishers 1a, 1b ... 1n and 2a, 2b ... 2n are: A positioner type opening / closing valve (opening adjustment valve) having the above-described positioner 35. This positioner 35 is controlled by a controller (opening changing section) 33, and the above-described inlet valves 3a, 3b,... 3n and outlet valves 4a, 4b,... 4n, inlet valves 5a, 5b,. It is an electronic opening controller that controls the opening of 6n. Based on an instruction from the controller 33, the positioner 35 moves the position of the actuator for adjusting the opening degree of the inlet valves 3a, 3b,... 3n and the outlet valves 4a, 4b,.
 上記した制御機(開度変更部)33は、入口弁3a、3b…3n及び出口弁4a、4b…4n並びに入口弁5a、5b…5n及び出口弁6a、6b…6nの開度を、設定した時間の経過に応じて変更できる。この制御機(開度変更部)33は、実際の動作にあたっては、複数の入口弁3a、3b…3n及び出口弁4a、4b…4n並びに入口弁5a、5b…5n及び出口弁6a、6b…6nのうちのいずれか1組の入口弁及び出口弁の開度を選択的に変更する。また、制御機33は、いずれか1組の入口弁及び出口弁の開度を変更させる時間間隔と当該開度の変更量とを個別に設定する。 The controller (opening changing unit) 33 sets the opening of the inlet valves 3a, 3b,... 3n, the outlet valves 4a, 4b,... 4n, and the inlet valves 5a, 5b,. Can be changed over time. In actual operation, the controller (opening changing unit) 33 has a plurality of inlet valves 3a, 3b ... 3n and outlet valves 4a, 4b ... 4n, and inlet valves 5a, 5b ... 5n and outlet valves 6a, 6b ... The opening degree of any one set of the inlet valve and the outlet valve of 6n is selectively changed. Further, the controller 33 individually sets a time interval for changing the opening degree of any one set of the inlet valve and the outlet valve and a change amount of the opening degree.
 つまり、制御機33は、ユーザからの所定のインタフェースを介しての入力操作を受け付けて、その入力値に対応する前記時間間隔と前記変更量とを設定する。図4に示すように、弁の開度が全閉となる開度0%から、弁の開度が全開となる開度100%までの開度範囲において、制御機33は、開度の変更量(増減量)として、例えば1%、3%、5%、10%といった量を設定すると共に、例えばその開度の変更量に要する時間間隔(増減期間)として、6秒や60秒といった時間間隔を設定することで、弁の開度の勾配制御を可能とする。この設定に基づいて、その開閉弁の開度を全開から全閉まで又は全閉から全開まで、一定の割合で変更することが好ましい。 That is, the controller 33 accepts an input operation from a user via a predetermined interface, and sets the time interval and the change amount corresponding to the input value. As shown in FIG. 4, in the opening range from 0% at which the valve opening is fully closed to 100% at which the valve opening is fully open, the controller 33 changes the opening. As an amount (increase / decrease amount), for example, an amount such as 1%, 3%, 5%, 10% is set, and for example, as a time interval (increase / decrease period) required for the amount of change in the opening, a time such as 6 seconds or 60 seconds By setting the interval, it is possible to control the gradient of the valve opening. Based on this setting, it is preferable to change the opening degree of the on-off valve from a fully open position to a fully closed position or from a fully closed position to a fully open position at a constant rate.
 このような制御機33は、図4に概念的に示すように、制御盤31から弁の開信号又は閉信号を受信した場合、複数の入口弁3a、3b…3n及び出口弁4a、4b…4nのうちのいずれか1組の弁の開度を、予め設定した例えば10分~20分(又は20分を超える時間)などといった比較的長い時間をあえて適用して、弁の開度を全閉(0%)から全開(100%)まで徐々に変更する制御、又は、弁の開度を全開から全閉まで徐々に変更する制御を行う。また、図4では、連続的に開度を変更する場合を例示しているが、これを不連続に段階的に行ってもよい。 As shown conceptually in FIG. 4, when such a controller 33 receives a valve open signal or a close signal from the control panel 31, a plurality of inlet valves 3a, 3b... 3n and outlet valves 4a, 4b. Apply a relatively long time, such as 10 to 20 minutes (or more than 20 minutes), for example, to set the opening of any one of the 4n valves. Control that gradually changes from closed (0%) to fully open (100%) or control that gradually changes the valve opening from fully open to fully closed is performed. Moreover, in FIG. 4, although the case where an opening degree is changed continuously is illustrated, you may perform this discontinuously and in steps.
 ところで、ポリッシャ1a、1b…1n及び2a、2b…2nが有するイオン交換樹脂は、経時的な性能の劣化に伴い例えば1年程度の周期で交換の必要がある。イオン交換樹脂を交換する際には、複数の分岐流路8a、8b…8n及び9a、9b…9nのうちの1つの分岐流路上に設けられたポリッシャの前後の入口弁及び出口弁を、制御機33によりそれぞれ全閉させた後、そのポリッシャのイオン交換樹脂を交換する。なお、このポリッシャにおけるイオン交換樹脂を交換している過程においても、イオン交換樹脂を交換していない他の複数台のポリッシャを稼働させつつ、超純水の製造は、継続的に行われる。 Incidentally, the ion exchange resins of the polishers 1a, 1b... 1n and 2a, 2b... 2n need to be replaced with a period of about one year, for example, with the deterioration of performance over time. When exchanging the ion exchange resin, the inlet and outlet valves before and after the polisher provided on one of the plurality of branch channels 8a, 8b ... 8n and 9a, 9b ... 9n are controlled. After being fully closed by the machine 33, the ion exchange resin of the polisher is replaced. Even in the process of exchanging the ion exchange resin in the polisher, the production of ultrapure water is continuously performed while operating a plurality of other polishers that have not exchanged the ion exchange resin.
 ここで、イオン交換樹脂を交換する過程において、上記した入口弁などを閉じた際に、稼働中のポリッシャが設けられた分岐流路では流量の増加に伴い圧力損失が増え、この結果、ポリッシャの下流側の流路7では圧力や流量が変動することになる。しかしながら、本実施形態の超純水製造装置10は、上記したポジショナ式の入口弁及び出口弁、並びに電子式開度コントローラである制御機(開度変更部)33を適用していることで、図5に示すように、例えば10分~20分といった比較的長い時間をかけて入口弁などの開度を全開(Open)から全閉(Close)にすることが可能である。なお、適用するバルブは、ポジショナ式に限定されるわけではなく、上記の時間をかけて開度調整が可能なバルブであれば、他の物を使用することも可能であるが、開度の微調整のし易さの点から、ポジショナ式が最も好ましい。 Here, in the process of exchanging the ion exchange resin, when the above inlet valve or the like is closed, the pressure loss increases as the flow rate increases in the branch flow path provided with the operating polisher. In the flow path 7 on the downstream side, the pressure and flow rate vary. However, the ultrapure water production apparatus 10 of the present embodiment uses the above-described positioner-type inlet and outlet valves, and a controller (opening changing unit) 33 that is an electronic opening controller. As shown in FIG. 5, it is possible to change the opening of the inlet valve or the like from fully open (Open) to fully closed (Close) over a relatively long time, for example, 10 to 20 minutes. Note that the valve to be applied is not limited to the positioner type, and any other valve can be used as long as the opening can be adjusted over the above time. From the viewpoint of ease of fine adjustment, a positioner type is most preferable.
 したがって、図5に示すように、ポリッシャの下流側の流路7における圧力や流量の変動(ハンチング)A1、A2及びインバータ出力のハンチングA3、A4を、小さく抑えることが可能なので、二次純水製造部18で製造される超純水の水質の低下が抑制され、これにより、所望の水質が確保された超純水を継続的に製造することできる。 Therefore, as shown in FIG. 5, since the fluctuations (huntings) A1 and A2 and the huntings A3 and A4 of the inverter output in the flow path 7 on the downstream side of the polisher can be suppressed, secondary pure water The deterioration of the quality of the ultrapure water produced by the production unit 18 is suppressed, and thus ultrapure water in which a desired water quality is ensured can be produced continuously.
 一方、図6は、比較例の超純水製造装置が備えた二次純水製造部における制御盤81を含む制御系の構成をブロック図で示している。図6に示すように、ポリッシャの前後に設けられた入口弁83a、83b…83n及び出口弁84a、84b…84nは、従来のエア駆動式の開閉弁である。これら従来の入口弁及び出口弁は、時間の経過に応じた開度の調整機能を有しておらず、制御盤81からの閉信号、開信号が発信された場合に、バネなどの付勢力を介して、3秒~5秒などの短時間で例えば全開から全閉に移行する。従来のエア駆動式の入口弁及び出口弁は、駆動エアの通気路にオリフィス(小孔)が配置されているタイプであっても、全開から全閉までの移行時間は、例えば10秒~15秒といった時間である。 On the other hand, FIG. 6 is a block diagram showing the configuration of the control system including the control panel 81 in the secondary pure water production unit provided in the ultrapure water production apparatus of the comparative example. As shown in FIG. 6, the inlet valves 83a, 83b... 83n and the outlet valves 84a, 84b... 84n provided before and after the polisher are conventional air-driven on-off valves. These conventional inlet valves and outlet valves do not have a function of adjusting the opening according to the passage of time, and when a closing signal or an opening signal is transmitted from the control panel 81, a biasing force such as a spring is applied. For example, from fully open to fully closed in a short time such as 3 to 5 seconds. Even if the conventional air-driven inlet and outlet valves are of a type in which orifices (small holes) are arranged in the air passage of the driving air, the transition time from fully open to fully closed is, for example, 10 seconds to 15 Time such as seconds.
 このような従来の入口弁83a、83b…83n及び出口弁84a、84b…84nを適用する比較例の超純水製造装置は、例えばポリッシャ1aのイオン交換樹脂を交換する過程において、入口弁83aを全閉する際に、稼働中のイオン交換装置が設けられた分岐流路では流量の増加に伴い圧力損失が増大し、この結果、図7に示すように、ポリッシャ1aの下流側の流路7では、圧力や流量が大きく変動すること(圧力や流量の大きなハンチングB1、B2及びインバータ出力の大きなハンチングB3、B4が生じること)になる。 The ultrapure water production apparatus of the comparative example to which such conventional inlet valves 83a, 83b,... 83n and outlet valves 84a, 84b,... 84n are applied, for example, in the process of replacing the ion exchange resin of the polisher 1a. When fully closed, the pressure loss increases as the flow rate increases in the branch flow path provided with the active ion exchange device. As a result, as shown in FIG. 7, the flow path 7 on the downstream side of the polisher 1a. Then, the pressure and flow rate fluctuate greatly (hunting B1 and B2 with large pressure and flow rate and hunting B3 and B4 with large inverter output occur).
 具体的には、変動する流量や圧力は、流量計23や圧力計24の計測値に応じて、インバータ34を介したサークルポンプ11の給水量などによってインバータ制御されてはいるものの、上記した従来の入口弁83aなどの機構上、例えば3秒~5秒などの短時間で入口弁83aが急激に閉じられてしまうことから、急速な流量や圧力の変動に上記したインバータ制御が追従できない結果となる。 Specifically, although the fluctuating flow rate and pressure are inverter-controlled by the water supply amount of the circle pump 11 via the inverter 34 according to the measurement values of the flow meter 23 and the pressure gauge 24, the above-described conventional Because of the mechanism of the inlet valve 83a and the like, the inlet valve 83a is suddenly closed in a short time such as 3 seconds to 5 seconds, for example, so that the above inverter control cannot follow the rapid flow rate and pressure fluctuation. Become.
 被処理水(二次純水)の流路7における流量や圧力が大きく変動した場合、その変動の影響で、例えば紫外線酸化装置やポンプなどの金属製の水流接触面から、金属コロイドなどの微粒子が発生し、この微粒子の金属成分は、徐々にイオン化して水中に溶解してくる場合がある。この際、溶解した金属イオンにより、水中の残留イオン量が増大するため、製造される超純水(二次純水)の水質の低下を招くことになる。 When the flow rate or pressure in the flow path 7 of the water to be treated (secondary pure water) greatly fluctuates, fine particles such as metal colloids from the metal water flow contact surface such as an ultraviolet oxidizer or a pump due to the fluctuation. In some cases, the metal component of the fine particles is gradually ionized and dissolved in water. At this time, the amount of residual ions in the water increases due to the dissolved metal ions, which causes a deterioration in the quality of the ultrapure water (secondary pure water) to be produced.
 又、被処理水や製造対象の超純水の流路における流量や圧力が大きく変動した場合、その変動の影響で、例えば紫外線酸化装置やポンプなどの構造上の溜まり部、配管やバルブ部材の溜まり部に安定水流により留まっていた微粒子等の水質を悪化させる物質が流出する場合がある。この際、製造される超純水の水質の低下を招くことになる。 In addition, when the flow rate or pressure in the flow path of treated water or ultrapure water to be manufactured fluctuates greatly, the fluctuations cause the structural reservoirs such as ultraviolet oxidizers and pumps, pipes and valve members, etc. Substances that deteriorate the water quality, such as fine particles remaining in the reservoir due to the stable water flow, may flow out. At this time, the quality of the produced ultrapure water is deteriorated.
 これに対して、本実施形態の超純水製造装置10は、比較的長い時間をかけてポリッシャの前後の開閉弁を閉じることができるので、イオン交換樹脂の交換時においても、水質の低下を抑制しつつ超純水を製造することが可能となる。この開閉弁を閉じるのにかける時間としては、5分~30分が好ましく、10~20分がより好ましい。5分より短いと、流量や圧力の変動が抑制できなくなる。また30分を超えると、操作に時間をかけすぎるため、実用性が落ちてしまう。なお、流路の分岐の数によって、バルブの開閉にかける時間の最適値は厳密には異なってくるが、その点を考慮しても、分岐の数によらず、ほぼ上記の範囲で対応可能である。 On the other hand, since the ultrapure water production apparatus 10 of the present embodiment can close the on / off valves before and after the polisher over a relatively long time, the water quality is reduced even when the ion exchange resin is replaced. It becomes possible to produce ultrapure water while suppressing. The time taken to close the on-off valve is preferably 5 minutes to 30 minutes, and more preferably 10 to 20 minutes. If it is shorter than 5 minutes, fluctuations in flow rate and pressure cannot be suppressed. Moreover, when it exceeds 30 minutes, since operation takes time too much, practicality will fall. The optimum value for the valve opening / closing time varies depending on the number of branches in the flow path, but even if this is taken into consideration, it can be handled in the above range regardless of the number of branches. It is.
 次に、超純水製造装置10を用いた超純水製造方法について概略的に説明する。 Next, an ultrapure water production method using the ultrapure water production apparatus 10 will be schematically described.
 まず、図1に示す超純水製造装置10を用いて、通常の操作により超純水を製造する。この超純水の製造を継続することで、上記のようにイオン交換樹脂の性能は経時的に劣化するため、適当なタイミングでこれを交換する。イオン交換樹脂の交換にあたっては、図2,3に示すように、まず、複数の分岐流路8a、8b…8n、9a、9b…9nのうちの1つのポリッシャを交換対象として決定する。ここでは、交換対象のポリッシャを、例えば分岐流路8a上に設けられたポリッシャ1aとした場合を例に以下説明する。次いで、交換対象となった、被処理水の流通するポリッシャ1aに対して、その前後に設けられ、全開状態となっている入口弁3a及び出口弁4aを、制御機(開度変更部)33により、20分などの長い時間をかけてそれぞれ徐々に開度を変更して全閉させる。具体的には、入口弁3aを全閉させた後、さらに出口弁4aを全閉させる。出口弁4aを全閉させることで、ポリッシャ1aへの被処理水の逆流を防止することが可能となる。 First, ultrapure water is produced by a normal operation using the ultrapure water production apparatus 10 shown in FIG. By continuing the production of this ultrapure water, the performance of the ion exchange resin deteriorates with time as described above, so that it is replaced at an appropriate timing. In the exchange of the ion exchange resin, as shown in FIGS. 2 and 3, first, one of the plurality of branch flow paths 8a, 8b... 8n, 9a, 9b. Here, the case where the polisher to be replaced is, for example, the polisher 1a provided on the branch flow path 8a will be described as an example. Next, the inlet valve 3a and the outlet valve 4a, which are provided before and after the polisher 1a in which the water to be treated is circulated and which are to be replaced, are fully opened, are connected to the controller (opening changing unit) 33. Thus, the opening is gradually changed over a long period of time such as 20 minutes, and then fully closed. Specifically, after the inlet valve 3a is fully closed, the outlet valve 4a is further fully closed. By fully closing the outlet valve 4a, it becomes possible to prevent the backflow of water to be treated to the polisher 1a.
 次に、前後の入口弁3a及び出口弁4aが全閉されたポリッシャ1aのイオン交換樹脂を新しいイオン交換樹脂と交換する。イオン交換樹脂を交換した後、制御機33により20分などの長い時間をかけて出口弁4aを全開させた後、さらに入口弁3aを長い時間をかけて全開させる。これにより、ポリッシャ1aは新しいイオン交換樹脂により被処理水の処理ができる。
そして、同様に、その他のポリッシャ1b~1n、ポリッシャ2a~2nにおけるイオン交換樹脂の交換をポリッシャ1台ずつ順次行う。これにより、超純水の製造操作を停止することなく、ポリッシャが有するイオン交換樹脂の交換を円滑に行うことができる。
Next, the ion exchange resin of the polisher 1a in which the front and rear inlet valves 3a and the outlet valve 4a are fully closed is replaced with a new ion exchange resin. After exchanging the ion exchange resin, the controller 33 fully opens the outlet valve 4a over a long time such as 20 minutes, and further opens the inlet valve 3a over a long time. Thereby, the polisher 1a can process a to-be-processed water with a new ion exchange resin.
Similarly, the exchange of ion exchange resins in the other polishers 1b to 1n and the polishers 2a to 2n is sequentially performed one by one. Thereby, the ion exchange resin which a polisher has can be replaced | exchanged smoothly, without stopping manufacture operation of ultrapure water.
 そして、既述したように、本実施形態に係る超純水製造装置10及び超純水製造方法では、ポリッシャが有するイオン交換樹脂を交換する際に、ポリッシャの前後の入口弁及び出口弁を、時間をかけてゆっくりと閉じることができるので、ポリッシャの下流側の流路における圧力や流量の変動を抑えることが可能である。したがって、二次純水製造部18による被処理水の水質の低下が抑制され、これにより、所望の水質が確保された超純水を継続的に製造することができる。 As described above, in the ultrapure water production apparatus 10 and the ultrapure water production method according to the present embodiment, when the ion exchange resin included in the polisher is replaced, the inlet and outlet valves before and after the polisher are Since it can be closed slowly over time, it is possible to suppress fluctuations in pressure and flow rate in the flow path downstream of the polisher. Therefore, the degradation of the quality of the water to be treated by the secondary pure water production unit 18 is suppressed, and thus ultrapure water with a desired water quality can be continuously produced.
 また、本実施形態の超純水製造装置10は、例えばブースタポンプ20の上流側の圧力スイッチ15による計測値が、規定された最低圧力よりも低下した場合に、ユースポイントPOUでの超純水の供給を、制御盤31が強制的に停止させる機能などを有している。しかしながら、超純水製造装置10では、上述したように、ポリッシャ1a、1b…1nの前後の入口弁及び出口弁を閉じる場合においても、その下流側の流路7における圧力の変動を抑えることができるので、ブースタポンプ20の上流側の圧力スイッチ15による低下検知などが要因となるユースポイントPOUでの超純水の供給停止などのリスクを低減することができる。 Further, the ultrapure water production apparatus 10 of the present embodiment, for example, provides ultrapure water at the use point POU when the measured value by the pressure switch 15 on the upstream side of the booster pump 20 falls below a prescribed minimum pressure. The control panel 31 has a function of forcibly stopping the supply. However, in the ultrapure water production apparatus 10, as described above, even when the inlet and outlet valves before and after the polishers 1a, 1b,. Therefore, it is possible to reduce the risk of stopping the supply of ultrapure water at the use point POU due to the detection of the drop by the pressure switch 15 on the upstream side of the booster pump 20.
 以上、本発明を実施の形態により具体的に説明したが、本発明はこれらの実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々変更可能である。例えば、実施形態に示される全構成要素からいくつかの構成要素を削除してもよいし、上記実施形態に開示されている複数の構成要素を適宜組み合わせることも可能である。 As described above, the present invention has been specifically described with the embodiments. However, the present invention is not limited to these embodiments as they are, and various modifications can be made without departing from the scope of the invention in the implementation stage. For example, some constituent elements may be deleted from all the constituent elements shown in the embodiments, or a plurality of constituent elements disclosed in the above embodiments may be appropriately combined.
 1a~1n,2a~2n…ポリッシャ(イオン交換装置)、3a~3n、5a~5n…入口弁(開閉弁)、4a~4n,6a~6n…出口弁(開閉弁)、10…超純水製造装置、11…サークルポンプ、14…一次純水製造部、18…二次純水製造部、19…紫外線酸化装置(TOC-UV)、20…ブースタポンプ、23…圧力計(計測器)、24,26…流量計(計測器)、31…制御盤、32…制御機、33…制御機(開度変更部)、34…インバータ、35…ポジショナ。 1a to 1n, 2a to 2n: Polishers (ion exchange devices), 3a to 3n, 5a to 5n ... Inlet valves (open / close valves), 4a to 4n, 6a to 6n ... Outlet valves (open / close valves), 10 ... Ultrapure water Production apparatus, 11 ... Circle pump, 14 ... Primary pure water production department, 18 ... Secondary pure water production department, 19 ... Ultraviolet oxidizer (TOC-UV), 20 ... Booster pump, 23 ... Pressure gauge (measuring instrument), 24, 26 ... flow meter (measuring instrument), 31 ... control panel, 32 ... controller, 33 ... controller (opening changing section), 34 ... inverter, 35 ... positioner.

Claims (7)

  1.  被処理水の流路を分岐させて下流側で合流させる複数の分岐流路と、
     前記複数の分岐流路上に各々設けられ、イオン交換樹脂をそれぞれ有する複数のイオン交換装置と、
     個々の前記分岐流路上における前記イオン交換装置毎の前後にそれぞれ設けられた複数の開閉弁と、
     前記開閉弁の開度を、設定した時間の経過に応じて変更する開度変更部と、
     を備える超純水製造装置。
    A plurality of branched flow paths that branch the flow path of the water to be treated and merge downstream;
    A plurality of ion exchange devices each provided on the plurality of branch channels, each having an ion exchange resin;
    A plurality of on-off valves respectively provided before and after each of the ion exchange devices on each of the branch flow paths;
    An opening degree changing unit for changing the opening degree of the on-off valve according to the elapse of a set time;
    An ultrapure water production apparatus.
  2.  原水を前処理した前処理水中の有機成分及びイオン成分を除去して一次純水を製造する一次純水製造部と、
     前記製造された一次純水中の不純物を除去して超純水となる二次純水を製造する二次純水製造部と、
     を備え、
     前記複数の分岐流路、前記複数のイオン交換装置及び前記複数の開閉弁は、前記二次純水製造部に設けられている、
     請求項1に記載の超純水製造装置。
    A primary pure water production section for producing primary pure water by removing organic components and ionic components in the pretreated water obtained by pretreating raw water;
    A secondary pure water production section for producing secondary pure water to remove ultrapure water by removing impurities in the produced primary pure water;
    With
    The plurality of branch channels, the plurality of ion exchange devices, and the plurality of on-off valves are provided in the secondary pure water production unit,
    The ultrapure water production apparatus according to claim 1.
  3.  前記開度変更部は、前記開度を変更させる時間間隔と前記開度の変更量とを個別に設定する、
     請求項1又は2に記載の超純水製造装置。
    The opening degree changing unit individually sets a time interval for changing the opening degree and a change amount of the opening degree.
    The ultrapure water production apparatus according to claim 1 or 2.
  4.  前記開度変更部は、前記複数の開閉弁のうちのいずれか1つの開閉弁の開度を選択的に変更する、
     請求項1から3までのいずれか1項に記載の超純水製造装置。
    The opening degree changing unit selectively changes the opening degree of any one of the plurality of on-off valves;
    The ultrapure water production apparatus according to any one of claims 1 to 3.
  5.  前記開閉弁は、ポジショナ式の開閉弁である、
     請求項1から4までのいずれか1項に記載の超純水製造装置。
    The on-off valve is a positioner type on-off valve.
    The ultrapure water production apparatus according to any one of claims 1 to 4.
  6.  前記複数の分岐流路よりも上流側の分岐前の流路上に設けられたポンプと、
     前記複数の分岐流路の下流側で合流した流路上に設けられ、当該合流した流路における流量又は圧力を計測する計測器と、
     前記計測器による計測結果に基づいて、前記ポンプの動作を制御するインバータと、
     を備える請求項1から5までのいずれか1項に記載の超純水製造装置。
    A pump provided on a flow path before branching upstream of the plurality of branch flow paths;
    A measuring instrument that is provided on a flow path merged on the downstream side of the plurality of branch flow paths, and measures a flow rate or pressure in the merged flow path;
    Based on the measurement result by the measuring instrument, an inverter for controlling the operation of the pump;
    The ultrapure water production apparatus according to any one of claims 1 to 5.
  7.  被処理水の流路を一旦分岐させて下流側で合流させる複数の分岐流路と、前記複数の分岐流路上に各々設けられ、イオン交換樹脂をそれぞれ有する複数のイオン交換装置と、個々の前記分岐流路上における前記イオン交換装置毎の前後にそれぞれ設けられた複数の開閉弁と、前記開閉弁の開度を設定された時間の経過に応じて変更する開度変更部と、を備える超純水製造装置を用いた超純水製造方法であって、
     前記被処理水が流通する前記複数の分岐流路のうちの1つの分岐流路上に設けられたイオン交換装置の前後の開閉弁を、前記開度変更部によりそれぞれ全閉させる工程と、
     前記前後の開閉弁が全閉されたイオン交換装置のイオン交換樹脂を交換する工程と、
     前記イオン交換樹脂の交換後、全閉された前記前後の開閉弁を前記開度変更部によりそれぞれ全開させる工程と、
     を有する超純水製造方法。
    A plurality of branch flow paths that once branch the flow path of the water to be treated and merge on the downstream side, a plurality of ion exchange devices that are respectively provided on the plurality of branch flow paths and each have an ion exchange resin, An ultra-pure comprising a plurality of on-off valves provided before and after each of the ion exchange devices on the branch flow path, and an opening degree changing unit that changes the opening degree of the on-off valve according to the passage of a set time. An ultrapure water production method using a water production apparatus,
    The opening / closing valves before and after the ion exchange device provided on one branch channel among the plurality of branch channels through which the treated water circulates are each fully closed by the opening degree change unit,
    Replacing the ion exchange resin of the ion exchange apparatus in which the front and rear on-off valves are fully closed;
    After the exchange of the ion exchange resin, a step of fully opening the front and rear on-off valves that are fully closed by the opening changing unit,
    A method for producing ultrapure water.
PCT/JP2019/020676 2018-06-13 2019-05-24 Ultrapure water producing device and ultrapure water producing method WO2019239853A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980033935.0A CN112203988A (en) 2018-06-13 2019-05-24 Ultrapure water production apparatus and ultrapure water production method
KR1020207031433A KR20210018207A (en) 2018-06-13 2019-05-24 Ultrapure water production device and ultrapure water production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-112880 2018-06-13
JP2018112880A JP2019214022A (en) 2018-06-13 2018-06-13 Ultrapure water production device and ultrapure water production method

Publications (1)

Publication Number Publication Date
WO2019239853A1 true WO2019239853A1 (en) 2019-12-19

Family

ID=68842868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020676 WO2019239853A1 (en) 2018-06-13 2019-05-24 Ultrapure water producing device and ultrapure water producing method

Country Status (4)

Country Link
JP (1) JP2019214022A (en)
KR (1) KR20210018207A (en)
CN (1) CN112203988A (en)
WO (1) WO2019239853A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113797698A (en) * 2021-09-06 2021-12-17 江苏苏净工程建设有限公司 Gas emission standard exceeding detection control method, system and device for lithium battery production
WO2022113431A1 (en) * 2020-11-30 2022-06-02 オルガノ株式会社 Ultrapure water production system and ultrapure water production method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7109505B2 (en) * 2020-07-13 2022-07-29 オルガノ株式会社 Ultrapure water production equipment
KR102541565B1 (en) * 2022-02-21 2023-06-13 삼성전자주식회사 Ultrapure water production facility and method of exchanging ion-exchange resin
KR102492269B1 (en) * 2022-03-04 2023-01-26 삼성전자주식회사 Apparatus for ultrapure water supply, semiconductor device manufacturing system including the same and semiconductor device manufacturing method using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09308881A (en) * 1996-05-20 1997-12-02 Kurita Water Ind Ltd Washing of condensed water desalting apparatus
JP2002282850A (en) * 2001-03-26 2002-10-02 Mitsubishi Electric Corp Ultrapure water producing equipment
JP2015231609A (en) * 2014-06-10 2015-12-24 栗田工業株式会社 Method for producing ultrapure water
WO2016199725A1 (en) * 2015-06-09 2016-12-15 東レ株式会社 Fresh water production device and method for operating fresh water production device
JP2018038943A (en) * 2016-09-05 2018-03-15 野村マイクロ・サイエンス株式会社 Washing machine of non-regeneration type ion exchange resin and ultrapure water production system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5135654B2 (en) 1972-08-30 1976-10-04
ES2170644B1 (en) * 2000-03-22 2003-12-01 Luis Maria Rios-Aragues IMPROVED SYSTEM FOR OBTAINING DESALATED WATER.
JP2013215679A (en) * 2012-04-09 2013-10-24 Nomura Micro Sci Co Ltd Ultrapure water production apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09308881A (en) * 1996-05-20 1997-12-02 Kurita Water Ind Ltd Washing of condensed water desalting apparatus
JP2002282850A (en) * 2001-03-26 2002-10-02 Mitsubishi Electric Corp Ultrapure water producing equipment
JP2015231609A (en) * 2014-06-10 2015-12-24 栗田工業株式会社 Method for producing ultrapure water
WO2016199725A1 (en) * 2015-06-09 2016-12-15 東レ株式会社 Fresh water production device and method for operating fresh water production device
JP2018038943A (en) * 2016-09-05 2018-03-15 野村マイクロ・サイエンス株式会社 Washing machine of non-regeneration type ion exchange resin and ultrapure water production system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022113431A1 (en) * 2020-11-30 2022-06-02 オルガノ株式会社 Ultrapure water production system and ultrapure water production method
CN113797698A (en) * 2021-09-06 2021-12-17 江苏苏净工程建设有限公司 Gas emission standard exceeding detection control method, system and device for lithium battery production

Also Published As

Publication number Publication date
JP2019214022A (en) 2019-12-19
KR20210018207A (en) 2021-02-17
CN112203988A (en) 2021-01-08

Similar Documents

Publication Publication Date Title
WO2019239853A1 (en) Ultrapure water producing device and ultrapure water producing method
JP2012206073A (en) Deionized water production system
TW201726557A (en) Ultrapure water production apparatus and method for operating thereof that can efficiently remove boron and rapidly prevent leakage thereof
WO2018043234A1 (en) Reverse osmosis membrane treatment system and operating method of reverse osmosis membrane treatment system
WO2019176435A1 (en) Water treatment management device and water quality monitoring method
JP6863510B1 (en) Control method of ultrapure water production equipment
JP5953726B2 (en) Ultrapure water production method and apparatus
JP4432583B2 (en) Ultrapure water production equipment
JP2018038943A (en) Washing machine of non-regeneration type ion exchange resin and ultrapure water production system
JP7347556B2 (en) Pure water production equipment and operating method for pure water production equipment
WO2022113431A1 (en) Ultrapure water production system and ultrapure water production method
JP2020116507A (en) Ultrapure boron removal type ultrapure water production apparatus and method for producing ultrapure boron removal type ultrapure water
KR101745568B1 (en) Ionic water generator
JP7183208B2 (en) Ultrapure water production device and ultrapure water production method
JP4968432B2 (en) Method for adjusting flow rate of electrodeionization apparatus
JP7103467B1 (en) Control method of electric deionization system and electric deionization system
US20230271138A1 (en) Apparatus for producing ultrapure water
JP2003010849A (en) Secondary pure water making apparatus
WO2024080079A1 (en) Apparatus for producing pure water
US20220234931A1 (en) Ultrapure water production system and method of producing ultrapure water
JP2019136628A (en) Particle management method for ultrapure water production system
JP7176586B2 (en) Control method for electrodeionization apparatus
JP7205576B1 (en) Operation method of pure water production system
WO2024075731A1 (en) Method for producing pure water from which boron has been removed, pure water production device, and ultrapure water production system
JP2020124687A (en) Concentrator, concentration measuring apparatus and ultrapure water producing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19819065

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19819065

Country of ref document: EP

Kind code of ref document: A1