WO2019223735A1 - 自动工作系统、中转设备及任务执行设备 - Google Patents
自动工作系统、中转设备及任务执行设备 Download PDFInfo
- Publication number
- WO2019223735A1 WO2019223735A1 PCT/CN2019/088018 CN2019088018W WO2019223735A1 WO 2019223735 A1 WO2019223735 A1 WO 2019223735A1 CN 2019088018 W CN2019088018 W CN 2019088018W WO 2019223735 A1 WO2019223735 A1 WO 2019223735A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- task execution
- communication module
- relay device
- execution device
- data processing
- Prior art date
Links
- 238000004891 communication Methods 0.000 claims abstract description 166
- 238000004140 cleaning Methods 0.000 claims description 27
- 238000012546 transfer Methods 0.000 claims description 27
- 238000012545 processing Methods 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 abstract description 22
- 238000000034 method Methods 0.000 abstract description 19
- 244000025254 Cannabis sativa Species 0.000 description 13
- 239000000428 dust Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 3
- 241001494496 Leersia Species 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 238000009313 farming Methods 0.000 description 2
- 238000003973 irrigation Methods 0.000 description 2
- 230000002262 irrigation Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/2803—Home automation networks
- H04L12/2816—Controlling appliance services of a home automation network by calling their functionalities
- H04L12/2818—Controlling appliance services of a home automation network by calling their functionalities from a device located outside both the home and the home network
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/48—Program initiating; Program switching, e.g. by interrupt
- G06F9/4806—Task transfer initiation or dispatching
- G06F9/4843—Task transfer initiation or dispatching by program, e.g. task dispatcher, supervisor, operating system
- G06F9/4881—Scheduling strategies for dispatcher, e.g. round robin, multi-level priority queues
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/30—Arrangements for executing machine instructions, e.g. instruction decode
- G06F9/38—Concurrent instruction execution, e.g. pipeline or look ahead
- G06F9/3836—Instruction issuing, e.g. dynamic instruction scheduling or out of order instruction execution
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/2803—Home automation networks
- H04L12/2823—Reporting information sensed by appliance or service execution status of appliance services in a home automation network
- H04L12/2825—Reporting to a device located outside the home and the home network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/2803—Home automation networks
- H04L2012/284—Home automation networks characterised by the type of medium used
- H04L2012/2841—Wireless
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/2803—Home automation networks
- H04L2012/2847—Home automation networks characterised by the type of home appliance used
- H04L2012/285—Generic home appliances, e.g. refrigerators
Definitions
- the invention relates to an automatic work system, in particular to an automatic work system capable of automatically controlling task execution equipment to work in a work area.
- the invention relates to a relay device, in particular to a relay device capable of managing task execution devices in a work area.
- the invention relates to a task execution device, in particular to a task execution device capable of performing a job task in a work area.
- the intelligent courtyard management system can monitor and manage task execution equipment and sensor equipment in the courtyard for users to obtain the status of the courtyard and further manage the courtyard, such as Lawn care etc.
- the courtyard environment is complex, and there are many types of work involved in the courtyard, such as including different vegetation, and the growth conditions and care conditions of different vegetation are different; the communication between the transfer equipment in the courtyard and the task execution equipment and sensor equipment is easily affected.
- Environmental factors cause impacts. For example, when the courtyard area of the user's home is large, the communication signal between the relay device and the task execution device is poor, and the communication connection is unstable. How to make the courtyard management system work efficiently and stably is an urgent problem .
- the technical problem solved by the present invention is to provide an automatic working system, a transfer device and a task execution device capable of efficient and stable work.
- an embodiment of the present invention proposes an automatic work system, including: at least one task execution device and at least one relay device, the relay device communicates with the task execution device to manage the operation of the task execution device and / or To obtain status information of a task execution device and / or a work area, the task execution device includes a first communication module, the transfer device includes a second communication module, and the first communication module is communicatively connected to the second communication module To realize the communication between the task execution device and the relay device; the first communication module and the second communication module are RF communication modules with a frequency band not exceeding 1 GHz; the relay device includes a third communication module, and the third communication module The module is connected to a remote data processing center; the relay device acquires control information from the remote data processing center, and manages the operation of the task execution device based on the control information; and / or, the relay device sends the remote data processing center Output status information of the task execution equipment and / or work area.
- control information obtained by the relay device from the remote data processing center is generated at least in part by processing the input information by the remote data processing center; the input information includes the output from the relay device. At least one of status information, or information entered by a user, or information automatically acquired by a remote data processing center from the Internet.
- the third communication module is communicatively connected to a router, and accesses the Internet through the router to connect with a remote data processing center.
- the third communication module directly accesses the Internet, so as to connect with a remote data processing center.
- the relay device acquires instructions from the user's smart terminal and / or outputs status information of the task execution device and / or work area to the user's smart terminal by connecting with a remote data processing center.
- the automatic work system includes at least two task execution devices, and the relay device communicates with the at least two task execution devices.
- the task execution device includes a first frequency band switching module and the relay device includes a second frequency band switching module, and the first communication module is controlled by the first frequency band switching module to automatically Switching and controlling the second communication module to automatically switch in multiple frequency bands through the second frequency band switching module, so that the first communication module and the second communication module switch the same frequency band.
- the relay device communicates with a task execution device at the same time.
- the transfer device sequentially communicates with different task execution devices.
- the RF communication module includes a communication module with a frequency band of 433MHZ, 868MHZ, and 915MHZ.
- the automatic work system includes a sensor device that detects a status of a task execution device or a work area, and the relay device collects status information detected by the sensor device.
- the sensor device includes a fourth communication module, and the fourth communication module is communicatively connected with the second communication module of the relay device to implement communication between the sensor device and the relay device, and the fourth communication module It is an RF communication module with a frequency band not exceeding 1 GHz.
- the sensor device is integrated on a task execution device or the sensor device is placed in a work area.
- the transfer device is placed in a building.
- the management of the operation of the task execution device by the transfer device includes controlling the task execution device to start or end a job, and / or controlling the operation parameters of the task execution device, and / or controlling the task execution device. Job path.
- the task execution device includes a mobile device, for example, at least one of a smart lawnmower, a smart sprinkler, a smart snowplow, a smart tiller, and a cleaning robot.
- the automatic work system includes at least two task execution devices, and the task execution devices can communicate through the first communication module.
- an embodiment of the present invention further provides a relay device, which is configured to communicate with at least one task execution device to manage the operation of the task execution device and / or obtain the status of the task execution device and / or the work area Information, which is characterized by,
- the relay device includes a second communication module, and communicates with the task execution device including the first communication module through the second communication module;
- the second communication module of the transfer device is an RF communication module with a frequency band not exceeding 1 GHz;
- the relay device includes a third communication module, and is connected to a remote data processing center through the third communication module;
- the relay device acquires control information from a remote data processing center, and manages the operation of the task execution device based on the control information; and / or,
- the relay device outputs status information of the task execution device and / or work area to the remote data processing center.
- the transfer device is configured to communicate with at least two task execution devices to manage the operation of the at least two task execution devices and / or obtain the status of the at least two task execution devices and / or the work area. information.
- the relay device includes a second frequency band switching module.
- the second frequency band switching module is used to control the second communication module to automatically switch among multiple frequency bands, so that the frequency band switched by the second communication module is identical to the first frequency band.
- a communication module has the same frequency band.
- an embodiment of the present invention further provides a task execution device, where the task execution device executes a job task in a work area, which is characterized in that:
- the task execution device includes a first communication module, and communicates with a transit device including a second communication module through the first communication module, receives control information from the transit device, and / or transmits itself and / or a work area to the transit device.
- Status information includes a first communication module, and communicates with a transit device including a second communication module through the first communication module, receives control information from the transit device, and / or transmits itself and / or a work area to the transit device.
- the control information received by the task execution device is at least partially obtained by the relay device from a remote data processing center;
- the first communication module is an RF communication module with a frequency band not exceeding 1 GHz.
- the beneficial effect of the present invention is that the automatic working system proposed by the present invention uses a remote data processing center to monitor the status of the task execution equipment and / or work area, and can also generate control information through the remote data processing center to stably and efficiently manage the task execution equipment. And the task execution equipment and the relay equipment in the automatic working system communicate with each other through an RF (Radio Frequency) communication module with a frequency band of less than 1 GHz.
- the communication connection mode between the devices is simple and fast, the communication mode is more stable, and the reliability is high. .
- the transfer device provided by the invention has the advantages of small size, low cost, low power consumption, high sensitivity, long transmission distance, high efficiency, and the like.
- FIG. 1 is a schematic diagram of an automatic working system in an embodiment of the present invention
- FIG. 2 is a schematic diagram of a connection between a relay device and a task execution device according to an embodiment of the present invention
- FIG. 3 is a schematic diagram of a connection between a transit device and a router according to an embodiment of the present invention
- FIG. 4 is a schematic diagram of a connection between a transit device and a router in another embodiment of the present invention.
- FIG. 5 is a schematic diagram of a transit device directly accessing the Internet according to an embodiment of the present invention.
- FIG. 6 is a schematic diagram of dividing a work area by an automatic work system in an embodiment of the present invention.
- an automatic work system such as an intelligent management system, can automatically monitor and manage the work of a task execution device in a work area.
- the automatic work system includes at least one task execution device 10 and at least one transfer device 20.
- the transfer device 20 communicates with the task execution device 10 to manage the operation of the task execution device 10, acquires status information of the task execution device 10 and the work area 40, and transfers
- the device 20 also communicates with the remote data processing center 30, outputs status information of the task execution device 10 and the work area 40 to the remote data processing center 30, can also obtain control information from the remote data processing center 30, and manages the task execution device 10 based on the control information. Operation.
- the task execution device 10 includes a first communication module 101 and the relay device 20 includes a second communication module 201.
- the first communication module 101 and the second communication module 201 are communicatively connected to realize the task execution device 10 and the relay device 20.
- the first communication module 101 and the second communication module 201 are RF (Radio Frequency) communication modules with a frequency band not exceeding 1 GHz.
- the RF communication module in this embodiment can cover any common frequency range with a frequency band within 1 GHz.
- the frequency band of the RF communication module includes the frequency bands of 433MHZ, 868MHZ, and 915MHZ.
- the above-mentioned RF frequency band is preferably a public frequency band, and the transmission method is free and stable. Ensure long-distance transmission between the transfer equipment and the task execution equipment.
- the common frequency band is a common frequency band in the ISM band that conforms to the communication protocol between the task execution devices in the work area.
- the common frequency band in this embodiment includes 433MHZ, 868MHZ, 915MHZ, etc.
- the communication protocol in this band is simple, enabling each task to perform Data transmission between devices is more reliable.
- the task execution device includes a first frequency band switching module
- the relay device includes a second frequency band switching module.
- the two frequency band switching modules can control the RF communication module to automatically switch in multiple frequency bands. For example, when the RF communication module between the task execution device and the relay device selects the 868MHZ frequency band for communication, and specifically selects the sub-band communication between 869.400-869.650MHZ, if the channel congestion in this frequency band results in poor signal quality or no signal, the first A frequency band switching module and a second frequency band switching module can automatically switch the first communication module and the second communication module to other sub-bands in the 868MHZ frequency band for communication, such as switching to the 868.000-868.600MHZ frequency band to solve the problem caused by channel congestion.
- the frequency band switching rules of the first frequency band switching module and the second frequency band switching module may not be limited, that is, which side triggers the frequency band switching between the first communication module of the task execution device and the second communication module of the relay device. It is not limited.
- a situation may define the principle that one of the task execution equipment or the relay device switches first. For example, when the second frequency band switching module defined in advance as the relay device performs frequency band switching first, when the first The communication module or the second communication module of the relay device cannot receive data or the quality of the received data signal is poor for a certain period of time. When the final comprehensive analysis determines that the channel is congested, the second frequency band switching module of the relay device switches the second communication module first.
- Frequency switching module of the first communication module to automatically switch to the appropriate frequency band.
- the other case can also be defined as the principle that the transmitting or receiving data is switched first. If the transmitting data is switched first, the relay device transmits data to the task execution device as an example. If the relay device detects a certain Several data packets could not be successfully transmitted within the time. Finally, the comprehensive analysis determined that the channel was congested. The relay device transmitting the data would switch the second communication module through the second frequency band switching module, and the first frequency band switching module of the task execution device would then The first communication module switches to a corresponding frequency band.
- the RF communication module of the relay device and the task execution device in this embodiment has a frequency hopping function and can switch between multiple frequency bands.
- the two correspondingly switch to the same frequency band for communication to solve problems such as signal congestion. Effectively expands the link range and greatly improves performance.
- the task execution device performs a specific task in a work area
- the work area may be a courtyard or a building, such as a user's courtyard, a home, or the like.
- the task execution device may be any device that can be controlled to perform a specific task, such as a self-mobile device and a non-self-mobile device.
- the task execution equipment includes at least one of a smart lawn mower, a smart sprinkler, a smart snowplow, and a smart tiller, and also includes an irrigation system fixedly set in the courtyard. In the courtyard, tasks such as farming, watering, mowing, snow removal, and irrigation are performed.
- the task execution equipment can be cleaning robots, doors, windows, lights and other equipment in the home to perform dust and garbage cleaning, opening / closing of doors and windows, on / off of lights, lights Brightness, color adjustment and other tasks.
- the work area may include both the user's home and the user's courtyard.
- the automatic work system can uniformly monitor and manage the operation of all the controlled task execution equipment of the user's home. Understandably, the work area also includes sensor devices for detecting the status of the task execution device and the work area.
- the transfer device collects the status information of the task execution device and the work area detected by the sensor device and transmits it to the remote data processing center.
- the remote data processing center processes the status information to generate control information, and the relay device manages the operation of the execution device based on the control information.
- the number of sensor devices is not limited, and the number of sensors can be set according to the area type of the work area.
- the working area is a courtyard
- the task execution device is an intelligent lawn mower.
- the sensor device is set at one or more locations in the courtyard, and can be used to detect the growth status of the vegetation in the courtyard, such as detecting The height and humidity / moisture status of the lawn.
- the sensor device can also detect its own status, detect the load information of its cutter head to reflect the status of the lawn, or it can also detect smart cutting
- the sensor device transmits the detected status information to the relay device, and the relay device transmits the status information to the remote data processing center.
- the transit device includes a third communication module.
- the third communication module accesses the Internet to communicate with the remote data processing center.
- the third communication module can directly access the Internet, or it can be connected to a gateway device, such as a router. the Internet.
- the sensor device detects grass height data and humidity data in the lawn, and transmits grass height data and humidity data to the relay device, and the relay device transmits grass height data and humidity data to a remote data processing center.
- the remote data processing center stores preset conditions or preset algorithms.
- the remote data processing center compares the height data and humidity data with the preset conditions. When the height of the grass exceeds the preset conditions, such as the detected grass When the height exceeds the preset height of 30cm, the remote data processing center will perform the calculation by combining the height data, humidity data, and preset conditions.
- the corresponding control information will be generated to control the intelligent lawnmower to cut grass.
- the preset condition is, for example, a parameter set by a user in advance, for example, the user sets that when the height of the grass in the courtyard is greater than 30CM, the intelligent lawnmower needs to be controlled to cut grass.
- the data solutions in the embodiments of the present invention are all processed in a remote data processing center.
- the data capacity of the remote data processing center is large and can process a huge amount of data, that is, it can stably process an automatic work system with a large number of task execution equipment and sensor equipment.
- the complex data transmitted, and the remote data processing center is highly scalable.
- the remote data processing center can also effectively process it. It has strong computing power, and it is fast to solve complex data transmitted by automatic working systems, and it is not prone to errors.
- the data calculation process is completed in the remote data processing center, which can also reduce the performance requirements for the transfer equipment and reduce the cost of the transfer equipment.
- the intelligent management system in the embodiment of the present invention adopts a solution in which data is processed in a remote data processing center, and the intelligent management system can operate efficiently and stably.
- the relay device obtains instructions input from the user's smart terminal by connecting with the remote data processing center, and can also output status information of the task execution device and the work area to the user's smart terminal.
- the remote data processing center obtains the status information of the working area and / or smart lawnmower transmitted by the relay device
- the user's smart terminal can display the status information.
- the user can Input the command information on the terminal to control the operation of the intelligent lawn mower. Understandably, when the user does not obtain the status information, or when the status information does not meet the preset conditions, the user may also directly input an instruction to control the operation of the smart lawnmower.
- the user can control the operation of the task execution equipment and set the related parameters of the operation by himself according to the needs, which is more flexible and convenient.
- the remote data processing center can also automatically obtain information from the Internet for processing to generate control information to control the operation of the smart lawnmower.
- the remote data processing center obtains weather information from the Internet, and it will rain after the weather information shows a preset time. At this time, the remote data processing center obtains that the smart lawnmower is working in the courtyard, and the remote data processing center can combine the acquired weather The information and the working status information of the smart lawnmower generate instructions to control the smart lawnmower to return to the charging station and stop working, so as to avoid working in rainy days and causing damage to the smart lawnmower itself and the lawn.
- the working area is a user's home
- the task execution device is a cleaning robot.
- the sensor device detects the status of dust and garbage on the ground.
- the sensor device can also detect the status of the cleaning robot itself and detect its roller brush.
- the status of the robot and the status of the vacuum cleaner can reflect the status of the ground.
- the fault information of the cleaning robot can also be detected.
- the sensor device transmits the detected dust, garbage status and status information of the cleaning robot to the relay device.
- the relay device transmits each status information to the remote data processing center.
- the remote data processing center stores preset conditions or presets. Algorithm, the remote data processing center processes the status information to generate control information, the relay device obtains the control information from the remote data processing center, and manages the operation of the cleaning robot based on the control information.
- the sensor device when the task execution device is a door or a window, the sensor device detects weather information that affects the open / closed state of the door or window, such as weather information such as sunny day, rain, snow, wind, and sandstorm. And detect status information such as whether doors and windows are open / closed. For example, when the sensor device detects that the weather is raining or is about to rain, and the state of the window is open, the remote data processing center will process and generate related instructions. After the relay device transmits the data, it will control the window to be closed, or Close the window after the scheduled time. When it is detected that the weather is fine, a command is generated to control the window to open.
- weather information such as sunny day, rain, snow, wind, and sandstorm.
- status information such as whether doors and windows are open / closed.
- the remote data processing center will process and generate related instructions. After the relay device transmits the data, it will control the window to be closed, or Close the window after the scheduled time.
- a command is generated to control
- the sensor device detects the indoor brightness information and the state information of the lamp and transmits it to the remote data processing center through the relay device.
- the remote data processing center generates the status information It instructs the tasks of turning on / off the light, adjusting the brightness and color of the light through the relay device.
- the remote data processing center can process the information entered by the user in the smart terminal or the information obtained from the Internet to generate control information to control the task execution of cleaning robots, doors, windows, Tasks such as lamps perform the operation of the equipment.
- the transfer device can be placed anywhere in the work area, such as in a courtyard, or in a building, such as a user's home, or it can be integrated on the task execution device.
- the relay device 20 is installed in the user's home.
- the relay device is connected to the Internet by connecting a gateway device, such as a router 50, in the user's home.
- the third communication module includes wireless
- the communication module is, for example, the WIFI module 203, and the relay device 20 performs WIFI communication with the router 50 through the WIFI module 203.
- the third communication module includes a wired communication module 204.
- the wired communication module 204 is connected to the router 50 by connecting a network cable, thereby accessing the Internet. It can be understood that, as shown in FIG. 5, the third communication module 202 of the transit device 20 can also directly access the Internet.
- the transit device is integrated with a router, that is, the transit device 20 itself has a routing function, then the transit device 20
- the wired communication module 204 accesses the Internet by connecting a network cable to a network port.
- the third communication module of the relay device 20 may include an independent Internet access module, such as a cellular network module, and directly access the Internet through the cellular network module.
- the relay device is integrated with the task execution device.
- the relay device is integrated on the cleaning robot, and the sensor device transmits the detected working area and status information of each task execution device to the cleaning robot.
- the remote data processing center can also transmit the control information of the remote data processing center to each task execution device through a cleaning robot.
- a single cleaning robot can be used to manage and transmit all task execution device information in the work area. , Multi-use, improve the convenience of users, and save the space to install the transfer equipment separately.
- the relay device and the sensor device may also communicate through RF.
- the sensor device includes a fourth communication module, and the fourth communication module is communicatively connected with the second communication module of the relay device to implement the sensor device.
- the fourth communication module is an RF communication module whose frequency band does not exceed 1 GHz. More preferably, the frequency range of the RF communication module includes 433 MHz, 868 MHz, and 915 MHz.
- the relay device obtains the courtyard state information detected by the sensor device through an RF communication method with a frequency band not exceeding 1 GHz, and the communication method is stable and reliable.
- the sensor device transmits status information to the task execution device
- the task execution device transmits status information to the relay device
- the sensor device may transmit status information to the task execution device when the task execution device approaches itself.
- the sensor device in the foregoing embodiment may also include a third frequency band switching module.
- the fourth communication module is automatically switched in multiple frequency bands through the third frequency band switching module, and the finally switched frequency band and the relay device And / or task execution equipment in the same frequency band.
- the automatic work system includes a user's courtyard and a user's home.
- the courtyard 100 is divided into area 1, area 2, and area 3.
- the home 200 is divided into area 4, area 5, and is set in the user.
- the transit device 20 at home, the remote data processing center 30 connected to the transit device 20, the smart terminal 60 connected to the remote data processing center 30, the remote data processing center 30 stores map data of the work area, and the work area includes at least two Task execution devices, the relay device 20 communicates with at least two task execution devices.
- task execution equipment is parked.
- smart sprinklers that perform watering tasks are parked.
- smart lawn mowers that perform grass cutting tasks are parked.
- Intelligent cultivator with a cleaning robot that performs the task of cleaning the ground parked in area 4, lights and doors and windows are installed in area 5, and sensor equipment 70 is also installed in each area, and sensor equipment 70 in each area detects each area The status and the status of each task execution device, and each status information is transmitted to the remote data processing center 30.
- the intelligent lawnmower 11 is performing a task in the area 2 and the sensor device 70 detects the height of the grass in the lawn in the area 2 and transmits the height data of the grass and the status information of the intelligent lawnmower to the relay via RF.
- the cleaning robot 12 is performing tasks in area 4, the sensor device transmits the dust data on the ground in area 4 and the status information of the cleaning robot 12 to the relay device 20 by RF, and the relay device 20 transmits it to the remote Data processing center and remote data processing center 30 store preset conditions or preset algorithms, compare grass height data, ground dust data, and machine status information with the preset conditions to determine whether it is necessary to control the intelligent lawn mower 11 and cleaning machine 12 people perform tasks. For example, when the height data of grass far exceeds the preset height, the dust data on the ground far exceeds the preset data, and the remote data processing center processes the control information. For example, the control information is to increase intelligent mowing.
- Machine 11 and cleaning robot 12 cutting and cleaning strength, etc. transmit this control information to the transfer device 20, the transfer device 20 obtains the control After transmission of information to the smart cleaning robot mower 11 and 12, the intelligent control of the cleaning robot mower 11 and 12.
- the relay device 20 is also connected to the smart terminal 60, and the user can obtain the height information of the grass and the dust information on the ground through the smart terminal 70.
- the user can input instructions on the smart terminal 60 to control the work of the smart lawn mower 11 and the cleaning robot 12 according to the needs. For example, when the height of the grass does not meet the preset conditions, the user can also enter instructions on the smart terminal 70 to Controls the operation of the smart lawn mower 11.
- the relay device 20 and the intelligent lawn mower 11, the cleaning robot 12, and the sensor 70 only need to communicate through an RF communication module with a frequency band not exceeding 1 GHz.
- the communication protocol is relatively simple, the communication module is connected quickly, and the transmission method is stable and reliable. .
- the communication between the relay device and the external network is realized.
- the communication between each device in the work area and the relay device is stable, highly reliable, and not easily affected by the environment. It can be understood that the data signal transmission between the relay device and the task execution device and / or the sensor in the embodiment of the present invention is modulated and demodulated to facilitate data transmission and improve signal stability.
- the relay device and the task execution device and / or the sensor device can realize long-distance transmission through an RF communication mode with a frequency band less than 1 GHz, and can manage the operation of a large area of work.
- it can be implemented by increasing the transmission power of the relay equipment and the task execution equipment and / or sensors, or by reducing one or more of the frequency of data transmission and the amount of data transmitted.
- long-distance transmission can be maintained by reducing the transmission frequency or reducing the amount of data transmitted.
- the task execution devices can also communicate with each other to implement data transmission, and the communication method is not limited. RF communication is preferred to realize the mutual transmission of status data.
- the task execution devices may be electrically connected to each other, so as to realize mutual power supply.
- the relay device communicates with a task execution device at the same time.
- the relay equipment only communicates with one of the smart lawn mower, smart sprinkler, smart cultivator, and cleaning robot at the same time, making the communication more stable.
- the relay equipment collects task execution equipment and / or in different areas. After the status information of the area and communication with the remote data processing center, it can communicate with the task execution equipment in different areas in order to control the work of the task execution equipment in different areas.
- a relay device is also provided.
- the relay device is used to communicate with the task execution device to manage the operation of the task execution device, and can also obtain status information of the task execution device and the work area.
- the relay device includes The second communication module is communicatively connected with at least one task execution device including the first communication module through the second communication module, wherein the second communication module of the relay device is an RF communication module with a frequency band not exceeding 1 GHz, and the relay device includes a third communication
- the module can communicate with the remote data processing center.
- the relay device outputs the status information of the task execution device and the work area to the remote data processing center. It can also obtain control information from the remote data processing center and manage the operation of the task execution device based on the control information.
- the transit device can communicate with the user's smart terminal, output the status of the task execution device and the work area for the user to obtain, and can also receive instructions from the user.
- the relay device and the task execution device communicate through an RF communication module with a frequency band not exceeding 1 GHz.
- the RF frequency bands are 433MHZ, 868MHZ, and 915MHZ.
- the relay device and the task execution device communicate through RF in a specific frequency band. Simple connection method and stable data transmission.
- the relay device in the embodiment of the present invention is small in size and can be placed anywhere in the user's courtyard or home without causing excessive space waste. At the same time, the relay device also has low cost, low power consumption, high sensitivity, and transmission. Long distance and high efficiency.
- a task execution device performs a job task in a work area.
- the task execution device includes a first communication module, and the first communication module communicates with the second communication module through the first communication module.
- the relay device communicates, receives control information from the relay device, and transmits status information of itself and the work area to the relay device; wherein the control information received by the task execution device is obtained at least in part by the relay device from the remote data center, where the first A communication module is an RF communication module with a frequency band not exceeding 1 GHz.
- the frequency bands of RF are 433MHZ, 868MHZ, and 915MHZ.
- the task execution equipment communicates with the relay equipment through a specific frequency band RF method.
- the communication connection method is simple and the data transmission is stable.
Landscapes
- Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Theoretical Computer Science (AREA)
- Automation & Control Theory (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Selective Calling Equipment (AREA)
- Telephonic Communication Services (AREA)
Abstract
本发明涉及一种自动工作系统,该自动工作系统包括:至少一个任务执行设备和至少一个中转设备,所述中转设备与任务执行设备通信以管理任务执行设备的运行和/或,获取任务执行设备和/或工作区域的状态信息;所述中转设备与远程数据处理中心连接,从远程数据处理中心获取控制信息,管理所述任务执行设备的运行;和/或,向所述远程数据处理中心输出所述任务执行设备和/或工作区域的状态信息;本发明提出的自动工作系统能够高效、稳定管理任务执行设备的运行,工作区域内的任务执行设备与中转设备之间通过频段不超过1GHZ的RF通信模块通信,通信连接方式简单、数据传输距离远且稳定可靠。同时,本发明还提出了一种中转设备及一种任务执行设备。
Description
本发明涉及一种自动工作系统,特别是一种能够自动控制任务执行设备在工作区域内工作的自动工作系统。
本发明涉及一种中转设备,特别是一种能够管理工作区域内任务执行设备的中转设备。
本发明涉及一种任务执行设备,特别是一种能够在工作区域内执行作业任务的任务执行设备。
随着科学技术的发展,智能的庭院管理系统已为人们所熟知,智能的庭院管理系统能够监护和管理庭院里的任务执行设备和传感器设备,以供用户获取庭院的状态和进一步管理庭院,例如草坪护理等。但是庭院环境复杂,庭院内涉及的工作种类较多,例如包括不同的植被,而不同植被的生长条件和护理条件均不同;庭院内的中转设备与任务执行设备和传感器设备之间的通信容易受环境因素造成影响,例如当用户家的庭院面积较大,中转设备与任务执行设备之间的通信信号差,通信连接不稳定等问题,如何使得庭院管理系统的工作高效且稳定是亟待解决的问题。
发明内容
本发明解决的技术问题为:提供一种能够高效稳定工作的自动工作系统、中转设备及任务执行设备。
为解决上述技术问题,本发明实施例提出了一种自动工作系统,包括:至少一个任务执行设备和至少一个中转设备,所述中转设备与任务执行设备通信以管理任务执行设备的运行和/或,获取任务执行设备和/或工作区域的状态信息,所述任务执行设备包括第一通信模块,所述中转设备包括第二通信模块,所述第一通信模块与所述第二通信模块通信连接以实现任务执行设备与中转设 备的通信;所述第一通信模块和所述第二通信模块为频段不超过1GHZ的RF通信模块;所述中转设备包括第三通信模块,通过所述第三通信模块与远程数据处理中心连接;所述中转设备从远程数据处理中心获取控制信息,基于所述控制信息管理所述任务执行设备的运行;和/或,所述中转设备向所述远程数据处理中心输出所述任务执行设备和/或工作区域的状态信息。
在一个具体的实施例中,所述中转设备从所述远程数据处理中心获取的控制信息,至少部分由所述远程数据处理中心对输入信息进行处理而生成;所述输入信息包括中转设备输出的状态信息,或用户输入的信息,或远程数据处理中心从互联网自动获取的信息的至少其中之一。在一个具体的实施例中,所述第三通信模块与路由器通信连接,通过路由器接入互联网,从而与远程数据处理中心连接。
在一个具体的实施例中,所述第三通信模块直接接入互联网,从而与远程数据处理中心连接。
在一个具体的实施例中,所述中转设备通过与远程数据处理中心连接,获取来自用户智能终端的指令和/或,向用户智能终端输出所述任务执行设备和/或工作区域的状态信息。
在一个具体的实施例中,所述自动工作系统包括至少两个任务执行设备,所述中转设备与所述至少两个任务执行设备通信。
在一个具体的实施例中,所述任务执行设备包括第一频段切换模块及所述中转设备包括第二频段切换模块,通过所述第一频段切换模块控制第一通信模块在多个频段内自动切换及通过所述第二频段切换模块控制第二通信模块在多个频段内自动切换,使得所述第一通信模块与所述第二通信模块切换的频段相同。
在一个具体的实施例中,所述中转设备在同一时间与一个任务执行设备通信。
在一个具体的实施例中,所述中转设备按序与不同的任务执行设备通信。
在一个具体的实施例中,所述RF通信模块包括频段为433MHZ,868MHZ,915MHZ的通信模块。
在一个具体的实施例中,所述自动工作系统包括检测任务执行设备或工作区域状态的传感器设备,所述中转设备收集传感器设备检测到的状态信息。
在一个具体的实施例中,所述传感器设备包括第四通信模块,所述第四通信模块与中转设备的第二通信模块通信连接以实现传感器设备与中转设备的通信,所述第四通信模块为频段不超过1GHZ的RF通信模块。
在一个具体的实施例中,所述传感器设备集成在任务执行设备上或者所述传感器设备放置在工作区域内。在一个具体的实施例中,所述中转设备放置在建筑物内。
在一个具体的实施例中,所述中转设备对任务执行设备的运行的管理包括,控制任务执行设备开始或结束作业,和/或控制任务执行设备的运行参数,和/或控制任务执行设备的作业路径。
在一个具体的实施例中,所述任务执行设备包括自移动设备,例如,智能割草机、智能洒水器、智能扫雪机、智能耕种机、清洁机器人中的至少其中一个。
在一个具体的实施例中,所述自动工作系统包括至少两个任务执行设备,所述任务执行设备之间能够通过所述第一通信模块通信。
相应地,本发明实施例还提出了一种中转设备,所述中转设备用于与至少一个任务执行设备通信以管理任务执行设备的运行和/或,获取任务执行设备和/或工作区域的状态信息,其特征在于,
所述中转设备包括第二通信模块,通过第二通信模块与包括第一通信模块的任务执行设备通信;
所述中转设备的第二通信模块为频段不超过1GHZ的RF通信模块;
所述中转设备包括第三通信模块,通过所述第三通信模块与远程数据处理中心连接;
所述中转设备从远程数据处理中心获取控制信息,基于所述控制信息管理所述任务执行设备的运行;和/或,
所述中转设备向所述远程数据处理中心输出所述任务执行设备和/或工作区域的状态信息。
在一个具体的实施例中,所述中转设备用于与至少两个任务执行设备通信以管理至少两个任务执行设备的运行和/或,获取至少两个任务执行设备和/或工作区域的状态信息。
在一个具体的实施例中,所述中转设备包括第二频段切换模块,通过所述第二频段切换模块控制第二通信模块在多个频段内自动切换,使得第二通信模块切换的频段与第一通信模块的频段相同。相应地,本发明实施例还提出了一种任务执行设备,所述任务执行设备在工作区域中执行作业任务,其特征在于,
所述任务执行设备包括第一通信模块,通过所述第一通信模块与包括第二通信模块的中转设备通信,接收来自中转设备的控制信息和/或,向中转设备传输自身和/或工作区域的状态信息;
所述任务执行设备接收的控制信息,至少部分的由所述中转设备从远程数据处理中心获取;
所述第一通信模块为频段不超过1GHZ的RF通信模块。本发明的有益效果为:本发明提出的自动工作系统利用远程数据处理中心监控任务执行设备和/或工作区域的状态,还能够通过远程数据处理中心生成控制信息来稳定、高效管理任务执行设备的运行;且该自动工作系统内的任务执行设备、中转设备之间通过频段小于1GHZ的RF(Radio Frequency)通信模块通信,各设备之间的通信连接方式简单快速、通信方式更加稳定,可靠性高。同时,本发明提出的中转设备具有体积小、成本低、功耗低、灵敏度高,传输距离远、效率高等优点。
以上所述的本发明解决的技术问题、技术方案以及有益效果可以通过下面的能够实现本发明的较佳的具体实施例的详细描述,同时结合附图描述而清楚地获得。
附图以及说明书中的相同的标号和符号用于代表相同的或者等同的元件。
图1是本发明一实施例中的自动工作系统的示意图;
图2为本发明一实施例中的中转设备与任务执行设备连接示意图;
图3是本发明一实施例中的中转设备与路由器连接的示意图;
图4是本发明的另一种实施例中的中转设备与路由器连接的示意图;
图5是本发明的一实施例中的中转设备直接接入互联网的示意图;
图6是本发明的一实施例中的自动工作系统划分工作区域的示意图。
有关本发明的详细说明和技术内容,配合附图说明如下,然而所附附图仅提供参考与说明,并非用来对本发明加以限制。
如图1所示,一种自动工作系统,该自动工作系统例如为智能管理系统,能够自动监控和管理任务执行设备在工作区域内的工作。该自动工作系统包括至少一个任务执行设备10和至少一个中转设备20,中转设备20与任务执行设备10通信以管理任务执行设备10的运行,获取任务执行设备10和工作区域40的状态信息,中转设备20还与远程数据处理中心30通信,向远程数据处理中心30输出任务执行设备10和工作区域40的状态信息,还能够从远程数据处理中心30获取控制信息,基于控制信息管理任务执行设备10的运行。
如图2所示,任务执行设备10包括第一通信模块101,中转设备20包括第二通信模块201,第一通信模块101与第二通信模块201通信连接以实现任务执行设备10与中转设备20的通信;第一通信模块101和第二通信模块201为频段不超过1GHZ的RF(Radio Frequency)通信模块。
本实施例中的RF通信模块能够覆盖频段在1GHZ以内的任何常见频率范围。在一个具体的实施例中,RF通信模块的频段包括433MHZ,868MHZ,915MHZ的频段,上述RF的频段优选为公用频段,传输方式免费,且稳定可靠,能够使得中转设备与任务执行设备可靠连接,保证中转设备与任务执行设备之间能够进行长距离传输。
其中,公用频段为ISM频段中符合工作区域内各任务执行设备之间通信协议的公用频段,本实施例中的公用频段包括433MHZ、868MHZ、915MHZ等,该频段的通信协议简单,使得各任务执行设备之间的数据传输更加可靠。
在一个具体的实施例中,任务执行设备包括第一频段切换模块,中转设备包括第二频段切换模块,通过两个频段切换模块能够控制RF通信模块在多个 频段内自动切换。例如,当任务执行设备与中转设备之间的RF通信模块选用868MHZ频段通信时,具体选用869.400-869.650MHZ的子频段通信时,若该频段信道拥挤,导致信号质量差或无信号时,则第一频段切换模块及第二频段切换模块可以将第一通信模块及第二通信模块自动切换到868MHZ频段内的其他子频段进行通信,例如切换到868.000-868.600MHZ频段,以解决因信道拥挤,造成干扰多,信号质量差、传输距离短的问题。其中,第一频段切换模块与第二频段切换模块的频段切换规则可以不限定,也就是说,任务执行设备的第一通信模块与中转设备的第二通信模块之间的频段切换由哪一方触发并不限定,例如一种情况可以定义由任务执行设备或中转设备的其中一方先切换的原则,例如预先定义为中转设备的第二频段切换模块先进行频段切换时,当任务执行设备的第一通信模块或中转设备的第二通信模块在一定时间无法接收到数据或接收的数据信号质量差,最终综合分析判断为信道拥挤时,则中转设备的第二频段切换模块先将第二通信模块切换到其他频段,再通知任务执行设备的第一通信模块切换相应的频段,第一通信模块接收到通知后,第一频段切换模块切换到相应的频段,或者任务执行设备检测到中转设备的第二通信模块已经切换其他频段,则任务执行设备的第一频段切换模块自动将第一通信模块切换到相应的频段。另一种情况也可以定义为由发射数据或接收数据的其中一方先切换的原则,若定义由发射数据一方先切换频段,以中转设备发射数据到任务执行设备为例,中转设备若检测到一定时间内无法成功发射若干个数据包,最终综合分析判断为信道拥挤,则发射数据的中转设备通过第二频段切换模块先将第二通信模块切换频段,任务执行设备的第一频段切换模块再将第一通信模块切换到对应的频段。
综上,本实施例中的中转设备、任务执行设备的RF通信模块具有跳频的功能,能够在多个频段内切换,两者对应地切换到相同的频段通信,以解决信号拥挤等问题,有效扩展了链路范围,大大提高性能。
在具体的实施例中,任务执行设备在工作区域内执行特定的任务,该工作区域可以是庭院、建筑物内,例如用户的庭院、家里等。任务执行设备可以为自移动设备、非自移动设备等所有能够被控制而执行特定任务的设备。当工作 区域为庭院时,任务执行设备包括为智能割草机、智能洒水器、智能扫雪机、智能耕种机中的至少其中一个,也包括在庭院内固定设置的灌溉系统,任务执行设备在庭院内执行耕种、洒水、割草、扫雪、灌溉等任务。当工作区域为用户的家里时,任务执行设备可以是家中的清洁机器人、门、窗、灯等设备,执行尘屑、垃圾的清理,门、窗的打开/关闭,灯的打开/关闭、灯的亮度、色彩的调节等任务。在一个具体的实施例中,工作区域可以既包括用户的家里,也包括用户的庭院,该自动工作系统能够统一监控和管理用户家所有被控任务执行设备的运行。可理解的是,工作区域内还包括用于检测任务执行设备和工作区域状态的传感器设备,中转设备收集传感器设备检测到的任务执行设备和工作区域的状态信息并将其传输至远程数据处理中心,进一步地,远程数据处理中心处理状态信息而生成控制信息,中转设备基于控制信息管理任务执行设备的运行。可以理解的是,传感器设备的数量不做限制,可以根据工作区域的区域类型设置传感器的数量。
在一个具体的实施例中,以工作区域为庭院,任务执行设备为智能割草机为例,传感器设备设置在庭院的一个或多个位置,可以用来检测庭院内植被的生长状态,例如检测草坪的高度、湿度/水分状态等,当传感器设备集成在智能割草机上时,传感器设备还能够检测其自身的状态,检测其刀盘的负荷信息以反映草坪的状态,或者也可以检测智能割草机的故障信息等,传感器设备将检测到的状态信息传输给中转设备,中转设备将状态信息传输给远程数据处理中心。可理解的是,中转设备包括第三通信模块,通过第三通信模块接入互联网与远程数据处理中心通信,第三通信模块可以直接接入互联网,也可以与网关设备,例如路由器连接而接入互联网。在一个具体的实施例中,传感器设备检测草坪中草的高度数据,湿度数据,将草的高度数据,湿度数据传输至中转设备,中转设备将草的高度数据、湿度数据传输至远程数据处理中心,其中,远程数据处理中心内存储有预设条件或者存有预设算法,远程数据处理中心将高度数据、湿度数据与预设条件比较,当草的高度超过预设条件,例如检测的草的高度超过预设高度30cm时,远程数据处理中心会结合高度数据、湿度数据、及预设条件进行解算,解算后生成相应的控制信息,控制智能割草机进行割草 工作。具体的,例如控制智能割草机的开始或结束作业,和/或控制任务执行设备的运行参数,和/或控制智能割草机的作业路径等。预设条件例如为用户预先设置的参数,比如用户设置为当庭院中草的高度大于30CM时,需要控制智能割草机进行割草。
本发明实施例中的数据解算均在远程数据处理中心处理完成,远程数据处理中心的数据容量大,能够处理庞大的数据量,即能够稳定处理具有大量任务执行设备及传感器设备的自动工作系统所传输的复杂数据,且远程数据处理中心的可扩展性强,当自动工作系统中的任务执行设备、传感器设备增多或更加复杂时,远程数据处理中心也能够有效处理,同时远程数据处理中心的计算能力强,对于处理自动工作系统传输的复杂数据的解算速度快,且不容易出错。另外,数据解算过程在远程数据处理中心完成,还能够降低对中转设备的性能要求,降低了中转设备的成本。综上,本发明实施例中的智能管理系统采用数据解算均在远程数据处理中心处理的方案,智能管理系统能够高效稳定的运作。
在另一个具体的实施例中,中转设备通过与远程数据处理中心连接,获取来自用户智能终端输入的指令,还可以向用户智能终端输出任务执行设备和工作区域的状态信息。具体地,当远程数据处理中心获取到中转设备传输的工作区域和/或智能割草机的状态信息后,用户的智能终端上能够显示状态信息,用户在查看状态信息后,根据需要可以在智能终端上输入指令信息来控制智能割草机的运行。可理解的是,在用户不获取状态信息的情况下,或者状态信息不满足预设条件的情况下,用户也可以直接输入指令来控制智能割草机的运行。在本实施例中,用户能够根据需要自行控制任务执行设备的运行,设置运行的相关参数等,方式更灵活、便利。
在其他的实施例中,远程数据处理中心还能够从互联网自动获取信息进行处理而生成控制信息来控制智能割草机的运行。例如,远程数据处理中心从互联网获得天气信息,天气信息显示预设时间后会下雨,此时远程数据处理中心获取到智能割草机正在庭院内工作,则远程数据处理中心能够结合获取的天气信息和智能割草机的工作状态信息生成指令,控制智能割草机返回充电站,停止工作,以免在雨天工作,对智能割草机本身和草坪造成伤害。
在另外一个具体的实施例中,以工作区域为用户的家里,任务执行设备为清洁机器人为例。用户家里的一个或多个地方也设置有传感器设备,例如,传感器设备检测地面的尘屑、垃圾状态,当传感器设备集成在清洁机器人上时,还能够检测清洁机器人自身的状态,检测其滚刷的状态、吸尘盒的状态来反映地面的状态,同样地,也可以检测清洁机器人的故障信息。传感器设备将检测到的尘屑、垃圾状态和清洁机器人的状态信息传输给中转设备,中转设备将各状态信息传输给远程数据处理中心,远程数据处理中心内存储有预设条件或者存有预设算法,远程数据处理中心对各状态信息进行处理而生成控制信息,中转设备从远程数据处理中心获取控制信息,基于控制信息管理清洁机器人的运行。
在另外的实施例中,当任务执行设备为门、窗时,传感器设备会检测影响门、窗打开/关闭状态的天气信息,例如晴天、下雨、下雪、刮风、沙尘暴等天气信息,以及检测门、窗是否打开/关闭等状态信息。例如,当传感器设备检测到外面天气为下雨或即将下雨时,而窗的状态为打开时,远程数据处理中心会处理而生成相关指令,经过中转设备传输后,控制将窗户关闭,或者在预定时间后将窗户关闭。而检测到天气变晴时,生成指令控制窗户打开。
在另外的实施例中,当任务执行设备为灯具时,传感器设备检测室内的亮度信息,以及灯具的状态信息,并将其通过中转设备传输至远程数据处理中心,远程数据处理中心根据状态信息生成指令通过中转设备控制灯的打开/关闭、调节灯的亮度、色彩等任务。
可理解的是,前述介绍的各个实施例,远程数据处理中心都可以通过用户在智能终端输入的信息,或者从互联网获得的信息来处理而生成控制信息来控制任务执行清洁机器人、门、窗、灯具等任务执行设备的运行。
中转设备可以放置在工作区域内的任意位置,例如放置在庭院内,或者放置在建筑物内,例如用户家里,还可以集成在任务执行设备上。结合图3所示,该中转设备20安装在用户的家中,中转设备通过连接用户家中的网关设备,如路由器50,而接入互联网,在一个具体的实施例中,该第三通信模块包括无线通信模块,例如为WIFI模块203, 中转设备20通过WIFI模块203与路由器50进行WIFI通信。结合图4所示,在另外一个具体的实施例中,该第三通信模块包括有线通信模块204,有线通信模块204通过连接一条网线与路由器50进行连接,从而接入互联网。可理解的是,结合图5所示,中转设备20的第三通信模块202也可以直接接入互联网,例如中转设备与路由器集成到一起,即中转设备20本身集成有路由功能,则中转设备20的有线通信模块204通过连接一条网线与网络端口连接而接入互联网。可变换地,中转设备20的第三通信模块可以包括独立运行的互联网接入模块,例如蜂窝网络模块,通过蜂窝网络模块而直接接入互联网。
在另一个具体的实施例中,中转设备与任务执行设备集成在一起,例如,中转设备集成在清洁机器人上,传感器设备将检测到的工作区域和各任务执行设备的状态信息通过清洁机器人传输至远程数据处理中心,还可以将远程数据处理中心的控制信息通过清洁机器人传输给各任务执行设备,本实施例中,通过一个清洁机器人即可实现对工作区域内所有任务执行设备信息的管理、传输,一机多用,提高了用户使用的便利性,省去了单独安装中转设备的空间。
在本发明的实施例中,中转设备与传感器设备之间也可以通过RF通信,具体地,传感器设备包括第四通信模块,第四通信模块与中转设备的第二通信模块通信连接以实现传感器设备与中转设备的通信,第四通信模块为频段不超过1GHZ的RF通信模块,更优选地,RF通信模块的频段包括433MHZ,868MHZ,915MHZ的频段。中转设备通过频段不超过1GHZ的RF通信方式获取传感器设备检测的庭院状态信息,通信方式稳定可靠。
在另一个具体的实施例中,传感器设备将状态信息传输至任务执行设备,任务执行设备将状态信息传输至中转设备,传感器设备可以在任务执行设备接近自身时将状态信息传输至任务执行设备。可理解的是,上述实施例中的传感器设备也可以包括第三频段切换模块,根据需要,通过第三频段切换模块将第四通信模块在多个频段内自动切 换,最终切换的频段与中转设备和/或任务执行设备的频段相同。
如图6所示的自动工作系统,工作区域包括用户的庭院和用户的家,将庭院100划分为区域1,区域2,区域3,将家200中划分有区域4、区域5,设置在用户家中的中转设备20,与中转设备20连接的远程数据处理中心30,与远程数据处理中心30连接的智能终端60,远程数据处理中心30内存储有工作区域的地图数据,工作区域内包括至少两个任务执行设备,中转设备20与至少两个任务执行设备通信。每一区域内都停放有任务执行设备,在区域1内停放有执行洒水任务的智能洒水机,在区域2内停放有执行割草任务的智能割草机,在区域3停放有执行耕地任务的智能耕地机,在区域4中停放有执行清洁地面任务的清洁机器人,在区域5中安装有灯具和门窗,每一区域内也都设有传感器设备70,各区域内的传感器设备70检测各区域状态和各任务执行设备的状态,并将各状态信息传输至远程数据处理中心30。本实施例中,在区域2内智能割草机11在执行任务,传感器设备70检测区域2内草坪中草的高度,将草的高度数据、智能割草机的状态信息通过RF方式传输至中转设备20,在区域4内清洁机器人12在执行任务,传感器设备将区域4内地面的尘屑数据和清洁机器人12的状态信息传输通过RF方式传输至中转设备20,中转设备20将其传输至远程数据处理中心,远程数据处理中心30内存储预设条件或预设算法,将草的高度数据和地面的尘屑数据以及机器的状态信息分别与预设条件比较,判断是否需要控制智能割草机11和清洁机器12人执行任务,例如当草的高度数据远超预设高度,地面的尘屑数据远超预设数据,远程数据处理中心处理得到控制信息,例如控制信息为加大智能割草机11和清洁机器人12的切割和清扫力度等,将该控制信息传输至中转设备20,中转设备20获取到控制信息后传输至智能割草机11和清洁机器人12,控制智能割草机11和清洁机器人12的运行。中转设备20还与智能终端60连接,用户能够通过智能终端70获取草的高度信息和地面的尘屑信息。根据需要,用户可 以在智能终端60上输入指令,来控制智能割草机11和清洁机器人12的工作,例如在草的高度未满足预设条件时,用户也可以在智能终端70上输入指令来控制智能割草机11的运行。本实施例中,中转设备20与智能割草机11、清洁机器人12、传感器70之间仅需通过频段不超过1GHZ的RF通信模块通信,通信协议相对简单,通信模块连接快速、传输方式稳定可靠。通过中转设备与外部网络实现通信,此种通信方式的自动工作系统,工作区域内的各设备与中转设备之间的通信稳定,可靠性高,不易受环境影响。可理解的是,本发明实施例中中转设备与任务执行设备和/或传感器之间的数据信号传输均是经过调制与解调的,以便于数据的传输,提高信号的稳定性。
本发明实施例中的自动工作系统,中转设备与任务执行设备和/或传感器设备之间能够通过频段小于1GHZ的RF通信方式实现远距离传输,能够管理大面积工作区域的运行。为了增加传输距离,可以通过增加中转设备与任务执行设备和/或传感器的发射功率,或者减小数据传输的频率及减少传输的数据量的其中一项或多项的方式来实现。而在发射功率一定的情况下,可以通过减小传输频率的方式或减小传输的数据量的方式来保持远距离的传输。
能够理解的是,在具体的实施例中,任务执行设备之间也能够通信,实现数据的传输,通信方式不做限定,优选为RF通信,实现状态数据的相互传递。在一个具体的实施例中,任务执行设备之间也可以电力连接,实现相互之间的电力供给。
在一个具体的实施例中,中转设备同一时间与一个任务执行设备通信。也就是说,中转设备同一时间只与智能割草机、智能洒水车、智能耕地机、清洁机器人的其中一个通信,使得通信更稳定,当中转设备收集到不同区域内的任务执行设备和/或区域的状态信息后,并与远程数据处理中心通信后,能够按序与不同区域内的任务执行设备通信,以控制不同区域内的任务执行设备工作。
在一个具体的实施例中,还提供了一种中转设备,该中转设备用于与任务 执行设备通信以管理任务执行设备的运行,还可以获取任务执行设备和工作区域的状态信息,中转设备包括第二通信模块,通过第二通信模块与包括第一通信模块的至少一个任务执行设备通信连接,其中,中转设备的第二通信模块为频段不超过1GHZ的RF通信模块,中转设备包括第三通信模块,能够与远程数据处理中心通信,中转设备向远程数据处理中心输出任务执行设备和工作区域的状态信息,还可以从远程数据处理中心获取控制信息,基于控制信息管理任务执行设备的运行。中转设备能够与用户的智能终端通信,输出任务执行设备和工作区域的状态以供用户获取,还可以接收用户的指令。该中转设备与任务执行设备通过频段为不超过1GHZ的RF通信模块通信,例如RF的频段为433MHZ,868MHZ,915MHZ的频段,该中转设备与任务执行设备之间通过特定频段的RF方式通信,通信连接方式简单,数据传输稳定。本发明实施例中的中转设备的体积小巧,可以放置在用户的庭院或家中的任意位置,不会造成过多的空间浪费,同时该中转设备还具有成本低、功耗低、灵敏度高,传输距离远、效率高等优点。
在另外一个具体的实施例中,还提供了一种任务执行设备,任务执行设备在工作区域内执行作业任务,任务执行设备包括第一通信模块,通过第一通信模块与包括第二通信模块的中转设备通信,接收来自中转设备的控制信息,向中转设备传输其自身和工作区域的状态信息;其中,任务执行设备接收的控制信息,至少部分的由中转设备从远程数据中心获取,其中,第一通信模块为频段不超过1GHZ的RF通信模块。例如RF的频段为433MHZ,868MHZ,915MHZ的频段,该任务执行设备与中转设备通过特定频段的RF方式通信,通信连接方式简单,数据传输稳定。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
Claims (20)
- 一种自动工作系统,包括:至少一个任务执行设备和至少一个中转设备,所述中转设备与任务执行设备通信以管理任务执行设备的运行和/或,获取任务执行设备和/或工作区域的状态信息,其特征在于,所述任务执行设备包括第一通信模块,所述中转设备包括第二通信模块,所述第一通信模块与所述第二通信模块通信连接以实现任务执行设备与中转设备的通信;所述第一通信模块和所述第二通信模块为频段不超过1GHZ的RF通信模块;所述中转设备包括第三通信模块,通过所述第三通信模块与远程数据处理中心连接;所述中转设备从远程数据处理中心获取控制信息,基于所述控制信息管理所述任务执行设备的运行;和/或,所述中转设备向所述远程数据处理中心输出所述任务执行设备和/或工作区域的状态信息。
- 根据权利要求1所述的自动工作系统,其特征在于,所述中转设备从所述远程数据处理中心获取的控制信息,至少部分由所述远程数据处理中心对输入信息进行处理而生成;所述输入信息包括中转设备输出的状态信息,或用户输入的信息,或远程数据处理中心从互联网自动获取的信息的至少其中之一。
- 根据权利要求1所述的自动工作系统,其特征在于,所述第三通信模块与路由器通信连接,通过路由器接入互联网,从而与远程数据处理中心连接。
- 根据权利要求1所述的自动工作系统,其特征在于,所述第三通信模块直接接入互联网,从而与远程数据处理中心连接。
- 根据权利要求1所述的自动工作系统,其特征在于,所述中转设备通过与远程数据处理中心连接,获取来自用户智能终端的指令和/或,向用户智能终端输出所述任务执行设备和/或工作区域的状态信息。
- 根据权利要求1所述的自动工作系统,其特征在于,所述自动工作系统包括至少两个任务执行设备,所述中转设备与所述至少两个任务执行设备通信。
- 根据权利要求1所述的自动工作系统,其特征在于,所述任务执行设备包括第一频段切换模块及所述中转设备包括第二频段切换模块,通过所述第一频段切换模块控制第一通信模块在多个频段内自动切换及通过所述第二频段切换模块控制第二通信模块在多个频段内自动切换,使得所述第一通信模块与所述第二通信模块切换的频段相同。
- 根据权利要求1所述的自动工作系统,其特征在于,所述中转设备在同一时间与一个任务执行设备通信。
- 根据权利要求1所述的自动工作系统,其特征在于,所述中转设备按序与不同的任务执行设备通信。
- 根据权利要求1所述的自动工作系统,其特征在于,所述自动工作系统包括检测任务执行设备或工作区域状态的传感器设备,所述中转设备收集传感器设备检测到的状态信息。
- 根据权利要求10所述的自动工作系统,其特征在于,所述传感器设备包括第四通信模块,所述第四通信模块与中转设备的第二通信模块通信连接以实现传感器设备与中转设备的通信,所述第四通信模块为频段不超过1GHZ的RF通信模块。
- 根据权利要求10所述的自动工作系统,其特征在于,所述传感器设备集成在任务执行设备上或者所述传感器设备放置在工作区域内。
- 根据权利要求1所述的自动工作系统,其特征在于,所述中转设备放置在建筑物内。
- 根据权利要求1所述的自动工作系统,其特征在于,所述中转设备对任务执行设备的运行的管理包括,控制任务执行设备开始或结束作业,和/或控制任务执行设备的运行参数,和/或控制任务执行设备的作业路径。
- 根据权利要求1所述的自动工作系统,其特征在于,所述任务执行设备包括自移动设备,例如,智能割草机、智能洒水器、智能扫雪机、智能耕种机、清洁机器人中的至少其中一个。
- 根据权利要求1所述的自动工作系统,其特征在于,所述自动工作系统包括至少两个任务执行设备,所述任务执行设备之间能够通过所述第一通信 模块通信。
- 一种中转设备,所述中转设备用于与至少一个任务执行设备通信以管理任务执行设备的运行和/或,获取任务执行设备和/或工作区域的状态信息,其特征在于,所述中转设备包括第二通信模块,通过第二通信模块与包括第一通信模块的任务执行设备通信;所述中转设备的第二通信模块为频段不超过1GHZ的RF通信模块;所述中转设备包括第三通信模块,通过所述第三通信模块与远程数据处理中心连接;所述中转设备从远程数据处理中心获取控制信息,基于所述控制信息管理所述任务执行设备的运行;和/或,所述中转设备向所述远程数据处理中心输出所述任务执行设备和/或工作区域的状态信息。
- 根据权利要求17所述的中转设备,其特征在于,所述中转设备用于与至少两个任务执行设备通信以管理至少两个任务执行设备的运行和/或,获取至少两个任务执行设备和/或工作区域的状态信息。
- 根据权利要求17所述的中转设备,其特征在于,所述中转设备包括第二频段切换模块,通过所述第二频段切换模块控制第二通信模块在多个频段内自动切换,使得第二通信模块切换的频段与第一通信模块的频段相同。
- 一种任务执行设备,所述任务执行设备在工作区域中执行作业任务,其特征在于,所述任务执行设备包括第一通信模块,通过所述第一通信模块与包括第二通信模块的中转设备通信,接收来自中转设备的控制信息和/或,向中转设备传输自身和/或工作区域的状态信息;所述任务执行设备接收的控制信息,至少部分的由所述中转设备从远程数据处理中心获取;所述第一通信模块为频段不超过1GHZ的RF通信模块。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980005080.0A CN111448782A (zh) | 2018-05-22 | 2019-05-22 | 自动工作系统、中转设备及任务执行设备 |
US17/057,303 US12045647B2 (en) | 2018-05-22 | 2019-05-22 | Automatic working system, forwarding device, and task execution device |
EP19808477.4A EP3799360A4 (en) | 2018-05-22 | 2019-05-22 | AUTOMATIC WORKING SYSTEM, RELAY DEVICE AND TASK PERFORMING DEVICE |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810496403 | 2018-05-22 | ||
CN201810496403.8 | 2018-05-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019223735A1 true WO2019223735A1 (zh) | 2019-11-28 |
Family
ID=68616565
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/088018 WO2019223735A1 (zh) | 2018-05-22 | 2019-05-22 | 自动工作系统、中转设备及任务执行设备 |
Country Status (4)
Country | Link |
---|---|
US (1) | US12045647B2 (zh) |
EP (1) | EP3799360A4 (zh) |
CN (1) | CN111448782A (zh) |
WO (1) | WO2019223735A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009135312A1 (en) * | 2008-05-08 | 2009-11-12 | Unify4Life Corporation | Remote control system and method |
CN105163089A (zh) * | 2015-09-22 | 2015-12-16 | 江苏大学 | 基于wifi的家庭庭院智能看护装置 |
CN105163090A (zh) * | 2015-09-22 | 2015-12-16 | 江苏大学 | 基于4g的家庭庭院智能看护装置 |
CN107346126A (zh) * | 2017-05-15 | 2017-11-14 | 南京铭发智能科技有限公司 | 一种智能庭院管理系统 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009132425A1 (en) * | 2008-04-29 | 2009-11-05 | Jamie Hackett | Wireless control system using variable power dual modulation transceivers |
KR101334961B1 (ko) | 2011-08-03 | 2013-11-29 | 엘지전자 주식회사 | 잔디 깎기용 이동로봇 시스템 및 이의 제어방법 |
CN102883340B (zh) * | 2012-09-29 | 2015-04-08 | 西北大学 | 适用于无网络覆盖地区的远程中转传输系统及其传输方法 |
US9395723B2 (en) * | 2013-09-30 | 2016-07-19 | Five Elements Robotics, Inc. | Self-propelled robot assistant |
US20150370272A1 (en) * | 2014-06-23 | 2015-12-24 | Google Inc. | Intelligent configuration of a smart environment based on arrival time |
WO2016024208A1 (en) | 2014-08-14 | 2016-02-18 | Husqvarna Ab | Distributed intelligent grounds management system |
CN106161489A (zh) * | 2015-01-29 | 2016-11-23 | 苏州宝时得电动工具有限公司 | 电动工具的数据传输系统 |
EP3392729B1 (en) * | 2015-12-17 | 2021-10-27 | Positec Power Tools (Suzhou) Co., Ltd | Auto-movement robot system |
EP3471924A4 (en) * | 2016-06-15 | 2020-07-29 | iRobot Corporation | SYSTEMS AND METHODS OF CONTROL OF AN AUTONOMOUS MOBILE ROBOT |
-
2019
- 2019-05-22 US US17/057,303 patent/US12045647B2/en active Active
- 2019-05-22 CN CN201980005080.0A patent/CN111448782A/zh active Pending
- 2019-05-22 EP EP19808477.4A patent/EP3799360A4/en active Pending
- 2019-05-22 WO PCT/CN2019/088018 patent/WO2019223735A1/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009135312A1 (en) * | 2008-05-08 | 2009-11-12 | Unify4Life Corporation | Remote control system and method |
CN105163089A (zh) * | 2015-09-22 | 2015-12-16 | 江苏大学 | 基于wifi的家庭庭院智能看护装置 |
CN105163090A (zh) * | 2015-09-22 | 2015-12-16 | 江苏大学 | 基于4g的家庭庭院智能看护装置 |
CN107346126A (zh) * | 2017-05-15 | 2017-11-14 | 南京铭发智能科技有限公司 | 一种智能庭院管理系统 |
Non-Patent Citations (3)
Title |
---|
ANONYMOUS: "Gardena Robot Mowers 2018", MY ROBOT CENTER, 12 April 2018 (2018-04-12), XP055850179, Retrieved from the Internet <URL:https://www.myrobotcenter.eu/en/gardena> |
GARDENA: "SILENO (R100Li), smart SILENO (R100LiC), SILENO+ (R130Li, R160Li), smart SILENO+ (R130LiC, R160LiC)", GARDENA OPERATOR'S MANUAL, 16 October 2017 (2017-10-16), XP055850176, Retrieved from the Internet <URL:https://www.gardena.com> |
See also references of EP3799360A4 |
Also Published As
Publication number | Publication date |
---|---|
EP3799360A1 (en) | 2021-03-31 |
US12045647B2 (en) | 2024-07-23 |
US20210191764A1 (en) | 2021-06-24 |
EP3799360A4 (en) | 2022-03-09 |
CN111448782A (zh) | 2020-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210307264A1 (en) | Simplified Interface and Operation in a Watering System | |
US20210307265A1 (en) | Watering System with Adaptive Components | |
CN103299882B (zh) | 一种灌区田间节水智能化灌溉系统 | |
CN202854575U (zh) | 一种农业物联网系统 | |
CN101706663B (zh) | 智能建筑办公环境的无线联网节能控制系统及其控制方法 | |
CN103076784A (zh) | 一种基于无线传感网络和gprs的温室环境监控系统 | |
CN208705751U (zh) | 基于wifi的农业温室大棚环境数据采集装置 | |
KR20130039095A (ko) | 온실 최적 생장 환경 유지 시스템 및 방법 | |
CN206611934U (zh) | 基于微信平台的植物智能灌溉系统 | |
CN205665603U (zh) | 一种温室环境远程智能监控系统 | |
WO2019223735A1 (zh) | 自动工作系统、中转设备及任务执行设备 | |
CN113391666B (zh) | 水产养殖环境和水质多参量控制系统 | |
CN213662775U (zh) | 一种基于LoRa技术的农作物智能防控霜冻系统 | |
CN210721137U (zh) | 一种基于物联网的分布式控制设备及系统 | |
CN105892532A (zh) | 一种蔬菜大棚环境智能调控系统 | |
JP6820365B2 (ja) | 散水システムにおける簡略化されたインタフェースおよび動作 | |
CN104686050A (zh) | 智能割草机 | |
CN106527550A (zh) | 一种设施草莓栽培的环境监控系统 | |
CN105955361A (zh) | 无人值班变电站控制室环境智能管理系统 | |
CN206380400U (zh) | 一种大棚恒温装置 | |
CN210987306U (zh) | 一种基于OneNet平台的温室大棚智能通风系统 | |
CN115915014A (zh) | 自移动设备及其系统 | |
CN206311994U (zh) | 一种温室智能监控系统 | |
CN110780645A (zh) | 一种智能温室环境监测调节系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19808477 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019808477 Country of ref document: EP Effective date: 20201222 |