WO2019223696A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2019223696A1
WO2019223696A1 PCT/CN2019/087837 CN2019087837W WO2019223696A1 WO 2019223696 A1 WO2019223696 A1 WO 2019223696A1 CN 2019087837 W CN2019087837 W CN 2019087837W WO 2019223696 A1 WO2019223696 A1 WO 2019223696A1
Authority
WO
WIPO (PCT)
Prior art keywords
bwp
link
downlink resource
resource
downlink
Prior art date
Application number
PCT/CN2019/087837
Other languages
English (en)
French (fr)
Inventor
张荻
刘鹍鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19808052.5A priority Critical patent/EP3787340A4/en
Publication of WO2019223696A1 publication Critical patent/WO2019223696A1/zh
Priority to US16/952,962 priority patent/US11470589B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/06Reselecting a communication resource in the serving access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/18Management of setup rejection or failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0079Transmission or use of information for re-establishing the radio link in case of hand-off failure or rejection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a communication method and device.
  • High-frequency bands with larger available bandwidth are increasingly becoming candidate bands for next-generation communication systems, and beamforming technology is used for signal transmission.
  • the network device obtains several beam pairs (BPL) that have better communication with the terminal device.
  • BPL beam pairs
  • the current serving beam is blocked, and the signal cannot continue to be transmitted.
  • the beam quality is detected, and the link is quickly restored in the case of blockage.
  • the network device may configure one or more downlink / uplink bandwidth regions (BWP) for the terminal device, and the multiple bandwidth regions may overlap in the frequency domain, as shown in the BWP schematic diagram in FIG. 1.
  • BWP is a subset of the bandwidth of the terminal equipment.
  • BWP is composed of continuous physical resource blocks (PRBs) in the frequency domain, that is, the minimum granularity of BWP in the frequency domain is 1 PRB.
  • PRBs physical resource blocks
  • a terminal device In the case of a single carrier, a terminal device has only one activated BWP at a time, and the terminal device can only receive data / reference signals or send data / reference signals on the activated BWP.
  • the network device instructs the terminal device to perform BWP handover through downlink control information (downlink control information (DCI)) or radio resource control (radio resource control (RRC)) signaling.
  • DCI downlink control information
  • RRC radio resource control
  • FIG. 2 a schematic diagram of BWP dynamic switching shown in FIG. 2 is shown.
  • DCI is located in the current BWP, and the size of its frequency domain resource allocation information domain is determined by the current BWP's bandwidth.
  • the DCI has a bandwidth area indicator (bandwidth indicator) information field, which is used to indicate the ID number of the BWP activated by the terminal device.
  • the terminal device When the BWP ID number indicated in this information field is inconsistent with the BWP ID number currently activated by the terminal device (ie, the current BWP transmitting DCI), the terminal device needs to switch from the current BWP to the BWP indicated in the DCI.
  • the terminal device will directly switch to the new BWP and will not continue to perform the pre-switchover BWP does link recovery. It is unclear whether to continue to do BFR when switching to the new BWP.
  • the physical downlink control channel (PDCCH) on the new BWP still uses the beam information of the BWP before the handover, it is also impossible to communicate on the new BWP at this time.
  • PDCCH physical downlink control channel
  • the present application provides a communication method and device to accurately determine whether to restore a link of a downlink resource of a BWP before handover.
  • a communication method including: determining a first bandwidth region BWP and a second BWP; determining an association relationship between the first BWP and the second BWP; and recovering the association according to the association relationship.
  • the link of the first downlink resource of the first BWP and / or the link of detecting the second downlink resource of the second BWP fails.
  • the first BWP and the second BWP may be located on the same carrier, or may be located on different carriers.
  • the association relationship may be a QCL relationship.
  • the method further includes: receiving BWP switching instruction information, where the BWP switching instruction information is used to indicate switching from a first BWP to a second BWP.
  • recovering the link of the first downlink resource of the first BWP according to the association relationship includes recovering the link of the first downlink resource on the second BWP. Link; or recover the link of the first downlink resource on the first BWP.
  • TCI can be configured across BWPs. After switching the BWP, some configuration information of the first BWP can be continued to be used on the second BWP and restored on the second BWP The first BWP link can save configuration signaling.
  • TCI can be configured across BWPs
  • TCI of the first BWP can be configured on the second BWP
  • the chain of the first BWP can be restored on the second BWP It can ensure the reliability of link failure recovery.
  • the recovering the link of the first downlink resource on the second BWP includes: according to a relationship between the first downlink resource and the second downlink resource, Restore the link of the first downlink resource on the second BWP.
  • recovering the link of the first downlink resource on the second BWP according to a relationship between the first downlink resource and the second downlink resource includes: If there is no intersection between the first downlink resource and the second downlink resource, the link of the first downlink resource is restored on the second BWP, and the link failure of the second downlink resource is detected.
  • first downlink resource restores the link of the first downlink resource on the second BWP, or resume on the second BWP A link of the first downlink resource that intersects with the second downlink resource, and detecting a link failure of the second downlink resource; or if the second downlink resource is the first downlink resource If the first downlink resource is a subset of the second downlink resource of the second BWP, the link of the first downlink resource is restored on the second BWP; Recovering the link of the first downlink resource on the second BWP, and detecting the link between the first downlink resource and the first downlink resource In the second downlink resource intersection of link failure.
  • the recovering the link of the first downlink resource on the second BWP includes: pausing to resume the link of the first downlink resource; and when switching to the link After the second BWP, the link of the first downlink resource is resumed.
  • the suspending and recovering the link of the first downlink resource includes: suspending a link recovery timer, and / or a link recovery counter, and / or sending link recovery request information; After switching to the second BWP, continuing to recover the link of the first downlink resource includes: after switching to the second BWP, starting or restarting the link recovery timer, and / Or the link recovery counter, and / or sending link recovery request information.
  • the method further includes: after detecting that the link of the second downlink resource fails, determining that the link of the second downlink resource fails.
  • the method further includes: when a link failure of the second downlink resource occurs before receiving a link recovery response of the first downlink resource, or receiving the first downlink resource Before the downlink resource reconfiguration information, reset the link recovery timer and / or the link recovery counter, and / or stop sending the link recovery request information of the first downlink resource.
  • the recovering the link of the first downlink resource on the second BWP includes: on a physical uplink control channel resource or a physical uplink shared channel resource of the second BWP. Sending the link recovery request information of the first downlink resource; and / or sending the link recovery request information of the second downlink resource on a physical random access resource of the second BWP.
  • the recovering the link of the first downlink resource on the second BWP includes: a physical random access resource, a physical uplink control channel resource, or Sending the link recovery request information of the first downlink resource and / or the link recovery request information of the second downlink resource on a physical uplink shared channel resource; wherein the link recovery request information may include one of the following Or multiple pieces of information: BWP identification information, CC identification information, identification information of downlink resources, or resource identification information of reference signals associated with downlink resources.
  • the method further includes: associating the first downlink resource with a reference signal resource associated with the received link restoration response information. That is, according to the reference signal resource associated with the received link recovery response information, information (such as a PDCCH) carried on the first downlink resource is received.
  • the method further includes: when receiving the BWP switching instruction information, not switching to the second BWP.
  • the recovering the link of the first downlink resource on the first BWP includes: sending the link recovery of the first downlink resource on the first BWP. Request information, and / or receive link recovery response information of the first downlink resource, and / or receive reconfiguration information of the first downlink resource.
  • the method further includes: after receiving the link recovery response information or the reconfiguration information, switching from the first BWP to the second BWP.
  • the method includes: after the link recovery timer times out and / or the link recovery counter reaches a maximum value, The first BWP is switched to the second BWP.
  • the first downlink resource is a control resource set, and / or the second downlink resource is a control resource set.
  • a communication method including: sending BWP handover instruction information, where the BWP handover instruction information is used to indicate a handover from a first BWP to a second BWP; and receiving a chain of a first downlink resource of the first BWP Way recovery request information.
  • the receiving the link restoration request information of the first downlink resource of the first BWP includes: receiving the link restoration request of the first downlink resource of the first BWP on the second BWP. Information; or receiving, on the first BWP, link restoration request information of a first downlink resource of a first BWP.
  • the receiving the link restoration request information of the first downlink resource of the first BWP on the second BWP includes: a physical uplink control channel resource or a physical uplink control channel of the second BWP. Receiving the link recovery request information of the first downlink resource of the first BWP on the uplink shared channel resource; and / or receiving the chain of the first downlink resource of the first BWP on the physical random access resource of the second BWP Way recovery request information.
  • the receiving the link restoration request information of the first downlink resource of the first BWP includes: a physical random access resource, a physical uplink control channel resource, or a physical uplink on the second BWP.
  • the receiving the link recovery request information of the first downlink resource of the first BWP on the first BWP includes receiving the first downlink resource on the first BWP.
  • a communication method including: sending link recovery request information on a physical random access resource, and counting a BWP inactivity timer in a bandwidth area; or sending link recovery request information on a physical random access resource To stop the BWP inactivity timer in the bandwidth region; when the link recovery timer expires or the link recovery counter reaches the maximum value, start or restart the BWP inactivity timer.
  • the terminal device if a link failure is detected during the BWP inactivity timer, the terminal device initiates link recovery, does not stop the BWP inactivity timer, and switches to the pre-set when the BWP inactivity timer expires.
  • Setting BWP can ensure normal communication and improve the stability of communication; or stop or pause the BWP inactivity timer and start or restart the BWP inactivity timer after the link recovery process is completed, which can ensure that Timing accuracy.
  • the method further includes: switching to a preset BWP when the BWP inactivity timer expires.
  • a communication device which can implement the communication method in the first or third aspect described above.
  • the communication device may be a chip (such as a baseband chip or a communication chip) or a terminal device.
  • the above method may be implemented by software, hardware, or by executing corresponding software by hardware.
  • the structure of the communication device includes a processor and a memory; the processor is configured to support the device to perform a corresponding function in the foregoing communication method.
  • the memory is coupled to the processor and holds programs (instructions) and / or data necessary for the device.
  • the communication device may further include a communication interface for supporting communication between the device and other network elements.
  • the communication device may include a unit module that performs a corresponding action in the foregoing method.
  • a processor and a transceiving device are included, the processor is coupled to the transceiving device, and the processor is configured to execute a computer program or instruction to control the transceiving device to receive and process information. Sending; when the processor executes the computer program or instructions, the processor is further configured to implement the foregoing method.
  • the transceiver may be a transceiver, a transceiver circuit, or an input / output interface.
  • the transceiver device is a transceiver circuit or an input / output interface.
  • the sending unit may be an output unit, such as an output circuit or a communication interface; the receiving unit may be an input unit, such as an input circuit or a communication interface.
  • the sending unit may be a transmitter or a transmitter; and the receiving unit may be a receiver or a receiver.
  • a communication device which can implement the communication method in the second aspect.
  • the communication device may be a chip (such as a baseband chip, a communication chip, or the like) or a network device, and the foregoing method may be implemented by software, hardware, or by executing corresponding software by hardware.
  • the structure of the communication device includes a processor and a memory; the processor is configured to support the device to perform a corresponding function in the foregoing communication method.
  • the memory is coupled to the processor and holds programs (instructions) and data necessary for the device.
  • the communication device may further include a communication interface for supporting communication between the device and other network elements.
  • the communication apparatus may include a unit module that performs a corresponding action in the foregoing method.
  • a processor and a transceiving device are included, the processor is coupled to the transceiving device, and the processor is configured to execute a computer program or instruction to control the transceiving device to receive and process information. Sending; when the processor executes the computer program or instructions, the processor is further configured to implement the foregoing method.
  • the transceiver may be a transceiver, a transceiver circuit, or an input / output interface.
  • the transceiver device is a transceiver circuit or an input / output interface.
  • the receiving unit may be an input unit, such as an input circuit or a communication interface; the sending unit may be an output unit, such as an output circuit or a communication interface.
  • the receiving unit may be a receiver (also referred to as a receiver); the sending unit may be a transmitter (also referred to as a transmitter).
  • a computer-readable storage medium has instructions stored thereon that, when run on a computer, cause the computer to execute the methods described in the above aspects.
  • a computer program product containing instructions which when run on a computer, causes the computer to perform the methods described in the above aspects.
  • FIG. 1 is a schematic diagram of BWP
  • FIG. 2 is a schematic diagram of BWP dynamic switching
  • FIG. 3 is a schematic diagram of a communication system involved in this application.
  • FIG. 4 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram illustrating an example of a situation in which a BWP before switching and a CORESET included in the BWP after switching;
  • FIG. 6 is a schematic flowchart of another communication method according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram illustrating another example of a situation in which a BWP before switching and a CORESET included in the BWP after switching;
  • FIG. 8 is a schematic diagram illustrating another example of a situation in which a BWP before switching and a CORESET included in the BWP after switching;
  • FIG. 9 is a schematic diagram illustrating another example of a situation in which a BWP before switching and a CORESET included in the BWP after switching;
  • 10a is a schematic flowchart of another communication method according to an embodiment of the present application.
  • 10b is a schematic flowchart of another communication method according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a module of another communication device according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of another communication device according to an embodiment of the present application.
  • FIG. 14 is a schematic diagram of a hardware structure of a communication device according to an embodiment of the present application.
  • FIG. 15 is a schematic diagram of a hardware structure of another communication device according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a communication system involved in the present application.
  • the communication system may include at least one network device 100 (only one is shown) and one or more terminal devices 200 connected to the network device 100.
  • the network device 100 may be a device capable of communicating with the terminal device 200.
  • the network device 100 may be any device having a wireless transmitting and receiving function. Including but not limited to: base station NodeB, eNodeB evolved base station, base station in the fifth generation (5G) communication system, base station or network equipment in future communication system, access node in WiFi system, wireless relay Nodes, wireless backhaul nodes, etc.
  • the network device 100 may also be a wireless controller in a cloud radio access network (CRAN) scenario.
  • the network device 100 may also be a small station, a transmission node (TRP), or the like.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the network device.
  • Terminal device 200 is a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on the water, such as on a ship, etc .; it can also be deployed in the air, such as an aircraft , Balloons and satellites.
  • the terminal device may be a mobile phone, a tablet, a computer with a wireless transmitting and receiving function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, or an industrial control device.
  • wireless terminal in industrial control wireless terminal in self driving, wireless terminal in remote medical, wireless terminal in smart grid, transportation safety Wireless terminals, wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • Terminal equipment can also be called user equipment (UE), access terminal equipment, UE unit, mobile station, mobile station, remote station, remote terminal device, mobile device, terminal, wireless communication device, UE Agent or UE device, etc.
  • UE user equipment
  • access terminal equipment UE unit
  • mobile station mobile station
  • remote station remote terminal device
  • mobile device terminal
  • wireless communication device UE Agent or UE device, etc.
  • “Multiple” means two or more. In view of this, in the embodiments of the present invention, “multiple” can also be understood as “at least two”.
  • “And / or” describes the association relationship between related objects and indicates that there can be three types of relationships. For example, A and / or B can indicate that there are three cases in which A exists alone, A and B exist, and B exists alone.
  • the character "/”, unless otherwise specified, generally indicates that the related objects are an "or" relationship.
  • Reference signal resource set and candidate reference signal set used for beam failure detection are identical to Reference signal resource set and candidate reference signal set used for beam failure detection:
  • the network device In order to detect and recover a link failure, the network device needs to configure the terminal with a set of reference signal resources (such as Beam-Failure-Detection-RS-ResourceConfig, Beam-Failure-Detection-RS or failureDetectionResources) used for beam failure detection and for recovery.
  • a set of reference signal resources candidate, beam, RS, or Candidate-Beam-RS-Identification-Resource or beamFailureCandidateBeamResource or Candidate-Beam-Identification-RS) of the link between the terminal device and the network device (also referred to as a candidate reference signal resource set).
  • the reference signal used to detect link failure can also be indicated implicitly.
  • a part of the reference signals associated with the transmission configuration indicator (transmission configuration indicator (TCI)) of the PDCCH is used as a reference signal for detecting link failure.
  • the reference signal is a TypeDQCLed with a PDCCH DMRS and is a reference signal sent periodically.
  • DMRS demodulation reference signal
  • a reference signal in the TCI satisfy a QCL relationship.
  • the channel quality information (such as RSPR, CQI, BLER, SINR, SNR, etc.) of some or all reference signals in the set is lower than a predetermined threshold, it is determined that the communication link is faulty.
  • the lower than the predetermined threshold may be the W consecutive lower than the predetermined threshold or the W lower than the predetermined threshold within a certain period of time.
  • the predetermined threshold may be the same as a threshold of a radio link failure.
  • a communication link failure may also be referred to as a communication link failure, a beam failure, a link failure, a link failure, a communication failure, a communication failure, and the like. In this application, these concepts have the same meaning.
  • the terminal device After the communication link is faulty, the terminal device needs to select a reference signal resource whose channel quality information (such as RSRP, CQI, etc.) is higher than a predetermined threshold from the candidate reference signal resource set to restore the communication link.
  • the predetermined threshold may be configured by a network device.
  • the reference signal used to detect the link failure is used by the terminal device to detect the channel quality of a certain transmission beam of the network device, and the transmission beam is a beam used when the network device communicates with the terminal.
  • the candidate reference signal resource set is a reference signal set used by the terminal to initiate link reconfiguration after determining that a communication link failure occurs in the transmission beam of the network device.
  • link reconfiguration can also be referred to as recovering communication between network equipment and terminal equipment, link recovery, beam failure recovery, communication link recovery, link failure recovery, communication failure recovery, and communication failure recovery.
  • the reference signal resource set used for beam failure detection and the reference signal resource set used to restore the link between the terminal device and the network device may have other names, and this application does not make specific reference to this. limited.
  • the link reconfiguration request information may also be referred to as communication link failure (or communication link failure, beam failure, beam failure, link failure, link failure, communication failure, communication failure, link, Communication link, etc.) to restore request information, reconfigure request information, etc.
  • Quasi-co-site / quasi-co-location hypothesis information can also be called Quasi-collocation (QCL) information.
  • QCL Quasi-collocation
  • the QCL information is used to assist in describing the receiving side beamforming information and the receiving process of the terminal device.
  • the network device side can instruct the PDCCH or PDSCH demodulation reference signal and multiple reference signal resources previously reported by the terminal device One or more of them satisfy the QCL relationship.
  • the reference signal may be a channel state information reference signal (channel-information reference signal, CSI-RS).
  • CSI-RS channel-information reference signal
  • each reported CSI-RS resource index corresponds to a transmit-receive beam pair that was previously established based on the CSI-RS resource measurement.
  • the terminal device can infer the received beam information of receiving the PDCCH or PDSCH.
  • the receiving beam for the terminal device to receive the DMRS is the same as one of the multiple CSI-RS measurement-based transmitting and receiving beam pairs previously reported by the terminal device.
  • the information may include one or more of a beam group index number of a reference signal reported by the terminal device, a resource index number of the reference signal, a port number of the reference signal, and a port group number of the reference signal.
  • the QCL information may also include some spatial characteristic parameters, such as: angle of incidence (AoA), dominant angle of incidence (AoA), average angle of incidence, and power angle spectrum of the angle of incidence ((power angular spectrum) (PAS) of AoA), angle of exit (AoD), main angle of exit, average angle of exit, power angle spectrum of angle of exit, terminal transmit beamforming, terminal receive beamforming, spatial channel correlation, base station transmit beam Shaping, base station receive beamforming, average channel gain, average channel delay, delay spread, Doppler spread, Doppler shift, spatial reception parameters (spatial Rx parameters), etc.
  • These spatial characteristic parameters describe the spatial channel characteristics between the antenna ports of the two reference signals, and are helpful for the terminal device to complete the receiving side beamforming or receiving processing process according to the QCL information.
  • the network device may configure one or more resource sets for the terminal device for sending the PDCCH.
  • the network device may send a control channel to the terminal device on any control resource set corresponding to the terminal device.
  • the network device needs to notify the terminal device of other related configurations of the control resource set, such as a search space.
  • There is a difference in the configuration information of each control resource set such as a difference in frequency domain width and a difference in time domain length.
  • the beam may correspond to time resources or space resources.
  • the beam may also correspond to a reference signal resource (for example, a beamforming reference signal resource) or beam forming information.
  • a reference signal resource for example, a beamforming reference signal resource
  • the beam may also correspond to information associated with a reference signal resource of a network device, where the reference signal may be CSI-RS, a synchronous signal broadcast channel block (synchronous signal / PBCH block, SS block), and a demodulation reference signal (demodulation reference signal (DMRS), phase tracking signal (PTRS), tracking signal (TRS), etc.
  • the information associated with the reference signal resource may be a reference signal resource identifier, or QCL information.
  • the reference signal resource identifier corresponds to a transmit / receive beam pair that was previously established based on the reference signal resource measurement. Through the reference signal resource index, the terminal can infer beam information.
  • This application provides a communication method and device. According to the association relationship between two BWPs, the link of the first downlink resource of the first BWP can be accurately restored on the second BWP, thereby ensuring the reliability of communication.
  • FIG. 4 is a schematic flowchart of a communication method according to an embodiment of the present application. As shown in Figure 4, where:
  • the first BWP and the second BWP may be two BWPs on the same carrier (CC), or two BWPs on different CCs.
  • the association relationship may mean that there is a potential association relationship between some parameters of the first BWP and the second BWP; or this association relationship may be confirmed by the terminal device itself or may be predefined.
  • the terminal device may confirm its association relationship according to certain parameters of the first BWP or the second BWP.
  • the association relationship may also be configured by a network device, may be implicitly confirmed based on certain information, or may be directly configured to indicate to the terminal device a (parametric) association relationship between the first BWP and the second BWP.
  • the network device can configure the association relationship through RRC, MAC-CE, or DCI.
  • association relationship may refer to:
  • the first BWP and the second BWP partially or completely overlap in the frequency domain
  • a reference signal configured for the first BWP and a reference signal configured for the second BWP satisfy a QCL relationship
  • the first BWP and the second BWP include the same set of control resources
  • the first BWP and the second BWP are BWPs in the same frequency band.
  • the scenario of this application may be directed to a case where there are multiple BWPs.
  • the first scenario is the case of the same carrier CC. In the prior art, there can be only one active BWP at a time, so it involves two BWPs before and after handover, or candidate BWPs that may be handed over.
  • the second scenario is a multi-carrier scenario, where the terminal device can be instructed to switch between multiple carrier CCs, that is, to switch between multiple BWPs, so it involves the BWPs corresponding to the two CCs before and after the switch.
  • the third scenario is the case of multi-carrier aggregation, where a terminal device can access multiple CCs at the same time, that is, multiple BWPs, that is, there can be multiple activated BWPs.
  • the concepts of BWP handover or carrier handover may not be involved, but a process in which one CC assists another CC in link recovery.
  • the solution of this application is applicable to the above multiple scenarios.
  • the first BWP or BWP1 described in this embodiment may refer to the BWP before switching; the second BWP or BWP2 described in this embodiment may refer to the BWP after switching.
  • the first BWP or BWP1 described in this embodiment may refer to a BWP on a CC that is assisted with link recovery
  • the second BWP or BWP2 described in this embodiment may refer to an auxiliary chain. BWP on another CC restored on the way.
  • Each CC corresponds to an independent cell, and a terminal device configured with carrier aggregation (CA) is connected to one Pcell or sPcell (that is, a primary cell) and multiple SCells (that is, a secondary cell).
  • Pcell or sPcell is the cell that is initially accessed, and SCell is configured by RRC after access, providing more wireless resources.
  • the network device sends BWP handover instruction information to the terminal device.
  • the terminal device receives the BWP switching instruction information (for a scenario of carrier switching, the terminal device receives the carrier switching instruction information sent by the network device).
  • the BWP switching instruction information is used to indicate switching from the first BWP to the second BWP.
  • the terminal device measures the reference signal resource set used for beam failure detection, and finds the reference signal resource used for beam failure detection multiple times in succession, or the channel quality information of some or all reference signals in the reference signal resource set used for beam failure detection. Less than the preset threshold, the terminal device determines that the beam fails or the link fails. Then, the terminal device measures channel quality information in the candidate reference signal resource set, and recognizes and obtains a reference signal with channel quality information greater than a preset threshold. The terminal device uses the identified reference signal whose channel quality information is greater than a preset threshold to send link recovery request information to the network device. The terminal device may notify the network device of the newly identified beam information or reference signal resource in an explicit or implicit manner.
  • the medium access control (MAC) layer of the terminal device will maintain a beam failure recovery timer (beam failure recovery timer) or link recovery timer, and a beam failure recovery counter (beam failure recovery counter). Or called link recovery counter.
  • the link recovery timer is used to control the time for the entire link to recover.
  • the link recovery counter is used to limit the number of times the terminal device sends a link recovery request. When the link recovery timer expires or the link recovery counter reaches the maximum value, the terminal device considers the link recovery to be unsuccessful and stops the link recovery process.
  • the terminal device detects CORESET and receives response information for link restoration. Different from the previously defined CORESET, this CORESET is a dedicated CORESET resource configured by the network device for the terminal device. It is used when the link device fails to send the link recovery request information after the terminal device sends the link recovery request. Downlink control resources for response information.
  • the terminal device After detecting a link failure or during the link restoration process, the terminal device receives the BWP switching instruction information sent by the network device through DCI, RRC, and other information or signaling (for carrier switching scenarios, the terminal device receives the network device transmission Carrier switching instruction information).
  • the terminal device restores the link of the first downlink resource of the first BWP according to the association relationship between the first BWP and the second BWP.
  • the step S102 may be a judgment process, and the step S102 may be replaced with: judging whether the first BWP and the second BWP have an association relationship; meanwhile, the step 103 is replaced with: According to the determination result, the link of the first downlink resource of the first BWP is restored, and / or the link of the second downlink resource of the second BWP fails to be detected. If the first BWP and the second BWP have an association relationship, restore the link of the first downlink resource on the second BWP; or if the first BWP and the second BWP are not If there is an association relationship, the link of the first downlink resource is restored on the first BWP.
  • the first BWP and the second BWP do not have an association relationship, sending the link recovery request information of the first downlink resource on the first BWP, and / or receiving the first downlink resource.
  • the second BWP is not switched.
  • recovering the link of the first downlink resource on the first BWP includes:
  • the first BWP is switched to the second BWP.
  • recovering the link of the first downlink resource on the first BWP includes: a link recovery timer After the timeout and / or the link recovery counter reaches the maximum value, the first BWP is switched to the second BWP.
  • the association relationship may be a QCL relationship between the first BWP and the second BWP.
  • the QCL relationship between BWP1 and BWP2 mainly means that TCI can be configured across BWP.
  • a TCI state can include one or two reference signals and the associated QCL type.
  • QCL types can be divided into four categories: A / B / C / D, which are different combinations or choices of ⁇ Doppler shift, Doppler spread, average delay, delay spread, Spatial Rx parameter).
  • the TCI state includes QCL information, or the TCI state is used to indicate QCL information of PDCCH / CORESET or PDSCH. Specifically, it is used to indicate a demodulation reference signal (DMRS) of PDCCH / CORESET or PDSCH and a reference signal included in TCI Meet the QCL relationship. It is mainly used to indicate that when receiving the PDCCH / PDSCH, its spatial reception parameters and other information are the same as the reference signal included in the TCI state.
  • the QCL relationship may be configured by a network device.
  • BWP1 and BWP2 have a QCL relationship, since TCI configuration can be performed across the BWP, the link of the downlink resource of BWP1 can be restored on BWP2. If BWP1 and BWP2 do not have a QCL relationship, then because TCI configuration cannot be performed across BWPs, the link of downlink resources of BWP1 is restored on BWP1. It should be noted that the link recovery here can be resumed or restarted. This will be described in detail later.
  • the terminal device may send link failure recovery request information on the uplink resource (PUCCH or PUSCH) of the second CC, where the link failure recovery request information indicates the first CC identifier And or reference signal resource identification.
  • the reference signal resource identifier is used to recover a link failure of the first CC.
  • the terminal device sends link recovery request information to a network device on a physical random access channel (physical random access channel (PRACH)) resource or an uplink physical control channel (physical uplink control channel (PUCCH)) resource to perform link recovery.
  • a physical random access channel physical random access channel (PRACH)
  • a physical uplink control channel physical uplink control channel (PUCCH)
  • the downlink resources of BWP1 are resources associated with the physical downlink control channel.
  • the resources associated with the physical downlink control channel may be beam pairs associated with the physical downlink control channel, or may be time-frequency resources and / or space resources associated with the physical downlink control channel, or may be physical downlink control.
  • the reference signal resource associated with the channel may also be a resource associated with the reference signal resource associated with the physical downlink control channel, which is not specifically limited in this embodiment of the present application.
  • the first downlink resource may be a first control resource set.
  • the control resource set may be a CORESET, a control region (control region), an ePDCCH set, or the like.
  • the following description uses the first downlink resource as CORESET as an example for description.
  • the link of the downlink resource of the first BWP when the link of the downlink resource of the first BWP is restored, the link of the downlink resource of the second BWP may also fail. Therefore, the second BWP needs to be detected according to the association relationship between the first BWP and the second BWP.
  • the link of the downlink resource failed. Specifically, after detecting that the link of the second downlink resource fails, it is determined that the link of the second downlink resource fails.
  • the terminal device restores the link of the first downlink resource on the second BWP according to the relationship between the first downlink resource and the second downlink resource.
  • the first downlink resource may include one or more CORESETs, and some or all of the CORESET links may be restored on BWP2.
  • the following is a detailed description based on the CORESET contained in BWP1 and BWP2:
  • FIG. 5 a schematic diagram of the situation of CORESET included in BWP1 and BWP2.
  • BWP1 includes CORESET3 and CORESET4
  • BWP2 includes CORESET1 and CORESET2. It can be seen that CORESET included in BWP1 and BWP2 does not exist Intersection, that is, BWP1 and BWP2 do not contain the same CORESET.
  • the terminal device detects a link failure on BWP1, and at this time, suspends and resumes the link of the first downlink resource of BWP1. After switching to the new BWP, the link of the first downlink resource of BWP1 is resumed, that is, the link of the first downlink resource of BWP1 is resumed on BWP2. Further, the terminal device detects that the link of the second downlink resource of the BWP2 fails.
  • the network device configures the TCI of the BWP1 (that is, the BWP before handover) to the terminal device, that is, the DMRS configured with the PDCCH and the reference signal in the TCI satisfy the QCL relationship, and a CORESET for receiving the PDCCH is configured.
  • the network device sends data on the DCI1 scheduling BWP1.
  • the terminal device finds that the BWP1 beam fails or the link fails.
  • the network device sends DCI1 to the terminal device, and instructs the terminal device to switch from BWP1 to BWP2 (that is, the BWP after the switching described above).
  • S203 The terminal device switches to BWP2.
  • the terminal device determines whether there is a QCL relationship between BWP1 and BWP2.
  • the execution order of the above S203, S204, and S205 is not limited. That is, the association relationship between BWP1 and BWP2 can be determined at the beginning of configuration or when receiving the handover instruction information, or the terminal device can determine the handover behavior according to the association relationship:
  • Solution 1 Switch to BWP2 if there is an associated relationship; do not switch when there is an associated relationship, and continue to recover on BWP1.
  • Solution 2 Switch to BWP2 if there is an associated relationship, switch to BWP2 if there is no associated relationship, and no longer restore the BWP1 link. After receiving the DCI indicating the BWP handover, it does not reset but only stops (stops) the beam failure recovery timer and the beam failure recovery counter, and suspends sending the link recovery request information; after the BWP handover is completed, it restarts (restart) a beam failure recovery timer and / or a beam failure recovery counter, and sending link recovery request information. And reset the beam failure detection counter (beam failure detection counter) to detect the link failure of BWP2.
  • the terminal equipment can continue to use this reference signal to initiate a link recovery request on BWP2.
  • a1 At this time, if there is a PRACH resource corresponding to the reference signal on BWP2, use PRACH to send link recovery request information. Otherwise, search for a new reference signal on the switched BWP.
  • the terminal device uses PRACH resources; otherwise, it uses the PUCCH resources or PUSCH resources on BWP2 to initiate a link reconfiguration to BWP1.
  • a3 Use PUCCH resources for link recovery of BWP1 (taking this into consideration, use PRACH for link recovery of this BWP, and use PUCCH for link recovery of other BWPs).
  • the terminal equipment If the terminal equipment does not recognize a new downlink (or a downlink reference signal meeting a certain threshold) before the handover, the terminal equipment needs to find a new downlink reference signal on BWP2 to initiate a link recovery request.
  • the PRACH resource should carry BWP information (such as BWP ID / CORESET ID).
  • b2 Use the PUCCH resource to send a link recovery request (taking this into consideration, use PRACH for link recovery of this BWP, and use PUCCH for link recovery of other BWPs).
  • the request information should include BWP information (such as BWP ID / CORESET ID).
  • One configuration method may be: After the link of BWP1 is restored, the reference signal resource (one of the candidate reference signal resources) that received the link restoration response may be associated with the CORESET of BWP1 configured by the network device. This configuration is simple to implement.
  • Another configuration method may be: after the link of BWP1 is restored, wait for the network device to reconfigure the TCI state of BWP1. This configuration may not be limited to candidate reference signal resources. Of course, it is not limited to these two configurations.
  • DCI2 schedules data on BWP2.
  • the network device sends a link recovery response message to the terminal device.
  • the terminal device receives the response message.
  • the terminal device When the terminal device recovers the link of the first downlink resource of BWP1 on BWP2, specifically, when the link failure of the second downlink resource occurs before receiving the link recovery response of the first downlink resource, or Before receiving the reconfiguration information of the first downlink resource, a link failure may also occur in BWP2.
  • one way is to stop the restoration of the link of the first downlink resource of BWP1, that is, stop the occurrence of the link restoration request information of the first downlink resource, and restore the link of the second downlink resource of BWP2.
  • reset the beam failure recovery timer and / or counter select candidate beams: use the new beam identified in BWP2 to recover the downlink; or use BWP1 to recover the second downlink resources of BWP2 used by the beam recovery link Link; uplink resource: send link recovery request using specified PRACH, or send link recovery request using PUCCH / PUSCH / non-contention-based PRACH (carrying CORESET ID, service beam ID, BWP ID or indication Information, the indication information is used to indicate whether it is BWP2 or BWP1).
  • Another method is to continue the restoration of the first downlink resource link of BWP1, and report the BWP1 ID or BWP2 ID, or indicate whether it is BWP2 or BWP1.
  • S204 to S207 may also be replaced with that when the terminal device determines that BWP1 and BWP2 have a QCL relationship, the link of BWP1 is restored on BWP2.
  • BWP1 and BWP2 include the situation of CORESET
  • BWP1 includes CORESET1 and CORESET4
  • BWP2 includes CORESET1 and CORESET2, that is, BWP1 and BWP2 intersection, and only a part of CORESET
  • the ID is the same as the CORESET ID of BWP1.
  • the terminal device detects a link failure on BWP1.
  • to restore the link of the first downlink resource of BWP1 on BWP2 refer to the process shown in Figure 6 or to restore the second downlink resource of BWP2 on BWP2
  • the link of the first downlink resource where the intersection exists for example, the link recovery is performed only on the CORESET where the intersection exists.
  • the same CORESET of BWP1 and BWP2 is CORESET1, and only link recovery is performed for CORESET1. Further, the link failure of the second downlink resource of BWP2 can also be detected.
  • BWP1 includes CORESET1 and CORESET4, and BWP2 includes CORESET1. That is, BWP1 and BWP2 have an intersection, and CORESET of BWP2 is a subset of BWP1's CORESET. Then the CORESET link of BWP1 is restored on BWP2. Specifically, the link failure detection counter may not be reset, and the link recovery timer and / or the link recovery counter may not be reset.
  • FIG. 9 another schematic diagram of the situation of CORESET included in BWP1 and BWP2 is shown in FIG. 9.
  • BWP1 includes CORESET1 and CORESET4
  • BWP2 includes CORESET1, CORESET2 and CORESET4, that is, BWP1 and BWP2 intersect, and COWP of BWP1 It is a subset of CORESET of BWP2.
  • the CORESET link of BWP1 is restored on BWP2 (refer to the process shown in FIG. 6). Further, the detection of the CORESET link of BWP2 that does not intersect with BWP1 fails.
  • the link failure detection counter may be reset, and the link recovery timer and / or the link recovery counter may not be reset. If BWP1 and BWP2 do not have an association relationship, the link of the downlink resource of BWP1 is not restored on BWP2.
  • BWP1 and BWP2 do not switch BWP; switch BWP after receiving a link recovery response to BWP1's downlink resources or after TCI reconfiguration information; or the beam failure recovery timer expires or the beam fails When the counter maximum is restored, switch to the new BWP.
  • the link of the first downlink resource of the first BWP can be accurately restored or the BWP on which the first BWP is restored can be determined. Link of the first downlink resource, thereby ensuring communication reliability.
  • This application also provides another communication method and device. If a link failure is detected during the BWP inactivity timer, the terminal device initiates link recovery using the PRACH resource without stopping the BWP inactivity timer. When the inactivity timer expires, switching to the preset BWP can ensure normal communication and improve the stability of the communication; or stop or pause the BWP inactivity timer and start or restart after the link recovery process is completed The timing of the BWP inactive timer can ensure the accuracy of the timing.
  • FIG. 10a is a schematic flowchart of still another communication method according to an embodiment of the present application. As shown in Figure 10a, where:
  • S301a The terminal device sends the link restoration request information to the network device on the physical random access resource.
  • the network device receives the link restoration request information.
  • the terminal device is configured with a high-level parameter, the BWP-InactivityTimer.
  • the BWP inactivity timer is used to observe whether the current BWP can receive control signaling such as DCI, or if it cannot receive the control signaling for a long time, it will switch to a preset BWP to work. For example, in a low frequency, if the terminal device cannot detect DCI within 1 ms, the timer value is increased once; in a high frequency, if the terminal device cannot detect DCI within 0.5 ms, the timer value is increased once. If DCI is received, the timer is reset.
  • the terminal device switches to a preset BWP or a default BWP (default BWP) (specifically, a default downlink bandwidth area (default-DL-BWP)).
  • the default BWP may be a BWP configured by RRC or an initial downlink bandwidth region (initial DL BWP). Communication is performed in the default BWP, and communication quality can be guaranteed.
  • the terminal device determines whether to switch to the default BWP according to whether it can receive DCI.
  • the terminal device If the terminal device cannot receive DCI on the current BWP for a long time, the terminal device will switch to the default BWP, otherwise it will continue to work in the BWP until it receives the BWP switching instruction information.
  • the terminal device if a link failure is detected during the BWP inactivity timer, the terminal device sends the link recovery request information to the network device on the physical random access resource.
  • the terminal device does not stop the BWP inactivity timer. Or in other words, the terminal device sends random access request information and stops the BWP inactivity timer, unless the sending of random access request information is used for link recovery. Or in other words, the link recovery request information is sent on the physical random access resource without stopping the BWP inactivity timer.
  • the BWP inactivity timer expires, it switches to the default BWP.
  • a link failure is detected during the BWP inactivity timer, and the terminal device performs link recovery.
  • the terminal device may switch to the new BWP, but the communication quality of the new BWP cannot be determined. If the terminal device cannot detect the DCI within the set time, it indicates that there is a problem with the communication quality of the new BWP. Therefore, when the BWP inactivity timer expires, it switches to the preset BWP.
  • S303a is an optional step.
  • the terminal device if a link failure is detected during the BWP inactivity timer, the terminal device initiates link recovery, does not stop the BWP inactivity timer, and counts the BWP inactivity timer. When the device times out, switching to the preset BWP can ensure normal communication and improve communication stability.
  • FIG. 10b is a schematic flowchart of another communication method according to an embodiment of the present application. As shown in Figure 10b, where:
  • S301b The terminal device sends the link recovery request information to the network device on the physical random access resource.
  • the network device receives the link restoration request message.
  • the terminal equipment uses a beam failure recovery counter to monitor link recovery.
  • the auxiliary counter of the beam failure recovery timer can be used for monitoring. Specifically, if the link is recovered before the link recovery counter reaches the maximum value, and / or the link is recovered within the time of the link recovery timer, the link recovery is successful; otherwise, if the link recovery timer times out and Or, if the link recovery counter reaches the maximum value and the link is still not recovered, the link recovery fails. When the link recovery timer expires or the link recovery counter reaches the maximum value, the link recovery process ends.
  • S304b is an optional step.
  • the terminal device if a link failure is detected during the BWP inactivity timer, the terminal device initiates link recovery, stops or pauses the BWP inactivity timer, and resumes on the link. After the process is completed, start or restart the BWP inactive timer to ensure the accuracy of the timing.
  • an embodiment of the present application further provides a communication device 1000, which can be applied to the communication method shown in FIG. 4.
  • the communication device 1000 may be a terminal device 200 as shown in FIG. 3, or may be a component (such as a chip) applied to the terminal device 200.
  • the communication device 1000 includes a processing unit 11 and may further include a receiving unit 12 and a sending unit 13;
  • a processing unit 11 configured to determine a first bandwidth region BWP and a second BWP
  • the processing unit 11 is further configured to determine an association relationship between the first BWP and the second BWP;
  • the processing unit 11 is configured to recover a link of a first downlink resource of the first BWP and / or detect a link failure of a second downlink resource of the second BWP according to the association relationship.
  • the receiving unit 12 is configured to receive BWP handover instruction information, where the BWP handover instruction information is used to instruct a handover from a first BWP to a second BWP.
  • the processing unit 11 is configured to restore the link of the first downlink resource on the second BWP;
  • the processing unit 11 is configured to restore the chain of the first downlink resource on the second BWP according to a relationship between the first downlink resource and the second downlink resource. road.
  • processing unit 11 is configured to:
  • the link of the first downlink resource is restored on the second BWP, or the link with the first downlink resource is restored on the second BWP.
  • the second downlink resource is a subset of the first downlink resource, recovering the link of the first downlink resource on the second BWP;
  • the first downlink resource is a subset of the second downlink resource of the second BWP, recovering the link of the first downlink resource on the second BWP, and detecting the link with the first The link of the second downlink resource where there is no intersection of downlink resources fails.
  • processing unit 11 is configured to:
  • processing unit 11 is configured to:
  • the processing unit 11 is further configured to determine that the link of the second downlink resource fails after detecting that the link of the second downlink resource fails.
  • processing unit 11 is further configured to:
  • the link recovery is reset.
  • the sending unit 13 is configured to:
  • the sending unit 13 is configured to send a link of the first downlink resource on the physical random access resource, the physical uplink control channel resource, or the physical uplink shared channel resource of the second BWP.
  • Recovery request information, and / or link recovery request information of the second downlink resource wherein the link recovery request information includes one or more of the following information: BWP identification information, identification information of downlink resources, or downlink resource association Resource identification information of the reference signal.
  • the processing unit 11 is further configured to associate the first downlink resource with a reference signal resource associated with the received link recovery response information. That is, according to the reference signal resource associated with the received link recovery response information, information (such as a PDCCH) carried on the first downlink resource is received. In another implementation manner, the processing unit 11 is further configured to: if the first BWP and the second BWP do not have an association relationship, when receiving the BWP switching instruction information, do not switch to the second BWP BWP.
  • the sending unit 13 is configured to send a link restoration request of the first downlink resource on the first BWP
  • the information and / or receiving unit 12 is configured to receive link recovery response information of the first downlink resource, and / or receive reconfiguration information of the first downlink resource.
  • the processing unit 11 is further configured to switch from the first BWP to the second BWP after receiving the link restoration response information or the reconfiguration information.
  • the processing unit 11 is further configured to: if the first BWP and the second BWP do not have an association relationship, after the link recovery timer expires or the link recovery counter reaches a maximum value, The first BWP is switched to the second BWP.
  • processing unit 11 the receiving unit 12, and the sending unit 13 can be obtained directly by referring to the related description of the terminal device in the method embodiment shown in FIG. 4 above, and details are not described herein.
  • an embodiment of the present application further provides a communication device 2000, which can be applied to the communication method shown in FIG. 4 described above.
  • the communication device 2000 may be the network device 100 shown in FIG. 3, or may be a component (such as a chip) applied to the network device 100.
  • the communication device 2000 includes: a sending unit 21 and a receiving unit 22;
  • the sending unit 21 is configured to send BWP switching instruction information, where the BWP switching instruction information is used to indicate switching from a first BWP to a second BWP;
  • the receiving unit 22 is configured to receive request information sent by a terminal device to restore a link of a first downlink resource of a first BWP.
  • the receiving unit is configured to receive a first downlink resource chain of the first BWP on the second BWP if the first BWP and the second BWP have an association relationship.
  • Path recovery request information if the first BWP and the second BWP do not have an association relationship, receiving link recovery request information of a first downlink resource of the first BWP on the first BWP.
  • the receiving unit is configured to receive the link recovery request information of the first downlink resource of the first BWP on the physical uplink control channel resource or the physical uplink shared channel resource of the second BWP. ; And / or receiving, on the physical random access resource of the second BWP, the link restoration request information of the first downlink resource of the first BWP.
  • the receiving unit is configured to receive the first downlink resource of the first BWP on the physical random access resource, the physical uplink control channel resource, or the physical uplink shared channel resource of the second BWP. And / or receiving the link recovery request information of the second downlink resource; wherein the request information includes one or more of the following information: BWP identification information, identification information of downlink resources, or downlink resources Resource identification information of the associated reference signal.
  • the receiving unit is configured to receive the first downlink resource chain on the first BWP.
  • an embodiment of the present application further provides a communication device 3000, which can be applied to the communication method shown in FIG. 10a or FIG. 10b.
  • the communication device 3000 may be a terminal device 200 as shown in FIG. 3, or may be a component (such as a chip) applied to the terminal device 200.
  • the communication device 3000 includes a sending unit 31 and a processing unit 32;
  • a sending unit 31, configured to send link recovery request information on a physical random access resource
  • a processing unit 32 configured to count the BWP inactive timer in the bandwidth area
  • a sending unit 31, configured to send link recovery request information on a physical random access resource
  • a processing unit 32 configured to stop the BWP inactive timer in the bandwidth area
  • the processing unit 32 is further configured to start or restart the BWP inactive timer when the link recovery timer times out or the link recovery counter reaches a maximum value.
  • the processing unit 32 is further configured to switch to a preset BWP when the BWP inactivation timer expires.
  • An embodiment of the present application further provides a communication device, where the communication device is configured to execute the foregoing communication method.
  • Some or all of the above communication methods may be implemented by hardware or software.
  • the communication device may be a chip or an integrated circuit in a specific implementation.
  • the communication device when some or all of the communication methods in the above embodiments are implemented by software, the communication device includes: a memory for storing a program; a processor for executing the program stored in the memory; and when the program is executed, The communication device can implement the communication method provided by the foregoing embodiment.
  • the foregoing memory may be a physically independent unit, or may be integrated with a processor.
  • the communication device may also include only a processor.
  • the memory for storing the program is located outside the communication device, and the processor is connected to the memory through a circuit / wire for reading and executing the program stored in the memory.
  • the processor may be a central processing unit (CPU), a network processor (NP), or a combination of a CPU and an NP.
  • CPU central processing unit
  • NP network processor
  • the processor may further include a hardware chip.
  • the above hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL), or any combination thereof.
  • the memory may include volatile memory (for example, random-access memory (RAM); the memory may also include non-volatile memory (for example, flash memory) , Hard disk (HDD) or solid-state drive (SSD); the storage may also include a combination of the above types of storage.
  • volatile memory for example, random-access memory (RAM)
  • non-volatile memory for example, flash memory
  • HDD Hard disk
  • SSD solid-state drive
  • the storage may also include a combination of the above types of storage.
  • FIG. 14 shows a simplified structural diagram of a terminal device. It is easy to understand and easy to illustrate.
  • the terminal device uses a mobile phone as an example.
  • the terminal device includes a processor, a memory, a radio frequency circuit, an antenna, and an input / output device.
  • the processor is mainly used for processing communication protocols and communication data, controlling terminal devices, executing software programs, and processing data of the software programs.
  • the memory is mainly used for storing software programs and data.
  • the radio frequency circuit is mainly used for converting baseband signals and radio frequency signals and processing radio frequency signals.
  • the antenna is mainly used to transmit and receive radio frequency signals in the form of electromagnetic waves.
  • Input / output devices such as a touch screen, a display screen, and a keyboard, are mainly used to receive data input by the user and output data to the user. It should be noted that some types of terminal equipment may not have an input / output device.
  • the processor When it is necessary to send data, the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit. After the radio frequency circuit processes the baseband signal, the radio frequency signal is sent out through the antenna in the form of electromagnetic waves.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor.
  • the processor converts the baseband signal into data and processes the data.
  • FIG. 14 only one memory and processor are shown in FIG. 14. In an actual terminal equipment product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or a storage device.
  • the memory may be set independently of the processor or integrated with the processor, which is not limited in the embodiment of the present application.
  • an antenna and a radio frequency circuit having a transmitting and receiving function may be regarded as a receiving unit and a transmitting unit (also collectively referred to as a transmitting and receiving unit) of a terminal device, and a processor having a processing function may be regarded as a processing unit of the terminal device .
  • the terminal device includes a receiving unit 41, a processing unit 42, and a sending unit 43.
  • the receiving unit 41 may also be called a receiver, a receiver, a receiving circuit, and the like
  • the sending unit 43 may also be called a transmitter, a transmitter, a transmitter, a transmitting circuit, and the like.
  • the processing unit may also be called a processor, a processing single board, a processing module, a processing device, and the like.
  • the receiving unit 41 is configured to execute steps S101 to S103 in the embodiment shown in FIG. 4.
  • the sending unit 43 is configured to perform the functions of the terminal device in step S301a in the embodiment shown in FIG. 10a; the processing unit 42 is configured to perform steps S302a and S303a.
  • the sending unit 43 is configured to perform the function of the terminal device in step S301b in the embodiment shown in FIG. 10b; the processing unit 42 is configured to perform step S302b in the embodiment shown in FIG. 10b ⁇ S304b.
  • FIG. 15 shows a simplified structural diagram of a network device.
  • the network equipment includes a radio frequency signal transceiving and converting section and a 52 section, and the radio frequency signal transceiving and converting section includes a receiving unit 51 and a transmitting unit 53 (also collectively referred to as a transceiving unit).
  • the radio frequency signal transmission and reception and conversion part is mainly used for radio frequency signal transmission and reception and the conversion of radio frequency signal and baseband signal; 52 part is mainly used for baseband processing and control of network equipment.
  • the receiving unit 51 may also be called a receiver, a receiver, a receiving circuit, and the like, and the sending unit 53 may also be called a transmitter, a transmitter, a transmitter, a transmitting circuit, and the like.
  • the 52 part is usually a control center of a network device, which may be generally called a processing unit, and is used to control the network device to perform the steps performed on the network device in the foregoing embodiment. For details, please refer to the description of the relevant part
  • Section 52 may include one or more single boards, and each single board may include one or more processors and one or more memories.
  • the processors are used to read and execute programs in the memory to implement the baseband processing functions and to the network equipment. control. If there are multiple boards, the boards can be interconnected to increase processing capacity. As an optional implementation manner, multiple single boards may share one or more processors, or multiple single boards may share one or more memories, or multiple single boards may share one or more processes at the same time. Device.
  • the sending unit 53 is configured to perform a function of sending BWP switching instruction information in the embodiment shown in FIG. 4 (not shown); and the receiving unit 51 is configured to execute the embodiment shown in FIG. 4 ( The function of receiving (not shown) the link information for recovering the downlink resources of the first BWP.
  • the receiving unit 51 is configured to execute the function of the network device in step S301a in the embodiment shown in FIG. 10a.
  • the receiving unit 51 is configured to execute the function of the network device in step S301b in the embodiment shown in FIG. 10b.
  • Embodiment 1 A communication method, comprising:
  • the link of the first downlink resource of the first BWP is restored, and / or the link of the second downlink resource of the second BWP fails to be detected.
  • Embodiment 2 The method according to Embodiment 1, further comprising:
  • Receive BWP switching instruction information where the BWP switching instruction information is used to indicate switching from a first BWP to a second BWP.
  • Embodiment 3 The method according to embodiment 1 or 2, wherein the recovering the link of the first downlink resource of the first BWP according to the association relationship includes:
  • first BWP and the second BWP have an association relationship, recovering the link of the first downlink resource on the second BWP;
  • the link of the first downlink resource is restored on the first BWP.
  • Embodiment 4 The method according to Embodiment 3, wherein if the first BWP and the second BWP have an association relationship, recovering the first downlink on the second BWP Links to resources, including:
  • the link of the first downlink resource is restored on the second BWP.
  • Embodiment 5 The method according to Embodiment 4 is characterized in that, according to the relationship between the first downlink resource and the second downlink resource, the first download is restored on the second BWP.
  • Links to row resources including:
  • the link of the first downlink resource is restored on the second BWP, or the link with the first downlink resource is restored on the second BWP.
  • the second downlink resource is a subset of the first downlink resource, recovering the link of the first downlink resource on the second BWP;
  • the first downlink resource is a subset of the second downlink resource of the second BWP, recovering the link of the first downlink resource on the second BWP, and detecting the link with the first The link of the second downlink resource where there is no intersection of downlink resources fails.
  • Embodiment 6 The method according to any one of embodiments 3 to 5, wherein, if the first BWP and the second BWP have an association relationship, restoring all resources on the second BWP.
  • the link of the first downlink resource includes:
  • Embodiment 7 The method according to Embodiment 6 is characterized in that:
  • the suspension of resuming the link of the first downlink resource includes:
  • Embodiment 8 The method according to any one of embodiments 1 to 7, further comprising:
  • Embodiment 9 The method according to embodiment 8, further comprising:
  • the link recovery is reset.
  • Embodiment 10 The method according to any one of Embodiments 1 to 9, wherein the recovering the link of the first downlink resource on the second BWP includes:
  • Embodiment 11 The method according to any one of Embodiments 1 to 9, wherein the recovering the link of the first downlink resource on the second BWP includes:
  • Link recovery request information includes one or more of the following information: BWP identification information, identification information of downlink resources, or resource identification information of reference signals associated with downlink resources.
  • Embodiment 12 The method according to any one of embodiments 1 to 11, wherein after the link of the first downlink resource is restored, the method further includes:
  • Embodiment 13 The method according to any one of embodiments 3 to 12, wherein if the first BWP and the second BWP do not have an association relationship, the method further includes:
  • Embodiment 14 The method according to any one of embodiments 3 to 13, wherein if the first BWP and the second BWP do not have an association relationship, the method is restored on the first BWP.
  • the link of the first downlink resource includes:
  • Embodiment 15 The method according to embodiment 13 or 14, further comprising: after receiving the link recovery response information or the reconfiguration information, switching from the first BWP to the second BWP.
  • Embodiment 16 The method according to embodiment 13 or 14, wherein if the first BWP and the second BWP do not have an association relationship, the first download is restored on the first BWP.
  • Links to row resources including:
  • the first BWP is switched to the second BWP.
  • Embodiment 17 The method according to any one of embodiments 1 to 16, wherein the first downlink resource is a control resource set, and / or the second downlink resource is a control resource set.
  • Embodiment 18 A communication method, comprising:
  • BWP switching instruction information is used to indicate switching from a first BWP to a second BWP
  • Embodiment 19 The method according to Embodiment 18, wherein the receiving the link restoration request information of the first downlink resource of the first BWP includes:
  • first BWP and the second BWP have an association relationship, receiving link recovery request information of the first downlink resource of the first BWP on the second BWP;
  • the link recovery request information of the first downlink resource of the first BWP is received on the first BWP.
  • Embodiment 20 The method according to Embodiment 19, wherein if the first BWP and the second BWP have an association relationship, receiving the first of the first BWP on the second BWP Link recovery request information for downlink resources, including:
  • Embodiment 21 The method according to embodiment 18 or 19, wherein the receiving the link restoration request information of the first downlink resource of the first BWP includes:
  • the request information includes one or more of the following information: BWP identification information, identification information of downlink resources, or resource identification information of reference signals associated with downlink resources.
  • Embodiment 22 The method according to any one of embodiments 19 to 21, wherein if the first BWP and the second BWP do not have an association relationship, receiving the first BWP on the first BWP
  • the link recovery request information of the first downlink resource of the BWP includes:
  • Embodiment 23 A communication method, comprising:
  • Embodiment 24 The method according to embodiment 23, wherein the method further comprises:
  • Embodiment 25 A communication device, comprising: a processing unit; wherein:
  • the processing unit is configured to determine a first bandwidth region BWP and a second BWP;
  • the processing unit is further configured to determine an association relationship between the first BWP and the second BWP;
  • the processing unit is further configured to recover a link of a first downlink resource of the first BWP and / or detect a link failure of a second downlink resource of the second BWP according to the association relationship.
  • Embodiment 26 A communication device, comprising: a sending unit and a receiving unit; wherein:
  • the sending unit is configured to send BWP handover instruction information, and the BWP handover instruction information is used to indicate a handover from a first BWP to a second BWP;
  • the receiving unit is configured to receive link recovery request information of a first downlink resource of a first BWP.
  • Embodiment 27 A communication device, comprising: a sending unit and a processing unit; wherein:
  • the sending unit is configured to send link recovery request information on a physical random access resource
  • the processing unit is configured to count a BWP inactive timer in an activated bandwidth area
  • the sending unit is configured to send link recovery request information on a physical random access resource
  • the processing unit is configured to stop the BWP inactive timer in the bandwidth area
  • the processing unit is further configured to start or restart the BWP inactivity timer when a link recovery timer expires or the link recovery counter reaches a maximum value.
  • Embodiment 28 A communication device, comprising a processor and a transmitting and receiving device, the processor is coupled to the transmitting and receiving device, and the processor is configured to execute a computer program or instruction to control the transmitting and receiving device to perform information Receiving and sending; when the processor executes the computer program or instruction, the processor is further configured to implement the method according to any one of embodiments 1 to 24.
  • Embodiment 29 A computer-readable storage medium, characterized in that a computer program or instruction is stored in the computer-readable storage medium, and when the computer program or instruction is executed, it is implemented as any of the embodiments 1-24. The method of one item.
  • the network device in each of the foregoing device embodiments corresponds exactly to the network device or terminal device in the terminal device and method embodiments, and the corresponding module or unit performs the corresponding steps, for example, the sending module (transmitter) method performs the sending
  • the receiving module (receiver) executes the steps received in the method embodiment, and other steps except sending and receiving can be executed by the processing module (processor).
  • the processing module processor
  • the sending module and the receiving module may form a transceiver module, and the transmitter and the receiver may form a transceiver to jointly realize the transmitting and receiving function; the processor may be one or more.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the division of the unit is only a logical function division.
  • multiple units or components can be combined or integrated into another system, or some features can be ignored or not carried out.
  • the displayed or discussed mutual coupling, or direct coupling, or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be electrical, mechanical, or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted through a computer-readable storage medium.
  • the computer instructions can be transmitted from one website site, computer, server, or data center to another via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes one or more available medium integration.
  • the available medium may be a read-only memory (ROM), or a random access memory (RAM), or a magnetic medium such as a floppy disk, a hard disk, a magnetic tape, a magnetic disk, or an optical medium such as A digital versatile disc (DVD), or a semiconductor medium, such as a solid state disk (SSD).
  • ROM read-only memory
  • RAM random access memory
  • magnetic medium such as a floppy disk, a hard disk, a magnetic tape, a magnetic disk, or an optical medium such as A digital versatile disc (DVD), or a semiconductor medium, such as a solid state disk (SSD).
  • SSD solid state disk

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种通信方法及装置。该方法包括:确定第一BWP和第二BWP;确定所述第一BWP与所述第二BWP的关联关系;根据所述关联关系,恢复第一BWP的第一下行资源的链路,和/或检测所述第二BWP的第二下行资源的链路失败。还公开了相应的装置。根据两个BWP的关联关系,可以准确地恢复第一BWP的第一下行资源的链路,从而保证通信的可靠性。

Description

通信方法及装置
本申请要求于2018年5月22日提交中国国家知识产权局、申请号为201810497299.4、发明名称为“通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
具有更大的可用带宽的高频频段日益成为下一代通信系统的候选频段,且采用波束赋形技术进行信号传输。通过波束训练过程,网络设备获得和终端设备通信较优的若干个波束对(beam pair link,BPL)。但是由于在通信过程中存在遮挡,高频信道下的绕射能力差,导致当前服务的波束被阻挡,信号无法继续传输。为了防止在出现波束被阻挡的情况下,通信被突然中断,对波束质量进行检测,并在发生阻挡的情况下快速恢复链路。
网络设备可为终端设备配置一个或多个下行/上行带宽区域(bandwidth part,BWP),且多个带宽区域在频域上可以重叠(overlap),如图1所示的BWP示意图。BWP为终端设备的带宽内的一个子集。BWP是由频域上连续的物理资源块(physical resource block,PRB)组成,即BWP在频域上的最小粒度是1个PRB。
在单载波的情况下,一个终端设备在同一时刻只有一个激活的BWP,终端设备只能在激活的BWP上接收数据/参考信号或者发送数据/参考信号。
目前通信系统中支持BWP的动态切换。网络设备通过下行控制信息(downlink control information,DCI)或无线资源控制(radio resource control,RRC)信令指示终端设备进行BWP的切换。具体地,如图2所示的BWP的动态切换示意图。DCI位于当前BWP中,其频域资源分配信息域的大小由当前BWP的带宽决定。DCI中有一个带宽区域指示(bandwidth part indicator)的信息域,用于指示终端设备所激活的BWP的ID号。当该信息域所指示的BWP ID号与终端设备当前激活的BWP ID号(即传输DCI的当前BWP)不一致时,终端设备需要从当前BWP切换至DCI中所指示的BWP上。
然而,在现有技术中,若波束恢复(beam failure recovery,BFR)或称链路恢复期间收到指示BWP切换的DCI信息,则终端设备会直接切换到新的BWP上,不继续对切换前的BWP做链路恢复。在切换到新的BWP上,是否还要继续做BFR,目前是不清楚的。此外,若新的BWP上物理下行控制信道(physical downlink control channel,PDCCH)仍采用切换前的BWP的波束信息,则此时在新的BWP上也无法通信。
因此,如何确定是否还要恢复切换前的BWP的下行资源的链路,是本申请需要解决的问题。
发明内容
本申请提供一种通信方法及装置,以准确地确定是否要恢复切换前的BWP的下行资 源的链路。
第一方面,提供了一种通信方法,包括:确定第一带宽区域BWP和第二BWP;确定所述第一BWP与所述第二BWP的关联关系;以及根据所述关联关系,恢复所述第一BWP的第一下行资源的链路,和/或检测所述第二BWP的第二下行资源的链路失败。
其中,第一BWP和第二BWP可以位于同一载波上,也可以位于不同的载波上。
该关联关系可以是QCL关系。
在该方面中,通过根据两个BWP的关联关系,可以准确地确定是否恢复第一BWP的第一下行资源的链路或者确定在哪个BWP上恢复第一BWP的第一下行资源的链路,从而保证通信的可靠性。
在一种实现方式中,所述方法还包括:接收BWP切换指示信息,所述BWP切换指示信息用于指示由第一BWP切换至第二BWP。
在另一种实现方式中,所述根据所述关联关系,恢复所述第一BWP的第一下行资源的链路,包括:在所述第二BWP上恢复所述第一下行资源的链路;或在所述第一BWP上恢复所述第一下行资源的链路。
在该实现方式中,若第一BWP和第二BWP具有关联关系,可以跨BWP配置TCI,切换BWP后,可以在第二BWP上继续使用第一BWP的一些配置信息,在第二BWP上恢复第一BWP的链路,可以节省配置信令。
或者,在该实现方式中,若第一BWP和第二BWP具有关联关系,可以跨BWP配置TCI,可以在第二BWP上配置第一BWP的TCI,在第二BWP上恢复第一BWP的链路,可以保证链路失败恢复可靠性。
在又一种实现方式中,所述在所述第二BWP上恢复所述第一下行资源的链路,包括:根据所述第一下行资源与所述第二下行资源的关系,在所述第二BWP上恢复所述第一下行资源的链路。
在又一种实现方式中,所述根据所述第一下行资源与所述第二下行资源的关系,在所述第二BWP上恢复所述第一下行资源的链路,包括:若所述第一下行资源与所述第二下行资源不存在交集,则在所述第二BWP上恢复所述第一下行资源的链路,以及检测所述第二下行资源的链路失败;或若所述第一下行资源与所述第二下行资源部分存在交集,则在所述第二BWP上恢复所述第一下行资源的链路,或在所述第二BWP上恢复与所述第二下行资源存在交集的所述第一下行资源的链路,以及检测所述第二下行资源的链路失败;或若所述第二下行资源为所述第一下行资源的子集,则在所述第二BWP上恢复所述第一下行资源的链路;或若所述第一下行资源为所述第二BWP的第二下行资源的子集,则在所述第二BWP上恢复所述第一下行资源的链路,以及检测与所述第一下行资源不存在交集的第二下行资源的链路失败。
在又一种实现方式中,所述在所述第二BWP上恢复所述第一下行资源的链路,包括:暂停恢复所述第一下行资源的链路;以及当切换至所述第二BWP后,继续恢复所述第一下行资源的链路。
在又一种实现方式中,所述暂停恢复所述第一下行资源的链路,包括:暂停链路恢复计时器、和/或链路恢复计数器、和/或发送链路恢复请求信息;所述当切换至所述第二BWP 后,继续恢复所述第一下行资源的链路,包括:当切换至所述第二BWP后,启动或重启所述链路恢复计时器、和/或所述链路恢复计数器、和/或发送链路恢复请求信息。
在又一种实现方式中,所述方法还包括:检测到所述第二下行资源的链路失败后,确定所述第二下行资源的链路失败。
在又一种实现方式中,所述方法还包括:当所述第二下行资源的链路失败发生在接收到所述第一下行资源的链路恢复响应前,或接收到所述第一下行资源的重配信息前,重置链路恢复计时器和/或链路恢复计数器、和/或停止发送所述第一下行资源的链路恢复请求信息。
在又一种实现方式中,所述在所述第二BWP上恢复所述第一下行资源的链路,包括:在所述第二BWP的物理上行控制信道资源或物理上行共享信道资源上发送所述第一下行资源的链路恢复请求信息;和/或在所述第二BWP的物理随机接入资源上发送所述第二下行资源的链路恢复请求信息。
在该实现方式中,可以通过上行资源的类型区分是第一BWP的链路恢复请求信息还是第二BWP的链路恢复请求信息。
在又一种实现方式中,所述在所述第二BWP上恢复所述第一下行资源的链路,包括:在所述第二BWP的物理随机接入资源、物理上行控制信道资源或物理上行共享信道资源上发送所述第一下行资源的链路恢复请求信息,和/或所述第二下行资源的链路恢复请求信息;其中,所述链路恢复请求信息可以包含以下一个或多个信息:BWP标识信息、CC标识信息、下行资源的标识信息或下行资源关联的参考信号的资源标识信息。
在又一种实现方式中,在所述第一下行资源的链路恢复之后,所述方法还包括:将所述第一下行资源关联到接收链路恢复响应信息关联的参考信号资源。也即根据接收链路恢复响应信息关联的参考信号资源,接收所述第一下行资源上承载的信息(如PDCCH)。在又一种实现方式中,所述方法还包括:当接收到所述BWP切换指示信息时,不切换至所述第二BWP。
在又一种实现方式中,所述在所述第一BWP上恢复所述第一下行资源的链路,包括:在所述第一BWP上发送所述第一下行资源的链路恢复请求信息,和/或接收所述第一下行资源的链路恢复响应信息,和或接收所述第一下行资源的重配信息。
在又一种实现方式中,所述方法还包括:接收所述链路恢复响应信息或所述重配信息后,由所述第一BWP切换至所述第二BWP。
在又一种实现方式中,若在所述第一BWP上恢复所述第一下行资源的链路,包括:链路恢复计时器超时和或链路恢复计数器达到最大值后,由所述第一BWP切换至所述第二BWP。
在又一种实现方式中,所述第一下行资源为控制资源集合,和/或所述第二下行资源为控制资源集合。
第二方面,提供了一种通信方法,包括:发送BWP切换指示信息,所述BWP切换指示信息用于指示由第一BWP切换至第二BWP;接收第一BWP的第一下行资源的链路恢复请求信息。
在一种实现方式中,所述接收第一BWP的第一下行资源的链路恢复请求信息,包括: 在所述第二BWP上接收第一BWP的第一下行资源的链路恢复请求信息;或在所述第一BWP上接收第一BWP的第一下行资源的链路恢复请求信息。
在另一种实现方式中,所述在所述第二BWP上接收第一BWP的第一下行资源的链路恢复请求信息,包括:在所述第二BWP的物理上行控制信道资源或物理上行共享信道资源上接收第一BWP的第一下行资源的链路恢复请求信息;和/或在所述第二BWP的物理随机接入资源上接收第一BWP的第一下行资源的链路恢复请求信息。
在又一种实现方式中,所述接收第一BWP的第一下行资源的链路恢复请求信息,包括:在所述第二BWP的物理随机接入资源、物理上行控制信道资源或物理上行共享信道资源上接收第一BWP的第一下行资源的链路恢复请求信息,和/或接收所述第二下行资源的链路恢复请求信息;其中,所述请求信息包含以下一个或多个信息:BWP标识信息、下行资源的标识信息或下行资源关联的参考信号的资源标识信息。
在又一种实现方式中,所述在所述第一BWP上接收第一BWP的第一下行资源的链路恢复请求信息,包括:在所述第一BWP上接收所述第一下行资源的链路恢复请求信息,和/或发送所述第一下行资源的链路恢复响应信息,和或发送所述第一下行资源的重配信息。
第三方面,提供了一种通信方法,包括:在物理随机接入资源上发送链路恢复请求信息,带宽区域BWP非激活计时器计时;或在物理随机接入资源上发送链路恢复请求信息,停止带宽区域BWP非激活计时器;当链路恢复计时器超时和或链路恢复计数器达到最大值后,启动或重启所述BWP非激活计时器。
在该方面中,若在BWP非激活计时器计时期间检测到链路失败,终端设备发起链路恢复,不停止BWP非激活计时器的计时,并在BWP非激活计时器超时时,切换至预设BWP,可以保证正常的通信,提高了通信的稳定性;或者停止或暂停BWP非激活计时器的计时,并在链路恢复过程完成后,启动或重启BWP非激活计时器的计时,可以确保计时的准确性。
在一种实现方式中,所述方法还包括:当BWP非激活计时器超时时,切换至预设的BWP。
第四方面,提供了一种通信装置,可以实现上述第一方面或第三方面中的通信方法。例如所述通信装置可以是芯片(如基带芯片,或通信芯片等)或者终端设备。可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的实现方式中,所述通信装置的结构中包括处理器、存储器;所述处理器被配置为支持所述装置执行上述通信方法中相应的功能。存储器用于与处理器耦合,其保存所述装置必要的程序(指令)和/或数据。可选的,所述通信装置还可以包括通信接口用于支持所述装置与其他网元之间的通信。
在另一种可能的实现方式中,所述通信装置,可以包括执行上述方法中相应动作的单元模块。
在又一种可能的实现方式中,包括处理器和收发装置,所述处理器与所述收发装置耦合,所述处理器用于执行计算机程序或指令,以控制所述收发装置进行信息的接收和发送;当所述处理器执行所述计算机程序或指令时,所述处理器还用于实现上述方法。其中,所述收发装置可以为收发器、收发电路或输入输出接口。当所述通信装置为芯片时,所述收发装置为收发电路或输入输出接口。
当所述通信装置为芯片时,发送单元可以是输出单元,比如输出电路或者通信接口;接收单元可以是输入单元,比如输入电路或者通信接口。当所述通信装置为网络设备时,发送单元可以是发射器或发射机;接收单元可以是接收器或接收机。
第五方面,提供了一种通信装置,可以实现上述第二方面中的通信方法。例如所述通信装置可以是芯片(如基带芯片,或通信芯片等)或者网络设备,可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的实现方式中,所述通信装置的结构中包括处理器、存储器;所述处理器被配置为支持所述装置执行上述通信方法中相应的功能。存储器用于与处理器耦合,其保存所述装置必要的程序(指令)和数据。可选的,所述通信装置还可以包括通信接口用于支持所述装置与其他网元之间的通信。
在另一种可能的实现方式中,所述通信装置,可以包括执行上述方法中的相应动作的单元模块。
在又一种可能的实现方式中,包括处理器和收发装置,所述处理器与所述收发装置耦合,所述处理器用于执行计算机程序或指令,以控制所述收发装置进行信息的接收和发送;当所述处理器执行所述计算机程序或指令时,所述处理器还用于实现上述方法。其中,所述收发装置可以为收发器、收发电路或输入输出接口。当所述通信装置为芯片时,所述收发装置为收发电路或输入输出接口。
当所述通信装置为芯片时,接收单元可以是输入单元,比如输入电路或者通信接口;发送单元可以是输出单元,比如输出电路或者通信接口。当所述通信装置为终端设备时,接收单元可以是接收器(也可以称为接收机);发送单元可以是发射器(也可以称为发射机)。
第六方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
第七方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
附图说明
为了更清楚地说明本发明实施例或背景技术中的技术方案,下面将对本发明实施例或背景技术中所需要使用的附图进行说明。
图1为BWP示意图;
图2为BWP的动态切换示意图;
图3为本申请涉及的一种通信系统的示意图;
图4为本申请实施例提供的一种通信方法的流程示意图;
图5为示例的一种切换前的BWP与切换后的BWP包含的CORESET的情况的示意图;
图6为本申请实施例提供的另一种通信方法的流程示意图;
图7为示例的另一种切换前的BWP与切换后的BWP包含的CORESET的情况的示意图;
图8为示例的又一种切换前的BWP与切换后的BWP包含的CORESET的情况的示意图;
图9为示例的又一种切换前的BWP与切换后的BWP包含的CORESET的情况的示意图;
图10a为本申请实施例提供的又一种通信方法的流程示意图;
图10b为本申请实施例提供的又一种通信方法的流程示意图;
图11为本申请实施例提供的一种通信装置的模块结构示意图;
图12为本申请实施例提供的另一种通信装置的模块结构示意图;
图13为本申请实施例提供的又一种通信装置的模块结构示意图;
图14为本申请实施例提供的一种通信装置的硬件结构示意图;
图15为本申请实施例提供的另一种通信装置的硬件结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
图3给出了本申请涉及的一种通信系统的示意图。该通信系统可以包括至少一个网络设备100(仅示出1个)以及与网络设备100连接的一个或多个终端设备200。
网络设备100可以是能和终端设备200通信的设备。网络设备100可以是任意一种具有无线收发功能的设备。包括但不限于:基站NodeB、演进型基站eNodeB、第五代(the fifth generation,5G)通信系统中的基站、未来通信系统中的基站或网络设备、WiFi系统中的接入节点、无线中继节点、无线回传节点等。网络设备100还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。网络设备100还可以是小站,传输节点(transmission reference point,TRP)等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
终端设备200是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上,如轮船上等;还可以部署在空中,如飞机、气球和卫星上等。所述终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。终端设备有时也可以称为用户设备(user equipment,UE)、接入终端设备、UE单元、移动站、移动台、远方站、远程终端设备、移动设备、终端(terminal)、无线通信设备、UE代理或UE装置等。
需要说明的是,本发明实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本发明实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
用于波束失败检测的参考信号资源集合以及候选参考信号集合:
为了检测和恢复链路故障,网络设备需要给终端配置用于波束失败检测的参考信号资源集合(例如Beam-Failure-Detection-RS-ResourceConfig、Beam-Failure-Detection-RS或failureDetectionResources)和用于恢复终端设备与网络设备链路的参考信号资源集合(candidate beam RS list或Candidate-Beam-RS-Identification-Resource或beamFailureCandidateBeamResource或Candidate-Beam-Identification-RS)(也称为候选参考信号资源集合)。
此外,用于检测链路失败的参考信号还可以通过隐式方式指示。将指示PDCCH的传输配置指示(transmission configuration indicator,TCI)中关联的部分参考信号作为检测链路失败的参考信号,该参考信号是Type D QCLed with PDCCH DMRS,且为周期发送的参考信号。其中,PDCCH的解调参考信号(demodulation reference signal,DMRS)与TCI中的参考信号满足QCL关系。
当该集合中的部分或者所有参考信号的信道质量信息(如RSPR、CQI,BLER,SINR,SNR等)低于预定门限,则判定为通信链路故障。其中低于预定门限可以是连续W次低于预定门限或者一定时间段内W次低于预定门限。可选的,该预定门限可以和无线链路失败(radio link failure)的门限相同。在本申请中,通信链路故障还可以称为通信链路失败、波束失败、链路故障、链路失败、通信故障、通信失败等。在本申请中,这些概念是相同的含义。通信链路故障后,终端设备需要从候选参考信号资源集合中选出信道质量信息(如RSRP、CQI等)高于预定门限的参考信号资源,用于恢复通信链路。可选的,该预定门限可以由网络设备配置。这里,用于检测链路失败的参考信号是用于终端设备检测网络设备的某一发射波束的信道质量,该发射波束是网络设备与该终端进行通信时所使用的波束。候选参考信号资源集合用于终端在判断出网络设备的该发射波束发生通信链路故障后,用于发起链路重配的参考信号集合。在本申请中,链路重配也可以叫作恢复网络设备与终端设备通信,链路恢复,波束失败恢复,通信链路恢复、链路故障恢复、通信故障恢复、通信失败恢复。在具体实现中,用于波束失败检测的参考信号资源集合以及用于恢复终端设备与网络设备链路的参考信号资源集合这两个集合的名称还可以有其他叫法,本申请对此不作具体限定。本申请中,链路重配请求信息又可以称为通信链路故障(或称为通信链路失败、波束故障、波束失败、链路故障、链路失败、通信故障、通信失败、链路、通信链路等)恢复请求信息,重配请求信息等。
准共站/准共址假设信息:
准共站/准共址假设信息也可以称为同位置假设(Quasi-collocation,QCL)信息。QCL信息用于辅助描述终端设备接收侧波束赋形信息以及接收流程。
其中,为了节省网络设备侧对终端设备侧的QCL信息指示开销,作为一种可选的实施方式,网络设备侧可以指示PDCCH或PDSCH的解调参考信号与终端设备之前上报的多个参考信号资源中的一个或多个是满足QCL关系的。例如,该参考信号可以是信道状态信息参考信号(channel state information reference signal,CSI-RS)。这里,每一个上报的CSI-RS资源索引对应了一个之前基于该CSI-RS资源测量时建立的一个收发波束对。应理解满足QCL关系的两个参考信号或信道的接收波束信息是相同的,从而基于该参考信号资源索引,终端设备可推断出接收PDCCH或PDSCH的接收波束信息。例如,终端设备接收DMRS 的接收波束与终端设备之前上报的多个基于CSI-RS测量的收发波束对中的一个接收波束是相同的。
信息可以包括终端设备上报的参考信号的波束组索引号、参考信号的资源索引号、参考信号的端口号以及参考信号的端口组号中的一个或多个。
可选的,该QCL信息也可以包括一些空间特性参数,例如:入射角(angle of arrival,AoA)、主入射角(dominant AoA)、平均入射角、入射角的功率角度谱((power angular spectrum,PAS)of AoA)、出射角(angle of departure,AoD)、主出射角、平均出射角、出射角的功率角度谱、终端发送波束成型、终端接收波束成型、空间信道相关性、基站发送波束成型、基站接收波束成型、平均信道增益、平均信道时延(average delay)、时延扩展(delay spread)、多普勒扩展(Doppler spread)、多普勒频移(Doppler shift)、空间接收参数(spatial Rx parameters)等。这些空间特性参数描述了两个参考信号的天线端口间的空间信道特性,有助于终端设备根据该QCL信息完成接收侧波束赋形或接收处理过程。
控制资源集合(control resource set,COREST):
为了提高终端设备盲检控制信道的效率,提出了控制资源集合的概念。网络设备可为终端设备配置一个或多个资源集合,用于发送PDCCH。网络设备可以在终端设备对应的任一控制资源集合上,向终端设备发送控制信道。此外,网络设备还需要通知终端设备所述控制资源集合的相关联的其他配置,例如搜索空间等。每个控制资源集合的配置信息存在差异,例如频域宽度差异、时域长度差异等。
波束
本申请中,波束可以对应时间资源或者空间资源。
可选地,波束还可以与参考信号资源(例如,波束赋形的参考信号资源),或者波束赋性信息对应。
可选地,波束还可以与网络设备的参考信号资源关联的信息对应,其中参考信号可以为CSI-RS,同步信号广播信道块(synchronous signal/PBCH block,SS block),解调参考信号(demodulation reference signal,DMRS),相位跟踪信号(phase tracking reference signal,PTRS),跟踪信号(tracking reference signal,TRS)等,参考信号资源关联的信息可以是参考信号资源标识,或者QCL信息等。
其中,参考信号资源标识对应了之前基于该参考信号资源测量时建立的一个收发波束对,通过该参考信号资源索引,终端可推断波束信息。
本申请提供了一种通信方法及装置,根据两个BWP的关联关系,可以准确地在第二BWP上恢复第一BWP的第一下行资源的链路,从而保证通信的可靠性。
图4为本申请实施例提供的一种通信方法的流程示意图。如图4所示,其中:
S101、确定第一BWP和第二BWP。
本实施例中,第一BWP和第二BWP可以是同一载波(component carrier,CC)上的两个BWP,也可以是不同CC上的两个BWP。
S102、确定所述第一BWP与所述第二BWP的关联关系。
在这里,关联关系可以是指第一BWP和第二BWP的某些参数是存在潜在关联关系的;或者这个关联关系可以是终端设备自身确认的,也可以预定义的。终端设备可以根据第一 BWP或第二BWP的某些参数确认其关联关系。
该关联关系也可以是网络设备配置的,可以是根据某些信息隐式确认的,也可以是直接配置给终端设备指示第一BWP和第二BWP的(参数的)关联关系。网络设备可以通过RRC、MAC-CE、或DCI等配置该关联关系。
具体地,该关联关系可以是指:
第一BWP与第二BWP在频域上部分或全部重叠;
为所述第一BWP配置的参考信号和为所述第二BWP配置的参考信号满足QCL关系;
第一BWP与第二BWP包括相同的控制资源集合;
第一BWP与第二BWP为同频带的BWP。
S103、根据所述关联关系,恢复所述第一BWP的第一下行资源的链路,和/或检测所述第二BWP的第二下行资源的链路失败。
本申请的场景可以是针对有多个BWP的情况。第一种场景就是同一个载波CC的情况,现有技术中一个时刻只能有一个active的BWP,所以涉及的是切换前后的两个BWP或者说可能被切换的候选BWP。第二种场景就是多载波的情况下,可以指示终端设备在多个载波CC间切换,也即多个BWP间切换,所以涉及的是切换前后的两个CC分别对应的BWP。第三种场景就是多载波聚合的情况下,一个终端设备可以同时接入多个CC,也即多个BWP,也即激活的BWP可以有多个。此时可以不涉及BWP切换或者载波切换的概念,而是一个CC辅助另一个CC进行链路恢复的过程。本申请的方案适用于以上多种场景。对于第一种场景和第二种场景,本实施例中描述的第一BWP或BWP1可以是指切换前的BWP;本实施例中描述的第二BWP或BWP2可以是指切换后的BWP。对于第三种场景,本实施例中描述的第一BWP或BWP1可以是指被辅助进行链路恢复的一个CC上的BWP,本实施例中描述的第二BWP或BWP2可以是指辅助进行链路恢复的另一个CC上的BWP。
应理解,本申请中的“BWP”可以替换为“CC”。
其中,每个CC对应一个独立的小区(cell),配置了载波聚合(CA)的终端设备与一个Pcell或sPcell(也即主小区)和多个SCell(也即辅小区)相连。Pcell或sPcell是初始接入的cell,SCell是接入后通过RRC配置的,提供更多的无线资源。
下面的实施例描述中,以BWP的切换为例进行描述。在本实施例中,网络设备向终端设备发送BWP切换指示信息。终端设备接收该BWP切换指示信息(对于载波切换的场景,则终端设备接收网络设备发送的载波切换指示信息)。其中,该BWP切换指示信息用于指示由第一BWP切换至第二BWP。
终端设备测量用于波束失败检测的参考信号资源集合,发现连续多次用于波束失败检测的参考信号资源,或用于波束失败检测的参考信号资源集合中的部分或全部参考信号的信道质量信息小于预设门限,终端设备判定波束失败或链路失败。然后,终端设备测量候选参考信号资源集合中的信道质量信息,识别得到信道质量信息大于预设门限的参考信号。终端设备采用识别出的信道质量信息大于预设门限的参考信号向网络设备发送链路恢复请求信息。其中,终端设备可以通过显式或隐式的方式将新识别的波束信息或参考信号资源通知给网络设备。其中,终端设备的媒体接入控制(medium access control,MAC)层会维护一个波束失败恢复计时器(beam failure recovery timer)或称链路恢复计时器、以及波束 失败恢复计数器(beam failure recovery counter)或称链路恢复计数器。链路恢复计时器用于控制整个链路恢复的时间。链路恢复计数器用于限制终端设备发送链路恢复请求的次数。当链路恢复计时器超时或者链路恢复计数器到达最大值时,终端设备认为链路恢复不成功,停止链路恢复过程。终端设备检测CORESET,接收链路恢复的响应信息。与前面定义的CORESET不同的是,此CORESET是网络设备为终端设备配置的专用的CORESET资源,用于链路失败时,在终端设备发送链路恢复请求信息后,网络设备发送对链路恢复的响应信息的下行控制资源。
在检测到链路失败后或进行链路恢复过程中,终端设备接收到网络设备通过DCI、RRC等信息或信令发送的BWP切换指示信息(对于载波切换的场景,则终端设备接收网络设备发送的载波切换指示信息)。
终端设备根据第一BWP和第二BWP的关联关系,恢复第一BWP的第一下行资源的链路。
一个实施例中,所述步骤S102可以是一个判断的过程,所述步骤S102可以替换为:判断所述第一BWP和所述第二BWP是否具有关联关系;同时,所述步骤103替换为:根据所述判断结果,恢复所述第一BWP的第一下行资源的链路,和/或检测所述第二BWP的第二下行资源的链路失败。若所述第一BWP和所述第二BWP具有关联关系,则在所述第二BWP上恢复所述第一下行资源的链路;或若所述第一BWP和所述第二BWP不具有关联关系,则在所述第一BWP上恢复所述第一下行资源的链路。即若所述第一BWP和所述第二BWP不具有关联关系,在所述第一BWP上发送所述第一下行资源的链路恢复请求信息,和/或接收所述第一下行资源的链路恢复响应信息,和或接收所述第一下行资源的重配信息。
又一个实施例中,若所述第一BWP和所述第二BWP不具有关联关系,当接收到所述BWP切换指示信息时,不切换至所述第二BWP。
又一个实施例中,若所述第一BWP和所述第二BWP不具有关联关系,则在所述第一BWP上恢复所述第一下行资源的链路,包括:
在所述第一BWP上发送所述第一下行资源的链路恢复请求信息,和/或接收所述第一下行资源的链路恢复响应信息,和或接收所述第一下行资源的重配信息。
作为一个可选的实施例,接收所述链路恢复响应信息或所述重配信息后,由所述第一BWP切换至所述第二BWP。
又一个实施例中,若所述第一BWP和所述第二BWP不具有关联关系,则在所述第一BWP上恢复所述第一下行资源的链路,包括:链路恢复计时器超时和或链路恢复计数器达到最大值后,由所述第一BWP切换至所述第二BWP。
例如,该关联关系可以是第一BWP和第二BWP的QCL关系。
在这里,BWP1与BWP2具有QCL关系主要是指可以跨BWP配置TCI。一个TCI状态(TCI state)可以包含一个或两个被引用的参考信号,及所关联的QCL类型(QCL type)。QCL类型又可以分为A/B/C/D四个类别,分别是{Doppler shift,Doppler spread,average delay,delay spread,Spatial Rx parameter}的不同组合或选择。TCI状态包括QCL信息,或者TCI状态用于指示PDCCH/CORESET或者PDSCH的QCL信息,具体地,用于指示 PDCCH/CORESET或PDSCH的解调参考信号(demodulation reference signal,DMRS)与TCI包括的参考信号满足QCL关系。主要用于指示接收PDCCH/PDSCH时,其空间接收参数等信息与TCI状态中包括的参考信号相同。其中,该QCL关系可以是网络设备配置的。
若BWP1与BWP2具有QCL关系,由于可以跨BWP进行TCI配置,则可以在BWP2上恢复BWP1的下行资源的链路。若BWP1与BWP2不具有QCL关系,则由于不能跨BWP进行TCI配置,则在BWP1上恢复BWP1的下行资源的链路。需要说明的是,这里的链路恢复可以是继续恢复,也可以是重新开始恢复。后面将详细描述。
需要说明的是,若BWP1和BWP2属于不同的CC,则可以由BWP1所在的CC辅助BWP2所在的CC实现链路恢复。此时,终端设备可以在确定第一CC的链路失败后,在第二CC的上行资源(PUCCH或PUSCH)上发送链路失败恢复请求信息,该链路失败恢复请求信息指示第一CC标识和或参考信号资源标识。该参考信号资源标识用于恢复第一CC的链路失败。
终端设备在物理随机接入信道(physical random access channel,PRACH)资源或者上行物理控制信道(physical uplink control channel,PUCCH)资源上向网络设备发送链路恢复请求信息,进行链路恢复。
在这里,BWP1的下行资源(即第一下行资源)为与物理下行控制信道相关联的资源。
其中,与物理下行控制信道相关联的资源可以是与物理下行控制信道相关联的波束对,还可以是与物理下行控制信道相关联的时频资源和/或空间资源,还可以是物理下行控制信道相关联的参考信号资源,还可以是物理下行控制信道相关联的参考信号资源相关联的资源,本申请实施例不做特别限定。
具体地,该第一下行资源可以为第一控制资源集合。该控制资源集合可以是CORESET或控制区域(control region)或ePDCCH集合等。下面以第一下行资源为CORESET为例进行描述。
此外,在恢复第一BWP的下行资源的链路时,第二BWP的下行资源的链路也可能发生链路失败,因此,需要根据第一BWP和第二BWP的关联关系,检测第二BWP的下行资源的链路失败。具体地,检测到所述第二下行资源的链路失败后,确定所述第二下行资源的链路失败。
终端设备根据第一下行资源与第二下行资源的关系,在所述第二BWP上恢复所述第一下行资源的链路。具体地,第一下行资源可以包括一个或多个CORESET,在BWP2上可以对部分或者全部的CORESET的链路进行恢复。下面根据BWP1与BWP2包含的CORESET的情况进行具体描述:
如图5所示的一种BWP1与BWP2包含的CORESET的情况的示意图,在图5中,BWP1包括CORESET3和CORESET4,而BWP2包括CORESET1和CORESET2,则可以看出,BWP1与BWP2包含的CORESET不存在交集,即BWP1与BWP2不包含相同的CORESET。
终端设备在BWP1上检测到链路失败,此时,暂停恢复BWP1的第一下行资源的链路。在切换至新的BWP后,继续恢复BWP1的第一下行资源的链路,即在BWP2上继续恢复BWP1的第一下行资源的链路。进一步地,终端设备检测BWP2的第二下行资源的链路失败。
具体地,结合图6所示的另一种通信方法的流程示意图,对图5所示的情况中,如何进行BWP1的第一下行资源的链路进行恢复以及如何处理BWP2的链路失败进行描述:
网络设备给终端设备配置BWP1(即上述的切换前的BWP)的TCI,即配置PDCCH的DMRS与TCI中的参考信号满足QCL关系,并配置了用于接收PDCCH的CORESET。网络设备发送DCI1调度BWP1上的数据。
S201、终端设备发现BWP1波束失败或链路失败。
S202、网络设备向终端设备发送DCI1,指示终端设备从BWP1切换至BWP2(即上述的切换后的BWP)。
S203、终端设备切换至BWP2。
S204、终端设备判断BWP1与BWP2是否有QCL关系。
S205、若BWP1与BWP2有QCL关系,则终端设备继续在BWP2上恢复BWP1的链路。
需要说明的是,不限制上述S203和S204、S205的执行顺序。即可以在配置之初或接收到切换指示信息时确定BWP1与BWP2的关联关系,也可以是终端设备根据关联关系确定切换行为:
方案1:有关联关系,切换至BWP2;没有关联关系,不切换,继续在BWP1上恢复。
方案2:有关联关系,切换至BWP2,没有关联关系,切换至BWP2,不再恢复BWP1的链路。在接收到指示BWP切换的DCI后,不重置(reset)但仅暂停(stop)波束失败恢复计时器和波束失败恢复计数器,暂停发送链路恢复请求信息;在完成BWP的切换后,再重启(restart)波束失败恢复计时器和/或波束失败恢复计数器,发送链路恢复请求信息。并重置波束失败检测计数器(beam failure detection counter),对BWP2进行链路失败的检测。
对于终端设备恢复BWP1的第一下行资源的链路,在本示例中,又分为以下几种链路恢复操作:
A、若终端设备在切换前已经识别出新的下行链路(new beam,或称为满足一定门限的下行参考信号),那么终端设备在BWP2上可以继续使用此参考信号发起链路恢复请求。
a1:此时若在BWP2上有与该参考信号对应的PRACH资源,则使用PRACH发送链路恢复请求信息。否则在切换后的BWP上重新寻找新的参考信号。
a2:若BWP2上有对应的PRACH,则终端设备使用PRACH资源;否则,使用BWP2上的PUCCH资源或者PUSCH资源发起对BWP1的链路重配。
a3:对BWP1的链路恢复使用PUCCH资源(这里考虑到这点,对本BWP的链路恢复使用PRACH,对其他BWP的链路恢复使用PUCCH)。
B、若终端设备在切换前没有识别出新的下行链路(或称为满足一定门限的下行参考信号),那么终端设备在BWP2上需要寻找新的下行参考信号发起链路恢复请求。
b1:若使用PRACH资源发送链路恢复请求,那么PRACH资源中要携带BWP信息(如BWP ID/CORESET ID)。
b2:使用PUCCH资源发送链路恢复请求(这里考虑这点,对本BWP的链路恢复使用PRACH,对其他BWP的链路恢复使用PUCCH)。
b3:若使用PUCCH资源发送链路恢复请求,请求信息中要包括BWP信息(如BWP ID/CORESET ID)。
另外,在恢复了BWP1的链路后,考虑到BWP1与BWP2不具有相同的CORESET,需要对BWP1的TCI重新进行配置。一种配置的方式可以是:恢复BWP1的链路后,可以将接收到链路恢复响应的参考信号资源(候选参考信号资源中的一个)关联到网络设备配置的BWP1的CORESET中。这种配置方式实现简单。另一种配置的方式可以是:恢复BWP1的链路后,等待网络设备对BWP1的TCI状态的重配置。这种配置可以不局限于候选参考信号资源。当然,不限于这两种配置方式。
DCI2调度BWP2上的数据。
S206、若BWP1与BWP2无QCL关系,或者终端设备继续在BWP2上恢复BWP1的链路的同时,终端设备检测BPW2的链路失败。
S207、网络设备发送链路恢复响应消息给终端设备。终端设备接收该响应消息。
当终端设备在BWP2上对BWP1的第一下行资源的链路进行恢复时,具体地,当第二下行资源的链路失败发生在接收到第一下行资源的链路恢复响应前,或接收到第一下行资源的重配信息前,BWP2也可能发生链路失败的情况。此时,一种方式是:停止BWP1的第一下行资源的链路的恢复,即停止发生第一下行资源的链路恢复请求信息,对BWP2的第二下行资源的链路进行恢复。具体地,重置波束失败恢复计时器和/或计数器;选择候选波束:使用BWP2中识别的新的波束恢复下行链路;或使用BWP1进行链路恢复采用的波束恢复BWP2的第二下行资源的链路;上行资源:使用指定的PRACH发送链路恢复请求,或者使用PUCCH/PUSCH/基于非竞争(non-contention)的PRACH发送链路恢复请求(携带CORESET ID,服务波束ID,BWP ID或指示信息,该指示信息用于指示是BWP2还是BWP1)。另一种方式是,继续BWP1的第一下行资源的链路的恢复,上报BWP1 ID或BWP2 ID,或者指示是BWP2还是BWP1。
在另一个实施例中,S204~S207也可以替换为,终端设备在确定BWP1与BWP2具有QCL关系时,在BWP2上恢复BWP1的链路。
该替换的实施例和图6所示的实施例可以结合到图4所示的实施例中。
如图7所示的另一种BWP1与BWP2包含的CORESET的情况的示意图,在图7中,BWP1包括CORESET1和CORESET4,BWP2包括CORESET1和CORESET2,即BWP1与BWP2有交集,且BWP2中只有一部分CORESET ID与BWP1的CORESET ID相同。
终端设备在BWP1上检测到链路失败,此时,在BWP2上恢复BWP1的第一下行资源的链路,可参考图6所示的流程,或在BWP2上恢复与BWP2的第二下行资源存在交集的第一下行资源的链路,例如,只对存在交集的CORESET进行链路恢复。如图7所示,BWP1与BWP2的相同的CORESET为CORESET1,则只对CORESET1进行链路恢复。进一步地,还可以检测BWP2的第二下行资源的链路失败。
如图8所示的又一种BWP1与BWP2包含的CORESET的情况的示意图,在图8中,BWP1包括CORESET1和CORESET4,BWP2包括CORESET1。即BWP1与BWP2有交集,且BWP2的CORESET是BWP1的CORESET的子集。则在BWP2上恢复BWP1的CORESET的链路。具体地,可以不重置链路失败检测计数器,且不重置链路恢复计时器和 /或链路恢复计数器。
如图9所示的又一种BWP1与BWP2包含的CORESET的情况的示意图,在图9中,BWP1包括CORESET1和CORESET4,BWP2包括CORESET1、CORESET2和CORESET4,即BWP1与BWP2有交集,且BWP1的CORESET是BWP2的CORESET的子集。则在BWP2上恢复BWP1的CORESET的链路(可参考图6所示的流程)。进一步地,检测与BWP1不存在交集的BWP2的CORESET的链路失败。具体地,可以重置链路失败检测计数器,且不重置链路恢复计时器和/或链路恢复计数器。若BWP1与BWP2不具有关联关系,则不在BWP2上恢复BWP1的下行资源的链路。在收到DCI的切换BWP的命令时,不切换BWP;在接收到对BWP1的下行资源的链路恢复响应后或者TCI重配置信息后再切换BWP;或者波束失败恢复计时器超时或者达到波束失败恢复计数器最大值时,切换到新的BWP。根据本申请实施例提供的一种通信方法,根据第一BWP与第二BWP的关联关系,可以准确地恢复第一BWP的第一下行资源的链路或确定在哪个BWP上恢复第一BWP的第一下行资源的链路,从而保证通信的可靠性。
本申请还提供又一种通信方法及装置,若在BWP非激活计时器计时期间检测到链路失败,终端设备使用PRACH资源发起链路恢复,不停止BWP非激活计时器的计时,并在BWP非激活计时器超时时,切换至预设BWP,可以保证正常的通信,提高了通信的稳定性;或者停止或暂停BWP非激活计时器的计时,并在链路恢复过程完成后,启动或重启BWP非激活计时器的计时,可以确保计时的准确性。
图10a为本申请实施例提供的又一种通信方法的流程示意图。如图10a所示,其中:
S301a、终端设备在物理随机接入资源上向网络设备发送链路恢复请求信息。网络设备接收该链路恢复请求信息。
S302a、BWP非激活计时器计时。
终端设备被配置一个高层参数——BWP非激活计时器(bwp-InactivityTimer)。该BWP非激活计时器用于观测当前BWP是否能接收到控制信令如DCI等,或者在较长时间内若接收不到控制信令则会切换到一个预设的BWP上工作。例如,在低频中,若终端设备在1ms内检测不到DCI,则增加一次timer的值;在高频中,若终端设备在0.5ms内检测不到DCI,则增加一次timer的值。若收到DCI则重置该timer。当timer过期,则终端设备切换到预设BWP或称默认的BWP(default BWP)上(具体是默认的下行带宽区域(default-DL-BWP))。该default BWP可以是RRC配置的BWP或者是初始下行带宽区域(initial DL BWP)。在该默认的BWP进行通信,通信质量能够得到保障。
现有技术中,终端设备根据是否能接收到DCI来判断是否切换到default BWP上。
若终端设备在当前BWP上长期收不到DCI,终端设备就会切换到default BWP上,否则继续在本BWP工作直到收到BWP切换的指示信息。
本实施例中,若在BWP非激活计时器计时期间检测到链路失败,终端设备在物理随机接入资源上向网络设备发送链路恢复请求信息。终端设备不停止BWP非激活计时器的计时。或者换言之,终端设备发送随机接入请求信息,停止BWP非激活计时器计时,除非所述发送随机接入请求信息用于链路恢复。又或者换言之,在物理随机接入资源上发送链路 恢复请求信息,不停止BWP非激活计时器。当BWP非激活计时器计时超时,切换至默认的BWP。
S303a、当BWP非激活计时器超时时,切换至预设BWP。
在BWP非激活计时器计时期间检测到链路失败,终端设备进行链路恢复,终端设备可能切换到新的BWP上,但新的BWP的通信质量不能确定。若终端设备在设定时间内检测不到DCI,则说明该新的BWP的通信质量存在问题。因此,当BWP非激活计时器超时时,切换至预设BWP。
当然,S303a是可选的步骤。
根据本申请实施例提供的一种通信方法,若在BWP非激活计时器计时期间检测到链路失败,终端设备发起链路恢复,不停止BWP非激活计时器的计时,并在BWP非激活计时器超时时,切换至预设BWP,可以保证正常的通信,提高了通信的稳定性。
图10b为本申请实施例提供的又一种通信方法的流程示意图。如图10b所示,其中:
S301b、终端设备在物理随机接入资源上向网络设备发送链路恢复请求信息。网络设备接收该链路恢复请求消息。
S302b、停止或暂停BWP非激活计时器。
在BWP非激活计时器计时期间检测到链路失败,终端设备进行链路恢复。由于链路恢复需要一定的时间,继续BWP非激活计时器的计时,计时可能不够准确。链路未恢复,终端设备接收不到DCI,可能直接切换至预设的或默认的BWP。因此,此时,停止或暂停BWP非激活计时器的计时。
S303b、当链路恢复计时器超时和或链路恢复计数器达到最大值后,启动或重启所述BWP非激活计时器。
终端设备在进行链路恢复时,采用波束失败恢复计数器监测链路恢复。此外,还可采用波束失败恢复计时器辅助计数器进行监测。具体地,若在链路恢复计数器达到最大值之前恢复链路,和/或在链路恢复计时器的计时时间内恢复链路,则链路恢复成功;否则,若链路恢复计时器超时和或链路恢复计数器达到最大值,链路仍未恢复,则链路恢复失败。当链路恢复计时器超时和或链路恢复计数器达到最大值后,链路恢复过程结束。
在链路恢复过程结束后,启动或重启BWP非激活计时器。
S304b、当BWP非激活计时器超时时,切换至预设的BWP。
当启动或重启BWP非激活计时器后,按照现有技术中BWP非激活计时器的运行,当BWP非激活计时器超时时,切换至预设的BWP。
当然,S304b是可选的步骤。
根据本申请实施例提供的一种通信方法,若在BWP非激活计时器计时期间检测到链路失败,终端设备发起链路恢复,停止或暂停BWP非激活计时器的计时,并在链路恢复过程完成后,启动或重启BWP非激活计时器的计时,可以确保计时的准确性。
上述详细阐述了本发明实施例的方法,下面提供了本发明实施例的装置。
基于上述实施例中的通信方法的同一构思,如图11所示,本申请实施例还提供一种通信装置1000,该通信装置可应用于上述图4所示的通信方法中。该通信装置1000可以是 如图3所示的终端设备200,也可以是应用于该终端设备200的一个部件(例如芯片)。该通信装置1000包括处理单元11,还可包括接收单元12和发送单元13;其中:
处理单元11,用于确定第一带宽区域BWP和第二BWP;
处理单元11,还用于确定所述第一BWP与所述第二BWP的关联关系;
处理单元11,用于根据所述关联关系,恢复所述第一BWP的第一下行资源的链路,和/或检测所述第二BWP的第二下行资源的链路失败。
在一个实现方式中,接收单元12,用于接收BWP切换指示信息,所述BWP切换指示信息用于指示由第一BWP切换至第二BWP。
在另一个实现方式中,处理单元11用于在所述第二BWP上恢复所述第一下行资源的链路;或
在所述第一BWP上恢复所述第一下行资源的链路。
在又一个实现方式中,所述处理单元11,用于根据所述第一下行资源与所述第二下行资源的关系,在所述第二BWP上恢复所述第一下行资源的链路。
在又一个实现方式中,处理单元11,用于:
若所述第一下行资源与所述第二下行资源不存在交集,则在所述第二BWP上恢复所述第一下行资源的链路,以及检测所述第二下行资源的链路失败;或
若所述第一下行资源与所述第二下行资源部分存在交集,则在所述第二BWP上恢复所述第一下行资源的链路,或在所述第二BWP上恢复与所述第二下行资源存在交集的所述第一下行资源的链路,以及检测所述第二下行资源的链路失败;或
若所述第二下行资源为所述第一下行资源的子集,则在所述第二BWP上恢复所述第一下行资源的链路;或
若所述第一下行资源为所述第二BWP的第二下行资源的子集,则在所述第二BWP上恢复所述第一下行资源的链路,以及检测与所述第一下行资源不存在交集的第二下行资源的链路失败。
在又一个实现方式中,处理单元11,用于:
暂停恢复所述第一下行资源的链路;
当切换至所述第二BWP后,继续恢复所述第一下行资源的链路。
在又一个实现方式中,处理单元11,用于:
暂停链路恢复计时器、和/或链路恢复计数器、和/或发送链路恢复请求信息;
当切换至所述第二BWP后,启动或重启所述链路恢复计时器、和/或所述链路恢复计数器、和/或发送链路恢复请求信息。
在又一个实现方式中,处理单元11,还用于:检测到所述第二下行资源的链路失败后,确定所述第二下行资源的链路失败。
在又一个实现方式中,处理单元11,还用于:
当所述第二下行资源的链路失败发生在接收到所述第一下行资源的链路恢复响应前,或接收到所述第一下行资源的重配信息前,重置链路恢复计时器和/或链路恢复计数器、和/或停止发送所述第一下行资源的链路恢复请求信息。
在又一个实现方式中,发送单元13,用于:
在所述第二BWP的物理上行控制信道资源或物理上行共享信道资源上发送所述第一下行资源的链路恢复请求信息;和/或
在所述第二BWP的物理随机接入资源上发送所述第二下行资源的链路恢复请求信息。
在又一个实现方式中,发送单元13,用于:在所述第二BWP的物理随机接入资源、物理上行控制信道资源或物理上行共享信道资源上发送所述第一下行资源的链路恢复请求信息,和/或所述第二下行资源的链路恢复请求信息;其中,所述链路恢复请求信息包含以下一个或多个信息:BWP标识信息、下行资源的标识信息或下行资源关联的参考信号的资源标识信息。
在又一个实现方式中,处理单元11,还用于:将所述第一下行资源关联到接收链路恢复响应信息关联的参考信号资源。也即根据接收链路恢复响应信息关联的参考信号资源,接收所述第一下行资源上承载的信息(如PDCCH)。在又一个实现方式中,处理单元11,还用于:若所述第一BWP和所述第二BWP不具有关联关系,当接收到所述BWP切换指示信息时,不切换至所述第二BWP。
在又一个实现方式中,若所述第一BWP和所述第二BWP不具有关联关系,则发送单元13用于在所述第一BWP上发送所述第一下行资源的链路恢复请求信息,和/或接收单元12,用于接收所述第一下行资源的链路恢复响应信息,和或接收所述第一下行资源的重配信息。
在又一个实现方式中,处理单元11,还用于:接收所述链路恢复响应信息或所述重配信息后,由所述第一BWP切换至所述第二BWP。
在又一个实现方式中,处理单元11,还用于若所述第一BWP和所述第二BWP不具有关联关系,则链路恢复计时器超时和或链路恢复计数器达到最大值后,由所述第一BWP切换至所述第二BWP。
有关上述处理单元11、接收单元12和发送单元13更详细的描述可以直接参考上述图4所示的方法实施例中终端设备的相关描述直接得到,这里不加赘述。
基于上述实施例中的通信方法的同一构思,如图12所示,本申请实施例还提供一种通信装置2000,该通信装置可应用于上述图4所示的通信方法中。该通信装置2000可以是如图3所示的网络设备100,也可以是应用于该网络设备100的一个部件(例如芯片)。该通信装置2000包括:发送单元21和接收单元22;其中:
发送单元21,用于发送BWP切换指示信息,所述BWP切换指示信息用于指示由第一BWP切换至第二BWP;
接收单元22,用于接收终端设备发送的恢复第一BWP的第一下行资源的链路的请求信息。
在一种实现方式中,所述接收单元,用于若所述第一BWP和所述第二BWP具有关联关系,则在所述第二BWP上接收第一BWP的第一下行资源的链路恢复请求信息;若所述第一BWP和所述第二BWP不具有关联关系,则在所述第一BWP上接收第一BWP的第一下行资源的链路恢复请求信息。
在另一种实现方式中,所述接收单元,用于在所述第二BWP的物理上行控制信道资源或物理上行共享信道资源上接收第一BWP的第一下行资源的链路恢复请求信息;和/或在 所述第二BWP的物理随机接入资源上接收第一BWP的第一下行资源的链路恢复请求信息。
在又一种实现方式中,所述接收单元,用于在所述第二BWP的物理随机接入资源、物理上行控制信道资源或物理上行共享信道资源上接收第一BWP的第一下行资源的链路恢复请求信息,和/或接收所述第二下行资源的链路恢复请求信息;其中,所述请求信息包含以下一个或多个信息:BWP标识信息、下行资源的标识信息或下行资源关联的参考信号的资源标识信息。
在又一种实现方式中,若所述第一BWP和所述第二BWP不具有关联关系,则所述接收单元,用于在所述第一BWP上接收所述第一下行资源的链路恢复请求信息,和/或向所述终端设备发送所述第一下行资源的链路恢复响应信息,和/或向所述终端设备发送所述第一下行资源的重配信息。
有关上述发送单元21和接收单元22更详细的描述可以直接参考上述图4所示的方法实施例中网络设备的相关描述直接得到,这里不加赘述。
基于上述实施例中的通信方法的同一构思,如图13所示,本申请实施例还提供一种通信装置3000,该通信装置可应用于上述图10a或图10b所示的通信方法中。该通信装置3000可以是如图3所示的终端设备200,也可以是应用于该终端设备200的一个部件(例如芯片)。该通信装置3000包括发送单元31和处理单元32;其中:
发送单元31,用于在物理随机接入资源上发送链路恢复请求信息;
处理单元32,用于带宽区域BWP非激活计时器计时;或
发送单元31,用于在物理随机接入资源上发送链路恢复请求信息;
处理单元32,用于停止带宽区域BWP非激活计时器;
处理单元32,还用于当链路恢复计时器超时和或链路恢复计数器达到最大值后,启动或重启所述BWP非激活计时器。
在一个实现方式中,处理单元32,还用于当BWP非激活计时器超时时,切换至预设的BWP。
有关上述发送单元31和处理单元32更详细的描述可以直接参考上述图10a或图10b所示的方法实施例中终端设备的相关描述直接得到,这里不加赘述。
本申请实施例中还提供一种通信装置,该通信装置用于执行上述通信方法。上述通信方法中的部分或全部可以通过硬件来实现也可以通过软件来实现。
可选的,通信装置在具体实现时可以是芯片或者集成电路。
可选的,当上述实施例的通信方法中的部分或全部通过软件来实现时,通信装置包括:存储器,用于存储程序;处理器,用于执行存储器存储的程序,当程序被执行时,使得通信装置可以实现上述实施例提供的通信方法。
可选的,上述存储器可以是物理上独立的单元,也可以与处理器集成在一起。
可选的,当上述实施例的通信方法中的部分或全部通过软件实现时,通信装置也可以只包括处理器。用于存储程序的存储器位于通信装置之外,处理器通过电路/电线与存储器连接,用于读取并执行存储器中存储的程序。
处理器可以是中央处理器(central processing unit,CPU),网络处理器(network  processor,NP)或者CPU和NP的组合。
处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
存储器可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器还可以包括上述种类的存储器的组合。
图14示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图14中,终端设备以手机作为例子。如图14所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图14中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的接收单元和发送单元(也可以统称为收发单元),将具有处理功能的处理器视为终端设备的处理单元。如图14所示,终端设备包括接收单元41、处理单元42和发送单元43。接收单元41也可以称为接收器、接收机、接收电路等,发送单元43也可以称为发送器、发射器、发射机、发射电路等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。
例如,在一个实施例中,接收单元41用于执行图4所示实施例中的步骤S101~S103。
又如,在另一个实施例中,发送单元43用于执行图10a所示实施例中的步骤S301a中的终端设备的功能;处理单元42用于执行图10a所示实施例中的步骤S302a和S303a。
又如,在另一个实施例中,发送单元43用于执行图10b所示实施例中的步骤S301b中的终端设备的功能;处理单元42用于执行图10b所示实施例中的步骤S302b~S304b。
图15示出了一种简化的网络设备的结构示意图。网络设备包括射频信号收发及转换部分以及52部分,该射频信号收发及转换部分又包括接收单元51部分和发送单元53部分(也 可以统称为收发单元)。射频信号收发及转换部分主要用于射频信号的收发以及射频信号与基带信号的转换;52部分主要用于基带处理,对网络设备进行控制等。接收单元51也可以称为接收器、接收机、接收电路等,发送单元53也可以称为发送器、发射器、发射机、发射电路等。52部分通常是网络设备的控制中心,通常可以称为处理单元,用于控制网络设备执行上述实施例中关于网络设备所执行的步骤。具体可参见上述相关部分的描述。
52部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器,处理器用于读取和执行存储器中的程序以实现基带处理功能以及对网络设备的控制。若存在多个单板,各个单板之间可以互联以增加处理能力。作为一中可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
例如,在一个实施例中,发送单元53用于执行图4所示实施例中(未示出)的发送BWP切换指示信息的功能;以及接收单元51用于执行图4所示实施例中(未示出)的接收恢复第一BWP的下行资源的链路信息的功能。
又如,在另一个实施例中,接收单元51用于执行图10a所示实施例中的步骤S301a中网络设备的功能。
又如,在又一个实施例中,接收单元51用于执行图10b所示实施例中的步骤S301b中网络设备的功能。
本发明还提供以下实施例。需要说明的是,以下实施例的编号并不一定需要遵从前面实施例的编号顺序:
实施例1、一种通信方法,其特征在于,包括:
确定第一带宽区域BWP和第二BWP;
确定所述第一BWP与所述第二BWP的关联关系;
根据所述关联关系,恢复所述第一BWP的第一下行资源的链路,和/或检测所述第二BWP的第二下行资源的链路失败。
实施例2、如实施例1所述的方法,其特征在于,还包括:
接收BWP切换指示信息,所述BWP切换指示信息用于指示由第一BWP切换至第二BWP。
实施例3、根据实施例1或2所述的方法,其特征在于,所述根据所述关联关系,恢复所述第一BWP的第一下行资源的链路,包括:
若所述第一BWP和所述第二BWP具有关联关系,则在所述第二BWP上恢复所述第一下行资源的链路;或
若所述第一BWP和所述第二BWP不具有关联关系,则在所述第一BWP上恢复所述第一下行资源的链路。
实施例4、根据实施例3所述的方法,其特征在于,所述若所述第一BWP和所述第二BWP具有关联关系,则在所述第二BWP上恢复所述第一下行资源的链路,包括:
根据所述第一下行资源与所述第二下行资源的关系,在所述第二BWP上恢复所述第一下行资源的链路。
实施例5、根据实施例4所述的方法,其特征在于,所述根据所述第一下行资源与所 述第二下行资源的关系,在所述第二BWP上恢复所述第一下行资源的链路,包括:
若所述第一下行资源与所述第二下行资源不存在交集,则在所述第二BWP上恢复所述第一下行资源的链路,以及检测所述第二下行资源的链路失败;或
若所述第一下行资源与所述第二下行资源部分存在交集,则在所述第二BWP上恢复所述第一下行资源的链路,或在所述第二BWP上恢复与所述第二下行资源存在交集的所述第一下行资源的链路,以及检测所述第二下行资源的链路失败;或
若所述第二下行资源为所述第一下行资源的子集,则在所述第二BWP上恢复所述第一下行资源的链路;或
若所述第一下行资源为所述第二BWP的第二下行资源的子集,则在所述第二BWP上恢复所述第一下行资源的链路,以及检测与所述第一下行资源不存在交集的第二下行资源的链路失败。
实施例6、根据实施例3至5任一项所述的方法,其特征在于,所述若所述第一BWP和所述第二BWP具有关联关系,则在所述第二BWP上恢复所述第一下行资源的链路,包括:
暂停恢复所述第一下行资源的链路;
当切换至所述第二BWP后,继续恢复所述第一下行资源的链路。
实施例7、根据实施例6所述的方法,其特征在于:
所述暂停恢复所述第一下行资源的链路,包括:
暂停链路恢复计时器、和/或链路恢复计数器、和/或发送链路恢复请求信息;
所述当切换至所述第二BWP后,继续恢复所述第一下行资源的链路,包括:
当切换至所述第二BWP后,启动或重启所述链路恢复计时器、和/或所述链路恢复计数器、和/或发送链路恢复请求信息。
实施例8、根据实施例1~7任一项所述的方法,其特征在于,还包括:
检测到所述第二下行资源的链路失败后,确定所述第二下行资源的链路失败。
实施例9、根据实施例8所述的方法,其特征在于,还包括:
当所述第二下行资源的链路失败发生在接收到所述第一下行资源的链路恢复响应前,或接收到所述第一下行资源的重配信息前,重置链路恢复计时器和/或链路恢复计数器、和/或停止发送所述第一下行资源的链路恢复请求信息。
实施例10、根据实施例1~9任一项所述的方法,其特征在于,所述在所述第二BWP上恢复所述第一下行资源的链路,包括:
在所述第二BWP的物理上行控制信道资源或物理上行共享信道资源上发送所述第一下行资源的链路恢复请求信息;和/或
在所述第二BWP的物理随机接入资源上发送所述第二下行资源的链路恢复请求信息。
实施例11、根据实施例1~9任一项所述的方法,其特征在于,所述在所述第二BWP上恢复所述第一下行资源的链路,包括:
在所述第二BWP的物理随机接入资源、物理上行控制信道资源或物理上行共享信道资源上发送所述第一下行资源的链路恢复请求信息,和/或所述第二下行资源的链路恢复请 求信息;其中,所述链路恢复请求信息包含以下一个或多个信息:BWP标识信息、下行资源的标识信息或下行资源关联的参考信号的资源标识信息。
实施例12、根据实施例1~11任一项所述的方法,其特征在于,在所述第一下行资源的链路恢复之后,所述方法还包括:
将所述第一下行资源关联到接收链路恢复响应信息关联的参考信号资源。
实施例13、如实施例3~12任一项所述的方法,其特征在于,所述若所述第一BWP和所述第二BWP不具有关联关系,还包括:
当接收到所述BWP切换指示信息时,不切换至所述第二BWP。
实施例14、如实施例3~13任一项所述的方法,其特征在于,所述若所述第一BWP和所述第二BWP不具有关联关系,则在所述第一BWP上恢复所述第一下行资源的链路,包括:
在所述第一BWP上发送所述第一下行资源的链路恢复请求信息,和/或接收所述第一下行资源的链路恢复响应信息,和或接收所述第一下行资源的重配信息。
实施例15、如实施例13或14所述的方法,其特征在于,还包括:接收所述链路恢复响应信息或所述重配信息后,由所述第一BWP切换至所述第二BWP。
实施例16、如实施例13或14所述的方法,其特征在于,若所述第一BWP和所述第二BWP不具有关联关系,则在所述第一BWP上恢复所述第一下行资源的链路,包括:
链路恢复计时器超时和或链路恢复计数器达到最大值后,由所述第一BWP切换至所述第二BWP。
实施例17、根据实施例1~16任一项所述的方法,其特征在于,所述第一下行资源为控制资源集合,和/或所述第二下行资源为控制资源集合。
实施例18、一种通信方法,其特征在于,包括:
发送BWP切换指示信息,所述BWP切换指示信息用于指示由第一BWP切换至第二BWP;
接收第一BWP的第一下行资源的链路恢复请求信息。
实施例19、如实施例18所述的方法,其特征在于,所述接收第一BWP的第一下行资源的链路恢复请求信息,包括:
若所述第一BWP和所述第二BWP具有关联关系,则在所述第二BWP上接收第一BWP的第一下行资源的链路恢复请求信息;
若所述第一BWP和所述第二BWP不具有关联关系,则在所述第一BWP上接收第一BWP的第一下行资源的链路恢复请求信息。
实施例20、如实施例19所述的方法,其特征在于,所述若所述第一BWP和所述第二BWP具有关联关系,则在所述第二BWP上接收第一BWP的第一下行资源的链路恢复请求信息,包括:
在所述第二BWP的物理上行控制信道资源或物理上行共享信道资源上接收第一BWP的第一下行资源的链路恢复请求信息;和/或
在所述第二BWP的物理随机接入资源上接收第一BWP的第一下行资源的链路恢复请求信息。
实施例21、如实施例18或19所述的方法,其特征在于,所述接收第一BWP的第一下行资源的链路恢复请求信息,包括:
在所述第二BWP的物理随机接入资源、物理上行控制信道资源或物理上行共享信道资源上接收第一BWP的第一下行资源的链路恢复请求信息,和/或接收所述第二下行资源的链路恢复请求信息;其中,所述请求信息包含以下一个或多个信息:BWP标识信息、下行资源的标识信息或下行资源关联的参考信号的资源标识信息。
实施例22、如实施例19~21任一项所述的方法,其特征在于,若所述第一BWP和所述第二BWP不具有关联关系,则在所述第一BWP上接收第一BWP的第一下行资源的链路恢复请求信息,包括:
在所述第一BWP上接收所述第一下行资源的链路恢复请求信息,和/或发送所述第一下行资源的链路恢复响应信息,和或发送所述第一下行资源的重配信息。
实施例23、一种通信方法,其特征在于,包括:
在物理随机接入资源上发送链路恢复请求信息,带宽区域BWP非激活计时器计时;或
在物理随机接入资源上发送链路恢复请求信息,停止带宽区域BWP非激活计时器;当链路恢复计时器超时和或链路恢复计数器达到最大值后,启动或重启所述BWP非激活计时器。
实施例24、根据实施例23所述的方法,其特征在于,所述方法还包括:
当BWP非激活计时器超时时,切换至预设的BWP。
实施例25、一种通信装置,其特征在于,包括:处理单元;其中:
所述处理单元,用于确定第一带宽区域BWP和第二BWP;
所述处理单元,还用于确定所述第一BWP与所述第二BWP的关联关系;
所述处理单元,还用于根据所述关联关系,恢复所述第一BWP的第一下行资源的链路,和/或检测所述第二BWP的第二下行资源的链路失败。
实施例26、一种通信装置,其特征在于,包括:发送单元和接收单元;其中:
所述发送单元,用于发送BWP切换指示信息,所述BWP切换指示信息用于指示由第一BWP切换至第二BWP;
所述接收单元,用于接收第一BWP的第一下行资源的链路恢复请求信息。
实施例27、一种通信装置,其特征在于,包括:发送单元和处理单元;其中:
所述发送单元,用于在物理随机接入资源上发送链路恢复请求信息;
所述处理单元,用于激活带宽区域BWP非激活计时器计时;或
所述发送单元,用于在物理随机接入资源上发送链路恢复请求信息;
所述处理单元,用于停止带宽区域BWP非激活计时器;
所述处理单元,还用于当链路恢复计时器超时和或链路恢复计数器达到最大值后,启动或重启所述BWP非激活计时器。
实施例28、一种通信装置,其特征在于,包括处理器和收发装置,所述处理器与所述收发装置耦合,所述处理器用于执行计算机程序或指令,以控制所述收发装置进行信息的接收和发送;当所述处理器执行所述计算机程序或指令时,所述处理器还用于实现如实施 例1~24任意一项所述的方法。
实施例29、一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序或指令,当所述计算机程序或指令被执行时,实现如实施例1~24任意一项所述的方法。
上述各个装置实施例中网络设备与终端设备和方法实施例中的网络设备或终端设备完全对应,由相应的模块或单元执行相应的步骤,例如发送模块(发射器)方法执行方法实施例中发送的步骤,接收模块(接收器)执行方法实施例中接收的步骤,除发送接收外的其它步骤可以由处理模块(处理器)执行。具体模块的功能可以参考相应的方法实施例。发送模块和接收模块可以组成收发模块,发射器和接收器可以组成收发器,共同实现收发功能;处理器可以为一个或多个。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。所显示或讨论的相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者通过该计算机可读存储介质进行传输。该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是只读存储器(read-only memory,ROM),或随机存储存储器(random access memory,RAM),或磁性介质,例如,软盘、硬盘、磁带、磁碟、或光介质,例如,数字通用光盘(digital versatile disc,DVD)、或者半导体介质,例如,固态硬盘(solid state disk,SSD)等。

Claims (29)

  1. 一种通信方法,其特征在于,包括:
    确定第一带宽区域BWP和第二BWP;
    确定所述第一BWP与所述第二BWP的关联关系;
    根据所述关联关系,恢复所述第一BWP的第一下行资源的链路,和/或检测所述第二BWP的第二下行资源的链路失败。
  2. 如权利要求1所述的方法,其特征在于,还包括:
    接收BWP切换指示信息,所述BWP切换指示信息用于指示由第一BWP切换至第二BWP。
  3. 根据权要要求1或2所述的方法,其特征在于,所述根据所述关联关系,恢复所述第一BWP的第一下行资源的链路,包括:
    在所述第二BWP上恢复所述第一下行资源的链路;或
    在所述第一BWP上恢复所述第一下行资源的链路。
  4. 根据权利要求3所述的方法,其特征在于,所述在所述第二BWP上恢复所述第一下行资源的链路,包括:
    根据所述第一下行资源与所述第二下行资源的关系,在所述第二BWP上恢复所述第一下行资源的链路。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述第一下行资源与所述第二下行资源的关系,在所述第二BWP上恢复所述第一下行资源的链路,包括:
    若所述第一下行资源与所述第二下行资源不存在交集,则在所述第二BWP上恢复所述第一下行资源的链路,以及检测所述第二下行资源的链路失败;或
    若所述第一下行资源与所述第二下行资源部分存在交集,则在所述第二BWP上恢复所述第一下行资源的链路,或在所述第二BWP上恢复与所述第二下行资源存在交集的所述第一下行资源的链路,以及检测所述第二下行资源的链路失败;或
    若所述第二下行资源为所述第一下行资源的子集,则在所述第二BWP上恢复所述第一下行资源的链路;或
    若所述第一下行资源为所述第二BWP的第二下行资源的子集,则在所述第二BWP上恢复所述第一下行资源的链路,以及检测与所述第一下行资源不存在交集的第二下行资源的链路失败。
  6. 根据权利要求3至5任一项所述的方法,其特征在于,所述在所述第二BWP上恢复所述第一下行资源的链路,包括:
    暂停恢复所述第一下行资源的链路;
    当切换至所述第二BWP后,继续恢复所述第一下行资源的链路。
  7. 根据权利要求6所述的方法,其特征在于:
    所述暂停恢复所述第一下行资源的链路,包括:
    暂停链路恢复计时器、和/或链路恢复计数器、和/或发送链路恢复请求信息;
    所述当切换至所述第二BWP后,继续恢复所述第一下行资源的链路,包括:
    当切换至所述第二BWP后,启动或重启所述链路恢复计时器、和/或所述链路恢复计数器、和/或发送链路恢复请求信息。
  8. 根据权利要求1~7任一项所述的方法,其特征在于,还包括:
    检测到所述第二下行资源的链路失败后,确定所述第二下行资源的链路失败。
  9. 根据权利要求8所述的方法,其特征在于,还包括:
    当所述第二下行资源的链路失败发生在接收到所述第一下行资源的链路恢复响应前,或接收到所述第一下行资源的重配信息前,重置链路恢复计时器和/或链路恢复计数器、和/或停止发送所述第一下行资源的链路恢复请求信息。
  10. 根据权利要求1~9任一项所述的方法,其特征在于,所述在所述第二BWP上恢复所述第一下行资源的链路,包括:
    在所述第二BWP的物理上行控制信道资源或物理上行共享信道资源上发送所述第一下行资源的链路恢复请求信息;和/或
    在所述第二BWP的物理随机接入资源上发送所述第二下行资源的链路恢复请求信息。
  11. 根据权利要求1~9任一项所述的方法,其特征在于,所述在所述第二BWP上恢复所述第一下行资源的链路,包括:
    在所述第二BWP的物理随机接入资源、物理上行控制信道资源或物理上行共享信道资源上发送所述第一下行资源的链路恢复请求信息,和/或所述第二下行资源的链路恢复请求信息;其中,所述链路恢复请求信息包含以下一个或多个信息:BWP标识信息、下行资源的标识信息或下行资源关联的参考信号的资源标识信息。
  12. 根据权利要求1~11任一项所述的方法,其特征在于,在所述第一下行资源的链路恢复之后,所述方法还包括:
    将所述第一下行资源关联到接收链路恢复响应信息关联的参考信号资源。
  13. 如权利要求3~12任一项所述的方法,其特征在于,还包括:
    当接收到所述BWP切换指示信息时,不切换至所述第二BWP。
  14. 如权利要求3~13任一项所述的方法,其特征在于,所述在所述第一BWP上恢复所述第一下行资源的链路,包括:
    在所述第一BWP上发送所述第一下行资源的链路恢复请求信息,和/或接收所述第一下行资源的链路恢复响应信息,和或接收所述第一下行资源的重配信息。
  15. 如权利要求13或14所述的方法,其特征在于,还包括:接收所述链路恢复响应信息或所述重配信息后,由所述第一BWP切换至所述第二BWP。
  16. 如权利要求13或14所述的方法,其特征在于,所述在所述第一BWP上恢复所述第一下行资源的链路,包括:
    链路恢复计时器超时和或链路恢复计数器达到最大值后,由所述第一BWP切换至所述第二BWP。
  17. 根据权利要求1~16任一项所述的方法,其特征在于,所述第一下行资源为控制资源集合,和/或所述第二下行资源为控制资源集合。
  18. 一种通信方法,其特征在于,包括:
    发送BWP切换指示信息,所述BWP切换指示信息用于指示由第一BWP切换至第二BWP;
    接收第一BWP的第一下行资源的链路恢复请求信息。
  19. 如权利要求18所述的方法,其特征在于,所述接收第一BWP的第一下行资源的链路恢复请求信息,包括:
    在所述第二BWP上接收第一BWP的第一下行资源的链路恢复请求信息;或
    在所述第一BWP上接收第一BWP的第一下行资源的链路恢复请求信息。
  20. 如权利要求19所述的方法,其特征在于,所述在所述第二BWP上接收第一BWP的第一下行资源的链路恢复请求信息,包括:
    在所述第二BWP的物理上行控制信道资源或物理上行共享信道资源上接收第一BWP的第一下行资源的链路恢复请求信息;和/或
    在所述第二BWP的物理随机接入资源上接收第一BWP的第一下行资源的链路恢复请求信息。
  21. 如权利要求18或19所述的方法,其特征在于,所述接收第一BWP的第一下行资源的链路恢复请求信息,包括:
    在所述第二BWP的物理随机接入资源、物理上行控制信道资源或物理上行共享信道资源上接收第一BWP的第一下行资源的链路恢复请求信息,和/或接收所述第二下行资源的链路恢复请求信息;其中,所述请求信息包含以下一个或多个信息:BWP标识信息、下行资源的标识信息或下行资源关联的参考信号的资源标识信息。
  22. 如权利要求19~21任一项所述的方法,其特征在于,所述在所述第一BWP上接收第一BWP的第一下行资源的链路恢复请求信息,包括:
    在所述第一BWP上接收所述第一下行资源的链路恢复请求信息,和/或发送所述第一下行资源的链路恢复响应信息,和或发送所述第一下行资源的重配信息。
  23. 一种通信方法,其特征在于,包括:
    在物理随机接入资源上发送链路恢复请求信息,带宽区域BWP非激活计时器计时;或
    在物理随机接入资源上发送链路恢复请求信息,停止带宽区域BWP非激活计时器;当链路恢复计时器超时和或链路恢复计数器达到最大值后,启动或重启所述BWP非激活计时器。
  24. 根据权利要求23所述的方法,其特征在于,所述方法还包括:
    当BWP非激活计时器超时时,切换至预设的BWP。
  25. 一种通信装置,其特征在于,包括:处理单元;其中:
    所述处理单元,用于确定第一带宽区域BWP和第二BWP;
    所述处理单元,还用于确定所述第一BWP与所述第二BWP的关联关系;
    所述处理单元,还用于根据所述关联关系,恢复所述第一BWP的第一下行资源的链路,和/或检测所述第二BWP的第二下行资源的链路失败。
  26. 一种通信装置,其特征在于,包括:发送单元和接收单元;其中:
    所述发送单元,用于发送BWP切换指示信息,所述BWP切换指示信息用于指示由第 一BWP切换至第二BWP;
    所述接收单元,用于接收第一BWP的第一下行资源的链路恢复请求信息。
  27. 一种通信装置,其特征在于,包括:发送单元和处理单元;其中:
    所述发送单元,用于在物理随机接入资源上发送链路恢复请求信息;
    所述处理单元,用于激活带宽区域BWP非激活计时器计时;或
    所述发送单元,用于在物理随机接入资源上发送链路恢复请求信息;
    所述处理单元,用于停止带宽区域BWP非激活计时器;
    所述处理单元,还用于当链路恢复计时器超时和或链路恢复计数器达到最大值后,启动或重启所述BWP非激活计时器。
  28. 一种通信装置,其特征在于,包括处理器和收发装置,所述处理器与所述收发装置耦合,所述处理器用于执行计算机程序或指令,以控制所述收发装置进行信息的接收和发送;当所述处理器执行所述计算机程序或指令时,所述处理器还用于实现如权利要求1~24任意一项所述的方法。
  29. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序或指令,当所述计算机程序或指令被执行时,实现如权利要求1~24任意一项所述的方法。
PCT/CN2019/087837 2018-05-22 2019-05-21 通信方法及装置 WO2019223696A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19808052.5A EP3787340A4 (en) 2018-05-22 2019-05-21 COMMUNICATION METHOD AND DEVICE
US16/952,962 US11470589B2 (en) 2018-05-22 2020-11-19 Communication method and communications apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810497299.4A CN110519815B (zh) 2018-05-22 2018-05-22 通信方法及装置
CN201810497299.4 2018-05-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/952,962 Continuation US11470589B2 (en) 2018-05-22 2020-11-19 Communication method and communications apparatus

Publications (1)

Publication Number Publication Date
WO2019223696A1 true WO2019223696A1 (zh) 2019-11-28

Family

ID=68615669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/087837 WO2019223696A1 (zh) 2018-05-22 2019-05-21 通信方法及装置

Country Status (4)

Country Link
US (1) US11470589B2 (zh)
EP (1) EP3787340A4 (zh)
CN (1) CN110519815B (zh)
WO (1) WO2019223696A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113273301A (zh) * 2019-01-08 2021-08-17 中兴通讯股份有限公司 无线链接恢复
US11601252B2 (en) * 2019-05-02 2023-03-07 Ofinno, Llc Bandwidth part operations
CN114599050A (zh) * 2020-12-07 2022-06-07 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2023133754A1 (en) * 2022-01-13 2023-07-20 Zte Corporation System and method for determining a beam state of a downlink signal in a link recovery procedure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180131493A1 (en) * 2016-11-10 2018-05-10 Qualcomm Incorporated Sequence generation for systems supporting mixed numerologies

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111740812B (zh) * 2016-04-01 2022-09-20 中兴通讯股份有限公司 探测参考信号发送方法
EP3632178A1 (en) * 2017-06-23 2020-04-08 Huawei Technologies Co. Ltd. Unified rlf detection, multi-beam rlm, and full-diversity bfr mechanisms in nr
CN110493870B (zh) * 2017-09-27 2020-08-21 华为技术有限公司 一种通信方法、装置和计算机可读存储介质
US10735078B2 (en) * 2018-01-12 2020-08-04 Qualcomm Incorporated Operations with bandwidth part (BWP) switching
KR20200120636A (ko) * 2018-02-16 2020-10-21 레노보 (싱가포르) 피티이. 엘티디. 대역폭 부분들에 대응하는 리소스들
CN110324069B (zh) * 2018-03-28 2021-02-02 维沃移动通信有限公司 波束失败处理方法、终端、网络设备及可读存储介质
WO2019191262A1 (en) * 2018-03-30 2019-10-03 Ofinno, Llc Bandwidthpart (bwp) switching during beam failure recovery
EP3930237A1 (en) * 2018-05-10 2021-12-29 Comcast Cable Communications, LLC Prioritization in beam failure recovery procedures
CN110475353B (zh) * 2018-05-11 2022-06-28 华为技术有限公司 链路恢复的方法和装置
US11147073B2 (en) * 2019-03-21 2021-10-12 Asustek Computer Inc. Method and apparatus for beam indication for physical uplink shared channel (PUSCH) considering multiple nodes scenario in a wireless communication system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180131493A1 (en) * 2016-11-10 2018-05-10 Qualcomm Incorporated Sequence generation for systems supporting mixed numerologies

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Remaining issues for BWP inactivity timer", 3GPP TSG-RAN2 MEETING #101 R2-1801816, vol. RAN WG2, 16 February 2018 (2018-02-16), Athens, Greece, pages 1 - 2, XP051400052 *
INTEL CORPORATION: "Remaining Issues on Beam Failure Recovery", 3GPP TSG RAN WG1 MEETING #92BIS R1-1804715, vol. RAN WG1 7, 7 April 2018 (2018-04-07), pages 1 - 7, XP051414079 *
MOTOROLA MOBILITY ET AL.: "Remaining details on radio link monitoring", 3GPP TSG RAN WGI MEETING #92 R1-1802677, vol. RAN WG1, 17 February 2018 (2018-02-17), Athens, Greece, pages 1 - 4, XP051398111 *
See also references of EP3787340A4
ZTE ET AL.: "Remaining details of RLM", 3GPP TSG RAN WGI MEETING #92B RL-1803612, vol. RAN WG1, 6 April 2018 (2018-04-06), Sanya, China, pages 1 - 7, XP051412929 *

Also Published As

Publication number Publication date
US20210076372A1 (en) 2021-03-11
US11470589B2 (en) 2022-10-11
EP3787340A1 (en) 2021-03-03
CN110519815B (zh) 2021-09-17
CN110519815A (zh) 2019-11-29
EP3787340A4 (en) 2021-06-16

Similar Documents

Publication Publication Date Title
TWI730268B (zh) 用於無線通訊之觸發量測報告
TWI839344B (zh) 無線電鏈路監測及波束監測參數之最佳化重組態
US11792668B2 (en) Method for performing radio link monitoring
WO2019223696A1 (zh) 通信方法及装置
JP6199484B2 (ja) Lte−aのためのキャリアアグリゲーションscell選択
EP3925403B1 (en) Reporting from user equipment to the network for radio link monitoring, beam failure detection, and beam failure recovery
CN113647140A (zh) 向目标小区报告成功切换
JP2021519558A (ja) 装置、方法及びコンピュータープログラム
US11665567B2 (en) Adaptive CSI reporting for carrier aggregation
WO2020167210A1 (en) Centralized unit-distributed unit communication associated to radio link failure report and beam failure recovery attempts
US20220294582A1 (en) Method performed by user equipment, and user equipment
US20230209420A1 (en) Transmission parameter obtaining method, apparatus, and system
CN112020888B (zh) 链路故障的处理方法、装置、终端设备及存储介质
WO2014113919A1 (en) Addressing communication failure in multiple connection systems
WO2021091450A1 (en) Fallback to source cell during dual active protocol stack handover
US20230397080A1 (en) Methods and Apparatuses for Providing Handover Related Information
US20230156540A1 (en) Handling Redirection Failures in RRC Connection Redirection Procedure
EP4305876A1 (en) Mobility failure classification based on mcg failure information
WO2022208441A1 (en) Serving cell selection for uplink feedback transmission under clear channel assessment
WO2022027543A1 (zh) 通信方法及装置
WO2021128069A1 (zh) 一种通信方法及设备
US20240236800A9 (en) Mobility Failure Classification based on MCG Failure Information
US20230039192A1 (en) Packet duplication indication for mdt

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19808052

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019808052

Country of ref document: EP

Effective date: 20201125