WO2019235247A1 - 撮像装置 - Google Patents

撮像装置 Download PDF

Info

Publication number
WO2019235247A1
WO2019235247A1 PCT/JP2019/020588 JP2019020588W WO2019235247A1 WO 2019235247 A1 WO2019235247 A1 WO 2019235247A1 JP 2019020588 W JP2019020588 W JP 2019020588W WO 2019235247 A1 WO2019235247 A1 WO 2019235247A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging device
glass substrate
solid
light
Prior art date
Application number
PCT/JP2019/020588
Other languages
English (en)
French (fr)
Inventor
山本 篤志
兼作 前田
光太郎 西村
祥哲 東宮
公啓 新屋
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to DE112019002902.9T priority Critical patent/DE112019002902T5/de
Priority to KR1020207034251A priority patent/KR20210018248A/ko
Priority to CN201980029488.1A priority patent/CN112055826B/zh
Priority to JP2020523621A priority patent/JPWO2019235247A1/ja
Publication of WO2019235247A1 publication Critical patent/WO2019235247A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0018Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for preventing ghost images
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0087Simple or compound lenses with index gradient
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/04Simple or compound lenses with non-spherical faces with continuous faces that are rotationally symmetrical but deviate from a true sphere, e.g. so called "aspheric" lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof

Definitions

  • the present disclosure relates to an imaging apparatus, and more particularly, to an imaging apparatus that realizes downsizing and a low profile of an apparatus configuration and can perform imaging while suppressing generation of flare and ghost.
  • the lens and the solid-state image sensor are close to each other on the optical axis, and the infrared light cut filter is disposed near the lens.
  • the lens of the lowest layer when configured on the solid-state imaging device, it contributes to the downsizing and low profile of the device configuration, but the distance between the infrared light cut filter and the lens is reduced. As a result, flare or ghost caused by internal reflection due to light reflection occurs.
  • the present disclosure has been made in view of such a situation.
  • the solid-state imaging device it is possible to reduce the size and height of the solid-state imaging device and to suppress the occurrence of flare and ghost.
  • An imaging device includes a solid-state imaging device that generates a pixel signal by photoelectric conversion according to a light amount of incident light, and a plurality of the incident light focused on a light-receiving surface of the solid-state imaging device.
  • a lowermost layer lens constituting a lowermost layer with respect to the incident direction of the incident light in the lens group.
  • the lowermost layer lens is an aspherical concave lens, and the thickness of the glass substrate provided on the solid-state imaging device and to which the lowermost layer lens is attached is the highest of the lowermost layer lens.
  • the imaging device is thicker than the thin thickness, and the thickest thickness of the lowest layer lens is thicker than the thickness of the glass substrate provided on the solid-state imaging device.
  • a pixel signal is generated by photoelectric conversion in accordance with the amount of incident light by the solid-state imaging device, and the lens group including a plurality of lenses is arranged in front of the light-receiving surface of the solid-state imaging device.
  • the incident light is focused, and the aspherical concave bottom lens in the lens group that constitutes the bottom layer with respect to the incident direction of the incident light is in the direction of receiving the incident light.
  • the effective area for condensing the incident light to the solid-state imaging device is set, and the thickness of the glass substrate on which the lowermost layer lens is attached is smaller than the thinnest thickness of the lens. Also, the thickest thickness of the lowermost layer lens is thicker than the thickness of the glass substrate provided on the solid-state imaging device.
  • FIG. 2 is a schematic external view of an integrated component including a solid-state image sensor in the image pickup apparatus of FIG. 1. It is a figure explaining the board
  • FIG. 2 is a diagram for explaining that ghosts and flares due to internal reflection do not occur in the imaging apparatus of FIG. 1. It is a figure explaining that the ghost and flare resulting from internal reflection do not generate
  • FIG. 10 is a diagram for explaining that no ghost or flare due to internal reflection occurs in the imaging apparatus of FIG. 9. It is a figure explaining the structural example of 3rd Embodiment of the imaging device of this indication. It is a figure explaining the structural example of 4th Embodiment of the imaging device of this indication. It is a figure explaining the structural example of 5th Embodiment of the imaging device of this indication. It is a figure explaining the structural example of 6th Embodiment of the imaging device of this indication. It is a figure explaining the structural example of 7th Embodiment of the imaging device of this indication.
  • FIG. 30 is a diagram illustrating a modification of the singulated cross section of the configuration example of FIG. 29. It is a figure explaining the manufacturing method of the imaging device of the upper left of FIG.
  • FIG. 50 is a diagram for explaining the adjustment of the angle formed by the average surface of the side surfaces, the adjustment of the surface roughness, and the provision of the skirt portion in the manufacturing method of the two-step side surface lens of FIG. It is a figure explaining the structural example of 19th Embodiment of the imaging device of this indication. It is a figure explaining the example of the alignment mark of FIG. It is a figure explaining the application example using the alignment mark of FIG.
  • FIG. 1 It is a figure which shows an example of a schematic structure of an endoscopic surgery system. It is a block diagram which shows an example of a function structure of a camera head and CCU. It is a block diagram which shows an example of a schematic structure of a vehicle control system. It is explanatory drawing which shows an example of the installation position of a vehicle exterior information detection part and an imaging part.
  • FIG. 1 is a side sectional view of the imaging apparatus.
  • a solid-state imaging device 11 includes a solid-state imaging device 11, a glass substrate 12, an IRCF (infrared light cut filter) 14, a lens group 16, a circuit board 17, an actuator 18, a connector 19, and a spacer 20.
  • IRCF infrared light cut filter
  • the solid-state imaging device 11 is an image sensor made up of a so-called CMOS (Complementary Metal Oxide Semiconductor), CCD (Charge Coupled Device), etc., and is fixed in an electrically connected state on the circuit board 17.
  • CMOS Complementary Metal Oxide Semiconductor
  • CCD Charge Coupled Device
  • the solid-state imaging device 11 is composed of a plurality of pixels arranged in an array.
  • the solid-state imaging device 11 is focused and incident from the upper side in the drawing via the lens group 16 in units of pixels.
  • a pixel signal corresponding to the amount of incident light is generated and output as an image signal from the connector 19 to the outside via the circuit board 17.
  • a glass substrate 12 is provided on the upper surface portion of the solid-state imaging device 11 in FIG. 1, and is bonded by a transparent adhesive, that is, an adhesive (GLUE) 13 having substantially the same refractive index as that of the glass substrate 12.
  • GLUE adhesive
  • An IRCF 14 that cuts infrared light out of incident light is provided on the upper surface portion of the glass substrate 12 in FIG. 1, and is transparent, that is, an adhesive (GLUE having a refractive index substantially the same as that of the glass substrate 12). ) 15.
  • the IRCF 14 is made of, for example, blue plate glass and cuts (removes) infrared light.
  • the solid-state imaging device 11, the glass substrate 12, and the IRCF 14 are laminated and bonded together with transparent adhesives 13 and 15 to form an integrated configuration and connected to the circuit board 17.
  • the solid-state imaging device 11, the glass substrate 12, and the IRCF 14 surrounded by the alternate long and short dash line in the figure are bonded and integrated by adhesives 13 and 15 having substantially the same refractive index.
  • it is also simply referred to as an integrated component 10.
  • the IRCF 14 may be attached to the glass substrate 12 after being separated into pieces in the manufacturing process of the solid-state imaging device 11, or a wafer-like glass substrate 12 including a plurality of solid-state imaging devices 11. After the large IRCF 14 is pasted on the entire surface, the solid-state image sensor 11 may be divided into individual pieces, and either method may be adopted.
  • a spacer 20 is formed on the circuit board 17 so as to surround the whole of the solid-state image pickup device 11, the glass substrate 12, and the IRCF 14.
  • An actuator 18 is provided on the spacer 20.
  • the actuator 18 is formed in a cylindrical shape, and incorporates a lens group 16 formed by laminating a plurality of lenses inside the cylinder, and is driven in the vertical direction in FIG.
  • the actuator 18 moves the lens group 16 in the vertical direction in FIG. 1 (the front-rear direction with respect to the optical axis), so that the distance to a subject (not shown) in the upper part of the figure is reached. Accordingly, on the imaging surface of the solid-state imaging device 11, autofocus is realized by adjusting the focal point so that the subject is imaged.
  • FIG. 2 is a schematic external view of the integrated component 10.
  • the integrated component 10 shown in FIG. 2 is a semiconductor package in which a solid-state imaging device 11 composed of a laminated substrate formed by laminating a lower substrate 11a and an upper substrate 11b is packaged.
  • a plurality of solder balls 11e which are back electrodes for electrical connection with the circuit board 17 of FIG. 1, are formed on the lower substrate 11a of the multilayer substrate constituting the solid-state imaging element 11.
  • an R (red), G (green), or B (blue) color filter 11c and an on-chip lens 11d are formed on the upper surface of the upper substrate 11b.
  • the upper substrate 11b is connected to the glass substrate 12 for protecting the on-chip lens 11d with a cavityless structure via an adhesive 13 made of glass seal resin.
  • the upper substrate 11b is formed with a pixel region 21 in which pixel portions that perform photoelectric conversion are two-dimensionally arranged in an array and a control circuit 22 that controls the pixel portion.
  • a logic circuit 23 such as a signal processing circuit for processing a pixel signal output from the pixel portion is formed.
  • only the pixel region 21 may be formed on the upper substrate 11b, and the control circuit 22 and the logic circuit 23 may be formed on the lower substrate 11a.
  • the logic circuit 23 or both of the control circuit 22 and the logic circuit 23 are formed on the lower substrate 11a different from the upper substrate 11b in the pixel region 21 and stacked, thereby forming a single semiconductor substrate.
  • the size of the imaging device 1 can be reduced.
  • the upper substrate 11b in which at least the pixel region 21 is formed is referred to as a pixel sensor substrate 11b
  • the lower substrate 11a in which at least the logic circuit 23 is formed is referred to as a logic substrate 11a.
  • FIG. 4 shows a circuit configuration example of the solid-state image sensor 11.
  • the solid-state imaging device 11 includes a pixel array unit 33 in which pixels 32 are arranged in a two-dimensional array, a vertical drive circuit 34, a column signal processing circuit 35, a horizontal drive circuit 36, an output circuit 37, a control circuit 38, and an input / output.
  • a terminal 39 is included.
  • the pixel 32 includes a photodiode as a photoelectric conversion element and a plurality of pixel transistors. A circuit configuration example of the pixel 32 will be described later with reference to FIG.
  • the pixel 32 can have a shared pixel structure.
  • This pixel sharing structure includes a plurality of photodiodes, a plurality of transfer transistors, one shared floating diffusion (floating diffusion region), and one other shared pixel transistor. That is, in the shared pixel, a photodiode and a transfer transistor that constitute a plurality of unit pixels are configured by sharing each other pixel transistor.
  • the control circuit 38 receives an input clock and data for instructing an operation mode, and outputs data such as internal information of the solid-state image sensor 11. That is, the control circuit 38 generates a clock signal and a control signal that serve as a reference for operations of the vertical drive circuit 34, the column signal processing circuit 35, the horizontal drive circuit 36, and the like based on the vertical synchronization signal, the horizontal synchronization signal, and the master clock. To do. Then, the control circuit 38 outputs the generated clock signal and control signal to the vertical drive circuit 34, the column signal processing circuit 35, the horizontal drive circuit 36, and the like.
  • the vertical drive circuit 34 includes, for example, a shift register, selects a predetermined pixel drive wiring 40, supplies a pulse for driving the pixel 32 to the selected pixel drive wiring 40, and drives the pixels 32 in units of rows. To do. That is, the vertical drive circuit 34 sequentially selects and scans each pixel 32 of the pixel array unit 33 in the vertical direction in units of rows, and a pixel signal based on a signal charge generated according to the amount of received light in the photoelectric conversion unit of each pixel 32. Is supplied to the column signal processing circuit 35 through the vertical signal line 41.
  • the column signal processing circuit 35 is disposed for each column of the pixels 32, and performs signal processing such as noise removal on the signal output from the pixels 32 for one row for each pixel column.
  • the column signal processing circuit 5 performs signal processing such as CDS (Correlated Double Sampling) and AD conversion for removing fixed pattern noise unique to a pixel.
  • the horizontal drive circuit 36 is constituted by, for example, a shift register, and sequentially outputs horizontal scanning pulses, thereby selecting each of the column signal processing circuits 35 in order, and outputting a pixel signal from each of the column signal processing circuits 35 to the horizontal signal line. 42 to output.
  • the output circuit 37 performs signal processing on the signals sequentially supplied from each of the column signal processing circuits 35 through the horizontal signal line 42 and outputs the signals.
  • the output circuit 37 may perform only buffering, or may perform black level adjustment, column variation correction, various digital signal processing, and the like.
  • the input / output terminal 39 exchanges signals with the outside.
  • the solid-state imaging device 11 configured as described above is a CMOS image sensor called a column AD method in which column signal processing circuits 35 that perform CDS processing and AD conversion processing are arranged for each pixel column.
  • FIG. 5 shows an equivalent circuit of the pixel 32.
  • the pixel 32 shown in FIG. 5 shows a configuration for realizing an electronic global shutter function.
  • the pixel 32 includes a photodiode 51 as a photoelectric conversion element, a first transfer transistor 52, a memory unit (MEM) 53, a second transfer transistor 54, an FD (floating diffusion region) 55, a reset transistor 56, an amplification transistor 57, and a selection transistor. 58 and a discharge transistor 59.
  • the photodiode 51 is a photoelectric conversion unit that generates and accumulates charges (signal charges) corresponding to the amount of received light.
  • the anode terminal of the photodiode 51 is grounded, and the cathode terminal is connected to the memory unit 53 via the first transfer transistor 52.
  • the cathode terminal of the photodiode 51 is also connected to a discharge transistor 59 for discharging unnecessary charges.
  • the memory unit 53 is a charge holding unit that temporarily holds charges until the charges are transferred to the FD 55.
  • the second transfer transistor 54 When the second transfer transistor 54 is turned on by the transfer signal TRG, the second transfer transistor 54 reads the charge held in the memory unit 53 and transfers it to the FD 55.
  • the FD 55 is a charge holding unit that holds the charge read from the memory unit 53 in order to read it as a signal.
  • the reset transistor 56 is turned on by the reset signal RST, the charge accumulated in the FD 55 is discharged to the constant voltage source VDD, thereby resetting the potential of the FD 55.
  • the amplification transistor 57 outputs a pixel signal corresponding to the potential of the FD 55. That is, the amplification transistor 57 constitutes a load MOS 60 as a constant current source and a source follower circuit, and a pixel signal indicating a level corresponding to the electric charge accumulated in the FD 55 is supplied from the amplification transistor 57 via the selection transistor 58 to the column signal. It is output to the processing circuit 35 (FIG. 4).
  • the load MOS 60 is disposed in the column signal processing circuit 35.
  • the selection transistor 58 is turned on when the pixel 32 is selected by the selection signal SEL, and outputs the pixel signal of the pixel 32 to the column signal processing circuit 35 via the vertical signal line 41.
  • the discharge transistor 59 When the discharge transistor 59 is turned on by the discharge signal OFG, the discharge transistor 59 discharges unnecessary charges accumulated in the photodiode 51 to the constant voltage source VDD.
  • the transfer signals TRX and TRG, the reset signal RST, the discharge signal OFG, and the selection signal SEL are supplied from the vertical drive circuit 34 via the pixel drive wiring 40.
  • a high level discharge signal OFG is supplied to the discharge transistor 59, whereby the discharge transistor 59 is turned on, and the electric charge accumulated in the photodiode 51 is discharged to the constant voltage source VDD, so that all pixels The photodiode 51 is reset.
  • the first transfer transistor 52 When a predetermined exposure time determined in advance elapses, the first transfer transistor 52 is turned on by the transfer signal TRX in all the pixels of the pixel array unit 33, and the charge accumulated in the photodiode 51 is transferred to the memory unit 53. Is done.
  • the charges held in the memory unit 53 of each pixel 32 are sequentially read out to the column signal processing circuit 35 in units of rows.
  • the second transfer transistor 54 of the pixel 32 in the read row is turned on by the transfer signal TRG, and the charge held in the memory unit 53 is transferred to the FD 55.
  • the selection transistor 58 is turned on by the selection signal SEL, a signal indicating a level corresponding to the charge accumulated in the FD 55 is output from the amplification transistor 57 to the column signal processing circuit 35 via the selection transistor 58.
  • the exposure time is set to be the same for all the pixels in the pixel array unit 33, and the charge is temporarily held in the memory unit 53 after the exposure is completed.
  • a global shutter system operation imaging for sequentially reading out charges from the memory unit 53 in units of rows is possible.
  • circuit configuration of the pixel 32 is not limited to the configuration illustrated in FIG. 5, and for example, a circuit configuration that does not have the memory unit 53 and performs an operation by a so-called rolling shutter system may be employed.
  • FIG. 6 is an enlarged cross-sectional view showing a part of the solid-state imaging device 11.
  • a multilayer wiring layer 82 is formed on the upper side (pixel sensor substrate 11b side) of a semiconductor substrate 81 (hereinafter referred to as a silicon substrate 81) made of, for example, silicon (Si).
  • the multilayer wiring layer 82 constitutes the control circuit 22 and the logic circuit 23 shown in FIG.
  • the multilayer wiring layer 82 includes a plurality of wiring layers 83 including an uppermost wiring layer 83a closest to the pixel sensor substrate 11b, an intermediate wiring layer 83b, a lowermost wiring layer 83c closest to the silicon substrate 81, and the like.
  • the interlayer insulating film 84 is formed between the wiring layers 83.
  • the plurality of wiring layers 83 are formed by using, for example, copper (Cu), aluminum (Al), tungsten (W), etc., and the interlayer insulating film 84 is formed by, for example, a silicon oxide film, a silicon nitride film, or the like. .
  • Each of the plurality of wiring layers 83 and the interlayer insulating film 84 may be formed of the same material in all layers, or two or more materials may be used depending on the layer.
  • a silicon through hole 85 penetrating through the silicon substrate 81 is formed at a predetermined position of the silicon substrate 81, and the connection conductor 87 is embedded in the inner wall of the silicon through hole 85 via the insulating film 86, thereby forming silicon.
  • a through electrode (TSV: ThroughThSilicon Via) 88 is formed.
  • the insulating film 86 can be formed of, for example, a SiO2 film or a SiN film.
  • the insulating film 86 and the connection conductor 87 are formed along the inner wall surface, and the inside of the silicon through hole 85 is hollow, but depending on the inner diameter, the silicon through hole 85 is formed.
  • the entire interior may be embedded with the connection conductor 87.
  • the inside of the through hole may be either embedded with a conductor or may be partially hollow.
  • TCV ThroughThChip Via
  • connection conductor 87 of the silicon through electrode 88 is connected to a rewiring 90 formed on the lower surface side of the silicon substrate 81, and the rewiring 90 is connected to the solder ball 11e.
  • the connection conductor 87 and the rewiring 90 can be formed of, for example, copper (Cu), tungsten (W), tungsten (W), polysilicon, or the like.
  • solder mask (solder resist) 91 is formed on the lower surface side of the silicon substrate 81 so as to cover the rewiring 90 and the insulating film 86 except for the region where the solder balls 11e are formed.
  • a multilayer wiring layer 102 is formed on the lower side (logic substrate 11a side) of the semiconductor substrate 101 (hereinafter referred to as the silicon substrate 101) made of silicon (Si).
  • the multilayer wiring layer 102 forms a pixel circuit in the pixel region 21 in FIG.
  • the multilayer wiring layer 102 includes a plurality of wiring layers 103 including an uppermost wiring layer 103a closest to the silicon substrate 101, an intermediate wiring layer 103b, and a lowermost wiring layer 103c closest to the logic substrate 11a.
  • the interlayer insulating film 104 is formed between the wiring layers 103.
  • the materials used for the plurality of wiring layers 103 and the interlayer insulating film 104 the same materials as those for the wiring layers 83 and the interlayer insulating film 84 described above can be employed.
  • the plurality of wiring layers 103 and the interlayer insulating film 104 may be formed using one or more materials.
  • the multilayer wiring layer 102 of the pixel sensor substrate 11b is configured by three wiring layers 103, and the multilayer wiring layer 82 of the logic substrate 11a is configured by four wiring layers 83.
  • the total number of wiring layers is not limited to this, and the wiring layers can be formed with an arbitrary number of layers.
  • a photodiode 51 formed by PN junction is formed for each pixel 32.
  • a plurality of pixel transistors such as the first transfer transistor 52 and the second transfer transistor 54, a memory unit (MEM) 53, and the like are formed on the multilayer wiring layer 102 and the silicon substrate 101. ing.
  • the silicon through electrode 109 connected to the wiring layer 103a of the pixel sensor substrate 11b, and the wiring layer 83a of the logic substrate 11a A connected chip through electrode 105 is formed.
  • the chip through electrode 105 and the silicon through electrode 109 are connected by a connection wiring 106 formed on the upper surface of the silicon substrate 101.
  • An insulating film 107 is formed between each of the silicon through electrode 109 and the chip through electrode 105 and the silicon substrate 101.
  • a color filter 11 c and an on-chip lens 11 d are formed on the upper surface of the silicon substrate 101 via a planarizing film (insulating film) 108.
  • the solid-state imaging device 11 shown in FIG. 2 has a stacked structure in which the multilayer wiring layer 102 side of the logic substrate 11a and the multilayer wiring layer 82 side of the pixel sensor substrate 11b are bonded together.
  • the bonding surface of the logic substrate 11a on the multilayer wiring layer 102 side and the pixel sensor substrate 11b on the multilayer wiring layer 82 side is indicated by a broken line.
  • the wiring layer 103 of the pixel sensor substrate 11b and the wiring layer 83 of the logic substrate 11a are connected by two through electrodes of the silicon through electrode 109 and the chip through electrode 105, and the logic The wiring layer 83 of the substrate 11 a and the solder ball (back electrode) 11 e are connected to the through silicon via 88 and the rewiring 90. Thereby, the plane area of the imaging device 1 can be reduced to the limit.
  • the height direction can be lowered by forming a cavityless structure between the solid-state imaging device 11 and the glass substrate 12 and bonding them with the adhesive 13.
  • the IRCF 14 is provided on the solid-state imaging device 11 and the glass substrate 12, so that it is possible to suppress the occurrence of flare and ghost due to the internal reflection of light. .
  • the solid line As shown, the incident light is condensed and incident on the solid-state imaging device (CIS) 11 at the position F0 via the IRCF 14, the glass substrate 12, and the adhesive 13, and then at the position F0 as indicated by a dotted line. Reflected and reflected light is generated.
  • CIS solid-state imaging device
  • a part of the reflected light reflected at the position F0 is, for example, the back surface of the IRCF 14 disposed at a position separated from the glass substrate 12 via the adhesive 13 and the glass substrate 12 ( The lower surface in FIG. 7 is reflected by R1, and again enters the solid-state imaging device 11 through the glass substrate 12 and the adhesive 13 at the position F1.
  • the other part of the reflected light reflected at the focal point F0 includes, for example, the adhesive 13, the glass substrate 12, and the IRCF 14 arranged at a position separated from the glass substrate 12.
  • the light is transmitted and reflected by the upper surface (upper surface in FIG. 7) R2 of the IRCF 14, and then enters the solid-state imaging device 11 again through the IRCF 14, the glass substrate 12, and the adhesive 13 at the position F2.
  • the light incident again generates flare and ghost due to internal reflection. More specifically, as shown by the image P1 in FIG. 8, when the illumination L is picked up by the solid-state image pickup device 11, it appears as flare or ghost as shown by the reflected lights R21 and R22. .
  • the IRCF 14 is configured on the glass substrate 12 as shown in the right part of FIG. 7 corresponding to the configuration of the imaging apparatus 1 of FIG.
  • the incident light is condensed and incident on the solid-state imaging device 11 at the position F0 via the IRCF 14, the adhesive 15, the glass substrate 12, and the adhesive 13, and then reflected as indicated by a dotted line.
  • the reflected light is reflected by the lens surface R11 of the lowest layer on the lens group 16 via the adhesive 13, the glass substrate 12, the adhesive 15, and the IRCF 14, but the lens group 16 is sufficiently separated from the IRCF 14. Therefore, the light is reflected in a range where the solid-state imaging device 11 cannot receive light sufficiently.
  • the solid-state imaging device 11, the glass substrate 12, and the IRCF 14 surrounded by a one-dot chain line in the figure are bonded and integrated by adhesives 13 and 15 having substantially the same refractive index, and are integrated. It is configured as.
  • the integrated component 10 the occurrence of internal reflection that occurs at the boundary between layers having different refractive indexes is suppressed by unifying the refractive index, for example, in the vicinity of the position F0 in the left part of FIG. Re-incident at positions F1 and F2 is suppressed.
  • the imaging device 1 in FIG. 1 captures the illumination L, flare and ghosts caused by internal reflection such as the reflected light R21 and R22 in the image P1, as shown by the image P2 in FIG. An image in which the generation is suppressed can be taken.
  • the configuration of the imaging device 1 of the first embodiment shown in FIG. 1 realizes a reduction in the size and height of the device configuration and suppresses the occurrence of flares and ghosts caused by internal reflection. can do.
  • an image P1 in FIG. 8 is an image in which the illumination L is captured at night by the imaging device 1 having the left configuration in FIG. 7, and an image P2 has a right configuration in FIG. 7 (FIG. 1).
  • the autofocus can be realized by adjusting the focal length according to the distance to the subject by moving the lens group 16 in the vertical direction in FIG.
  • the actuator 18 may not be provided and the focal length of the lens group 16 may not be adjusted, and the actuator 18 may function as a so-called single focus lens.
  • Second Embodiment> In the first embodiment, the example in which the IRCF 14 is pasted on the glass substrate 12 pasted on the imaging surface side of the solid-state imaging device 11 has been described. A lens may be provided on the IRCF 14.
  • FIG. 9 shows a lens group 16 consisting of a plurality of lenses constituting the imaging device 1 in FIG. 2 shows a configuration example of the imaging apparatus 1 configured as described above.
  • components having basically the same functions as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • the imaging apparatus 1 in FIG. 9 is different from the imaging apparatus 1 in FIG. 1 in that the upper surface of the IRCF 14 in the drawing further has a light incident direction of a plurality of lenses constituting the lens group 16.
  • the lens 131 that is the lowest layer is provided separately from the lens group 16.
  • the lens group 16 in FIG. 9 has the same reference numerals as the lens group 16 in FIG. 1, but is strictly not included in the point that the lens 131 that is the lowest layer in the light incident direction is not included. Is different from the lens group 16 of FIG.
  • the IRCF 14 is provided on the glass substrate 12 provided on the solid-state imaging device 11, and the lowermost layer lens 131 constituting the lens group 16 is further provided on the IRCF 14. Since it is provided, generation of flare and ghost due to internal reflection of light can be suppressed.
  • the lens 131 that is the lowest layer in the light incident direction of the lens group 16 is provided on the glass substrate 12, and the IRCF 14 is separated from the lens 131.
  • incident light indicated by a solid line is collected and passed through the IRCF 14, the lens 131, the glass substrate 12, and the adhesive 13, and the solid-state imaging device. 11 is incident at position F0, then reflected from position F0 as indicated by the dotted line, and reflected light is generated.
  • a part of the reflected light reflected at the position F0 is, for example, part of the IRCF 14 disposed at a position separated from the lens 131 via the adhesive 13, the glass substrate 12, and the lens 131, as indicated by a dotted line.
  • the light is reflected by the rear surface (lower surface in FIG. 2) R31, and enters the solid-state imaging device 11 again at the position F11 through the lens 131, the glass substrate 12, and the adhesive 13.
  • the other part of the reflected light reflected at the focal point F0 is disposed at a position separated from the adhesive 13, the glass substrate 12, the lens 131, and the lens 131, for example.
  • the light passes through the IRCF 14 and is reflected by the upper surface R32 of the IRCF 14 (upper surface in FIG. 7). Incident.
  • the lens 131 of the lowest layer of the lens group 16 is configured on the IRCF 14 as shown in the right part of FIG.
  • the incident light is condensed and incident on the solid-state imaging device 11 at the position F0 via the lens 131, the IRCF 14, the adhesive 15, the glass substrate 12, and the adhesive 13, and then reflected and dotted.
  • the reflected light is generated by the surface R41 on the lens group 16 at a sufficiently separated position via the adhesive 13, the glass substrate 12, the adhesive 15, the IRCF 14, and the lens 131 as shown in FIG. 11, the flare and ghost can be prevented from occurring.
  • the solid-state imaging device 11 since the solid-state imaging device 11, the adhesive 13, the glass substrate 12, and the IRCF 14 are bonded and integrated by the adhesives 13 and 15 having substantially the same refractive index, they are integrated.
  • the refractive index is unified, so that the occurrence of the internal reflection that occurs at the boundary between layers having different refractive indices is suppressed.
  • incidence of reflected light or the like to the positions F11 and F12 in the vicinity of the position F0 is suppressed.
  • the configuration of the imaging apparatus 1 of the second embodiment shown in FIG. 10 realizes a reduction in the size and height of the apparatus configuration and suppresses the occurrence of flares and ghosts caused by internal reflection. can do.
  • FIG. 11 shows a configuration example of the imaging apparatus 1 in which the lens 131 and the IRCF 14 in the lowest layer are bonded together with an adhesive.
  • the same reference numerals are given to configurations having the same functions as those in the configuration of the image pickup apparatus 1 in FIG. 9, and description thereof will be omitted as appropriate.
  • the imaging apparatus 1 in FIG. 11 is different from the imaging apparatus 1 in FIG. 9 in that the lowermost lens 131 and the IRCF 14 are bonded together by a transparent adhesive 151 having substantially the same refractive index. Is a point.
  • the IRCF 14 may be displaced with respect to the optical axis of the lens 131 even if the lens 131 is fixed to the IRCF 14 without using the adhesive 151.
  • the IRCF 14 can be fixed so that there is no deviation with respect to the optical axis of the lens 131, which is caused by the deviation of the optical axis. It is possible to suppress the occurrence of image distortion.
  • FIG. 12 shows a configuration example of the imaging apparatus 1 in which a lens group composed of a plurality of lenses constituting the lowest layer in the incident direction in the lens group 16 is configured on the IRCF 14.
  • the same reference numerals are given to configurations having the same functions as the configuration of the imaging apparatus 1 in FIG. 9, and description thereof will be omitted as appropriate.
  • the imaging apparatus 1 in FIG. 12 differs from the imaging apparatus 1 in FIG. 9 in that instead of the lens 131, a plurality of lenses constituting the lowest layer in the light incident direction in the lens group 16 are used.
  • the lens group 171 is provided on the IRCF 14. In FIG. 12, an example of the lens group 171 including two lenses is shown, but the lens group 171 may be configured by a larger number of lenses.
  • the lens group 171 including a plurality of lenses constituting the lowest layer among the plurality of lenses constituting the lens group 16 is constituted on the IRCF 14, the number of lenses constituting the lens group 16 can be reduced. Since the lens group 16 can be reduced in weight, the amount of driving force of the actuator 18 used for autofocus can be reduced, and the actuator 18 can be reduced in size and power consumption.
  • the lens 131 in the imaging apparatus 1 of FIG. 11 according to the third embodiment may be attached to the IRCF 14 with a transparent adhesive 151 instead of the lens group 171.
  • the glass substrate 12, the adhesive 15, and the IRCF 14 are replaced with a configuration having both the functions of the glass substrate 12 and the IRCF 14, and the adhesive 13 is pasted on the solid-state imaging device 11,
  • the configuration example of the imaging apparatus 1 in which the lens 131 of the lowest layer is provided on the top is shown.
  • symbol is attached
  • the imaging apparatus 1 in FIG. 13 is different from the imaging apparatus 1 in FIG. 9 in that the glass substrate 12 and the IRCF 14 are replaced with an IRCF glass substrate 14 ′ having the functions of the glass substrate 12 and the IRCF 14.
  • the adhesive layer 13 is affixed on the solid-state imaging device 11, and the lens 131 of the lowest layer is provided on the IRCF 14 ′.
  • the solid-state image pickup device 11 is bonded to a glass substrate 12 called a CSP (Chip Size Package) structure and the solid-state image pickup device 11 for miniaturization, and the solid-state image pickup device 11 is formed using the glass substrate as a base substrate.
  • a thin solid-state imaging device can be realized by thinning.
  • the IRCF glass substrate 14 ′ realizes the function as the glass substrate 12 with high flatness in addition to the function of the IRCF 14, thereby realizing a low profile.
  • a glass substrate 12 is pasted onto the solid-state image pickup device 11 having a CSP structure with an adhesive 13
  • an IRCF 14 is pasted onto the glass substrate 12 with an adhesive 15, and further on the IRCF 14.
  • the example in which the lens group 171 including a plurality of lenses in the lowest layer among the plurality of lenses constituting the lens group 16 has been described.
  • a COB Chip on Board
  • the solid-state imaging device 11 having a structure may be used.
  • the imaging apparatus 1 in FIG. 14 differs from the imaging apparatus 1 in FIG. 12 in that the glass substrate 12 and the IRCF 14 are replaced with an IRCF glass substrate 14 ′ having the functions of the glass substrate 12 and the IRCF 14.
  • a solid-state imaging device 91 having a COB (Chip-on-Board) structure is used instead of the solid-state imaging device 11 having the CSP structure.
  • a CSP structure has become common in order to reduce the size of the image pickup apparatus 1 and the size of the solid-state image pickup device 11.
  • the CSP structure is bonded to the glass substrate 12 or the IRCF glass substrate 14 'or solid-state image pickup. Since the processing becomes complicated, such as wiring the terminal of the element 11 on the back side of the light receiving surface, it is more expensive than the solid-state imaging element 11 having the COB structure. Therefore, not only the CSP structure but also a solid-state imaging device 91 having a COB structure connected to the circuit board 17 by a wire bond 92 or the like may be used.
  • the connection to the circuit board 17 can be facilitated, so that the processing can be simplified and the cost can be reduced.
  • the solid-state imaging device 11 having the CSP structure in the imaging device 1 shown in FIGS. 1, 9, 11, and 13, which is the first to third embodiments and the fifth embodiment, You may make it replace with the solid-state image sensor 11 of a COB (Chip ⁇ on Board) structure.
  • COB Chip ⁇ on Board
  • the example in which the glass substrate 12 is provided on the solid-state image sensor 11 and the IRCF 14 is further provided on the glass substrate has been described.
  • the IRCF 14 is provided on the solid-state image sensor 11 and the IRCF 14 is further provided.
  • the glass substrate 12 may be provided on the top.
  • FIG. 15 shows a configuration example of the imaging apparatus 1 in which the glass substrate 12 is used and the IRCF 14 is provided on the solid-state imaging device 11 and the glass substrate 12 is further provided on the IRCF 14.
  • the imaging apparatus 1 in FIG. 15 is different from the imaging apparatus 1 in FIG. 9 in that the glass substrate 12 and the IRCF 14 are replaced, and the IRCF 14 is pasted on the solid-state imaging device 11 with a transparent adhesive 13, and further transparent The glass substrate 12 is stuck on the IRCF 14 with the adhesive 15, and the lens 131 is provided on the glass substrate 12.
  • the IRCF 14 generally has low flatness due to the influence of temperature and disturbance due to characteristics, and there is a risk of causing distortion in the image on the solid-state imaging device 11.
  • the imaging apparatus 1 of FIG. 15 it is possible to secure flatness at low cost by sandwiching the IRCF 14 having low flatness between the solid-state imaging device 11 having high flatness and the glass substrate 12. Thus, the distortion of the image can be reduced.
  • the image pickup apparatus 1 in FIG. 15 can suppress the occurrence of flare and ghost, and can also suppress image distortion caused by the characteristics of the IRCF 14.
  • the cost can be reduced.
  • the glass substrate 12 and the IRCF 14 are replaced and bonded. You may make it stick with the agents 13 and 15.
  • FIG. 1 the imaging device 1 of FIGS. 1, 11, and 12 as the first embodiment, the third embodiment, and the fourth embodiment, the glass substrate 12 and the IRCF 14 are replaced and bonded. You may make it stick with the agents 13 and 15.
  • FIG. 1 the imaging device 1 of FIGS. 1, 11, and 12 as the first embodiment, the third embodiment, and the fourth embodiment, the glass substrate 12 and the IRCF 14 are replaced and bonded. You may make it stick with the agents 13 and 15.
  • IRCF 14 is used as a configuration for cutting infrared light.
  • any configuration other than the IRCF 14 may be used as long as the configuration can cut infrared light.
  • an infrared light cut resin may be applied and used.
  • FIG. 16 is a configuration example of the imaging apparatus 1 in which an infrared light cut resin is used instead of the IRCF 14.
  • an infrared light cut resin is used instead of the IRCF 14.
  • symbol is attached
  • the imaging apparatus 1 in FIG. 16 is different from the imaging apparatus 1 in FIG. 1 in that an infrared light cut resin 211 is provided instead of the IRCF 14.
  • the infrared light cut resin 211 is provided by being applied, for example.
  • infrared light is used.
  • a cut resin 211 may be used.
  • FIG. 17 shows a configuration example of the imaging apparatus 1 in which a cavity (cavity) is provided between the glass substrate 12 and the solid-state imaging device 11.
  • a cavity cavity
  • FIG. 17 shows a configuration example of the imaging apparatus 1 in which a cavity (cavity) is provided between the glass substrate 12 and the solid-state imaging device 11.
  • configurations having the same functions as those in the configuration of the imaging device 1 in FIG. 9 are denoted by the same reference numerals, and description thereof is omitted as appropriate.
  • the imaging apparatus 1 in FIG. 17 is different from the imaging apparatus in FIG. 9 in that a glass substrate 231 provided with a convex portion 231a is provided instead of the glass substrate 12.
  • the surrounding convex part 231a abuts on the solid-state image sensor 11, and the convex part 231a is adhered by the transparent adhesive 232, so that a cavity formed of an air layer is formed between the imaging surface of the solid-state image sensor 11 and the glass substrate 231.
  • a (cavity) 231b is formed.
  • a glass substrate 231 may be used so that only the convex portion 231 a is adhered by the adhesive 232, so that a cavity (cavity) 231 b may be formed.
  • the lens 131 in the lowest layer of the lens group 16 has been configured on the IRCF 14 provided on the glass substrate 12, but instead of the IRCF 14 on the glass substrate 12, You may make it comprise with the coating agent of the organic multilayer film provided with the infrared-light cut function.
  • FIG. 18 shows a configuration example of the imaging apparatus 1 configured by using an organic multilayer coating agent having an infrared light cut function instead of the IRCF 14 on the glass substrate 12.
  • the imaging apparatus 1 in FIG. 18 is different from the imaging apparatus 1 in FIG. 9 in that it is configured by an organic multilayer coating material 251 having an infrared light cut function, instead of the IRCF 14 on the glass substrate 12. This is the point.
  • an organic multilayer coating agent 251 having an infrared light cut function may be used.
  • the lens 131 of the lowest layer of the lens group 16 is provided on the coating agent 251 of an organic multilayer film having an infrared light cut function.
  • the lens 131 may be further AR (Anti Reflection) coated.
  • FIG. 19 shows a configuration example of the imaging apparatus 1 in which an AR coat is applied to the lens 131 in the imaging apparatus 1 of FIG.
  • the imaging apparatus 1 in FIG. 19 is different from the imaging apparatus 1 in FIG. 18 in that a lens 271 in the lowest layer of the lens group 16 having an AR coat 271a is provided instead of the lens 131. It is.
  • the AR coating 271a for example, vacuum deposition, sputtering, or WET coating can be employed.
  • the AR coating 271a of the lens 271 suppresses the internal reflection of the reflected light from the solid-state imaging device 11, it is possible to suppress the occurrence of flare and ghost with higher accuracy.
  • FIG. instead of the lens 131 in the imaging device 1 of FIGS. 11, 13, 15, 17, and 18, a lens 271 with an AR coat 271a may be used. Further, an AR coat similar to the AR coat 271a is applied to the surface of the lens group 171 (the upper surface in the drawing) in the imaging device 1 of FIGS. 12 and 14, which is the fourth embodiment and the sixth embodiment. You may make it give.
  • the AR coat 271a is preferably a single layer or multilayer structure of the following films. That is, the AR coat 271a is, for example, a transparent silicon resin, acrylic resin, epoxy resin, styrene resin, etc., an insulating film mainly composed of Si (silicon), C (carbon), and H (hydrogen). (Eg, SiCH, SiCOH, SiCNH), at least one of an insulating film (eg, SiON, SiN) containing Si (silicon), N (nitrogen), silicon hydroxide, alkylsilane, alkoxysilane, polysiloxane, etc. For example, an SiO2 film, a P-SiO film, and an HDP-SiO film formed using such a material gas and an oxidizing agent.
  • a transparent silicon resin acrylic resin, epoxy resin, styrene resin, etc.
  • an insulating film
  • FIG. 20 shows a configuration example of the imaging apparatus 1 in which a lens 291 to which an antireflection function having a moth-eye structure is added is provided instead of the lens 131 in the imaging apparatus 1 of FIG.
  • the imaging apparatus 1 in FIG. 20 is different from the imaging apparatus 1 in FIG. 18 in that a lens group is provided with an antireflection processing unit 291a that has been processed to form a moth-eye structure instead of the lens 131. Sixteen lowest-layer lenses 291 are provided.
  • the lens 291 suppresses the internal reflection of the reflected light from the solid-state imaging device 11 by the anti-reflection processing unit 291a that has been processed to have a moth-eye structure, so flare and ghost are generated with higher accuracy. Can be suppressed.
  • the antireflection processing unit 291a may be subjected to an antireflection process other than the moth-eye structure as long as the antireflection function can be realized.
  • the antireflection treatment part 291a has a single layer or multilayer structure of the following films. That is, the antireflection processing unit 291a has, for example, a transparent silicon-based resin, acrylic resin, epoxy-based resin, styrene-based resin, Si (silicon), C (carbon), or H (hydrogen) as a main component. Insulating films (for example, SiCH, SiCOH, SiCNH), insulating films mainly composed of Si (silicon), N (nitrogen) (for example, SiON, SiN), silicon hydroxide, alkylsilane, alkoxysilane, polysiloxane, etc. At least a SiO2 film, a P-SiO film, an HDP-SiO film, or the like formed using any one of the material gases and an oxidizing agent.
  • a transparent silicon-based resin acrylic resin, epoxy-based resin, styrene-based resin, Si (silicon), C (carbon), or H (hydrogen) as a main
  • FIG. instead of the lens 131 in the imaging device 1 of FIGS. 11, 13, 15, 17, and 18, a lens 291 provided with an antireflection processing unit 291a may be used. Further, an antireflection process similar to that of the antireflection processing section 291a is performed on the surface of the lens group 171 in the imaging device 1 of FIGS. 12 and 14 according to the fourth and sixth embodiments. Also good.
  • FIG. 21 replaces the IRCF 14 and the lowermost layer lens 131 of the lens group 16 in the imaging apparatus 1 of FIG. 9 with an infrared light cut function and the same function as the lowermost layer lens of the lens group 16.
  • 2 shows a configuration example of an imaging apparatus 1 in which an infrared light cut lens provided is provided.
  • the imaging apparatus 1 in FIG. 21 differs from the imaging apparatus 1 in FIG. 9 in that an infrared light cut lens 301 with an infrared light cut function is used instead of the IRCF 14 and the lens 131 in the lowest layer of the lens group 16. Is a point provided.
  • the infrared light cut lens 301 has a structure that combines the infrared light cut function and the function as the lens 131 of the lowest layer of the lens group 16, it is necessary to provide the IRCF 14 and the lens 131 separately. Therefore, the device configuration of the imaging device 1 can be further reduced in size and height. Further, in place of the lens group 171 and the IRCF 14 in the imaging apparatus 1 of FIG. 12, which is the fourth embodiment, an infrared light cut function and a lens group 171 composed of a plurality of lenses in the lowest layer of the lens group 16 are used. It may be replaced with an infrared light cut lens having a function as the above.
  • the left part of FIG. 22 is an image pickup in which a glass substrate 321 provided with a black mask 321a for shielding the edge of the light receiving surface of the solid-state image pickup device 11 is provided instead of the glass substrate 12 in the image pickup apparatus 1 of FIG. An example of the configuration of the device 1 is shown.
  • the imaging device 1 on the left side of FIG. 22 differs from the imaging device 1 of FIG. 18 in that a light shielding film is formed on the edge Z2 as shown in the right part of FIG.
  • a glass substrate 321 provided with a black mask 321a is provided.
  • the black mask 321a is applied to the glass substrate 321 by photolithography or the like.
  • the black mask is not given to center part Z1 of the glass substrate 321 in the right part of FIG.
  • the glass substrate 321 is provided with the black mask 321a on the edge portion Z2, it is possible to suppress the intrusion of stray light from the edge portion and to suppress the occurrence of flare and ghost caused by the stray light. Is possible.
  • the black mask 321a may be provided in other configurations as long as the stray light can be prevented from entering not only the glass substrate 321 but also the solid-state imaging device 11.
  • an infrared light cut function is provided. It may be provided on the coating agent 251 or the lens 131 of the provided organic multilayer film, IRCF 14, IRCF glass substrate 14 ′, glass substrate 231, lens group 171, lenses 271, 291, infrared light cut resin 211, You may make it provide in the infrared-light cut lens 301 grade
  • the black mask may be applied to the surface having a low flatness by inkjet.
  • any one of the rectangular lenses 131, 271, 291, the lens group 171, and the infrared light cut lens 301 is bonded or pasted on the solid-state imaging device 11 having substantially the same size, The vicinity of the portion is easily peeled off, and the corner portion of the lens 131 is peeled off, so that the incident light is not properly incident on the solid-state imaging device 11 and flare or ghost may occur.
  • the lens 131 is bonded to or attached to the glass substrate 12 provided on the solid-state image sensor 11, for example, as shown in FIG.
  • the ineffective area 131b is set on the outer peripheral portion of the lens 131, and the effective area 131a is set on the inner side thereof.
  • a glass substrate 231 may be provided on the solid-state imaging device 11 instead of the glass substrate 12.
  • IRCF 14 and the adhesive 15 in the integrated configuration unit 10 of the imaging device 1 in FIG. 9 are omitted, but are omitted for convenience of explanation, and of course. However, it may be provided between the lens 131 and the glass substrate 12.
  • the effective area 131a is an aspherical shape out of the areas where the incident light of the lens 131 is incident, and is effective so as to condense the incident light on the photoelectric conversion area of the solid-state imaging device 11. This is a functional area.
  • the effective region 131a is a concentric structure in which an aspherical lens structure is formed, is a region circumscribing the outer periphery of the lens, and is capable of photoelectric conversion of incident light of the solid-state imaging device 11. This is a region where light is condensed on the imaging surface.
  • the non-effective region 131b is a region that does not necessarily function as a lens that collects incident light incident on the lens 131 in a region where photoelectric conversion is performed in the solid-state imaging device 11.
  • the lens 131 is bonded to the glass substrate 12 on the solid-state imaging device 11 by providing the structure functioning as a lens in the non-effective region 131b and extending near the boundary with the effective region 131a. Even if a positional deviation occurs when being attached, incident light can be appropriately condensed on the imaging surface of the solid-state imaging device 11.
  • the size of the glass substrate 12 on the solid-state image sensor 11 is the height Vs in the vertical direction (Y direction) ⁇ the width Hs in the horizontal direction (X direction).
  • a lens 131 having a size smaller than the solid-state imaging device 11 (glass substrate 12) and having a height Vn in the vertical direction and a width Hn in the horizontal direction is adhered or attached to the central portion.
  • a non-effective area 131b that does not function as a lens is set on the outer periphery of the lens 131, and an effective area 131a having a size of height Ve in the vertical direction and width He in the horizontal direction is set inside thereof.
  • the width and length of the outer size of the substrate 12) are related, and the center positions of the lens 131, the effective region 131a, and the non-effective region 131b are substantially the same.
  • FIG. 23 a top view as viewed from the incident direction side of the light when the lens 131 is bonded or attached to the glass substrate 12 on the solid-state imaging device 11 is shown in the upper part of the drawing. In the lower left part, an external perspective view when the lens 131 is bonded or attached to the glass substrate 12 on the solid-state image sensor 11 is shown.
  • FIG. 23 an example in which the side end portion of the lens 131 is perpendicular to the glass substrate 12 on the solid-state imaging device 11 is shown. Therefore, in the top view of FIG. 23, the outer boundary B2 of the ineffective region 131b is formed on the upper surface portion of the lens 131, and the boundary B1 between the effective region 131a and the ineffective region 131b is the lower surface portion of the lens 131. Are formed to have the same size. Thereby, in the upper part of FIG. 23, the outer peripheral part (boundary B1) of the lens 131 and the outer peripheral part (boundary B2) of the ineffective area 131b are expressed as the same external shape.
  • the effective area 131a of the lens 131 within the non-effective area 131b, the incident light is appropriately condensed on the imaging surface of the solid-state imaging device 11 even if the peripheral portion is somewhat peeled off. It becomes possible to make it. Further, when the lens 131 is peeled off, the interface reflection is increased, and flare and ghost are deteriorated. Therefore, by suppressing the peeling, it is possible to suppress the occurrence of flare and ghost as a result.
  • FIG. 23 an example in which the lens 131 is bonded to or attached to the glass substrate 12 on the solid-state imaging device 11 has been described.
  • the lenses 271 and 291, the lens group 171, Either of the infrared light cut lenses 301 may be used.
  • the effective area 131a is set at the center of the lens 131
  • the non-effective area 131b is set at the outer periphery thereof
  • the effective area 131a is the outer periphery size of the solid-state imaging device 11 (the upper glass substrate 12).
  • the size of the lens 131 is set smaller than the size of the solid-state imaging device 11 (upper glass substrate 12), the effective area 131a is set in the center of the lens 131, and the ineffective area 131b is set in the outer periphery thereof. If so, the outer shape may be other shapes.
  • the four corner regions Z301 in the outer shape of the lens 131 may be configured to have an acute angle shape.
  • the four corner regions Z ⁇ b> 302 may have a polygonal shape having an obtuse angle.
  • the four corner regions Z303 in the outer shape may be circular.
  • the four corner regions Z304 in the outer shape may have a shape in which small square portions protrude from the four corners.
  • the protruding shape may be a shape other than a square, for example, a shape such as a circle, an ellipse, or a polygon.
  • the four corner regions Z305 in the outer shape may be a concave shape in a square shape.
  • the effective area 131 a may be rectangular and the outer periphery of the ineffective area 131 b may be circular.
  • the same configuration as the effective area 131a as an aspheric lens is extended at the boundary with the effective area 131a in the ineffective area 131b, and the end of the ineffective area 131b is extended.
  • the end portion may be formed vertically (corresponding to the configuration of FIG. 23).
  • the same configuration as that of the effective area 131a as an aspheric lens is extended at the boundary with the effective area 131a in the ineffective area 131b.
  • the end Z332 of the region 131b the end may be formed in a tapered shape.
  • the same configuration as that of the effective area 131a as an aspheric lens is extended at the boundary with the effective area 131a in the ineffective area 131b.
  • the end may be formed in a round shape.
  • the same configuration as the effective area 131a as an aspheric lens is extended at the boundary with the effective area 131a in the ineffective area 131b, and the end of the ineffective area 131b is extended.
  • the end portion may be formed as a side surface of a multistage structure.
  • the same configuration as the effective area 131a as an aspheric lens is extended at the boundary with the effective area 131a in the ineffective area 131b, and the end of the ineffective area 131b is extended.
  • a portion Z335 a horizontal flat portion is provided at the end, and a bank-like protruding portion that protrudes in a direction opposite to the incident direction of the incident light is formed from the effective region 131a.
  • the side surface of the part may be formed vertically.
  • the same configuration as that of the effective area 131a as an aspheric lens is extended at the boundary with the effective area 131a in the ineffective area 131b.
  • a horizontal planar portion is provided at the end, and a bank-like protruding portion that protrudes in a direction opposite to the incident light incident direction is formed from the effective region 131a.
  • the side surface of the protrusion may be tapered.
  • the same configuration as that of the effective area 131a as an aspheric lens is extended at the boundary with the effective area 131a in the ineffective area 131b.
  • a horizontal plane portion is provided at the end, and a bank-like protruding portion that protrudes in a direction opposite to the incident light incident direction is formed from the effective region 131a.
  • the side surface of the protrusion may be formed in a round shape.
  • the same configuration as the effective area 131a as an aspheric lens is extended at the boundary with the effective area 131a in the ineffective area 131b, and the end of the ineffective area 131b is extended.
  • a part Z338 a bank-like projecting part having a horizontal plane part at the end and projecting in a direction opposite to the incident direction of the incident light is formed rather than the effective area 131a.
  • These side surfaces may be formed in a multistage structure.
  • a horizontal planar portion is provided at the end of the lens 131, and a bank-like protruding portion that protrudes in a direction opposite to the incident direction of incident light is provided from the effective region 131a.
  • a structural example in which a protruding portion having a horizontal plane portion is not provided at the end of the lens 131 is shown.
  • An example configured in a shape and an example in which a plurality of side surfaces are configured in multiple stages are shown.
  • the projecting portion is formed perpendicular to the glass substrate 12, and is further configured to leave a square boundary structure Es at the boundary with the glass substrate 12 on the solid-state imaging device 11. May be.
  • the same configuration as the effective area 131a as an aspheric lens is extended at the boundary with the effective area 131a in the ineffective area 131b, and the end of the ineffective area 131b is extended.
  • the projecting portion is formed perpendicular to the glass substrate 12, and the round boundary structure Er is left at the boundary with the glass substrate 12 on the solid-state imaging device 11. Good.
  • the contact area between the lens 131 and the glass substrate 12 is increased so that the lens 131 and the glass substrate 12 are more closely bonded to each other. As a result, peeling of the lens 131 from the glass substrate 12 can be suppressed.
  • the square boundary structure Es and the round boundary structure Er are used when the end is formed in a tapered shape, in a round shape, or in a multistage structure. You may do it.
  • the same configuration as the effective area 131a as an aspheric lens is extended at the boundary of the ineffective area 131b with the effective area 131a, and an end Z371 of the ineffective area 131b is extended.
  • the side surface of the lens 131 is formed perpendicular to the glass substrate 12, and a refractive film 351 having a predetermined refractive index is formed on the glass substrate 12 on the outer periphery thereof at substantially the same height as the lens 131. You may be made to do.
  • the refractive film 351 has a refractive index higher than a predetermined refractive index, as shown by the solid line arrow at the top of FIG. 27, when there is incident light from the outer peripheral portion of the lens 131, the lens While reflecting to the outside of 131, the incident light to the side part of the lens 131 is reduced as shown by the dotted arrow. As a result, since the intrusion of stray light into the lens 131 is suppressed, the occurrence of flare and ghost is suppressed.
  • the refractive film 351 has a refractive index lower than a predetermined refractive index, as shown by the solid line arrow at the bottom of FIG.
  • Light that is to be transmitted to the outside of the lens 131 is transmitted, and reflected light from the side surface of the lens 131 is reduced as indicated by a dotted arrow.
  • the intrusion of stray light into the lens 131 is suppressed, the occurrence of flare and ghost can be suppressed.
  • the refractive film 351 has been described with respect to an example in which the refractive film 351 is formed at the same height as the lens 131 on the glass substrate 12 and the end portion is vertical. Also good.
  • the refractive film 351 has a tapered shape at the end on the glass substrate 12, and has a thickness higher than the height of the end of the lens 131. You may make it become the structure which carried out.
  • the refractive film 351 has a tapered shape at the end and a thickness that is higher than the height of the end of the lens 131. Further, a configuration may be adopted in which a part of the lens 131 covers the ineffective region 131b.
  • the refractive film 351 may be configured to have a tapered shape from the height of the end of the lens 131 to the end of the glass substrate 12. .
  • the refractive film 351 has a tapered shape at the end of the glass substrate 12 and a thickness lower than the height of the end of the lens 131. It may be configured to have.
  • the refractive film 351 is formed to be concave toward the glass substrate 12 and to have a round shape rather than the height of the end of the lens 131. It may be.
  • the IRCF 14 is formed on the solid-state imaging device 11, and the glass substrate 12 is bonded to the IRCF 14 by the adhesive 15 (for example, the seventh embodiment of FIG. 15).
  • the adhesive 15 for example, the seventh embodiment of FIG. 15.
  • the configuration in FIG. 29 corresponds to the configuration other than the lens in the integrated configuration unit 10 in the imaging apparatus 1 in FIG.
  • the IRCF 14 needs to have a predetermined thickness, but it is generally difficult to increase the viscosity of the IRCF 14 material, and a desired film thickness cannot be formed at a time. However, when overcoating is performed, microvoids and bubbles are generated, which may deteriorate optical characteristics.
  • the glass substrate 12 is bonded by the adhesive 15 after the IRCF 14 is formed on the solid-state imaging device 11, but warpage occurs due to curing shrinkage of the IRCF 14. There is a risk of poor bonding. Further, the warping of the IRCF 14 cannot be forced only by the glass substrate 12, and the warping of the entire device may occur, which may deteriorate the optical characteristics.
  • the resin burrs caused by the adhesive 15 are generated during the singulation, as indicated by the upper range Z 411 in FIG. 29. There is a risk of reducing the work accuracy during mounting, such as pick-up.
  • the IRCF 14 is divided into two parts such as IRCFs 14-1 and 14-2, and the IRCFs 14-1 and 14-2 are bonded with an adhesive 15.
  • the step (sensor step such as PAD) on the solid-state image sensor 11 can be flattened by the IRCF 14-2, so that the adhesive 15 is thinned. As a result, the height of the imaging device 1 can be reduced.
  • the warpage is offset by the IRCFs 14-1 and 14-2 formed on the glass substrate 12 and the solid-state imaging device 11, respectively, and the warpage of the device chip can be reduced.
  • the elastic modulus of glass is higher than IRCF14-1 and 14-2.
  • the elastic modulus of the IRCF 14-1 and 14-2 higher than that of the adhesive 15, the IRCF 14- having higher elastic modulus than that of the adhesive 15 can be placed above and below the low elastic adhesive 15 at the time of singulation. Therefore, as shown by the upper range Z412 in FIG. 29, it is possible to suppress the generation of resin burrs during expansion.
  • IRCFs 14'-1 and 14'-2 having a function as an adhesive may be formed and directly bonded so as to face each other.
  • the IRCF 14-1 is applied to the glass substrate 12 to be formed. Further, the IRCF 14-2 is applied to the solid-state imaging device 11 and formed. In the upper left part of FIG. 30, the glass substrate 12 is drawn upside down after being formed by applying IRCF 14-2.
  • the adhesive 15 is applied on the IRCF 14-2 as shown in the upper center of FIG.
  • the IRCF 14-1 of the glass substrate 12 is applied to the surface on which the adhesive 15 is applied on the adhesive 15 shown in the upper center part of FIG. Bonded to face each other.
  • an electrode is formed on the back side of the solid-state imaging device 11 as shown in the lower left part of FIG.
  • the glass substrate 12 is thinned by polishing.
  • the end portion is cut by a blade or the like to be separated into pieces, and the IRCFs 14-1 and 14-2 are laminated on the imaging surface, and the glass substrate 12 is further formed thereon.
  • the formed solid-state imaging device 11 is completed.
  • the adhesive 15 is sandwiched between the IRCFs 14-1 and 14-2, so that it is possible to suppress the generation of burrs due to the separation.
  • the IRCFs 14-1 and 14-2 can each be formed in half of the required film thickness, and the thickness required for overcoating can be reduced, or overcoating is not required. It is possible to suppress the generation of microvoids and bubble fringes and to reduce the deterioration of optical characteristics.
  • the respective film thicknesses of the IRCFs 14-1 and 14-2 are reduced, it is possible to reduce warpage due to curing shrinkage, and it is possible to suppress the occurrence of bonding failure between the glass substrate 12 and the IRCF 14, It is possible to suppress the deterioration of the optical characteristics due to the warp.
  • the IRCF 14-1 and 14-2 are formed by the manufacturing method described above, and when the solid-state image pickup device 11 on which the glass substrate 12 is formed is separated into individual pieces, the side cross section is changed to the image pickup surface by a blade or the like. On the other hand, it is assumed to be cut vertically.
  • the glass substrate 12, the IRCFs 14-1, 14-2, and the adhesive 15 are adjusted by adjusting the shape of the side cross-sections of the IRCFs 14-1, 14-2 and the glass substrate 12 formed on the solid-state imaging device 11. You may make it reduce further the influence by the fallen garbage resulting from.
  • the horizontal outer shape of the solid-state imaging device 11 is the largest, and the glass substrate 12, IRCF 14-1, 14-2, and adhesive 15 are all equal, and The side cross section may be formed so as to be smaller than the solid-state imaging element 11.
  • the solid-state image sensor 11 has the largest outer shape in the horizontal direction, the IRCFs 14-1 and 14-2 and the adhesive 15 have the same outer shape, and the solid-state image sensor 11.
  • the side cross section may be formed so that the outer shape of the glass substrate 12 is the smallest.
  • the side cross-section is such that the solid-state imaging device 11, IRCFs 14-1, 14-2, adhesive 15, and glass substrate 12 are arranged in the descending order of the outer shape in the horizontal direction. It may be formed.
  • the horizontal outer shape of the solid-state imaging device 11 is the largest, and then the outer shape of the glass substrate 12 is large, and the IRCFs 14-1, 14-2 and the adhesive 15
  • the side cross-sections may be formed so that the outer shape of each is equal and the smallest.
  • FIG. 32 a diagram for explaining a side cross section shown in the upper left part of FIG. 31 is shown. That is, in the upper part of FIG. 32, the horizontal outer shape of the solid-state imaging device 11 is the largest, and then the glass substrate 12, IRCF 14-1, 14-2, and adhesive 15 are all equally large. A side cross section smaller than the solid-state image sensor 11 is shown.
  • the middle part of FIG. 32 is an enlarged view of the boundary between adjacent solid-state imaging devices 11 cut from the side as viewed from the side.
  • a range Zb composed of the glass substrate 12, the IRCFs 14-1 and 14-2, and the adhesive 15 by a blade having a predetermined width Wb (for example, about 100 ⁇ m). Is cut from the surface layer of IRCF 14-1 to a depth Lc1.
  • the position at the depth Lc from the surface layer of the IRCF 14-1 is the surface layer of the solid-state imaging device 11 and the position to the wiring layer 11M formed by CuCu bonding or the like.
  • the depth Lc1 may be cut to the surface layer of the semiconductor substrate 81 in FIG.
  • the blade is cut at the boundary while being centered at the center position of the adjacent solid-state imaging device 11 indicated by the alternate long and short dash line, as indicated by the center portion of FIG.
  • the width WLA is a width in which a wiring layer formed at the ends of two adjacent solid-state imaging devices 11 is formed. Furthermore, the width to the center of the scribe line of one chip of the solid-state imaging device 11 is the width Wc, and the width to the end of the glass substrate 12 is the width Wg.
  • the range Zb corresponds to the shape of the blade, and the upper portion is represented by a blade width Wb and the lower portion is represented by a hemispherical shape, but corresponds to the blade shape.
  • the Si substrate (semiconductor substrate 81 in FIG. 6) of the solid-state imaging device 11 has a predetermined width Wd (for example, thinner than the blade in which the glass substrate 12 is cut by dry etching, laser dicing, or a blade). , About 35 ⁇ m), the solid-state imaging device 11 is separated into pieces. However, in the case of laser dicing, the width Wd is substantially zero.
  • the cutting shape can be adjusted to a desired shape by dry etching, laser dicing, or a blade.
  • the solid-state image sensor 11 has the largest horizontal outer shape, and the glass substrate 12, IRCFs 14-1, 14-2, and the adhesive 15 are all equal, and A side cross section is formed so as to be smaller than the solid-state imaging device 11.
  • the process of cutting the Si substrate (semiconductor substrate 81 in FIG. 6) that forms the solid-state imaging device 11 in the range Zh may be performed prior to the cutting operation of the range Zb. You may make it work in the state turned upside down with respect to the state shown by the middle stage.
  • the range Zh may be cut by ablation with a short pulse laser.
  • FIG. 33 a diagram for explaining a side cross section shown in the upper right part of FIG. 31 is shown. That is, in the upper part of FIG. 33, the horizontal outer shape of the solid-state image sensor 11 is the largest, the outer shapes of the IRCFs 14-1 and 14-2 and the adhesive 15 are equal, and the second largest after the solid-state image sensor 11.
  • the side cross section formed so that the external shape of the glass substrate 12 may become the smallest is shown.
  • the middle part of FIG. 33 is an enlarged view of the boundary between adjacent solid-state imaging devices 11 cut from the side as viewed from the side.
  • the blade Z having a predetermined width Wb1 causes the glass substrate 12 and the range Zb1 composed of the IRCFs 14-1, 14-2 and the adhesive 15 to have a depth from the surface layer of the IRCF 14-1. Cut to Lc11.
  • a range Zb2 having a depth exceeding the wiring layer 11M is cut by a blade having a predetermined width Wb2 ( ⁇ width Wb1).
  • the Si substrate (semiconductor substrate 81 in FIG. 6) is cut by a range Zh having a predetermined width Wd (for example, about 35 ⁇ m) thinner than the width Wb2 by dry etching, laser dicing, or a blade.
  • Wd for example, about 35 ⁇ m
  • the solid-state imaging device 11 is separated into pieces.
  • the width Wd is substantially zero.
  • the cutting shape can be adjusted to a desired shape by dry etching, laser dicing, or a blade.
  • the solid-state image sensor 11 has the largest outer shape in the horizontal direction, the IRCFs 14-1 and 14-2 and the adhesive 15 have the same outer shape, and the solid-state image sensor 11 Next, the side cross section is formed so that the glass substrate 12 is the smallest.
  • a part of the horizontal direction of the IRCF 14-1 is drawn in the same manner as the horizontal width of the glass substrate 12. Further, as indicated by a range Z442, a part of the horizontal direction of the IRCF 14-2 is drawn wider than the horizontal width of the IRCF 14-1.
  • the shape of the side cross section of the glass substrate 12, IRCF 14-1, 14-2, and adhesive 15 in the lower part of FIG. 33 is different from the shape in the upper part of FIG.
  • the process of cutting the Si substrate (semiconductor substrate 81 in FIG. 6) that forms the solid-state imaging device 11 in the range Zh may be performed prior to the cutting operation of the ranges Zb1 and Zb2. You may make it work in the state reversed upside down with respect to the state shown by the middle stage of FIG.
  • the range Zh may be cut by ablation with a short pulse laser.
  • FIG. 34 a diagram for explaining a side cross section shown in the lower left part of FIG. 31 is shown. That is, in the upper part of FIG. 34, the size of the outer shape is such that the horizontal outer shape of the solid-state imaging device 11, IRCF 14-1, 14-2, adhesive 15, and glass substrate 12 are increased in order. Yes.
  • the middle part of FIG. 34 is an enlarged view of the boundary between adjacent solid-state imaging devices 11 cut from the side as viewed from the side.
  • the blade Z having a predetermined width Wb1 causes the glass substrate 12 and the range Zb composed of the IRCFs 14-1 and 14-2 and the adhesive 15 to have a depth from the surface layer of the IRCF 14-2. Cut to Lc21.
  • laser ablation is performed for a predetermined width Wb2 ( ⁇ width Wb1), and a range ZL is cut to a depth exceeding the wiring layer 11M.
  • the IRCFs 14-1 and 14-2 and the adhesive 15 cause thermal contraction by absorption of laser light in the vicinity of the processing surface, so that the adhesive 15 becomes IRCF 14-1, It recedes with respect to the cut surface of 14-2, and becomes a concave shape.
  • the Si substrate (semiconductor substrate 81 in FIG. 6) is cut by a range Zh having a predetermined width Wd (for example, about 35 ⁇ m) thinner than the width Wb2 by dry etching, laser dicing, or a blade.
  • Wd for example, about 35 ⁇ m
  • the solid-state imaging device 11 is separated into pieces.
  • the width Wd is substantially zero.
  • the cutting shape can be adjusted to a desired shape by dry etching, laser dicing, or a blade.
  • the horizontal outer shape of the solid-state imaging device 11 is the largest, then the outer shapes of the IRCFs 14-1 and 14-2 are larger, and then the adhesive 15
  • the side cross section is formed so that the outer shape of the glass substrate 12 is large and the glass substrate 12 is the smallest. That is, as indicated by a range Z452 in the lower part of FIG. 34, the outer shape of the adhesive 15 is smaller than the outer shapes of the IRCFs 14-1 and 14-2.
  • a part of the horizontal direction of IRCF 14-2 is drawn wider than the horizontal width of IRCF 14-1. Further, as indicated by a range Z451, a part of the horizontal direction of the IRCF 14-1 is drawn to be the same as the horizontal width of the glass substrate 12.
  • the process of cutting the Si substrate (semiconductor substrate 81 in FIG. 6) that forms the solid-state imaging device 11 in the range Zh may be performed prior to the cutting operation of the ranges Zb and ZL.
  • the work may be performed in an upside down state with respect to the state shown in the middle of FIG.
  • the range Zh may be cut by ablation with a short pulse laser.
  • FIG. 35 a diagram for explaining a side cross section shown in the lower right part of FIG. 31 is shown. That is, in the upper part of FIG. 35, the horizontal outer shape of the solid-state imaging device 11 is the largest, then the outer shape of the glass substrate 12 is large, and the outer shapes of the IRCFs 14-1, 14-2 and the adhesive 15 are the same. An equal and smallest side cross-section is shown.
  • the middle part of FIG. 35 is an enlarged view of the boundary between adjacent solid-state imaging devices 11 cut from the side as viewed from the side.
  • the glass substrate 12 in the range Zs1 in which the width Ld is substantially zero is cut by so-called stealth (laser) dicing using a laser.
  • the second step laser ablation processing is performed for a predetermined width Wab, and the IRCF 14-1 and 14-2 and a range ZL that exceeds the wiring layer 11M in the solid-state imaging device 11 are cut.
  • ablation processing using a laser is adjusted so that the cut surfaces of the IRCFs 14-1 and 14-2 and the adhesive 15 are the same.
  • a so-called stealth (laser) dicing process using a laser cuts a range Zs2 in which the width becomes substantially zero, and the solid-state imaging device 11 is singulated.
  • the organic matter generated by the ablation is discharged to the outside through the groove subjected to the stealth dicing process.
  • the horizontal outer shape of the solid-state imaging device 11 is the largest, and then the outer shape of the glass substrate 12 is large, and the IRCFs 14-1 and 14- 2 and the adhesive 15 have the same outer shape, and the side cross-section is formed to be the smallest.
  • the order of the stealth dicing process for the glass substrate 12 and the stealth dicing process for the solid-state imaging device 11 may be interchanged. At this time, the work is performed in an inverted state with respect to the state shown in the middle stage of FIG. May be made.
  • IRCFs 14-1 and 14-2 are formed on the solid-state imaging device 11 by bonding with the adhesive 15, and the glass substrate 12 is further formed on the IRCF 14-1.
  • an additional film having an antireflection function may be formed.
  • an additional film 371 having an antireflection function may be formed on the glass substrate 12.
  • the boundary between the glass substrate 12 and the IRCF 14-1, the boundary between the IRCF 14-1 and the adhesive 15, and the adhesive 15 and the IRCF 14-2 may be formed at each of the boundaries between the two.
  • any of the additional films 371-2, 371-4, and 371-3 having an antireflection function is formed. Alternatively, these may be combined.
  • the additional films 371, 371-1 to 371-4 may be formed of, for example, the above-described AR coat 271a or a film having a function equivalent to that of the antireflection processing portion (moth eye) 291a. .
  • the light is reflected on at least one of the boundary between the glass substrate 12 and the IRCF 14-1, the boundary between the IRCF 14-1 and the adhesive 15, and the boundary between the adhesive 15 and the IRCF 14-2.
  • an additional film that functions as an antireflection film or a light absorption film may be formed on the side surface portion.
  • the glass substrate 12, IRCFs 14-1, 14-2, the adhesive 15, and the entire side cross section of the solid-state imaging device 11 are coated with an antireflection film or a light absorption film.
  • An additional film 381 that functions as the above may be formed.
  • the side surfaces of the glass substrate 12, the IRCFs 14-1 and 14-2, and the adhesive 15 except for the side surfaces of the solid-state imaging device 11, are antireflection films or light.
  • An additional film 381 that functions as an absorption film or the like may be formed.
  • the additional film 381 is provided on the side surfaces of the solid-state imaging device 11, the glass substrate 12, the IRCFs 14-1 and 14-2, and the adhesive 15, so that unnecessary light is incident on the solid-state imaging device 11. This prevents the occurrence of ghosts and flares.
  • the configuration of the imaging apparatus 1 may be other than that shown in FIG. 19.
  • the configuration is the same even when the lens 131 in the integrated configuration unit 10 in the imaging apparatus 1 in FIG.
  • a concentric aspherical concave lens 401 (corresponding to the lens 271 in FIG. 19) centered on the position of the center of gravity as viewed from above is provided on the glass substrate 12 on the solid-state imaging device 11. It is assumed that it is formed.
  • the lens 401 has an AR coat 402 (a film having the same function as the above-described AR coat 271a or the antireflection treatment portion 291a) formed on the light incident surface, and a protruding portion 401a formed on the outer peripheral portion. It is assumed that 38 and 39 show a configuration in which the solid-state imaging device 11, the glass substrate 12, and the lens 271 are extracted from the integrated configuration unit 10 in the imaging device 1 of FIG.
  • the lens 401 has a mortar-like shape that has an aspherical concave shape centered on the position of the center of gravity as viewed from above.
  • the upper right part in the figure shows the cross-sectional shape of the lens 401 in the direction indicated by the dotted line in the upper left part in the figure, and the lower right part in the figure is the upper left part in the figure.
  • the cross-sectional shape of the lens 401 in the direction indicated by the solid line is shown.
  • the range Ze of the lens 401 has a common aspherical curved surface structure in the upper right part and the lower right part of FIG. 39. With such a shape, the imaging surface of the solid-state image sensor 11 is formed from above in the figure. An effective region for condensing incident light is configured.
  • the lens 401 is formed of an aspherical curved surface, so that the thickness changes according to the distance between the light incident direction and the vertical direction from the center position. More specifically, the lens thickness is the thinnest thickness D at the center position, and the lens thickness at the position farthest from the center in the range Ze is the thickest thickness H. Further, when the thickness of the glass substrate 12 is the thickness Th, the thickness H at which the lens 401 is thickest is thicker than the thickness Th of the glass substrate 12 and the thickness D at which the lens 401 is thinnest is: It is thinner than the thickness Th of the glass substrate 12.
  • the thicknesses D, H, and Th are small and light by using the lens 401 and the glass substrate 12 that satisfy the relationship of thickness H> thickness Th> thickness D. And it becomes possible to implement
  • the volume of the lens can be formed most efficiently by setting the volume VG of the glass substrate 12 to be smaller than the volume VL of the lens 401, it is small and lightweight and has high resolution. Therefore, it is possible to realize the imaging device 1 that can perform the imaging.
  • FIG. 40 shows a stress distribution due to expansion and contraction of the AR coat 402 during mounting reflow thermal load when the outer shape of the lens 401 in FIG. 39 is changed. Note that the stress distribution in FIG. 40 is 1 ⁇ 2 of the entire 1/4 range with respect to the horizontal and vertical directions with reference to the center position of the lens 401 indicated by the range Zp shown in FIG. 38. The distribution of is shown.
  • FIG. 40 shows the stress distribution generated in the AR coat 402B during mounting reflow thermal load in the lens 401B provided with the protruding portion 401a shown in FIG.
  • the taper provided on the side surface of the outer peripheral portion of the protrusion 401a shown in FIG. 39 is larger than in the case of FIG. 39 at the time of mounting reflow thermal load.
  • the stress distribution generated in the AR coat 402E is shown.
  • the stress distribution generated in the AR coat 402F during mounting reflow thermal load is shown in the lens 401F in which the protruding parts 401a shown in FIG. 39 are provided only on the four sides constituting the outer peripheral part. ing.
  • the imaging device 1 is small and light and can be imaged with high resolution by the concave lens 401 provided with the protruding portion 401a having a tapered outer peripheral portion.
  • the example which comprises has been demonstrated.
  • the shape of the lens 401 may be other shapes. .
  • the side surface on the outer peripheral side from the protruding portion 401a may be configured so as not to include a taper as a configuration perpendicular to the glass substrate 12.
  • the side surface on the outer peripheral side from the protrusion 401a may include a round taper.
  • the protrusion 401a itself may not be included, and the side surface may include a linear tapered shape that forms a predetermined angle with respect to the glass substrate 12. .
  • the protrusion 401a itself may not be included, and the side surface may be configured to be perpendicular to the glass substrate 12 and not include a tapered shape.
  • the side surface may include a round taper shape with respect to the glass substrate 12 without including the protruding portion 401a itself.
  • the protruding portion 401a itself may not be included, and the side surface of the lens may have a two-stage configuration having two inflection points.
  • the detailed configuration of the lens 401L will be described later with reference to FIG. Further, since the side surface of the lens 401L has a two-stage configuration having two inflection points, it is also referred to as a two-stage side lens hereinafter.
  • the side surface may include a protruding portion 401a and have a two-stage configuration having two inflection points on the outer side surface.
  • the side surface includes a protrusion 401a and the side surface is at a right angle to the glass substrate 12, and further, a rectangular skirt is formed near the boundary with the glass substrate 12. 401b may be added.
  • the projection 401a is included, and the configuration is perpendicular to the glass substrate 12. Further, a round-shaped skirt 401b ′ is provided near the boundary with the glass substrate 12. You may make it add.
  • FIG. 42 is an external perspective view when viewed from various directions when the glass substrate 12 is formed on the solid-state imaging device 11 and the two-step side surface type lens 401L is provided thereon.
  • sides LA, LB, LC, and LD are set clockwise from the right side of the solid-state imaging device 11 in the drawing.
  • 42 shows a perspective view around the corners of the sides LA and LB of the solid-state image sensor 11 when the solid-state image sensor 11 and the lens 401L are viewed from the direction of the line of sight E1 in the upper center of FIG. ing.
  • 42 shows a perspective view around the corners of the sides LA and LB of the solid-state image sensor 11 when the solid-state image sensor 11 and the lens 401L are viewed from the direction of the line of sight E2 in the upper center of FIG. ing.
  • the left part of FIG. 42 shows a perspective view around the corners of the sides LB and LC of the solid-state image sensor 11 when the solid-state image sensor 11 and the lens 401L are viewed from the direction of the line of sight E3 in the center part of FIG. ing.
  • the central portion of the long sides LB and LD (not shown) has the largest lens thickness when viewed from the upper surface of the two-step side surface lens 401L serving as a concave lens. Since the position is close to the position of the center of gravity in a circle that functions as a thinning lens, the lens is thinned, and the ridgeline has a gently curved shape so as to be surrounded by a dotted line.
  • the ridgeline is formed in a straight line when the lens is made thick.
  • the two-stage side surface lens 401L has a two-stage configuration of the side surfaces of the non-effective area provided outside the effective area Ze in the cross-sectional shape.
  • Inflection points P1 and P2 in the cross-sectional shape are formed at positions where X1 and X2 are shifted from each other and a step due to two side surfaces is generated.
  • the inflection points P1 and P2 change in order of unevenness from a position close to the solid-state imaging device 11.
  • the heights of the inflection points P1 and P2 from the glass substrate 12 are both higher than the thinnest thickness Th in the two-stage side surface lens 401L.
  • the difference between the respective average surfaces X1 and X2 (the distance between the average surfaces X1 and X2) of the two-stage side surfaces is the thickness of the solid-state image sensor 11 (the thickness of the silicon substrate 81 of the solid-state image sensor 11 in FIG. 6). It is desirable to make it larger than (a).
  • the difference in distance between the average surfaces X1 and X2 of the two-step side surfaces is the region width (for example, the horizontal direction in FIG. 23) that is perpendicular to the incident direction of the incident light in the effective region of the lens 401L. It is desirable that the width is 1% or more with respect to the width He or the vertical height Ve).
  • the shape may be other than the two-step side surface type lens 401L.
  • the second step from the top in FIG. The inflection points P11, P12 having a curvature different from the inflection points P1, P2 are provided at positions higher than the thinnest thickness Th of the lens from the glass substrate 12 so as to be provided with two side surfaces including the average surfaces X11, X12. It may be a two-stage side lens 401P in which is formed.
  • two side surfaces including the average surfaces X21 and X22 are provided, and the inflection is located at a position higher than the thinnest thickness Th of the lens from the glass substrate 12. It may be a two-stage side surface lens 401Q in which inflection points P21 and P22 having different curvatures from the points P1 and P2 and P11 and P22 are formed.
  • two-step side surfaces including the average surfaces X31 and X32 are provided, and the inflection point is located at a position higher than the thinnest thickness Th of the lens from the glass substrate 12.
  • a two-stage side lens 401R in which P31 and P32 are formed and the end of the lens 401 at the thickest position is rounded may be used.
  • FIG. 44 shows a stress distribution due to expansion and contraction of the AR coat 402 during mounting reflow thermal load when the outer shape of the lens 401 in FIG. 39 is changed. 44, the upper row shows the stress distribution of the AR coating 402 on the back side when the lens 401 is viewed from the diagonal direction, and the lower row shows the AR coating 402 on the near side when the lens 401 is viewed from the diagonal direction. Stress distribution.
  • the protruding portion 401a is not provided, but the mounting reflow thermal load in the lens 401U provided with a tapered shape and the corners of each side of the lens molded into a round shape.
  • the stress distribution generated in the AR coating 402U at the time is shown.
  • each maximum value graph in FIG. 45 indicates the maximum value of the stress distribution of the AR coats 402S to 402V in order from the left.
  • the maximum maximum stress of each lens is 1390 MPa at the corner Ws (FIG. 44) of the upper surface in the case of the AR coat 402S of the lens 401S, and the ridgeline in the case of the AR coat 402T of the lens 401T.
  • 1230 MPa At 1230 MPa.
  • the maximum stress in the effective area of each lens is 646 MPa in the case of the AR coat 402S of the lens 401S, 588 MPa in the case of the AR coat 402T of the lens 401T, and the AR of the lens 401U.
  • the coat 402U it is 690 MPa
  • the AR coat 402V of the lens 401V it is 656 MPa.
  • the maximum stress of the ridgeline of each lens is 1050 MPa in the case of the AR coat 402S of the lens 401S, 950 MPa in the case of the AR coat 402T of the lens 401T, and 800 MPa in the case of the AR coat 402U of the lens 401U. In the case of the AR coat 402U of the lens 401V, it is 1230 MPa.
  • the maximum stress is minimized in the AR coat 402S of the lens 401S.
  • the lens in the overall stress distribution of the effective area of the AR coat 402T of the lens 401T, the lens There is no stress distribution in the vicinity of 600 MPa, which exists in a range close to the outer peripheral portion of the 401 U AR coat 402 U, and as a whole, the outer shape of the AR coat 402 T of the lens 401 T (same as the lens 401 L) is the AR coat 402 T ( It can be seen that the stress distribution generated in the AR coat 402T of the AR coat 402L is small.
  • the two-stage side surface type lens 401L having two inflection points and a two-stage side surface as the lens 401 it is caused by heat during mounting reflow thermal load or in a reliability test. Expansion and contraction can be suppressed.
  • the stress generated in the AR coat 402L can be reduced, and the occurrence of cracks and lens peeling can be suppressed.
  • the expansion and contraction of the lens itself can be suppressed, the generation of distortion is reduced, image quality deterioration due to increased birefringence due to distortion, and interface reflection caused by local changes in refractive index. It is possible to suppress the occurrence of flare due to the increase.
  • the material of the lens 401 is placed in the space between the mold 452 and the glass substrate 12 in a state where the mold 452 is pressed against the glass substrate 12 on the solid-state imaging device 11.
  • the ultraviolet light curable resin 461 is filled, and exposure is performed for a predetermined time with ultraviolet light from the upper part in the drawing.
  • the substrate 451 and the mold 452 are both made of a material that transmits ultraviolet light.
  • the molding die 452 has an aspherical convex structure corresponding to the shape of the concave lens 401, and has a light-shielding film 453 formed on the outer peripheral portion.
  • a taper can be formed on the side surface of the lens 401 having an angle ⁇ .
  • the ultraviolet curable resin 461 used as the material of the lens 401 is cured by being exposed to ultraviolet light for a predetermined time, and is formed as an aspheric concave lens as shown in the lower part of FIG. Affixed to the glass substrate 12.
  • the ultraviolet light curable resin 461 is cured to form the lens 401. After the lens 401 is formed, the lens 401 is removed from the lens 401 on which the mold 452 is formed. (Release).
  • a part of the ultraviolet light curable resin 461 oozes out from the mold 452 to form a oozing portion 461a.
  • the ultraviolet light is shielded by the light shielding film 453 in the oozing portion 461a, as shown by the range Zc in the enlarged view Zf, a portion of the oozing portion 461a of the ultraviolet light curable resin 461 is used. Remains without being cured, and after being released from the mold, it is cured by ultraviolet light contained in natural light, thereby remaining as a skirt 401d.
  • the lens 401 is formed as a concave lens by the molding die 452, and a tapered shape is formed on the side surface at an angle ⁇ defined by the light shielding film 453.
  • the bottom 401 d is formed on the outer periphery of the lens 401 at the boundary with the glass substrate 12, whereby the lens 401 can be more firmly bonded to the glass substrate 12.
  • the light shielding film 453 is formed on the outer peripheral portion of the lens 401 on the back surface side (lower side in the drawing) with respect to the ultraviolet light incident direction of the substrate 451 as shown in the upper left part of FIG.
  • the example provided has been described.
  • the light shielding film 453 is provided on the outer peripheral part of the lens 401 on the surface side (upper side in the figure) with respect to the ultraviolet light incident direction of the substrate 451. Also good.
  • the light shielding film 453 forms a mold 452 ′ that is larger in the horizontal direction than the mold 452, instead of the substrate 451, as shown in the second from the top left in FIG.
  • it may be provided on the outer peripheral portion of the lens 401 on the back surface side (lower side in the figure).
  • the light shielding film 453 has a lens 401 on the surface side (upper side in the drawing) with respect to the incident direction of the ultraviolet light of the substrate 451 of the mold 452 ′, as shown second from the upper right in FIG. You may make it provide in the outer peripheral part.
  • the light shielding film 453 forms a molding die 452 '' in which the substrate 451 and the molding die 452 are integrated, as shown in the third from the top left in FIG. Then, it may be provided on the outer peripheral portion of the lens 401 on the back surface side (lower side in the figure).
  • the light shielding film 453 forms a molding die 452 '' in which the substrate 451 and the molding die 452 are integrated as shown in the third from the upper right in FIG. It may be arranged on the outer peripheral portion of the lens 401 on the front surface side (upper side in the drawing).
  • a mold 452 ′ ′′ provided with a configuration for defining a part of the side surface is formed, and the mold 452 is formed.
  • a light shielding film 453 may be formed on the back surface side of the outer peripheral portion of '' 'with respect to the incident direction of ultraviolet light.
  • the IRCF 14 and the adhesive 15 in the integrated component 10 of the imaging device 1 in FIG. 9 are omitted, but are omitted for convenience of explanation.
  • the lens 401 (131) and the glass substrate 12 may be provided.
  • the IRCF 14 and the adhesive 15 will be described with the configuration omitted in the configuration of the imaging apparatus 1 in FIG. 9 as an example, but in either case, for example, the lens 401 (131)
  • the IRCF 14 and the adhesive 15 may be provided between the glass substrate 12 and the glass substrate 12.
  • the basic manufacturing method is the same as the above-described lens manufacturing method that is not a two-stage side surface type.
  • a molding die 452 corresponding to the side surface shape of the two-step side surface type lens 401L is prepared for the substrate 451, and ultraviolet light is formed on the glass substrate 12 on the solid-state imaging device 11.
  • a cured resin 461 is placed.
  • FIG. 48 only the right half of the side cross section of the mold 452 is shown.
  • the ultraviolet light curable resin 461 on which the mold 452 is placed is fixed so as to press against the glass substrate 12, so that the mold 452 has a recess.
  • ultraviolet light is irradiated for a predetermined time from above in the figure.
  • the ultraviolet light curable resin 461 is cured by being exposed to ultraviolet light, and a concave two-step side surface lens 401 corresponding to the mold 452 is formed.
  • the lens 401 is formed by being exposed to ultraviolet light for a predetermined time, as shown in the right part of FIG. 48, when the mold 452 is released, the lens 401 composed of a two-step side surface lens is formed. Completed.
  • the glass substrate It is also possible to cut the lower part from the height that becomes the inflection point at a position close to 12, and provide the light shielding film 453 on the cut surface.
  • angles formed by the average surfaces X1 and X2 of the side surfaces of the lens 401 are different angles such as, for example, the angles ⁇ 1 and ⁇ 2 with respect to the incident light incident direction. It becomes possible to set to.
  • angles of the side surfaces X1 and X2 are set to be the angles ⁇ 1 and ⁇ 2, respectively, if the angle ⁇ 1 is smaller than the angle ⁇ 2, the occurrence of side flare is suppressed and the mold 452 is completed when the mold is released. It is possible to prevent the lens 401 that has been peeled off from the glass substrate 12.
  • the lens 401 can be more firmly fixed to the glass substrate 12.
  • the angles ⁇ 1, ⁇ 2, the surface roughness ⁇ (X1), ⁇ (X2), and the tailing portion 401d are formed depending on the shape of the molding die 452 even when the light shielding film 453 with reference to FIG. 48 is not used. It is possible to set. However, in the case where the molding die 452 provided with the light shielding film 453 is used as shown in FIG. 49, the ultraviolet light curable resin 461 left as an uncured part in the first ultraviolet light irradiation is oozed out. Since the part 461a can be adjusted later, the angles ⁇ 1, ⁇ 2, the surface roughness ⁇ (X1), ⁇ (X2), and the degree of freedom in setting the tailing part 401d can be increased.
  • the lens 401 can be formed on the glass substrate 12 of the solid-state imaging device 11 with high accuracy. Further, the angle of the side surfaces X1 and X2, the surface roughness ⁇ (X1), ⁇ (X2), and the presence / absence of the tailing portion 401d in the two-stage side surface lens 401 can be adjusted. Generation
  • production can be suppressed and it becomes possible to form the lens 401 in the glass substrate 12 more firmly.
  • the lens 401 is formed on the glass substrate 12 on the solid-state imaging device 11 with high precision by a molding method.
  • the glass substrate 12 is used.
  • the lens 401 may be formed on the glass substrate 12 with higher accuracy by forming an alignment mark on the substrate and positioning based on the alignment mark.
  • an effective area Ze (corresponding to the effective area 131a in FIG. 23) of the lens 401 is provided from the center, and an ineffective area Zn (into the ineffective area 131b in FIG. And a region Zg where the glass substrate 12 is exposed is provided on the outer periphery thereof, and a region Zsc where a scribe line is set is provided on the outermost periphery of the solid-state imaging device 11.
  • a protrusion 401a is provided in the ineffective region Zn (corresponding to the ineffective region 131b in FIG. 23).
  • each region has a relationship of the width of the effective region Ze> the width of the non-effective region Zn> the width of the region Zg where the glass substrate 12 is exposed> the width of the region Zsc where the scribe line is set.
  • the alignment mark 501 is formed in a region Zg on the glass substrate 12 where the glass substrate 12 is exposed. Therefore, the size of the alignment mark 501 is smaller than the region Zg, but it needs to be a size recognizable by an image for alignment.
  • an alignment mark 501 is formed at a position on the glass substrate 12 where the corner of the lens 401 should come into contact, and the corner of the lens in the mold 452 is aligned based on an image captured by the alignment camera. You may make it align by adjusting to the position where the mark 501 was provided.
  • the alignment marks 501 are, for example, alignment marks 501A to 501K as shown in FIG.
  • the alignment marks 501A to 501C have a square shape
  • the alignment marks 501D and 501E have a circular shape
  • the alignment marks 501F to 501I have a polygonal shape
  • the alignment marks 501J and 501K have a plurality of linear shapes.
  • a black portion and a gray portion are respectively formed at positions corresponding to the outer peripheral portion of the lens 401 on the mold 452 and the region Zg on the glass substrate 12, respectively.
  • the positional relationship between the lens 401 and the glass substrate 12 may be aligned by confirming whether or not the positional relationship corresponds to each other based on images captured by the alignment camera.
  • the gray portion of the alignment mark 501 ′ made of a rectangular frame is placed on the mold 452 so that the lens 401 and the mold 452 have an appropriate positional relationship.
  • the alignment mark 501 on the glass substrate 12 and the alignment mark 501 ′ on the mold 452 are imaged by an alignment camera, and the black alignment mark 501 is a gray rectangular frame.
  • the alignment may be adjusted by adjusting the position of the mold 452 so that the image is captured so as to be included in and overlapped with the alignment mark 501 ′.
  • the black part alignment mark 501 and the gray part alignment mark 501 ′ be arranged in the same field of view of the same camera.
  • the positional relationship of a plurality of cameras is calibrated in advance. Alignment may be performed by a plurality of cameras according to the positional relationship with the alignment marks 501 and 501 ′ provided at different corresponding positions.
  • the alignment mark 501 makes it possible to position and form the lens 401 on the glass substrate 12 of the solid-state imaging device 11 with high accuracy.
  • an ineffective region (corresponding to the ineffective region 131b in FIG. 23) including the side surface and the flat portion of the protrusion 401a on the glass substrate 12, and the effective The AR coat 402-P1 may be formed over the entire area (corresponding to the effective area 131a in FIG. 23).
  • the AR coat 402-P2 may be formed only in the effective area in the protruding portion 401a on the lens 401.
  • the AR coat 402-P2 is formed only in the region within the protruding portion 401a on the lens 401 (effective region (corresponding to the effective region 131a in FIG. 23)), so that the lens 401 is mounted during mounting reflow thermal load. It is possible to reduce the stress generated by the expansion and contraction due to heat, and the generation of cracks in the AR coat 402-P2 can be suppressed.
  • an area inside the protrusion 401a (corresponding to the effective area (corresponding to the effective area 131a in FIG. 23) including the flat portion of the protrusion 401a on the lens 401. )), An AR coating 402-P3 may be formed.
  • the AR coat 402-P3 is formed only in the inner region of the protrusion 401a including the protrusion 401a on the lens 401, so that the lens 401 expands or contracts due to heat during mounting reflow heat load. The generated stress on the AR coat 402-P3 can be reduced, and the generation of cracks can be suppressed.
  • an area inside the protruding portion 401a (effective region (FIG. 23) corresponding to the effective area 131a), and the AR coat 402-P4 is formed on the glass substrate 12 and the lens 401 in the vicinity of the boundary between the glass substrate 12 and the AR coat 402-P5. It may be.
  • a region where the AR coating is not formed is formed on a part of the side surface portion of the lens 401, so that the lens 401 expands or contracts due to heat during mounting reflow thermal load. By doing so, it becomes possible to reduce the stress generated on the AR coat 402-P2, and the occurrence of cracks can be suppressed.
  • FIG. 55 summarizes the stress distribution generated in the AR coating 402 during mounting reflow thermal load by variously changing the region where the AR coating 402 is formed with respect to the lens 401.
  • FIG. 55 shows the outer shapes of the lens 401 and the AR coating 402 when the upper portion is obtained by dividing the lens 401 into two horizontally and vertically, and the lower portion shows the stress distribution generated in the AR coating 402 during the corresponding mounting reflow thermal load. It is.
  • the left part of FIG. 55 is a case where the AR coating 402AA in which the AR coating is formed on the entire side including the peripheral glass substrate 12, the side surface of the lens 401, the protrusion 401a, and the inside of the protrusion 401a is formed. .
  • the second from the left in FIG. 55 shows that the AR coating is not formed on the side surfaces of the peripheral glass substrate 12 and the lens 401, and the AR coating is formed in the other region, compared to the leftmost configuration in FIG. This is the case of AR coating 402AB.
  • the third from the left in FIG. 55 shows that the AR coating is not formed in the region of the side surface of the lens 401 with respect to the leftmost configuration in FIG. 55, and the peripheral glass substrate 12, the protruding portion 401a, and the protruding portion
  • the fourth from the left in FIG. 55 is the side region of the lens 401, the flat surface of the protrusion 401a, the inner side of the protrusion 401a, and the upper surface of the protrusion 401a with respect to the leftmost configuration in FIG.
  • This is the case of the AR coating 402AD in which the AR coating is not formed in the region from the flat portion to the predetermined width A, and the AR coating 402AD is formed on the glass substrate 12 inside and around the other protruding portion 401a.
  • the width A is, for example, 100 ⁇ m.
  • the fifth from the left in FIG. 55 is the innermost side of the protruding portion 401a, the flat portion of the upper surface of the protruding portion 401a, and the outer side surface of the protruding portion 401a with respect to the configuration of the leftmost portion of FIG.
  • the sixth from the left in FIG. 55 is the innermost side of the protrusion 401a, the flat part of the upper surface of the protrusion 401a, and the side surface of the outer side of the protrusion 401a with respect to the configuration of the leftmost part of FIG.
  • the seventh from the left in FIG. 55 is the innermost side of the protrusion 401a, the flat part of the upper surface of the protrusion 401a, and the side surface of the outer side of the protrusion 401a with respect to the configuration of the leftmost part of FIG.
  • the eighth from the left in FIG. 55 is the innermost side of the protrusion 401a, the flat surface of the upper surface of the protrusion 401a, and the side surface of the outer side of the protrusion 401a with respect to the leftmost configuration of FIG.
  • the AR coat 402 is formed so as to cover the entire surface of the lens 401 in any case, and the AR coat on the inner side of the protruding portion 401a of the lens 401 is It is shown that the stress generated in the AR coat 402 is smaller when the AR coat 402 is not continuously connected to the AR coat 402 on the glass substrate 12.
  • the AR coat 402 is formed on the lens 401, the occurrence of flare and ghost can be suppressed, and a higher-definition image can be taken.
  • the AR coating 402 is formed on the entire surface including the effective area and the ineffective area of the lens 401 including the protruding portion 401a, and on the glass substrate 12 serving as the outer peripheral portion thereof.
  • the AR coating 402 has been described, other films may be used as long as the film is formed on the surface of the lens 401.
  • an anti-reflection film such as a moth eye is the same. .
  • the example of the lens provided with the protrusion part 401a was demonstrated, even if it is a lens which is not provided with the protrusion part 401a, the whole surface including an effective area
  • the lens 401 may be, for example, a two-stage side surface type lens 401L, and the AR coating 402 formed on the lens 401 is continuous with the AR coating 402 formed on the lens side surface and the glass substrate 12. If it is formed so as not to be formed in a connected state, the same effect can be obtained.
  • the AR coating 402 formed on the lens 401 is not formed in a state where it is continuously connected to the AR coating 402 formed on the glass substrate 12, thereby causing heat during mounting reflow heat load.
  • the example has been described in which the stress generated by the AR coat 402 is reduced by the expansion and contraction.
  • the occurrence of side flare may be suppressed by forming a light shielding film so as to cover the protruding portion 401a and the side surface of the lens 401.
  • the light shielding film covers the entire range up to the height of the side surface of the lens 401 and the planar portion of the upper surface of the protruding portion 401a, that is, the range other than the effective region. 521 may be formed.
  • a film 521 may be formed.
  • a light shielding film 521 may be formed on the side surface of the protruding portion 401a of the lens 401 from the glass substrate 12.
  • the light shielding film 521 is formed in a range from the glass substrate 12 to a predetermined height on the side surface of the protruding portion 401a of the lens 401 from the glass substrate 12. May be.
  • the light shielding film 521 may be formed only on the side surface of the protruding portion 401a of the lens 401.
  • the light shielding film 521 may be formed in a range up to the highest position of the two side surfaces of the two-step side surface type lens 401 on the glass substrate 12.
  • the entire surface up to the highest position of the two side surfaces of the two-stage side surface lens 401 on the glass substrate 12 and the outer peripheral portion of the solid-state imaging device 11 are covered.
  • the light shielding film 521 may be formed.
  • the light-shielding film 521 is formed by partial film formation, formed by lithography after film formation, formed after resist is formed, and formed by lifting off the resist, or formed by lithography. To do.
  • a bank for forming a light shielding film is formed on the outer peripheral portion of the two-step side surface type lens 401, and the light shielding film 521 is formed on the outer peripheral portion of the two-step side surface type lens 401 and inside the bank. Also good.
  • a bank 531 having the same height as the lens height is formed on the glass substrate 12 in the outer peripheral portion of the two-stage side surface lens 401, and After the light shielding film 521 is formed on the inner periphery of the bank 531 by lithography or coating, the height of the light shielding film 521, the lens 401, and the bank 531 is increased by polishing such as CMP (Chemical Mechanical Polishing). You may make it align.
  • CMP Chemical Mechanical Polishing
  • a bank 531 having the same height as the lens height is formed on the glass substrate 12 at the outer peripheral portion of the two-stage side lens 401 to form a two-stage side lens 401.
  • the height of the light shielding film 521, the lens 401, and the bank 531 is self-aligned by the material of the light shielding film 521. It may be.
  • a bank 531 having the same height as the lens height is formed on the glass substrate 12 at the outer peripheral portion of the two-stage side lens 401 to form a two-stage side lens 401.
  • the light shielding film 521 may be simply formed by lithography on the inner side of the bank 531.
  • a bank 531 is provided on the glass substrate 12 at the outer periphery of the two-step side lens 401 so that the boundary between the two-step side lens 401 and the glass substrate 12 is connected.
  • the light shielding film 521 is polished by CMP (Chemical Mechanical Polishing) or the like. The heights of the lens 401 and the bank 531 may be aligned.
  • a bank 531 is provided on the glass substrate 12 at the outer periphery of the two-step side lens 401 so that the boundary between the two-step side lens 401 and the glass substrate 12 is connected.
  • the height of the light shielding film 521, the lens 401, and the bank 531 is determined only by coating the material of the light shielding film 521 on the outer periphery of the two-step side surface type lens 401 and inside the bank 531. You may make it be the self-alignment by the material of 521.
  • a bank 531 is formed on the glass substrate 12 at the outer periphery of the two-stage side lens 401 so that the boundary between the two-stage side lens 401 and the glass substrate 12 is connected.
  • the light shielding film 521 may be only formed by lithography on the outer periphery of the two-step side surface lens 401 and inside the bank 531.
  • the light shielding film is formed so as to cover the protruding portion 401a and the side surface of the lens 401, the occurrence of side flare can be suppressed.
  • the example in which the light shielding film is formed on the outer peripheral portion of the lens 401 has been described.
  • any light that cannot enter from the outer peripheral portion of the lens 401 may be used.
  • a light absorbing film may be formed.
  • the above-described imaging device 1 in FIGS. 1, 4 and 6 to 17 is, for example, an imaging device such as a digital still camera or a digital video camera, a mobile phone having an imaging function, or other devices having an imaging function.
  • the present invention can be applied to various electronic devices such as devices.
  • FIG. 58 is a block diagram illustrating a configuration example of an imaging device as an electronic apparatus to which the present technology is applied.
  • An imaging apparatus 1001 shown in FIG. 58 includes an optical system 1002, a shutter apparatus 1003, a solid-state imaging element 1004, a drive circuit 1005, a signal processing circuit 1006, a monitor 1007, and a memory 1008, and displays still images and moving images. Imaging is possible.
  • the optical system 1002 includes one or more lenses, guides light (incident light) from the subject to the solid-state image sensor 1004, and forms an image on the light-receiving surface of the solid-state image sensor 1004.
  • the shutter device 1003 is disposed between the optical system 1002 and the solid-state image sensor 1004, and controls the light irradiation period and the light-shielding period to the solid-state image sensor 1004 according to the control of the drive circuit 1005.
  • the solid-state image sensor 1004 is configured by a package including the above-described solid-state image sensor.
  • the solid-state image sensor 1004 accumulates signal charges for a certain period according to the light imaged on the light receiving surface via the optical system 1002 and the shutter device 1003.
  • the signal charge accumulated in the solid-state image sensor 1004 is transferred according to a drive signal (timing signal) supplied from the drive circuit 1005.
  • the drive circuit 1005 outputs a drive signal for controlling the transfer operation of the solid-state image sensor 1004 and the shutter operation of the shutter device 1003 to drive the solid-state image sensor 1004 and the shutter device 1003.
  • the signal processing circuit 1006 performs various types of signal processing on the signal charges output from the solid-state imaging device 1004.
  • An image (image data) obtained by the signal processing by the signal processing circuit 1006 is supplied to the monitor 1007 and displayed, or supplied to the memory 1008 and stored (recorded).
  • the imaging apparatus 1001 configured in this way, the imaging apparatus 1 of any of FIGS. 1, 9, 11 to 22 is applied instead of the optical system 1002 and the solid-state imaging device 1004 described above. As a result, it is possible to suppress ghost and flare caused by internal reflection while realizing downsizing and low profile of the device configuration.
  • FIG. 59 is a diagram illustrating a usage example in which the above-described imaging device 1 is used.
  • the imaging device 1 described above can be used in various cases for sensing light such as visible light, infrared light, ultraviolet light, and X-rays as follows.
  • Devices for taking images for viewing such as digital cameras and mobile devices with camera functions
  • Devices used for traffic such as in-vehicle sensors that capture the back, surroundings, and interiors of vehicles, surveillance cameras that monitor traveling vehicles and roads, and ranging sensors that measure distances between vehicles, etc.
  • Equipment used for home appliances such as TVs, refrigerators, air conditioners, etc. to take pictures and operate the equipment according to the gestures ⁇ Endoscopes, equipment that performs blood vessel photography by receiving infrared light, etc.
  • Equipment used for medical and health care ⁇ Security equipment such as security surveillance cameras and personal authentication cameras ⁇ Skin measuring instrument for photographing skin and scalp photography Such as a microscope to do beauty Equipment used for sports-Equipment used for sports such as action cameras and wearable cameras for sports applications-Used for agriculture such as cameras for monitoring the condition of fields and crops apparatus
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure may be applied to an endoscopic surgery system.
  • FIG. 60 is a diagram illustrating an example of a schematic configuration of an endoscopic surgery system to which the technology (present technology) according to the present disclosure can be applied.
  • FIG. 60 shows a state in which an operator (doctor) 11131 is performing surgery on a patient 11132 on a patient bed 11133 using an endoscopic surgery system 11000.
  • an endoscopic surgery system 11000 includes an endoscope 11100, other surgical instruments 11110 such as an insufflation tube 11111 and an energy treatment instrument 11112, and a support arm device 11120 that supports the endoscope 11100. And a cart 11200 on which various devices for endoscopic surgery are mounted.
  • the endoscope 11100 includes a lens barrel 11101 in which a region having a predetermined length from the distal end is inserted into the body cavity of the patient 11132, and a camera head 11102 connected to the proximal end of the lens barrel 11101.
  • a lens barrel 11101 in which a region having a predetermined length from the distal end is inserted into the body cavity of the patient 11132, and a camera head 11102 connected to the proximal end of the lens barrel 11101.
  • an endoscope 11100 configured as a so-called rigid mirror having a rigid lens barrel 11101 is illustrated, but the endoscope 11100 may be configured as a so-called flexible mirror having a flexible lens barrel. Good.
  • An opening into which the objective lens is fitted is provided at the tip of the lens barrel 11101.
  • a light source device 11203 is connected to the endoscope 11100, and light generated by the light source device 11203 is guided to the tip of the lens barrel by a light guide extending inside the lens barrel 11101. Irradiation is performed toward the observation target in the body cavity of the patient 11132 through the lens.
  • the endoscope 11100 may be a direct endoscope, a perspective mirror, or a side endoscope.
  • An optical system and an image sensor are provided inside the camera head 11102, and reflected light (observation light) from the observation target is condensed on the image sensor by the optical system. Observation light is photoelectrically converted by the imaging element, and an electrical signal corresponding to the observation light, that is, an image signal corresponding to the observation image is generated.
  • the image signal is transmitted to a camera control unit (CCU: Camera Control Unit) 11201 as RAW data.
  • CCU Camera Control Unit
  • the CCU 11201 is configured by a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and the like, and comprehensively controls operations of the endoscope 11100 and the display device 11202. Further, the CCU 11201 receives an image signal from the camera head 11102 and performs various kinds of image processing for displaying an image based on the image signal, such as development processing (demosaic processing), for example.
  • a CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • the display device 11202 displays an image based on an image signal subjected to image processing by the CCU 11201 under the control of the CCU 11201.
  • the light source device 11203 is composed of a light source such as an LED (Light Emitting Diode), for example, and supplies irradiation light to the endoscope 11100 when photographing a surgical site or the like.
  • a light source such as an LED (Light Emitting Diode), for example, and supplies irradiation light to the endoscope 11100 when photographing a surgical site or the like.
  • the input device 11204 is an input interface for the endoscopic surgery system 11000.
  • a user can input various information and instructions to the endoscopic surgery system 11000 via the input device 11204.
  • the user inputs an instruction to change the imaging conditions (type of irradiation light, magnification, focal length, etc.) by the endoscope 11100.
  • the treatment instrument control device 11205 controls the drive of the energy treatment instrument 11112 for tissue ablation, incision, blood vessel sealing, or the like.
  • the pneumoperitoneum device 11206 passes gas into the body cavity via the pneumoperitoneum tube 11111.
  • the recorder 11207 is an apparatus capable of recording various types of information related to surgery.
  • the printer 11208 is a device that can print various types of information related to surgery in various formats such as text, images, or graphs.
  • the light source device 11203 that supplies the irradiation light when the surgical site is imaged to the endoscope 11100 can be configured by, for example, a white light source configured by an LED, a laser light source, or a combination thereof.
  • a white light source is configured by a combination of RGB laser light sources, the output intensity and output timing of each color (each wavelength) can be controlled with high accuracy. Therefore, the light source device 11203 adjusts the white balance of the captured image. It can be carried out.
  • the driving of the light source device 11203 may be controlled so as to change the intensity of the output light every predetermined time. Synchronously with the timing of changing the intensity of the light, the drive of the image sensor of the camera head 11102 is controlled to acquire an image in a time-sharing manner, and the image is synthesized, so that high dynamic without so-called blackout and overexposure A range image can be generated.
  • the light source device 11203 may be configured to be able to supply light of a predetermined wavelength band corresponding to special light observation.
  • special light observation for example, by utilizing the wavelength dependence of light absorption in body tissue, the surface of the mucous membrane is irradiated by irradiating light in a narrow band compared to irradiation light during normal observation (that is, white light).
  • a so-called narrow band imaging is performed in which a predetermined tissue such as a blood vessel is imaged with high contrast.
  • fluorescence observation may be performed in which an image is obtained by fluorescence generated by irradiating excitation light.
  • the body tissue is irradiated with excitation light to observe fluorescence from the body tissue (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally administered to the body tissue and applied to the body tissue. It is possible to obtain a fluorescence image by irradiating excitation light corresponding to the fluorescence wavelength of the reagent.
  • the light source device 11203 can be configured to be able to supply narrowband light and / or excitation light corresponding to such special light observation.
  • FIG. 61 is a block diagram illustrating an example of the functional configuration of the camera head 11102 and the CCU 11201 illustrated in FIG.
  • the camera head 11102 includes a lens unit 11401, an imaging unit 11402, a drive unit 11403, a communication unit 11404, and a camera head control unit 11405.
  • the CCU 11201 includes a communication unit 11411, an image processing unit 11412, and a control unit 11413.
  • the camera head 11102 and the CCU 11201 are connected to each other by a transmission cable 11400 so that they can communicate with each other.
  • the lens unit 11401 is an optical system provided at a connection portion with the lens barrel 11101. Observation light taken from the tip of the lens barrel 11101 is guided to the camera head 11102 and enters the lens unit 11401.
  • the lens unit 11401 is configured by combining a plurality of lenses including a zoom lens and a focus lens.
  • the imaging unit 11402 includes an imaging element.
  • One (so-called single plate type) image sensor may be included in the imaging unit 11402, or a plurality (so-called multi-plate type) may be used.
  • image signals corresponding to RGB may be generated by each imaging element, and a color image may be obtained by combining them.
  • the imaging unit 11402 may be configured to include a pair of imaging elements for acquiring right-eye and left-eye image signals corresponding to 3D (Dimensional) display. By performing the 3D display, the operator 11131 can more accurately grasp the depth of the living tissue in the surgical site.
  • 3D 3D
  • the imaging unit 11402 is not necessarily provided in the camera head 11102.
  • the imaging unit 11402 may be provided inside the lens barrel 11101 immediately after the objective lens.
  • the driving unit 11403 is configured by an actuator, and moves the zoom lens and the focus lens of the lens unit 11401 by a predetermined distance along the optical axis under the control of the camera head control unit 11405. Thereby, the magnification and the focus of the image captured by the imaging unit 11402 can be adjusted as appropriate.
  • the communication unit 11404 is configured by a communication device for transmitting and receiving various types of information to and from the CCU 11201.
  • the communication unit 11404 transmits the image signal obtained from the imaging unit 11402 as RAW data to the CCU 11201 via the transmission cable 11400.
  • the communication unit 11404 receives a control signal for controlling driving of the camera head 11102 from the CCU 11201 and supplies the control signal to the camera head control unit 11405.
  • the control signal includes, for example, information for designating the frame rate of the captured image, information for designating the exposure value at the time of imaging, and / or information for designating the magnification and focus of the captured image. Contains information about the condition.
  • the imaging conditions such as the frame rate, exposure value, magnification, and focus may be appropriately specified by the user, or may be automatically set by the control unit 11413 of the CCU 11201 based on the acquired image signal. Good. In the latter case, a so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function are mounted on the endoscope 11100.
  • AE Auto Exposure
  • AF Automatic Focus
  • AWB Auto White Balance
  • the camera head control unit 11405 controls driving of the camera head 11102 based on a control signal from the CCU 11201 received via the communication unit 11404.
  • the communication unit 11411 is configured by a communication device for transmitting and receiving various types of information to and from the camera head 11102.
  • the communication unit 11411 receives an image signal transmitted from the camera head 11102 via the transmission cable 11400.
  • the communication unit 11411 transmits a control signal for controlling driving of the camera head 11102 to the camera head 11102.
  • the image signal and the control signal can be transmitted by electrical communication, optical communication, or the like.
  • the image processing unit 11412 performs various types of image processing on the image signal that is RAW data transmitted from the camera head 11102.
  • the control unit 11413 performs various types of control related to imaging of the surgical site by the endoscope 11100 and display of a captured image obtained by imaging of the surgical site. For example, the control unit 11413 generates a control signal for controlling driving of the camera head 11102.
  • control unit 11413 causes the display device 11202 to display a picked-up image showing the surgical part or the like based on the image signal subjected to the image processing by the image processing unit 11412.
  • the control unit 11413 may recognize various objects in the captured image using various image recognition techniques.
  • the control unit 11413 detects surgical tools such as forceps, specific biological parts, bleeding, mist when using the energy treatment tool 11112, and the like by detecting the shape and color of the edge of the object included in the captured image. Can be recognized.
  • the control unit 11413 may display various types of surgery support information superimposed on the image of the surgical unit using the recognition result. Surgery support information is displayed in a superimposed manner and presented to the operator 11131, thereby reducing the burden on the operator 11131 and allowing the operator 11131 to proceed with surgery reliably.
  • the transmission cable 11400 for connecting the camera head 11102 and the CCU 11201 is an electric signal cable corresponding to electric signal communication, an optical fiber corresponding to optical communication, or a composite cable thereof.
  • communication is performed by wire using the transmission cable 11400.
  • communication between the camera head 11102 and the CCU 11201 may be performed wirelessly.
  • the technology according to the present disclosure can be applied to, for example, the endoscope 11100, the camera head 11102 (the imaging unit 11402), the CCU 11201 (the image processing unit 11412), and the like.
  • the imaging device 1 in FIGS. 1, 9, 11 to 22 can be applied to the lens unit 11401 and the imaging unit 10402.
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure is realized as a device that is mounted on any type of mobile body such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, personal mobility, an airplane, a drone, a ship, and a robot. May be.
  • FIG. 62 is a block diagram illustrating a schematic configuration example of a vehicle control system that is an example of a mobile control system to which the technology according to the present disclosure can be applied.
  • the vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001.
  • the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an out-of-vehicle information detection unit 12030, an in-vehicle information detection unit 12040, and an integrated control unit 12050.
  • a microcomputer 12051, an audio image output unit 12052, and an in-vehicle network I / F (interface) 12053 are illustrated.
  • the drive system control unit 12010 controls the operation of the device related to the drive system of the vehicle according to various programs.
  • the drive system control unit 12010 includes a driving force generator for generating a driving force of a vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism that adjusts and a braking device that generates a braking force of the vehicle.
  • the body system control unit 12020 controls the operation of various devices mounted on the vehicle body according to various programs.
  • the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as a headlamp, a back lamp, a brake lamp, a blinker, or a fog lamp.
  • the body control unit 12020 can be input with radio waves transmitted from a portable device that substitutes for a key or signals from various switches.
  • the body system control unit 12020 receives input of these radio waves or signals, and controls a door lock device, a power window device, a lamp, and the like of the vehicle.
  • the vehicle outside information detection unit 12030 detects information outside the vehicle on which the vehicle control system 12000 is mounted.
  • the imaging unit 12031 is connected to the vehicle exterior information detection unit 12030.
  • the vehicle exterior information detection unit 12030 causes the imaging unit 12031 to capture an image outside the vehicle and receives the captured image.
  • the vehicle outside information detection unit 12030 may perform an object detection process or a distance detection process such as a person, a car, an obstacle, a sign, or a character on a road surface based on the received image.
  • the imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal corresponding to the amount of received light.
  • the imaging unit 12031 can output an electrical signal as an image, or can output it as distance measurement information. Further, the light received by the imaging unit 12031 may be visible light or invisible light such as infrared rays.
  • the vehicle interior information detection unit 12040 detects vehicle interior information.
  • a driver state detection unit 12041 that detects a driver's state is connected to the in-vehicle information detection unit 12040.
  • the driver state detection unit 12041 includes, for example, a camera that images the driver, and the vehicle interior information detection unit 12040 determines the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated or it may be determined whether the driver is asleep.
  • the microcomputer 12051 calculates a control target value of the driving force generator, the steering mechanism, or the braking device based on the information inside / outside the vehicle acquired by the vehicle outside information detection unit 12030 or the vehicle interior information detection unit 12040, and the drive system control unit A control command can be output to 12010.
  • the microcomputer 12051 realizes an ADAS (Advanced Driver Assistance System) function including vehicle collision avoidance or impact mitigation, following traveling based on inter-vehicle distance, vehicle speed maintaining traveling, vehicle collision warning, or vehicle lane departure warning, etc. It is possible to perform cooperative control for the purpose.
  • ADAS Advanced Driver Assistance System
  • the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, and the like based on the information around the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040. It is possible to perform cooperative control for the purpose of automatic driving that autonomously travels without depending on the operation.
  • the microcomputer 12051 can output a control command to the body system control unit 12020 based on information outside the vehicle acquired by the vehicle outside information detection unit 12030.
  • the microcomputer 12051 controls the headlamp according to the position of the preceding vehicle or the oncoming vehicle detected by the vehicle outside information detection unit 12030, and performs cooperative control for the purpose of preventing glare such as switching from a high beam to a low beam. It can be carried out.
  • the sound image output unit 12052 transmits an output signal of at least one of sound and image to an output device capable of visually or audibly notifying information to a vehicle occupant or the outside of the vehicle.
  • an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are illustrated as output devices.
  • the display unit 12062 may include at least one of an on-board display and a head-up display, for example.
  • FIG. 63 is a diagram illustrating an example of an installation position of the imaging unit 12031.
  • the vehicle 12100 includes imaging units 12101, 12102, 12103, 12104, and 12105 as the imaging unit 12031.
  • the imaging units 12101, 12102, 12103, 12104, and 12105 are provided, for example, at positions such as a front nose, a side mirror, a rear bumper, a back door, and an upper part of a windshield in the vehicle interior of the vehicle 12100.
  • the imaging unit 12101 provided in the front nose and the imaging unit 12105 provided in the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 12100.
  • the imaging units 12102 and 12103 provided in the side mirror mainly acquire an image of the side of the vehicle 12100.
  • the imaging unit 12104 provided in the rear bumper or the back door mainly acquires an image behind the vehicle 12100.
  • the forward images acquired by the imaging units 12101 and 12105 are mainly used for detecting a preceding vehicle or a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or the like.
  • FIG. 63 shows an example of the shooting range of the imaging units 12101 to 12104.
  • the imaging range 12111 indicates the imaging range of the imaging unit 12101 provided in the front nose
  • the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided in the side mirrors, respectively
  • the imaging range 12114 The imaging range of the imaging part 12104 provided in the rear bumper or the back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, an overhead image when the vehicle 12100 is viewed from above is obtained.
  • At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the imaging units 12101 to 12104 may be a stereo camera including a plurality of imaging elements, or may be an imaging element having pixels for phase difference detection.
  • the microcomputer 12051 based on the distance information obtained from the imaging units 12101 to 12104, the distance to each three-dimensional object in the imaging range 12111 to 12114 and the temporal change of this distance (relative speed with respect to the vehicle 12100).
  • a predetermined speed for example, 0 km / h or more
  • the microcomputer 12051 can set an inter-vehicle distance to be secured in advance before the preceding vehicle, and can perform automatic brake control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like.
  • automatic brake control including follow-up stop control
  • automatic acceleration control including follow-up start control
  • cooperative control for the purpose of automatic driving or the like autonomously traveling without depending on the operation of the driver can be performed.
  • the microcomputer 12051 converts the three-dimensional object data related to the three-dimensional object to other three-dimensional objects such as a two-wheeled vehicle, a normal vehicle, a large vehicle, a pedestrian, and a utility pole based on the distance information obtained from the imaging units 12101 to 12104. It can be classified and extracted and used for automatic avoidance of obstacles.
  • the microcomputer 12051 identifies obstacles around the vehicle 12100 as obstacles that are visible to the driver of the vehicle 12100 and obstacles that are difficult to see.
  • the microcomputer 12051 determines the collision risk indicating the risk of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, the microcomputer 12051 is connected via the audio speaker 12061 or the display unit 12062. By outputting an alarm to the driver and performing forced deceleration or avoidance steering via the drive system control unit 12010, driving assistance for collision avoidance can be performed.
  • At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether a pedestrian is present in the captured images of the imaging units 12101 to 12104.
  • pedestrian recognition is, for example, whether or not a person is a pedestrian by performing a pattern matching process on a sequence of feature points indicating the outline of an object and a procedure for extracting feature points in the captured images of the imaging units 12101 to 12104 as infrared cameras. It is carried out by the procedure for determining.
  • the audio image output unit 12052 When the microcomputer 12051 determines that a pedestrian is present in the captured images of the imaging units 12101 to 12104 and recognizes the pedestrian, the audio image output unit 12052 has a rectangular outline for emphasizing the recognized pedestrian.
  • the display unit 12062 is controlled so as to be superimposed and displayed. Further, the audio image output unit 12052 may control the display unit 12062 so as to display an icon or the like indicating a pedestrian at a desired position.
  • the technology according to the present disclosure may be applied to the imaging unit 12031, for example.
  • the imaging device 1 in FIGS. 1, 9, 11 to 22 can be applied to the imaging unit 12031.
  • this indication can also take the following structures.
  • a solid-state imaging device that generates a pixel signal by photoelectric conversion according to the amount of incident light;
  • a lens group consisting of a plurality of lenses for focusing the incident light on the light receiving surface of the solid-state imaging device;
  • the lowest layer lens constituting the lowest layer with respect to the incident direction of the incident light is configured in the foremost stage with respect to the direction of receiving the incident light,
  • the lowest layer lens is an aspheric concave lens
  • the thickness of the glass substrate provided on the solid-state imaging device and to which the lowest layer lens is attached is thicker than the thinnest thickness of the lowest layer lens, and the thickest thickness of the lowest layer lens is:
  • An imaging device that is thicker than a glass substrate provided on the solid-state imaging device.
  • ⁇ 2> The imaging device according to ⁇ 1>, wherein a volume of the lowermost layer lens is larger than a volume of the glass substrate.
  • the lowermost layer lens is set with an effective area for condensing the incident light on the solid-state imaging device,
  • the effective area is disposed at a substantially central position with respect to a width in a direction perpendicular to the incident light of the lowermost layer lens, and the incident light is not necessarily provided to the solid-state imaging device in an outer peripheral portion of the effective area.
  • Ineffective areas that are not collected are set,
  • An inflection point at a position corresponding to the side surface of the lowermost layer lens formed in multiple stages in a cross-sectional shape passing through the center of the lowermost layer lens and passing through the short side or the substantial center of the long side of the lens The imaging device according to ⁇ 4>.
  • ⁇ 6> The imaging device according to ⁇ 5>, wherein the inflection point is formed at a position where a height from the glass substrate is higher than a height at which the thickness of the lowest layer lens is the thinnest.
  • ⁇ 7> The imaging device according to ⁇ 3>, wherein a difference in average inter-surface distance between the side surfaces of the lowest-layer lens formed in the multistage is larger than a thickness of a silicon substrate constituting the solid-state imaging device.
  • the difference in average inter-surface distance between the side surfaces of the lowermost layer lens formed in multiple stages is a region width that is perpendicular to the incident direction of the incident light of the effective region of the lowermost layer lens.
  • the imaging device according to ⁇ 3> which is greater than 1%.
  • the cross-sectional shape parallel to the incident light incident direction of the outer peripheral side surface portion of the lowermost layer lens is at least one of a vertical side surface, a taper shape, a round shape, and a multistage side surface shape.
  • ⁇ 1> to ⁇ 8 > The imaging device according to any one of the above.
  • ⁇ 10> On the outer peripheral side surface of the lowermost layer lens, a bank-like protrusion having a flat surface portion is formed, which is thicker than the thickest thickness of the lowermost layer lens.
  • the imaging apparatus according to any one of 1> to ⁇ 9>.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Lenses (AREA)
  • Studio Devices (AREA)

Abstract

本開示は、装置構成の小型化や低背化を実現すると共に、フレアやゴーストの発生を抑制し、レンズが剥がれないようにすることができるようにする撮像装置に関する。 固体撮像素子上に形成されるレンズ最薄厚<ガラス基板厚<レンズ最厚厚に設定する。本開示は、撮像装置に適応することができる。

Description

撮像装置
 本開示は、撮像装置に関し、特に、装置構成の小型化や低背化を実現すると共に、フレアやゴーストの発生を抑制して撮像できるようにした撮像装置に関する。
 近年、カメラ付き移動体端末装置や、デジタルスチルカメラなどで用いられる固体撮像素子において、高画素化および小型化、並びに低背化が進んでいる。
 カメラの高画素化および小型化にともない、レンズと固体撮像素子が光軸上で近くなり、赤外光カットフィルタがレンズ付近に配置されることが一般的となっている。
 例えば、複数のレンズからなるレンズ群のうち、最下位層となるレンズを、固体撮像素子上に構成することにより、固体撮像素子の小型化を実現する技術が提案されている。
特開2015-061193号公報
 しかしながら、固体撮像素子上に最下位層のレンズを構成するようにした場合、装置構成の小型化や低背化には貢献するものの、赤外光カットフィルタとレンズとの距離が近くなることにより、光の反射による内乱反射に起因したフレアや、ゴーストが生じてしまう。
 本開示は、このような状況に鑑みてなされたものであり、特に、固体撮像素子において、小型化や低背化を実現すると共に、フレアやゴーストの発生を抑制できるようにするものである。
 本開示の一側面の撮像装置は、入射光の光量に応じて光電変換により画素信号を生成する固体撮像素子と、前記固体撮像素子の受光面に対して、前記入射光を合焦させる、複数のレンズからなるレンズ群とを含み、前記レンズ群のうち、前記入射光の入射方向に対して最下位層を構成する最下位層レンズが、前記入射光を受光する方向に対して最前段に構成され、前記最下位層レンズは、非球面の凹型レンズであり、前記固体撮像素子上に設けられ、前記最下位層レンズが貼り付けられるガラス基板の厚さは、前記最下位層レンズの最も薄い厚さよりも厚く、前記最下位層レンズの最も厚い厚さは、前記固体撮像素子上に設けられたガラス基板の厚さよりも厚い撮像装置である。
 本開示の一側面においては、固体撮像素子により、入射光の光量に応じた光電変換により画素信号が生成され、複数のレンズからなるレンズ群により、前記固体撮像素子の受光面に対して、前記入射光が合焦され、前記レンズ群のうち、前記入射光の入射方向に対して最下位層を構成する、非球面形状の凹型の最下位層レンズが、前記入射光を受光する方向に対して最前段に構成され、前記入射光を前記固体撮像素子に対して集光させる有効領域が設定され、前記最下位層レンズが貼り付けられるガラス基板の厚さは、前記レンズの最も薄い厚さよりも厚く、前記最下位層レンズの最も厚い厚さは、前記固体撮像素子上に設けられたガラス基板の厚さよりも厚い。
 本開示の一側面によれば、特に、固体撮像素子において、装置構成の小型化や低背化を実現すると共に、フレアやゴーストの発生を抑制することが可能となる。
本開示の撮像装置の第1の実施の形態の構成例を説明する図である。 図1の撮像装置における固体撮像素子を含む一体化構成部の外観概略図である。 一体化構成部の基板構成を説明する図である。 積層基板の回路構成例を示す図である。 画素の等価回路を示す図である。 積層基板の詳細構造を示す図である。 図1の撮像装置において、内乱反射に起因するゴーストやフレアが発生しないことを説明する図である。 図1の撮像装置で撮像された画像に内乱反射に起因するゴーストやフレアが発生しないことを説明する図である。 本開示の撮像装置の第2の実施の形態の構成例を説明する図である。 図9の撮像装置において、内乱反射に起因するゴーストやフレアが発生しないことを説明する図である。 本開示の撮像装置の第3の実施の形態の構成例を説明する図である。 本開示の撮像装置の第4の実施の形態の構成例を説明する図である。 本開示の撮像装置の第5の実施の形態の構成例を説明する図である。 本開示の撮像装置の第6の実施の形態の構成例を説明する図である。 本開示の撮像装置の第7の実施の形態の構成例を説明する図である。 本開示の撮像装置の第8の実施の形態の構成例を説明する図である。 本開示の撮像装置の第9の実施の形態の構成例を説明する図である。 本開示の撮像装置の第10の実施の形態の構成例を説明する図である。 本開示の撮像装置の第11の実施の形態の構成例を説明する図である。 本開示の撮像装置の第12の実施の形態の構成例を説明する図である。 本開示の撮像装置の第13の実施の形態の構成例を説明する図である。 本開示の撮像装置の第14の実施の形態の構成例を説明する図である。 本開示の撮像装置の第15の実施の形態の構成例を説明する図である。 図23のレンズ外形形状の変形例を説明する図である。 図23のレンズ端部の構造の変形例を説明する図である。 図23のレンズ端部の構造の変形例を説明する図である。 図23のレンズ端部の構造の変形例を説明する図である。 図23のレンズ端部の構造の変形例を説明する図である。 本開示の撮像装置の第16の実施の形態の構成例を説明する図である。 図29の撮像装置の製造方法を説明する図である。 図29の構成例の個片化断面の変形例を説明する図である。 図31の左上部の撮像装置の製造方法を説明する図である。 図31の左下部の撮像装置の製造方法を説明する図である。 図31の右上部の撮像装置の製造方法を説明する図である。 図31の右下部の撮像装置の製造方法を説明する図である。 図29の構成において反射防止膜を付加する変形例を説明する図である。 図29の構成において反射防止膜を側面部に付加する変形例を説明する図である。 本開示の撮像装置の第17の実施の形態の構成例を説明する図である。 小型軽量で高解像度の画像を撮像可能なレンズの厚さの条件を説明する図である。 レンズの形状に応じた実装リフロー熱負荷時のレンズ上のARコートに掛かる応力分布を説明する図である。 図39のレンズ形状の変形例を説明する図である。 図41の2段側面型レンズの形状を説明する図である。 図41の2段側面型レンズの形状の変形例を説明する図である。 図41の2段側面型レンズの実装リフロー熱負荷時のレンズ上のARコートに掛かる応力分布を説明する図である。 図44の実装リフロー熱負荷時のレンズ上のARコートに掛かる応力分布の最大値を説明する図である。 本開示の撮像装置の第18の実施の形態における製造方法を説明する図である。 図46の製造方法の変形例を説明する図である。 2段側面型レンズの製造方法を説明する図である。 2段側面型レンズの製造方法の変形例を説明する図である。 図49の2段側面型レンズの製造方法における側面の平均面のなす角度の調整、表面粗さの調整、および裾引き部の付与を説明する図である。 本開示の撮像装置の第19の実施の形態の構成例を説明する図である。 図51のアライメントマークの例を説明する図である。 図51のアライメントマークを用いた応用例を説明する図である。 本開示の撮像装置の第20の実施の形態の構成例を説明する図である。 ARコートを全面に形成する場合とそれ以外の場合における実装リフロー熱負荷時のARコートに掛かる応力分布を説明する図である。 本開示の撮像装置の第21の実施の形態の構成例を説明する図である。 レンズと土手を接続するように構成して側面に遮光膜を形成する例を説明する図である。 本開示のカメラモジュールを適用した電子機器としての撮像装置の構成例を示すブロック図である。 本開示の技術を適用したカメラモジュールの使用例を説明する図である。 内視鏡手術システムの概略的な構成の一例を示す図である。 カメラヘッド及びCCUの機能構成の一例を示すブロック図である。 車両制御システムの概略的な構成の一例を示すブロック図である。 車外情報検出部及び撮像部の設置位置の一例を示す説明図である。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 以下、本開示を実施するための形態(以下、実施の形態という)について説明する。なお、説明は以下の順序で行う。
 1.第1の実施の形態
 2.第2の実施の形態
 3.第3の実施の形態
 4.第4の実施の形態
 5.第5の実施の形態
 6.第6の実施の形態
 7.第7の実施の形態
 8.第8の実施の形態
 9.第9の実施の形態
 10.第10の実施の形態
 11.第11の実施の形態
 12.第12の実施の形態
 13.第13の実施の形態
 14.第14の実施の形態
 15.第15の実施の形態
 16.第16の実施の形態
 17.第17の実施の形態
 18.第18の実施の形態
 19.第19の実施の形態
 20.第20の実施の形態
 21.第21の実施の形態
 22.電子機器への適用例
 23.固体撮像装置の使用例
 24.内視鏡手術システムへの応用例
 25.移動体への応用例
 <1.第1の実施の形態>
 <撮像装置の構成例>
 図1を参照して、装置構成の小型化と低背化とを実現しつつ、ゴーストやフレアの発生を抑制する、本開示の第1の実施の形態の撮像装置の構成例について説明する。尚、図1は、撮像装置の側面断面図である。
 図1の撮像装置1は、固体撮像素子11、ガラス基板12、IRCF(赤外光カットフィルタ)14、レンズ群16、回路基板17、アクチュエータ18、コネクタ19、およびスペーサ20より構成されている。
 固体撮像素子11は、いわゆるCMOS(Complementary Metal Oxide Semiconductor)や、CCD(Charge Coupled Device)などからなるイメージセンサであり、回路基板17上で電気的に接続された状態で固定されている。固体撮像素子11は、図4を参照して後述するように、アレイ状に配置された複数の画素より構成され、画素単位で、図中上方よりレンズ群16を介して集光されて入射される、入射光の光量に応じた画素信号を生成し、画像信号として回路基板17を介してコネクタ19より外部に出力する。
 固体撮像素子11の図1中の上面部には、ガラス基板12が設けられており、透明の、すなわち、ガラス基板12と略同一の屈折率の接着剤(GLUE)13により貼り合わされている。
 ガラス基板12の図1中の上面部には、入射光のうち、赤外光をカットするIRCF14が設けられており、透明の、すなわち、ガラス基板12と略同一の屈折率の接着剤(GLUE)15により貼り合わされている。IRCF14は、例えば、青板ガラスから構成されており、赤外光をカット(除去)する。
 すなわち、固体撮像素子11、ガラス基板12、およびIRCF14が、積層され、透明の接着剤13,15により、貼り合わされて、一体的な構成とされて、回路基板17に接続されている。尚、図中の一点鎖線で囲まれた、固体撮像素子11、ガラス基板12、およびIRCF14は、略同一の屈折率の接着剤13,15により貼り合わされて一体化された構成にされているので、以降においては、単に、一体化構成部10とも称する。
 また、IRCF14は、固体撮像素子11の製造工程において、個片化された後に、ガラス基板12上に貼り付けられるようにしてもよいし、複数の固体撮像素子11からなるウェハ状のガラス基板12上の全体に大判のIRCF14を貼り付けた後、固体撮像素子11単位で個片化するようにしてもよく、いずれの手法を採用してもよい。
 固体撮像素子11、ガラス基板12、およびIRCF14が一体構成された全体を取り囲むようにスペーサ20が回路基板17上に構成されている。また、スペーサ20の上に、アクチュエータ18が設けられている。アクチュエータ18は、円筒状に構成されており、その円筒内部に複数のレンズが積層されて構成されるレンズ群16を内蔵し、図1中の上下方向に駆動させる。
 このような構成により、アクチュエータ18は、レンズ群16を、図1中の上下方向(光軸に対して前後方向)に移動させることで、図中の上方となる図示せぬ被写体までの距離に応じて、固体撮像素子11の撮像面上において、被写体を結像させるように焦点を調整することでオートフォーカスを実現する。
 <外観概略図>
 次に、図2乃至図6を参照して、一体化構成部10の構成につい説明する。図2は、一体化構成部10の外観概略図を示している。
 図2に示される一体化構成部10は、下側基板11aと上側基板11bとが積層されて構成されている積層基板からなる固体撮像素子11がパッケージ化された半導体パッケージである。
 固体撮像素子11を構成する積層基板の下側基板11aには、図1の回路基板17と電気的に接続するための裏面電極であるはんだボール11eが、複数、形成されている。
 上側基板11bの上面には、R(赤)、G(緑)、またはB(青)のカラーフィルタ11cとオンチップレンズ11dが形成されている。また、上側基板11bは、オンチップレンズ11dを保護するためのガラス基板12と、ガラスシール樹脂からなる接着剤13を介してキャビティレス構造で接続されている。
 例えば、上側基板11bには、図3のAに示されるように、光電変換を行う画素部がアレイ状に2次元配列された画素領域21と、画素部の制御を行う制御回路22が形成されており、下側基板11aには、画素部から出力された画素信号を処理する信号処理回路などのロジック回路23が形成されている。
 あるいはまた、図3のBに示されるように、上側基板11bには、画素領域21のみが形成され、下側基板11aに、制御回路22とロジック回路23が形成される構成でもよい。
 以上のように、ロジック回路23または制御回路22及びロジック回路23の両方を、画素領域21の上側基板11bとは別の下側基板11aに形成して積層させることで、1枚の半導体基板に、画素領域21、制御回路22、およびロジック回路23を平面方向に配置した場合と比較して、撮像装置1としてのサイズを小型化することができる。
 以下では、少なくとも画素領域21が形成される上側基板11bを、画素センサ基板11bと称し、少なくともロジック回路23が形成される下側基板11aを、ロジック基板11aと称して説明を行う。
 <積層基板の構成例>
 図4は、固体撮像素子11の回路構成例を示している。
 固体撮像素子11は、画素32が2次元アレイ状に配列された画素アレイ部33と、垂直駆動回路34、カラム信号処理回路35、水平駆動回路36、出力回路37、制御回路38、および入出力端子39を含む。
 画素32は、光電変換素子としてのフォトダイオードと、複数の画素トランジスタを有して成る。画素32の回路構成例については、図5を参照して後述する。
 また、画素32は、共有画素構造とすることもできる。この画素共有構造は、複数のフォトダイオードと、複数の転送トランジスタと、共有される1つのフローティングディフージョン(浮遊拡散領域)と、共有される1つずつの他の画素トランジスタとから構成される。すなわち、共有画素では、複数の単位画素を構成するフォトダイオード及び転送トランジスタが、他の1つずつの画素トランジスタを共有して構成される。
 制御回路38は、入力クロックと、動作モードなどを指令するデータを受け取り、また固体撮像素子11の内部情報などのデータを出力する。すなわち、制御回路38は、垂直同期信号、水平同期信号及びマスタクロックに基づいて、垂直駆動回路34、カラム信号処理回路35及び水平駆動回路36などの動作の基準となるクロック信号や制御信号を生成する。そして、制御回路38は、生成したクロック信号や制御信号を、垂直駆動回路34、カラム信号処理回路35及び水平駆動回路36等に出力する。
 垂直駆動回路34は、例えばシフトレジスタによって構成され、所定の画素駆動配線40を選択し、選択された画素駆動配線40に画素32を駆動するためのパルスを供給し、行単位で画素32を駆動する。すなわち、垂直駆動回路34は、画素アレイ部33の各画素32を行単位で順次垂直方向に選択走査し、各画素32の光電変換部において受光量に応じて生成された信号電荷に基づく画素信号を、垂直信号線41を通してカラム信号処理回路35に供給する。
 カラム信号処理回路35は、画素32の列ごとに配置されており、1行分の画素32から出力される信号を画素列ごとにノイズ除去などの信号処理を行う。例えば、カラム信号処理回路5は、画素固有の固定パターンノイズを除去するためのCDS(Correlated Double Sampling:相関2重サンプリング)およびAD変換等の信号処理を行う。
 水平駆動回路36は、例えばシフトレジスタによって構成され、水平走査パルスを順次出力することによって、カラム信号処理回路35の各々を順番に選択し、カラム信号処理回路35の各々から画素信号を水平信号線42に出力させる。
 出力回路37は、カラム信号処理回路35の各々から水平信号線42を通して順次に供給される信号に対し、信号処理を行って出力する。出力回路37は、例えば、バファリングだけする場合もあるし、黒レベル調整、列ばらつき補正、各種デジタル信号処理などが行われる場合もある。入出力端子39は、外部と信号のやりとりをする。
 以上のように構成される固体撮像素子11は、CDS処理とAD変換処理を行うカラム信号処理回路35が画素列ごとに配置されたカラムAD方式と呼ばれるCMOSイメージセンサである。
 <画素の回路構成例>
 図5は、画素32の等価回路を示している。
 図5に示される画素32は、電子式のグローバルシャッタ機能を実現する構成を示している。
 画素32は、光電変換素子としてのフォトダイオード51、第1転送トランジスタ52、メモリ部(MEM)53、第2転送トランジスタ54、FD(フローティング拡散領域)55、リセットトランジスタ56、増幅トランジスタ57、選択トランジスタ58、及び排出トランジスタ59を有する。
 フォトダイオード51は、受光量に応じた電荷(信号電荷)を生成し、蓄積する光電変換部である。フォトダイオード51のアノード端子が接地されているとともに、カソード端子が第1転送トランジスタ52を介してメモリ部53に接続されている。また、フォトダイオード51のカソード端子は、不要な電荷を排出するための排出トランジスタ59とも接続されている。
 第1転送トランジスタ52は、転送信号TRXによりオンされたとき、フォトダイオード51で生成された電荷を読み出し、メモリ部53に転送する。メモリ部53は、FD55に電荷を転送するまでの間、一時的に電荷を保持する電荷保持部である。
 第2転送トランジスタ54は、転送信号TRGによりオンされたとき、メモリ部53に保持されている電荷を読み出し、FD55に転送する。
 FD55は、メモリ部53から読み出された電荷を信号として読み出すために保持する電荷保持部である。リセットトランジスタ56は、リセット信号RSTによりオンされたとき、FD55に蓄積されている電荷が定電圧源VDDに排出されることで、FD55の電位をリセットする。
 増幅トランジスタ57は、FD55の電位に応じた画素信号を出力する。すなわち、増幅トランジスタ57は定電流源としての負荷MOS60とソースフォロワ回路を構成し、FD55に蓄積されている電荷に応じたレベルを示す画素信号が、増幅トランジスタ57から選択トランジスタ58を介してカラム信号処理回路35(図4)に出力される。負荷MOS60は、例えば、カラム信号処理回路35内に配置されている。
 選択トランジスタ58は、選択信号SELにより画素32が選択されたときオンされ、画素32の画素信号を、垂直信号線41を介してカラム信号処理回路35に出力する。
 排出トランジスタ59は、排出信号OFGによりオンされたとき、フォトダイオード51に蓄積されている不要電荷を定電圧源VDDに排出する。
 転送信号TRX及びTRG、リセット信号RST、排出信号OFG、並びに選択信号SELは、画素駆動配線40を介して垂直駆動回路34から供給される。
 画素32の動作について簡単に説明する。
 まず、露光開始前に、Highレベルの排出信号OFGが排出トランジスタ59に供給されることにより排出トランジスタ59がオンされ、フォトダイオード51に蓄積されている電荷が定電圧源VDDに排出され、全画素のフォトダイオード51がリセットされる。
 フォトダイオード51のリセット後、排出トランジスタ59が、Lowレベルの排出信号OFGによりオフされると、画素アレイ部33の全画素で露光が開始される。
 予め定められた所定の露光時間が経過すると、画素アレイ部33の全画素において、転送信号TRXにより第1転送トランジスタ52がオンされ、フォトダイオード51に蓄積されていた電荷が、メモリ部53に転送される。
 第1転送トランジスタ52がオフされた後、各画素32のメモリ部53に保持されている電荷が、行単位に、順次、カラム信号処理回路35に読み出される。読み出し動作は、読出し行の画素32の第2転送トランジスタ54が転送信号TRGによりオンされ、メモリ部53に保持されている電荷が、FD55に転送される。そして、選択トランジスタ58が選択信号SELによりオンされることで、FD55に蓄積されている電荷に応じたレベルを示す信号が、増幅トランジスタ57から選択トランジスタ58を介してカラム信号処理回路35に出力される。
 以上のように、図5の画素回路を有する画素32は、露光時間を画素アレイ部33の全画素で同一に設定し、露光終了後はメモリ部53に電荷を一時的に保持しておいて、メモリ部53から行単位に順次電荷を読み出すグローバルシャッタ方式の動作(撮像)が可能である。
 なお、画素32の回路構成としては、図5に示した構成に限定されるものではなく、例えば、メモリ部53を持たず、いわゆるローリングシャッタ方式による動作を行う回路構成を採用することもできる。
 <固体撮像装置の基本構造例>
 次に、図6を参照して、固体撮像素子11の詳細構造について説明する。図6は、固体撮像素子11の一部分を拡大して示した断面図である。
 ロジック基板11aには、例えばシリコン(Si)で構成された半導体基板81(以下、シリコン基板81という。)の上側(画素センサ基板11b側)に、多層配線層82が形成されている。この多層配線層82により、図3の制御回路22やロジック回路23が構成されている。
 多層配線層82は、画素センサ基板11bに最も近い最上層の配線層83a、中間の配線層83b、及び、シリコン基板81に最も近い最下層の配線層83cなどからなる複数の配線層83と、各配線層83の間に形成された層間絶縁膜84とで構成される。
 複数の配線層83は、例えば、銅(Cu)、アルミニウム(Al)、タングステン(W)などを用いて形成され、層間絶縁膜84は、例えば、シリコン酸化膜、シリコン窒化膜などで形成される。複数の配線層83及び層間絶縁膜84のそれぞれは、全ての階層が同一の材料で形成されていてもよし、階層によって2つ以上の材料を使い分けてもよい。
 シリコン基板81の所定の位置には、シリコン基板81を貫通するシリコン貫通孔85が形成されており、シリコン貫通孔85の内壁に、絶縁膜86を介して接続導体87が埋め込まれることにより、シリコン貫通電極(TSV:Through Silicon Via)88が形成されている。絶縁膜86は、例えば、SiO2膜やSiN膜などで形成することができる。
 なお、図6に示されるシリコン貫通電極88では、内壁面に沿って絶縁膜86と接続導体87が成膜され、シリコン貫通孔85内部が空洞となっているが、内径によってはシリコン貫通孔85内部全体が接続導体87で埋め込まれることもある。換言すれば、貫通孔の内部が導体で埋め込まれていても、一部が空洞となっていてもどちらでもよい。このことは、後述するチップ貫通電極(TCV:Through Chip Via)105などについても同様である。
 シリコン貫通電極88の接続導体87は、シリコン基板81の下面側に形成された再配線90と接続されており、再配線90は、はんだボール11eと接続されている。接続導体87及び再配線90は、例えば、銅(Cu)、タングステン(W)、タングステン(W)、ポリシリコンなどで形成することができる。
 また、シリコン基板81の下面側には、はんだボール11eが形成されている領域を除いて、再配線90と絶縁膜86を覆うように、ソルダマスク(ソルダレジスト)91が形成されている。
 一方、画素センサ基板11bには、シリコン(Si)で構成された半導体基板101(以下、シリコン基板101という。)の下側(ロジック基板11a側)に、多層配線層102が形成されている。この多層配線層102により、図3の画素領域21の画素回路が構成されている。
 多層配線層102は、シリコン基板101に最も近い最上層の配線層103a、中間の配線層103b、及び、ロジック基板11aに最も近い最下層の配線層103cなどからなる複数の配線層103と、各配線層103の間に形成された層間絶縁膜104とで構成される。
 複数の配線層103及び層間絶縁膜104として使用される材料は、上述した配線層83及び層間絶縁膜84の材料と同種のものを採用することができる。また、複数の配線層103や層間絶縁膜104が、1または2つ以上の材料を使い分けて形成されてもよい点も、上述した配線層83及び層間絶縁膜84と同様である。
 なお、図6の例では、画素センサ基板11bの多層配線層102は3層の配線層103で構成され、ロジック基板11aの多層配線層82は4層の配線層83で構成されているが、配線層の総数はこれに限られず、任意の層数で形成することができる。
 シリコン基板101内には、PN接合により形成されたフォトダイオード51が、画素32ごとに形成されている。
 また、図示は省略されているが、多層配線層102とシリコン基板101には、第1転送トランジスタ52、第2転送トランジスタ54などの複数の画素トランジスタや、メモリ部(MEM)53なども形成されている。
 カラーフィルタ11cとオンチップレンズ11dが形成されていないシリコン基板101の所定の位置には、画素センサ基板11bの配線層103aと接続されているシリコン貫通電極109と、ロジック基板11aの配線層83aと接続されているチップ貫通電極105が、形成されている。
 チップ貫通電極105とシリコン貫通電極109は、シリコン基板101上面に形成された接続用配線106で接続されている。また、シリコン貫通電極109及びチップ貫通電極105のそれぞれとシリコン基板101との間には、絶縁膜107が形成されている。さらに、シリコン基板101の上面には、平坦化膜(絶縁膜)108を介して、カラーフィルタ11cやオンチップレンズ11dが形成されている。
 以上のように、図2に示される固体撮像素子11は、ロジック基板11aの多層配線層102側と、画素センサ基板11bの多層配線層82側とを貼り合わせた積層構造となっている。図6では、ロジック基板11aの多層配線層102側と、画素センサ基板11bの多層配線層82側とを貼り合わせ面が、破線で示されている。
 また、撮像装置1の固体撮像素子11では、画素センサ基板11bの配線層103とロジック基板11aの配線層83が、シリコン貫通電極109とチップ貫通電極105の2本の貫通電極により接続され、ロジック基板11aの配線層83とはんだボール(裏面電極)11eが、シリコン貫通電極88と再配線90により接続されている。これにより、撮像装置1の平面積を、極限まで小さくすることができる。
 さらに、固体撮像素子11とガラス基板12との間を、キャビティレス構造にして、接着剤13により貼り合わせることにより、高さ方向についても低くすることができる。
 したがって、図1に示される撮像装置1によれば、より小型化した半導体装置(半導体パッケージ)を実現することができる。
 以上のような撮像装置1の構成により、IRCF14が、固体撮像素子11、およびガラス基板12上に設けられることになるので、光の内乱反射によるフレアやゴーストの発生を抑制することが可能となる。
 すなわち、図7の左部で示されるように、IRCF14が、ガラス基板(Glass)12に対して離間して、レンズ(Lens)16とガラス基板12との中間付近に構成される場合、実線で示されるように入射光が集光されて、IRCF14、ガラス基板12、および接着剤13を介して、固体撮像素子(CIS)11に位置F0に入射した後、点線で示されるように位置F0において反射し、反射光が発生する。
 位置F0で反射した反射光は、点線で示されるように、その一部が、例えば、接着剤13、およびガラス基板12を介して、ガラス基板12と離間した位置に配置されたIRCF14の背面(図7中の下方の面)R1で反射し、再び、ガラス基板12、および接着剤13を介して、位置F1において、再び固体撮像素子11に入射する。
 また、焦点F0で反射した反射光は、点線で示されるように、その他の一部が、例えば、接着剤13、およびガラス基板12、並びに、ガラス基板12と離間した位置に配置されたIRCF14を透過して、IRCF14の上面(図7中の上方の面)R2で反射し、IRCF14、ガラス基板12、および接着剤13を介して、位置F2において、再び固体撮像素子11に入射する。
 この位置F1,F2において、再び入射する光が、内乱反射に起因するフレアやゴーストを発生させる。より具体的には、図8の画像P1で示されるように、固体撮像素子11において、照明Lを撮像する際に、反射光R21,R22で示されるような、フレアやゴーストとして現れることになる。
 これに対して、図1の撮像装置1の構成と対応する、図7の右部で示されるような撮像装置1のように、IRCF14が、ガラス基板12上に構成されると、実線で示される入射光が集光されて、IRCF14、接着剤15、ガラス基板12、および接着剤13を介して、固体撮像素子11に位置F0で入射した後、点線で示されるように反射する。そして、反射した光は、接着剤13、ガラス基板12、接着剤15、およびIRCF14を介して、レンズ群16上の最下位層のレンズの面R11により反射するが、レンズ群16がIRCF14から十分に離れた位置であるので、固体撮像素子11において十分に受光できない範囲に反射される。
 ここで、図中の一点鎖線で囲まれた、固体撮像素子11、ガラス基板12、およびIRCF14は、略同一の屈折率の接着剤13,15により貼り合わされて一体化された一体化構成部10として構成されている。一体化構成部10においては、屈折率が統一されることで、異なる屈折率の層の境界で発生する内乱反射の発生が抑制され、例えば、図7の左部における位置F0の近傍である、位置F1,F2で再入射されることが抑制される。
 これにより、図1の撮像装置1は、照明Lを撮像した場合、図8の画像P2で示されるように、画像P1における反射光R21,R22のような、内乱反射に起因するフレアやゴーストの発生が抑制された画像を撮像することができる。
 結果として、図1で示される第1の実施の形態の撮像装置1のような構成により、装置構成の小型化および低背化を実現すると共に、内乱反射に起因するフレアやゴーストの発生を抑制することができる。
 尚、図8の画像P1は、図7の左部の構成からなる撮像装置1により夜間において照明Lが撮像された画像であり、画像P2は、図7の右部の構成からなる(図1の)撮像装置1により夜間において照明Lが撮像された画像である。
 また、以上においては、レンズ群16をアクチュエータ18により図1中において上下方向に移動させることにより被写体までの距離に応じて、焦点距離を調整して、オートフォーカスを実現できる構成を例に説明したが、アクチュエータ18を設けず、レンズ群16による焦点距離を調整せず、いわゆる単焦点レンズとして機能させるようにしてもよい。
 <2.第2の実施の形態>
 第1の実施の形態においては、IRCF14を固体撮像素子11の撮像面側に貼り付けられたガラス基板12上に貼り付ける例について説明してきたが、さらに、レンズ群16を構成する最下位層のレンズを、IRCF14上に設けるようにしてもよい。
 図9は、図1における撮像装置1を構成する複数のレンズからなるレンズ群16のうちの、光の入射方向に対して最下位層となるレンズを、レンズ群16から分離して、IRCF14上に構成するようにした撮像装置1の構成例を示している。尚、図5において、図1における構成と基本的に同一の機能を備えた構成については、同一の符号を付しており、その説明は適宜省略するものとする。
 すなわち、図9の撮像装置1において、図1の撮像装置1と異なる点は、IRCF14の図中の上面において、さらに、レンズ群16を構成する複数のレンズのうちの、光の入射方向に対して最下位層となるレンズ131を、レンズ群16から分離して設けた点である。尚、図9のレンズ群16は、図1のレンズ群16と同一の符号を付しているが、光の入射方向に対して最下位層となるレンズ131が含まれていない点で、厳密には、図1のレンズ群16とは異なる。
 図9のような撮像装置1の構成により、IRCF14が、固体撮像素子11上に設けられたガラス基板12上に設けられ、さらに、IRCF14上にレンズ群16を構成する最下位層のレンズ131が設けられることになるので、光の内乱反射によるフレアやゴーストの発生を抑制することが可能となる。
 すなわち、図10の左部で示されるように、ガラス基板12上にレンズ群16の光の入射方向に対して最下位層となるレンズ131が設けられ、IRCF14が、レンズ131に対して離間して、レンズ群16とレンズ131との中間付近に構成される場合、実線で示される入射光が集光されて、IRCF14、レンズ131、ガラス基板12、および接着剤13を介して、固体撮像素子11に位置F0で入射した後、点線で示されるように位置F0から反射して、反射光が発生する。
 位置F0で反射した反射光は、点線で示されるように、その一部が、例えば、接着剤13、ガラス基板12、およびレンズ131を介して、レンズ131と離間した位置に配置されたIRCF14の背面(図2中の下方の面)R31で反射し、レンズ131、ガラス基板12、および接着剤13を介して、位置F11において、再び固体撮像素子11に入射する。
 また、焦点F0で反射した反射光は、点線で示されるように、その他の一部が、例えば、接着剤13、ガラス基板12、およびレンズ131、並びに、レンズ131と離間した位置に配置されたIRCF14を透過して、IRCF14の上面(図7中の上方の面)R32で反射し、IRCF14、レンズ131、ガラス基板12、および接着剤13を介して、位置F12において、再び固体撮像素子11に入射する。
 この位置F11,F12において、再び入射する光が、固体撮像素子11において、フレアやゴーストとして現れることになる。この点については、図8を参照して説明した画像P1における照明Lの反射光R21,R21が、図7の位置F1,F2において再入射した場合に発生する原理と基本的には同様である。
 これに対して、図9の撮像装置1における構成と同様に、図10の右部で示されるように、レンズ群16の最下位層のレンズ131が、IRCF14上に構成されると、実線で示されるように入射光が集光されて、レンズ131、IRCF14、接着剤15、ガラス基板12、および接着剤13を介して、固体撮像素子11に位置F0で入射した後、反射して、点線で示されるように接着剤13、ガラス基板12、接着剤15、IRCF14、およびレンズ131を介して、十分に離れた位置のレンズ群16上の面R41により反射光が発生するが、固体撮像素子11において略受光できない範囲に反射されるので、フレアやゴーストの発生を抑制することができる。
 すなわち、固体撮像素子11、接着剤13、ガラス基板12、およびIRCF14は、略同一の屈折率の接着剤13,15により貼り合わされて一体化された構成にされているので、一体化された構成である、図中の一点鎖線で囲まれた一体化構成部10においては、屈折率が統一されることで、異なる屈折率の層の境界で発生する内乱反射の発生が抑制され、例えば、図10の左部で示されるように、位置F0の近傍の位置F11,F12への反射光などの入射が抑制される。
 結果として、図10で示される第2の実施の形態の撮像装置1のような構成により、装置構成の小型化および低背化を実現すると共に、内乱反射に起因するフレアやゴーストの発生を抑制することができる。
 <3.第3の実施の形態>
 第2の実施の形態においては、最下位層のレンズ131をIRCF14上に設ける例について説明してきたが、最下位層のレンズ131とIRCF14とを接着剤により貼り合わせるようにしてもよい。
 図11は、最下位層のレンズ131とIRCF14とを接着剤により貼り合わせるようにした撮像装置1の構成例を示している。尚、図11の撮像装置1において、図9の撮像装置1の構成と同一の機能を備えた構成については、同一の符号を付しており、その説明は適宜省略する。
 すなわち、図11の撮像装置1において、図9の撮像装置1と異なる点は、最下位層のレンズ131とIRCF14とを透明の、すなわち、略屈折率が同一の接着剤151により貼り合わせている点である。
 図11の撮像装置1のような構成においても、図9の撮像装置1と同様に、フレアやゴーストの発生を抑制することが可能となる。
 また、レンズ131の平坦性が大きくない場合、接着剤151を用いずにIRCF14に固定しようとしても、レンズ131の光軸に対してIRCF14がずれてしまう恐れがあるが、レンズ131とIRCF14とが接着剤151により貼り合わされることにより、レンズ131の平坦性が大きくなくても、レンズ131の光軸に対して、ずれがないようにIRCF14を固定することが可能となり、光軸のずれにより生じる画像の歪みの発生を抑制することが可能となる。
 <4.第4の実施の形態>
 第2の実施の形態においては、光の入射方向に対して最下位層のレンズ131をIRCF14上に設ける例について説明してきたが、最下位層のレンズ131のみならず、レンズ群16の最下位層を構成する複数のレンズ群をIRCF14上に設けるようにしてもよい。
 図12は、レンズ群16のうちの、入射方向に対して最下位層を構成する複数のレンズからなるレンズ群をIRCF14上に構成するようにした撮像装置1の構成例を示している。尚、図12の撮像装置1において、図9の撮像装置1の構成と同一の機能を備えた構成については、同一の符号を付しており、その説明は適宜省略する。
 すなわち、図12の撮像装置1において、図9の撮像装置1と異なる点は、レンズ131に代えて、レンズ群16のうちの光の入射方向に対して最下位層を構成する複数のレンズからなるレンズ群171をIRCF14上に設けている点である。尚、図12では、2枚のレンズからなるレンズ群171の例が示されているが、それ以上の数のレンズによりレンズ群171を構成するようにしてもよい。
 このような構成においても、図9の撮像装置1と同様に、フレアやゴーストの発生を抑制することが可能となる。
 また、レンズ群16を構成する複数のレンズのうちの最下位層を構成する複数のレンズからなるレンズ群171がIRCF14上に構成されるため、レンズ群16を構成するレンズ数を減らすことができ、レンズ群16を軽量化できるので、オートフォーカスに使用されるアクチュエータ18の駆動力量を低減させることが可能となり、アクチュエータ18の小型化と低電力化を実現することが可能となる。
 尚、第3の実施の形態の図11の撮像装置1におけるレンズ131を、レンズ群171に代えて、透明の接着剤151でIRCF14に貼り付けるようにしてもよい。
 <5.第5の実施の形態>
 第2の実施の形態においては、固体撮像素子11上にガラス基板12を接着剤13により貼り付け、ガラス基板12の上にIRCF14を接着剤15により貼り付ける例について説明してきたが、ガラス基板12、接着剤15、およびIRCF14を、ガラス基板12の機能とIRCF14の機能とを併せ持った構成で置き換えて、接着剤13により固体撮像素子11上に貼り付けるようにしてもよい。
 図13は、ガラス基板12、接着剤15、およびIRCF14を、ガラス基板12の機能とIRCF14の機能とを併せ持った構成で置き換えて、接着剤13により、固体撮像素子11上に貼り付けて、その上に最下位層のレンズ131を設けるようにした撮像装置1の構成例を示している。尚、図13の撮像装置1において、図9の撮像装置1の構成と同一の機能を備えた構成については、同一の符号を付しており、その説明は適宜省略する。
 すなわち、図13の撮像装置1において、図9の撮像装置1と異なる点は、ガラス基板12およびIRCF14を、ガラス基板12の機能と、IRCF14の機能とを備えたIRCFガラス基板14’に置き換えて、接着剤13により固体撮像素子11上に貼り付け、さらに、IRCF14’上に最下位層のレンズ131を設けるようにした点である。
 このような構成においても、図9の撮像装置1と同様に、フレアやゴーストの発生を抑制することが可能となる。
 すなわち、現在、固体撮像素子11は、小型化のため、CSP(Chip Size Package)構造と称されるガラス基板12と固体撮像素子11を接着し、ガラス基板を基軸基板として、固体撮像素子11を薄く加工することにより、小型の固体撮像素子の実現が可能となっている。図13においては、IRCFガラス基板14’が、IRCF14の機能と共に、平坦度の高いガラス基板12としての機能も実現することで、低背化を実現することが可能となる。
 尚、第1の実施の形態、第3の実施の形態、および第4の実施の形態である、図1、図11、図12の撮像装置1における、ガラス基板12、接着剤15、およびIRCF14を、ガラス基板12の機能と、IRCF14の機能とを備えたIRCFガラス基板14’に置き換えるようにしてもよい。
 <6.第6の実施の形態>
 第4の実施の形態においては、CSP構造の固体撮像素子11上に接着剤13によりガラス基板12を貼り付け、さらに、ガラス基板12の上に接着剤15によりIRCF14を貼り付け、さらに、IRCF14上にレンズ群16を構成する複数のレンズのうち、最下位層の複数のレンズからなるレンズ群171を設ける例について説明してきたが、CSP構造の固体撮像素子11に代えて、COB(Chip on Board)構造の固体撮像素子11を用いるようにしてもよい。
 図14は、図12の撮像装置1における、ガラス基板12およびIRCF14を、ガラス基板12の機能と、IRCF14の機能とを備えたIRCFガラス基板14’に置き換えると共に、CSP構造の固体撮像素子11に代えて、COB(Chip on Board)構造の固体撮像素子11を用いるようにした構成例を示している。尚、図14の撮像装置1において、図12の撮像装置1の構成と同一の機能を備えた構成については、同一の符号を付しており、その説明は適宜省略する。
 すなわち、図14の撮像装置1において、図12の撮像装置1と異なる点は、ガラス基板12およびIRCF14を、ガラス基板12の機能と、IRCF14の機能とを備えたIRCFガラス基板14’に置き換えた点と、CSP構造の固体撮像素子11に代えて、COB(Chip on Board)構造の固体撮像素子91を用いるようにした点である。
 このような構成においても、図12の撮像装置1と同様に、フレアやゴーストの発生を抑制することが可能となる。
 また、近年、撮像装置1の小型化とともに固体撮像素子11の小型化のためCSP構造が一般的となっているが、CSP構造はガラス基板12またはIRCFガラス基板14’との張り合わせや、固体撮像素子11の端子を受光面の裏側に配線するなど、加工が複雑になるため、COB構造の固体撮像素子11と比較して高価となる。そこで、CSP構造だけでなく、ワイヤボンド92などにより回路基板17と接続されるCOB構造の固体撮像素子91を用いるようにしてもよい。
 COB構造の固体撮像素子91を用いることにより、回路基板17への接続を容易なものとすることができるので、加工をシンプルにすることが可能となり、コストを低減させることができる。
 尚、第1の実施の形態乃至第3の実施の形態、および第5の実施の形態である図1,図9,図11,図13の撮像装置1におけるCSP構造の固体撮像素子11を、COB(Chip on Board)構造の固体撮像素子11に代えるようにしてもよい。
 <7.第7の実施の形態>
 第2の実施の形態においては、固体撮像素子11上にガラス基板12を設け、さらに、ガラス基板上にIRCF14を設ける例について説明してきたが、固体撮像素子11上にIRCF14を設け、さらに、IRCF14上にガラス基板12を設けるようにしてもよい。
 図15は、ガラス基板12を用いる場合であって、固体撮像素子11上にIRCF14を設け、さらに、IRCF14上にガラス基板12を設けるようにした撮像装置1の構成例を示している。
 図15の撮像装置1において、図9の撮像装置1と異なる点は、ガラス基板12とIRCF14とを入れ替えて、透明の接着剤13により固体撮像素子11上にIRCF14を貼り付け、さらに、透明の接着剤15によりIRCF14上にガラス基板12を貼り付けるようにして、そのガラス基板12上にレンズ131を設けるようにした点である。
 このような構成においても、図9の撮像装置1と同様に、フレアやゴーストの発生を抑制することが可能となる。
 また、IRCF14は、一般に、特性上、温度や外乱による影響により、平坦性が低く、固体撮像素子11上の画像に歪を生じさせる恐れがある。
 そこで、IRCF14の両面にコーティングの材料などを塗布するなどして、平坦性を保持させるような特殊な材料を採用したりすることが一般的であるが、これによりコスト高となっていた。
 これに対して、図15の撮像装置1においては、平坦性の低いIRCF14を平坦性の高い固体撮像素子11とガラス基板12とで挟み込むことにより、低コストで、平坦性を確保することが可能となり、画像の歪を低減させることが可能となる。
 従って、図15の撮像装置1により、フレアやゴーストの発生を抑制することが可能となると共に、IRCF14の特性により生じる画像の歪を抑制することが可能となる。また、平坦性を保持させるような特殊な材料からなるコーティングが不要となるので、コストを低減させることが可能となる。
 尚、第1の実施の形態、第3の実施の形態、および第4の実施の形態である図1,図11,図12の撮像装置1においても、ガラス基板12とIRCF14とを入れ替えて接着剤13,15で貼り付けるようにしてもよい。
 <8.第8の実施の形態>
 第1の実施の形態においては、赤外光をカットする構成としてIRCF14を用いる例について説明してきたが、赤外光をカットすることが可能な構成であれば、IRCF14以外の構成でもよく、例えば、IRCF14に代えて、赤外光カット樹脂を塗布して用いるようにしてもよい。
 図16は、IRCF14に代えて、赤外光カット樹脂を用いるようにした撮像装置1の構成例である。尚、図16の撮像装置1において、図1の撮像装置1と同一の機能を備えた構成については、同一の符号を付しており、その説明は適宜省略する。
 すなわち、図16の撮像装置1において、図1の撮像装置1と異なる点は、IRCF14に代えて、赤外光カット樹脂211が設けられている点である。赤外光カット樹脂211は、例えば、塗布されることにより設けられる。
 このような構成においても、図1の撮像装置1と同様に、フレアやゴーストの発生を抑制することが可能となる。
 また、近年、樹脂の改良が進み、赤外カット効果のあるものが一般的になってきており、赤外光カット樹脂211はCSP型の固体撮像素子11の生産時にガラス基板12に塗布できることが知られている。
 尚、第2の実施の形態乃至第4の実施の形態,および第7の実施の形態である、図9,図11,図12,図15の撮像装置1におけるIRCF14に代えて、赤外光カット樹脂211を用いるようにしてもよい。
 <9.第9の実施の形態>
 第2の実施の形態においては、ガラス基板12を用いる場合、平板のものが固体撮像素子11に空洞などがない密着した状態で設けられる例について説明してきたが、ガラス基板12と固体撮像素子11との間に空洞(キャビティ)を設けるようにしてもよい。
 図17は、ガラス基板12と固体撮像素子11との間に空洞(キャビティ)を設けるようにした撮像装置1の構成例を示している。図17の撮像装置1において、図9の撮像装置1の構成と同一の機能を備えた構成については、同一の符号を付しており、その説明は適宜省略する。
 すなわち、図17の撮像装置1において、図9の撮像装置と異なる点は、ガラス基板12に代えて、周囲に凸部231aを備えたガラス基板231が設けられている点である。周囲の凸部231aが固体撮像素子11と当接し、透明の接着剤232により凸部231aが接着されることで、固体撮像素子11の撮像面とガラス基板231との間に空気層からなる空洞(キャビティ)231bが形成される。
 このような構成においても、図9の撮像装置1と同様に、フレアやゴーストの発生を抑制することが可能となる。
 尚、第1の実施の形態、第3の実施の形態、第4の実施の形態,および第8の実施の形態である、図1,図11,図12,図16の撮像装置1におけるガラス基板12に代えて、ガラス基板231を用いるようにして、接着剤232により凸部231aのみが接着されるようにすることで、空洞(キャビティ)231bが形成されるようにしてもよい。
 <10.第10の実施の形態>
 第2の実施の形態においては、レンズ群16の最下位層のレンズ131をガラス基板12上に設けられたIRCF14の上に構成する例にしてきたが、ガラス基板12上のIRCF14に代えて、赤外光カット機能を備えた有機多層膜の塗布剤により構成されるようにしてもよい。
 図18は、ガラス基板12上のIRCF14に代えて、赤外光カット機能を備えた有機多層膜の塗布剤により構成されるようにした撮像装置1の構成例を示している。
 図18の撮像装置1において、図9の撮像装置1と異なる点は、ガラス基板12上のIRCF14に代えて、赤外光カット機能を備えた有機多層膜の塗布剤251により構成されるようにした点である。
 このような構成においても、図9の撮像装置1と同様に、フレアやゴーストの発生を抑制することが可能となる。
 尚、第1の実施の形態、第3の実施の形態、第4の実施の形態、第7の実施の形態、および第9の実施の形態である、図1,図6,図7,図10,図12の撮像装置1におけるIRCF14に代えて、赤外光カット機能を備えた有機多層膜の塗布剤251を用いるようにしてもよい。
 <11.第11の実施の形態>
 第10の実施の形態においては、ガラス基板12上のIRCF14に代えて、赤外光カット機能を備えた有機多層膜の塗布剤251上にレンズ群16の最下位層のレンズ131を備えるようにした例について説明してきたが、さらに、レンズ131にAR(Anti Reflection)コートをするようにしてもよい。
 図19は、図13の撮像装置1におけるレンズ131にARコートを施すようにした撮像装置1の構成例を示している。
 すなわち、図19の撮像装置1において、図18の撮像装置1と異なる点は、レンズ131に代えて、ARコート271aがなされた、レンズ群16の最下位層のレンズ271が設けられている点である。ARコート271aは、例えば、真空蒸着、スパッタリング、またはWETコーティングなどを採用することができる。
 このような構成においても、図9の撮像装置1と同様に、フレアやゴーストの発生を抑制することが可能となる。
 また、レンズ271のARコート271aにより、固体撮像素子11からの反射光の内乱反射が抑制されるので、より高い精度でフレアやゴーストの発生を抑制することが可能となる。
 尚、第2の実施の形態、第3の実施の形態、第5の実施の形態、第7の実施の形態、第9の実施の形態、および第10の実施の形態である、図9,図11,図13,図15,図17,図18の撮像装置1におけるレンズ131に代えて、ARコート271aが付されたレンズ271を用いるようにしてもよい。また、第4の実施の形態および第6の実施の形態である、図12,図14の撮像装置1におけるレンズ群171の表面(図中の再上面)にARコート271aと同様のARコートを施すようにしてもよい。
 ARコート271aは、以下の膜の単層または多層構造まくであることが望ましい。すなわち、ARコート271aは、例えば、透明なシリコン系樹脂、アクリル系樹脂、エポキシ系樹脂、スチレン系等の樹脂、Si(ケイ素),C(炭素),H(水素)を主成分とする絶縁膜(例えば、SiCH,SiCOH,SiCNH)、Si(ケイ素),N(窒素)を主成分とする絶縁膜(例えば、SiON,SiN)、水酸化シリコン、アルキルシラン、アルコキシシラン、ポリシロキサン等の少なくともいずれかの材料ガスと酸化剤を用いて成膜されるSiO2膜、P-SiO膜、HDP-SiO膜などである。
 <12.第12の実施の形態>
 第11の実施の形態においては、レンズ131に代えて、AR(Anti Reflection)コート271aが付されたレンズ271を用いるようにした例について説明してきたが、反射防止機能が実現できれば、ARコート以外の構成でもよく、例えば、反射を防止する微小な凹凸構造であるモスアイ構造にするようにしてもよい。
 図20は、図19の撮像装置1におけるレンズ131に代えて、モスアイ構造の反射防止機能が付加されたレンズ291を設けるようにした撮像装置1の構成例を示している。
 すなわち、図20の撮像装置1において、図18の撮像装置1と異なる点は、レンズ131に代えて、モスアイ構造となるような処理がなされた反射防止処理部291aが施されている、レンズ群16の最下位層のレンズ291が設けられている点である。
 このような構成においても、図18の撮像装置1と同様に、フレアやゴーストの発生を抑制することが可能となる。
 また、レンズ291には、モスアイ構造となるような処理がなされた反射防止処理部291aにより、固体撮像素子11からの反射光の内乱反射が抑制されるので、より高い精度でフレアやゴーストの発生を抑制することが可能となる。尚、反射防止処理部291aは、反射防止機能を実現できれば、モスアイ構造以外の反射防止処理がなされたものでもよい。
 反射防止処理部291aは、以下の膜の単層または多層構造まくであることが望ましい。すなわち、反射防止処理部291aは、例えば、透明なシリコン系樹脂、アクリル系樹脂、エポキシ系樹脂、スチレン系等の樹脂、Si(ケイ素),C(炭素),H(水素)を主成分とする絶縁膜(例えば、SiCH,SiCOH,SiCNH)、Si(ケイ素),N(窒素)を主成分とする絶縁膜(例えば、SiON,SiN)、水酸化シリコン、アルキルシラン、アルコキシシラン、ポリシロキサン等の少なくとも、いずれかの材料ガスと酸化剤を用いて成膜されるSiO2膜、P-SiO膜、HDP-SiO膜などである。
 尚、第2の実施の形態、第3の実施の形態、第5の実施の形態、第7の実施の形態、第9の実施の形態、および第10の実施の形態である、図9,図11,図13,図15,図17,図18の撮像装置1におけるレンズ131に代えて、反射防止処理部291aが付されたレンズ291を用いるようにしてもよい。また、第4の実施の形態および第6の実施の形態である、図12,図14の撮像装置1におけるレンズ群171の表面に反射防止処理部291aと同様の反射防止処理を施すようにしてもよい。
 <13.第13の実施の形態>
 第4の実施の形態においては、IRCF14の上にレンズ群16の最下位層のレンズ131が設けられる例について説明してきたが、赤外光カットの機能と、最下位層のレンズ131と同様の機能とを備えた構成で置き換えるようにしてもよい。
 図21は、図9の撮像装置1におけるIRCF14とレンズ群16の最下位層のレンズ131とに代えて、赤外光カット機能と、レンズ群16の最下位層のレンズと同様の機能とを備えた赤外光カットレンズを設けるようにした撮像装置1の構成例を示している。
 すなわち、図21の撮像装置1において、図9の撮像装置1と異なる点は、IRCF14とレンズ群16の最下位層のレンズ131に代えて、赤外光カット機能付きの赤外光カットレンズ301が設けられている点である。
 このような構成においても、図9の撮像装置1と同様に、フレアやゴーストの発生を抑制することが可能となる。
 また、赤外光カットレンズ301は、赤外光カット機能と、レンズ群16の最下位層のレンズ131としての機能とを兼ね備えた構成であるため、IRCF14とレンズ131とをそれぞれ個別に設ける必要がないので、撮像装置1の装置構成を、より小型化および低背化することが可能となる。また、第4の実施の形態である、図12の撮像装置1におけるレンズ群171とIRCF14に代えて、赤外光カット機能と、レンズ群16の最下位層の複数のレンズからなるレンズ群171としての機能とを兼ね備えた赤外光カットレンズに置き換えるようにしてもよい。
 <14.第14の実施の形態>
 固体撮像素子11の受光面の辺縁部からは、迷光が入り込みやすいことが知られている。そこで、固体撮像素子11の受光面の辺縁部にブラックマスクを施して、迷光の侵入を抑制することでフレアやゴーストの発生を抑制するようにしてもよい。
 図22の左部は、図18の撮像装置1におけるガラス基板12に代えて、固体撮像素子11の受光面の辺縁部を遮光するブラックマスク321aを設けたガラス基板321を設けるようにした撮像装置1の構成例を示している。
 すなわち、図22の左部の撮像装置1において、図18の撮像装置1と異なる点は、ガラス基板12に代えて、図22の右部で示されるように、辺縁部Z2に遮光膜からなるブラックマスク321aが施されたガラス基板321が設けられている点である。ブラックマスク321aは、フォトリソグラフィなどによりガラス基板321に施される。尚、図22の右部におけるガラス基板321の中心部Z1にはブラックマスクが施されていない。
 このような構成においても、図9の撮像装置1と同様に、フレアやゴーストの発生を抑制することが可能となる。
 また、ガラス基板321は、辺縁部Z2にブラックマスク321aが施されているので、辺縁部からの迷光の侵入を抑制することができ、迷光に起因するフレアやゴーストの発生を抑制することが可能となる。
 尚、ブラックマスク321aについては、ガラス基板321のみならず、固体撮像素子11に迷光が入らないようにすることができれば、その他の構成に設けるようにしてもよく、例えば、赤外光カット機能を備えた有機多層膜の塗布剤251やレンズ131に設けられるようにしてもよいし、IRCF14、IRCFガラス基板14’、ガラス基板231、レンズ群171、レンズ271,291、赤外光カット樹脂211、赤外光カットレンズ301等に設けられるようにしてもよい。尚、この際、表面の平坦性が低く、フォトリソグラフィによりブラックマスクを施すことができない場合については、例えば、インクジェットにより平坦性の低い表面にブラックマスクを施すようにしてもよい。
 以上の如く、本開示によれば、小型化に伴う光の固体撮像素子からの内乱反射に起因するフレア、およびゴーストを低減することが可能になると共に、撮像装置の性能を落とすことなく、高画素化、高画質化、および小型化を実現することが可能となる。
 <15.第15の実施の形態>
 以上においては、方形状の固体撮像素子11上にレンズ131,271,291、レンズ群171、または、赤外光カットレンズ301を接着する、または貼り付ける等により接合する例について説明してきた。
 しかしながら、方形状のレンズ131,271,291、レンズ群171、および、赤外光カットレンズ301のいずれかが、略同サイズの固体撮像素子11上に接着される、または貼り付けられると、角部近傍が剥がれ易くなり、レンズ131の角部の剥がれにより、入射光が固体撮像素子11に適切に入射せず、フレアやゴーストが発生してしまう恐れがある。
 そこで、方形状のレンズ131,271,291、レンズ群171、および、赤外光カットレンズ301のいずれかが、固体撮像素子11に接着される、または、貼り付けられる場合、固体撮像素子11の外形寸法よりも小さな外形寸法に設定し、さらに、レンズの中央付近に有効領域を設定すると共に外周部に非有効領域を設定することにより、剥がれ難く、または、端部が多少剥がれても有効に入射光を集光できるようにしてもよい。
 すなわち、レンズ131が、固体撮像素子11上に設けられたガラス基板12に接着される、または、貼り付けられる場合、例えば、図23で示されるように、レンズ131の外形寸法を固体撮像素子11上のガラス基板12よりも小さくし、かつ、レンズ131の外周部に非有効領域131bが設定され、その内側に有効領域131aが設定されるようにする。尚、固体撮像素子11上には、ガラス基板12に代えてガラス基板231が設けられるようにしてもよい。
 また、図23の構成は、図9における撮像装置1の一体化構成部10内のIRCF14と接着剤15が省略された構成となっているが、説明の便宜上省略したのみであり、当然のことながらレンズ131とガラス基板12との間に設けられるようにしてもよいものである。
 さらに、ここで、有効領域131aとは、レンズ131の入射光が入射する領域のうち、非球面形状であって、固体撮像素子11の光電変換可能な領域に入射光を集光するように有効に機能する領域である。換言すれば、有効領域131aは、非球面形状のレンズ構造が形成された同心円状の構造であって、レンズ外周部と外接する領域であって、入射光を固体撮像素子11の光電変換可能な撮像面に集光する領域である。
 一方、非有効領域131bとは、レンズ131に入射する入射光を、必ずしも、固体撮像素子11において光電変換される領域に集光するレンズとして機能しない領域である。
 ただし、非有効領域131bにおいて、有効領域131aとの境界においては、一部非球面形状のレンズとして機能する構造を延長した構造とすることが望ましい。このように、レンズとして機能する構造が、非有効領域131bであって、有効領域131aとの境界付近に延長して設けられることにより、レンズ131が固体撮像素子11上のガラス基板12に接着される、または、貼り付けられるときに位置ズレが生じても適切に入射光を固体撮像素子11の撮像面に集光させることが可能となる。
 尚、図23においては、固体撮像素子11上のガラス基板12のサイズが垂直方向(Y方向)に高さVs×水平方向(X方向)に幅Hsであり、固体撮像素子11上のガラス基板12の内側に、固体撮像素子11(ガラス基板12)よりも小さい、垂直方向に高さVn×水平方向に幅Hnのサイズからなるレンズ131が、中央部分に接着される、または貼り付けられる。さらに、レンズ131の外周部には、レンズとして機能しない非有効領域131bが設定され、その内側に垂直方向に高さVe×水平方向に幅Heのサイズからなる有効領域131aが設定される。
 換言すれば、水平方向の幅、および垂直方向の高さのいずれにおいても、レンズ131の有効領域131aの幅および長さ<非有効領域131bの幅および長さ<固体撮像素子11(上のガラス基板12)の外形サイズの幅および長さの関係となり、レンズ131、有効領域131aおよび非有効領域131bのそれぞれの中心位置は略同一である。
 また、図23においては、図中上部に固体撮像素子11上のガラス基板12にレンズ131を接着、または貼り付けたときの光の入射方向側から見た上面図が示されており、図中左下部に、固体撮像素子11上のガラス基板12にレンズ131を接着、または貼り付けたときの外観斜視図が示されている。
 さらに、図23の図中右下部には、固体撮像素子11上のガラス基板12にレンズ131を接着、または貼り付けたときの外観斜視図の端部におけるレンズ131の側面部とガラス基板12との境界B1、非有効領域131bの外側の境界B2、および有効領域131aの外側と非有効領域131bの内側との境界B3が示されている。
 ここで、図23においては、レンズ131の側面端部は、固体撮像素子11上のガラス基板12に対して垂直である例が示されている。このため、図23の上面図においては、非有効領域131bの外側境界B2は、レンズ131の上面部に形成され、有効領域131aと非有効領域131bとの境界B1とは、レンズ131の下面部に形成されるため、同一のサイズとされる。これにより、図23の上部においては、レンズ131の外周部(境界B1)と、非有効領域131bの外周部(境界B2)とは同一の外形として表現される。
 このような構成により、レンズ131の外周部となる側面と、固体撮像素子11上のガラス基板12の外周部との間には空間ができるので、レンズ131の側面部と他の物体との干渉を抑制することが可能となり、固体撮像素子11上のガラス基板12から剥がれ難くい構成とすることが可能となる。
 また、レンズ131の有効領域131aが、非有効領域131b内に設定されることにより、周辺部が多少剥がれるようなことがあっても、適切に入射光を固体撮像素子11の撮像面に集光させることが可能となる。また、レンズ131の剥がれが発生すると界面反射が大きくなり、フレアやゴーストが悪化するので、剥がれを抑制することで、結果として、フレアやゴーストの発生を抑制することが可能となる。
 尚、図23においては、レンズ131が固体撮像素子11上のガラス基板12に接着される、または、貼り付けられる例について説明してきたが、当然のことながら、レンズ271,291、レンズ群171、および、赤外光カットレンズ301のいずれであってもよい。
 <レンズの外形形状の変形例>
 以上においては、レンズ131の中央部に有効領域131aが設定され、その外周部に非有効領域131bが設定され、さらに、有効領域131aは、固体撮像素子11(上のガラス基板12)の外周サイズよりも小さなサイズとする例であって、レンズ131の外形形状の四隅がいずれも鋭角状の形状により構成される例について説明してきた。
 しかしながら、レンズ131のサイズが固体撮像素子11(上のガラス基板12)のサイズよりも小さく設定され、レンズ131の中央部に有効領域131aが設定されて、その外周部に非有効領域131bが設定されれば、外形形状は、その他の形状であってもよい。
 すなわち、図24の左上部(図23に対応)で示されるように、レンズ131の外形形状における四隅の領域Z301は、鋭角状の形状から構成されるようにしてもよい。また、図24の右上部のレンズ131’で示されるように、四隅の領域Z302は、鈍角からなる多角形のような形状であってもよい。
 また、図24の左中部のレンズ131’’で示されるように、外形形状における四隅の領域Z303が、円形のような形状であってもよい。
 さらに、図24の右中部のレンズ131’’’で示されるように、外形形状における四隅の領域Z304が、四隅から小さな方形部が突出した形状であってもよい。また、突出した形状は、方形以外の形状であってもよく、例えば、円形、楕円形、多角形等の形状であってもよい。
 また、図24の左下部のレンズ131’’’’で示されるように、外形形状における四隅の領域Z305が、方形状に凹んだ形状であってもよい。
 さらに、図24の右下部のレンズ131’’’’’で示されるように、有効領域131aは方形状とし、非有効領域131bの外周部は円形とするようにしてもよい。
 すなわち、レンズ131の角部は、鋭角であるほどガラス基板12に対して剥がれ易くなり、光学的に悪影響を及ぼす恐れがある。そこで、図24のレンズ131’乃至131'''''で示されるように、角部を、90度よりも鈍角となる多角形からなる形状、ラウンド状、凹部、または凸部を付与した形状等にすることで、レンズ131を、ガラス基板12から剥がれ難い構成とし、光学的に悪影響を及ぼすリスクを低減させることが可能となる。
 <レンズ端部の構造の変形例>
 以上においては、レンズ131の端部が、固体撮像素子11の撮像面に対して垂直に形成される例について説明してきた。しかしながら、レンズ131のサイズが固体撮像素子11のサイズよりも小さく設定され、レンズ131の中央部に有効領域131aが設定されて、その外周部に非有効領域131bが設定されれば、その他の形状で形成されていてもよい。
 すなわち、図25の左上部で示されるように、非有効領域131bにおける、有効領域131aとの境界において、非球面のレンズとしての有効領域131aと同様の構成が延長され、非有効領域131bの端部Z331で示されるように、端部が垂直に形成されてもよい(図23の構成に対応)。
 また、図25の左から2番目の上部で示されるように、非有効領域131bにおける、有効領域131aとの境界において、非球面のレンズとしての有効領域131aと同様の構成が延長され、非有効領域131bの端部Z332で示されるように、端部がテーパ形状に形成されてもよい。
 さらに、図25の左から3番目の上部で示されるように、非有効領域131bにおける、有効領域131aとの境界において、非球面のレンズとしての有効領域131aと同様の構成が延長され、非有効領域131bの端部Z333で示されるように、端部がラウンド状に形成されてもよい。
 また、図25の右上部で示されるように、非有効領域131bにおける、有効領域131aとの境界において、非球面のレンズとしての有効領域131aと同様の構成が延長され、非有効領域131bの端部Z334で示されるように、端部が多段構造の側面として形成されてもよい。
 さらに、図25の左下部で示されるように、非有効領域131bにおける、有効領域131aとの境界において、非球面のレンズとしての有効領域131aと同様の構成が延長され、非有効領域131bの端部Z335で示されるように、端部に水平方向の平面部を備え、有効領域131aよりも、入射光の入射方向と対向する方向に突出した土手状の突出部が形成された上で、突出部の側面が垂直に形成されてもよい。
 また、図25の左から2番目の下部で示されるように、非有効領域131bにおける、有効領域131aとの境界において、非球面のレンズとしての有効領域131aと同様の構成が延長され、非有効領域131bの端部Z336で示されるように、端部に水平方向の平面部を備え、有効領域131aよりも、入射光の入射方向と対向する方向に突出した土手状の突出部が形成された上で、突出部の側面がテーパ形状に形成されてもよい。
 さらに、図25の左から3番目の下部で示されるように、非有効領域131bにおける、有効領域131aとの境界において、非球面のレンズとしての有効領域131aと同様の構成が延長され、非有効領域131bの端部Z337で示されるように、端部に水平方向の平面部を備え、有効領域131aよりも、入射光の入射方向と対向する方向に突出した土手状の突出部が形成された上で、突出部の側面がラウンド形状に形成されてもよい。
 また、図25の右下部で示されるように、非有効領域131bにおける、有効領域131aとの境界において、非球面のレンズとしての有効領域131aと同様の構成が延長され、非有効領域131bの端部Z338で示されるように、端部に水平方向の平面部を備え有効領域131aよりも、入射光の入射方向と対向する方向に突出した土手状の突出部が形成された上で、突出部の側面が多段構造に形成されてもよい。
 尚、図25の上段には、レンズ131の端部に水平方向の平面部を備え、有効領域131aよりも、入射光の入射方向と対向する方向に突出した土手状の突出部が設けられていない構造例が示され、下段には、レンズ131の端部に水平方向の平面部を備えた突出部が設けられていない構造例が示されている。また、図25の上段および下段は、いずれも左から順に、レンズ131の端部がガラス基板12に対して垂直に構成された例、端部がテーパ形状に構成された例、端部がラウンド形状に構成された例、および端部が複数の側面が多段に構成された例が示されている。
 また、図26の上部で示されるように、非有効領域131bにおける、有効領域131aとの境界において、非球面のレンズとしての有効領域131aと同様の構成が延長され、非有効領域131bの端部Z351で示されるように、突出部がガラス基板12に対して垂直に形成され、さらに、固体撮像素子11上のガラス基板12との境界に方形状の境界構造Esを残すように構成するようにしてもよい。
 さらに、図26の下部で示されるように、非有効領域131bにおける、有効領域131aとの境界において、非球面のレンズとしての有効領域131aと同様の構成が延長され、非有効領域131bの端部Z352で示されるように、突出部がガラス基板12に垂直に形成され、さらに、固体撮像素子11上のガラス基板12との境界にラウンド形状の境界構造Erを残すように構成するようにしてもよい。
 方形状の境界構造Esおよびラウンド形状の境界構造Erについては、いずれにおいても、レンズ131とガラス基板12との接触面積を増大させることにより、レンズ131とガラス基板12とをより密着させて接合させることが可能となり、結果として、レンズ131のガラス基板12からの剥がれを抑制することが可能となる。
 尚、方形状の境界構造Esおよびラウンド形状の境界構造Erについては、端部がテーパ形状に形成される場合、ラウンド形状に形成される場合、および多段構造に形成される場合のいずれにおいて使用するようにしてもよい。
 また、図27で示されるように、非有効領域131bにおける、有効領域131aとの境界において、非球面のレンズとしての有効領域131aと同様の構成が延長され、非有効領域131bの端部Z371で示されるように、レンズ131の側面がガラス基板12に垂直に形成され、さらに、その外周部のガラス基板12上にレンズ131と略同一の高さで、所定の屈折率の屈折膜351が構成されるようにしてもよい。
 これにより、例えば、屈折膜351が所定の屈折率よりも高屈折率である場合、図27の上部の実線の矢印で示されるように、レンズ131の外周部からの入射光がある場合、レンズ131の外側に反射すると共に、点線の矢印で示されるように、レンズ131の側面部への入射光を低減する。結果として、レンズ131への迷光の侵入を抑制するので、フレアやゴーストの発生を抑制する。
 また、屈折膜351が所定の屈折率よりも低屈折率である場合、図27の下部の実線の矢印で示されるように、固体撮像素子11の入射面に入射せず、レンズ131の側面からレンズ131外に透過しようとする光を透過させると共に、点線の矢印で示されるように、レンズ131の側面からの反射光を低減させる。結果として、レンズ131への迷光の侵入を抑制するので、フレアやゴーストの発生を抑制することが可能となる。
 さらに、図27においては、屈折膜351は、ガラス基板12上のレンズ131と同一の高さに、かつ、端部が垂直に形成される例について説明してきたが、それ以外の形状であってもよい。
 例えば、図28の左上部の領域Z391で示されるように、屈折膜351は、ガラス基板12上の端部にテーパ形状が形成され、かつ、レンズ131の端部の高さよりも高い厚みを持った構成とするようにしてもよい。
 また、例えば、図28の中央上部の領域Z392で示されるように、屈折膜351は、端部にテーパ形状が形成され、かつ、レンズ131の端部の高さよりも高くなるような厚みを持った構成とし、さらに、一部がレンズ131の非有効領域131bに被るような構成にしてもよい。
 さらに、例えば、図28の右上部の領域Z393で示されるように、屈折膜351は、レンズ131の端部の高さからガラス基板12の端部にかけてテーパ形状が形成される構成にしてもよい。
 また、例えば、図28の左下部の領域Z394で示されるように、屈折膜351は、ガラス基板12の端部にテーパ形状が形成され、かつ、レンズ131の端部の高さよりも低い厚みを持った構成にしてもよい。
 さらに、例えば、図28の右下部の領域Z395で示されるように、屈折膜351は、レンズ131の端部の高さよりもガラス基板12に向かって凹状で、かつ、ラウンド形状に形成される構成にしてもよい。
 図27,図28のいずれの構成においても、レンズ131への迷光の侵入を抑制するので、フレアやゴーストの発生を抑制することが可能となる。
 <16.第16の実施の形態>
 以上においては、レンズ131がガラス基板12に対して剥がれ難い構成にしたり、迷光の侵入を抑制する構成にすることで、フレアやゴーストを低減する例について説明してきたが、加工に際して発生する接着剤のバリを抑制する構成にすることで、フレアやゴーストを低減するようにしてもよい。
 すなわち、図29の上段で示されるように、固体撮像素子11上にIRCF14が形成され、IRCF14上に接着剤15によりガラス基板12が接着される構成の場合(例えば、図15の第7の実施の形態の構成の場合)について考える。尚、図29の構成は、図15の撮像装置1における一体化構成部10におけるレンズ以外の構成に対応する。
 この場合、IRCF14は、所定の厚さの膜厚が必要となるが、一般的にIRCF14の材料の高粘度化は困難であり、一度に所望の膜厚を形成することはできない。しかしながら、重ね塗りを行うと、マイクロボイドや泡がみが発生してし、光学特性を劣化させてしまう恐れがあった。
 また、ガラス基板12は、固体撮像素子11上にIRCF14が形成された後、接着剤15により接着されることになるが、IRCF14の硬化収縮により、反りが生じるため、ガラス基板12とIRCF14との接合不良が発生する恐れがある。さらに、ガラス基板12のみではIRCF14の反りを強制できず、デバイス全体として反りが生じて、光学特性を劣化させる恐れがあった。
 さらに、特に、接着剤15を介して、ガラス基板12とIRCF14とが接合される場合、個片化に際して、図29の上部の範囲Z411で示されるように、接着剤15に起因する樹脂バリが発生してしまい、ピックアップ等、実装時において工作精度を低減させてしまう恐れがあった。
 そこで、図29の中部で示されるように、IRCF14をIRCF14-1,14-2のとするように2分割し、IRCF14-1,14-2間を接着剤15により接着する。
 このような構成により、IRCF14-1,14-2の成膜に際しては、それぞれを分割して薄く製膜することが可能となるので、所望とする分光特性を得るための厚膜形成が容易(分割形成)となる。
 また、ガラス基板12を固体撮像素子11に接合する際、固体撮像素子11上の段差(PAD等のセンサ段差)をIRCF14-2で平坦化して接合することができるので、接着剤15を薄膜化することが可能となり、結果として撮像装置1を低背化することが可能となる。
 さらに、ガラス基板12と固体撮像素子11とのそれぞれに形成されたIRCF14-1,14-2により、反りが相殺され、デバイスチップの反りを低減することが可能となる。
 また、ガラスの弾性率は、IRCF14-1,14-2よりも高い。IRCF14-1,14-2の弾性率を、接着剤15の弾性率よりも高くすることで、個片化時に低弾性の接着剤15の上下を、接着剤15よりも弾性率の高いIRCF14-1,14-2で覆うことになるので、図29の上部の範囲Z412で示されるように、個片化(Expand)時の樹脂バリの発生を抑制することが可能となる。
 さらに、図29の下部で示されるように、接着剤としての機能を備えたIRCF14’-1、14’-2を形成し、相互に対向するようにして直接貼り合わせるようにしてもよい。このようにすることで、個片化時に生じる接着剤15の樹脂バリの発生を抑制することができる。
 <製造方法>
 次に、図30を参照して、図29の中部で示される固体撮像素子11に対して、IRCF14-1,14-2により接着剤15を挟んで、ガラス基板12を接合する製造方法について説明する。
 第1の工程において、図30の左上部で示されるように、ガラス基板12に対して、IRCF14-1が塗布されて形成される。また、固体撮像素子11に対して、IRCF14-2が塗布されて形成される。尚、図30の左上部においては、ガラス基板12は、IRCF14-2が塗布されて形成された後、上下が反転された状態で描かれている。
 第2の工程において、図30の中央上部で示されるように、IRCF14-2上に接着剤15が塗布される。
 第3の工程において、図30の右上部で示されるように、図30の中央上部で示された接着剤15上に、ガラス基板12のIRCF14-1が、接着剤15が塗布された面に対向するように貼り合わせられる。
 第4の工程において、図30の左下部で示されるように、固体撮像素子11の裏面側に電極が形成される。
 第5の工程において、図30の中央下部で示されるように、ガラス基板12が研磨により薄膜化される。
 そして、第5の工程の後に、ブレード等により端部が切断されることにより、個片化されて、撮像面にIRCF14-1,14-2が積層され、さらに、その上にガラス基板12が形成された固体撮像素子11が完成される。
 以上の工程により、接着剤15が、IRCF14-1,14-2に挟み込まれることになるので、個片化に伴うバリの発生を抑制することが可能となる。
 また、IRCF14-1,14-2は、必要な膜厚をそれぞれ半分ずつ形成することが可能となり、重ね塗りが必要な厚さを薄くすることができる、または、重ね塗りが不要となるので、マイクロボイドや泡がみの発生を抑制してし、光学特性の劣化を低減することが可能となる。
 さらに、IRCF14-1,14-2のそれぞれの膜厚が薄くなるので、硬化収縮による反りを低減させることが可能となり、ガラス基板12とIRCF14との接合不良の発生を抑制することが可能となり、反りに起因する光学特性の劣化を抑制させることが可能となる。
 尚、図29の下部で示されるように、接着剤の機能を備えたIRCF14’-1,14’-2が用いられる場合については、接着剤15を塗布する工程が省略されるのみであるので、その説明は省略する。
 <個片化後の側面形状の変形例>
 上述した製造方法により、IRCF14-1,14-2が形成され、さらに、ガラス基板12が形成された固体撮像素子11を個片化するにあたっては、端部をブレードなどにより側面断面が撮像面に対して垂直に切断されることが前提とされている。
 しかしながら、固体撮像素子11上に形成されるIRCF14-1,14-2、およびガラス基板12の側面断面の形状を調整することにより、ガラス基板12、IRCF14-1,14-2、および接着剤15に起因する脱落ゴミによる影響を、さらに低減させるようにしてもよい。
 例えば、図31の左上部で示されるように、固体撮像素子11の水平方向の外形形状が最も大きく、ガラス基板12、IRCF14-1,14-2、および接着剤15がいずれも等しく、かつ、固体撮像素子11よりも小さくなるように側面断面が形成されてもよい。
 さらに、図31の右上部で示されるように、固体撮像素子11の水平方向の外形形状が最も大きく、IRCF14-1,14-2および接着剤15の外形形状が等しく、かつ、固体撮像素子11の次に大きく、ガラス基板12の外形形状が最も小さくなるように側面断面が形成されてもよい。
 また、図31の左下部で示されるように、水平方向の外形形状が大きい順に、固体撮像素子11、IRCF14-1,14-2、接着剤15、ガラス基板12となるように、側面断面が形成されてもよい。
 また、図31の右下部で示されるように、固体撮像素子11の水平方向の外形形状が最も大きく、次に、ガラス基板12の外形形状が大きく、IRCF14-1,14-2および接着剤15の外形形状が等しく、かつ、最も小さくなるように側面断面が形成されてもよい。
 <図31の左上部の個片化方法>
 次に、図32を参照して、図31の左上部の個片化方法について説明する。
 図32の上段においては、図31の左上部で示される側面断面を説明する図が示されている。すなわち、図32の上段においては、固体撮像素子11の水平方向の外形形状が、最も大きく、その次に、ガラス基板12、IRCF14-1,14-2、および接着剤15がいずれも等しく大きく、固体撮像素子11よりも小さい側面断面が示されている。
 ここで、図32の中段を参照して、図31の左上部で示される側面断面の形成方法について説明する。尚、図32の中段は、個片化により切断される、隣接する固体撮像素子11の境界を側面から見た拡大図である。
 第1の工程において、隣接する固体撮像素子11の境界において、所定の幅Wb(例えば、100μm程度)のブレードにより、ガラス基板12、並びにIRCF14-1,14-2および接着剤15からなる範囲Zbが、IRCF14-1の表層から深さLc1まで切り込まれる。
 ここで、図32の中央部において、IRCF14-1の表層から深さLcとなる位置は、固体撮像素子11の表層であって、CuCu接合等により形成された配線層11Mまでの位置とされているが、固体撮像素子11の表層に達していればよい。したがって、深さLc1については、図6の半導体基板81の表層まで切り込まれるようにしてもよい。
 また、図32の中央部で示されるように、ブレードは、一点鎖線で示される、隣接する固体撮像素子11の中心位置にセンタリングされた状態で境界に切り込まれる。また、図中において、幅WLAは、隣接する2個の固体撮像素子11の端部に形成される配線層が形成される幅である。さらに、固体撮像素子11の一方のチップのスクライブラインの中央までの幅が幅Wcであり、ガラス基板12の端部までの幅が幅Wgである。
 さらに、範囲Zbは、ブレードの形状に対応しており、上部がブレードの幅Wbとされ、下部が半球面状の形状で表現されているが、ブレードの形状に対応する。
 第2の工程において、例えば、固体撮像素子11のSi基板(図6の半導体基板81)はドライエッチング、レーザダイシング、またはブレードにより、ガラス基板12を切り込んだブレードよりも薄い所定の幅Wd(例えば、35μm程度)からなる範囲Zhが切断されることにより、固体撮像素子11が個片化される。ただし、レーザダイシングの場合については、幅Wdは略ゼロとなる。また、切断形状は、ドライエッチング、レーザダイシング、またはブレードにより所望の形状に調整することができる。
 結果として、図32の下段で示されるように、固体撮像素子11の水平方向の外形形状が最も大きく、ガラス基板12、IRCF14-1,14-2、および接着剤15がいずれも等しく、かつ、固体撮像素子11よりも小さくなるように側面断面が形成される。
 尚、図32の下段においては、範囲Z431で示されるように、IRCF14-2の固体撮像素子11との境界付近の水平方向の一部が、IRCF14-1の水平方向の幅よりも広く描かれており、図32の上段におけるガラス基板12、IRCF14-1,14-2、および接着剤15の側面断面の形状とは異なる。
 しかしながら、ブレードによる切断形状をデフォルメして描いた結果であり、ドライエッチング、レーザダイシング、またはブレードにより切断形状を調整することで、実質的に、図32の下段における構成と、図32の上段における構成とは同一とすることができる。
 また、範囲Zhによる固体撮像素子11を形成するSi基板(図6の半導体基板81)を切断する処理は、範囲Zbの切り込み作業よりも先に実行するようにしてもよく、この際、図32の中段で示される状態に対して、上下反転した状態で作業がなされるようにしてもよい。
 さらに、配線層はブレードダイシング時にクラックや、膜剥がれを起こしやすいので、範囲Zhについては、短パルスレーザでのアブレーション加工により切り込むようにしてもよい。
 <図31の右上部の個片化方法>
 次に、図33を参照して、図31の右上部の個片化方法について説明する。
 図33の上段においては、図31の右上部で示される側面断面を説明する図が示されている。すなわち、図33の上段においては、固体撮像素子11の水平方向の外形形状が最も大きく、IRCF14-1,14-2および接着剤15の外形形状が等しく、かつ、固体撮像素子11の次に大きく、ガラス基板12の外形形状が最も小さくなるように形成された側面断面が示されている。
 ここで、図33の中段を参照して、図31の右上部で示される側面断面の形成方法について説明する。尚、図33の中段は、個片化により切断される、隣接する固体撮像素子11の境界を側面から見た拡大図である。
 第1の工程において、所定の幅Wb1(例えば、100μm程度)のブレードにより、ガラス基板12、並びにIRCF14-1,14-2および接着剤15からなる範囲Zb1が、IRCF14-1の表層から深さLc11まで切り込まれる。
 第2の工程において、所定の幅Wb2(<幅Wb1)のブレードにより、配線層11Mを超える深さとなる、範囲Zb2が切り込まれる。
 第3の工程において、例えば、Si基板(図6の半導体基板81)はドライエッチング、レーザダイシング、またはブレードにより、幅Wb2よりも薄い所定の幅Wd(例えば、35μm程度)からなる範囲Zhが切断されることにより、固体撮像素子11が個片化される。ただし、レーザダイシングの場合については、幅Wdは略ゼロとなる。また、切断形状は、ドライエッチング、レーザダイシング、またはブレードにより所望の形状に調整することができる。
 結果として、図33の下段で示されるように、固体撮像素子11の水平方向の外形形状が最も大きく、IRCF14-1,14-2および接着剤15の外形形状が等しく、かつ、固体撮像素子11の次に大きく、ガラス基板12が最も小さくなるように側面断面が形成される。
 尚、図33の下段においては、範囲Z441で示されるように、IRCF14-1の水平方向の一部が、ガラス基板12の水平方向の幅と同一に描かれている。また、範囲Z442で示されるように、IRCF14-2の水平方向の一部が、IRCF14-1の水平方向の幅よりも広く描かれている。
 従って、図33の下段におけるガラス基板12、IRCF14-1,14-2、および接着剤15の側面断面の形状は、図33の上段における形状と異なる。
 しかしながら、ブレードによる切断形状をデフォルメして描いた結果であり、ドライエッチング、レーザダイシング、またはブレードにより切断形状を調整することで、実質的に、図32の下段における構成と、図32の上段における構成とは同一とすることができる。
 また、範囲Zhによる固体撮像素子11を形成するSi基板(図6の半導体基板81)を切断する処理は、範囲Zb1,Zb2の切り込み作業よりも先に実行するようにしてもよく、この際、図33の中段で示される状態に対して、上下反転した状態で作業がなされるようにしてもよい。
 さらに、配線層はブレードダイシング時にクラックや、膜剥がれを起こしやすいので、範囲Zhについては、短パルスレーザでのアブレーション加工により切り込むようにしてもよい。
 <図31の左下部の個片化方法>
 次に、図34を参照して、図31の左下部の個片化方法について説明する。
 図34の上段においては、図31の左下部で示される側面断面を説明する図が示されている。すなわち、図34の上段において、外形形状の大きさは、固体撮像素子11の水平方向の外形形状、IRCF14-1,14-2、接着剤15、ガラス基板12の順に大きい側面断面が示されている。
 ここで、図34の中段を参照して、図31の右上部で示される側面断面の形成方法について説明する。尚、図34の中段は、個片化により切断される、隣接する固体撮像素子11の境界を側面から見た拡大図である。
 第1の工程において、所定の幅Wb1(例えば、100μm程度)のブレードにより、ガラス基板12、並びにIRCF14-1,14-2および接着剤15からなる範囲Zbが、IRCF14-2の表層から深さLc21まで切り込まれる。
 第2の工程において、所定の幅Wb2(<幅Wb1)だけレーザによるアブレーション加工を施し、配線層11Mを超える深さまでの、範囲ZLが切り込まれる。
 この工程において、IRCF14-1,14-2、および接着剤15は、加工表面付近において、レーザ光の吸収により、熱収縮を起こすことで、波長依存性により、接着剤15が、IRCF14-1,14-2の切断面に対して後退し、凹んだ形状となる。
 第3の工程において、例えば、Si基板(図6の半導体基板81)はドライエッチング、レーザダイシング、またはブレードにより、幅Wb2よりも薄い所定の幅Wd(例えば、35μm程度)からなる範囲Zhが切断されることにより、固体撮像素子11が個片化される。ただし、レーザダイシングの場合については、幅Wdは略ゼロとなる。また、切断形状は、ドライエッチング、レーザダイシング、またはブレードにより所望の形状に調整することができる。
 結果として、図34の下段で示されるように、固体撮像素子11の水平方向の外形形状が最も大きく、次に、IRCF14-1,14-2の外形形状が大きく、さらに、続いて接着剤15の外形形状が大きく、ガラス基板12が最も小さくなるように側面断面が形成される。すなわち、図34の下段における範囲Z452で示されるように、接着剤15の外形形状は、IRCF14-1,14-2の外形形状よりも小さくなる。
 尚、図34の下段においては、範囲Z453で示されるように、IRCF14-2の水平方向の一部が、IRCF14-1の水平方向の幅よりも広く描かれている。また、範囲Z451で示されるように、IRCF14-1の水平方向の一部が、ガラス基板12の水平方向の幅と同一に描かれている。
 従って、図34の下段におけるガラス基板12、IRCF14-1,14-2、および接着剤15の側面断面の形状は、図34の上段における形状と異なる。
 しかしながら、ブレードによる切断形状をデフォルメして描いた結果であり、ドライエッチング、レーザダイシング、またはブレードにより切断形状を調整することで、実質的に、図32の下段における構成と、図32の上段における構成とは同一とすることができる。
 また、範囲Zhによる固体撮像素子11を形成するSi基板(図6の半導体基板81)を切断する処理は、範囲Zb,ZLの切り込み作業よりも先に実行するようにしてもよく、この際、図34の中段で示される状態に対して、上下反転した状態で作業がなされるようにしてもよい。
 さらに、配線層はブレードダイシング時にクラックや、膜剥がれを起こしやすいので、範囲Zhについては、短パルスレーザでのアブレーション加工により切り込むようにしてもよい。
 <図31の右下部の個片化方法>
 次に、図35を参照して、図31の右下部の個片化方法について説明する。
 図35の上段においては、図31の右下部で示される側面断面を説明する図が示されている。すなわち、図35の上段においては、固体撮像素子11の水平方向の外形形状が最も大きく、次に、ガラス基板12の外形形状が大きく、IRCF14-1,14-2および接着剤15の外形形状が等しく、かつ、最も小さい側面断面が示されている。
 ここで、図35の中段を参照して、図31の右下部で示される側面断面の形成方法について説明する。尚、図35の中段は、個片化により切断される、隣接する固体撮像素子11の境界を側面から見た拡大図である。
 第1の工程において、レーザを用いた、いわゆるステルス(レーザ)ダイシング加工により、実質的に、ほぼ幅Ldがゼロとなる範囲Zs1のガラス基板12が、切り込まれる。
 第2の工程において、所定の幅Wabだけレーザによるアブレーション加工が施され、IRCF14-1,14-2、および固体撮像素子11における配線層11Mを超える深さとなる範囲ZLが切り込まれる。
 この工程においては、レーザを用いたアブレーション加工を調整して、IRCF14-1,14-2、および接着剤15の切断面が同一になるように加工される。
 第3の工程において、レーザを用いた、いわゆるステルス(レーザ)ダイシング加工により、幅が略ゼロとなる範囲Zs2が切り込まれて、固体撮像素子11が個片化される。この際、アブレーションにより生じた有機物は、ステルスダイシング加工された溝を介して外部に排出される。
 結果として、図35の下段における範囲Z461,Z462で示されるように、固体撮像素子11の水平方向の外形形状が最も大きく、次に、ガラス基板12の外形形状が大きく、IRCF14-1,14-2および接着剤15の外形形状が等しく、かつ、最も小さくなるように側面断面が形成される。
 また、ガラス基板12に対するステルスダイシング加工と、固体撮像素子11に対するステルスダイシング加工の順序は入れ替えるようにしてもよく、この際、図35の中段で示される状態に対して、上下反転した状態で作業がなされるようにしてもよい。
 <反射防止膜の付加>
 以上においては、図36の左上部で示されるように、固体撮像素子11上にIRCF14-1,14-2を接着剤15により接着して形成し、さらに、IRCF14-1上にガラス基板12を形成することで、バリの発生を抑制すると共に、光学特性の低減を抑制する例について説明してきたが、さらに、反射防止機能を備えた付加膜が形成されるようにしてもよい。
 すなわち、例えば、図36の左中部で示されるように、ガラス基板12上に反射防止機能を備えた付加膜371が形成されるようにしてもよい。
 また、例えば、図36の左下部で示されるように、ガラス基板12上、ガラス基板12とIRCF14-1との境界、IRCF14-1と接着剤15との境界、および接着剤15とIRCF14-2との境界のそれぞれに反射防止機能を備えた付加膜371-1乃至371-4が形成されるようにしてもよい。
 また、図36の右上部、右中部、右下部のそれぞれで示されるように、反射防止機能を備えた付加膜371-2,371-4,371-3のうちのいずれかが形成されるようにしてもよいし、これらが組み合わされて形成されてもよい。
 尚、付加膜371,371-1乃至371-4は、例えば、上述したARコート271a、または、反射防止処理部(モスアイ)291aと同等の機能を備えた膜より形成されるようにしてもよい。
 これらの付加膜371,371-1乃至371-4により、不要な光の入射が防止されて、ゴーストやフレアの発生が抑制される。
 <側面部への付加>
 以上においては、ガラス基板12上、ガラス基板12とIRCF14-1との境界、IRCF14-1と接着剤15との境界、および接着剤15とIRCF14-2との境界のそれぞれの少なくともいずれかに反射防止機能を備えた付加膜371-1乃至371-4が形成される例について説明してきたが、側面部に反射防止膜や光吸収膜として機能する付加膜が形成されてもよい。
 すなわち、図37の左部で示されるように、ガラス基板12、IRCF14-1,14-2、接着剤15、および固体撮像素子11の側面断面全体に、反射防止膜、または、光吸収膜などとして機能する付加膜381が形成されるようにしてもよい。
 また、図37の右部で示されるように、固体撮像素子11の側面を除く、ガラス基板12、IRCF14-1,14-2、および接着剤15の側面にのみ、反射防止膜、または、光吸収膜などとして機能する付加膜381が形成されるようにしてもよい。
 いずれにおいても、固体撮像素子11、ガラス基板12、IRCF14-1,14-2、および接着剤15の側面部に付加膜381が設けられることにより、固体撮像素子11への不要な光の入射が防止されて、ゴーストやフレアの発生が抑制される。
 <17.第17の実施の形態>
 以上においては、積層される固体撮像素子11、IRCF14-1、接着剤15、IRCF14-2、および、ガラス基板12のそれぞれの水平方向の大小関係を調整することにより、脱落ゴミを抑制すると共に、フレアやゴーストの発生を抑制する例について説明してきたが、レンズの形状を規定することにより、小型軽量で、かつ、高解像度撮像が可能なレンズを実現してもよい。
 例えば、固体撮像素子11上にガラス基板12が形成されて、その上にARコート271aが形成されたレンズ271に対応するレンズが接合される場合(例えば、図19の撮像装置1における一体化構成部10)について考える。尚、撮像装置1の構成は、図19以外でもよく、例えば、図9における撮像装置1における一体化構成部10におけるレンズ131をレンズ271に代えても同様である。
 すなわち、図38で示されるように、上面からみた重心位置を中心とした同心円状に非球面の凹型のレンズ401(図19のレンズ271に相当)が、固体撮像素子11上のガラス基板12上に形成されているものとする。また、レンズ401には、光が入射する面上にARコート402(上述したARコート271aまたは反射防止処理部291aと同等の機能を備えた膜)が形成され、外周部に突出部401aが形成されているものとする。尚、図38,図39は、図19の撮像装置1における一体化構成部10のうちの固体撮像素子11、ガラス基板12、およびレンズ271が抽出された構成を示している。
 ここで、レンズ401は、図39で示されるように、上面から見た重心位置を中心として非球面の凹型形状となるような、すり鉢状の形状とされている。尚、図39においては、図中の右上部が、図中の左上部の点線で示される方向におけるレンズ401の断面形状が示されており、図中の右下部が、図中の左上部の実線で示される方向におけるレンズ401の断面形状が示されている。
 図39においては、レンズ401の範囲Zeが図39の右上部および右下部において共通の非球面曲面構造とされており、このような形状により固体撮像素子11の撮像面に、図中の上方からの入射光を集光させる有効領域を構成する。
 また、レンズ401は、非球面曲面から構成されることにより、中心位置から光の入射方向と垂直方向の距離の応じて厚さが変化する。より具体的には、中心位置においては、レンズ厚さは最も薄い厚さDであり、範囲Zeにおける中心から最も離れた位置のレンズ厚さは、最も厚い厚さHとなる。また、ガラス基板12の厚さが、厚さThである場合、レンズ401の最も厚くなる厚さHは、ガラス基板12の厚さThよりも厚く、レンズ401の最も薄くなる厚さDは、ガラス基板12の厚さThよりも薄い。
 すなわち、これらの関係をまとめると、厚さD,H,Thは、厚さH>厚さTh>厚さDの関係を満たしたレンズ401とガラス基板12とが用いられることで、小型軽量で、かつ、高解像度での撮像が可能な撮像装置1(の一体化構成部10)を実現することが可能となる。
 また、ガラス基板12の体積VGが、レンズ401の体積VLよりも小さくなるようにすることで、最も効率よくレンズの体積を形成することが可能となるので、小型軽量で、かつ、高解像度での撮像が可能な撮像装置1を実現することが可能となる。
 <ARコートへの加熱時に発生する応力分布>
 また、以上のような構成により、実装リフロー熱負荷時や信頼性試験時におけるARコート402の膨張や収縮による応力を抑制することができる。
 図40は、図39のレンズ401の外形形状を変化させたときの、実装リフロー熱負荷時のARコート402の膨張や収縮による応力分布を示している。尚、図40における応力分布は、図38で示される範囲Zpで示されるレンズ401の中心位置を基準として水平方向および垂直方向に対して、それぞれの1/2の、全体の1/4の範囲の分布が示されている。
 図40の最左部においては、突出部401aが設けられていないレンズ401Aにおける、実装リフロー熱負荷時のARコート402Aに生じる応力分布が示されている。
 図40の左から2番目においては、図39で示される突出部401aが設けられたレンズ401Bにおける、実装リフロー熱負荷時のARコート402Bに生じる応力分布が示されている。
 図40の左から3番目においては、図39で示される突出部401aの高さが、図39の場合よりも高くされているレンズ401Cにおける、実装リフロー熱負荷時のARコート402Cに生じる応力分布が示されている。
 図40の左から4番目においては、図39で示される突出部401aの幅が、図39の場合よりも拡大されているレンズ401Dにおける、実装リフロー熱負荷時のARコート402Dに生じる応力分布が示されている。
 図40の左から5番目においては、図39で示される突出部401aの外周部の側面に設けられたテーパが、図39の場合よりも拡大されているレンズ401Eにおける、実装リフロー熱負荷時のARコート402Eに生じる応力分布が示されている。
 図40の最右部においては、図39で示される突出部401aが外周部を構成する4辺にのみ設けられたレンズ401Fにおける、実装リフロー熱負荷時のARコート402Fに生じる応力分布が示されている。
 図40で示されるように、最左部で示される突出部401aがないレンズ401AのARコート402Aに生じた応力分布においては、有効領域の外周側において、大きな応力分布が表れているが、突出部401aが形成されたレンズ401B乃至401FのARコート402B乃至402Fについては、ARコート402Aにみられるほど大きな応力分布が存在しない。
 すなわち、レンズ401において突出部401aを設けるようにすることで、実装リフロー熱負荷時において、レンズ401の膨張収縮によるARコート402のクラックの発生を抑制させることが可能となる。
 <レンズ形状の変形例>
 以上においては、図39で示されるような、外周部にテーパが設けられた突出部401aを備えた凹型のレンズ401により、小型軽量で、かつ、高解像での撮像が可能な撮像装置1を構成する例について説明してきた。しかしながら、レンズ401、およびガラス基板12が、厚さD,H,Thは、厚さH>厚さTh>厚さDの関係を満たす限り、レンズ401の形状は他の形状であってもよい。また、体積VG,VLが、体積VG<体積VLの関係を満たせば、より好ましい。
 例えば、図41のレンズ401Gで示されるように、突出部401aより外周側の側面は、ガラス基板12に対して直角をなす構成として、テーパを含まない構成とするようにしてもよい。
 また、図41のレンズ401Hで示されるように、突出部401aより外周側の側面は、ラウンド状のテーパを含む構成とするようにしてもよい。
 さらに、図41のレンズ401Iで示されるように、突出部401aそのものを含まず、側面は、ガラス基板12に対して所定の角をなす直線状のテーパ形状を含む構成とするようにしてもよい。
 また、図41のレンズ401Jで示されるように、突出部401aそのものを含まず、側面は、ガラス基板12に対して直角をなす構成として、テーパ形状を含まない構成とするようにしてもよい。
 さらに、図41のレンズ401Kで示されるように、突出部401aそのものを含まず、側面は、ガラス基板12に対してラウンド状のテーパ形状を含む構成とするようにしてもよい。
 また、図41のレンズ401Lで示されるように、突出部401aそのものを含まず、レンズの側面は、2つの変曲点を有する2段構成とするようにしてもよい。尚、レンズ401Lの詳細な構成については、図42を参照して後述する。また、レンズ401Lの側面については、2つの変曲点を有する2段構成であるので、以降においては、2段側面型レンズとも称する。
 さらに、図41のレンズ401Mで示されるように、側面は、突出部401aを含み、かつ、外形側面に2つの変曲点を有する2段構成とするようにしてもよい。
 また、図41のレンズ401Nで示されるように、突出部401aを含み、側面は、ガラス基板12に対して直角をなす構成として、さらに、ガラス基板12との境界付近に方形状の裾引き部401bを付加するようにしてもよい。
 さらに、図41のレンズ401Nで示されるように、突出部401aを含み、ガラス基板12に対して直角をなす構成として、さらに、ガラス基板12との境界付近にラウンド形状の裾引き部401b’を付加するようにしてもよい。
 <2段側面型レンズの詳細な構成>
 ここで、図42を参照して、図41の2段側面型レンズ401Lの詳細な構成について説明する。
 図42は、固体撮像素子11上にガラス基板12が形成され、その上に2段側面型レンズ401Lが設けられたときに、様々な方向か見たときの外観斜視図が示されている。ここで、図42の中央上部においては、固体撮像素子11の図中右側の辺から時計回りに辺LA,LB,LC,LDが設定されている。
 そして、図42の右部は、図42の中央上部における視線E1方向から固体撮像素子11とレンズ401Lを見たときの、固体撮像素子11の辺LA,LBの角部周辺の斜視図を示している。また、図42の中央下部は、図42の中央上部における視線E2方向から固体撮像素子11とレンズ401Lを見たときの、固体撮像素子11の辺LA,LBの角部周辺の斜視図を示している。さらに、図42の左部は、図42の中央部における視線E3方向から固体撮像素子11とレンズ401Lを見たときの、固体撮像素子11の辺LB,LCの角部周辺の斜視図を示している。
 すなわち、2段側面型レンズ401Lにおいては、長辺となる辺LB,LD(図示せず)の中央部は、凹型レンズとなる2段側面型レンズ401Lの上面から見て、レンズ厚さが最も薄くなるレンズとして機能する円形における重心位置に近い位置となるため、レンズが薄くなり、点線で囲まれるように稜線が緩やかな曲線形状とされる。
 これに対して、短辺となる辺LA,LCの中央部は、重心位置から遠い位置になるため、レンズが厚く構成されることにより、稜線は直線形状とされる。
 <2つの変曲点と2段の側面>
 また、2段側面型レンズ401Lは、図43で示されるように、断面形状において、有効領域Zeの外側に設けられた非有効領域の側面が、2段構成とされ、側面のそれぞれの平均面X1,X2がずれて形成され、2段の側面による段差が生じる位置に断面形状における変曲点P1,P2が形成される。
 変曲点P1,P2は、固体撮像素子11に近い位置から順に凹凸の順序で変化する。
 また、変曲点P1,P2のガラス基板12からの高さは、いずれも2段側面型レンズ401Lにおける最も薄い厚さThよりも高い位置に設けられる。
 さらに、2段の側面の、それぞれの平均面X1,X2間の差(平均面X1,X2間距離)は、固体撮像素子11の厚さ(図6の固体撮像素子11のシリコン基板81の厚さ)よりも大きくすることが望ましい。
 また、2段の側面の、それぞれの平均面X1,X2間の距離の差は、レンズ401Lの有効領域の入射光の入射方向に対して垂直となる領域幅(例えば、図23の水平方向の幅He、または、垂直方向の高さVe)に対して1%以上とすることが望ましい。
 従って、上述した条件を満たす2段の側面と2つの変曲点が形成されれば、2段側面型レンズ401L以外の形状であってもよく、例えば、図43の上から2段目で示されるように、平均面X11,X12からなる2段の側面が設けられ、ガラス基板12からレンズの最薄厚Thよりも高い位置に変曲点P1,P2とは異なる曲率の変曲点P11,P12が形成された2段側面型レンズ401Pであってもよい。
 また、例えば、図43の上から3段目で示されるように、平均面X21,X22からなる2段の側面が設けられ、ガラス基板12からレンズの最薄厚Thよりも高い位置に、変曲点P1,P2およびP11,P22とは異なる曲率の変曲点P21,P22が形成された2段側面型レンズ401Qであってもよい。
 さらに、例えば、図43の上から4段目で示されるように、平均面X31,X32からなる2段の側面が設けられ、ガラス基板12からレンズの最薄厚Thよりも高い位置に変曲点P31,P32が形成され、レンズ401の最も厚い位置の端部がラウンド形状にされた2段側面型レンズ401Rであってもよい。
 <2つの変曲点と2段構成の側面とを備えたレンズにおけるARコートへの加熱時に発生する応力分布>
 上述したように、2つの変曲点と2段構成の側面とを備えた2段側面型レンズ401Lの場合、実装リフロー熱負荷時や信頼性試験時におけるレンズ401Lの膨張や収縮によるARコート402にかかる応力を抑制することができる。
 図44は、図39のレンズ401の外形形状を変化させたときの、実装リフロー熱負荷時のARコート402の膨張や収縮による応力分布を示している。図44において、上段は、レンズ401を対角方向から見たときの奥手側のARコート402の応力分布であり、下段は、レンズ401を対角方向から見たときの手前側のARコート402の応力分布である。
 図44の最左部においては、突出部401aも設けられておらず、2段側面型レンズでもないレンズ401S(レンズ401Aに対応する)における、実装リフロー熱負荷時のARコート402Sに生じる応力分布が示されている。
 図44の左から2番目においては、図43で示される2段側面型レンズ401Lに対応するレンズ401Tおける、実装リフロー熱負荷時のARコート402Tに生じる応力分布が示されている。
 図44の左から3番目においては、突出部401aが設けられていないが、テーパ形状が設けられ、かつ、レンズの各辺の角部がラウンド形状に成型されたレンズ401Uにおける、実装リフロー熱負荷時のARコート402Uに生じる応力分布が示されている。
 図44の左から4番目においては、突出部401aも、テーパ形状も設けられておらず、側面がガラス基板12に対して垂直で、かつ、レンズの各辺の角部がラウンド形状に成型されたレンズ401Vにおける、実装リフロー熱負荷時のARコート402Vに生じる応力分布が示されている。
 また、図45は、左から順に図44の各レンズ形状におけるARコートに生じる応力分布における全体の最大値(Worst)、レンズの有効領域の最大値(有効)、および稜線における最大値(稜線)のグラフが示されている。また、図45におけるそれぞれの最大値のグラフは、左から順にARコート402S乃至402Vの応力分布の最大値を示している。
 図45で示されるように、各レンズの全体の最大応力は、レンズ401SのARコート402Sの場合、上面の角部Ws(図44)において1390MPaであり、レンズ401TのARコート402Tの場合、稜線の角部Wt(図44)において1130MPaであり、レンズ401UのARコート402Uの場合、稜線上Wu(図44)において800MPaであり、レンズ401VのARコート402Vの場合、稜線上Wv(図44)において1230MPaである。
 また、各レンズの有効領域の最大応力は、図45で示されるように、レンズ401SのARコート402Sの場合、646MPaであり、レンズ401TのARコート402Tの場合、588MPaであり、レンズ401UのARコート402Uの場合、690MPaであり、レンズ401VのARコート402Vの場合、656MPaである。
 さらに、各レンズの稜線の最大応力は、レンズ401SのARコート402Sの場合、1050MPaであり、レンズ401TのARコート402Tの場合、950MPaであり、レンズ401UのARコート402Uの場合、800MPaであり、レンズ401VのARコート402Uの場合、1230MPaである。
 図45によれば、いずれも最大応力が最小となるのは、レンズ401SのARコート402Sであるが、図44によれば、レンズ401TのARコート402Tの有効領域の全体の応力分布において、レンズ401UのARコート402Uの外周部に近い範囲に多く存在する600MPa付近の応力分布が存在せず、全体として、レンズ401T(レンズ401Lと同一)のARコート402Tからなる外形形状において、ARコート402T(ARコート402Lと同一)のARコート402Tに生じる応力分布が小さくなることがわかる。
 すなわち、図44,図45によれば、実装リフロー熱負荷時において、2つの変曲点と2段構成の側面とを備えたレンズ401T(401L)においては、ARコート402T(402L)に生じる膨張や収縮が抑制されて、膨張や収縮に起因して生じる応力が小さくなっていることがわかる。
 以上のように、レンズ401として、2つの変曲点と2段構成の側面とを備えた2段側面型レンズ401Lを採用することにより、実装リフロー熱負荷時や信頼性試験等において、熱による膨張や収縮を抑制することが可能となる。
 結果として、ARコート402Lに生じる応力を低減させることが可能となり、クラックの発生や、レンズ剥がれ等の発生を抑制させることが可能となる。また、レンズそのものの膨張や収縮を抑制することが可能となるので、歪の発生を低減し、歪に起因した複屈折の増加による画質劣化、屈折率の局所的な変化により発生する界面反射の増加によるフレアの発生を抑制することが可能となる。
 <18.第18の実施の形態>
 以上においては、レンズの形状を規定することにより、小型軽量で、かつ、高解像度撮像が可能なレンズを実現する例について説明してきたが、レンズを固体撮像素子11に形成する際の精度を向上させることで、より小型軽量で、かつ、高解像度画像が撮像可能なレンズを実現するようにしてもよい。
 図46の上部で示されるように、基板451に成形型452を固体撮像素子11上のガラス基板12に押し付けた状態で、成形型452とガラス基板12との間の空間に、レンズ401の材料となる紫外光硬化樹脂461を充填させ、図中の上部より紫外光により所定時間露光する。
 基板451および成形型452は、いずれも紫外光を透過させる材質により構成されている。
 成形型452は、凹型のレンズ401の形状に対応した非球面の凸型構造であり、外周部に遮光膜453が形成されており、紫外光の入射角度により、例えば、図46で示されるような角度θからなるレンズ401の側面にテーパを形成させることができる。
 レンズ401の材料となる紫外光硬化樹脂461は、所定時間紫外光に対して露光されることにより、硬化して、図46の下部で示されるように非球面の凹型レンズとして形成されると共に、ガラス基板12に貼り付けられる。
 紫外光が照射された状態で所定時間経過した後、紫外光硬化樹脂461が硬化することでレンズ401が形成され、レンズ401が形成された後、成形型452が形成されたレンズ401より外される(離型)。
 レンズ401の外周部と、ガラス基板12との境界においては、紫外光硬化樹脂461の一部が、成形型452から浸み出して浸み出し部461aが生じる。しかしながら、浸み出し部461aは、遮光膜453により紫外光が遮光されることになるので、拡大図Zfにおける範囲Zcで示されるように、紫外光硬化樹脂461の一部の浸み出し部461aは硬化せずに残り、離型された後、自然光に含まれた紫外光により硬化することで、裾引き部401dとして残る。
 これにより、レンズ401は、成形型452により凹型レンズとして形成されると共に、遮光膜453により規定された角度θで側面にテーパ形状が形成される。また、レンズ401の外周部には、裾引き部401dがガラス基板12との境界に形成されることで、レンズ401をガラス基板12に対してより強固に接着させることが可能となる。
 結果として、小型軽量で、かつ、高解像度画像が撮像可能なレンズを高精度に形成することが可能となる。
 尚、以上においては、遮光膜453は、図47の左上部で示されるように、基板451の紫外光の入射方向に対して裏面側(図中の下側)における、レンズ401の外周部に設けられる例について説明してきた。しかしながら、遮光膜453は、図47の右上部で示されるように、基板451の紫外光の入射方向に対して表面側(図中の上側)における、レンズ401の外周部に設けられるようにしてもよい。
 また、遮光膜453は、図47の左の上から2番目で示されるように、基板451に代えて、成形型452よりも水平方向に大きな成型型452’を形成し、紫外光の入射方向に対して裏面側(図中の下側)における、レンズ401の外周部に設けられるようにしてもよい。
 さらに、遮光膜453は、図47の右の上から2番目で示されるように、成型型452’の基板451の紫外光の入射方向に対して表面側(図中の上側)における、レンズ401の外周部に設けられるようにしてもよい。
 また、遮光膜453は、図47の左の上から3番目で示されるように、基板451と成形型452とを一体化させた成形型452’’を形成し、紫外光の入射方向に対して裏面側(図中の下側)における、レンズ401の外周部に設けられるようにしてもよい。
 さらに、遮光膜453は、図47の右の上から3番目で示されるように、基板451と成形型452とを一体化させた成形型452’’を形成し、紫外光の入射方向に対して表面側(図中の上側)における、レンズ401の外周部に設けられるようにしてもよい。
 また、図47の左下部で示されるように、基板451、および成形型452に加えて、側面部の一部を規定する構成が設けられた成形型452’’’を形成し、成形型452’’’の外周部であって、紫外光の入射方向に対して裏面側に遮光膜453が形成されるようにしてもよい。
 尚、図46,図47の構成は、図9における撮像装置1の一体化構成部10内のIRCF14と接着剤15が省略された構成となっているが、説明の便宜上省略したのみであり、当然のことながらレンズ401(131)とガラス基板12との間に設けられるようにしてもよいものである。また、以降においても、図9における撮像装置1における構成より、IRCF14と接着剤15は、省略した構成を例にして説明を進めるものとするが、いずれにおいても、例えば、レンズ401(131)とガラス基板12との間にIRCF14と接着剤15が設けられる構成としてもよいものである。
 <2段側面型レンズの形成方法>
 次に、2段側面型レンズの製造方法について説明する。
 基本的な製造方法については、上述した2段側面型ではないレンズの製造方法と同様である。
 すなわち、図48の左部で示されるように、基板451に対して2段側面型レンズ401Lの側面形状に対応した成形型452が用意され、固体撮像素子11上のガラス基板12上に紫外光硬化樹脂461が載置される。尚、図48においては、成形型452における側面断面の右側半分のみの構成が示されている。
 次に、図48の中央部で示されるように、成形型452が載置された紫外光硬化樹脂461をガラス基板12に対して押圧するように固定することで、成形型452の凹部内に紫外光硬化樹脂461を充填させた状態にして、図中上方より紫外光が所定時間照射される。
 紫外光硬化樹脂461は、紫外光に露光されることにより硬化し、成形型452に対応する凹型の2段側面型レンズ401が形成される。
 紫外光により所定時間露光されることで、レンズ401が形成された後、図48の右部で示されるように、成形型452が離型されると、2段側面型レンズからなるレンズ401が完成される。
 また、図49の左部で示されるように、成形型452の外周部のガラス基板12に当接する部位の一部のうち、例えば、側面の断面形状における2つの変曲点のうち、ガラス基板12に近い位置の変曲点となる高さから下の部分を切断し、切断面に遮光膜453を設けるようにしてもよい。
 この場合、図49の左から2番目で示されるように、紫外光硬化樹脂461が成形型452の凹部に充填された状態で、紫外光が図中の上方より所定時間照射されると、遮光膜453の下部については、紫外光が遮光されることで、硬化が進まない状態となり、レンズ401が未完成の状態となる。しかしながら、紫外光が露光された図中の有効領域の周囲の紫外光硬化樹脂461は硬化が進んでレンズ401として形成される。
 この状態で成形型452が離型されると、図49の左から3番目で示されるように、2段側面型レンズとして形成されるレンズ401のうちの、最外周の2段構成の側面のうちのガラス基板12に近い部分の側面が未硬化の紫外光硬化樹脂461の浸み出し部461aとして残される。
 そこで、図49の右部で示されるように、未硬化の紫外光硬化樹脂461の浸み出し部461aの状態のままの側面について、側面の角度や表面粗さを制御して、別途紫外光を照射して硬化させるようにする。
 このようにすることで、図50の上段で示されるように、レンズ401の側面の平均面X1,X2のなす角度を、例えば、入射光の入射方向に対してそれぞれ角度θ1,θ2といった異なる角度に設定することが可能となる。
 ここで、側面X1,X2の角度をそれぞれ角度θ1,θ2とするとき、角度θ1<角度θ2となるように構成すると、側面フレアの発生を抑制すると共に、成形型452の離型の際、完成したレンズ401がガラス基板12から剥がれてしまうといったことを抑制することが可能となる。
 また、側面X1,X2のそれぞれの表面粗さρ(X1),ρ(X2)を異なる構成とすることが可能となる。
 ここで、側面X1,X2のそれぞれの表面粗さρ(X1),ρ(X2)を、表面粗さρ(X1)<表面粗さρ(X2)となるように設定することで、側面フレアの発生を抑制すると共に、成形型452の離型の際、完成したレンズ401がガラス基板12から剥がれてしまうといったことを抑制することが可能となる。
 また、紫外光硬化樹脂461の浸み出し部461aの形状を調整することで、図50の下部で示されるように、裾引き部401dを形成することも可能となる。これにより、レンズ401をガラス基板12に対してより強固に固定することが可能となる。
 尚、角度θ1,θ2、表面粗さρ(X1),ρ(X2)、および裾引き部401dの形成については、図48を参照した遮光膜453を用いない場合でも、成形型452の形状により設定することは可能である。しかしながら、図49を参照したように遮光膜453が設けられた成形型452が用いられる場合については、最初の紫外光の照射において未硬化な部分として残された紫外光硬化樹脂461の浸み出し部461aを後から調整することができるので、角度θ1,θ2、表面粗さρ(X1),ρ(X2)、および裾引き部401dの設定の自由度を高くすることが可能となる。
 いずれにおいても、固体撮像素子11のガラス基板12上にレンズ401を高精度に形成することが可能となる。また、2段側面型レンズ401における側面X1,X2の角度、表面粗さρ(X1),ρ(X2)、および裾引き部401dの有無を調整することが可能となるので、フレアやゴーストの発生を抑制すると共に、レンズ401をより強固にガラス基板12に形成することが可能となる。
 <19.第19の実施の形態>
 以上においては、成形方法により高精度にレンズ401を固体撮像素子11上のガラス基板12に形成する例について説明してきたが、レンズ401をガラス基板12上の適切な位置に形成するためガラス基板12にアライメントマークを形成し、アライメントマークに基づいて位置決めすることで、より高精度にレンズ401をガラス基板12上に形成するようにしてもよい。
 すなわち、図51で示されるように、中心からレンズ401の有効領域Ze(図23の有効領域131aに対応する)が設けられ、その外周部に非有効領域Zn(図23の非有効領域131bに対応する)が設けられ、さらにその外周部にガラス基板12が露出した領域Zgが設けられ、固体撮像素子11の最外周部にスクライブラインが設定される領域Zscが設けられている。図51においては、非有効領域Zn(図23の非有効領域131bに対応する)に突出部401aが設けられている。
 各領域の幅は、有効領域Zeの幅>非有効領域Znの幅>ガラス基板12が露出した領域Zgの幅>スクライブラインが設定される領域Zscの幅の関係となる。
 アライメントマーク501は、ガラス基板12が露出した、ガラス基板12上の領域Zgに形成される。従って、アライメントマーク501のサイズは、領域Zgよりも小さいサイズとなるが、位置合わせするための画像により認識可能なサイズである必要がある。
 ガラス基板12上の、例えば、レンズ401の角部が当接すべき位置に、アライメントマーク501を形成し、アライメントカメラにより撮像される画像に基づいて、成形型452におけるレンズの角部を、アライメントマーク501が設けられた位置になるように調整することで、アライメントするようにしてもよい。
 <アライメントマークの例>
 アライメントマーク501は、例えば、図52で示されるようなアライメントマーク501A乃至501Kなどである。
 すなわち、アライメントマーク501A乃至501Cは方形からなり、アライメントマーク501D,501Eは円形からなり、アライメントマーク501F乃至501Iは多角形からなり、アライメントマーク501J,501Kは複数の線状形状からなる。
 <アライメントマークをガラス基板上と成形型とに設ける例>
 また、アライメントマーク501A乃至501Kのうち、黒色部分と、グレー部分とを、それぞれ成形型452上のレンズ401の外周部分と、ガラス基板12上の領域Zgとの対応する位置にそれぞれ形成し、例えば、アライメントカメラにより撮像される画像に基づいて、相互に対応する位置関係となっているかを確認することで、レンズ401とガラス基板12との位置関係をアライメントするようにしてもよい。
 すなわち、アライメントマーク501Aの場合、図52で示されるように、レンズ401と成形型452とが適切な位置関係となるように、成形型452上に方形枠からなるグレー部分のアライメントマーク501’を設け、黒色部分となる方形部からなるアライメントマーク501を形成する。
 そして、図53の矢印方向から、ガラス基板12上のアライメントマーク501と、成形型452上のアライメントマーク501’とをアライメントカメラにより撮像し、黒色の方向状のアライメントマーク501が、グレーの方形枠からなるアライメントマーク501’に内包して重なるように撮像されるように成形型452の位置を調整することで、アライメントを調整するようにしてもよい。
 この場合、同一のカメラの同一視野内に、黒色部分のアライメントマーク501と、グレー部分のアライメントマーク501’とが配置されることが望ましいが、複数のカメラの位置関係を予めキャリブレーションしておき、複数のカメラで、対応する異なる位置に設けられたアライメントマーク501,501’との位置関係の対応によりアライメントするようにしてもよい。
 いずれにおいても、アライメントマーク501により、固体撮像素子11のガラス基板12上にレンズ401を高精度に位置決めして形成することが可能となる。
 <20.第20の実施の形態>
 以上においては、アライメントマークによりレンズ401と固体撮像素子11上のガラス基板12とを高精度に位置決めして形成する例について説明してきたが、レンズ401の有効領域にARコート402を形成することで、感度を向上させ、高精細な撮像を実現するようにしてもよい。
 すなわち、例えば、図54の最上段の太線で示されるように、ガラス基板12上、突出部401aの側面および平面部を含む非有効領域(図23の非有効領域131bに対応する)、並びに有効領域(図23の有効領域131aに対応する)の全域に、ARコート402-P1が形成されるようにしてもよい。
 また、例えば、図54の上から2番目で示されるように、レンズ401上の突出部401a内の有効領域にのみARコート402-P2が形成されるようにしてもよい。ARコート402-P2は、レンズ401上の突出部401a内の領域(有効領域(図23の有効領域131aに対応する))にのみ形成されることにより、実装リフロー熱負荷時等でレンズ401が熱による膨張や収縮することで生じる応力を低減させることが可能となり、ARコート402-P2のクラックの発生を抑制することができる。
 さらに、例えば、図54の上から3番目で示されるように、レンズ401上の突出部401aの平面部を含む、突出部401aの内側の領域(有効領域(図23の有効領域131aに対応する))にARコート402-P3が形成されるようにしてもよい。ARコート402-P3は、レンズ401上の突出部401aを含む、突出部401aの内側の領域にのみ形成されることにより、実装リフロー熱負荷時等でレンズ401が熱による膨張や収縮することで生じる、ARコート402-P3に対して生じる応力を低減させることが可能となり、クラックの発生を抑制することができる。
 さらに、例えば、図54の上から4番目で示されるように、レンズ401上の突出部401aの平面部とその外周部の一部に加えて、突出部401aの内側の領域(有効領域(図23の有効領域131aに対応する))にARコート402-P4が形成され、さらに、ガラス基板12とレンズ401における、ガラス基板12との境界付近の領域にARコート402-P5が形成されるようにしてもよい。ARコート402-P4,402-P5のように、レンズ401の側面部分の一部にARコートが形成されない領域が形成されることにより、実装リフロー熱負荷時等でレンズ401が熱による膨張や収縮することで生じる、ARコート402-P2に対して生じる応力を低減させることが可能となり、クラックの発生を抑制することができる。
 図55は、レンズ401に対して、ARコート402が形成される領域を様々に変化させて実装リフロー熱負荷時にARコート402に生じる応力分布をまとめたものである。
 図55は、上部が、レンズ401を水平垂直にそれぞれ2分割したときの、レンズ401とARコート402の外形形状であり、下部が、対応する実装リフロー熱負荷時のARコート402に生じる応力分布である。
 図55の左部は、周辺のガラス基板12、レンズ401の側面、突出部401a、および突出部401aの内部を含めた全体にARコートが形成されたARコート402AAが形成されている場合である。
 図55の左から2番目は、図55の最左部の構成に対して、周辺のガラス基板12、およびレンズ401の側面にARコート形成されず、それ以外の領域にARコートが形成されたARコート402ABの場合である。
 図55の左から3番目は、図55の最左部の構成に対して、レンズ401の側面の領域にARコートが形成されておらず、周辺のガラス基板12、突出部401a、および突出部401aの内部にARコートがなされたARコート402ACの場合である。
 図55の左から4番目は、図55の最左部の構成に対して、レンズ401の側面の領域、突出部401aの平面部、突出部401aの内側であって、突出部401aの上面の平坦部から所定の幅Aまでの領域にARコートが形成されておらず、それ以外の突出部401aの内部および周辺のガラス基板12にARコートがなされたARコート402ADの場合である。ここで、幅Aは、例えば、100μmである。
 図55の左から5番目は、図55の最左部の構成に対して、突出部401aの内側、突出部401aの上面の平坦部、突出部401aの外側の側面であって、平坦部から所定の幅Aだけ下までの領域にARコートが形成されているARコート402AEの場合である。
 図55の左から6番目は、図55の最左部の構成に対して、突出部401aの内側、突出部401aの上面の平坦部、突出部401aの外側の側面であって、平坦部から所定の幅2Aだけ下までの領域にARコートが形成されているARコート402AFの場合である。
 図55の左から7番目は、図55の最左部の構成に対して、突出部401aの内側、突出部401aの上面の平坦部、突出部401aの外側の側面であって、平坦部から所定の幅3Aだけ下までの領域にARコートが形成されているARコート402AGの場合である。
 図55の左から8番目は、図55の最左部の構成に対して、突出部401aの内側、突出部401aの上面の平坦部、突出部401aの外側の側面であって、平坦部から所定の幅4Aだけ下までの領域にARコートが形成されているARコート402AHの場合である。
 図55の最左部との比較により、いずれにおいてもARコート402が、レンズ401の全面を覆うように形成されたARコート402AAよりも、レンズ401の突出部401aよりも内側におけるARコートが、ガラス基板12上のARコート402と連続的に繋がっていない状態で形成される方がARコート402に生じる応力が小さいことが示されている。
 以上のように、ARコート402が、レンズ401上に形成されることにより、フレアやゴーストの発生を抑制することが可能となり、より高精細な画像を撮像することが可能となる。
 また、形成されるARコート402は、突出部401aを含むレンズ401の有効領域と非有効領域とを含む全面と、その外周部となるガラス基板12上において、有効領域、およびガラス基板12以外の少なくとも一部にARコートが形成されない領域を設けるようにすることで、実装リフロー熱負荷時や信頼性検査等の加熱による膨張収縮に起因するクラックの発生を抑制することが可能となる。
 尚、ここでは、ARコート402について説明してきたが、レンズ401の表面に製膜される構成であれば、他の膜でもよく、例えば、モスアイ等の反射防止膜等であっても同様である。
 また、以上においては、突出部401aを備えたレンズの例について説明してきたが、突出部401aを備えていないレンズであっても、有効領域と非有効領域とを含む全面と、その外周部となるガラス基板12上において、有効領域、およびガラス基板12以外の少なくとも一部にARコートが形成されない領域が設けられればよい。換言すれば、レンズ401に形成されるARコート402が、レンズ側面およびガラス基板12上に形成されるARコート402と連続的に繋がった状態で形成されないようにすればよい。このため、レンズ401は、例えば、2段側面型レンズ401Lであってもよく、レンズ401上に形成されるARコート402が、レンズ側面、およびガラス基板12上に形成されるARコート402と連続的に繋がった状態で形成されないように形成されれば、同様の効果を奏する。
 <21.第21の実施の形態>
 以上においては、レンズ401に形成されるARコート402が、ガラス基板12上に形成されるARコート402と連続的に繋がった状態で形成されないようにすることで、実装リフロー熱負荷時に熱に起因する膨張収縮によりARコート402の生じる応力を低減させる例に説明してきた。
 しかしながら、レンズ401の突出部401aや側面を覆うように遮光膜が形成されるようにして、側面フレアの発生を抑制するようにしてもよい。
 すなわち、図56の最上段で示されるように、ガラス基板12上において、レンズ401の側面、および突出部401aの上面の平面部の高さまでの全範囲、すなわち、有効領域以外の範囲に遮光膜521が形成されるようにしてもよい。
 また、図56の上から2番目で示されるように、ガラス基板12上からレンズ401の側面、および突出部401aの上面の平面部までの全面、すなわち、有効領域以外の表面部分の全体に遮光膜521が形成されるようにしてもよい。
 さらに、図56の上から3番目で示されるように、ガラス基板12上からレンズ401の突出部401aの側面に遮光膜521が形成されるようにしてもよい。
 また、図56の上から4番目で示されるように、ガラス基板12上からレンズ401の突出部401aの側面における、ガラス基板12から所定の高さまでの範囲に遮光膜521が形成されるようにしてもよい。
 さらに、図56の上から5番目で示されるように、レンズ401の突出部401aの側面のみに遮光膜521が形成されるようにしてもよい。
 また、図56の上から6番目で示されるように、ガラス基板12上の2段側面型レンズ401の2つの側面の最高位置までの範囲に遮光膜521が形成されるようにしてもよい。
 さらに、図56の上から7番目で示されるように、ガラス基板12上の2段側面型レンズ401の2つの側面の最高位置までの表面の全体、および、固体撮像素子11の外周部分を覆うように遮光膜521が形成されるようにしてもよい。
 いずれにおいても、遮光膜521は、部分成膜により形成する、成膜後リソグラフィすることで形成する、レジストを形成した後、成膜し、レジストをリフトオフすることで形成する、または、リソグラフィにより形成する。
 また、2段側面型レンズ401の外周部に遮光膜を形成するための土手を形成し、2段側面型レンズ401の外周部であって、土手の内側に遮光膜521を形成するようにしてもよい。
 すなわち、図57の最上段で示されるように、2段側面型レンズ401の外周部におけるガラス基板12上に、レンズ高さと同一の高さの土手531を形成し、2段側面型レンズ401の外周部であって、土手531の内側にリソグラフィ、または、塗布により遮光膜521を形成した後、CMP(Chemical Mechanical Polishing)等の研磨により、遮光膜521、レンズ401、および土手531の高さを揃えるようにしてもよい。
 また、図57の2段目で示されるように、2段側面型レンズ401の外周部におけるガラス基板12上に、レンズ高さと同一の高さの土手531を形成し、2段側面型レンズ401の外周部であって、土手531の内側に遮光膜521の材料を塗布するのみで、遮光膜521、レンズ401、および土手531の高さについては、遮光膜521の材料によるセルフアラインとするようにしてもよい。
 さらに、図57の3段目で示されるように、2段側面型レンズ401の外周部におけるガラス基板12上に、レンズ高さと同一の高さの土手531を形成し、2段側面型レンズ401の外周部であって、土手531の内側にリソグラフィにより遮光膜521を形成するのみにしてもよい。
 また、図57の4段目で示されるように、2段側面型レンズ401の外周部におけるガラス基板12上に、2段側面型レンズ401とガラス基板12との境界が繋がるように土手531を形成し、2段側面型レンズ401の外周部であって、土手531の内側にリソグラフィ、または、塗布により遮光膜521を形成した後、CMP(Chemical Mechanical Polishing)等の研磨により、遮光膜521、レンズ401、および土手531の高さを揃えるようにしてもよい。
 また、図57の5段目で示されるように、2段側面型レンズ401の外周部におけるガラス基板12上に、2段側面型レンズ401とガラス基板12との境界が繋がるように土手531を形成し、2段側面型レンズ401の外周部であって、土手531の内側に遮光膜521の材料を塗布するのみで、遮光膜521、レンズ401、および土手531の高さについては、遮光膜521の材料によるセルフアラインとするようにしてもよい。
 さらに、図57の6段目で示されるように、2段側面型レンズ401の外周部におけるガラス基板12上に、2段側面型レンズ401とガラス基板12との境界が繋がるように土手531を形成し、2段側面型レンズ401の外周部であって、土手531の内側にリソグラフィにより遮光膜521を形成するのみにしてもよい。
 いずれにおいても、レンズ401の突出部401aや側面を覆うように遮光膜が形成されるので、側面フレアの発生を抑制することが可能となる。
 尚、以上においては、レンズ401の外周部に遮光膜が形成される例について説明してきたが、レンズ401の外周部からの光が侵入できないものであればよいので、遮光膜に代えて、例えば、光吸収膜を形成するようにしてもよい。
 <22.電子機器への適用例>
 上述した図1,図4,図6乃至図17の撮像装置1は、例えば、デジタルスチルカメラやデジタルビデオカメラなどの撮像装置、撮像機能を備えた携帯電話機、または、撮像機能を備えた他の機器といった各種の電子機器に適用することができる。
 図58は、本技術を適用した電子機器としての撮像装置の構成例を示すブロック図である。
 図58に示される撮像装置1001は、光学系1002、シャッタ装置1003、固体撮像素子1004、駆動回路1005、信号処理回路1006、モニタ1007、およびメモリ1008を備えて構成され、静止画像および動画像を撮像可能である。
 光学系1002は、1枚または複数枚のレンズを有して構成され、被写体からの光(入射光)を固体撮像素子1004に導き、固体撮像素子1004の受光面に結像させる。
 シャッタ装置1003は、光学系1002および固体撮像素子1004の間に配置され、駆動回路1005の制御に従って、固体撮像素子1004への光照射期間および遮光期間を制御する。
 固体撮像素子1004は、上述した固体撮像素子を含むパッケージにより構成される。固体撮像素子1004は、光学系1002およびシャッタ装置1003を介して受光面に結像される光に応じて、一定期間、信号電荷を蓄積する。固体撮像素子1004に蓄積された信号電荷は、駆動回路1005から供給される駆動信号(タイミング信号)に従って転送される。
 駆動回路1005は、固体撮像素子1004の転送動作、および、シャッタ装置1003のシャッタ動作を制御する駆動信号を出力して、固体撮像素子1004およびシャッタ装置1003を駆動する。
 信号処理回路1006は、固体撮像素子1004から出力された信号電荷に対して各種の信号処理を施す。信号処理回路1006が信号処理を施すことにより得られた画像(画像データ)は、モニタ1007に供給されて表示されたり、メモリ1008に供給されて記憶(記録)されたりする。
 このように構成されている撮像装置1001においても、上述した光学系1002、および固体撮像素子1004に代えて、図1,図9,図11乃至図22のいずれかの撮像装置1を適用することにより、装置構成の小型化および低背化を実現しつつ、内乱反射に起因するゴーストやフレアを抑制することが可能となる。
 <23.固体撮像装置の使用例>
 図59は、上述の撮像装置1を使用する使用例を示す図である。
 上述した撮像装置1は、例えば、以下のように、可視光や、赤外光、紫外光、X線等の光をセンシングする様々なケースに使用することができる。
 ・ディジタルカメラや、カメラ機能付きの携帯機器等の、鑑賞の用に供される画像を撮影する装置
 ・自動停止等の安全運転や、運転者の状態の認識等のために、自動車の前方や後方、周囲、車内等を撮影する車載用センサ、走行車両や道路を監視する監視カメラ、車両間等の測距を行う測距センサ等の、交通の用に供される装置
 ・ユーザのジェスチャを撮影して、そのジェスチャに従った機器操作を行うために、TVや、冷蔵庫、エアーコンディショナ等の家電に供される装置
 ・内視鏡や、赤外光の受光による血管撮影を行う装置等の、医療やヘルスケアの用に供される装置
 ・防犯用途の監視カメラや、人物認証用途のカメラ等の、セキュリティの用に供される装置
 ・肌を撮影する肌測定器や、頭皮を撮影するマイクロスコープ等の、美容の用に供される装置
 ・スポーツ用途等向けのアクションカメラやウェアラブルカメラ等の、スポーツの用に供される装置
 ・畑や作物の状態を監視するためのカメラ等の、農業の用に供される装置
 <24.内視鏡手術システムへの応用例>
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、内視鏡手術システムに適用されてもよい。
 図60は、本開示に係る技術(本技術)が適用され得る内視鏡手術システムの概略的な構成の一例を示す図である。
 図60では、術者(医師)11131が、内視鏡手術システム11000を用いて、患者ベッド11133上の患者11132に手術を行っている様子が図示されている。図示するように、内視鏡手術システム11000は、内視鏡11100と、気腹チューブ11111やエネルギー処置具11112等の、その他の術具11110と、内視鏡11100を支持する支持アーム装置11120と、内視鏡下手術のための各種の装置が搭載されたカート11200と、から構成される。
 内視鏡11100は、先端から所定の長さの領域が患者11132の体腔内に挿入される鏡筒11101と、鏡筒11101の基端に接続されるカメラヘッド11102と、から構成される。図示する例では、硬性の鏡筒11101を有するいわゆる硬性鏡として構成される内視鏡11100を図示しているが、内視鏡11100は、軟性の鏡筒を有するいわゆる軟性鏡として構成されてもよい。
 鏡筒11101の先端には、対物レンズが嵌め込まれた開口部が設けられている。内視鏡11100には光源装置11203が接続されており、当該光源装置11203によって生成された光が、鏡筒11101の内部に延設されるライトガイドによって当該鏡筒の先端まで導光され、対物レンズを介して患者11132の体腔内の観察対象に向かって照射される。なお、内視鏡11100は、直視鏡であってもよいし、斜視鏡又は側視鏡であってもよい。
 カメラヘッド11102の内部には光学系及び撮像素子が設けられており、観察対象からの反射光(観察光)は当該光学系によって当該撮像素子に集光される。当該撮像素子によって観察光が光電変換され、観察光に対応する電気信号、すなわち観察像に対応する画像信号が生成される。当該画像信号は、RAWデータとしてカメラコントロールユニット(CCU: Camera Control Unit)11201に送信される。
 CCU11201は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等によって構成され、内視鏡11100及び表示装置11202の動作を統括的に制御する。さらに、CCU11201は、カメラヘッド11102から画像信号を受け取り、その画像信号に対して、例えば現像処理(デモザイク処理)等の、当該画像信号に基づく画像を表示するための各種の画像処理を施す。
 表示装置11202は、CCU11201からの制御により、当該CCU11201によって画像処理が施された画像信号に基づく画像を表示する。
 光源装置11203は、例えばLED(Light Emitting Diode)等の光源から構成され、術部等を撮影する際の照射光を内視鏡11100に供給する。
 入力装置11204は、内視鏡手術システム11000に対する入力インタフェースである。ユーザは、入力装置11204を介して、内視鏡手術システム11000に対して各種の情報の入力や指示入力を行うことができる。例えば、ユーザは、内視鏡11100による撮像条件(照射光の種類、倍率及び焦点距離等)を変更する旨の指示等を入力する。
 処置具制御装置11205は、組織の焼灼、切開又は血管の封止等のためのエネルギー処置具11112の駆動を制御する。気腹装置11206は、内視鏡11100による視野の確保及び術者の作業空間の確保の目的で、患者11132の体腔を膨らめるために、気腹チューブ11111を介して当該体腔内にガスを送り込む。レコーダ11207は、手術に関する各種の情報を記録可能な装置である。プリンタ11208は、手術に関する各種の情報を、テキスト、画像又はグラフ等各種の形式で印刷可能な装置である。
 なお、内視鏡11100に術部を撮影する際の照射光を供給する光源装置11203は、例えばLED、レーザ光源又はこれらの組み合わせによって構成される白色光源から構成することができる。RGBレーザ光源の組み合わせにより白色光源が構成される場合には、各色(各波長)の出力強度及び出力タイミングを高精度に制御することができるため、光源装置11203において撮像画像のホワイトバランスの調整を行うことができる。また、この場合には、RGBレーザ光源それぞれからのレーザ光を時分割で観察対象に照射し、その照射タイミングに同期してカメラヘッド11102の撮像素子の駆動を制御することにより、RGBそれぞれに対応した画像を時分割で撮像することも可能である。当該方法によれば、当該撮像素子にカラーフィルタを設けなくても、カラー画像を得ることができる。
 また、光源装置11203は、出力する光の強度を所定の時間ごとに変更するようにその駆動が制御されてもよい。その光の強度の変更のタイミングに同期してカメラヘッド11102の撮像素子の駆動を制御して時分割で画像を取得し、その画像を合成することにより、いわゆる黒つぶれ及び白とびのない高ダイナミックレンジの画像を生成することができる。
 また、光源装置11203は、特殊光観察に対応した所定の波長帯域の光を供給可能に構成されてもよい。特殊光観察では、例えば、体組織における光の吸収の波長依存性を利用して、通常の観察時における照射光(すなわち、白色光)に比べて狭帯域の光を照射することにより、粘膜表層の血管等の所定の組織を高コントラストで撮影する、いわゆる狭帯域光観察(Narrow Band Imaging)が行われる。あるいは、特殊光観察では、励起光を照射することにより発生する蛍光により画像を得る蛍光観察が行われてもよい。蛍光観察では、体組織に励起光を照射し当該体組織からの蛍光を観察すること(自家蛍光観察)、又はインドシアニングリーン(ICG)等の試薬を体組織に局注するとともに当該体組織にその試薬の蛍光波長に対応した励起光を照射し蛍光像を得ること等を行うことができる。光源装置11203は、このような特殊光観察に対応した狭帯域光及び/又は励起光を供給可能に構成され得る。
 図61は、図60に示すカメラヘッド11102及びCCU11201の機能構成の一例を示すブロック図である。
 カメラヘッド11102は、レンズユニット11401と、撮像部11402と、駆動部11403と、通信部11404と、カメラヘッド制御部11405と、を有する。CCU11201は、通信部11411と、画像処理部11412と、制御部11413と、を有する。カメラヘッド11102とCCU11201とは、伝送ケーブル11400によって互いに通信可能に接続されている。
 レンズユニット11401は、鏡筒11101との接続部に設けられる光学系である。鏡筒11101の先端から取り込まれた観察光は、カメラヘッド11102まで導光され、当該レンズユニット11401に入射する。レンズユニット11401は、ズームレンズ及びフォーカスレンズを含む複数のレンズが組み合わされて構成される。
 撮像部11402は、撮像素子で構成される。撮像部11402を構成する撮像素子は、1つ(いわゆる単板式)であってもよいし、複数(いわゆる多板式)であってもよい。撮像部11402が多板式で構成される場合には、例えば各撮像素子によってRGBそれぞれに対応する画像信号が生成され、それらが合成されることによりカラー画像が得られてもよい。あるいは、撮像部11402は、3D(Dimensional)表示に対応する右目用及び左目用の画像信号をそれぞれ取得するための1対の撮像素子を有するように構成されてもよい。3D表示が行われることにより、術者11131は術部における生体組織の奥行きをより正確に把握することが可能になる。なお、撮像部11402が多板式で構成される場合には、各撮像素子に対応して、レンズユニット11401も複数系統設けられ得る。
 また、撮像部11402は、必ずしもカメラヘッド11102に設けられなくてもよい。例えば、撮像部11402は、鏡筒11101の内部に、対物レンズの直後に設けられてもよい。
 駆動部11403は、アクチュエータによって構成され、カメラヘッド制御部11405からの制御により、レンズユニット11401のズームレンズ及びフォーカスレンズを光軸に沿って所定の距離だけ移動させる。これにより、撮像部11402による撮像画像の倍率及び焦点が適宜調整され得る。
 通信部11404は、CCU11201との間で各種の情報を送受信するための通信装置によって構成される。通信部11404は、撮像部11402から得た画像信号をRAWデータとして伝送ケーブル11400を介してCCU11201に送信する。
 また、通信部11404は、CCU11201から、カメラヘッド11102の駆動を制御するための制御信号を受信し、カメラヘッド制御部11405に供給する。当該制御信号には、例えば、撮像画像のフレームレートを指定する旨の情報、撮像時の露出値を指定する旨の情報、並びに/又は撮像画像の倍率及び焦点を指定する旨の情報等、撮像条件に関する情報が含まれる。
 なお、上記のフレームレートや露出値、倍率、焦点等の撮像条件は、ユーザによって適宜指定されてもよいし、取得された画像信号に基づいてCCU11201の制御部11413によって自動的に設定されてもよい。後者の場合には、いわゆるAE(Auto Exposure)機能、AF(Auto Focus)機能及びAWB(Auto White Balance)機能が内視鏡11100に搭載されていることになる。
 カメラヘッド制御部11405は、通信部11404を介して受信したCCU11201からの制御信号に基づいて、カメラヘッド11102の駆動を制御する。
 通信部11411は、カメラヘッド11102との間で各種の情報を送受信するための通信装置によって構成される。通信部11411は、カメラヘッド11102から、伝送ケーブル11400を介して送信される画像信号を受信する。
 また、通信部11411は、カメラヘッド11102に対して、カメラヘッド11102の駆動を制御するための制御信号を送信する。画像信号や制御信号は、電気通信や光通信等によって送信することができる。
 画像処理部11412は、カメラヘッド11102から送信されたRAWデータである画像信号に対して各種の画像処理を施す。
 制御部11413は、内視鏡11100による術部等の撮像、及び、術部等の撮像により得られる撮像画像の表示に関する各種の制御を行う。例えば、制御部11413は、カメラヘッド11102の駆動を制御するための制御信号を生成する。
 また、制御部11413は、画像処理部11412によって画像処理が施された画像信号に基づいて、術部等が映った撮像画像を表示装置11202に表示させる。この際、制御部11413は、各種の画像認識技術を用いて撮像画像内における各種の物体を認識してもよい。例えば、制御部11413は、撮像画像に含まれる物体のエッジの形状や色等を検出することにより、鉗子等の術具、特定の生体部位、出血、エネルギー処置具11112の使用時のミスト等を認識することができる。制御部11413は、表示装置11202に撮像画像を表示させる際に、その認識結果を用いて、各種の手術支援情報を当該術部の画像に重畳表示させてもよい。手術支援情報が重畳表示され、術者11131に提示されることにより、術者11131の負担を軽減することや、術者11131が確実に手術を進めることが可能になる。
 カメラヘッド11102及びCCU11201を接続する伝送ケーブル11400は、電気信号の通信に対応した電気信号ケーブル、光通信に対応した光ファイバ、又はこれらの複合ケーブルである。
 ここで、図示する例では、伝送ケーブル11400を用いて有線で通信が行われていたが、カメラヘッド11102とCCU11201との間の通信は無線で行われてもよい。
 以上、本開示に係る技術が適用され得る内視鏡手術システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、例えば、内視鏡11100や、カメラヘッド11102(の撮像部11402)、CCU11201(の画像処理部11412)等に適用され得る。具体的には、例えば、図1,図9,図11乃至図22の撮像装置1は、レンズユニット11401および撮像部10402に適用することができる。レンズユニット11401および撮像部10402に本開示に係る技術を適用することにより、装置構成の小型化および低背化を実現すると共に、内乱反射に起因するフレアやゴーストの発生を抑制させることが可能となる。
 なお、ここでは、一例として内視鏡手術システムについて説明したが、本開示に係る技術は、その他、例えば、顕微鏡手術システム等に適用されてもよい。
 <25.移動体への応用例>
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
 図62は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図62に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図62の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。
 図63は、撮像部12031の設置位置の例を示す図である。
 図63では、車両12100は、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。
 撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。撮像部12101及び12105で取得される前方の画像は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。
 なお、図63には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。
 以上、本開示に係る技術が適用され得る車両制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、例えば、撮像部12031に適用され得る。具体的には、例えば、図1,図9,図11乃至図22の撮像装置1は、撮像部12031に適用することができる。撮像部12031に本開示に係る技術を適用することにより、装置構成の小型化および低背化を実現すると共に、内乱反射に起因するフレアやゴーストの発生を抑制させることが可能となる。
 尚、本開示は、以下のような構成も取ることができる。
<1> 入射光の光量に応じて光電変換により画素信号を生成する固体撮像素子と、
 前記固体撮像素子の受光面に対して、前記入射光を合焦させる、複数のレンズからなるレンズ群とを含み、
 前記レンズ群のうち、前記入射光の入射方向に対して最下位層を構成する最下位層レンズが、前記入射光を受光する方向に対して最前段に構成され、
 前記最下位層レンズは、非球面の凹型レンズであり、
 前記固体撮像素子上に設けられ、前記最下位層レンズが貼り付けられるガラス基板の厚さは、前記最下位層レンズの最も薄い厚さよりも厚く、前記最下位層レンズの最も厚い厚さは、前記固体撮像素子上に設けられたガラス基板の厚さよりも厚い
 撮像装置。
<2> 前記最下位層レンズの体積は、前記ガラス基板の体積よりも大きい
 <1>に記載の撮像装置。
<3> 前記最下位層レンズは、前記入射光を前記固体撮像素子に対して集光させる有効領域が設定され、
 前記有効領域の外周部となる、最下位層レンズ側面が、多段に形成される
 <1>または<2>に記載の撮像装置。
<4> 前記有効領域は、前記最下位層レンズの入射光に対する垂直方向の幅に対して略中央に配置され、前記有効領域の外周部には、前記入射光を必ずしも前記固体撮像素子に対して集光させない非有効領域が設定され、
 前記非有効領域となる前記最下位層レンズ側面が、多段に形成される
 <3>に記載の撮像装置。
<5> 前記最下位層レンズの中心を通り、前記レンズの短辺または長辺のほぼ中央を通る断面形状において、前記多段に形成される前記最下位層レンズ側面に対応する位置に変曲点が形成される
 <4>に記載の撮像装置。
<6> 前記変曲点は、前記ガラス基板からの高さが、前記最下位層レンズの最も薄い厚さとなる高さよりも高い位置に形成される
 <5>に記載の撮像装置。
<7> 前記多段に形成される前記最下位層レンズ側面のそれぞれの平均面間距離の差が、前記固体撮像素子を構成するシリコン基板の厚さよりも大きい
 <3>に記載の撮像装置。
<8> 前記多段に形成される前記最下位層レンズ側面のそれぞれの平均面間距離の差が、前記最下位層レンズの有効領域の前記入射光の入射方向に対して垂直となる領域幅に対して1%より大きい
 <3>に記載の撮像装置。
<9> 前記最下位層レンズの外周側面部の入射光の入射方向に平行な断面形状は、垂直側面、テーパ形状、ラウンド形状、および多段側面形状の少なくともいずれかである
 <1>乃至<8>のいずれかに記載の撮像装置。
<10> 前記最下位層レンズの外周側面には、前記最下位層レンズの最も厚い厚さよりも前記ガラス基板からの厚さが厚く、平面部を備えた土手状の突出部が形成される
 <1>乃至<9>のいずれかに記載の撮像装置。
 1 撮像装置, 10 一体化構成部, 11 (CPS構造の)固体撮像素子, 11a 下側基板(ロジック基板), 11b 上側基板(画素センサ基板), 11c カラーフィルタ, 11d オンチップレンズ, 12 ガラス基板, 13 接着剤, 14 IRCF(赤外光カットフィルタ), 14’ IRCFガラス基板, 15 接着剤, 16 レンズ群, 17 回路基板, 18 アクチュエータ, 19 コネクタ, 20 スペーサ, 21 画素領域, 22 制御回路, 23 ロジック回路, 32 画素, 51 フォトダイオード, 81 シリコン基板, 83 配線層, 86 絶縁膜, 88 シリコン貫通電極, 91 ソルダマスク, 101 シリコン基板, 103 配線層, 105 チップ貫通電極, 106 接続用配線, 109 シリコン貫通電極, 131 レンズ, 151 接着剤, 171 レンズ群, 191 (COB構造の)固体撮像素子, 192 ワイヤボンド, 211 赤外光カット樹脂, 231 ガラス基板, 231a 凸部, 231b 空洞(キャビティ), 251 赤外光カット機能を備えた塗布剤, 271 レンズ, 271a ARコート, 291 レンズ, 291a 反射防止処理部, 301 赤外光カットレンズ, 321 ガラス基板, 351 屈折膜, 371,371-1乃至371-4,381 付加膜, 401,401A乃至401U,401AA乃至AH レンズ, 401a 突出部, 401b,401b’ 裾引き部, 401d 裾引き部, 402,402A乃至402U,402AA乃至AH,402-P1乃至402-P5 ARコート, 451 基板, 452,452’,452’’,452’’’ 成形型, 453 遮光膜, 461 紫外光硬化樹脂, 461a 浸み出し部, 501,501’,501A乃至501K アライメントマーク, 521 遮光膜, 531 土手

Claims (10)

  1.  入射光の光量に応じて光電変換により画素信号を生成する固体撮像素子と、
     前記固体撮像素子の受光面に対して、前記入射光を合焦させる、複数のレンズからなるレンズ群とを含み、
     前記レンズ群のうち、前記入射光の入射方向に対して最下位層を構成する最下位層レンズが、前記入射光を受光する方向に対して最前段に構成され、
     前記最下位層レンズは、非球面の凹型レンズであり、
     前記固体撮像素子上に設けられ、前記最下位層レンズが貼り付けられるガラス基板の厚さは、前記最下位層レンズの最も薄い厚さよりも厚く、前記最下位層レンズの最も厚い厚さは、前記固体撮像素子上に設けられたガラス基板の厚さよりも厚い
     撮像装置。
  2.  前記最下位層レンズの体積は、前記ガラス基板の体積よりも大きい
     請求項1に記載の撮像装置。
  3.  前記最下位層レンズは、前記入射光を前記固体撮像素子に対して集光させる有効領域が設定され、
     前記有効領域の外周部となる、最下位層レンズ側面が、多段に形成される
     請求項1に記載の撮像装置。
  4.  前記有効領域は、前記最下位層レンズの入射光に対する垂直方向の幅に対して略中央に配置され、前記有効領域の外周部には、前記入射光を必ずしも前記固体撮像素子に対して集光させない非有効領域が設定され、
     前記非有効領域となる前記最下位層レンズ側面が、多段に形成される
     請求項3に記載の撮像装置。
  5.  前記最下位層レンズの中心を通り、前記最下位層レンズの短辺または長辺のほぼ中央を通る断面形状において、前記多段に形成される前記最下位層レンズ側面に対応する位置に変曲点が形成される
     請求項4に記載の撮像装置。
  6.  前記変曲点は、前記ガラス基板からの高さが、前記最下位層レンズの最も薄い厚さとなる高さよりも高い位置に形成される
     請求項5に記載の撮像装置。
  7.  前記多段に形成される前記最下位層レンズ側面のそれぞれの平均面間距離の差が、前記固体撮像素子を構成するシリコン基板の厚さよりも大きい
     請求項3に記載の撮像装置。
  8.  前記多段に形成される前記最下位層レンズ側面のそれぞれの平均面間距離の差が、前記最下位層レンズの有効領域の前記入射光の入射方向に対して垂直となる領域幅に対して1%より大きい
     請求項3に記載の撮像装置。
  9.  前記最下位層レンズの外周側面部の入射光の入射方向に平行な断面形状は、垂直側面、テーパ形状、ラウンド形状、および多段側面形状の少なくともいずれかである
     請求項1に記載の撮像装置。
  10.  前記最下位層レンズの外周側面には、前記最下位層レンズの最も厚い厚さよりも前記ガラス基板からの厚さが厚く、平面部を備えた土手状の突出部が形成される
     請求項1に記載の撮像装置。
PCT/JP2019/020588 2018-06-08 2019-05-24 撮像装置 WO2019235247A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112019002902.9T DE112019002902T5 (de) 2018-06-08 2019-05-24 Bildgebungsvorrichtung
KR1020207034251A KR20210018248A (ko) 2018-06-08 2019-05-24 촬상 장치
CN201980029488.1A CN112055826B (zh) 2018-06-08 2019-05-24 成像装置
JP2020523621A JPWO2019235247A1 (ja) 2018-06-08 2019-05-24 撮像装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-110253 2018-06-08
JP2018110253 2018-06-08

Publications (1)

Publication Number Publication Date
WO2019235247A1 true WO2019235247A1 (ja) 2019-12-12

Family

ID=68769483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020588 WO2019235247A1 (ja) 2018-06-08 2019-05-24 撮像装置

Country Status (5)

Country Link
JP (1) JPWO2019235247A1 (ja)
KR (1) KR20210018248A (ja)
CN (1) CN112055826B (ja)
DE (1) DE112019002902T5 (ja)
WO (1) WO2019235247A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021187091A1 (ja) 2020-03-17 2021-09-23 ソニーセミコンダクタソリューションズ株式会社 センサパッケージおよびその製造方法、並びに撮像装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009145597A (ja) * 2007-12-13 2009-07-02 Sharp Corp 撮像レンズ、撮像ユニット、及び該撮像ユニットを搭載した携帯型情報端末
JP2013114235A (ja) * 2011-12-01 2013-06-10 Canon Inc 光学素子、光学素子の製造方法、光学系および光学機器
JP2014078012A (ja) * 2013-11-15 2014-05-01 Hitachi Maxell Ltd 樹脂レンズおよび樹脂レンズの製造方法
JP2014142629A (ja) * 2012-12-28 2014-08-07 Fujifilm Corp 硬化性樹脂組成物、赤外線カットフィルタ及びこれを用いた固体撮像素子
JP2014235291A (ja) * 2013-05-31 2014-12-15 アルプス電気株式会社 鏡筒付き光学素子およびその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5927039B2 (ja) * 2012-05-28 2016-05-25 富士フイルム株式会社 電子内視鏡装置及びその撮像モジュール
JP6163398B2 (ja) 2013-09-18 2017-07-12 ソニーセミコンダクタソリューションズ株式会社 撮像素子、製造装置、製造方法
JP2016051746A (ja) * 2014-08-29 2016-04-11 ソニー株式会社 固体撮像装置、および電子装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009145597A (ja) * 2007-12-13 2009-07-02 Sharp Corp 撮像レンズ、撮像ユニット、及び該撮像ユニットを搭載した携帯型情報端末
JP2013114235A (ja) * 2011-12-01 2013-06-10 Canon Inc 光学素子、光学素子の製造方法、光学系および光学機器
JP2014142629A (ja) * 2012-12-28 2014-08-07 Fujifilm Corp 硬化性樹脂組成物、赤外線カットフィルタ及びこれを用いた固体撮像素子
JP2014235291A (ja) * 2013-05-31 2014-12-15 アルプス電気株式会社 鏡筒付き光学素子およびその製造方法
JP2014078012A (ja) * 2013-11-15 2014-05-01 Hitachi Maxell Ltd 樹脂レンズおよび樹脂レンズの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021187091A1 (ja) 2020-03-17 2021-09-23 ソニーセミコンダクタソリューションズ株式会社 センサパッケージおよびその製造方法、並びに撮像装置

Also Published As

Publication number Publication date
CN112055826A (zh) 2020-12-08
CN112055826B (zh) 2023-04-14
DE112019002902T5 (de) 2021-04-08
KR20210018248A (ko) 2021-02-17
JPWO2019235247A1 (ja) 2021-06-24

Similar Documents

Publication Publication Date Title
US11614606B2 (en) Camera module, method of manufacturing the same, and electronic apparatus
WO2019235249A1 (ja) 撮像装置
WO2019235250A1 (ja) 撮像装置
WO2019235246A1 (ja) 撮像装置
WO2019235248A1 (ja) 撮像装置
WO2019131488A1 (ja) カメラパッケージ、カメラパッケージの製造方法、および、電子機器
WO2019235247A1 (ja) 撮像装置
WO2020246293A1 (ja) 撮像装置
JP7532500B2 (ja) センサパッケージおよび撮像装置
WO2021095562A1 (ja) 撮像装置および電子機器
US20230030963A1 (en) Imaging apparatus and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19815666

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020523621

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19815666

Country of ref document: EP

Kind code of ref document: A1