WO2019227187A1 - Papel e processo de fabricação de papel utilizando celulose microfibrilada na polpa de celulose - Google Patents

Papel e processo de fabricação de papel utilizando celulose microfibrilada na polpa de celulose Download PDF

Info

Publication number
WO2019227187A1
WO2019227187A1 PCT/BR2019/050183 BR2019050183W WO2019227187A1 WO 2019227187 A1 WO2019227187 A1 WO 2019227187A1 BR 2019050183 W BR2019050183 W BR 2019050183W WO 2019227187 A1 WO2019227187 A1 WO 2019227187A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulp
mfc
paper
shows
cellulose
Prior art date
Application number
PCT/BR2019/050183
Other languages
English (en)
French (fr)
Inventor
Renato Augusto PEREIRA DAMÁSIO
Marcelo COELHO DOS SANTOS MUGUET SOARES
Original Assignee
Klabin S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=68698557&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2019227187(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Klabin S.A. filed Critical Klabin S.A.
Priority to CN201980035507.1A priority Critical patent/CN112534099A/zh
Priority to AU2019277277A priority patent/AU2019277277A1/en
Priority to US17/058,071 priority patent/US20210207325A1/en
Priority to SG11202011797VA priority patent/SG11202011797VA/en
Priority to EP19810468.9A priority patent/EP3805454A4/en
Publication of WO2019227187A1 publication Critical patent/WO2019227187A1/pt

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/18Highly hydrated, swollen or fibrillatable fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H1/00Paper; Cardboard
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/18Reinforcing agents
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/50Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by form
    • D21H21/52Additives of definite length or shape
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/10Packing paper
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/30Multi-ply
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/30Multi-ply
    • D21H27/40Multi-ply at least one of the sheets being non-planar, e.g. crêped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/04Cellulosic plastic fibres, e.g. rayon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/02Chemical or chemomechanical or chemothermomechanical pulp
    • D21H11/04Kraft or sulfate pulp

Definitions

  • the present invention relates to a papermaking process comprising the addition of microfibrillated cellulose (MFC) to the cellulose pulp, generating special paper weight and improved mechanical strength properties.
  • MFC microfibrillated cellulose
  • the present invention relates to the field of papermaking.
  • WO 2011/068457 relates to a process for producing paper and paperboard with improved weight and strength, comprising a forming base containing cellulosic fibers where from 2 to 15% by weight of cationic starch and 15% by weight are added. by weight of MFC separately. It is reported that large amounts of starch will increase the strength of the paper produced and MFC helps in retaining it. However, it is not addressed in this previous weight or tests that prove the greater strength of the paper produced.
  • WO 2010/125247 relates to a method for producing an aqueous pulp containing a cationic polyelectrolyte (such as starch) and a nanofibrillated cellulose (defined as MFC) to be used in the manufacture of paper and cardboard. , obtaining them with high load content and good mechanical resistance. The amounts of 1.5% and 3% by weight of MFC were used, producing papers with weight between 55 and 60 g / m 2 . Of that Thus, this precedence describes a process that uses much larger amounts of MFC and produces smaller paper.
  • a cationic polyelectrolyte such as starch
  • MFC nanofibrillated cellulose
  • Paper according to the present invention has physical characteristics such as strength and improved weight.
  • Paper is produced by the process of producing a cellulose pulp containing from 1 to 1.5% of MFC by weight of cellulosic pulp and starch in the range 1.0 to 10.0 Kg / Ton, preferably 5.0 Kg / Ton, generating a final paper from this pulp in a paper production line of varying weight. 60 g / m 2 to 440 g / m 2 , requiring no significant diluents or additives.
  • the present process can thus produce a paper with better physical and mechanical characteristics using smaller amounts of raw material.
  • the addition of MFC causes significant changes in the drainage resistance of this pulp, measured by the degree ° SR.
  • the ° SR grade is the measure of the degree of pulp drainage resistance, which increases with higher pulp pulp refining loads.
  • the present invention describes a paper containing microfibrillated cellulose with improved weight and strength.
  • the weight of the paper produced ranges from 60 to 440 g / m 2 and the The amount of microfibrated cellulose in the paper ranges from 1.0 to 1.5% of the paper mass.
  • the present invention describes a papermaking process using MFC.
  • a second object of the present invention is a papermaking process comprising adding microfibrillated cellulose and starch to a cellulose pulp.
  • microfibrillated cellulose in the amount of 1 to 1.5% by weight of cellulosic pulp and starch added to the cellulosic pulp in the amount of 5.0 kg per ton of pulp is added.
  • the pulp used may be bleached, brown or mechanical.
  • Figure 1 shows a schematic representation of the difference between layers of cellulose with and without MFC in their composition, showing the largest number of bonds between free hydroxyls.
  • Figure 2 shows the size distribution of (A) brown short pulp fibers in micrometers and (B) Brown short fiber MFC in nanometers.
  • Figure 3 shows a 200x optical microscopy image (A) and another 23,900x electron microscopy image of the brown short fibers and the MFC produced with that fiber, respectively.
  • Figure 4 shows the size distribution in micrometers (A) of long brown fibers in the pulp pulp and in nanometer (B) of the MFC produced with this pulp.
  • Figure 5 shows an optical microscopy image at 100c (A) and another electron microscopic image at 7,540x of the long brown fibers and the MFC produced with this cellulosic pulp respectively.
  • Figure 6 shows the size distribution in (A) micrometer bleached short fibers and MFC and (B) produced from bleached short fibers.
  • Figure 7 shows a 200x optical microscopy image (A) and another 33,000x electron microscopic image of the bleached short fibers and the MFC produced with this pulp.
  • Figure 8 shows the variation of Schopper Riegler grade (° SR) with increasing MFC concentration in cellulosic pulp for the production of kraftliner paper containing a blend of long and short fibers, which also represents the addition behavior. of MFC in any kind of pulp kraft pulp, semi-chemical or commercial.
  • Figure 9 shows the drainage behavior with increasing time and at different MFC concentrations in the pulp for the production of kraftliner paper containing a mixture of long and short fibers.
  • Figure 10 shows the effect of MFC dosing on the Schopper Riegler grade (° SR) on the level box and inbox of an industrial paper machine over time.
  • Figure 11 shows the effect of MFC dosing on the Couch roll vacuum on an industrial paper machine over time.
  • Figure 12 shows the effect of MFC dosing on the Turba ⁇ r system vacuum on an industrial paper machine over time.
  • Figure 13 shows the effect of MFC dosing on flat table retention in an industrial paper machine over time.
  • Figure 14 shows the effect of MFC dosing on white water turbidity in an industrial paper machine over time.
  • Figure 15 shows the comparison of the tensile strength in the longitudinal direction of the reference paper with the paper produced through the MFC pulp pulp in several batches.
  • Figure 16 shows the comparison of the tensile strength in the transverse direction of the reference paper with the paper produced by MFC pulp pulp in several batches.
  • Figure 17 shows the comparison of the longitudinal direction elongation of the reference paper with the paper produced through the MFC pulp pulp in several batches.
  • Figure 18 shows the comparison of the cross-sectional elongation of the reference paper with the paper produced through the MFC pulp pulp in several batches.
  • FIG. 19 shows the comparison of Tensile Energy Absorption (TEA) in the longitudinal direction of reference paper with paper produced from MFC cellulose pulp in several batches.
  • Figure 20 shows the comparison of Tensile Energy Absorption (TEA) in the transverse direction of reference paper with paper produced from MFC cellulose pulp in several batches.
  • Figure 21 shows the comparison of the Short Crush Test (SCT) of the reference paper to the paper made from MFC cellulose pulp in several batches.
  • SCT Short Crush Test
  • FIG 22 shows the comparison of the Ring Crush Test (RCT) of reference paper to paper produced. through MFC pulp pulp in several batches.
  • RCT Ring Crush Test
  • Figure 23 shows the comparison of the burst strength of the reference paper with the paper produced by MFC pulp pulp in several batches.
  • Figure 24 shows the Scott (Ply) Bond comparison of reference paper to paper produced from MFC pulp pulp in several batches.
  • Figure 25 shows the comparison of the air passage resistance (Gurley) of the reference paper with the paper produced through the MFC pulp pulp in several batches.
  • Figure 26 shows the tear index comparison for sackraft papers manufactured with different Schopper Riegler grade or ° SR and MFC addition at different levels.
  • Figure 27 shows the tensile index comparison for sackraft papers manufactured with different Schopper Riegler grade or ° SR and MFC addition at different levels.
  • Figure 28 shows the comparison of the burst index for sackraft papers made with different Schopper Riegler grade (° SR) and addition of MFCs at different levels.
  • Figure 29 shows the Tensile Energy Absorption (TEA) comparison for sackraft papers made with Schopper Riegler grade or ° SR and MFC addition at different levels.
  • Figure 30 shows the comparison of elongation for sackraft papers made with different Schopper Riegler grade or ° SR and addition of MFC at different levels.
  • Figure 31 shows the comparison of airflow resistance (Gurley) for sackraft papers manufactured with different Schopper Riegler grade or ° SR and MFC addition at different levels.
  • Figure 32 shows the drainage comparison for sackraft papers made with different Schopper Riegler grade or ° SR and MFC addition at different levels.
  • Figure 33 shows the tear property comparison for sackraft papers made with different weights and MFC addition at different levels.
  • Figure 34 shows the tensile strength comparison for sackraft papers made with different weights and MFC addition at different levels.
  • Figure 35 shows the comparison of sackraft paper overflows made with different weights and the addition of MFCs at different levels.
  • FIG. 36 shows the Comparison of Tensile Energy Absorption (TEA) for sackraft papers made with different weights and MFC addition at different levels.
  • Figure 37 shows the comparison of elongation for sackraft papers made with different weights and MFC addition at different levels.
  • Figure 38 shows the comparison of airflow resistance (Gurley) for sackraft papers made with different weights and the addition of MFCs at different levels.
  • Figure 39 shows the comparison of the addition of MFCs at different levels with the Schopper Riegler grade or ° SR of the cover layer of the manufactured paperboard.
  • Figure 40 shows a comparison of the Water Retention Value (WRV) or water retention value of the cover layer of paperboard manufactured with different MFC contents added to the pulp of that layer of the paperboard.
  • WRV Water Retention Value
  • Figure 41 shows the drainage comparison (Drainage Freeness Retention or DFR) of the cover layer of cardboard manufactured with different MFC contents added to the pulp of that layer of cardboard.
  • Figure 42 shows the comparison of the tensile index (IT) of the cover layer of the paperboard manufactured with different MFC contents added to the pulp of that paperboard layer.
  • Figure 43 shows a comparison of the overlay index of the paperboard layer manufactured with different MFC contents added to the pulp of that paperboard layer.
  • Figure 44 shows the comparison of Tensile Energy Absorption (TEA) of the cover layer of cardboard manufactured with different MFC contents added to the pulp of this layer of the cardboard.
  • TAA Tensile Energy Absorption
  • Figure 45 shows a comparison of the air passage resistance (Gurley) of the cover layer of the paperboard manufactured with different MFC contents added to the pulp of that paperboard layer.
  • Figure 46 shows the roughness comparison of the cover layer of the paperboard manufactured with different MFC contents added to the pulp of that paperboard layer.
  • Figure 47 shows the comparison of the drainage resistance (indicated by Schopper Riegler grade or ° SR) of the middle layer of the paperboard manufactured with different MFC contents added to the pulp of that layer of the paperboard.
  • Figure 48 shows a comparison of the Water Retention Value (WRV) or water retention value of the middle layer of the paperboard manufactured with different MFC contents added to the pulp of that paperboard layer.
  • WRV Water Retention Value
  • Figure 49 shows the drainage comparison (Drainage Freeness Retention or DFR) of the middle layer of the cardboard manufactured with different MFC contents added to the pulp of that layer of the cardboard.
  • Figure 50 shows the comparison of the index of traction (IT) of the middle layer of the paperboard manufactured with different MFC contents added to the pulp of this paperboard layer.
  • Figure 51 shows the comparison of the bursting property of the middle layer of the paperboard manufactured with different MFC contents added to the pulp of that paperboard layer.
  • Figure 52 shows the comparison of Tensile Energy Absorption (TEA) of the middle layer of the paperboard manufactured with different MFC contents added to the pulp of that layer of the paperboard.
  • TAA Tensile Energy Absorption
  • Figure 53 shows the comparison of the air passage resistance (Gurley) of the middle layer of the paperboard manufactured with different MFC contents added to the pulp of that paperboard layer.
  • Figure 54 shows the comparison of Schopper Riegler grade or ° SR of the base layer of the paperboard manufactured with different MFC contents added to the pulp of that layer of the paperboard.
  • FIG 55 shows the comparison of the Water Retention Value (WRV) or base retention value of the paperboard made with different MFC contents added to the pulp of that paperboard layer.
  • WRV Water Retention Value
  • Figure 56 shows the Drainage Freeness Retention (DFR) comparison of the paper base layer cardboard made with different MFC contents added to the pulp of this layer of the paperboard.
  • DFR Drainage Freeness Retention
  • Figure 57 shows the comparison of the tensile index (IT) of the base layer of the paperboard manufactured with different MFC contents added to the pulp of that layer of the paperboard.
  • Figure 58 shows the comparison of the bursting property of the base layer of the paperboard manufactured with different MFC contents added to the pulp of that layer of the paperboard.
  • Figure 59 shows the comparison of Tensile Energy Absorption (TEA) of the base layer of the paperboard manufactured with different MFC contents added to the pulp of that layer of the paperboard.
  • TSA Tensile Energy Absorption
  • Figure 60 shows the comparison of the air passage resistance (Gurley) of the base layer of the cardboard manufactured with different MFC contents added to the pulp of that layer of the cardboard.
  • Figure 61 shows the comparison of Schopper Riegler grade or ° SR of market pulp with different MFC concentrations.
  • FIG 62 shows the comparison of Water Retention Value (WRV) or market retention value of market pulp with different MFC concentrations.
  • Figure 63 shows the comparison of drainage (Drainage Freeness Retention or DFR) of market pulp with different concentrations of MFC.
  • Figure 64 shows the comparison of tensile index (IT) of market pulp with different MFC concentrations.
  • Figure 65 shows the comparison of the overflow property of market pulp with different MFC concentrations.
  • Figure 66 shows the comparison of Tensile Energy Absorption (TEA) of market pulp with different MFC concentrations.
  • Figure 67 shows the comparison of air passage resistance (Gurley) of market pulp with different MFC concentrations.
  • Figure 68 shows the comparison of market cellulosic pulp elongation with different MFC concentrations.
  • Figure 69 shows the tear property comparison of market cellulosic pulp with different MFC concentrations.
  • Figure 70 shows the Modulus of Elasticity (MOE) comparison of market pulp with different MFC concentrations.
  • MFC Microfibrillated Cellulose
  • Microfibrillary cellulose, microfibrilated cellulose, nanofibrillated cellulose, or even nanofibers or nanocellulose are commonly found terms that refer to a tangle of cellulosic fibrils with diameters in the range of less than 1,000 nm and have amorphous and crystalline zones composing their structure.
  • MFC is characterized as a type of cellulose in which microfibres are divided into a larger number of microfibrils or thinner fibrils. This action creates an increased surface area, giving new features to the product.
  • MFC is used in the present invention primarily as a strength agent, for internal sizing of paper and as a modifier of the physical structure of paper.
  • MFC is typically sourced from timber sources and is one of the most sustainable alternatives on the market. However, it can be produced from any source. of cellulosic fiber, whether mechanical, unbleached and bleached, as well as any source of biomass from wood as well as non-wood.
  • the surface area of MFC is the special feature of this substance: with just one gram of MFC, it is possible to cover up to 200 m 2 of physical space. This characteristic is due to the large number of hydroxyl groups (-OH) available in the highly hydrophilic microfibres that capture water from nearby areas.
  • An MFC microfiber is capable of capturing 40 times more water than its own weight.
  • MFC Being highly hydrophilic material, MFC can act as an advanced rheology modifier, providing very interesting spray characteristics and exceptionally high viscosity at rest.
  • CFM is famous for its shear and non-Newtonian behavior, and also shows potential as a stabilizer, especially in stabilizing emulsions (water in oil or oil in water).
  • MFC presents itself as a large bonding network between the paper layers, ensuring that the fiber-MFC-fiber bonding interface between the paper layers expresses its maximum potential due to the exposed OH clusters ( Figure 1) and its high surface area. MFC now fills both the macro and microporosity of the paper produced by changing the bonding structure between layers and forming a perfect bond.
  • MFC's multifunctionality also allows it to partially adopt additives and stabilizing ingredients such as surfactants.
  • MFC shows potential as a resistance additive. Because of these features, there has been a growing interest in the use of MFC in applications such as coatings, adhesives, electronics, cosmetics and many others.
  • MFC microfiber is also important in determining its functionality. Increasing microfiber length has beneficial effects on the tensile, elasticity and strength of wood and paper composites.
  • MFC production can be subdivided into 5 main steps:
  • the first step is to dilute bleached or unbleached kraft pulp to 2% consistency, ideal for processing CFM.
  • the second step is the chemical- enzymatic.
  • the preparation of the pulp takes place for processing.
  • the pH of each container is adjusted to 6.0 using aluminum sulfate (Al 2 (S0 4 ) 3 ).
  • Al 2 (S0 4 ) 3 aluminum sulfate
  • the neutral pulp is heated at 35-40 ° C for 50-60 minutes and then treated with 125g of enzyme per ton of dry pulp, being an enzyme of the family of endoglucanases.
  • the product is dispersed for 25 minutes on a cowles shaker.
  • the enzymatic action is cut by adjusting the pH to 13-14 with liquid soda (sodium hydroxide, NaOH) at a dosage of approximately 200g per ton of pulp.
  • the third step is the processing step, where the pulp is transferred to a vertical mechanical mill through a pump and processed.
  • the mill comprises 2% cSt aluminum oxide (Al2O3) stone (consistency).
  • Al2O3 cSt aluminum oxide
  • the process is done twice and it is important to note that, after I grind, it is still possible to view the entire fiber, while in the second grinding, not showing the size micro / nano scale fibers.
  • the sizes of the microfibres produced after this step can be seen in table 1, while table 2 shows the different microfibers characterization parameters for cst at 2%.
  • the fourth step is the dilution step of the treated and tank processed pulp to 0.8% cSt consistency, with pulp entering and leaving the filter via openings and paddle motor agitation to prevent sedimentation. The pulp is then filtered through a 0.05 mm opening filter.
  • the fifth and final step is the storage step, where the diluted pulp is directed to the appropriate tank with agitation.
  • v is the voltage (V)
  • i is the average current (A)
  • fp is the horsepower of a motor (cv)
  • P is the production / hour (dry kg). The total energy expenditure of 7075.6 Kw.h / t is estimated for the preparation of two tanks.
  • the present invention may also occur by using only step 3, mechanical processing, to produce MFCs, thereby decreasing the energy expenditure of the process.
  • Cellulosic pulps are rich in fibers, but fibers are not the only anatomical elements they have. Fibers, fiber fragments, lignin, parenchyma cells and vessel elements are combined in a rich blend. A kraft pulp is considered to be a pulp containing all these organic components.
  • Bleaching is the factory operation where pulp pulp receives reductive and oxidative chemical treatments, followed or not by washing. These undesirable components are removed during washings. It is desirable that minimal fiber degradation occurs during this process, both from the point of view of increasing profitability and from the point of view of strength. After bleaching, the pulp is considered white / bleached.
  • the present invention has performed the characterization of cellulosic fibers both before and after bleaching.
  • the present invention may use brown, bleached or mechanical pulps, depending on the type of paper to be produced. Practical examples, but not limited to them, are sackraft paper, which is produced with brown long-fiber MFC, and carton paper, which has bleached short-fiber MFC in the cover layer and brown short-fiber MFC in the middle and base layers. .
  • the zeta potential of the MFCs produced was also measured.
  • the zeta potential is a stability parameter since the residual surface charge can repel each other and promote destabilization of the medium containing them.
  • the different size of microfibrils may result in interlacing, which influences the value difference.
  • the presence of residual hemicelluloses may also cause alterations in the reading of this parameter due to its agglutination capacity.
  • the values found are in accordance with the zeta potential of microfibrils (potentials between -56, 96 and -26, 86 mV).
  • Kraft or kraftliner paper is a type of paper made from a mixture of short and long cellulose fibers from wood kraft pulps.
  • microfibrillated cellulose as a strength additive was evaluated in kraft paper production on paper machine 4 (MP4). Between 1.0 and 1.5% MFC were dosed into the mixing tank along with 5.0 kg / t cationic starch. There was no need to reduce the machine speed, no production breaks due to difficulties encountered due to drainage, the paper retention level remained high and furthermore the paper formation remained good without any further adjustment. in the machine.
  • the pulp SR can rise up to 3 points (Figure 8), while for the drainage curve a reduction of up to 100 ml or more of water drained within the first 10 seconds of paper formation (Figure 9).
  • MFC tends to increase the paper density, which occurs due to the construction of a strong fibrous web, as a result of the high binding capacity of the MFC fibers thus increasing the paper's strength properties. as can be observed in the results obtained.
  • MFC was applied to sackraft paper to improve tear strength and / or weight reduction.
  • Sackraft paper is a porous kraft paper with greater elasticity and strength.
  • MFC allows the reduction of up to 10 g / m 2 in sackraft papers.
  • the entire paper structure is modified with the application of MFC, so it is possible to produce papers with different macro and microporosities, which allows the classification of these papers as a new barrier application raw material that already presents MFC as a renewable primer incorporated in its structure.
  • Modifying paper porosity thus opens room for product development both different as differentiated, since their structure can be completely changed.
  • Examples of papers of the present invention which may also be used in conjunction with MFC to obtain but not limited to improved mechanical characteristics are testliner and corrugated papers.
  • MFC is known as a highly hygroscopic material, which can have an effect on the paper drainage process. Due to the lower SR ° of the intermediate refineries, the application of CFM did not result in loss of drainage ( Figure 32). In fact, in some samples, drainage was even better than standard paper, which could mean savings in the paper production process.
  • this scenario aims to reduce weight as a focus for approving the use of CFM.
  • two MFC levels (2 and 5%) were tested and the weights were reduced in steps of 5 g / m 2 .
  • the differential of the present invention is the use of CFM and the consequences arising from this addition.
  • the weight of a paper is fixed and different concentrations of CFM are added, aiming at changes in, among other factors, weight.
  • the pursuit of weight reduction comes from the study of different concentrations of MFC to pulp pulp.
  • cellulose pulp MFC for the manufacture of paperboard may occur on different layers of paperboard, since it is intrinsic characteristic of the paperboard to have a cover layer and a base layer, being linked through a middle layer. Each of these layers may be made up of several smaller inner layers, but the intent of the MFC assessment in the present invention relates only to the 3 main layers.
  • This section shows the behavior found of the addition of MFC in cellulose pulp of the cover layer of the paperboard. It is possible to notice the increase of both the SR and the water retention value (WRV) with the increase of the MFC content used in the pulp ( Figures 39 and 40).
  • the increase in ° SR indicates greater difficulty in physical water drainage, while the increase in WRV indicates greater interaction of water with cellulosic fibers (high specific surface), which is evidenced by the change in drainage behavior (DFR).
  • the middle layer of the paperboard is usually the bonding layer between the surface and the base of the paperboard.
  • Adding CFM to its fibrous composition increased the physical and mechanical strength properties ( Figures 50, 51, 52 and 53) as observed in the cover layer tests.
  • the base layer of the card shows the same effects as before with the cover and middle layers. As CFM is added to the pulp, the SR increases, indicating greater difficulty in physical water drainage, which is also indicated by the change in drainage behavior ( Figures 54, 55 and 56).
  • This application corresponds to the addition of MFC to commercially available pulp pulp, a viable alternative for papermakers who already have cellulosic pulp stock and plan to produce paper with improved characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Paper (AREA)

Abstract

A presente invenção refere-se a um processo de fabricação de papel kraft, sackraft ou cartão compreendendo a adição de 1,0 a 1,5% em massa de MFC com diâmetro médio preferencial entre 1 e 568 nanômetros e amido na faixa de 1,0 a 10,0 Kg/Ton, preferencialmente 5,0 Kg/Ton, gerando uma polpa com maior concentração de microfibras e resistência aprimorada, além de, consequentemente, um papel final com gramatura variando na faixa de 60 a 440 g/m2 e com propriedades de resistência também melhoradas para uso em materiais de embalagem.

Description

Relatório Descritivo da Patente de Invenção para: "PAPEL E PROCESSO DE FABRICAÇÃO DE PAPEL UTILIZANDO CELULOSE MICROFIBRILADA NA POLPA DE CELULOSE".
Campo Técnico
[0001] A presente invenção refere-se a um processo de fabricação de papel que compreende a adição celulose microfibrilada (MFC) à polpa de celulose, gerando um papel com gramatura especial e propriedades de resistência mecânica melhoradas. A presente invenção está relacionada ao campo da fabricação de papel.
Antecedentes da Invenção
[0002] A preocupação com o meio ambiente ganha espaço a cada dia na agenda dos países, que criam leis para regulamentar a geração de resíduos e destinação dada aos mesmos. Todo esse trabalho é decorrente da conscientização de que é necessário utilizar matérias primas de fontes renováveis em processos industriais de produção.
[0003] A cadeia produtiva de papel e celulose se caracteriza por um alto grau de investimento e possui significativa presença na economia de escala, visto estar presente desde a exploração florestal até a comercialização.
[0004] A localização de fábricas está ligada à concentração dos ativos florestais, existindo uma forte dependência entre a produção de matéria-prima e o processo industrial . [0005] Dessa forma, um processo de produção de papel que diminua a dependência e a extração da matéria-prima e confira maior resistência mecânica ao papel, produzido com a utilização de celulose microfibrilada (MFC) integrada ao processo de produção de papel ao invés de se utilizar grandes quantidades de aditivos, diminui as perdas e torna o processo menos custoso e menos danoso ao meio ambiente.
[0006] O documento WO 2011/068457 refere-se a um processo para produção de papel ou papelão com gramatura e resistência aprimoradas, compreendendo uma base formadora contendo fibras celulósicas onde são adicionados de 2 a 15% em peso de amido catiônico e l a 15% em peso de MFC, separadamente. É informado que grandes quantidades de amido irão aumentar a resistência do papel produzido e a MFC ajuda na retenção deste. Contudo, não é abordado nessa anterioridade a gramatura ou ainda testes que comprovem a maior resistência do papel produzido.
[0007] O documento WO 2010/125247 refere-se a um método para produzir uma pasta de papel aquosa contendo um polieletrólito catiônico (como amido) e uma celulose nanofibrilada (cuja definição engloba a MFC) a ser usada na fabricação de papel e papelão, obtendo os mesmos com alto conteúdo de carga e boa resistência mecânica. Foram utilizadas as quantidades de 1,5% e 3% em peso de MFC, produzindo papeis com gramatura entre 55 e 60 g/m2. Dessa forma, essa anterioridade descreve um processo que utiliza quantidades bem maiores de MFC e produzindo papéis com menor gramatura .
[0008] Por fim, o artigo cientifico "Cellulose nanofibrils—adsorption with poly (amideamine) epichloro- hydrin studíed by QCM-D and applícatíon as a paper strength additive" (Ahola et al . Cellulose (2008) 15:303-314), descreve o aumento da resistência úmida e seca do papel à medida que a concentração de celulose microfibrilada aumenta. Foi realizada a adição de MFC a 1, 2, 4, 6, e 10% em peso de polpa celulósica, produzindo papel com gramatura de 60 g/m2, ou seja, utilizando quantidades bem maiores de MFC e produzindo papéis com menor gramatura.
[0009] Embora algumas anterioridades façam referência ao uso de MFC em polpa celulósica para aumentar caracteristicas físicas e mecânicas do papel, como resistência, nenhuma descreve um processo capaz de produzir papel com gramatura elevada se utilizando de quantidades bem baixas de MFC, evidenciando as vantagens do processo proposto na baixa utilização de matéria-prima e do conceito de biorrefinaria.
[0010] O papel, de acordo com a presente invenção, possui caracteristicas físicas como resistência e gramaturas aprimoradas. O papel é produzido através do processo de produção de uma polpa de celulose contendo de 1 a 1,5% de MFC em peso de polpa celulósica e amido na faixa de 1,0 a 10,0 Kg/Ton, preferencialmente 5,0 Kg/Ton, gerando um papel final a partir dessa polpa em uma linha de produção de papel com gramatura que varia na faixa de 60 g/m2 a 440 g/m2, não necessitando de diluentes ou aditivos em quantidade considerável. O presente processo consegue, assim, produzir um papel com melhores caracteristicas físicas e mecânicas usando menores quantidades de matéria-prima. Além disso a adição de MFC provoca alterações significativas na resistência à drenagem dessa polpa, medida pelo grau °SR. O grau °SR é a medida do grau de resistência à drenagem da polpa, que aumenta com maiores cargas de refinação da polpa de celulose. Ao adicionar MFC à polpa celulósica, o mesmo comportamento é observado, demonstrando, assim, um dos potenciais da adição de MFC em substituição parcial da operação de refinação em uma fábrica de celulose.
Sumário da Invenção
[0011] Em um primeiro aspecto, a presente invenção descreve um papel contendo celulose microfibrilada com gramatura e resistência aprimoradas.
[0012] É um primeiro objeto da presente invenção um papel contendo celulose microfibrilada e com gramatura especial .
[0013] Em uma concretização preferencial, a gramatura do papel produzido varia na faixa de 60 a 440 g/m2 e a quantidade de celulose microfibrilada no papel varia na faixa de 1,0 a 1,5% da massa do papel.
[0014] É também caracteristica da invenção ser o papel do tipo Kraft, sackraft, testliner, corrugado ou cartão.
[0015] Em um segundo aspecto, a presente invenção descreve um processo de produção de papel utilizando MFC.
[0016] É um segundo objeto da presente invenção um processo de fabricação de papel compreendendo a adição de celulose microfibrilada e amido a uma polpa de celulose.
[0017] Em uma concretização preferencial, é adicionada celulose microfibrilada na quantidade de 1 a 1,5% por peso de polpa celulósica e de amido adicionado à polpa celulósica na quantidade de 5,0 Kg por tonelada de polpa.
[0018] É também caracteristica da invenção o fato da polpa celulósica utilizada poder ser branqueada, marrom ou mecânica .
[0019] Estes e outros objetos da presente invenção serão detalhados nas figuras e descrição a seguir.
Breve Descrição das Figuras
[0020] A Figura 1 mostra uma representação esquemática da diferença entre camadas de celulose com e sem MFC na sua composição, evidenciando o maior número de ligações entre as hidroxilas livres.
[0021] A Figura 2 mostra a distribuição de tamanho de (A) fibras curtas marrons da polpa de celulose em micrômetros e (B) MFC de fibra curta marrom em nanômetros.
[0022] A Figura 3 mostra uma imagem em microscopia ótica em 200x (A) e outra imagem em microscopia eletrónica em 23.900x das fibras curtas marrons e da MFC produzida com essa fibra, respectivamente .
[0023] A Figura 4 mostra a distribuição de tamanho em micrômetros (A) das fibras longas marrons na polpa de celulose e em nanômetro (B) da MFC produzida com essa polpa de celulose.
[0024] A Figura 5 mostra uma imagem em microscopia ótica em IOOc (A) e outra imagem em microscopia eletrónica em 7.540x das fibras longas marrons e da MFC produzida com essa polpa celulósica respectivamente.
[0025] A Figura 6 mostra a distribuição de tamanho em (A) fibras curtas branqueadas em micrômetros e da MFC e (B) produzida a partir das fibras curtas branqueadas.
[0026] A Figura 7 mostra uma imagem em microscopia ótica em 200x (A) e outra imagem em microscopia eletrónica em 33.000x das fibras curtas branqueadas e da MFC produzida com essa polpa.
[0027] A Figura 8 mostra a variação do grau Schopper Riegler (°SR) com o aumento da concentração de MFC na polpa celulósica para a produção de papel kraftliner contendo uma mistura de fibras longas e curtas, e que também representa o comportamento da adição de MFC em qualquer tipo de polpa celulósica kraft, semiquímica ou comercial.
[0028] A Figura 9 mostra o comportamento da drenagem com o aumento do tempo e em diferentes concentrações de MFC na polpa de celulose para a produção de papel kraftliner contendo uma mistura de fibras longas e curtas.
[0029] A Figura 10 mostra o efeito da dosagem de MFC no grau Schopper Riegler (°SR) na caixa de nível e na caixa de entrada de uma máquina de papel industrial com o passar do tempo .
[0030] A Figura 11 mostra o efeito da dosagem de MFC no vácuo do rolo Couch em uma máquina de papel industrial com o passar do tempo.
[0031] A Figura 12 mostra o efeito da dosagem de MFC no vácuo do sistema Turbaír em uma máquina de papel industrial com o passar do tempo.
[0032] A Figura 13 mostra o efeito da dosagem de MFC na retenção da mesa plana em uma máquina de papel industrial com o passar do tempo.
[0033] A Figura 14 mostra o efeito da dosagem de MFC na turbidez da água branca em uma máquina de papel industrial com o passar do tempo.
[0034] A Figura 15 mostra a comparação da resistência à tração na direção longitudinal do papel de referência com o papel produzido através da polpa de celulose com MFC em diversos lotes. [0035] A Figura 16 mostra a comparação da resistência à tração na direção transversal do papel de referência com o papel produzido através da polpa de celulose com MFC em diversos lotes.
[0036] A Figura 17 mostra a comparação da elongação na direção longitudinal do papel de referência com o papel produzido através da polpa de celulose com MFC em diversos lotes .
[0037] A Figura 18 mostra a comparação da elongação na direção transversal do papel de referência com o papel produzido através da polpa de celulose com MFC em diversos lotes .
[0038] A Figura 19 mostra a comparação da Tensíle Energy Absorptíon (TEA) na direção longitudinal do papel de referência com o papel produzido através da polpa de celulose com MFC em diversos lotes.
[0039] A Figura 20 mostra a comparação da Tensíle Energy Absorptíon (TEA) na direção transversal do papel de referência com o papel produzido através da polpa de celulose com MFC em diversos lotes.
[0040] A Figura 21 mostra a comparação da Short Crush Test (SCT) do papel de referência com o papel produzido através da polpa de celulose com MFC em diversos lotes.
[0041] A Figura 22 mostra a comparação do Ring Crush Test (RCT) do papel de referência com o papel produzido através da polpa de celulose com MFC em diversos lotes.
[0042] A Figura 23 mostra a comparação da resistência ao estouro do papel de referência com o papel produzido através da polpa de celulose com MFC em diversos lotes .
[0043] A Figura 24 mostra a comparação do Scott (Ply) Bond do papel de referência com o papel produzido através da polpa de celulose com MFC em diversos lotes.
[0044] A Figura 25 mostra a comparação da resistência à passagem de ar (Gurley) do papel de referência com o papel produzido através da polpa de celulose com MFC em diversos lotes .
[0045] A Figura 26 mostra a comparação do índice de rasgo para papéis sackraft fabricados com diferente grau Schopper Riegler ou °SR e adição de MFC em diferentes níveis.
[0046] A Figura 27 mostra a comparação do índice de tração para papéis sackraft fabricados com diferente grau Schopper Riegler ou °SR e adição de MFC em diferentes níveis.
[0047] A Figura 28 mostra a comparação do índice de estouro para papéis sackraft fabricados com diferente grau Schopper Riegler ou °SR) e adição de MFC em diferentes níveis .
[0048] A Figura 29 mostra a comparação da Tensile Energy Absorption (TEA) para papéis sackraft fabricados com diferentegrau Schopper Riegler ou °SR e adição de MFC em diferentes níveis. [0049] A Figura 30 mostra a comparação da elongação para papéis sackraft fabricados com diferente grau Schopper Riegler ou °SR e adição de MFC em diferentes níveis.
[0050] A Figura 31 mostra a comparação da resistência à passagem de ar (Gurley) para papéis sackraft fabricados com diferente grau Schopper Riegler ou °SR e adição de MFC em diferentes níveis.
[0051] A Figura 32 mostra a comparação da drenagem para papéis sackraft fabricados com diferente grau Schopper Riegler ou °SR e adição de MFC em diferentes níveis.
[0052] A Figura 33 mostra a comparação da propriedade de rasgo para papéis sackraft fabricados com diferentes gramaturas e adição de MFC em diferentes níveis.
[0053] A Figura 34 mostra a comparação da resistência a tração para papéis sackraft fabricados com diferentes gramaturas e adição de MFC em diferentes níveis.
[0054] A Figura 35 mostra a comparação do estouro de papéis sackraft fabricados com diferentes gramaturas e adição de MFC em diferentes níveis.
[0055] A Figura 36 mostra a comparação da Tensíle Energy Absorptíon (TEA) para papéis sackraft fabricados com diferentes gramaturas e adição de MFC em diferentes níveis.
[0056] A Figura 37 mostra a comparação da elongação para papéis sackraft fabricados com diferentes gramaturas e adição de MFC em diferentes níveis. [0057] A Figura 38 mostra a comparação da resistência à passagem de ar (Gurley) para papéis sackraft fabricados com diferentes gramaturas e adição de MFC em diferentes níveis .
[0058] A Figura 39 mostra a comparação da adição de MFC em diferentes níveis com o grau Schopper Riegler ou °SR da camada cobertura do papel cartão fabricado.
[0059] A Figura 40 mostra a comparação do Water Retentíon Value (WRV) ou valor de retenção de água da camada cobertura do papel cartão fabricado com diferentes teores de MFC adicionados à polpa celulósica dessa camada do papel cartão .
[0060] A Figura 41 mostra a comparação da drenagem ( Drainage Freeness Retentíon ou DFR) da camada cobertura do papel cartão fabricado com diferentes teores de MFC adicionados a polpa celulósica dessa camada do papel cartão.
[0061] A Figura 42 mostra a comparação do índice de tração ( IT ) da camada cobertura do papel cartão fabricado com diferentes teores de MFC adicionados à polpa celulósica dessa camada do papel cartão.
[0062] A Figura 43 mostra a comparação do índice de estouro da camada cobertura do papel cartão fabricado com diferentes teores de MFC adicionados à polpa celulósica dessa camada do papel cartão.
[0063] A Figura 44 mostra a comparação da Tensíle Energy Absorption (TEA) da camada cobertura do papel cartão fabricado com diferentes teores de MFC adicionados à polpa celulósica dessa camada do papel cartão.
[0064] A Figura 45 mostra a comparação da resistência à passagem de ar (Gurley) da camada cobertura do papel cartão fabricado com diferentes teores de MFC adicionados à polpa celulósica dessa camada do papel cartão.
[0065] A Figura 46 mostra a comparação da aspereza da camada cobertura do papel cartão fabricado com diferentes teores de MFC adicionados à polpa celulósica dessa camada do papel cartão.
[0066] A Figura 47 mostra a comparação da resistência à drenagem (indicado pelo grau Schopper Riegler ou °SR) da camada meio do papel cartão fabricado com diferentes teores de MFC adicionados à polpa celulósica dessa camada do papel cartão .
[0067] A Figura 48 mostra a comparação do Water Retentíon Value (WRV) ou valor de retenção de água da camada meio do papel cartão fabricado com diferentes teores de MFC adicionados à polpa celulósica dessa camada do papel cartão.
[0068] A Figura 49 mostra a comparação da drenagem ( Drainage Freeness Retentíon ou DFR) da camada meio do papel cartão fabricado com diferentes teores de MFC adicionados à polpa celulósica dessa camada do papel cartão.
[0069] A Figura 50 mostra a comparação do índice de tração (IT) da camada meio do papel cartão fabricado com diferentes teores de MFC adicionados à polpa celulósica dessa camada do papel cartão.
[0070] A Figura 51 mostra a comparação da propriedade de estouro da camada meio do papel cartão fabricado com diferentes teores de MFC adicionados à polpa celulósica dessa camada do papel cartão.
[0071] A Figura 52 mostra a comparação da Tensíle Energy Absorptíon (TEA) da camada meio do papel cartão fabricado com diferentes teores de MFC adicionados à polpa celulósica dessa camada do papel cartão.
[0072] A Figura 53 mostra a comparação da resistência à passagem de ar ( Gurley) da camada meio do papel cartão fabricado com diferentes teores de MFC adicionados à polpa celulósica dessa camada do papel cartão.
[0073] A Figura 54 mostra a comparação do grau Schopper Riegler ou °SR da camada base do papel cartão fabricado com diferentes teores de MFC adicionados à polpa celulósica dessa camada do papel cartão.
[0074] A Figura 55 mostra a comparação do Water Retentíon Value (WRV) ou valor de retenção de água da camada base do papel cartão fabricado com diferentes teores de MFC adicionados à polpa celulósica dessa camada do papel cartão.
[0075] A Figura 56 mostra a comparação da drenagem ( Drainage Freeness Retentíon ou DFR) da camada base do papel cartão fabricado com diferentes teores de MFC adicionados à polpa celulósica dessa camada do papel cartão.
[0076] A Figura 57 mostra a comparação do índice de tração ( IT ) da camada base do papel cartão fabricado com diferentes teores de MFC adicionados à polpa celulósica dessa camada do papel cartão.
[0077] A Figura 58 mostra a comparação da propriedade de estouro da camada base do papel cartão fabricado com diferentes teores de MFC adicionados à polpa celulósica dessa camada do papel cartão.
[0078] A Figura 59 mostra a comparação da Tensíle Energy Absorptíon (TEA) da camada base do papel cartão fabricado com diferentes teores de MFC adicionados à polpa celulósica dessa camada do papel cartão.
[0079] A Figura 60 mostra a comparação da resistência à passagem de ar ( Gurley) da camada base do papel cartão fabricado com diferentes teores de MFC adicionados à polpa celulósica dessa camada do papel cartão.
[0080] A Figura 61 mostra a comparação do grau Schopper Riegler ou °SRda polpa celulósica de mercado com diferentes concentrações de MFC.
[0081] A Figura 62 mostra a comparação do Water Retentíon Value (WRV) ou valor de retenção de água da polpa celulósica de mercado com diferentes concentrações de MFC
[0082] A Figura 63 mostra a comparação da drenagem (Drainage Freeness Retention ou DFR) da polpa celulósica de mercado com diferentes concentrações de MFC.
[0083] A Figura 64 mostra a comparação do índice de tração ( IT ) da polpa celulósica de mercado com diferentes concentrações de MFC.
[0084] A Figura 65 mostra a comparação da propriedade de estouro da polpa celulósica de mercado com diferentes concentrações de MFC.
[0085] A Figura 66 mostra a comparação da Tensíle Energy Absorptíon (TEA) da polpa celulósica de mercado com diferentes concentrações de MFC.
[0086] A Figura 67 mostra a comparação da resistência à passagem de ar (Gurley) da polpa celulósica de mercado com diferentes concentrações de MFC.
[0087] A Figura 68 mostra a comparação da elongação da polpa celulósica de mercado com diferentes concentrações de MFC.
[0088] A Figura 69 mostra a comparação da propriedade de rasgo da polpa celulósica de mercado com diferentes concentrações de MFC.
[0089] A Figura 70 mostra a comparação do Modulus of Elasticity (MOE) da polpa celulósica de mercado com diferentes concentrações de MFC
Descrição Detalhada da Invenção
[0090] Os exemplos aqui mostrados têm o intuito apenas de ilustrar algumas das inúmeras formas de realização da presente invenção e não devem ser entendidos de modo a limitar o escopo da presente invenção, mas sim apenas de exemplificar o grande número de modalidades possíveis.
[0091] Pequenas modificações em quantidades ou parâmetros que alcancem os resultados propostos pela presente invenção devem ser entendidos como dentro do escopo da invenção .
Celulose Microfibrilada (MFC)
[0092] A celulose microfibrilar, microfibrilated cellulose, celulose nanofibrilada, ou ainda nanofibras ou nanocelulose são termos comumente encontrados que se referem a emaranhado de fibrilas celulósicas com diâmetros compreendidos na faixa inferior a 1.000 nm e apresenta zonas amorfas e cristalinas compondo a sua estrutura. A MFC é caracterizada como um tipo de celulose em que as microfibras são divididas em um maior número de microfibrilas ou ainda fibrilas mais finas. Essa ação cria uma área de superfície aumentada, dando novas características ao produto. A MFC é usada no presente invento principalmente como agente de resistência, para colagem interna do papel e como modificadora da estrutura física do papel.
[0093] A MFC é tipicamente proveniente de fontes de madeira, sendo uma das alternativas mais sustentáveis do mercado. Porém, pode ser produzida a partir de qualquer fonte de fibra celulósica, seja ela mecânica, não branqueada e branqueada, além de qualquer fonte de biomassa oriunda da madeira e também não-madeira.
[0094] A área de superfície da MFC é a característica especial dessa substância: com apenas um grama de MFC, é possível cobrir até 200 m2 de espaço físico. Essa característica se deve ao grande número de grupamentos hidroxila (-OH) disponíveis nas microfibras, altamente hidrofílicas e que captam água das proximidades. Uma microfibra de MFC é capaz de captar uma quantidade de água 40 vezes maior que seu próprio peso.
[0095] Sendo material altamente hidrofílico, a MFC pode atuar como um modificador de reologia avançado, proporcionando características de pulverização muito interessantes e uma viscosidade excepcionalmente alta em repouso. A MFC é famosa pelo seu cisalhamento e comportamento não-newtoniano, e também mostra potencial como estabilizador, especialmente em emulsões estabilizadoras (água em óleo ou óleo em água) .
[0096] A MFC apresenta-se como uma grande rede de ligações entre as camadas do papel, garantindo que a interface de ligação fibra-MFC-fibra entre as camadas do papel expresse seu máximo potencial devido os grupamentos OH expostos (Figura 1) e sua elevada área superficial. A MFC passa a preencher tanto a macro como a microporosidade do papel produzido, alterando a estrutura de ligação entre camadas e formando uma ligação perfeita.
[0097] A multifuncionalidade da MFC também permite que ela adote parcialmente aditivos e ingredientes estabilizadores, como surfactantes . Além disso, a MFC mostra potencial como um aditivo de resistência. Por conta destas funcionalidades, tem havido um interesse crescente no uso da MFC em aplicações como revestimentos, adesivos, eletrónicos, cosméticos e muitos outros.
[0098] O tamanho da microfibra de MFC também possui importância na determinação de sua funcionalidade. O aumento do comprimento da microfibra tem efeitos benéficos na tração, elasticidade e resistência dos compósitos em madeira e papel.
Produção de MFC
[0099] De acordo com a presente invenção, a produção de MFC pode ser subdividida em 5 etapas principais:
1. Ia diluição;
2. tratamento;
3. processamento mecânico;
4. 2a diluição; e
5. estocagem.
[0100] A primeira etapa consiste na diluição da polpa kraft branqueada ou não branqueada para 2% da consistência, ideal para o processamento da MFC.
[0101] A segunda etapa é o tratamento químico- enzimático. Nesta etapa ocorre a preparação da polpa para o processamento. Primeiramente, ocorre o ajuste do pH de cada Container para 6, 0 com o uso de sulfato de alumínio (Al2 (S04) 3) · A polpa em meio neutro é aquecida a 35-40°C por 50-60 minutos e, em seguida, tratada com 125g de enzima por tonelada de polpa seca, sendo enzima da família das endoglucanases . O produto é mantido em dispersão durante 25 minutos em agitador tipo cowles. Após este período, é realizado o corte da ação enzimática através do ajuste de pH para 13-14 com soda líquida (hidróxido de sódio, NaOH) na dosagem de aproximadamente 200g por tonelada de polpa.
[0102] A terceira etapa é a etapa de processamento, onde a polpa é transferida para um moinho mecânico vertical através de uma bomba, e processada. O moinho compreende pedra de óxido de alumínio (AI2O3) a 2% cSt {consistência) . O processo é feito duas vezes e é importante salientar que, após a Ia moagem, ainda é possível a visualização de fibras inteiras, enquanto na segunda moagem não, evidenciando a escala de tamanho micro/nano das fibras. Os tamanhos das microfibras produzidas após essa etapa podem ser conferidos na tabela 1, enquanto a tabela 2 mostra os diferentes parâmetros de caracterização das microfibras para cst a 2%. Tabela 1 - Faixa de diâmetro e frequência da polpa e das microfibilas celulósicas por etapa de produção:
Figure imgf000022_0002
Tabela 2 - Parâmetros de caracterização da polpa e das microfibras a cSt a 2%:
Figure imgf000022_0001
[0103] A quarta etapa é a etapa de diluição da polpa tratada e processada em tanque para consistência de 0,8% cSt, com entrada e saida da polpa no filtro via aberturas e agitação por motor de pás para evitar sedimentação. A polpa é posteriormente filtrada em filtro com abertura de 0,05 mm.
[0104] A quinta e última etapa é a etapa de estocagem, onde a polpa diluída é direcionada para tanque apropriado com agitação.
[0105] O cálculo do consumo energético teórico da produção de MFC pode ser calculado através da seguinte fórmula :
Figure imgf000023_0001
[0106] Onde v é a voltagem (V), i é a corrente média (A) , fp é o fator de potência de um motor em cavalos (cv) e P é a produção/hora (kg seco) . É estimado o gasto energético total de 7075,6 Kw.h/t para o preparo de dois tanques.
[0107] É válido ressaltar que a presente invenção também pode ocorrer utilizando-se apenas a etapa 3, processamento mecânico, para produzir MFC, diminuindo assim o gasto energético do processo.
Caracterização das fibras de MFC utilizadas na polpa celulósica
[0108] As polpas celulósicas são ricas em fibras, mas as fibras não são os únicos elementos anatômicos que elas possuem. Fibras, fragmentos de fibras, lignina, células de parênquima e elementos de vaso estão combinados em uma rica mistura. É considerada uma polpa kraft uma polpa contendo todos esses componentes orgânicos.
[0109] De forma a purificar uma polpa marrom pela remoção de outros componentes não desejáveis (lignina, extrativos e cromóforos) é realizado o procedimento chamado de branqueamento. O branqueamento é a operação fabril onde a polpa de celulose recebe tratamentos químicos redutivos e oxidativos, seguidos ou não de lavagens. Estes componentes indesejáveis são removidos durante as lavagens. É desejável que ocorra a mínima degradação das fibras durante esse processo, tanto do ponto de vista de aumento da rentabilidade quanto do ponto de vista de resistência. Após o branqueamento, a polpa é considerada branca/branqueada.
[0110] O presente invento realizou a caracterização das fibras celulósicas tanto antes como após o branqueamento. Contudo, é válido ressaltar que o presente invento pode se utilizar de polpas marrons, branqueadas ou mecânicas, a depender do tipo de papel que será produzido. Exemplos práticos, mas não se limitando aos mesmos, são o papel sackraft, que é produzido com MFC de fibra longa marrom e o papel cartão, que possui MFC de fibra curta branqueada na camada cobertura e MFC de fibra curta marrom nas camadas meio e base.
[0111] Inicialmente, foi realizada a caracterização das fibras curtas marrom tanto por microscopia ótica como eletrónica, obtendo maior faixa representativa com diâmetro variando de 0 a 568 nanômetros na microscopia eletrónica para a MFC dessa fibra (Figura 2) . A imagem em microscopia eletrónica foi necessária para definir o tamanho real da MFC proveniente da fibra. As imagens em 200 vezes e 23.900 vezes para as microscopias ótica e eletrónica, respectivamente, oferecem uma ideia dos tamanhos das fibras e MFC em projeção (Figura 3) .
[0112] Em seguida, foi realizada a caracterização das fibras longas marrons, mais uma vez, tanto por microscopia ótica como eletrónica. Foi obtida maior faixa representativa com diâmetro variando de 9 a 568 nanômetros para a MFC na microscopia eletrónica (Figura 4) . A imagem em microscopia eletrónica foi necessária para definir o tamanho real da MFC produzida da fibra e. As imagens em 100 vezes e 7.400 vezes para as microscopias ótica e eletrónica, respectivamente, oferecem uma ideia dos tamanhos das fibras e MFC em projeção (Figura 5) .
[0113] Por último, foi realizada a caracterização das fibras curtas branqueadas, mais uma vez tanto por microscopia ótica como eletrónica. Foi obtida maior faixa representativa com diâmetro variando de 11 a 98 nanômetros para a MFC na microscopia eletrónica (ainda que outras faixas, como 33-43, também sejam significativas) (Figura 6) . A imagem em microscopia eletrónica foi necessária para definir o tamanho real da MFC produzida da fibra. As imagens em 200 vezes e 33.000 vezes para as microscopias ótica e eletrónica, respectivamente, oferecem uma ideia dos tamanhos das fibras e MFC em projeção (Figura 7) .
[0114] Dessa forma, as MFCs provenientes das fibras curtas marrons e branqueadas, bem como as fibras longas marrons, foram consideradas como tendo um tamanho satisfatório para a produção de papel com caracteristicas melhoradas .
[0115] Foi realizada, ainda, a medição do potencial zeta das MFCs produzidas. O potencial zeta é um parâmetro de estabilidade, uma vez que a carga residual na superfície pode repelir uma das outras e promover desestabilização do meio que as contém. O tamanho diferenciado das microfibrilas pode resultar em entrelaçamento, o que influencia a diferença do valor. Além disso, a presença de hemiceluloses residuais também pode provocar alteração da leitura desse parâmetro, devido à sua capacidade de aglutinação. Os valores encontrados estão de acordo com o potencial zeta de microfibrilas (potenciais entre -56, 96 e -26, 86 mV) .
Tabela 3 - Valores obtidos a partir da análise do potencial zeta :
Figure imgf000026_0001
Figure imgf000027_0001
Aplicação de MFC à polpa para produção de papel kraft
[0116] O papel kraft ou kraftliner é um tipo de papel fabricado a partir de uma mistura ou não de fibras de celulose curtas e longas, provenientes de polpas kraft de madeiras .
[0117] A utilização da celulose microfibrilada como aditivo de resistência foi avaliada em produção de papel kraft na máquina de papel 4 (MP4) . Foram dosados entre 1,0 e 1,5% de MFC no tanque de mistura juntamente com 5,0 kg/t de amido catiônico. Não houve necessidade de reduzir a velocidade da máquina, não ocorreram quebras de produção por dificuldades encontradas devido a drenagem, o nivel de retenção do papel permaneceu com valores elevados e, além disso, a formação do papel permaneceu boa sem a necessidade de qualquer ajuste adicional na máquina.
[0118] É possível observar que a adição de MFC provoca a modificação da estrutura física do papel, o que impacta nos fenômenos de movimentação e drenagem da água durante sua formação. Esse aumento é esperado, pois o número e a frequência de ligações são aumentados devido à elevada superfície específica da MFC, que promove grande interação na interface com a superfície das fibras que formam o papel. Logo, o maior número de ligações e interações da MFC com a superfície das fibras que constituem a estrutura do papel justifica a produção de papéis com as propriedades físicas e mecânicas melhoradas.
[0119] Essas propriedades físicas e mecânicas foram medidas através de comparações de testes comuns à produção de papel e indústria de celulose em geral. Medições como grau Schopper Riegler ou °SR, resistência à tração (força necessária até o rompimento do papel), elongação (outra medida da força necessária até o rompimento do papel), resistência ao estouro ou arrebentamento (força necessária para início do rompimento do papel), resistência ao rasgo (força necessário para continuar um rompimento do papel até separação total), Tensíle Energy Absorptíon (TEA) (outra medida da força de ruptura total do papel), Short Crush Test (SCT) (resistência à compressão), Ring Crush Test (RCT) (outra medida de resistência à compressão) , Scott (Ply) Bond (resistência à delaminação ou perda de camadas), Gurley (resistência à passagem de ar que indica o comportamento da macro e microporosidade do papel), Water Retentíon Value (WRV) (medida da quantidade de água retida no papel), Drainage Freeness Retentíon (DFR) (tempo de drenagem) e Modulus of Elasticity (MOE) (medida da rigidez de uma material) . Vale ressaltar que alguns testes são medidos como índices, o que se configura como o quociente da resistência analisada pela gramatura do papel.
[0120] Ao adicionar MFC até 1,5% em massa na polpa celulósica, o °SR da polpa pode subir até 3 pontos (Figura 8), enquanto para a curva de drenagem é possível observar a redução de até 100 ml ou mais de água drenada nos primeiros 10 segundos de formação do papel (Figura 9) .
[0121] A resistência à drenagem da polpa da caixa de nível e na caixa de entrada foi consideravelmente afetada pela dosagem de 1,0 a 1,5% de MFC, aumentando em aproximadamente 20% o °SR (Figura 10) . Os vácuos no Couch (rolo da seção úmida da máquina com sistema de vácuo próprio) e Turbaír (sistema de vácuo integrado à máquina) aumentaram cerca de 10% (Figuras 11 e 12), enquanto a retenção da mesa plana (adiantamento do espelho d' água) permaneceu alta durante toda a produção, acima de 93% e praticamente constante, apesar do aumento da quantidade de MFC (Figura 13) . Esses valores foram indicativos da maior dificuldade de drenagem na mesa. No entanto, não foi necessário reduzir a velocidade da máquina para produzir resultados satisfatórios no papel final. A turbidez da água branca (Figura 14) aumentou cerca de 40%, o que é um indicativo da perda de fibras celulósicas ou mesmo MFC para a água. Porém, esse valor pode ser explicado pela alta concentração de fibras na polpa .
[0122] A resistência à tração, elongação e TEA foram calculadas como média geométrica da tração MD (Machine Direction, ou direção da máquina de produção de papel) e CD ( Cross Direction, ou direção contrária à máquina de produção de papel), com o objetivo de avaliar caracteristicas físicas e mecânicas sem o efeito da orientação do papel. Houve um aumento médio de 12% na resistência à tração quando comparado ao papel de referência (Figuras 15 e 16) . Houve aumento da elongação (Figuras 17 e 18) e do TEA MD e CD em 24 e 29%, respectivamente (Figuras 19 e 20) . O SCT do papel com MFC teve um pequeno incremento de 7% enquanto (Figura 21), enquanto o RCT praticamente não apresentou ganho (Figura 22) . A resistência ao estouro aumentou cerca de 10% no papel com MFC (Figura 23), enquanto o Scott (Ply) Bond cerca de 13% (Figura 24) . Ocorre notável mudança da estrutura física do papel observado pela resistência à passagem de ar {Gurley) , que dobrou com a adição de 1,0% de MFC (Figura 25) .
[0123] Geralmente, a adição de MFC tende a aumentar a densidade do papel, que ocorre devido à construção de uma rede fibrosa forte, consequente da elevada capacidade de ligação das fibras de MFC dessa forma ocorre um aumento crescente das propriedades de resistência do papel como pode ser observado nos resultados obtidos.
[0124] O aumento de resistência verificado indica benefícios no uso do papel para finalidade de conversão em embalagem, seja pelo aumento de resistência da embalagem ou pela possibilidade de redução de gramatura do papel. Além disso, o aumento considerável das propriedades elásticas revela potencial de uso da MFC nas camadas externas do papel cartão, podendo proporcionar aumento da resistência à flexão do mesmo e consequente redução da gramatura.
Aplicação de MFC à polpa para produção de papel sackraft
[0125] MFC foi aplicada em papel sackraft visando melhoria na resistência ao rasgo e/ou redução de gramatura. O papel sackraft é um papel kraft poroso, com maior elasticidade e resistência.
Aumento da resistência ao rasgo do papel sackraft através do uso de MFC na polpa celulósica
[0126] A aplicação de MFC compensa a redução do grau de refinação e entrega papéis com propriedades mecânicas superiores .
[0127] Além disso, a aplicação de MFC permite a redução de até 10 g/m2 em papéis sackraft. Toda a estrutura do papel é modificada com a aplicação de MFC, logo é possível produzir papéis com macro e microporosidades diferenciadas, o que permite a classificação desses papéis como nova matéria- prima para aplicação de barreiras que já apresenta MFC como um prímer renovável incorporado em sua estrutura.
[0128] A modificação da porosidade do papel, dessa forma, abre margem para o desenvolvimento de produtos tanto diferentes como diferenciados, uma vez que a sua estrutura pode ser modificada por completo. Exemplos de papéis da presente invenção que também podem ser utilizados juntamente com a MFC para a obtenção de caracteristicas mecânicas melhoradas, mas sem se limitar aos mesmos, são os papéis testliner e corrugado.
[0129] É sabido que o índice de rasgo tende a diminuir com a refinação. Deste modo, menores níveis de refinação tendem a preservar mais a estrutura de parede da fibra. Uma menor intensidade de refino demonstra uma melhoria em índice de rasgo. Por outro lado, pouco refino não desenvolve outras propriedades de igual importância, como tração e estouro. Visando a manutenção destas outras propriedades, MFC foi aplicada às polpas com níveis de refino intermediário. Como exemplo, o índice de tração da polpa padrão (°SR 18) pode ser atingido com uma polpa refinada até °SR 14 + 4% de MFC.
[0130] Nestas condições, o índice de rasgo subiu 8% (Figura 26), em quanto os índices de tração e estouro foram mantidos (Figuras 27 e 28) . Finalmente, o TEA foi elevado em cerca de 20% (Figura 29), a elongação aumento em 15% (Figura 30) e o Gurley foi elevado em 37% (Figura 31) .
[0131] Os resultados mostraram que a aplicação de MFC como agente de colagem interna nesse caso compensa a necessidade de refinação e menor energia de refino é requerida . [0132] Adicionalmente, MFC é conhecida como um material altamente higroscópico, o que pode causar efeitos no processo de drenagem do papel. Pode ser verificado que devido ao menor °SR dos refinos intermediários, a aplicação de MFC não resultou em perda de drenagem (Figura 32) . Na realidade, em algumas amostras, a drenagem se mostrou ainda melhor do que o papel padrão, o que pode significar economias no processo de produção do papel.
Redução da gramatura do papel sackraft através do uso de MFC na polpa celulósica
[0133] Diferentemente do cenário anterior, este cenário visa a redução de gramatura como foco para aprovação da utilização de MFC. Deste modo, foram testados dois níveis de MFC (2 e 5%) e as gramaturas foram reduzidas em passos de 5 g/m2.
[0134] É válido ressaltar que o diferencial da presente invenção é a utilização da MFC e as consequências decorrentes desta adição. Em um primeiro momento, a gramatura de um papel é fixada e diferentes concentrações de MFC são adicionadas, visando-se alterações da, dentre outros fatores, gramatura. A busca na redução da gramatura é oriunda do estudo de diferentes concentrações de MFC à polpa celulose.
[0135] Como era esperado, a utilização de MFC em uma mesma polpa matriz tende a influenciar negativamente as propriedades de rasgo devido ao maior adensamento do papel (Figura 33) . Por outro lado, a MFC, considerando apenas a gramatura atual de 85 g/m2, eleva as propriedades de tração (Figura 34), estouro (Figura 35), TEA (Figura 36) e elongação (Figura 37) . É interessante perceber que a aplicação de MFC compensa a gramatura em todas as propriedades mecânicas. Como exemplo a redução de 10 g/m2 (85 para 75 g/m2), com a aplicação de 2% de MFC demonstra manutenção das especificações do produto atual. Deste modo, tanto a cadeia de produção de madeira, quanto a transformação industrial se beneficia do menor uso de matéria-prima. Finalmente, a propriedade de Gurley teve um aumento de cerca de 400% (Figura 38), o que justifica a utilização da MFC como um primer renovável no papel sackraft.
Aplicação de MFC à polpa para produção de papel cartão
[0136] O uso de MFC em polpa celulósica para a fabricação de papel cartão pode ocorrer em camadas diferentes desse papel, uma vez que é caracteristica intrínseca do papel cartão apresentar uma camada cobertura e uma camada base, sendo ligadas através de uma camada meio. Cada uma dessas camadas pode ser fabricada com diversas camadas internas de menor gramatura, mas a intenção da avaliação da MFC no presente invento se refere apenas às 3 camadas principais.
Uso de MFC para fabricação da camada cobertura do papel cartão
[0137] Essa seção mostra o comportamento encontrado da adição de MFC em polpa celulósica da camada cobertura do papel cartão. É possível perceber o aumento tanto do °SR quanto do valor de retenção de água (WRV) com o aumento do teor de MFC utilizado na polpa (Figuras 39 e 40) . O aumento do °SR indica maior dificuldade na drenagem física da água, enquanto o aumento do WRV indica maior interação da água com as fibras celulósicas (alta superfície específica) o que é comprovado pela alteração do comportamento de drenagem (DFR)
( Figura 41) .
[0138] A resistência física e mecânica da camada cobertura do papel cartão produzido com adição de MFC à polpa também foram estudadas. Propriedades como índice de tração (IT), estouro e TEA apresentam tendência crescente de aumento o que demonstra a produção de uma camada cobertura mais resistente (Figuras 42, 43 e 44) . A redução da aspereza (Figura 46) pode ser explicada com a modificação das macro e micro porosidades do papel, indicado pelo aumento da resistência à passagem de ar (Gurley) (Figura 45) .
Uso de MFC para fabricação da camada meio do papel cartão
[0139] Assim como ocorrido no estudo da camada cobertura, O aumento do °SR da camada meio (Figura 47) indica maior dificuldade da drenagem física da água, enquanto o aumento do WRV (Figura 48) demonstra que a adição de MFC, devido sua maior superfície específica, promove também maior frequência de interações com a água, o que é também indicado pela alteração do comportamento de drenagem (Figura 49) . No entanto, é possível observar que devido a composição da camada meio do papel cartão, existe menor incremento das propriedades relacionadas a drenagem e interação físico- química com a água se comparado à camada cobertura, o que demonstra que a composição fibrosa influencia os mecanismos de ligação e formação da rede fibrosa na interface fibra- MFC-fibra .
[0140] A camada meio do papel cartão geralmente é a camada de ligação entre a superfície e a base do papel cartão. Ao adicionar MFC em sua composição fibrosa verificou- se um aumento das propriedades de resistência física e mecânica (Figuras 50, 51, 52 e 53) tal qual observado nos testes com a camada cobertura.
Uso de MFC para fabricação da camada base do papel cartão
[0141] A camada base do cartão mostra os mesmos efeitos observados anteriormente com as camadas cobertura e meio. A medida que a MFC é adicionada na polpa celulósica ocorre o aumento do °SR, indicando maior dificuldade da drenagem física da água o que é também indicado pela alteração do comportamento de drenagem (Figuras 54, 55 e 56) .
[0142] Em relação às propriedades de resistência física e mecânica, contudo, apenas o índice de tração (IT) e o Gurley apresentaram crescimento (Figuras 57 e 60), diferentemente das camadas cobertura e meio. As propriedades de índice de estouro e TEA mantiveram-se com valores próximos aos iniciais (Figuras 58 e 59), o que indica menor ancoragem da MFC à fibra celulósica da polpa.
Aplicação de MFC à polpa celulósica de mercado
[0143] Essa aplicação corresponde à adição de MFC à polpa de celulose comercialmente disponível, uma alternativa viável para produtores de papel que já tenham estoque de polpa celulósica e planejem produzir papel com características melhoradas.
[0144] Dessa forma, os testes realizados até aqui foram feitos diretamente na polpa celulósica. É possível observar o aumento do valor de °SR com a adição de MFC (Figura 61) devido a modificação da estrutura de drenagem da manta formada pela composição fibras + MFC. O mesmo comportamento ocorre com a propriedade de WRV (Figura 62) que demonstra um leve crescimento dos valores conforme o gráfico, indicando que o aumento do teor de MFC na polpa celulósica pode potencializar as interações físico-químicas com a água presente no meio, fenômeno que também pode ser observado nas curvas de drenagem obtidas (Figura 63) .
[0145] As propriedades de resistência da polpa celulósica com a adição de MFC também foram avaliadas. Vale destacar que ao adicionar MFC na polpa celulósica de fibra curta branqueada, foi possível observar ganhos em resistência mecânica superiores a 50%, como no índice de estouro (Figura 65) e TEA (Figura 66)), enquanto outros testes de resistência mecânica como elongação (Figura 68), índice de rasgo (Figura 69), e Modulus of Elasticity (MOE) (Figura 70) apresentaram crescimento muito próximo aos 50%, Contudo, o Gurley (Figura 67), como esperado, também apresentou crescimento.
[0146] O impacto em adicionar um biopolímero como a MFC na composição da polpa de celulose de mercado poderá influenciar de forma positiva nas propriedades do produto final no cliente. Dessa forma ao utilizar a celulose de mercado contendo MFC será possível reduzir o aporte de energia necessária para refinação da polpa mas também produzir um produto final com propriedades de resistência mecânica únicas.

Claims

RE IVINDICAÇÕES
1. Papel contendo fibras celulósicas caracterizado pelo fato de compreender entre 1,0 e 1,5% em massa de celulose microfibrilada e gramatura entre 60 a 440 g/m2.
2. Papel, de acordo com a reivindicação 1, caracterizado pelo fato da celulose microfibrilada conter diâmetro médio inferior à 1.000 nanômetros.
3. Papel, de acordo com as reivindicações 1 e 2, caracterizado pelo fato da celulose microfibrilada conter diâmetro médio preferencialmente entre 1 e 568 nanômetros.
4. Papel, de acordo com a reivindicação 1, caracterizado pelo fato de ser do tipo kraft, sackraft ou cartão .
5. Papel kraft, sackraft ou cartão contendo fibras celulósicas caracterizado por compreender entre 1,0 e 1,5% em massa de celulose microfibrilada com diâmetro médio entre 1 e 568 nanômetros, e gramatura entre 60 e 440 g/m2.
6. Processo de produção de papel caracterizado por compreender adição de 1,0 a 1,5% em massa de celulose microfibrilada a uma polpa de celulose.
7. Processo, de acordo com a reivindicação 6, caracterizado pelo fato da polpa de celulose ser marrom, branqueada ou mecânica.
8. Processo, de acordo com as reivindicações 6 e 7, caracterizado pelo fato de adicionar 1,0 a 1,5% em massa de celulose microfibrilada curta marrom a uma polpa de celulose marrom para produção de papel kraft.
9. Processo, de acordo com as reivindicações 6 e 7, caracterizado pelo fato de adicionar 1,0 a 1,5% em massa de celulose microfibrilada longa marrom a uma polpa de celulose marrom para produção de papel sackraft.
10. Processo, de acordo com as reivindicações 6 e 7, caracterizado pelo fato de adicionar 1,0 a 1,5% em massa de celulose microfibrilada curta branqueada a uma polpa de celulose branqueada para produção da camada cobertura de um papel cartão.
11. Processo, de acordo com as reivindicações 6 e 7, caracterizado pelo fato de adicionar 1,0 a 1,5% em massa de celulose microfibrilada curta não branqueada a uma polpa de celulose mecânica e kraft para produção das camadas meio e base de um papel cartão.
12. Polpa de celulose caracterizada por compreender entre 1,0 e 1,5% em massa de celulose microfibrilada com diâmetro entre 1 e 568 nanômetros.
13. Polpa, de acordo com a reivindicação 12, caracterizada por ser do tipo marrom, branqueada ou mecânica.
PCT/BR2019/050183 2018-05-28 2019-05-17 Papel e processo de fabricação de papel utilizando celulose microfibrilada na polpa de celulose WO2019227187A1 (pt)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980035507.1A CN112534099A (zh) 2018-05-28 2019-05-17 在纤维素纸浆中使用微纤化纤维素的纸和造纸方法
AU2019277277A AU2019277277A1 (en) 2018-05-28 2019-05-17 Paper and process for manufacturing paper using microfibrillated cellulose in the cellulose pulp
US17/058,071 US20210207325A1 (en) 2018-05-28 2019-05-17 Paper and process for manufacturing paper using microfibrillated cellulose in the cellulose pulp
SG11202011797VA SG11202011797VA (en) 2018-05-28 2019-05-17 Paper and papermaking process using microfibrillated cellulose in cellulosic pulp
EP19810468.9A EP3805454A4 (en) 2018-05-28 2019-05-17 PAPER AND METHOD FOR MAKING PAPER USING MICROFIBRILLATED CELLULOSE IN THE CELLULOSE PULP

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRBR102018010864-6 2018-05-28
BR102018010864A BR102018010864A2 (pt) 2018-05-28 2018-05-28 papel e processo de fabricação de papel utilizando celulose microfibrilada na polpa de celulose

Publications (1)

Publication Number Publication Date
WO2019227187A1 true WO2019227187A1 (pt) 2019-12-05

Family

ID=68698557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2019/050183 WO2019227187A1 (pt) 2018-05-28 2019-05-17 Papel e processo de fabricação de papel utilizando celulose microfibrilada na polpa de celulose

Country Status (10)

Country Link
US (1) US20210207325A1 (pt)
EP (1) EP3805454A4 (pt)
CN (1) CN112534099A (pt)
AR (1) AR115155A1 (pt)
AU (1) AU2019277277A1 (pt)
BR (1) BR102018010864A2 (pt)
CL (1) CL2020003094A1 (pt)
SG (1) SG11202011797VA (pt)
UY (1) UY38220A (pt)
WO (1) WO2019227187A1 (pt)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010125247A2 (en) 2009-04-29 2010-11-04 Upm-Kymmene Corporation Method for producing furnish, furnish and paper
WO2011068457A1 (en) 2009-12-03 2011-06-09 Stora Enso Oyj A process for production of a paper or paperboard product
WO2012039668A1 (en) * 2010-09-22 2012-03-29 Stora Enso Oyj A paper or paperboard product and a process for production of a paper or paperboard product
WO2017044676A1 (en) * 2015-09-10 2017-03-16 University Of Maine System Board Of Trustees Composite products of paper and cellulose nanofibrils and process of making
WO2017192476A1 (en) * 2016-05-03 2017-11-09 Api Intellectual Property Holdings, Llc Nanocellulose-reinforced corrugated medium
CN108560316A (zh) * 2011-01-20 2018-09-21 芬欧汇川集团 提高强度和保持力的方法以及纸张产品

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8388808B2 (en) * 2008-06-17 2013-03-05 Akzo Nobel N.V. Cellulosic product
FI121890B (fi) * 2009-06-08 2011-05-31 Upm Kymmene Corp Uudentyyppinen paperi ja menetelmä sen valmistamiseksi
FI125818B (fi) * 2009-06-08 2016-02-29 Upm Kymmene Corp Menetelmä paperin valmistamiseksi
SE0950534A1 (sv) * 2009-07-07 2010-10-12 Stora Enso Oyj Metod för framställning av mikrofibrillär cellulosa
CN103590283B (zh) * 2012-08-14 2015-12-02 金东纸业(江苏)股份有限公司 涂料及应用该涂料的涂布纸
FI126216B (en) * 2013-03-26 2016-08-31 Kemira Oyj Procedure for the manufacture of cardboard
WO2015108735A1 (en) * 2014-01-14 2015-07-23 Buckman Laboratories International, Inc. Use of celluloses in water treatment
US9776900B2 (en) * 2014-01-14 2017-10-03 Buckman Laboratories International, Inc. Use of celluloses in sludge dewatering, and sludge products thereof
SE1550647A1 (en) * 2015-05-21 2016-11-22 Stora Enso Oyj Production of nanosized precipitated calcium carbonate and use in improving dewatering of fiber webs
FI128576B (en) * 2015-12-21 2020-08-14 Kemira Oyj Process for preparing an adhesive composition, adhesive composition and use thereof
SE540853C2 (en) * 2016-10-28 2018-12-04 Stora Enso Oyj A method to form a web comprising cellulose fibers
SE540343C2 (en) * 2016-11-01 2018-07-17 Stora Enso Oyj A corrugated board comprising an adhesive comprising starch and fine microfibrillated cellulose

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010125247A2 (en) 2009-04-29 2010-11-04 Upm-Kymmene Corporation Method for producing furnish, furnish and paper
WO2011068457A1 (en) 2009-12-03 2011-06-09 Stora Enso Oyj A process for production of a paper or paperboard product
WO2012039668A1 (en) * 2010-09-22 2012-03-29 Stora Enso Oyj A paper or paperboard product and a process for production of a paper or paperboard product
CN108560316A (zh) * 2011-01-20 2018-09-21 芬欧汇川集团 提高强度和保持力的方法以及纸张产品
WO2017044676A1 (en) * 2015-09-10 2017-03-16 University Of Maine System Board Of Trustees Composite products of paper and cellulose nanofibrils and process of making
WO2017192476A1 (en) * 2016-05-03 2017-11-09 Api Intellectual Property Holdings, Llc Nanocellulose-reinforced corrugated medium

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AHOLA ET AL.: "Cellulose nanofibrils-adsorption with poly (amideamine) epichlorohydrin studied by QCM-D and application to paper strength additive", CELLULOSE, vol. 15, 2008, pages 303 - 314, XP019570956
See also references of EP3805454A4

Also Published As

Publication number Publication date
AR115155A1 (es) 2020-12-02
EP3805454A1 (en) 2021-04-14
SG11202011797VA (en) 2021-02-25
CL2020003094A1 (es) 2021-07-02
US20210207325A1 (en) 2021-07-08
AU2019277277A1 (en) 2020-12-03
CN112534099A (zh) 2021-03-19
UY38220A (es) 2019-12-31
EP3805454A4 (en) 2022-04-06
BR102018010864A2 (pt) 2019-12-10

Similar Documents

Publication Publication Date Title
Ang et al. Effect of refining and homogenization on nanocellulose fiber development, sheet strength and energy consumption
Delgado-Aguilar et al. Improvement of deinked old newspaper/old magazine pulp suspensions by means of nanofibrillated cellulose addition
KR101695610B1 (ko) 완성지료의 제조 방법,완성지료 및 종이
He et al. Effects of addition method and fibrillation degree of cellulose nanofibrils on furnish drainability and paper properties
US20170073893A1 (en) High efficiency production of nanofibrillated cellulose
ES2876153T3 (es) Procedimiento para formar una banda que comprende fibras
Su et al. Effect of tethered and free microfibrillated cellulose (MFC) on the properties of paper composites
Lengowski et al. Nanocellulose in the paper making
Ding et al. Effect of retention rate of fluorescent cellulose nanofibrils on paper properties and structure
Ankerfors et al. The use of microfibrillated cellulose in fine paper manufacturing–Results from a pilot scale papermaking trial
Fathi et al. Prospects for the Preparation of Paper Money from Cotton Fibers and Bleached Softwood Kraft Pulp Fibers with Nanofibrillated Cellulose.
Amiri et al. Effect of chitosan molecular weight on the performance of chitosan-silica nanoparticle system in recycled pulp
Lindqvist Improvement of wet and dry web properties in papermaking by controlling water and fiber quality
Subramanian et al. Potential use of micro-and nanofibrillated cellulose composites exemplified by paper
WO2019227187A1 (pt) Papel e processo de fabricação de papel utilizando celulose microfibrilada na polpa de celulose
Torvinen et al. Bulky paper and board at a high dry solids content with foam forming
Rantanen The manufacturing potential of micro and nanofibrillated cellulose composite papers
Lv et al. Prepration and Application of Microfibrillat⁃ ed Cellulose-modified Ground Calciyum Carbonate
Haunreiter et al. Ammonium persulfate oxidized nanofibrillated cellulose as a sustainable wet-end paper reinforcement additive
Balea Martín et al. Industrial Application of Nanocelluloses in Papermaking: A Review of Challenges, Technical Solutions, and Market Perspectives
EP3864219A1 (en) Flocs of fillers combined with cellulose micro and nanofibrils for use in the production of paper products with improved properties
Samira Heat transfer and friction loss analysis of non-wood fiber suspensions in closed conduit flow/Samira Gharehkhani
Gharehkhani Heat Transfer and Friction Loss Analysis of Non-Wood Fiber Suspensions in Closed Conduit Flow
Phipps CURRENT AND POTENTIAL USE OF HIGHLY FIBRILLATED CELLULOSE IN THE PAPER AND BOARD INDUSTRY
Kasmani Prospects for the Preparation of Paper Money from Cotton Fibers and Bleached Softwood Kraft Pulp Fibers with Nanofibrillated Cellulose

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19810468

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019277277

Country of ref document: AU

Date of ref document: 20190517

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019810468

Country of ref document: EP

Effective date: 20210111