WO2019223706A1 - 一种基于饱和度聚类的骨髓白细胞定位方法 - Google Patents
一种基于饱和度聚类的骨髓白细胞定位方法 Download PDFInfo
- Publication number
- WO2019223706A1 WO2019223706A1 PCT/CN2019/087875 CN2019087875W WO2019223706A1 WO 2019223706 A1 WO2019223706 A1 WO 2019223706A1 CN 2019087875 W CN2019087875 W CN 2019087875W WO 2019223706 A1 WO2019223706 A1 WO 2019223706A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- white blood
- blood cells
- bone marrow
- saturation
- parts
- Prior art date
Links
- 210000000265 leukocyte Anatomy 0.000 title claims abstract description 75
- 210000001185 bone marrow Anatomy 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 title claims abstract description 27
- 238000003066 decision tree Methods 0.000 claims abstract description 13
- 210000003743 erythrocyte Anatomy 0.000 claims description 9
- 230000000877 morphologic effect Effects 0.000 claims description 9
- 230000004807 localization Effects 0.000 claims description 8
- 238000001914 filtration Methods 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 230000007797 corrosion Effects 0.000 claims description 3
- 238000005260 corrosion Methods 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 claims description 2
- 238000013138 pruning Methods 0.000 claims description 2
- 238000003064 k means clustering Methods 0.000 abstract 1
- 238000007781 pre-processing Methods 0.000 abstract 1
- 238000009877 rendering Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 3
- 230000011218 segmentation Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 230000021164 cell adhesion Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000007762 localization of cell Effects 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/10—Pre-processing; Data cleansing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/23—Clustering techniques
- G06F18/232—Non-hierarchical techniques
- G06F18/2321—Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions
- G06F18/23213—Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions with fixed number of clusters, e.g. K-means clustering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/243—Classification techniques relating to the number of classes
- G06F18/24323—Tree-organised classifiers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/40—Scaling of whole images or parts thereof, e.g. expanding or contracting
- G06T3/4015—Image demosaicing, e.g. colour filter arrays [CFA] or Bayer patterns
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/20—Image enhancement or restoration using local operators
- G06T5/30—Erosion or dilatation, e.g. thinning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/70—Denoising; Smoothing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/136—Segmentation; Edge detection involving thresholding
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/155—Segmentation; Edge detection involving morphological operators
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/194—Segmentation; Edge detection involving foreground-background segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/60—Analysis of geometric attributes
- G06T7/62—Analysis of geometric attributes of area, perimeter, diameter or volume
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
- G06T7/73—Determining position or orientation of objects or cameras using feature-based methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/762—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using clustering, e.g. of similar faces in social networks
- G06V10/763—Non-hierarchical techniques, e.g. based on statistics of modelling distributions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/764—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/60—Type of objects
- G06V20/69—Microscopic objects, e.g. biological cells or cellular parts
- G06V20/695—Preprocessing, e.g. image segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10024—Color image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20024—Filtering details
- G06T2207/20032—Median filtering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20172—Image enhancement details
- G06T2207/20182—Noise reduction or smoothing in the temporal domain; Spatio-temporal filtering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30024—Cell structures in vitro; Tissue sections in vitro
Definitions
- the invention belongs to the field of medical image processing, and particularly relates to a bone marrow white blood cell positioning method based on saturation clustering.
- the localization of bone marrow white blood cells is mainly based on a threshold algorithm to separate white blood cells from background and red blood cells.
- a threshold algorithm to separate white blood cells from background and red blood cells.
- the purpose of the present invention is to provide a bone marrow white blood cell localization method based on saturation clustering.
- a white blood cell localization algorithm is provided, which aims at the density of white blood cells in the bone marrow and the phenomenon of cell adhesion in blood smears of some patients The problem is to be able to more precisely select the area of white blood cells.
- a bone marrow leukocyte localization method based on saturation clustering includes the following steps:
- the K-means algorithm is applied to the S (saturation) channel, and it is divided into three parts, where the first part P1 may be a white blood cell region, and the second part P2 may be a red blood cell region or There are red blood cells and white blood cells.
- the third part P3 is generally the background area, so you only need to select the P1 or (P1 + P2) part to get the white blood cell area.
- the average value (H1, H2) of the H channel of the first two parts in (3) is calculated, and the average point (S1, S2) of the first two parts in (3) is calculated, The ratio of the area of the first and second partial areas in (3).
- the formulas for H1 and H2 are given below:
- H1 ⁇ (P1. * H) / ⁇ (P1)
- P1 is a binary map, the pixel values belonging to the first part are 1, and the others are 0.
- ⁇ (p1) is the sum of the pixel values of P1, and P1.
- * H represents the result of multiplying pixels at the same position;
- P2 is a binary map, the pixel values belonging to the first part are 1, and the others are 0.
- ⁇ (p 2 ) is the sum of the pixel values of P2, and P2.
- * H represents the result of multiplying pixels at the same position.
- step (6) according to the recording result in (5), a decision tree algorithm is applied to find a rule to formulate the selection conditions, wherein the loss function of the decision tree algorithm plus the number of leaf nodes is used for cutting Prevent overfitting
- the result of (6) is applied to remove the irrelevant area and fill the holes of the white blood cell area by morphological processing.
- the specific process is as follows: First, select the appropriate structural element b pair (6) The binary map of the image is subjected to corrosion operation to remove irrelevant areas; then the expansion operation is performed;
- the present invention has the following beneficial effects:
- the algorithm of the present invention is simple, effective, and has a wide application range. Compared with the existing threshold-based algorithms, the algorithm of the present invention has stronger adaptability.
- Figure 1 is a picture of bone marrow leukocytes
- Figure 2 is a picture of bone marrow leukocytes with median filtering
- Figure 3 is a three-part result diagram obtained by applying the K-means algorithm to the S channel;
- FIG. 4 is a result diagram after selection by applying a decision tree algorithm
- FIG. 5 is a result diagram of removing irrelevant areas and filling point holes
- FIG. 6 is a diagram of the white blood cell positioning result after separation
- FIG. 7 is a schematic block diagram of an apparatus for locating bone marrow leukocytes according to one embodiment.
- a bone marrow leukocyte localization method based on saturation clustering includes the following steps:
- V max (R, G, B)
- RGB values [0,1]
- the K-means algorithm to the S (saturation) channel and divide it into 3 parts: as shown in Figure 3, where the first part (P1) is likely to be a white blood cell area, and the second part (P2) may be a red blood cell area or both There are red blood cells and white blood cells, and the third part (P3) is generally the background area. Therefore, we only need to select the P1 or (P1 + P2) part to get the white blood cell area. The following is the selection step;
- H1 ⁇ (P1. * H) / ⁇ (P1)
- P1 is a binary map, the pixel values belonging to the first part are 1, and the others are 0.
- ⁇ (p1) is the sum of the pixel values of P1, and P1.
- * H represents the result of multiplying pixels at the same position;
- P2 is a binary map, the pixel values belonging to the first part are 1, and the others are 0.
- ⁇ (p 2 ) is the sum of the pixel values of P2, and P2.
- * H represents the result of multiplying pixels at the same position;
- f is the binary graph obtained in (6), Is expansion operation, Corrosive operation.
- FIG. 7 is a block diagram of an apparatus 700 for locating bone marrow leukocytes according to one embodiment.
- the device 700 may be a computer, a cloud server, or the like.
- the device 700 in FIG. 1 includes one or more of the following components: a processor 702, a memory 704, a power supply component 706, a multimedia component 708, and an input / output (I / O) interface 710.
- the processor 702 is configured to control overall operations of the device 700, such as operations associated with locating bone marrow white blood cells.
- the processor 702 is configured to execute instructions to perform all or part of the disclosed method.
- the processor 702 includes a multimedia module configured to facilitate interaction between the multimedia component 708 and the processor 702.
- the memory 704 is configured to store various types of data to support the operation of the device 700. Examples of such data include instructions, unit images, databases, etc. of any application or method implemented by the device 700.
- the memory 704 can be implemented using any type of volatile or non-volatile storage device, such as static random access memory (static random access memory), electrically erasable programmable read-only memory (electrically erasable) (Except programmable read-only memory), programmable read-only memory (programmable read-only memory), read-only memory (read-only memory), magnetic memory, flash memory, or disk or optical disk.
- the power component 706 is configured to provide power to various components of the device 700.
- the power component 706 includes a power management system, one or more power sources, and any other components associated with the generation, management, and distribution of power in the device 700.
- the multimedia component 708 includes a screen that provides an output interface between the device 700 and a user of the device 700.
- the screen may include a liquid crystal display and a press panel.
- the input / output interface 710 is configured to provide an interface for the processor 702 and peripheral interface modules (such as a keyboard, a click wheel, a button, etc.).
- peripheral interface modules such as a keyboard, a click wheel, a button, etc.
- the device 700 may use one or more application specific integrated circuits, digital signal processors, digital signal processing devices, programmable logic devices, field programmable gate arrays, controllers, microcontrollers, microprocessors, or Other electronic components are implemented to perform the disclosed method.
- the present disclosure also provides a non-transitory computer-readable storage medium including instructions, such as instructions included in the memory 704. These instructions may be executed by the processor 702 of the device 700 for performing the disclosed method of locating bone marrow white blood cells.
- the non-transitory computer-readable storage medium may be a read-only memory, a random access memory, an optical disk, a magnetic tape, a floppy disk, an optical data storage device, and the like.
- the aforementioned bone marrow leukocyte localization method based on saturation clustering has the advantages that the algorithm is simple, effective, and has a wide range of applications; compared with the existing threshold-based algorithm, the algorithm of the present invention has stronger adaptability. Secondly, the combination of the K-means algorithm and the decision tree algorithm can be used to more accurately select the area of white blood cells.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Data Mining & Analysis (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Multimedia (AREA)
- Medical Informatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Evolutionary Biology (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Probability & Statistics with Applications (AREA)
- Databases & Information Systems (AREA)
- Computing Systems (AREA)
- Radiology & Medical Imaging (AREA)
- Quality & Reliability (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Geometry (AREA)
- Image Analysis (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Image Processing (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
Description
Claims (5)
- 一种基于饱和度聚类的骨髓白细胞定位方法,其特征在于,包括如下步骤:(1)对骨髓白细胞图片进行中值滤波去除部分噪点;(2)对骨髓白细胞图片进行颜色变换,将图片从RGB(红绿蓝)通道转换到HSV(颜色,饱和度,亮度)通道;(3)对S饱和度通道应用K均值算法,将其分为3个部分,选择第一部分P1或者第一二部分P1+P2部分得到白细胞的区域,下面是选择的步骤;(4)计算(3)中第一二部分H通道的平均值(H1,H2),根据(3)中第一二部分的均值点(S1,S2),计算(3)中第一二部分区域的面积比值(ratio);(5)统计多张图片中白细胞所在的部分,记录在P1或者P2部分时H1-H2,S1-S2和ratio的值;(6)根据(5)中的记录结果,应用决策树算法,找出规律制定选择的条件;(7)对(6)的结果进行形态学处理去除无关区域,同时填充点洞;(8)对(7)中分离的白细胞进行定位。
- 根据权利要求1所述的基于饱和度聚类的骨髓白细胞定位方法,其特征在于,所述步骤步骤(3)中对S(饱和度)通道应用K均值算法,将其分为3个部分,其中第一部分P1为可能为白细胞区域,第二部分P2可能为红细胞区域或者既有红细胞也有白细胞,第三部分P3一般是背景区域,因此只需要选择P1或者(P1+P2)部分就可以得到白细胞的区域。
- 如权利要求1所述的基于饱和度聚类的骨髓白细胞定位方法,其特征在于,所述步骤(4)中计算(3)中第一二部分H通道的平均值(H1,H2),计算(3)中第一二部分的均值点(S1,S2),计算(3)中第一二部分区域的面积比值(ratio),下面给出H1的计算公式:H1=∑(P1.*H)/∑(P1)H2=∑(P2.*H)/∑(P2)其中P1是二值图,属于第一部分的像素值为1,其它为0;∑(p1)为P1像素值的和,P1*H表示相同位置像素相乘的结果;P2是二值图,属于第一部分的像素值为1,其它为0;∑(p 2)为P2像素值的和,P2.*H表示相同位置像素相乘的结果。
- 根据权利要求1所述的基于饱和度聚类的骨髓白细胞定位方法,其特征在于,所述步骤(6)中,根据(5)中的记录结果,应用决策树算法,找出规律制定选择的条件,其中决策树算法的损失函数加上叶子节点个数,用于剪枝防止过拟合。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020207030282A KR20200135839A (ko) | 2018-05-22 | 2019-05-22 | 채도 클러스터에 의한 골수 백혈구 위치 결정 방법 |
JP2020547398A JP6994275B2 (ja) | 2018-05-22 | 2019-05-22 | 飽和度クラスタリングに基づく骨髄白血球の位置特定方法 |
RU2020133630A RU2755553C1 (ru) | 2018-05-22 | 2019-05-22 | Способ определения местонахождения лейкоцитов костного мозга на основе агрегации насыщения |
AU2019273339A AU2019273339B2 (en) | 2018-05-22 | 2019-05-22 | Saturation clustering-based method for positioning bone marrow white blood cells |
US16/979,490 US11403481B2 (en) | 2018-05-22 | 2019-05-22 | Method for localization of bone marrow white blood cells based on saturation clustering |
EP19807105.2A EP3798972A4 (en) | 2018-05-22 | 2019-05-22 | SATURATION CLUSTER BASED METHOD FOR POSITIONING BONE MARROW WHITE BLOOD BLOOD CELLS |
IL277040A IL277040A (en) | 2018-05-22 | 2020-08-31 | A method for the location of white blood cells from bone marrow based on saturation grouping |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810495118.4 | 2018-05-22 | ||
CN201810495118.4A CN108805865B (zh) | 2018-05-22 | 2018-05-22 | 一种基于饱和度聚类的骨髓白细胞定位方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019223706A1 true WO2019223706A1 (zh) | 2019-11-28 |
Family
ID=64091391
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/087875 WO2019223706A1 (zh) | 2018-05-22 | 2019-05-22 | 一种基于饱和度聚类的骨髓白细胞定位方法 |
Country Status (10)
Country | Link |
---|---|
US (1) | US11403481B2 (zh) |
EP (1) | EP3798972A4 (zh) |
JP (1) | JP6994275B2 (zh) |
KR (1) | KR20200135839A (zh) |
CN (1) | CN108805865B (zh) |
AU (1) | AU2019273339B2 (zh) |
IL (1) | IL277040A (zh) |
RU (1) | RU2755553C1 (zh) |
TW (1) | TWI711008B (zh) |
WO (1) | WO2019223706A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113570628A (zh) * | 2021-07-30 | 2021-10-29 | 西安科技大学 | 一种基于活动轮廓模型的白细胞分割方法 |
CN113902817A (zh) * | 2021-11-23 | 2022-01-07 | 杭州智微信息科技有限公司 | 一种基于灰度值的细胞图片拼接方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108805865B (zh) * | 2018-05-22 | 2019-12-10 | 杭州智微信息科技有限公司 | 一种基于饱和度聚类的骨髓白细胞定位方法 |
CN110751196B (zh) * | 2019-10-12 | 2020-09-18 | 东北石油大学 | 一种油水两相流透明管壁内类油滴附着物识别方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080212868A1 (en) * | 2005-06-15 | 2008-09-04 | Tissue Gnostics Gmbh | Process for Segmenting Leukocytes |
CN102298700A (zh) * | 2011-06-09 | 2011-12-28 | 华东师范大学 | 一种骨髓病理图像中细胞识别与定位方法 |
CN104484877A (zh) * | 2014-12-12 | 2015-04-01 | 山东大学 | 一种基于Meanshift聚类和形态学操作的AML细胞分割方法 |
CN106780522A (zh) * | 2016-12-23 | 2017-05-31 | 杭州华卓信息科技有限公司 | 一种基于深度学习的骨髓液细胞分割方法 |
CN108805865A (zh) * | 2018-05-22 | 2018-11-13 | 杭州智微信息科技有限公司 | 一种基于饱和度聚类的骨髓白细胞定位方法 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002047007A2 (en) * | 2000-12-07 | 2002-06-13 | Phase It Intelligent Solutions Ag | Expert system for classification and prediction of genetic diseases |
RU2303812C2 (ru) * | 2004-12-29 | 2007-07-27 | Общество с ограниченной ответственностью "НПФ РЕНАМ" | Способ распознавания и подсчета клеток в биологических средах человека и животных и устройство для его осуществления |
RU2308745C1 (ru) * | 2006-10-09 | 2007-10-20 | Государственное образовательное учреждение высшего профессионального образования Московский инженерно-физический институт (государственный университет) | Способ микроскопического исследования образца, содержащего микрообъекты с разнородными зонами |
KR101191454B1 (ko) * | 2010-05-14 | 2012-10-16 | 계명대학교 산학협력단 | 비모수적 확률 모델과 질감 정보를 이용한 백혈구 분할 방법 |
CN102279146A (zh) * | 2011-03-11 | 2011-12-14 | 桂林优利特医疗电子有限公司 | 基于激光鞘流技术的血液细胞五分类方法 |
US20130094750A1 (en) * | 2011-10-12 | 2013-04-18 | Tolga Tasdizen | Methods and systems for segmentation of cells for an automated differential counting system |
CN103020639A (zh) * | 2012-11-27 | 2013-04-03 | 河海大学 | 一种白细胞自动识别计数方法 |
CN103077529B (zh) * | 2013-02-27 | 2016-04-06 | 电子科技大学 | 基于图像扫描的植物叶片特征分析系统 |
CN103473739B (zh) * | 2013-08-15 | 2016-06-22 | 华中科技大学 | 一种基于支持向量机的白细胞图像精确分割方法与系统 |
JP6316569B2 (ja) * | 2013-11-01 | 2018-04-25 | 株式会社ブレイン | 物品識別システムとそのプログラム |
CN104392460B (zh) * | 2014-12-12 | 2015-11-04 | 山东大学 | 一种基于胞核标记分水岭变换的粘连白细胞分割方法 |
US9836839B2 (en) * | 2015-05-28 | 2017-12-05 | Tokitae Llc | Image analysis systems and related methods |
CN106248559B (zh) * | 2016-07-14 | 2018-10-23 | 中国计量大学 | 一种基于深度学习的白细胞五分类方法 |
CN106327490A (zh) * | 2016-08-22 | 2017-01-11 | 中国计量大学 | 一种基于白细胞检测的细胞核分割方法 |
EP3321851A3 (en) * | 2016-11-09 | 2018-08-01 | AmCad BioMed Corporation | Cytological image processing device, and method for quantifying characteristics of cytological image |
CN107274444A (zh) * | 2017-05-15 | 2017-10-20 | 北京林业大学 | 球形类植物的计数方法及装置 |
CN107730499A (zh) * | 2017-10-31 | 2018-02-23 | 河海大学 | 一种基于nu‑支持向量机的白细胞分类方法 |
-
2018
- 2018-05-22 CN CN201810495118.4A patent/CN108805865B/zh active Active
-
2019
- 2019-05-22 AU AU2019273339A patent/AU2019273339B2/en active Active
- 2019-05-22 US US16/979,490 patent/US11403481B2/en active Active
- 2019-05-22 KR KR1020207030282A patent/KR20200135839A/ko active IP Right Grant
- 2019-05-22 EP EP19807105.2A patent/EP3798972A4/en active Pending
- 2019-05-22 WO PCT/CN2019/087875 patent/WO2019223706A1/zh active Application Filing
- 2019-05-22 JP JP2020547398A patent/JP6994275B2/ja active Active
- 2019-05-22 RU RU2020133630A patent/RU2755553C1/ru active
- 2019-05-22 TW TW108117724A patent/TWI711008B/zh active
-
2020
- 2020-08-31 IL IL277040A patent/IL277040A/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080212868A1 (en) * | 2005-06-15 | 2008-09-04 | Tissue Gnostics Gmbh | Process for Segmenting Leukocytes |
CN102298700A (zh) * | 2011-06-09 | 2011-12-28 | 华东师范大学 | 一种骨髓病理图像中细胞识别与定位方法 |
CN104484877A (zh) * | 2014-12-12 | 2015-04-01 | 山东大学 | 一种基于Meanshift聚类和形态学操作的AML细胞分割方法 |
CN106780522A (zh) * | 2016-12-23 | 2017-05-31 | 杭州华卓信息科技有限公司 | 一种基于深度学习的骨髓液细胞分割方法 |
CN108805865A (zh) * | 2018-05-22 | 2018-11-13 | 杭州智微信息科技有限公司 | 一种基于饱和度聚类的骨髓白细胞定位方法 |
Non-Patent Citations (5)
Title |
---|
DORINI L B: "White blood cell segmentation using morphological operators and scale-space analysis", COMPUTER GRAPHICS AND IMAGE PROCESSING, 2007, pages 294 - 304, XP031153381 |
KO ET AL.: "Automatic white blood cell segmentation using stepwise merging rules and gradient vector flow snake", MICRON, vol. 42, no. 7, 2011, pages 695 - 705, XP028374174, DOI: 10.1016/j.micron.2011.03.009 |
See also references of EP3798972A4 |
SU , SHIMEI ET AL.: "Segmentation Algorithm for Bone Marrow Cell Image Based on the Wavelet Transform and K-means Clustering", JOURNAL OF ZHENGZHOU UNIVERSITY (ENGINEERING SCIENCE), vol. 36, no. 4, 1 July 2015 (2015-07-01), pages 15 - 18, XP055657348, ISSN: 1671-6833, DOI: 10.3969/j.issn.1671-6833.2015.04.004 * |
WU ET AL.: "A novel color image segmentation method and its application to white blood cell image analysis", SIGNAL PROCESSING, 2006 8TH INTERNATIONAL CONFERENCE ON, 2006 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113570628A (zh) * | 2021-07-30 | 2021-10-29 | 西安科技大学 | 一种基于活动轮廓模型的白细胞分割方法 |
CN113570628B (zh) * | 2021-07-30 | 2024-04-02 | 西安科技大学 | 一种基于活动轮廓模型的白细胞分割方法 |
CN113902817A (zh) * | 2021-11-23 | 2022-01-07 | 杭州智微信息科技有限公司 | 一种基于灰度值的细胞图片拼接方法 |
Also Published As
Publication number | Publication date |
---|---|
CN108805865A (zh) | 2018-11-13 |
US11403481B2 (en) | 2022-08-02 |
KR20200135839A (ko) | 2020-12-03 |
IL277040A (en) | 2020-10-29 |
EP3798972A4 (en) | 2022-03-02 |
CN108805865B (zh) | 2019-12-10 |
JP6994275B2 (ja) | 2022-02-04 |
TW202004663A (zh) | 2020-01-16 |
JP2021510831A (ja) | 2021-04-30 |
AU2019273339B2 (en) | 2021-03-04 |
US20210004640A1 (en) | 2021-01-07 |
TWI711008B (zh) | 2020-11-21 |
EP3798972A1 (en) | 2021-03-31 |
RU2755553C1 (ru) | 2021-09-17 |
AU2019273339A1 (en) | 2020-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019223706A1 (zh) | 一种基于饱和度聚类的骨髓白细胞定位方法 | |
AU2018102232A4 (en) | Bone marrow cell marking method and system | |
WO2022089236A1 (zh) | 基于人工智能的图像处理方法、装置、计算机设备和存储介质 | |
WO2021217851A1 (zh) | 异常细胞自动标注方法、装置、电子设备及存储介质 | |
Arslan et al. | A color and shape based algorithm for segmentation of white blood cells in peripheral blood and bone marrow images | |
CN111145209B (zh) | 一种医学图像分割方法、装置、设备及存储介质 | |
CN103473739B (zh) | 一种基于支持向量机的白细胞图像精确分割方法与系统 | |
Zhi et al. | AdipoCount: a new software for automatic adipocyte counting | |
Shahzad et al. | Robust Method for Semantic Segmentation of Whole‐Slide Blood Cell Microscopic Images | |
WO2020253508A1 (zh) | 异常细胞检测方法、装置及计算机可读存储介质 | |
Isa | Automated edge detection technique for Pap smear images using moving K-means clustering and modified seed based region growing algorithm | |
CN108320289B (zh) | 一种基于稀疏表示和形态学操作的骨髓细胞分割方法 | |
Khan et al. | Segmentation of developing human embryo in time-lapse microscopy | |
Li et al. | Hybrid supervision learning for pathology whole slide image classification | |
CN106327490A (zh) | 一种基于白细胞检测的细胞核分割方法 | |
CN113850792A (zh) | 一种基于计算机视觉的细胞分类计数方法及系统 | |
CN114758136B (zh) | 目标去除模型建立方法、装置及可读存储介质 | |
US20220335606A1 (en) | Systems and methods for patient tumor-immune phenotyping from immunofluorescence (if) image analysis | |
Karthika Devi et al. | A novel region based thresholding for dental cyst extraction in digital dental X-ray images | |
Rahali et al. | Drosophila image segmentation using marker controlled watershed | |
Wang et al. | Automatic cell segmentation and signal detection in fluorescent in situ hybridization | |
Zhu et al. | Morphological reconstruction based segmentation of lung fields on digital radiographs | |
Magoulianitis et al. | HUNIS: High-Performance Unsupervised Nuclei Instance Segmentation | |
CN117876384B (zh) | 目标对象实例分割、模型训练方法及相关产品 | |
US20240202932A1 (en) | Systems and methods for automated video matting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19807105 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019273339 Country of ref document: AU Date of ref document: 20190522 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 277040 Country of ref document: IL |
|
ENP | Entry into the national phase |
Ref document number: 2020547398 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20207030282 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019807105 Country of ref document: EP Effective date: 20201222 |