WO2019228395A1 - 干扰处理的方法以及装置、系统及存储介质 - Google Patents

干扰处理的方法以及装置、系统及存储介质 Download PDF

Info

Publication number
WO2019228395A1
WO2019228395A1 PCT/CN2019/088996 CN2019088996W WO2019228395A1 WO 2019228395 A1 WO2019228395 A1 WO 2019228395A1 CN 2019088996 W CN2019088996 W CN 2019088996W WO 2019228395 A1 WO2019228395 A1 WO 2019228395A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
boundary value
downlink
interference
downlink rsrp
Prior art date
Application number
PCT/CN2019/088996
Other languages
English (en)
French (fr)
Inventor
曾召华
牛康
高超
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to JP2020557926A priority Critical patent/JP7142102B2/ja
Priority to EP19811984.4A priority patent/EP3761705A4/en
Publication of WO2019228395A1 publication Critical patent/WO2019228395A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/20Performing reselection for specific purposes for optimising the interference level
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00835Determination of neighbour cell lists
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00837Determination of triggering parameters for hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/302Reselection being triggered by specific parameters by measured or perceived connection quality data due to low signal strength

Definitions

  • Embodiments of the present invention relate to the field of communications technologies, and for example, to a method and device for interference processing, a device, a system, and a storage medium.
  • Inter-cell handover refers to that when a mobile terminal enters another cell during a call, the network can perform real-time control to switch the mobile station from the channel used by the original cell to a channel in the new cell and ensure uninterrupted calls. .
  • a common handover method for inter-cell handover is usually selected based on the downlink signal quality of the neighboring cell reported by the mobile terminal. The better the downlink signal, the easier it is to be used as a priority handover target. Even if there is a neighbor selection strategy based on load or neighbor priority, the neighbors with good downlink quality will be preferentially selected as the final handover target in the filtering result set. However, this method can only ensure that the terminal is preferentially selected to switch to neighboring areas with low downlink interference. In practical applications, uplink signals will also interfere (such as atmospheric waveguide scenarios). The existence of uplink interference will also affect the call quality, so The user experience is also significantly reduced.
  • an object of the embodiments of the present invention is to provide a method, an apparatus, a system, and a storage medium for interference processing, so as to solve the problem that the existence of uplink interference in the prior art affects call quality and significantly reduces user experience.
  • a method for interference processing includes:
  • the UE When the downlink RSRP measurement value is smaller than the downlink RSRP boundary value, the UE is relocated out of the cell.
  • a method for interference processing is provided, which is applied to a first communication node.
  • the method includes:
  • the UE's handover request is rejected.
  • a device for interference processing includes: a memory, a processor, and a computer program stored on the memory and executable on the processor.
  • the processor is configured to execute the computer program to implement the steps of the method according to the first aspect or the second aspect.
  • a storage medium stores one or more programs, and the one or more programs can be executed by one or more processors to implement the first embodiment. The steps described in one aspect or the second aspect.
  • FIG. 1 is a flowchart of a method for interference processing according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic diagram of a state of an uplink victim cell according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a position of a UE to be migrated in a candidate target cell according to an embodiment of the present invention
  • FIG. 5 is a flowchart of a first method of scenario 1 in still another interference processing method according to Embodiment 3 of the present invention.
  • FIG. 6 is a flowchart of a second method of scenario 1 in Embodiment 3 of the present invention.
  • FIG. 7 is a flowchart of scenario 3 in Embodiment 3 of the present invention.
  • FIG. 8 is a flowchart of scenario 4 in Embodiment 3 of the present invention.
  • FIG. 9 is a flowchart of scenario 5 in Embodiment 3 of the present invention.
  • FIG. 10 is a flowchart of scenario 6 in Embodiment 3 of the present invention.
  • FIG. 11 is a schematic structural diagram of a module of an interference processing apparatus according to Embodiment 4 of the present invention.
  • FIG. 12 is a schematic structural diagram of an interference processing system according to Embodiment 5 of the present invention.
  • Embodiment 1 of the present invention provides a method for interference processing, which is applied to a first communication node.
  • the method includes steps S101, S102, and S103.
  • step S101 a downlink reference signal received power RSRP boundary value of a cell is determined.
  • step S102 a downlink RSRP measurement value reported by the user equipment UE is received.
  • step S103 when the downlink RSRP measurement value is smaller than the downlink RSRP boundary value, the UE is relocated out of the cell.
  • FIG. 2 is a schematic diagram of a state of an uplink disturbed cell.
  • the coverage area of the cell in FIG. 2 refers to the range that the signal of the cell can cover, as shown by the outer circle of the thin line in FIG. 2.
  • This cell is a disturbed cell and is composed of a "normal area” and an "interference area":
  • the normal area as shown in the hatch pattern portion in FIG. 2.
  • the cell status can basically be regarded as weak interference or non-interference, which can ensure normal call quality.
  • the closer to the cell the less the path loss, and the better the signal received by the base station. Therefore, when there is uplink interference, the farther the terminal is from the cell, the more obvious the interference is. Conversely, interference is relatively insignificant. Therefore, the normal area is an effective part of the victim cell.
  • the interference area which is within the coverage area of the cell as shown in Figure 2 and outside the fill pattern part, is the area between the normal area of the disturbed cell and the edge of the disturbed cell, and also the area with strong interference. It is not recommended Mobile user access, because even if access, user perception is poor, it is an ineffective part of the victim cell.
  • the base station when the base station periodically performs interference detection and recognizes that it is subject to uplink interference, it not only performs baseband anti-jamming processing, but also notifies the disturbed cell that it is subject to uplink interference, and notifies its cell of uplink noise interference power (Noise Interference, NI ).
  • the disturbed cell learns that it is an uplink disturbed cell, in order to ensure user perception, it confirms its normal area and interference area, and relocates UEs in the interference area (the user experience in this area is poor) in a timely manner through handover. At the same time, it can also interact with surrounding neighboring cells to ensure that UEs in the neighboring cell that are ready to switch to the local cell can cut into the normal area of the cell.
  • the boundary value of the normal area can be set as the downlink reference signal received power (Reference, Signal, Receiving Power, RSRP) boundary value.
  • RSRP downlink reference signal received power
  • the downlink reference signal transmit power of the cell, the maximum uplink transmit power of the user equipment (UE), the noise interference power, the number of receive antennas in the cell, the minimum receive signal-to-interference and noise ratio, and the preset
  • the compensation parameter determines the downlink RSRP boundary value of the cell.
  • the downlink RSRP boundary value includes a downlink RSRP boundary value of a voice service and / or a downlink RSRP boundary value of a data service.
  • the minimum received signal to interference and noise ratio is the minimum received signal to interference and noise ratio for voice service transmission
  • the minimum received signal to interference and noise ratio is the minimum received signal to interference and noise ratio for data service transmission.
  • SINR traffic Pcmax- (RS power -RSRP) -NI + 10Log (AntNum) + IDP
  • RSRP RS power- Pcmax + NI-10Log (AntNum) + SINR traffic- IDP.
  • RS power is the downlink reference signal transmission power of the cell
  • Pcmax is the UE's maximum uplink transmission power
  • NI is the cell's uplink noise interference power
  • AntNum is the number of receiving antennas in the cell
  • SINR traffic is different services (including voice services and data services)
  • IDP Interference Default parameter
  • the RSRP in the above formula is the downlink RSRP boundary value in the normal area, and this is used as the boundary value in the normal area.
  • SINR traffic can be configured in the background, which is the minimum received signal-to-interference and noise ratio for the transmission of different services (including voice services and data services).
  • the channel conditions required by different services are different. For example, voice services require higher channel conditions, and data services can still meet user needs under poor channel conditions. Therefore, when voice services exist, they need to be distinguished as SINR traffic (voice) and SINR traffic (data).
  • RSRP voice RS-Pcmax + NI-10Log (AntNum) + SINR traffic (voice) -IDP, calculate a downlink RSRP boundary value of the voice service of the cell;
  • RSRP data RS-Pcmax + NI-10Log (AntNum) + SINR traffic (data) -IDP calculates a downlink RSRP boundary value of a data service in the cell.
  • IDP is a preset compensation parameter of the interference model (such as the compensation parameters in the atmospheric waveguide interference model or other uplink interference models). It compensates according to factors such as the transmission channel model and the thermal noise processed by the base station. Background configuration.
  • NI NI
  • RS power and AntNum can be configured in the background.
  • the maximum transmit power Pcmax of the UE there are two ways to obtain the maximum transmit power Pcmax of the UE. One is to obtain it from the base station content reported by the UE. At this time, the Pcmax of each UE is obtained, and the other is to use the preset Pcmax value instead ( This is because most UEs have the same Pcmax).
  • the downlink RSRP boundary value (data) and downlink RSRP boundary value (voice) unique to each UE are calculated.
  • the downlink RSRP boundary value (data) and downlink RSRP boundary value (voice) of the victim cell are calculated.
  • the boundaries of the normal area may also be different for different UEs, different for different types of UE services, and different for different types and strengths of interference.
  • the smaller the interference or the better the base station handles the interference the coverage of this normal area will become larger and larger; when the interference is eliminated or the base station's baseband can completely resist the interference, this normal area will be at the edge of the victim cell Coincidence, that is, the disturbed cell becomes a completely normal cell.
  • the normal area can also be considered as the effective range actually available in the cell.
  • step S102 before step S102 is performed, the method further includes:
  • the UE in the local cell has a voice service, determine whether the downlink RSRP measurement value is less than the RSRP voice ;
  • the downlink RSRP measurement values reported by all UEs in the cell can be obtained by timing refresh, and compared with the downlink RSRP boundary values.
  • the channel conditions required by different services are different.
  • voice services require higher channel conditions, and data services can still meet user requirements under poor channel conditions. Therefore, in the case of voice services, Then, it needs to be distinguished into SINRtraf fic (voice) and SINR traffic (data).
  • the UE has a voice service
  • the downlink RSRP measurement value of the UE> downlink RSRP boundary value (voice)
  • the UE's RSRP measurement value ⁇ downlink RSRP For the boundary value (speech) it is considered that the UE needs to be moved out of the interference area range where the voice quality cannot be guaranteed.
  • the UE does not have a voice service
  • the UE's RSRP measurement value> downlink RSRP boundary value (data)
  • the UE's RSRP measurement value ⁇ downlink RSRP At the boundary value (data) it is considered that the UE needs to move out within the interference area where the quality of the data service cannot be guaranteed.
  • the method further includes:
  • the neighboring cell When a downlink RSRP measurement value of a neighboring cell reported by the UE is greater than or equal to a downlink RSRP boundary value of the neighboring cell, the neighboring cell is used as a candidate target cell of the UE.
  • the disturbed status message of the neighboring cell carries a downlink RSRP boundary value of the neighboring cell
  • the disturbed status message of the neighboring cell carries a parameter for calculating a downlink RSRP boundary value of the neighboring cell.
  • the local cell when the local cell receives the disturbed status update message sent by the neighboring cell, it can obtain and update the state of the neighboring cell that triggered the message.
  • the parameters carried by the disturbed state update message sent by the neighboring cell may be divided into two cases. At this time, if the cell is ready to make a decision to switch out the UE, it may select a candidate handover target cell. When it is found that the identity of the candidate cell is the victim cell, different processing needs to be performed according to the carried parameters to obtain the downlink RSRP boundary value of the victim neighbor cell.
  • the number of parameters carried in the disturbed status update message is 2, it is considered that the downlink RSRP boundary value (data) and downlink RSRP boundary value (voice) of the disturbed neighbor cell are received, and stored in the disturbed neighbor Cell ID.
  • the downlink RSRP boundary value (voice) of the disturbed neighboring cell is directly used. If the UE to be migrated has a data service, the downlink RSRP boundary value (data) of the disturbed neighboring cell is directly used. ).
  • the number of parameters carried in the disturbed status update message is 5. It is considered that the parameters carried in the normal area are calculated and stored under the identity of the disturbed neighboring cell.
  • the calculation parameters are substituted into the foregoing formula to calculate the downlink RSRP boundary value (voice) of the disturbed neighboring cell, where the calculation parameters include the RS power , NI, AntNum, SINR traffic (voice) and Pcmax of the UE to be relocated.
  • the calculation parameters are substituted into the foregoing formula to calculate the downlink RSRP boundary value (voice) of the disturbed neighbor cell, where the calculation parameters include the RS power , NI, AntNum, SINR traffic ( Voice) and the Pcmax of the UE to be migrated.
  • determining whether the UE to be relocated is within a downlink RSRP boundary value of the neighboring cell includes:
  • the downlink RSRP measurement value reported by the UE to be migrated> the downlink RSRP boundary value (voice) of the disturbed neighboring cell, it indicates that the UE to be migrated is already within the coverage of the normal area (voice) of the neighboring cell, Then it can continue to be the target cell for subsequent handovers. Otherwise, it indicates that the UE to be relocated is in an interference area, and the interfered neighboring cell is no longer a candidate target cell.
  • the neighboring cell will continue to be the target cell for subsequent handovers. If the UE to be migrated is in the interference area of the neighboring cell, it will be affected. Interfering neighboring cells are no longer used as candidate target cells.
  • the downlink RSRP measurement value reported by the UE to be migrated> the downlink RSRP boundary value (data) of the disturbed neighboring cell
  • the method further includes:
  • a disturbed status message is sent to a neighboring cell, and the disturbed status message carries a downlink RSRP boundary value of the cell or a parameter for calculating a downlink RSRP boundary value of the cell.
  • the interference status update message may carry the following two types of information.
  • Disturbed ID indicates the status of the cell (for example, 0 is a normal cell and 1 is a disturbed cell).
  • Method A the number of carried parameters is two;
  • Downlink RSRP boundary value (voice service) and downlink RSRP boundary value (data service) of the victim cell.
  • Method B the number of parameters is 5;
  • Downlink RS transmit power of this cell number of receiving antennas AntNum in this cell, uplink noise interference power NI of this cell, minimum received signal-to-interference and noise ratio SINRtraffic (voice) of this cell, and minimum received signal interference of this cell Noise ratio SINRtraffic (data).
  • the disturbed status update message should also be sent to each configured neighboring cell.
  • the neighboring cells reset the state of the cell to normal after receiving the disturbed status update message, and set the interference-related parameters of the cell to invalid parameters.
  • the cell when the cell receives the notification that the uplink interference sent by the base station baseband disappears, the cell can also perform the following operations:
  • the cell when it is known that the cell is subjected to uplink interference, it calculates the downlink RSRP boundary value of the cell, confirms its own normal area and interference area, and determines the interference in the interference area (the user experience in this area is poor).
  • the UE (the downlink RSRP measurement value reported by the UE is smaller than the downlink RSRP boundary value) is moved out in a timely manner through the handover method, so that the UE can avoid the influence of the uplink interference of the cell, and can not only improve the handover success rate and user perception under uplink interference , And can make the most of the normal area of the disturbed cell.
  • Embodiment 2 of the present invention provides another interference processing method, which is applied to a first communication node.
  • the method includes steps S1001 and S1002.
  • step S1001 a downlink reference signal received power RSRP boundary value of the cell is determined.
  • step S1002 when the downlink RSRP measurement value of the cell reported by the UE to be switched into the cell is smaller than the downlink RSRP boundary value, the UE's handover request is rejected.
  • the downlink RSRP of the cell can be determined according to the downlink reference signal transmit power of the cell, the maximum uplink transmit power of the UE, the noise interference power, the number of receive antennas of the cell, the minimum receive signal-to-interference and noise ratio, and preset compensation parameters. Boundary value.
  • Embodiment 1 may be used to calculate the downlink RSRP boundary value, which is not described in detail here.
  • step S202 before step S202 is performed, the method further includes:
  • the target cell being the target cell for handover may not find itself as a cell affected by uplink interference until handover, at this time, a judgment needs to be made on the target cell to decide whether to allow hand-in.
  • the S1 or X2 handover request message may carry the Pcmax of the UE to be switched over and the downlink RSRP measurement value reported by the UE to be switched over to the measurement of this cell).
  • the local cell After receiving the handover request message, the local cell obtains all parameters in the message, including the Pcmax and downlink RSRP measurement values of the handover UE.
  • the local cell recognizes its own disturbed state. If it is a normal cell, the Pcmax and RSRP of the handover UE in the handover request message can be ignored, and the normal handover process can be used. If it is an uplink disturbed cell: you need to calculate this The normal area boundary of the cell, and identify the service type of the UE to be switched in.
  • the parameters that need to be obtained include: RS power of the cell, Pcmax of the UE to be switched, NI of the cell, AntNum of the cell, and SINR traffic of the cell.
  • SINR traffic can be obtained according to the service type of the UE to be switched according to the situation:
  • the minimum received signal-to-interference and noise ratio SINR traffic (voice) of the victim cell is obtained; if the UE to be switched is a voice service, the minimum received signal-to-interference and noise ratio of the victim cell is obtained SINR traffic (data).
  • the handover is accepted, and the reply Confirm the message. Otherwise, it indicates that the UE to be switched in is in the interference area, then the handover is rejected and a reject message is returned.
  • the Pcmax of the UE to be switched may be omitted in the handover request message transmitted by the source cell, because the Pcmax of most UEs are the same, and the target cell can be preset with Pcmax when calculating the downlink RSRP boundary value. Value instead.
  • the method further includes:
  • the disturbed status update message carries a downlink RSRP boundary value of the own cell or a calculation parameter of the downlink RSRP boundary value of the own cell.
  • the method of the first embodiment may be used to send a disturbed status update message to a neighboring cell, and details are not described herein.
  • the interference processing method of this embodiment when it knows that the cell is subject to uplink interference, it calculates the downlink RSRP boundary value of the cell, confirms its own normal area and interference area, and refuses to cut into the cell outside the boundary of the normal area. Request for a UE whose downlink RSRP measurement value reported by the UE is less than the downlink RSRP boundary value, so that the UE can avoid the impact of uplink interference in the cell, not only improve the handover success rate and user perception under uplink interference, and Can make the most of the normal area of the disturbed cell.
  • the third embodiment of the present invention provides another interference processing method.
  • the interference processing is described by using base stations 1 and 2 as an example.
  • the base station 1 includes cells A and B, and the base station 2 includes cells C and D.
  • Cell A includes UE-A1, UE-A2, Cell B includes UE-B, Cell C includes UE-C1, UE-C2;
  • UE-A1 has only data services, UE-A2 has voice services, and UE-C1 is data Services, UE-C2 is a voice service;
  • cells A, B, C, and D are all neighbor cells and communicate with each other through X2.
  • the cells A, B, C, and D have exchanged necessary neighbor cell parameter information with each other through X2.
  • the base station 1 detects that the atmospheric waveguide interference occurs and performs anti-interference processing.
  • the baseband of the base station 1 notifies the high-level cells A and B of the existence of the atmospheric waveguide interference and notifies the interference NI value.
  • Scenario 1 Cell A receives the baseband notification, calculates the downlink RSRP boundary value of the cell, and decides whether the UE in the cell needs to move out.
  • cell A can use two methods to calculate the downlink RSRP boundary value of the cell, and decide whether the UE in the cell needs to move out.
  • step S401 the interference state is identified as disturbed, and the NI value is recorded.
  • step S402 the RS power , AntNum, SINRtraffic (speech), SINRtraffic (data), and atmospheric waveguide type compensation parameter Atmospheric Default Parameter of the local cell are obtained from the background.
  • step S403 a timer is started to periodically traverse and scan all UEs (including UE-A1 and UE-A2) in the cell, obtain the Pcmax of each UE according to the access information of each UE, and obtain the The downlink RSRP measurement value of the cell.
  • step S404 a service type of each UE is identified.
  • step S405 the downlink RSRP boundary value of each UE in its own cell is calculated according to the service class of each UE.
  • step S406 the downlink RSRP measurement value of each UE in its own cell is compared with its downlink RSRP boundary value in its own cell, and when the downlink RSRP measurement value is less than the downlink RSRP boundary value, it is determined that the UE needs to be moved out.
  • RSRP data RS power- Pcmax + NI-10Log (AntNum) + SINR traffic (data)-IDP
  • R-A1 Data
  • -A1 is compared with R-A1 (Data). Only when RSRP-A1 ⁇ R-A1 (Data), it is determined that UE-A1 needs to be moved out.
  • RSRP voice RS Power- Pcmax + NI-10 Log (AntNum) + SINR traffic (Voice)-IDP calculates the downlink RSRP boundary value R-A2 (Voice) of the voice service of UE-A2, and combines RSRP-A2 and R-A2 (Voice) For comparison, only when RSRP-A2 ⁇ R-A2 (Voice), it is determined that UE-A2 needs to be moved out.
  • step S501 the interference state is identified as disturbed, and the NI value is recorded.
  • step S502 the RS power, AntNum, SINRtraffic (speech), SINRtraffic (data), the preset value of Pcmax, and the atmospheric waveguide type compensation parameter Atmospheric DefaultParameter are obtained from the background.
  • step S503 the downlink RSRP boundary values of the voice service and data service of the own cell are calculated.
  • the downlink RSRP boundary value R (Voice) of the voice service RS-Pcmax + NI-10Log (AntNum) + SINR traffic (voice) -Atmospheric Default Parameter;
  • step S504 a timer is started to periodically traverse and scan all UEs in the cell to obtain downlink RSRP measurement values of each UE in the cell.
  • step S505 the service type of each UE is identified.
  • step S506 is performed.
  • step S507 is performed.
  • step S506 the downlink RSRP measurement value of the UE is compared with R (Data), and only when the downlink RSRP measurement value is ⁇ R (Data), it is determined that the UE needs to move out.
  • step S507 the downlink RSRP measurement value of the UE is compared with R (Voice). Only when the downlink RSRP measurement value is less than R (Voice), it is determined that the UE needs to move out.
  • RSRP-A1 downlink quality measurement value RSRP-A1 in the local cell is obtained, and the UE-A1 service type is identified as data-only service.
  • RSRP-A1 and R are used to compare.
  • RSRP-A1 ⁇ R confirm that UE-A1 needs to move out.
  • RSRP-A2 When traversing to UE-A2, obtain its downlink quality measurement value RSRP-A2 in the cell, and identify that there is a voice service in UE-A2 service type. Use RSRP-A2 and R (Voice) to compare. Only when RSRP-A2 ⁇ R (Voice), confirm that UE-A2 needs to move out.
  • Scenario 2 Cell A sends a disturbed status update message to neighboring cells (in this scenario, cell A has completed updating its own disturbed status, that is, scenario 1 has occurred).
  • the disturbed status update message sent by the cell A to the neighboring cell may carry the disturbed identifier and the parameters related to the disturbance.
  • the number and content of its parameters are carried out in two ways:
  • Method 1 Pass the parameters used to calculate the downlink RSRP boundary value.
  • the background will be configured to transmit the parameters for calculating the downlink RSRP boundary value in the disturbed status message.
  • the method includes: Step 1, Step 2 and Step 3.
  • Step 1 Obtain that the background area is configured to pass the normal area calculation parameters in the disturbed status update message.
  • Step 2 Fill in the X2 victim status update message.
  • the message content includes:
  • the number of receiving antennas in cell A is AntNum;
  • SINR traffic (voice) of cell A
  • SINR traffic (data) of cell A
  • Step 3 Send the disturbed status update message to the neighboring cells B, C, and D.
  • the neighboring cell when the neighboring cell receives the disturbed status update message of cell A, it recognizes that the status of cell A is the disturbed cell, and obtains the type of parameters carried by the disturbed status update message: following 5 calculation parameters, reading and storing the calculation
  • the parameters are under the cell ID, and the calculation parameters include:
  • the number of receiving antennas in cell A is AntNum;
  • SINR traffic (voice) of cell A
  • SINR traffic (data) of cell A
  • Atmospheric DefaultParameter is compensated for the atmospheric waveguide type obtained by the community from the background.
  • Method 2 Directly transmit the downlink RSRP boundary value, and the background will be configured to transmit the downlink RSRP boundary value in the disturbed status message.
  • the method includes: Step 1, Step 2 and Step 3.
  • Step 1 Obtain a background area configured to pass the calculated value of the normal area in the disturbed status update message.
  • Step 2 Fill in the X2 victim status update message.
  • the message content includes:
  • Step 3 Cell A sends a message to neighboring cells B, C, and D.
  • the neighboring cell After the neighboring cell receives the disturbed status update message of cell A, it recognizes that the status of cell A is the disturbed cell.
  • the type of parameters carried in obtaining the disturbed status update message is: follow the two downlink RSRP boundary values, read and store the downlink The RSRP boundary value is under the A cell identity.
  • the calculation parameters include:
  • Scenario 3 Move out decision of cell A (screening candidate handover target cells).
  • cells A and B have completed updating their own disturbed state in scenario 1, and updated the disturbed state information of neighboring cells in scenario 2. Since cells A, B, C, and D are neighbors to each other, Therefore, the interference state information of neighboring cells is updated.
  • the priority order of cells B, C, and D as candidate cells is B, C, and D.
  • UE-A1 in cell A is decided to move out.
  • the method includes steps S601 to S607.
  • step S601 UE-A1's measurement reporting information on neighboring cells B, C, and D is acquired.
  • step S602 the disturbed state stored under the identity of each neighboring cell is read, and it is found that the cell B is the disturbed cell, and the cells C and D are normal cells.
  • step S603 check the parameters stored under the cell B identity.
  • the stored parameters are calculated parameters for calculating normal and area boundary values, perform steps S604 and S605.
  • the stored parameters are downlink RSRP boundary values, perform steps S606 and S607.
  • step S604 using the Pcmax-A1 of the UE-A1 (data service) and the stored calculation parameters of the cell B, the downlink RSRP boundary value (data) of the cell B with respect to the UE-A1 is calculated as R-B-A1 (Data).
  • step S605 the downlink RSRP measurement value RSRP-B-A1 of UE-A1 to cell B is compared with RB-A1 (Data). If RSRP-B-A1 ⁇ RB-A1 (Data), then B is selected from the candidate Elimination in the target cell.
  • step S606 the downlink RSRP boundary value (data) stored under the cell B identity is acquired as R-B (Data).
  • step S607 the downlink RSRP measurement value RSRP-B-A1 of UE-A1 to cell B is compared with R-B (Data). If RSRP-B-A1 ⁇ R-B, then B is removed from the candidate target cell.
  • Scenario 4 UE-C1 in cell C initiates a handover decision due to mobility reasons.
  • cells C and D are normal cells
  • cells A and B are disturbed cells
  • cells A, B, C, and D have completed the update of the self-perturbation status of scenario 1 and scenario 2 and the neighbor cells. Update of the victim status information.
  • the method flow includes steps S701 to S707.
  • step S701 UE-C1 measurement and reporting information of neighboring cells A, B, and D is acquired, and the measurement values of neighboring UEs A, B, and D by the UE are recorded as RSRP-A-C1, RSRP-B-C1 , RSRP-D-C1.
  • the neighboring cell A, B, and D are candidate handover target cells, and the priorities are A, B, and D, according to the measurement and reporting information of the neighboring cell A, B, and D by the UE-C1.
  • step S702 the disturbed state stored under each neighboring cell identifier is read, and it is found that cells A and B are disturbed cells, and cell D is a normal cell.
  • step S703 check the parameters stored under the disturbed cell identity.
  • the stored parameters are calculated parameters for calculating normal and area boundary values, perform steps S704 and S705.
  • the stored parameters are downlink RSRP boundary values, execute Steps S706 and S707.
  • step S704 using the Pcmax-C1 of the UE-C1 (data service) and the stored calculation parameters of the disturbed cell, calculate the downlink RSRP boundary value (data) of the disturbed cell with respect to UE-C1 as R-disturbed cell -C1 (Data).
  • step S705 the downlink RSRP measurement values RSRP-disturbed cell-C1 and R-disturbed cell-C1 (Data) of the UE-C1 to the disturbed cell are compared. Disturbed cell-C1 (Data), then remove the disturbed from the candidate target cell.
  • step S706 the downlink RSRP boundary value (data) stored under the identity of the disturbed cell is acquired as the R-disturbed cell (Data).
  • step S707 the downlink RSRP measurement values RSRP-disturbed cell-C1 and R-disturbed cell (Data) of UE-C1 to the disturbed cell are compared. If RSRP-disturbed cell-C1 ⁇ R-disturbed cell (Data), then (Data) is removed from the candidate target cell.
  • RA-C1 data of cell A (that is, the downlink RSRP boundary of cell A's data obtained from the PCmax of UE-C1) is obtained. Value) or RA (data) (that is, the downlink RSRP boundary value of the data of cell A obtained according to the PCmax configured in the background), and compared with RSRP-A-C1.
  • the candidate target cell set may be ⁇ A, B, D ⁇ or ⁇ A, D ⁇ or ⁇ B, D ⁇ or ⁇ D ⁇ . If the set is ⁇ D ⁇ , then D is directly selected as the handover target cell. If the set is not ⁇ D ⁇ , the next step of screening is performed in accordance with the normal state of the base station to select a handover target cell.
  • Cell D decides whether to accept handover requests initiated by other cells.
  • cell D is a normal state cell
  • cell C has decided that UE-C1 initiates a handover to cell D. Because the atmospheric waveguide often appears recently, the handoff request message initiated by cell C going to D carries the Pcmax-UEC1 of UE-C1 and the UE-C1's downlink measured RSRP value RSRP-D-C1 for cell D to prevent temporary interference. appear.
  • the method flow includes steps S801 to S804.
  • step S801 a baseband notification from the base station of the own cell is received to update the handover request initiated by the victim cell and UE-C1.
  • step S802 the calculation parameters of the downlink RSRP boundary value of the own cell and the related parameters of the UE-C1 are acquired.
  • the calculation parameters of the downlink RSRP boundary value include: RS power of the cell, AntNum, SINR traffic (data), NI value, and Atmospheric Default Parameter of the atmospheric waveguide type compensation.
  • UE-C1 Relevant parameters of UE-C1 include: Pcmax of UE-C1, service type is data, and downlink RSRP measurement value RSRP-D-C1 reported by UE-C1.
  • step S803 a downlink RSRP boundary value R-D-C1 (Data) of the own cell for UE-C1 is calculated.
  • the base station detects that the atmospheric waveguide interference has disappeared, and the base station notifies the base station of all the cells covered by the original atmospheric waveguide interference.
  • it is cell A and small B.
  • the following uses cell A as an example.
  • the method flow includes steps S901 to S904.
  • step S901 the uplink interference disappearing message sent by the baseband of the base station is received.
  • step S902 updating the interference state to normal and resetting the calculation parameters related to the downlink RSRP boundary value is invalid.
  • step S903 fill in the X2 disturbed status update message, and the message content includes:
  • step S904 the disturbed status update message is sent to the neighboring cells B, C, and D.
  • neighboring cells B, C, and D receive the disturbed status update message of cell A, they identify that the state of cell A is normal, update the state of the cell, and reset all the normal area boundary calculation parameters of cell A to be invalid.
  • the cell when it is known that the cell is subjected to uplink interference, it calculates the downlink RSRP boundary value of the cell, confirms its own normal area and interference area, and determines the interference in the interference area (the user experience in this area is poor).
  • the UE moves out in a timely manner through the handover method, and rejects the handover request of the UE outside the normal area boundary to be switched into the cell, so that the UE can avoid the influence of the uplink interference of the cell and not only improve the handover under the uplink interference Success rate and user perception, and can make the most of the normal area of the disturbed cell.
  • a fourth embodiment of the present invention provides a device for interference processing.
  • the device includes: a memory 1101, a processor 1102, and a computer program stored in the memory and executable on the processor.
  • the computer program is executed by the processor, the method according to the first embodiment, the second embodiment, or the third embodiment is implemented.
  • the interference processing device of this embodiment learns that the cell is subjected to uplink interference, it calculates the downlink RSRP boundary value of the cell, confirms its own normal area and interference area, and determines the interference in the interference area (the user experience in this area is poor).
  • the UE migrates out in a timely manner through the handover method, and rejects the handover request of the UE that is to be switched into the cell outside the boundary of the normal area, so that the UE can avoid the impact of uplink interference in the cell and not only improve the handover success under uplink interference Rate and user perception, and can make the most of the normal area of the victim cell.
  • Embodiment 4 of the present invention provides an interference processing system. Please refer to FIG. 12, the system includes at least one base station 1201 and an interference processing device 1202 provided in a cell of the base station.
  • the base station 1201 is configured to perform interference detection on a cell of the base station and, when it is detected that the cell receives uplink interference, send an uplink interference message to the interference processing device of the interfered cell through the base station baseband;
  • the interference processing device 1202 is configured to move the victim UE to an adjacent cell when receiving an uplink victim message sent by the base station baseband of the cell.
  • the apparatus 1202 for interference processing may use the apparatus for uplink interference in the foregoing third embodiment, and details are not described herein again.
  • the high-level cell is also notified as a disturbed cell, so that when the disturbed cell learns that the cell is subject to uplink interference, it calculates the downlink RSRP boundary value of the cell to confirm In its own normal area and interference area, the UEs in the interference area (poor user experience in this area) are moved out in a timely manner by handover, and the handover request of the UE outside the normal area boundary to be switched into the cell is rejected, thereby
  • the UE can avoid the influence of the uplink interference of the cell, not only can improve the handover success rate and user perception under the uplink interference, but also can maximize the normal area of the victim cell.
  • Embodiment 5 of the present invention provides a storage medium.
  • the storage medium includes a stored program, and when the program runs, controls a device where the storage medium is located to perform operations as in Embodiment 1, Embodiment 2, or Embodiment 3.
  • Such software may be distributed on computer-readable media, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • computer storage media or non-transitory media
  • communication media or transitory media.
  • computer storage medium includes both volatile and nonvolatile implementations in any method or technology used to store information such as computer-readable instructions, data structures, program modules or other data. Removable, removable and non-removable media.
  • Computer storage media include, but are not limited to, Random-Access Memory (RAM), Read-Only Memory (ROM), Electrically Erasable Programmable Read-Only Memory, EEPROM ), Flash memory or other memory technology, Compact Disc-Read-Only Memory (CD-ROM), Digital Versatile Disc (DVD) or other optical disc storage, magnetic box, tape, disk storage or other magnetic storage
  • RAM Random-Access Memory
  • ROM Read-Only Memory
  • EEPROM Electrically Erasable Programmable Read-Only Memory
  • CD-ROM Compact Disc-Read-Only Memory
  • DVD Digital Versatile Disc
  • magnetic box magnetic box
  • tape disk storage or other magnetic storage
  • a storage device or any other medium that can be used to store desired information and can be accessed by a computer.
  • a communication medium typically contains computer-readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transmission mechanism, and may include any information delivery medium .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开了一种干扰处理的方法、装置、系统及存储介质,属于通讯技术领域。所述方法包括:确定小区的下行参考信号接收功率RSRP边界值;接收用户设备UE上报的下行RSRP测量值;当所述下行RSRP测量值小于所述下行RSRP边界值时,将所述UE迁出所述小区。

Description

干扰处理的方法以及装置、系统及存储介质
本申请要求在2018年05月29日提交中国专利局、申请号为201810533669.5的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及通讯技术领域,例如涉及一种干扰处理的方法以及装置、系统及存储介质。
背景技术
小区间切换是指在通话期间,当移动终端从一个小区进入另一个小区时,网络能进行实时控制,把移动台从原小区所用的信道切换到新小区的某一信道,并保证通话不间断。小区间切换常用的切换方式通常是根据移动终端上报的邻区下行信号质量来选择,下行信号越好的邻区,越容易被作为优先切换目标。即便存在基于负荷或邻区优先级等邻区选择策略,也会在过滤结果集合中,优先选择下行质量好的邻区作为最终切换目标。但是,这种方式只能保证选择终端优先切换到下行干扰小的邻区,实际应用中,上行信号也会出现干扰(比如大气波导场景),由于上行干扰的存在,也会影响通话品质,因此用户的体验度也明显降低。
因此,有必要提供一种能够使UE避开上行干扰的干扰处理方法以及装置、系统及存储介质。
发明内容
有鉴于此,本发明实施例的目的在于提供一种干扰处理的方法、装置、系统及存储介质,以解决现有技术上行干扰的存在影响通话品质使得用户的体验度也明显降低的问题。
本发明实施例解决上述技术问题所采用的技术方案如下:
根据本发明实施例的第一个方面,提供一种干扰处理的方法所述方法包括:
确定小区的下行参考信号接收功率RSRP边界值;
接收用户设备UE上报的下行RSRP测量值;
当所述下行RSRP测量值小于所述下行RSRP边界值时,将所述UE迁出所 述小区。
根据本发明实施例的第二个方面,提供一种干扰处理的方法,应用于第一通信节点,所述方法包括:
确定小区的下行参考信号接收功率RSRP边界值;
当待切入所述小区的UE上报的所述小区的下行RSRP测量值小于所述下行RSRP边界值时,拒绝所述UE的切换请求。
根据本发明实施例的第三个方面,提供一种干扰处理的装置,所述装置包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器用于执行所述计算机程序实现如第一方面或第二方面所述的方法的步骤。
根据本发明实施例的第四个方面,提供一种存储介质,所述存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如第一方面或第二方面所述的步骤。
附图概述
图1为本发明实施例一提供的一种干扰处理的方法的流程图;
图2为本发明实施例的上行受扰小区的状态示意图;
图3为本发明实施例的待迁出的UE在候选的目标小区中的位置的示意图;
图4为本发明实施例二提供的另一种干扰处理的方法的流程图;
图5为本发明实施例三提供的又一种干扰处理的方法中场景一的第一种方法的流程图;
图6为本发明实施例三的场景一的第二种方法的流程图;
图7为本发明实施例三的场景三的流程图;
图8为本发明实施例三的场景四的流程图;
图9为本发明实施例三的场景五的流程图;
图10为本发明实施例三的场景六的流程图;
图11为本发明实施例四提供的一种干扰处理的装置的模块结构示意图;
图12为本发明实施例五提供的一种干扰处理的系统的结构示意图。
本发明实施例目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
以下结合附图和实施例,对本发明实施例进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明实施例,并不用于限定本发明实施例。
本发明实施例一提供了一种干扰处理的方法,应用于第一通信节点,请参阅图1,该方法包括:步骤S101、步骤S102和步骤S103。
在步骤S101中,确定小区的下行参考信号接收功率RSRP边界值。
在步骤S102中,接收用户设备UE上报的下行RSRP测量值。
在步骤S103中,当该下行RSRP测量值小于该下行RSRP边界值时,将该UE迁出该小区。
请参阅图2,为上行受扰小区的状态示意图。图2中小区覆盖范围部分是指该小区信号能够覆盖到的范围,如图2细线外圈所示。该小区为受扰小区,是由“正常区域”和“干扰区域”组成:
正常区域,如图2所示的填充图案部分。在该范围内小区状态基本可以认为弱干扰或无扰,可以保证正常的通话品质。实际应用中,离小区越近,路损越少,基站接收到的信号越好。因此,在有上行干扰时,终端离小区越远,干扰越明显。反之,干扰相对不明显。因此,正常区域是受扰小区的有效部分。
干扰区域,在如图2所示的小区覆盖范围内且填充图案部分之外的范围,是在受扰小区的正常区域和受扰小区边缘之间的区域,也是干扰比较强烈的区域,不建议移动用户接入,因为即便接入,用户感知度也很差,是受扰小区的无效部分。
实际应用中,当基站定时进行干扰检测、识别出受到上行干扰时,不仅进行基带抗扰处理,也通知受扰的小区其受到上行干扰,并告知其小区上行噪声干扰功率值(Noise interference,NI)。
当受扰的小区获知自己为上行受扰小区时,为了保证用户感知度,确认自己的正常区域和干扰区域,将干扰区域(此区域内用户体验差)内的UE及时通过切换方式迁出。同时,也可以与周围邻小区互动,保证邻区准备切换到本小区的UE能切入到本小区的正常区域。
实际应用中,正常区域的边界值可以设定为下行参考信号接收功率(Reference Signal Receiving Power,RSRP)边界值。
在一个可行的方案中,可以根据小区下行参考信号发射功率,用户设备(User Equipment,UE)的最大上行发射功率,噪声干扰功率,小区的接收天线数目,最小接收信干噪比,以及预置补偿参数确定小区的下行RSRP边界值。
在一个可行的方案中,该下行RSRP边界值包括语音业务的下行RSRP边界值和/或数据业务的下行RSRP边界值。
实际应用中,当下行RSRP边界值包括语音业务的下行RSRP边界值时,所述最小接收信干噪比为语音业务传输的最小接收信干噪比;或者
当下行RSRP边界值包括语音业务的下行RSRP边界值时所述最小接收信干噪比为数据业务传输的最小接收信干噪比。
实际应用中,根据SINR的计算公式:
SINR traffic=Pcmax-(RS 功率-RSRP)-NI+10Log(AntNum)+IDP
可以推导出如下公式:
RSRP=RS 功率–Pcmax+NI–10Log(AntNum)+SINR traffic-IDP。
其中,RS 功率为本小区下行参考信号发射功率,Pcmax为UE最大上行发射功率,NI为小区上行噪声干扰功率,AntNum为本小区接收天线数目,SINR traffic是不同业务(包括语音业务和数据业务)传输的最小接收信干噪比,IDP(Interference Default parameter)为受扰模型预置补偿参数。
上述公式中的RSRP即为正常区域的下行RSRP边界值,以此作为正常区域的边界值。
SINR traffic可以在后台进行配置,其是不同业务(包括语音业务和数据业务)传输的最小接收信干噪比。不同的业务所需的信道条件是不同的,例如语音业务需要较高的信道条件、数据业务在较差的信道条件下仍然可以满足用户的需求,因此在存在语音业务的情况下,需要区分为SINR traffic(语音)和SINR traffic(数据)等。
因此,当UE存在语音业务时,根据预设的公式RSRP 语音=RS–Pcmax+NI–10Log(AntNum)+SINR traffic(语音)-IDP计算本小区的语音业务的下行RSRP边界值;
当UE无语音业务时,根据预设的公式RSRP 数据=RS–Pcmax+NI–10Log(AntNum)+SINR traffic(数据)-IDP计算本小区的数据业务的下行RSRP边界值。
IDP是受扰模型预置补偿参数(比如大气波导干扰模型下的补偿参数,或是其他上行干扰模型的补偿参数),其根据传输信道的模型以及基站处理的热噪声等因素进行补偿,可以通过后台配置。
其他参数,如NI可以由基站自测获取,RS功率和AntNum可以在后台配置。
实际应用中,获取UE的最大发射功率Pcmax的方式有两种,一种是从UE上报的基站内容中获得,此时获取的是每个UE的Pcmax,一种是用Pcmax预设值代替(这是因为大部分UE的Pcmax都是相同的)。
如果使用每个UE上报的Pcmax代入上述公式,算出来的是针对每个UE自己独有的下行RSRP边界值(数据)和下行RSRP边界值(语音)。
如果使用Pcmax预设值代入上述公式,算出来的是受扰小区的下行RSRP边界值(数据)和下行RSRP边界值(语音)。
基于上述公式,可以看出正常区域的边界除了和小区自身配置有关外,也可能因UE的不同而不同、因UE的业务类型的不同而不同、因干扰的类型和强度不同而不同。通常情况下,干扰越小或基站对干扰处理的越好,这个正常区域覆盖范围会越来越大;当干扰被消除或基站基带能够完全抗干扰处理,这个正常区域将和受扰小区的边缘重合,即受扰小区变为一个完全正常的小区。而在有干扰的情况下,正常区域也可以认为是本小区实际可用有效范围。
实际应用,执行步骤S102之前,该方法还包括:
获取该本小区的UE上报的本小区的下行RSRP测量值;
当该本小区的UE存在语音业务时,判断该下行RSRP测量值是否小于该RSRP 语音
若是,确定该本小区的UE处于该正常区域边界之外;
当该本小区的UE无数据业务时,判断该下行RSRP测量值是否小于该RSRP数据;
若是,确定该本小区的UE处于该正常区域边界之外。
实际应用中,可以采用定时刷新的方式获取本小区内所有UE上报的下行RSRP测量值,并与下行RSRP边界值进行比较。
实际应用中,由于不同的业务所需的信道条件是不同的,例如语音业务需要较高的信道条件、数据业务在较差的信道条件下仍然可以满足用户的需求,因此在存在语音业务的情况下,需要区分为SINRtraf fic(语音)和SINR traffic(数 据)。
如果UE存在语音业务,则在UE的下行RSRP测量值>=下行RSRP边界值(语音)时,认为UE在能保证语音质量的正常区域范围内,无需迁移;在UE的RSRP测量值<下行RSRP边界值(语音)时,认为UE在不能保证语音质量的干扰区域范围内,需要迁出处理。
如果UE不存在语音业务,则UE的RSRP测量值>=下行RSRP边界值(数据)时,认为UE在能保证数据业务质量的正常区域范围内,无需迁移;在UE的RSRP测量值<下行RSRP边界值(数据)时,认为UE在不能保证数据业务质量的干扰区域范围内,需要迁出处理。
在一个可行的方案中,该方法还包括:
接收邻小区的受扰状态消息,确定所述邻小区的下行RSRP边界值;
当所述UE上报的邻小区的下行RSRP测量值大于或等于所述邻小区的下行RSRP边界值时,将所述邻小区作为所述UE的候选目标小区。
实际应用中,所述邻小区的受扰状态消息携带所述邻小区的下行RSRP边界值;或者
所述邻小区的受扰状态消息携带用于计算所述邻小区的下行RSRP边界值的参数。
实际应用中,当本小区接收到邻小区发送的受扰状态更新消息后,可以获取并更新触发该消息的邻小区的状态。
如果该邻小区最新状态是受扰态,其发送的受扰状态更新消息携带的参数可能分两种情况,此时,如果本小区准备决策对UE进行切换迁出,在候选切换目标小区中选择时,发现候选小区的标识为受扰小区,就需要根据携带的参数做出不同的处理,获取该受扰邻小区的下行RSRP边界值。
一、受扰状态更新消息携带的参数个数是2,则认为收到的是该受扰邻小区的下行RSRP边界值(数据)和下行RSRP边界值(语音),保存在该受扰的邻小区标识下。
如果待迁出的UE存在语音业务,直接使用受扰的邻小区的下行RSRP边界值(语音),如果待迁出的UE存在数据业务,直接使用受扰的邻小区的下行RSRP边界值(数据)。
二、受扰状态更新消息携带的参数个数是5,则认为携带的是正常区域的计算参数,保存在该受扰的邻小区标识下。
如果待迁出的UE存在语音业务,将计算参数代入前述公式计算出该受扰邻小区的下行RSRP边界值(语音),其中,计算参数包括受扰的邻小区的RS 功率、NI、AntNum、SINR traffic(语音)以及待迁出的UE的Pcmax。
如果UE只存在数据业务,将计算参数代入前述公式计算出该受扰邻小区的下行RSRP边界值(语音),其中,计算参数包括受扰的邻小区的RS 功率、NI、AntNum、SINR traffic(语音)以及待迁出的UE的Pcmax。
需要说明的是前述公式中的IDP参数可以从本小区的后台获取。
在一实施例中,判断待迁出的UE是否处于该邻小区的下行RSRP边界值之内包括:
获取待迁出的UE对该受扰邻小区的测量上报的RSRP测量值;
判断待迁出的UE的业务类型;
如果待迁出的UE存在语音业务,则:
在待迁出的UE上报的下行RSRP测量值>=该受扰邻小区的下行RSRP边界值(语音)时,表明待迁出的UE已经在该邻小区正常区域(语音)的覆盖范围内,则可以继续作为后续切换目标小区。否则,表明待迁出的UE处在干扰区域中,该受干扰的邻小区不再作为候选目标小区。
例如可以如图3所示,如果待迁出的UE在邻小区的正常区域内,则将该邻小区继续作为后续切换目标小区,如果待迁出的UE在邻小区的干扰区域内,则受干扰的邻小区不再作为候选目标小区。
如果UE无语音业务,则:
在待迁出的UE上报的下行RSRP测量值>=该受扰邻小区的下行RSRP边界值(数据)时,表明待迁出的UE已经在该受干扰的邻小区正常区域(数据)的覆盖范围内,则可以继续作为后续切换目标小区。否则,表明待迁出的UE处在干扰区域中,该受干扰的邻小区的不再作为候选目标小区。
在一个可行的方案中,该方法还包括:
向邻小区发送受扰状态消息,该受扰状态消息携带该小区的下行RSRP边界值,或用于计算该小区下行RSRP边界值的参数。
实际应用中,当本小区变为受扰状态时可以通过如下途径与邻小区进行互动:
1、通过基站间直接的消息(例如第四代移动通信技术(4Generation,4G)的X2,第五代移动通信技术(5fifth-generation,5G)的Xn)。
2、通过基站间经核心网传递的消息(例如4G的S1,5G的NG-C)。
当本小区从正常小区变为受干扰小区时,受扰状态更新消息可以携带如下两种信息。
1)受扰标识:表明本小区状态(比如,0为正常小区,1为受扰小区)。
2)携带参数的个数和内容:(可以采用如下的A和B两个方式中的任意一个)。
方式A、携带参数个数为2个;
携带参数内容:受扰小区下行RSRP边界值(语音业务)和下行RSRP边界值(数据业务)。
方式B、携带参数个数为5个;
携带参数内容:本小区的下行RS发射功率、本小区的接收天线数目AntNum、本小区的上行噪声干扰功率NI、本小区的最小接收信干噪比SINRtraffic(语音)及本小区的最小接收信干噪比SINRtraffic(数据)。
实际应用中,可以在本小区的受扰状态变化时,例如从正常小区变为受干扰小区,反之从受干扰小区变为正常小区时,也应当向各配置的邻小区发送受扰状态更新消息,使周围的邻小区收到受扰状态更新消息后重置本小区的状态为正常,并将本小区的干扰相关的参数置为无效参数。
实际应用中,当本小区接收到基站基带发送的上行干扰消失的通知时,本小区还可以执行如下操作:
1、更新自身状态为正常。
2、停止获取小区全部UE测量值的刷新过程,并清空计算正常区域计算相关参数,此时所有通信流程按基站在正常状态时的流程处理。
本实施例的干扰处理的方法,在获知本小区受到上行干扰时,通过计算本小区的下行RSRP边界值,确认自己的正常区域和干扰区域,将干扰区域(此区域内用户体验差)内的UE(该UE上报的下行RSRP测量值小于下行RSRP边界值)及时通过切换方式迁出,从而使UE能够避开本小区上行干扰的影响,不仅能够提高上行干扰下的切换成功率和用户感受度,并能够最大限度利用受扰小区的正常区域。
本发明实施例二提供了另一种干扰处理的方法,应用于第一通信节点,请参阅图4,该方法包括:步骤S1001和步骤S1002。
在步骤S1001中,确定小区的下行参考信号接收功率RSRP边界值。
在步骤S1002中,当待切入该小区的UE上报的该小区的下行RSRP测量值小于该下行RSRP边界值时,拒绝该UE的切换请求。
在一个可行的方案中,可以根据小区下行参考信号发射功率,UE的最大上行发射功率,噪声干扰功率,小区的接收天线数目,最小接收信干噪比,以及预置补偿参数确定小区的下行RSRP边界值。
实际应用中,可以采用实施例一的方法计算下行RSRP边界值,此处不在赘述。
在一个可行的方案中,执行步骤S202之前,该方法还包括:
从接收的切换请求消息中获取待切入的UE上报的本小区的下行RSRP测量值;
当该待切入的UE存在语音业务时,判断该下行RSRP测量值是否小于该RSRP 语音
若是,确定该待切入的UE处于该正常区域边界之外;
当待切入的UE无语音业务时,判断该下行RSRP测量值是否小于该RSRP 数据
若是,确定该待切入的UE处于该正常区域边界之外。
在有些场景中,当本小区被作为切换目标的目标小区可能直到切换时才发现自己是受上行干扰的小区,此时,需要在目标小区做判断,决定是否允许切入。
实际应用中,当待切入的UE的源小区发起切换时,可以在S1或X2的切换请求消息中携带待切换UE的Pcmax和待切换UE对该本小区的测量上报的下行RSRP测量值)。
本小区收到切换请求消息后,获取消息中全部参数,包括切换UE的Pcmax和下行RSRP测量值。
此时,本小区识别自己的受扰状态,如果为正常小区,可忽略切换请求消息中的切换UE的Pcmax和RSRP,按常规切换流程处理即可,如果为上行受扰小区:则需要计算本小区的正常区域边界,并识别待切入的UE的业务类型。
在计算本小区的正常区域边界时,需要获取的参数包括:本小区的RS 功率、待切换的UE的Pcmax、本小区的NI、本小区的AntNum、和本小区的SINR traffic
实际应用中,对于SINR traffic,可以根据待切换的UE的业务类型分情况获 取:
如果待切换的UE是语音业务,则获取本受扰小区的最小接收信干噪比SINR traffic(语音);如果待切换的UE是语音业务,则获取本受扰小区的最小接收信干噪比SINR traffic(数据)。
在决策时,如果待切换的UE存在语音业务,则:
当待切入的UE上报的下行RSRP测量值>=本小区的下行RSRP边界值(语音)时,表明待切入的UE已经在本小区正常区域(语音)的覆盖范围内,则接纳本此切换,回复确认消息。否则,表明待切入的UE处在干扰区域中,则拒绝本此切换,回复拒绝消息。
如果待切入的UE无语音业务,则:
当待切入的UE上报的RSRP测量值>=本小区的下行RSRP边界值(数据)时,表明待切入的UE已经在本小区正常区域(数据)的覆盖范围内,则接纳本此切换,回复确认消息。否则,表明待切入的UE处在干扰区域中,则拒绝本此切换,回复拒绝消息。
需要说明的是,实际应用中,源小区传递的切换请求消息中可以省略待切换的UE的Pcmax,因为大部分UE的Pcmax都相同,目标小区在计算下行RSRP边界值时,可以用Pcmax预置值代替。
在一个可行的方案中,当获知本小区为上行受扰小区时,所述方法还包括:
向邻小区发送受扰状态更新消息,所述受扰状态更新消息携带本小区的下行RSRP边界值,或本小区的下行RSRP边界值的计算参数。
实际应用中,可以采用实施例一的方法向邻小区发送受扰状态更新消息,此处不在赘述。
本实施例的干扰处理的方法,在获知本小区受到上行干扰时,通过计算本小区的下行RSRP边界值,确认自己的正常区域和干扰区域,拒绝处于该正常区域边界之外的待切入本小区的UE(该UE上报的下行RSRP测量值小于下行RSRP边界值)的切换请求,从而使UE能够避开本小区上行干扰的影响,不仅能够提高上行干扰下的切换成功率和用户感受度,并能够最大限度利用受扰小区的正常区域。
本发明实施例三提供了另一种干扰处理的方法,本实施例中,以基站1和基站2为例对干扰处理进行说明,其中基站1包括小区A和B,基站2包括小 区C和D;A小区包括UE-A1,UE-A2,B小区包括UE-B,C小区包括UE-C1、UE-C2;UE-A1仅有数据业务,UE-A2有语音业务,UE-C1为数据业务,UE-C2为语音业务;小区A、B、C、D全部互为邻区,并且彼此通过X2进行通信。本实施例中小区A、B、C、D已经互相通过X2交流过必要的邻区参数信息。假设大气波导干扰突然出现,基站1检测发现出现大气波导干扰,并进行抗干扰处理,同时,基站1的基带通知高层小区A和B存在大气波导干扰,并通知干扰NI值。
为方便描述,本实施例将不同的场景分开描述。
场景一、小区A接收到基带的通知,计算本小区的下行RSRP边界值,并决策本小区内的UE是否需要迁出。
该场景下,小区A可以通过两种方法实现计算本小区的下行RSRP边界值,并决策本小区内的UE是否需要迁出。
方法一请参阅图5,包括:步骤S401至步骤S406。
在步骤S401中,标识干扰状态为受扰,并记录NI值。
在步骤S402中,从后台获取本小区的RS 功率、AntNum、SINRtraffic(语音)、SINRtraffic(数据)及大气波导类型补偿参数Atmospheric Default Parameter。
在步骤S403中,开启定时器,定时遍历和扫描小区内所有UE(包括UE-A1和UE-A2),根据每个UE的接入信息获取每个UE的Pcmax,并获取每个UE在本小区的下行RSRP测量值。
在步骤S404中,识别每个UE的业务类型。
在步骤S405中,根据每个UE的业务类计算每个UE在本小区的下行RSRP边界值。
在步骤S406中,将每个UE在本小区的下行RSRP测量值与其在本小区的下行RSRP边界值进行比较,并在下行RSRP测量值<下行RSRP边界值时,确定需要将该UE迁出。
本场景中,当遍历到UE-A1时,根据其接入信息获取其Pcmax-A1,获取其在本小区的下行RSRP测量值RSRP-A1;然后识别出UE-A1业务类型为仅有数据业务,因此根据公式RSRP 数据=RS 功率–Pcmax+NI–10Log(AntNum)+SINR traffic(数据)-IDP,计算UE-A1在本小区的下行RSRP边界值为R-A1(Data);在将RSRP-A1和R-A1(Data)进行比较,仅当RSRP-A1<R-A1(Data)时,确定需要将UE-A1迁出。
当遍历到UE-A2时,根据其接入信息获取其Pcmax-A2,获取其在本小区的下行RSRP测量值RSRP-A2,并识别出UE-A2业务类型存在语音业务,根据公式RSRP 语音=RS 功率–Pcmax+NI–10Log(AntNum)+SINR traffic(语音)-IDP计算出UE-A2的语音业务的下行RSRP边界值R-A2(Voice),将RSRP-A2和R-A2(Voice)进行比较,仅当RSRP-A2<R-A2(Voice)时,确定需要将UE-A2迁出。
方法二请参阅图6,包括:步骤S501至步骤S507。
在步骤S501中,标识干扰状态为受扰,并记录NI值。
在步骤S502中,从后台取获本小区的RS功率、AntNum、SINRtraffic(语音)、SINRtraffic(数据)、Pcmax预设值和大气波导类型补偿参数Atmospheric Default Parameter。
在步骤S503中,计算本小区的语音业务和数据业务的下行RSRP边界值。
在一实施例中,语音业务的下行RSRP边界值R(Voice)=RS–Pcmax+NI–10Log(AntNum)+SINR traffic(语音)-Atmospheric Default Parameter;
数据业务的下行RSRP边界值R(Data)=RS–Pcmax+NI–10Log(AntNum)+SINR traffic(数据)-Atmospheric Default Parameter。
在步骤S504中,开启定时器,定时遍历和扫描小区内所有UE,获取每个UE在本小区的下行RSRP测量值。
在步骤S505中,识别每个UE的业务类型,当UE的业务类型仅为数据业务时,执行步骤S506,当UE的业务类型存在语音业务时,执行步骤S507。
在步骤S506中,将该UE的下行RSRP测量值与R(Data)进行对比,仅在下行RSRP测量值<R(Data)时,确定该UE需要迁出。
在步骤S507中,将该UE的下行RSRP测量值与R(Voice)进行对比,仅在下行RSRP测量值<R(Voice)时,确定该UE需要迁出。
本场景中,当遍历到UE-A1时,获取其在本小区的下行质量测量值RSRP-A1,识别出UE-A1业务类型为仅数据业务,用RSRP-A1和R(Data)比较,仅当RSRP-A1<R(Data)时,确认UE-A1需要迁出。
当遍历到UE-A2时,获取其在本小区的下行质量测量值RSRP-A2,识别出UE-A2业务类型存在语音业务用RSRP-A2和R(Voice)比较,仅当RSRP-A2<R(Voice)时,确认UE-A2需要迁出。
场景二、小区A向邻小区发送受扰状态更新消息(该场景下,小区A已经完 成自身受扰状态的更新,即场景一已经发生)。
小区A向邻小区发送的受扰状态更新消息可以携带受扰标识以及受扰相关的参数。而其携带参数的个数和内容采用两种方式:
方式一、传递用于计算下行RSRP边界值的参数,此时,后台将会配置受扰状态消息中传递下行RSRP边界值计算用的参数。
方法包括:步骤1、步骤2和步骤3。
步骤1、获取后台配置为受扰状态更新消息中传递正常区域计算参数。
步骤2、填写X2受扰状态更新消息,消息内容包括:
状态:受扰;
参数个数:4;
小区A的接收天线数目AntNum;
小区A的SINRtraffic(语音);
小区A的SINRtraffic(数据);
小区A的NI值。
步骤3、将受扰状态更新消息发送给邻区B,C,D。
此时邻小区收到小区A的受扰状态更新消息后,识别小区A的状态为受扰小区,获取该受扰状态更新消息携带的参数类型为:跟随5个计算参数,读取并存储计算参数到A小区标识下,计算参数包括:
小区A的状态:受扰;
小区A的干扰计算参数有4个;
小区A的接收天线数目AntNum;
小区A的SINRtraffic(语音);
小区A的SINRtraffic(数据);
小区A的NI值;
本小区从后台获取的大气波导类型补偿Atmospheric Default Parameter。
方式二、直接传递下行RSRP边界值,后台将会配置受扰状态消息中传递下行RSRP边界值。
方法包括:步骤1、步骤2和步骤3。
步骤1、获取后台配置为受扰状态更新消息中传递正常区域计算值。
步骤2、填写X2受扰状态更新消息,消息内容包括:
状态:受扰;
参数类型:下行RSRP边界值;
下行RSRP边界值R(Data)和R(Voice);
步骤3、小区A将消息发送给邻小区B、C、D。
邻小区收到小区A的受扰状态更新消息后,识别小区A的状态为受扰小区,获取该受扰状态更新消息携带的参数类型为:跟随2个下行RSRP边界值,读取并存储下行RSRP边界值到A小区标识下,计算参数包括:
小区A的状态:受扰;
小区A的下行RSRP边界值有2个;
小区A的下行RSRP边界值R(Voice)和R(Data);
场景三、小区A的迁出决策(筛选候选切换目标小区)。
该场景下,小区A和B已经完成场景一中的自身受扰状态的更新,和场景二中对邻小区的受扰状态信息的更新,由于小区A、B、C、D互为邻区,因此均进行了对邻小区受扰状态信息的更新。小区B、C、D作为候选小区的优先级顺序为B、C、D。小区A中UE-A1被决策迁出。
请参阅图7,方法包括:步骤S601至步骤S607。
在步骤S601中,获取UE-A1对邻小区B、C、D的测量上报信息。
在步骤S602中,读取各邻小区标识下存储的受扰状态,发现小区B为受扰小区,小区C和D为正常小区。
在步骤S603中,查看小区B标识下存储的参数,当存储的参数为计算正常和区域边界值的计算参数时,执行步骤S604和步骤S605,当存储的参数为下行RSRP边界值时,执行步骤S606和S607。
在步骤S604中,用UE-A1(数据业务)的Pcmax-A1和保存的小区B的计算参数,计算出小区B关于UE-A1的下行RSRP边界值(数据)为R-B-A1(Data)。
在步骤S605中,将UE-A1对小区B的下行RSRP测量值RSRP-B-A1和R-B-A1(Data)比较,如果RSRP-B-A1<R-B-A1(Data),则把B从候选目标小区中剔除。
在步骤S606中,获取小区B标识下存储的下行RSRP边界值(数据)为R-B(Data)。
在步骤S607中,将UE-A1对小区B的下行RSRP测量值RSRP-B-A1和R-B(Data)比较,如果RSRP-B-A1<R-B,则把B从候选目标小区中剔除。
本场景中,如果将小区B从候选目标小区中提出,则按照常规切换判决流程在正常小区C、D中进行决策,否则,按照常规切换判决流程在小区B和正常小区C、D中进行决策。
场景四、小区C的UE-C1因移动原因,发起切换决策。
该场景下,小区C、D为正常小区,小区A、B为受扰小区,且小区A、B、C、D,已经完成场景一和场景二的自身受扰状态的更新和对邻小区的受扰状态信息的更新。
请参阅图8,方法流程包括:步骤S701至步骤S707。
在步骤S701中,获取UE-C1对邻小区A、B、D的测量上报信息,并记录下本UE对邻区A,B、D的测量值为RSRP-A-C1,RSRP-B-C1,RSRP-D-C1。
本步骤中,可根据确认UE-C1对邻小区A、B、D的测量上报信息确认邻小区A,B、D为候选切换目标小区,优先级为A,B、D。
在步骤S702中,读取每个邻小区标识下存储的受扰状态,发现小区A、B为受扰小区,小区D为正常小区。
在步骤S703中,查看受扰小区标识下存储的参数,当存储的参数为计算正常和区域边界值的计算参数时,执行步骤S704和步骤S705,当存储的参数为下行RSRP边界值时,执行步骤S706和步骤S707。
在步骤S704中,用UE-C1(数据业务)的Pcmax-C1和保存的受扰小区的计算参数,计算出受扰小区关于UE-C1的下行RSRP边界值(数据)为R-受扰小区-C1(Data)。
在步骤S705中,将UE-C1对受扰小区的下行RSRP测量值RSRP-受扰小区-C1和R-受扰小区-C1(Data)比较,如果RSRP-受扰小区-C1<R-受扰小区-C1(Data),则把受扰从候选目标小区中剔除。
在步骤S706中,获取受扰小区标识下存储的下行RSRP边界值(数据)为R-受扰小区(Data)。
在步骤S707中,将UE-C1对受扰小区的下行RSRP测量值RSRP-受扰小区-C1和R-受扰小区(Data)比较,如果RSRP-受扰小区-C1<R-受扰小区(Data),则把(Data)从候选目标小区中剔除。
以对小区A的决策为例。小区C发现A为受扰小区后,结合UE-C1的业务类型为数据类型,获取到小区A的R-A-C1(data)(即根据UE-C1的PCmax得出的小区A的数据下行RSRP边界值)或R-A(data)(即根据后台配置的PCmax 得出的小区A的数据下行RSRP边界值),和RSRP-A-C1比较。当RSRP-A-C1<R-A-C1(data)时(采用UE的Pcmax计算)或当RSRP-A-C1<R-A(data)时(采用后台的Pcmax计算)将A从候选目标小区中剔除。
重复上述步骤判断是否剔除小区B。
经过上述步骤,候选目标小区集合可能是{A,B,D}或{A,D}或{B,D}或{D},如果集合是{D},则直接选择D为切换目标小区。如果集合不是{D},则按照基站正常状态下的流程,进行下一步筛选,选出切换目标小区。
场景五、小区D决策是否接受其他小区发起的切换请求。
该场景下,小区D为正常状态小区,小区C已经决策UE-C1发起向小区D的切换。因为近期大气波导经常出现,小区C向下去D发起的切换请求消息中携带UE-C1的Pcmax-UEC1和UE-C1对小区D的下行测RSRP量值RSRP-D-C1,以防干扰的临时出现。
请参阅图9,方法流程包括:步骤S801至步骤S804。
在步骤S801中,收到本小区基站基带通知更新为受扰小区和UE-C1发起的切换请求。
在步骤S802中,获取本小区的下行RSRP边界值的计算参数和UE-C1的相关参数。
其中,下行RSRP边界值的计算参数,包括:本小区的RS 功率、AntNum、SINR traffic(数据)、NI值和大气波导类型补偿Atmospheric Default Parameter。
UE-C1的相关参数包括:UE-C1的Pcmax、业务类型为数据、UE-C1上报的下行RSRP测量值RSRP-D-C1。
在步骤S803中,计算出本小区针对UE-C1的下行RSRP边界值R-D-C1(Data)。
在步骤S804中,比较RSRP-D-C1和R-D-C1(Data),如果RSRP-D-C1<R-D-C1(Data)则拒绝切换,如果RSRP-D-C1>=R-D-C1(Data)则接受切换。
场景六、上行干扰消失,受扰小区更新自身干扰状态并通知邻小区。
该场景下,基站检测发现大气波导干扰已经消失,基站基带通知本站原大气波导干扰覆盖的所有小区,本场景中为小区A和小B,下面以小区A为例进行说明。
请参阅图10,方法流程包括:步骤S901至步骤S904。
在步骤S901中,接收基站基带发送的上行干扰消失消息。
在步骤S902中,更新干扰状态为正常并重置与下行RSRP边界值相关的计算参数无效。
在步骤S903中,填写X2受扰状态更新消息,消息内容包括:
状态:正常,
参数类型:无。
在步骤S904中,将受扰状态更新消息发送给邻小区B、C、D。
此时,邻小区B、C、D收到小区A的受扰状态更新消息后,识别小区A的状态为正常小区,更新小区状态,重置小区A所有的正常区域边界的计算参数无效。
本实施例的干扰处理的方法,在获知本小区受到上行干扰时,通过计算本小区的下行RSRP边界值,确认自己的正常区域和干扰区域,将干扰区域(此区域内用户体验差)内的UE及时通过切换方式迁出,并拒绝处于所述正常区域边界之外的待切入本小区的UE的切换请求,从而使UE能够避开本小区上行干扰的影响,不仅能够提高上行干扰下的切换成功率和用户感受度,并能够最大限度利用受扰小区的正常区域。
本发明实施例四提供了一种干扰处理的装置,请参阅图11,该装置包括:存储器1101、处理器1102及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如实施例一、实施例二或实施例三所述的方法。
本实施例的干扰处理的装置,在获知本小区受到上行干扰时,通过计算本小区的下行RSRP边界值,确认自己的正常区域和干扰区域,将干扰区域(此区域内用户体验差)内的UE及时通过切换方式迁出,并拒绝处于该正常区域边界之外的待切入本小区的UE的切换请求,从而使UE能够避开本小区上行干扰的影响,不仅能够提高上行干扰下的切换成功率和用户感受度,并能够最大限度利用受扰小区的正常区域。
本发明实施例四提供了一种干扰处理的系统,请参阅图12,该系统包括至少一个基站1201,以及设于该基站的小区内的干扰处理的装置1202。
该基站1201,设置为对本基站的小区进行干扰检测,并在检测出有小区受 到上行干扰时,通过基站基带向受干扰的小区的干扰处理的装置发送的上行受扰消息;
该干扰处理的装置1202,设置为在接收到本小区的基站基带发送的上行受扰消息时,将受扰的UE迁出至相邻小区。
该干扰处理的装置1202可以采用前述实施例三的上行干扰的装置,此处不在赘述。
本实施例的干扰处理的系统,在基站抗干扰的基础上,也通知高层小区为受扰小区,使受扰小区在获知本小区受到上行干扰时,通过计算本小区的下行RSRP边界值,确认自己的正常区域和干扰区域,将干扰区域(此区域内用户体验差)内的UE及时通过切换方式迁出,并拒绝处于该正常区域边界之外的待切入本小区的UE的切换请求,从而使UE能够避开本小区上行干扰的影响,不仅能够提高上行干扰下的切换成功率和用户感受度,并能够最大限度利用受扰小区的正常区域。
本发明实施例五提供了一种存储介质,该存储介质包括存储的程序,在该程序运行时控制该存储介质所在设备执行如实施例一、实施例二或实施例三的操作。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于随机存取存储器(Random-Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、电可擦除可编 程只读存储器(Electrically Erasable Programmable Read Only Memory,EEPROM)、闪存或其他存储器技术、只读光盘(Compact Disc Read-Only Memory,CD-ROM)、数字多功能盘(Digital Versatile Disc,DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。

Claims (10)

  1. 一种干扰处理的方法,应用于第一通信节点,所述方法包括:
    确定小区的下行参考信号接收功率RSRP边界值;
    接收用户设备UE上报的下行RSRP测量值;
    在所述下行RSRP测量值小于所述下行RSRP边界值的情况下,将所述UE迁出所述小区。
  2. 如权利要求1所述的方法,其中,所述确定小区的下行参考信号接收功率RSRP边界值,包括:
    根据以下信息确定所述小区的下行RSRP边界值:所述小区下行参考信号发射功率,UE的最大上行发射功率,噪声干扰功率,所述小区的接收天线数目,最小接收信干噪比,以及预置补偿参数。
  3. 如权利要求1所述的方法,其中,所述下行RSRP边界值包括以下至少之一:语音业务的下行RSRP边界值和数据业务的下行RSRP边界值。
  4. 根据权利要求2所述的方法,其中,所述最小接收信干噪比为:
    在下行RSRP边界值包括语音业务的下行RSRP边界值的情况下,所述最小接收信干噪比为语音业务传输的最小接收信干噪比;或者
    在下行RSRP边界值包括语音业务的下行RSRP边界值的情况下,所述最小接收信干噪比为数据业务传输的最小接收信干噪比。
  5. 如权利要求1所述的方法,还包括:
    接收邻小区的受扰状态消息,确定所述邻小区的下行RSRP边界值;
    在所述UE上报的邻小区的下行RSRP测量值大于或等于所述邻小区的下行RSRP边界值的情况下,将所述邻小区作为所述UE的候选目标小区。
  6. 如权利要求5所述的方法,其中,所述邻小区的受扰状态消息携带所述邻小区的下行RSRP边界值;或者
    所述邻小区的受扰状态消息携带用于计算所述邻小区的下行RSRP边界值的参数。
  7. 如权力要求1至6任一项所述的方法,还包括:
    向邻小区发送受扰状态消息,所述受扰状态消息携带所述小区的下行RSRP边界值,或用于计算所述小区的下行RSRP边界值的参数。
  8. 一种干扰处理的方法,应用于第一通信节点,所述方法包括:
    确定小区的下行参考信号接收功率RSRP边界值;
    在待切入所述小区的用户设备UE上报的所述小区的下行RSRP测量值小于 所述下行RSRP边界值的情况下,拒绝所述UE的切换请求。
  9. 一种干扰处理的装置,包括:存储器、处理器及存储在所述存储器上并在所述处理器上可运行的计算机程序,所述处理器设置为执行所述计算机程序实现如权利要求1至8中任一项所述的方法。
  10. 一种存储介质,所述存储介质存储有至少一个程序,所述至少一个程序可被至少一个处理器执行,以实现如权利要求1至8任一项所述的方法。
PCT/CN2019/088996 2018-05-29 2019-05-29 干扰处理的方法以及装置、系统及存储介质 WO2019228395A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020557926A JP7142102B2 (ja) 2018-05-29 2019-05-29 干渉処理方法、装置、システム及び記憶媒体
EP19811984.4A EP3761705A4 (en) 2018-05-29 2019-05-29 INTERFERENCE PROCESSING METHOD, DEVICE AND SYSTEM AND STORAGE MEDIUM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810533669.5 2018-05-29
CN201810533669.5A CN110545561B (zh) 2018-05-29 2018-05-29 一种干扰处理的方法、装置、系统及存储介质

Publications (1)

Publication Number Publication Date
WO2019228395A1 true WO2019228395A1 (zh) 2019-12-05

Family

ID=68696820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/088996 WO2019228395A1 (zh) 2018-05-29 2019-05-29 干扰处理的方法以及装置、系统及存储介质

Country Status (4)

Country Link
EP (1) EP3761705A4 (zh)
JP (1) JP7142102B2 (zh)
CN (1) CN110545561B (zh)
WO (1) WO2019228395A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111163502A (zh) * 2020-03-09 2020-05-15 Oppo(重庆)智能科技有限公司 一种小区选择方法、装置、计算机存储介质和设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101808381A (zh) * 2010-03-24 2010-08-18 中兴通讯股份有限公司 一种切换判决的方法及装置
CN102056211A (zh) * 2009-10-28 2011-05-11 北京三星通信技术研究有限公司 一种触发邻小区测量的方法及系统
CN103188749A (zh) * 2011-12-30 2013-07-03 中兴通讯股份有限公司 用户设备切换方法及装置
US20150043369A1 (en) * 2012-03-18 2015-02-12 Lg Electronics Inc. Method and apparatus for performing measurement in wireless communication system

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6157834A (en) * 1997-12-29 2000-12-05 Motorola, Inc. Terrestrial and satellite cellular network interoperability
KR20110094163A (ko) * 2010-02-14 2011-08-22 엘지전자 주식회사 이동통신 시스템에서 측정 결과값 정보의 전달 방법 및 이를 위한 장치
JP5352513B2 (ja) * 2010-03-31 2013-11-27 株式会社日立製作所 無線通信システム及びハンドオーバー制御方法
CN102036295B (zh) * 2010-12-02 2014-04-16 大唐移动通信设备有限公司 一种确定上下行配置的方法、系统和设备
JP5651497B2 (ja) * 2011-02-24 2015-01-14 Kddi株式会社 閾値算出装置及び閾値算出プログラム
US8929880B2 (en) * 2011-04-21 2015-01-06 Motorola Solutions, Inc. Uplink interference management for a heterogeneous wireless network
WO2012154100A1 (en) * 2011-05-12 2012-11-15 Telefonaktiebolaget L M Ericsson (Publ) Methods in base stations, base stations, computer programs and computer program products
CN103220704B (zh) * 2012-01-21 2019-02-26 华为技术有限公司 无线通信系统中测量增强的方法和装置
EP2882230B1 (en) * 2012-08-06 2020-06-24 NEC Corporation Wireless communications system and handover control method
US9204356B2 (en) * 2012-09-04 2015-12-01 Apple Inc. Reducing call drops in uplink power limited scenarios
CN103686879B (zh) * 2012-09-07 2016-12-21 华为技术有限公司 上下行配比切换的方法和基站
CN111010707B (zh) * 2013-06-13 2024-03-22 索尼公司 干扰协调方法、干扰协调装置以及测量装置
JP5931815B2 (ja) * 2013-08-20 2016-06-08 株式会社東芝 通信制御装置、通信制御方法およびプログラム
JP5992984B2 (ja) * 2014-12-04 2016-09-14 ソフトバンク株式会社 基地局装置
US9980196B2 (en) * 2015-01-16 2018-05-22 Telefonaktiebolaget Lm Ericsson (Publ) Method and device for mobility control
US10694474B2 (en) * 2015-10-15 2020-06-23 Telefonaktiebolaget Lm Ericsson (Publ) Network node and method for managing transmit power

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102056211A (zh) * 2009-10-28 2011-05-11 北京三星通信技术研究有限公司 一种触发邻小区测量的方法及系统
CN101808381A (zh) * 2010-03-24 2010-08-18 中兴通讯股份有限公司 一种切换判决的方法及装置
CN103188749A (zh) * 2011-12-30 2013-07-03 中兴通讯股份有限公司 用户设备切换方法及装置
US20150043369A1 (en) * 2012-03-18 2015-02-12 Lg Electronics Inc. Method and apparatus for performing measurement in wireless communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3761705A4 *

Also Published As

Publication number Publication date
CN110545561B (zh) 2022-04-26
JP2021519036A (ja) 2021-08-05
EP3761705A4 (en) 2021-09-08
JP7142102B2 (ja) 2022-09-26
CN110545561A (zh) 2019-12-06
EP3761705A1 (en) 2021-01-06

Similar Documents

Publication Publication Date Title
US11483720B2 (en) Communications device and method
EP2668804B1 (en) A method and a network node for determining an offset for selection of a cell of a first radio network node
US11223403B2 (en) Mobility measurements
EP2869631B1 (en) Terminal access method and system, and terminal
EP2553977B1 (en) User equipment, radio base station and methods therein for determining mobility trigger
EP2528371B1 (en) Cell partitioning for high-speed users
EP1129592B1 (en) Cellular communications network and method for dynamically changing the size of a cell due to speech quality
EP2549799A2 (en) Method and arrangement for improved handover
CN108353330A (zh) 来自不同无线电网络节点的波束之间的移动性过程
WO2016177163A1 (zh) 一种切换方法和装置
Ahmad et al. Efficient handover in LTE-A by using mobility pattern history and user trajectory prediction
WO2011042414A1 (en) Femtocell base station
CN102065501A (zh) 一种小区切换方法和设备
Abuhasnah et al. Direction prediction assisted handover using the multilayer perception neural network to reduce the handover time delays in LTE networks
WO2019228395A1 (zh) 干扰处理的方法以及装置、系统及存储介质
EP2999269B1 (en) Cell-based processing method, system, and related apparatus
KR20180002968A (ko) 핸드오버 파라미터 최적화를 위한 방법 및 장치
WO2023092283A1 (zh) 条件性主辅小区添加的优化方法、装置、设备及存储介质
EP4171120A1 (en) Migration method under hybrid networking, storage medium, and electronic device
EP4278775A1 (en) Systems and methods for ue reporting to facilitate handover
JP2007306115A (ja) 移動機のソフトハンドオーバー制御方法及び移動機
JP6057788B2 (ja) 無線通信システムのための無線基地局、無線通信システムにおける無線端末接続制御方法
CN109819463B (zh) 一种终端分场景切换方法及设备
WO2023240625A1 (zh) 发射功率的确定方法、装置、设备及存储介质
WO2020015819A1 (en) Attenuating a signal from a cell, beam or frequency in a resource

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19811984

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019811984

Country of ref document: EP

Effective date: 20200930

ENP Entry into the national phase

Ref document number: 2020557926

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE