WO2019234812A1 - 無段変速機 - Google Patents

無段変速機 Download PDF

Info

Publication number
WO2019234812A1
WO2019234812A1 PCT/JP2018/021493 JP2018021493W WO2019234812A1 WO 2019234812 A1 WO2019234812 A1 WO 2019234812A1 JP 2018021493 W JP2018021493 W JP 2018021493W WO 2019234812 A1 WO2019234812 A1 WO 2019234812A1
Authority
WO
WIPO (PCT)
Prior art keywords
continuously variable
variable transmission
input shaft
disk
coupled
Prior art date
Application number
PCT/JP2018/021493
Other languages
English (en)
French (fr)
Inventor
忠彦 加藤
Original Assignee
株式会社ユニバンス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユニバンス filed Critical 株式会社ユニバンス
Priority to JP2020523871A priority Critical patent/JPWO2019234812A1/ja
Priority to PCT/JP2018/021493 priority patent/WO2019234812A1/ja
Publication of WO2019234812A1 publication Critical patent/WO2019234812A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H15/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members
    • F16H15/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members without members having orbital motion
    • F16H15/04Gearings providing a continuous range of gear ratios
    • F16H15/06Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B
    • F16H15/32Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line
    • F16H15/36Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line with concave friction surface, e.g. a hollow toroid surface
    • F16H15/38Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line with concave friction surface, e.g. a hollow toroid surface with two members B having hollow toroid surfaces opposite to each other, the member or members A being adjustably mounted between the surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings

Definitions

  • the present invention relates to a continuously variable transmission, and more particularly to a continuously variable transmission including a toroidal continuously variable transmission and a planetary device.
  • Patent Document 1 A continuously variable transmission in which a toroidal continuously variable transmission having a roller sandwiched between an input disk and an output disk and a planetary gear device are connected coaxially and in series is known.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a continuously variable transmission that can suppress energy loss and heat generation, and can further suppress thrust.
  • a continuously variable transmission includes an input disk to which torque and rotation are transmitted from an input shaft, an output disk for transmitting torque and rotation to a planetary device, and an output disk and an input disk.
  • a toroidal-type continuously variable transmission including a roller sandwiched therebetween.
  • the planetary apparatus includes a sun axis, an outer ring surrounding the sun axis, and a carrier that supports a rotating element that rolls between the outer ring and the sun axis. Any one of the three elements of the sun shaft, outer ring and carrier is coupled to the input shaft, and any of the two elements other than the element to which the input shaft is coupled is coupled to the output disk, and the two elements are coupled to the input shaft and the output disk. Elements other than are connected to the output shaft.
  • any one of the three elements of the planetary unit, the sun shaft, the outer ring, and the carrier is coupled to the input shaft.
  • Either of the two elements of the planetary device other than the element to which the input shaft is coupled is coupled to the output disk.
  • Elements other than the two elements connected to the input shaft and the output disk are connected to the output shaft.
  • the torque of the input shaft is distributed to the planetary device, it is possible to reduce the amount of torque transmitted by the toroidal continuously variable transmission that has a lower transmission efficiency than the planetary device. Thereby, deterioration of the transmission efficiency of the entire continuously variable transmission can be prevented, and the transmission efficiency of the entire continuously variable transmission can be improved. Furthermore, since the torque transmitted to the input disk can be suppressed by distributing the torque, the thrust force between the input disk and the output disk can be suppressed.
  • either the input shaft or the output disk is coupled to the carrier.
  • the rotation of the carrier that is, the input shaft or the output disk is distributed to the sun shaft and the outer ring. Since either the sun shaft or the outer ring is coupled to the output disk, in addition to the effect of claim 1, torque and rotation of the input shaft and the input disk can be efficiently output to the output shaft.
  • the thrust bearing is disposed between the receiving portion coupled to the input shaft and the output disk. Since the thrust bearing rotates due to the difference in angular velocity between the receiving portion that rotates integrally with the input shaft and the output disk, the number of rotations of the thrust bearing can be reduced. Therefore, in addition to the effect of Claim 1 or 2, the load of a thrust bearing can be reduced.
  • FIG. 1 is a skeleton diagram of a continuously variable transmission 10 according to the first embodiment.
  • the continuously variable transmission 10 includes a toroidal continuously variable transmission 20 and a planetary device 30.
  • the continuously variable transmission 10 includes an input shaft 11 to which torque and rotation are input from a drive source (not shown) including an engine, a motor, and the like, and an output shaft 12 disposed on the same axis as the input shaft 11. ing.
  • the toroidal-type continuously variable transmission 20 includes a pressurizing device 21, an input disk 24 that is rotatably attached to the input shaft 11 and movable in the axial direction, and is rotatable to the input shaft 11 opposite the input disk 24.
  • An output disk 25 to be attached and a roller 26 sandwiched between the input disk 24 and the output disk 25 are provided.
  • the toroidal continuously variable transmission 20 is a single cavity type full toroidal continuously variable transmission.
  • the pressure device 21 includes a cam plate 22 that rotates integrally with the input shaft 11, and a plurality of rollers 23 disposed between the cam plate 22 and the input disk 24.
  • the pressure device 21 elastically presses the input disk 24 toward the output disk 25 as the cam plate 22 rotates.
  • the receiving unit 27 is coupled to the input shaft 11.
  • a thrust bearing 28 such as a thrust roller bearing or a thrust ball bearing is disposed between the receiving portion 27 and the output disk 25.
  • a bearing (not shown) that receives thrust on the input side between a case (not shown) of the continuously variable transmission 10 and a portion of the input shaft 11 on the back side (left side in FIG. 1) of the input disk 24. ) Is arranged.
  • the planetary device 30 is arranged coaxially with the toroidal type continuously variable transmission 20.
  • the planetary device 30 includes a carrier 34 that supports a sun gear 31 (sun shaft), a ring gear 32 (outer ring) surrounding the sun gear 31, and a plurality of pinions 33 (rotating elements) that roll between the sun gear 31 and the ring gear 32.
  • the ring gear 32 is coupled to the output disk 25
  • the carrier 34 is coupled to the input shaft 11
  • the sun gear 31 is coupled to the output shaft 12.
  • the torque of the input shaft 11 is distributed to the input disk 24 and the planetary device 30, and then the torque is combined and output by the planetary device 30, so the toroidal continuously variable transmission 20.
  • the torque transmitted by can be reduced.
  • energy loss caused by slippage between the input disk 24 or output disk 25 and the roller 26 can be suppressed, and the heat generation amount can be reduced.
  • the continuously variable transmission 10 can be employed as a transmission having a large power source.
  • the toroidal continuously variable transmission 20 can be made smaller and lighter than when all the torque is transmitted to the toroidal continuously variable transmission. it can. Therefore, the continuously variable transmission 10 can be reduced in size and weight.
  • the torque of the input shaft 11 is distributed to the planetary device 30 having higher transmission efficiency than the transmission efficiency of the toroidal type continuously variable transmission 20, the amount of torque transmitted by the toroidal type continuously variable transmission 20 can be reduced. Thereby, deterioration of the transmission efficiency of the entire continuously variable transmission 10 by the toroidal type continuously variable transmission 20 can be prevented, and the transmission efficiency of the continuously variable transmission 10 can be improved.
  • the ratio coverage of the continuously variable transmission 10 becomes smaller than the ratio coverage of the toroidal-type continuously variable transmission 20 alone.
  • the torque of the input shaft 11 is distributed to the input disk 24 and the planetary device 30, and then the torque is combined by the planetary device 30.
  • the output of the continuously variable transmission 10 can ensure a desired ratio coverage.
  • a general-purpose thrust bearing 28 that is not a special bearing having a large capacity (such as an angular bearing) can be used.
  • the thrust received by the thrust bearing 28 can be suppressed, friction of the thrust bearing 28 and the like can be suppressed, and energy loss due to the thrust bearing 28 can be suppressed. Therefore, a decrease in transmission efficiency can be suppressed.
  • the full toroidal type continuously variable transmission has a smaller thrust generated in the roller 26 than the half toroidal type continuously variable transmission, so that the capacity of the thrust bearing 28 can be further reduced.
  • the rotation of the carrier 34 that is, the input shaft 11 is rotated according to the ratio between the number of teeth of the sun gear 31 and the number of teeth of the ring gear 32. 32. Since the ring gear 32 is coupled to the output disk 25, the torque and rotation of the input shaft 11 and the input disk 24 can be efficiently output from the sun gear 31 to the output shaft 12.
  • the thrust bearing 28 disposed between the receiving portion 27 coupled to the input shaft 11 and the output disk 25 rotates due to a difference in angular velocity between the receiving portion 27 and the output disk 25 that rotate integrally with the input shaft 11,
  • the rotational speed of the thrust bearing 28 can be reduced. Therefore, the load on the thrust bearing 28 can be reduced.
  • FIG. 2 is a skeleton diagram of the continuously variable transmission 40 according to the second embodiment.
  • the continuously variable transmission 40 includes a toroidal continuously variable transmission 20 and a planetary device 30.
  • the carrier 34 is coupled to the output disk 25, the sun gear 31 is coupled to the input shaft 11, and the ring gear 32 is coupled to the output shaft 12.
  • the rotation of the carrier 34 that is, the output disk 25 is rotated according to the ratio between the number of teeth of the sun gear 31 and the number of teeth of the ring gear 32. 32. Since the sun gear 31 is coupled to the input shaft 11, the torque and rotation of the input shaft 11 and the input disk 24 can be efficiently output from the ring gear 32 to the output shaft 12. Therefore, the same effect as 1st Embodiment is realizable.
  • FIG. 3 is a skeleton diagram of the continuously variable transmission 50 according to the third embodiment.
  • the continuously variable transmission 50 includes a toroidal continuously variable transmission 20 and a planetary device 30.
  • the carrier 34 is coupled to the output disk 25, the ring gear 32 is coupled to the input shaft 11, and the sun gear 31 is coupled to the output shaft 12.
  • the rotation of the carrier 34 that is, the output disk 25 is rotated according to the ratio between the number of teeth of the sun gear 31 and the number of teeth of the ring gear 32. 32. Since the ring gear 32 is coupled to the input shaft 11, the torque and rotation of the input shaft 11 and the input disk 24 can be efficiently output from the sun gear 31 to the output shaft 12. Therefore, the same effect as 1st Embodiment is realizable.
  • FIG. 4 is a skeleton diagram of the continuously variable transmission 60 according to the fourth embodiment.
  • the continuously variable transmission 60 includes a toroidal-type continuously variable transmission 20 and a planetary device 30.
  • the sun gear 31 is coupled to the output disk 25, the carrier 34 is coupled to the input shaft 11, and the ring gear 32 is coupled to the output shaft 12.
  • the carrier 34 that is, the input shaft 11 is rotated according to the ratio between the number of teeth of the sun gear 31 and the number of teeth of the ring gear 32. 32. Since the sun gear 31 is coupled to the output disk 25, the torque and rotation of the input shaft 11 and the input disk 24 can be efficiently output from the ring gear 32 to the output shaft 12. Therefore, the same effect as 1st Embodiment is realizable.
  • the planetary gear device 30 is described as an example, but the planetary gear device 30 is not necessarily limited thereto. It is naturally possible to use a planetary roller device that transmits power using traction instead of the planetary gear device. By using a planetary roller device as the planetary device 30, vibration and noise can be reduced and backlash can be eliminated.
  • the present invention is not necessarily limited thereto. It is naturally possible to use a half-toroidal continuously variable transmission as the toroidal continuously variable transmission 20. When a half-toroidal continuously variable transmission is used, it is preferable to use a double cavity in order to cancel the thrust generated in each cavity.
  • the pressurizing device 21 of the toroidal-type continuously variable transmission 20 is described, but the present invention is not necessarily limited thereto.
  • the pressurizing device 21 it is naturally possible to use a mechanism (for example, a hydraulic piston or the like) that can control the pressing force according to the torque and the gear ratio.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Friction Gearing (AREA)
  • Transmission Devices (AREA)

Abstract

エネルギー損失および発熱を抑制し、さらにスラストを抑制できる無段変速機を提供する。無段変速機(10)はトロイダル型無段変速機(20)及び遊星装置(30)を備える。遊星装置(30)の太陽軸(31)、外環(32)及びキャリヤ(34)の3要素のいずれかは入力軸(11)に結合し、入力軸(11)が結合した要素以外の2要素のいずれかは出力ディスク(25)に結合し、入力軸(11)及び出力ディスク(25)が結合した2要素以外の要素は出力軸(12)に結合する。

Description

無段変速機
 本発明は無段変速機に関し、特にトロイダル型無段変速機と遊星装置とを備える無段変速機に関するものである。
 入力ディスクと出力ディスクとの間にローラを挟持したトロイダル型無段変速機と遊星歯車装置とを同軸に且つ直列に接続した無段変速機が知られている(特許文献1)。
特開2016-20733号公報
 しかし、特許文献1の技術では、トロイダル型無段変速機の入力ディスクに全てのトルクが伝達されるので、入力ディスクや出力ディスクとローラとの滑りにより大きなエネルギー損失が生じ、発熱量も大きくなるという問題点がある。
 また、全てのトルクが入力ディスクに伝達されるので、トルク伝達を維持するためには、入力ディスクと出力ディスクとの間に大きなスラスト力が加わる。そのスラスト荷重を受けながら、入力ディスクと出力ディスクとの間の回転数の差を許容し、入力ディスク及び出力ディスクを支持するために大容量の特殊な軸受が必要となる。
 本発明は上述した問題点を解決するためになされたものであり、エネルギー損失および発熱を抑制し、さらにスラストを抑制できる無段変速機を提供することを目的とする。
 この目的を達成するために本発明の無段変速機は、トルク及び回転が入力軸から伝達される入力ディスクと、遊星装置にトルク及び回転を伝達する出力ディスクと、出力ディスクと入力ディスクとの間に挟持されるローラと、を備えるトロイダル型無段変速機を備える。遊星装置は、太陽軸と、太陽軸を囲む外環と、外環と太陽軸との間を転動する回転要素を支持するキャリヤと、を備える。太陽軸、外環およびキャリヤの3要素のいずれかは入力軸に結合し、入力軸が結合した要素以外の2要素のいずれかは出力ディスクに結合し、入力軸および出力ディスクが結合した2要素以外の要素は出力軸に結合する。
 請求項1記載の無段変速機によれば、遊星装置の太陽軸、外環およびキャリヤの3要素のいずれかは入力軸に結合する。入力軸が結合した要素以外の遊星装置の2要素のいずれかは出力ディスクに結合する。入力軸および出力ディスクが結合した2要素以外の要素は出力軸に結合する。これにより、入力軸のトルクが入力ディスクと遊星装置とに配分された後、遊星装置でトルクが結合されて出力されるので、トロイダル型無段変速機が伝達するトルクを小さくできる。その結果、入力ディスクや出力ディスクとローラとの滑りによって生じるエネルギー損失を抑制し、発熱量を小さくできる。
 また、入力軸のトルクが遊星装置に配分されるので、遊星装置に比べて伝達効率が低いトロイダル型無段変速機によるトルク伝達量を減らすことができる。これにより、無段変速機全体の伝達効率の悪化を防ぎ、無段変速機全体の伝達効率を向上できる。さらに、トルクが配分されることにより入力ディスクに伝達されるトルクを抑制できるので、入力ディスクと出力ディスクとの間のスラスト力を抑制できる。
 請求項2記載の無段変速機によれば、入力軸および出力ディスクのいずれかはキャリヤに結合する。これにより、太陽軸の大きさと外環の大きさとの比率に応じて、キャリヤ、即ち入力軸および出力ディスクのいずれかの回転を太陽軸および外環に配分する。太陽軸および外環のいずれかは出力ディスクに結合するので、請求項1の効果に加え、入力軸および入力ディスクのトルク及び回転を出力軸へ効率良く出力できる。
 請求項3記載の無段変速機によれば、入力軸に結合する受部と出力ディスクとの間にスラスト軸受が配置される。スラスト軸受は、入力軸と一体に回転する受部と出力ディスクとの角速度の差によって回転するので、スラスト軸受の回転数を小さくできる。よって、請求項1又は2の効果に加え、スラスト軸受の負荷を軽減できる。
 請求項4記載の無段変速機によれば、フルトロイダル型無段変速機を用いることにより、請求項1から3のいずれかの効果に加え、入力軸のトルクを入力ディスクと遊星装置とに配分した後、遊星装置でトルクを結合しても、必要な出力のレシオカバレッジを確保できる。
第1実施の形態における無段変速機のスケルトン図である。 第2実施の形態における無段変速機のスケルトン図である。 第3実施の形態における無段変速機のスケルトン図である。 第4実施の形態における無段変速機のスケルトン図である。
 以下、本発明の好ましい実施の形態について添付図面を参照して説明する。まず図1を参照して第1実施の形態における無段変速機10について説明する。図1は第1実施の形態における無段変速機10のスケルトン図である。図1に示すように無段変速機10は、トロイダル型無段変速機20と、遊星装置30と、を備えている。無段変速機10は、エンジンやモータ等を含む駆動源(図示せず)からトルク及び回転が入力される入力軸11と、入力軸11の同軸上に配置された出力軸12と、を備えている。
 トロイダル型無段変速機20は、加圧装置21と、入力軸11に回転自在に且つ軸方向へ移動可能に取り付けられる入力ディスク24と、入力ディスク24と対向して入力軸11に回転自在に取り付けられる出力ディスク25と、入力ディスク24と出力ディスク25との間に挟持されるローラ26と、を備えている。本実施形態では、トロイダル型無段変速機20は、シングルキャビティ式フルトロイダル型無段変速機である。
 加圧装置21は、入力軸11と一体に回転するカム板22と、カム板22と入力ディスク24との間に配置された複数のころ23と、を備えている。加圧装置21は、カム板22の回転に伴い、出力ディスク25側へ入力ディスク24を弾性的に押圧する。
 入力軸11には受部27が結合する。受部27と出力ディスク25との間に、スラストころ軸受やスラスト球軸受等のスラスト軸受28が配置されている。なお、無段変速機10のケース(図示せず)と、入力軸11のうち入力ディスク24よりも背面側(図1左側)の部位と、の間に入力側のスラストを受ける軸受(図示せず)が配置されている。
 遊星装置30は、トロイダル型無段変速機20と同軸に配置されている。遊星装置30は、サンギヤ31(太陽軸)と、サンギヤ31を囲むリングギヤ32(外環)と、サンギヤ31とリングギヤ32との間を転動する複数のピニオン33(回転要素)を支持するキャリヤ34と、を備えている。本実施形態では、リングギヤ32は出力ディスク25に結合し、キャリヤ34は入力軸11に結合し、サンギヤ31は出力軸12に結合する。
 無段変速機10によれば、入力軸11のトルクが入力ディスク24と遊星装置30とに配分された後、遊星装置30でトルクが結合されて出力されるので、トロイダル型無段変速機20が伝達するトルクを小さくできる。その結果、入力ディスク24や出力ディスク25とローラ26との滑りによって生じるエネルギー損失を抑制し、発熱量を小さくできる。これにより、パワーの大きな駆動源の変速機に無段変速機10を採用できる。
 入力軸11のトルクが入力ディスク24と遊星装置30とに配分されるので、トロイダル型無段変速機にトルク全てが伝達される場合に比べ、トロイダル型無段変速機20を小型化・軽量化できる。よって、無段変速機10の小型化・軽量化ができる。
 入力軸11のトルクが、トロイダル型無段変速機20の伝達効率よりも伝達効率の高い遊星装置30に配分されるので、トロイダル型無段変速機20によるトルク伝達量を減らすことができる。これにより、トロイダル型無段変速機20による無段変速機10全体の伝達効率の悪化を防ぎ、無段変速機10の伝達効率を向上できる。
 なお、入力ディスク24及び遊星装置30にトルクを配分することにより、トロイダル型無段変速機20単体のレシオカバレッジに比べ、無段変速機10のレシオカバレッジは小さくなる。しかし、トロイダル型無段変速機20にフルトロイダル型無段変速機を用いることにより、入力軸11のトルクを入力ディスク24と遊星装置30とに配分した後、遊星装置30でトルクを結合しても、無段変速機10の出力は所望のレシオカバレッジを確保できる。
 入力ディスク24及び遊星装置30にトルクが配分されることにより入力ディスク24に伝達されるトルクを抑制できるので、入力ディスク24及び出力ディスク25に加わるスラストを抑制できる。その結果、大容量の特殊な軸受(アンギュラ軸受など)ではない汎用のスラスト軸受28を用いることができる。
 また、スラスト軸受28が受けるスラストを抑制できるので、スラスト軸受28の摩擦等を抑制し、スラスト軸受28によるエネルギー損失を抑制できる。よって、伝達効率の低下を抑制できる。特にフルトロイダル型無段変速機は、ハーフトロイダル型無段変速機に比べ、ローラ26に生じるスラストが小さいので、スラスト軸受28の容量をさらに小さくできる。
 無段変速機10は、入力軸11がキャリヤ34に結合するので、サンギヤ31の歯数とリングギヤ32の歯数との比率に応じて、キャリヤ34、即ち入力軸11の回転をサンギヤ31及びリングギヤ32に配分する。リングギヤ32は出力ディスク25に結合するので、入力軸11及び入力ディスク24のトルク及び回転を、サンギヤ31から出力軸12へ効率良く出力できる。
 入力軸11に結合する受部27と出力ディスク25との間に配置されたスラスト軸受28は、入力軸11と一体に回転する受部27と出力ディスク25との角速度の差によって回転するので、スラスト軸受28の回転数を小さくできる。よって、スラスト軸受28の負荷を軽減できる。
 図2を参照して第2実施の形態について説明する。なお、第1実施形態で説明した部分と同一の部分については、同一の符号を付して以下の説明を省略する。図2は第2実施の形態における無段変速機40のスケルトン図である。
 図2に示すように無段変速機40は、トロイダル型無段変速機20と、遊星装置30と、を備えている。キャリヤ34は出力ディスク25に結合し、サンギヤ31は入力軸11に結合し、リングギヤ32は出力軸12に結合する。
 無段変速機40は、出力ディスク25がキャリヤ34に結合するので、サンギヤ31の歯数とリングギヤ32の歯数との比率に応じて、キャリヤ34、即ち出力ディスク25の回転をサンギヤ31及びリングギヤ32に配分する。サンギヤ31は入力軸11に結合するので、入力軸11及び入力ディスク24のトルク及び回転を、リングギヤ32から出力軸12へ効率良く出力できる。よって、第1実施形態と同様の作用効果を実現できる。
 図3を参照して第3実施の形態について説明する。なお、第1実施形態で説明した部分と同一の部分については、同一の符号を付して以下の説明を省略する。図3は第3実施の形態における無段変速機50のスケルトン図である。
 図3に示すように無段変速機50は、トロイダル型無段変速機20と、遊星装置30と、を備えている。キャリヤ34は出力ディスク25に結合し、リングギヤ32は入力軸11に結合し、サンギヤ31は出力軸12に結合する。
 無段変速機50は、出力ディスク25がキャリヤ34に結合するので、サンギヤ31の歯数とリングギヤ32の歯数との比率に応じて、キャリヤ34、即ち出力ディスク25の回転をサンギヤ31及びリングギヤ32に配分する。リングギヤ32は入力軸11に結合するので、入力軸11及び入力ディスク24のトルク及び回転を、サンギヤ31から出力軸12へ効率良く出力できる。よって、第1実施形態と同様の作用効果を実現できる。
 図4を参照して第4実施の形態について説明する。なお、第1実施形態で説明した部分と同一の部分については、同一の符号を付して以下の説明を省略する。図4は第4実施の形態における無段変速機60のスケルトン図である。
 図4に示すように無段変速機60は、トロイダル型無段変速機20と、遊星装置30と、を備えている。サンギヤ31は出力ディスク25に結合し、キャリヤ34は入力軸11に結合し、リングギヤ32は出力軸12に結合する。
 無段変速機50は、入力軸11がキャリヤ34に結合するので、サンギヤ31の歯数とリングギヤ32の歯数との比率に応じて、キャリヤ34、即ち入力軸11の回転をサンギヤ31及びリングギヤ32に配分する。サンギヤ31は出力ディスク25に結合するので、入力軸11及び入力ディスク24のトルク及び回転を、リングギヤ32から出力軸12へ効率良く出力できる。よって、第1実施形態と同様の作用効果を実現できる。
 以上、実施の形態に基づき本発明を説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。
 実施形態では、遊星歯車装置を例示して遊星装置30を説明したが、必ずしもこれに限られるものではない。遊星歯車装置に代えて、トラクションを利用して動力を伝達する遊星ローラ装置を用いることは当然可能である。遊星装置30として遊星ローラ装置を用いることにより、振動や騒音を小さくできると共に、バックラッシを無くすことができる。
 実施形態では、トロイダル型無段変速機20として、シングルキャビティ式フルトロイダル型無段変速機を用いる場合について説明したが、必ずしもこれに限られるものではない。トロイダル型無段変速機20としてハーフトロイダル型無段変速機を用いることは当然可能である。ハーフトロイダル型無段変速機を用いる場合、各キャビティに生じるスラストを相殺するため、ダブルキャビティにすることが好ましい。
 実施形態では、トロイダル型無段変速機20の加圧装置21として、トルクに比例する押付力を発生する機械式カム機構を用いる場合について説明したが、必ずしもこれに限られるものではない。加圧装置21として、トルク及び変速比に応じて押付力を制御できる機構(例えば油圧ピストン等)を用いることは当然可能である。
 10,40,50,60 無段変速機
 11 入力軸
 12 出力軸
 20 トロイダル型無段変速機
 24 入力ディスク
 25 出力ディスク
 26 ローラ
 27 受部
 28 スラスト軸受
 30 遊星装置
 31 サンギヤ(太陽軸)
 32 リングギヤ(外環)
 33 ピニオン(回転要素)
 34 キャリヤ

Claims (4)

  1.  トルク及び回転が入力軸から伝達される入力ディスクと、遊星装置にトルク及び回転を伝達する出力ディスクと、前記出力ディスクと前記入力ディスクとの間に挟持されるローラと、を備えるトロイダル型無段変速機を備え、
     前記遊星装置は、太陽軸と、前記太陽軸を囲む外環と、前記外環と前記太陽軸との間を転動する回転要素を支持するキャリヤと、を備え、
     前記太陽軸、前記外環および前記キャリヤの3要素のいずれかは前記入力軸に結合し、
     前記入力軸が結合した要素以外の2要素のいずれかは前記出力ディスクに結合し、
     前記入力軸および前記出力ディスクが結合した2要素以外の要素は出力軸に結合する無段変速機。
  2.  前記入力軸および前記出力ディスクのいずれかは前記キャリヤに結合する請求項1記載の無段変速機。
  3.  前記入力軸に結合する受部と、
     前記受部と前記出力ディスクとの間に配置されるスラスト軸受と、を備える請求項1又は2に記載の無段変速機。
  4.  前記トロイダル型無段変速機は、フルトロイダル型無段変速機である請求項1から3のいずれかに記載の無段変速機。
PCT/JP2018/021493 2018-06-05 2018-06-05 無段変速機 WO2019234812A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020523871A JPWO2019234812A1 (ja) 2018-06-05 2018-06-05 無段変速機
PCT/JP2018/021493 WO2019234812A1 (ja) 2018-06-05 2018-06-05 無段変速機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/021493 WO2019234812A1 (ja) 2018-06-05 2018-06-05 無段変速機

Publications (1)

Publication Number Publication Date
WO2019234812A1 true WO2019234812A1 (ja) 2019-12-12

Family

ID=68770855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021493 WO2019234812A1 (ja) 2018-06-05 2018-06-05 無段変速機

Country Status (2)

Country Link
JP (1) JPWO2019234812A1 (ja)
WO (1) WO2019234812A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2164504A (en) * 1935-07-05 1939-07-04 Adiel Y Dodge Variable speed transmission
US3439563A (en) * 1965-10-14 1969-04-22 Nat Res Dev Transmission system for interconnecting two rotary machines
JPS6199760A (ja) * 1984-10-18 1986-05-17 Daihatsu Motor Co Ltd 車両用トロイダル形無段変速機
JP2006528757A (ja) * 2003-05-16 2006-12-21 マイケル・ナシム 回転駆動トランスミッション
JP2016020733A (ja) * 2014-06-18 2016-02-04 日本精工株式会社 無段変速装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2164504A (en) * 1935-07-05 1939-07-04 Adiel Y Dodge Variable speed transmission
US3439563A (en) * 1965-10-14 1969-04-22 Nat Res Dev Transmission system for interconnecting two rotary machines
JPS6199760A (ja) * 1984-10-18 1986-05-17 Daihatsu Motor Co Ltd 車両用トロイダル形無段変速機
JP2006528757A (ja) * 2003-05-16 2006-12-21 マイケル・ナシム 回転駆動トランスミッション
JP2016020733A (ja) * 2014-06-18 2016-02-04 日本精工株式会社 無段変速装置

Also Published As

Publication number Publication date
JPWO2019234812A1 (ja) 2021-06-17

Similar Documents

Publication Publication Date Title
US7955210B2 (en) Drive mechanism for infinitely variable transmission
JP2717659B2 (ja) トランスミッション
US20120231925A1 (en) Continuously variable transmission
JPS60132165A (ja) 無段変速トランスミツシヨン
KR20130129374A (ko) 전기 차축
US6517461B2 (en) Infinitely variable transmission
JP4867540B2 (ja) 無段変速装置
JP5643220B2 (ja) 連続可変変速機
WO2019234812A1 (ja) 無段変速機
JP3702597B2 (ja) トロイダル形無段変速装置
JP2004184160A (ja) トロイダル型無段変速機用試験装置
JPH11280867A (ja) 無段変速装置
JP2013024331A (ja) 無段変速装置
US6921349B2 (en) Transmission arrangement
JP5234015B2 (ja) 無段変速装置
RU2550928C2 (ru) Планетарно лобовой вариатор
JPH06174034A (ja) トロイダル型無段変速機
JP4894698B2 (ja) 無段変速装置
US4805489A (en) Infinitely variable ratio transmission
JPH0126426B2 (ja)
WO2014132388A1 (ja) 無段変速機
JP4072530B2 (ja) パワースプリット型無段変速装置
JP2023060973A (ja) 速度変換機
WO2014034398A1 (ja) ツインプラネット・アクティブドライブ無段変速機
JP2009030685A (ja) 遊星ローラ機構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18921677

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020523871

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18921677

Country of ref document: EP

Kind code of ref document: A1