WO2019218989A1 - 基于多站点协作的数据传输方法和装置 - Google Patents

基于多站点协作的数据传输方法和装置 Download PDF

Info

Publication number
WO2019218989A1
WO2019218989A1 PCT/CN2019/086758 CN2019086758W WO2019218989A1 WO 2019218989 A1 WO2019218989 A1 WO 2019218989A1 CN 2019086758 W CN2019086758 W CN 2019086758W WO 2019218989 A1 WO2019218989 A1 WO 2019218989A1
Authority
WO
WIPO (PCT)
Prior art keywords
station
frame
data
site
access point
Prior art date
Application number
PCT/CN2019/086758
Other languages
English (en)
French (fr)
Inventor
黄倩怡
张黔
李云波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019218989A1 publication Critical patent/WO2019218989A1/zh
Priority to US16/949,794 priority Critical patent/US11405865B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/026Co-operative diversity, e.g. using fixed or mobile stations as relays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • H04W52/262TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service] taking into account adaptive modulation and coding [AMC] scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/346TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading distributing total power among users or channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a data transmission method and apparatus based on multi-site cooperation.
  • wireless communication equipment With the development of wireless communication technology, wireless communication equipment will penetrate into all aspects of production and life. In the future, wireless communication equipment will play an important role in industrial production, smart city, smart home and health management.
  • a device in a part of a wireless communication device typically runs on a button battery. To extend the life of the wireless communication device, it is desirable to reduce the power consumption of the wireless communication device as much as possible, including the power consumption of wireless transmission.
  • the effective capacity of the battery decreases.
  • the battery capacity is 230-240mAh; when the current is 2.5mA, the battery capacity is 175mAh.
  • the wireless communication device In order to increase the transmission range of the wireless communication device, usually the wireless communication device needs to increase the emission current to improve The transmission power of the wireless communication device. Therefore, the wireless communication device increases the transmission power while reducing the battery capacity, so that the battery life of the communication device is shortened.
  • the present application provides a data transmission method and apparatus based on multi-site cooperation, which reduces the transmission power in a single station transmission process and prolongs the battery life by cooperating at multiple sites.
  • the application provides a data transmission method, including:
  • the site receives second data of one or more other sites other than the site in the collaboration group to which the site belongs; and sends the first data to one or more other sites to cause one or more other sites to generate the second aggregated frame
  • the second aggregated frame includes: first data and second data.
  • the station sends the first aggregation frame including the first data and the second data to the access point, and the time when the station sends the first aggregation frame is the same as the time when one or more other stations send the second aggregation frame to the access point.
  • the aggregation order of the first data and the second data in the first aggregation frame is the same as the aggregation order of the first data and the second data in the second aggregation frame; wherein, the sending power of the first aggregation frame sent by the station is smaller than that of the station alone
  • the transmit power of the second aggregated frame transmitted by one or more other stations is less than the power when the one or more other stations separately transmit the second data to the access point.
  • the transmit power of the station is the power of the station separately transmitting the first data to the access point multiplied by the transmit power coefficient of the station
  • the transmit power of the other station is the power multiplication of the second data sent by the other station separately.
  • the transmission power coefficient of the other station wherein the transmission power coefficient of the station is greater than 0 and less than 1, and the transmission power coefficient of the other station is greater than 0 and less than 1, and the sum of the transmission power coefficient of the station and the transmission power coefficient of one or more other stations is greater than Equal to 1.
  • the transmit power coefficient of the station is equal to the transmit power coefficient of one or more other stations, and the value is 1/N, where N is the total number of sites of the site and one or more other sites. Number, N is a positive integer greater than or equal to 2.
  • the method before the site receives the second data of one or more other sites, the method further includes:
  • the station receives a trigger frame broadcast by the access point, wherein the trigger frame includes information required by the station to determine the transmit power of the station.
  • the information includes: a transmit power coefficient of the station; and the trigger frame further includes: a transmit power coefficient of one or more other stations.
  • the information is a target received signal strength indication field in a user information field corresponding to the station in the trigger frame, and the target received signal strength indication field indicates the transmit power.
  • the information is a resource allocation field and a target received signal strength indicator field corresponding to the site in the trigger frame, and the resource allocation field corresponding to the station indicates the transmit power coefficient of the site, and the target received signal strength indicator The field is used by this site to determine the power of this site to send the first data separately.
  • the first field in the user information field corresponding to the site in the collaboration group in the trigger frame is the same, and the first field is used to indicate the resource unit that carries the aggregated frame. That is, the first field in the user information field corresponding to the site in the trigger frame is the same as the first field in the user information field corresponding to one or more other sites in the trigger frame, and the first of the sites
  • the field indicates a resource unit that carries the first aggregated frame
  • the first field of the one or more other sites indicates the resource unit that carries the second aggregated frame
  • the resource unit that carries the first aggregated frame is the same as the resource unit that carries the second aggregated frame.
  • the second field in the user information field corresponding to the site in the collaboration group in the trigger frame is the same, and the second field is used to indicate the coding type of the aggregation frame; that is, in the user information field corresponding to the site in the trigger frame.
  • a second field, and a second field in the user information field corresponding to one or more other sites in the trigger frame the second field of the site indicating the coding type of the first aggregate frame, one or more other sites
  • the second field indicates the encoding type of the second aggregated frame, and the encoding type of the first aggregated frame is the same as the encoding type of the second aggregated frame.
  • the third field in the user information field corresponding to the site in the collaboration group in the trigger frame is the same, and the third field is used to indicate the modulation and coding system of the aggregated frame; that is, in the user information field corresponding to the site in the trigger frame.
  • the third field is the same as the third field in the user information field corresponding to one or more other sites in the trigger frame, and the third field of the site indicates the modulation and coding mode of the first aggregated frame, one or more other
  • the third field of the station indicates a modulation and coding mode of the second aggregated frame, and the modulation and coding mode of the first aggregated frame is the same as the modulation and coding mode of the second aggregated frame.
  • the fourth field in the user information field corresponding to the site in the collaboration group in the trigger frame is the same, and the fourth field is used to indicate the dual carrier modulation of the aggregation frame; that is, in the user information field corresponding to the site in the trigger frame.
  • the fourth field, and the fourth field in the user information field corresponding to one or more other stations in the trigger frame indicates dual carrier modulation of the first aggregated frame, one or more other
  • the fourth field of the station indicates dual carrier modulation of the second aggregated frame, and the dual carrier modulation mode of the first aggregated frame is the same as the dual carrier modulation mode of the second aggregated frame.
  • the fifth field in the user information field corresponding to the site in the collaboration group in the trigger frame is the same, and the fifth field is used to indicate the spatial stream allocation. That is, the fifth field in the user information field corresponding to the site in the trigger frame is the same as the fifth field in the user information field corresponding to one or more other sites in the trigger frame, and the fifth field of the site
  • the field indicates the spatial stream allocation of the first aggregated frame
  • the fourth field of the one or more other stations indicates the spatial stream allocation of the second aggregated frame
  • the spatial stream allocation manner of the first aggregated frame and the spatial stream allocation manner of the second aggregated frame the same.
  • the method before the site receives the second data of one or more other sites, the method further includes:
  • the station sends control frames to one or more other stations, wherein the control frame includes transmission power coefficients of one or more other stations.
  • control frame includes a common information field and N-1 user information fields, where N-1 is the number of one or more other sites, and N is a positive integer greater than or equal to 2. ;
  • N-1 user information fields are in one-to-one correspondence with one or more other sites;
  • the common information field includes a first field, a second field, a third field, a fourth field, and a fifth field, where the first field is used to indicate a resource unit that carries the aggregated frame, and the second field is used to indicate the encoding of the aggregated frame.
  • the third field is used to indicate a modulation and coding scheme of the aggregated frame
  • the fourth field is used to indicate dual carrier modulation of the aggregated frame
  • the fifth field is used to indicate spatial stream allocation.
  • the aggregation order corresponds to the order of the user information fields in the trigger frame.
  • the aggregation order corresponds to the order of the user information fields in the control frame.
  • the aggregation order corresponds to the order relationship between the sites in the collaboration group.
  • the aggregation order corresponds to a chronological relationship in which the station sends the first data and the one or more other stations send the second data.
  • the method before the station receives the second data of the one or more other sites, the method further includes: the site receiving the group target wake-up time information broadcast by the access point, and the target wake-up time information indicating the site in the collaboration group wake up;
  • the site wakes up based on the target wake time information.
  • the method before the receiving, by the site, the second data of the one or more other sites, the method further includes: the site receiving an association identifier that is sent by the access point and corresponding to the collaboration group;
  • the station receives the management frame broadcast by the access point, and the bit corresponding to the association identifier in the management frame is 1, and the bit character represents the site in the wake-up cooperation group;
  • the site wakes up based on the management frame.
  • the method before the site receives the second data of one or more other sites, the method further includes:
  • the site wakes up based on the target wake-up time information negotiated with one or more other sites, and the target wake-up time information indicates that the site in the collaborative group wakes up at a preset time point;
  • the site sends the target wakeup time information to the access point.
  • the station sends the first aggregation frame to the access point, including:
  • the station transmits the first aggregated frame to the access point in a space-time block-coded STBC mode.
  • the method further includes:
  • the acknowledgment request information is sent to one or more other stations in the collaboration group, where the acknowledgment frame characterization access point successfully receives the first aggregation a frame, the acknowledgment request information is used to determine whether another station receives an acknowledgment frame or a block acknowledgment frame;
  • the site receives confirmation response information sent by other sites;
  • the received acknowledgment response message indicates that the other station receives the acknowledgment frame, or the bit corresponding to the station in the block acknowledgment frame received by the other station is 1, it is determined that the first data transmission is successful.
  • the station when the station determines that an acknowledgment frame or a block acknowledgment frame sent by the access point is not received, the station asks one or more other sites in the cooperation group whether an acknowledgment frame or a block acknowledgment frame is received, and the site asks for a Or multiple other sites confirm the reception and avoid retransmission, reducing transmission overhead and saving network resources.
  • the method further includes:
  • the station determines that the acknowledgment frame or the block acknowledgment frame sent by the access point is not received, or the station determines that the block aggregation frame sent by the access point is received, and the bit corresponding to the station in the block aggregation frame is 0.
  • the acknowledgement frame indicates that the access point successfully receives the first aggregated frame, and determines that the first data transmission fails.
  • the method further includes:
  • the station receives the acknowledgement frame or the block acknowledgement frame sent by the access point, where the acknowledgement frame indicates that the access point successfully receives the first aggregated frame, and the bit corresponding to the station in the block acknowledgement frame is 1.
  • the method before the site receives the second data of one or more other sites, the method further includes:
  • the station sends a first packet request frame to the access point, where the first packet request frame is used to request a cooperative group with one other site, so that the access point sends a second packet request frame to another other station and then receives another a first packet response frame returned by the station, where the second packet request frame includes an identifier of the collaboration group, and the first packet response frame represents a other site determination and the site constitutes a collaboration group;
  • the station receives the second packet response frame sent by the access point, where the second packet response frame includes an identifier of the collaboration group, and the second packet response frame indicates that one other site determines that the site constitutes a collaboration group.
  • the method before the site receives the second data of one or more other sites, the method further includes:
  • the station sends a third grouping request frame to a other station, wherein the third grouping request frame is used to request a cooperation group with one other station, and the third grouping request frame includes the identifier of the cooperation group;
  • the station receives a third packet response frame sent by another station, wherein the third packet response frame characterizes one other site to determine a collaborative group with the site;
  • the station sends the packet report frame to the access point, where the group report frame includes the identifier of the collaboration group;
  • the station receives the packet acknowledgement frame sent by the access point.
  • the application provides a data transmission method on an access point side, including:
  • the access point receives the first aggregated frame sent by the station, and the second aggregated frame sent by one or more other stations in the collaboration group to which the receiving station belongs, except the station;
  • the first aggregated frame includes first data and second data
  • the second aggregated frame includes first data and second data
  • the first data is data of the site
  • the second data is data of one or more other sites
  • the aggregation order of the first data and the second data in an aggregated frame is the same as the aggregation order of the first data and the second data in the second aggregated frame;
  • the sending power of the first aggregation frame sent by the station is smaller than the power of the first data sent by the station to the access point separately; the sending power of the second aggregation frame sent by one or more other stations is less than that of one or more other stations.
  • the transmit power of the station is the power of the station separately transmitting the first data to the access point multiplied by the transmit power coefficient of the station
  • the transmit power of the other station is the power multiplication of the second data sent by the other station separately.
  • the transmission power coefficient of the other station wherein the transmission power coefficient of the station is greater than 0 and less than 1, and the transmission power coefficient of the other station is greater than 0 and less than 1, and the sum of the transmission power coefficient of the station and the transmission power coefficient of one or more other stations is greater than Equal to 1.
  • the transmit power coefficient of the station is equal to the transmit power coefficient of one or more other stations, and the value is 1/N, where N is the total number of sites and one or more other sites. , N is a positive integer greater than or equal to 2.
  • the method before the access point receives the first aggregated frame sent by the station, and before receiving the second aggregated frame sent by one or more other stations, the method further includes:
  • a trigger frame broadcast by the access point where the trigger frame includes information required by the station to determine the transmit power.
  • the information required by the station to determine the transmit power includes: a transmit power coefficient of the station; and the trigger frame further includes: a transmit power coefficient of one or more other stations.
  • the information required by the station to determine the transmit power is a target received signal strength indication field in a user information field corresponding to the site in the trigger frame, and the field indicates the transmit power.
  • the information required by the station to determine the transmit power is a resource allocation field corresponding to the station in the trigger frame and a target received signal strength indication field, and the resource allocation field corresponding to the station indicates the transmit power of the station.
  • the coefficient, the target received signal strength indication field corresponding to the station, is used by the station to determine the power at which the station separately transmits the first data.
  • the first field in the user information field corresponding to the site in the collaboration group in the trigger frame is the same, the first field is used to indicate the resource unit that carries the aggregated frame, and the trigger frame is in the collaboration group.
  • the second field in the user information field corresponding to the site is the same, and the second field is used to indicate the coding type of the aggregation frame;
  • the third field in the user information field corresponding to the site in the collaboration group in the trigger frame is the same, and the third field is used in the third field.
  • a modulation coding system for indicating an aggregation frame
  • the fourth field in the user information field corresponding to the station in the collaboration group in the trigger frame is the same, the fourth field is used to indicate the dual carrier modulation of the aggregation frame; and the trigger frame is in the collaboration group.
  • the fifth field in the user information field corresponding to the site is the same, and the fifth field is used to indicate the spatial stream allocation.
  • the aggregation order corresponds to the order of the user information fields in the trigger frame.
  • the aggregation order corresponds to the order of the user information fields in the control frame received by the station.
  • the aggregation order corresponds to the order relationship between the sites in the collaboration group.
  • the aggregation order corresponds to a chronological relationship in which the station sends the first data and the one or more other stations send the second data.
  • the first aggregation frame sent by the station is received at the access point, and before the second aggregation frame sent by one or more other stations except the station in the collaboration group to which the receiving station belongs, Also includes:
  • the access point broadcasts the group wakeup time information, wherein the target wakeup time information indicates that the site in the collaborative group wakes up.
  • the first aggregation frame sent by the station is received at the access point, and before the second aggregation frame sent by one or more other stations except the station in the collaboration group to which the receiving station belongs, Also includes:
  • the access point sends the association identifier corresponding to the collaboration group to the site;
  • the access point broadcasts a management frame, wherein the bit corresponding to the associated identifier in the management frame is 1, and the bit characterizes the site in the wake-up collaborative group.
  • the first aggregation frame sent by the station is received at the access point, and before the second aggregation frame sent by one or more other stations except the station in the collaboration group to which the receiving station belongs, Also includes:
  • the access point receives the target wake-up time information sent by the station, wherein the target wake-up time information is negotiated by the site with other stations in the collaborative group, and the target wake-up time information indicates that the site in the collaborative group wakes up at a preset time point.
  • the access point receives the first aggregated frame sent by the station, and after the second aggregated frame sent by one or more other stations except the station in the collaborative group to which the receiving station belongs, Also includes:
  • the access point sends an acknowledgement frame or block acknowledgement frame to the station, wherein the acknowledgement frame characterizes that the access point successfully receives the first aggregated frame, and the bit corresponding to the station in the block acknowledgement frame is 1 or 0.
  • the first aggregation frame sent by the station is received at the access point, and before the second aggregation frame sent by one or more other stations except the station in the collaboration group to which the receiving station belongs, Also includes:
  • the access point receives a first packet request frame sent by the station, where the first packet request frame is used for a site request and a other site constitutes a collaboration group;
  • the access point sends a second grouping request frame to the other station, where the second grouping request frame includes the identifier of the collaboration group;
  • the access point receives a first packet response frame sent by another station, wherein the first packet response frame characterizes one other station to determine a cooperative group with the site;
  • the access point sends a second packet response frame to the station, wherein the second packet response frame includes an identifier of the collaboration group, and the second packet response frame characterizes one other site determination and the site constitutes a collaboration group.
  • the first aggregation frame sent by the station is received at the access point, and before the second aggregation frame sent by one or more other stations except the station in the collaboration group to which the receiving station belongs, Also includes:
  • the access point receives a packet report frame sent by the station, where the packet report frame includes an identifier of the collaboration group, and the packet report frame is sent after the site and one other site determine that the cooperation group is formed;
  • the access point sends a packet acknowledgement frame to the site.
  • a data transmission device on a site side is provided, and the device may be a site or a chip in the site.
  • This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the device when the device is a site, the device comprises: a processing module, a receiving module and a sending module, the processing module can be, for example, a processor, the receiving module can be, for example, a receiver, and the sending module can be, for example, a transmitter.
  • the receiving module may include a radio frequency circuit and a baseband circuit, and the transmitting module may include a radio frequency circuit and a baseband circuit.
  • the device may further comprise a storage unit, which may for example be a memory.
  • a storage unit which may for example be a memory.
  • the processing module is coupled to the storage unit, and the processing module executes a computer execution instruction stored by the storage unit to cause the device to execute the data related to the site function. Transmission method.
  • the chip when the device is a chip in a site, the chip includes: a processing module, a receiving module, and a sending module, and the processing module may be, for example, a processor, and the receiving module/transmitting module may be, for example, the chip. Input/output interfaces, pins or circuits on the top.
  • the apparatus may further include a storage unit that executes computer-executable instructions stored by the storage unit to cause the chip within the apparatus to perform a data transmission method related to the site function in any of the above aspects.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be a storage unit outside the chip in the site, such as a read-only memory (ROM) or a storable memory.
  • ROM read-only memory
  • RAM random access memory
  • the processor mentioned in any of the above may be a general central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or An integrated circuit for executing a plurality of programs for controlling a method of coordinated allocation of channel resources in the above aspects.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the present application provides a data transmission device on an access point side, which may be an access point or a chip in an access point.
  • the apparatus has the functionality to implement various embodiments of the above-described aspects relating to access points. This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the access point when the device is an access point, the access point includes: a processing module, a receiving module, and a sending module, the processing module may be, for example, a processor, and the receiving module may be, for example, a receiver, and the sending module, for example It may be a transmitter, the receiver includes a radio frequency circuit, and the transmitter includes a radio frequency circuit.
  • the access point further includes a storage unit, which may be, for example, a memory.
  • the storage unit is configured to store a computer execution instruction
  • the processing module is coupled to the storage unit, and the processing module executes a computer execution instruction stored by the storage unit to cause the apparatus to perform the second aspect A data transmission method involving access point functions.
  • the chip when the device is a chip in an access point, the chip includes: a processing module, a receiving module, and a sending module, and the processing module may be, for example, a processor, and the receiving module may be, for example, the chip.
  • the input interface, the pin or the circuit, etc., the transmitting module can be, for example, an output interface, a pin or a circuit on the chip.
  • the processing module can execute computer-executable instructions stored by the storage unit to cause the chip within the access point to perform the data transfer method of the above-described aspects relating to the access point function.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc.
  • the storage unit may also be a storage unit located outside the chip in the access point, such as a ROM or other type of static that can store static information and instructions.
  • Storage device RAM, etc.
  • the processor mentioned in any of the above may be a CPU, a microprocessor, an ASIC, or an integrated circuit of one or more programs for controlling the method for coordinating the allocation of the above channel resources.
  • a computer storage medium having stored therein program code for indicating instructions to perform the method of the first aspect or any of its possible implementations.
  • a processor is provided for coupling with a memory for performing the method of the first aspect described above or any possible implementation thereof.
  • a computer program product comprising instructions, when executed on a computer, causes the computer to perform the method of the first aspect described above or any of its possible implementations.
  • a computer storage medium having stored therein program code for indicating instructions to perform the method of the second aspect or any of its possible implementations.
  • a processor is provided for coupling with a memory for performing the method of the second aspect above or any possible implementation thereof.
  • a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method of the second aspect described above or any of its possible implementations.
  • a communication system comprising: at least two of the foregoing third aspect or any possible implementation thereof; the system further comprising: the foregoing fourth aspect or any possible implementation thereof Access point in .
  • the station in the collaboration group generates an aggregation frame according to the first data of the first data and the received second data, where the second data is data of one or more other sites except the site in the collaboration group to which the site belongs. Then, the site that generated the aggregated frame sends its respective aggregated frame to the access point at the same time.
  • One or more sites in the collaboration group can perform the above processes separately.
  • the data in the aggregated frames generated by the participating sites is the same, and the aggregation order is the same, thereby ensuring the consistency of the aggregated frames of different sites.
  • the transmit power of the aggregate frame sent by each station is smaller than the power when the station separately sends its own data to the access point, and the total transmit power of the cooperative group can be maintained to meet the normal receiving requirement of the access point side; and the single site is reduced.
  • the transmission power increases the service life of the site.
  • the total capacity of the IoT device battery can be increased and the life of the IoT device battery can be extended.
  • 1 is a communication scenario diagram of an Internet of Things device
  • FIG. 2 is a diagram showing a relationship between battery capacity and current consumption of a communication device
  • FIG. 3 is a schematic diagram of a scenario provided by an embodiment of the present application.
  • FIG. 4 is a signaling diagram of a data transmission method according to an embodiment of the present application.
  • FIG. 5 is a signaling diagram of another data transmission method according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a frame structure of a trigger frame provided by the present application.
  • FIG. 7 is a signaling diagram of still another data transmission method according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a frame of a control frame provided by the present application.
  • FIG. 9 is a signaling diagram of still another data transmission method according to an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of a data transmission result confirmation provided by an embodiment of the present application.
  • FIG. 11 is a schematic flowchart of another data transmission result confirmation provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of an interaction process of a site establishment collaboration group according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of an interaction process of a site establishment collaboration group according to an embodiment of the present application.
  • FIG. 14 is a schematic block diagram of a site-side data transmission device 1400 according to an embodiment of the present application.
  • FIG. 15 is a schematic block diagram of another site-side data transmission device 1500 according to an embodiment of the present application.
  • FIG. 16 is a schematic block diagram of an access point side data transmission device 1600 according to an embodiment of the present application.
  • FIG. 17 is a schematic block diagram of another data transmission device 1700 on the access point side of the embodiment of the present application.
  • CDMA Code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interconnected microwave access
  • the embodiment of the present application is based on the WLAN communication system as an example, and does not constitute a limitation of the present application, and it should be noted that when the solution of the embodiment of the present application is applied to other systems, the site and the access point are The name may vary, but this does not affect the implementation of the solution of the embodiments of the present application.
  • a station also known as a site device
  • a site may be a device that provides voice and/or data connectivity to a user, for example, a handheld device with wireless connectivity, an in-vehicle device, etc.; the site may also be A device that detects data, such as a sensor, etc.; the site may also be a smart device, such as a smart home device, a wearable device, or the like that is deployed indoors.
  • Common terminal devices include, for example, an air quality monitoring sensor, a temperature sensor, a smoke sensor mobile phone, a tablet computer, a notebook computer, a palmtop computer, a mobile internet device (MID), a wearable device, wherein the wearable device includes, for example, : smart watches, smart bracelets, pedometers, etc.
  • Sites for now and future possible wireless communication sites or limited communication sites for example, sites for WLAN sites, cellular sites, etc.
  • an access point also known as an access point device
  • the access point is a A device that accesses a network through a licensed spectrum and an unlicensed spectrum, including network devices in various communication systems, including but not limited to: a wireless access point (eg, a wireless local area network access point), a base station, an evolved node B (evolved Node B, eNB), radio network controller (RNC), Node B (Node B, NB), network device controller (BSC), network device transceiver station (base transceiver station) , BTS), home network equipment (eg, home evolved NodeB, or home Node B, HNB), baseband unit (BBU), and the like.
  • a wireless access point eg, a wireless local area network access point
  • a base station e.g, an evolved node B (evolved Node B, eNB), radio network controller (RNC), Node B (Node B, NB
  • Multiple means two or more, and other quantifiers are similar.
  • Correspondence can refer to an association relationship or binding relationship, and A and B correspond to an association relationship or binding relationship between A and B.
  • one access point associates multiple sites, and each site can separately send its own data to the access point.
  • a station closer to the access point can transmit data to the access point with a lower transmission power, and a station farther away from the access point can adopt a higher transmission power.
  • the data is sent to the access point.
  • the Internet of Things (IoT) STA
  • the Internet of Things refers to various information sensing devices. Real-time collection of any network of information needed to monitor, connect, interact with objects or processes; a huge network of Internet of Things and the Internet to achieve things and things, things and people, all goods and networks Connection, easy to identify, manage and control; current wireless communication protocols used by IoT devices include IEEE (institute of electrical and electronics engineers, IEEE) 802.15.4, 802.11n, Bluetooth low energy (BLE), etc. .
  • FIG. 1 is a communication scenario diagram of an Internet of Things device. As shown in FIG.
  • the IoT device 11 that is closer to the access point 101 can adopt a lower transmission power, and the distance access point 101
  • the farther IoT device 12 can adopt a higher transmission power, in such a manner as to increase the communication distance of the IoT device 12 and ensure the signal quality of the access point 101; for example, due to electromagnetic waves propagating in free space
  • the site Since there is a certain distance between the site and the access point, in order to ensure that the site transmits data to the access point within a certain working life, the power consumption of the site needs to be reduced.
  • the site sends data to the interface. At the point of entry, the transmission power consumed by each station is still high, especially when the station farther away from the access point transmits the data with high transmission power, so the current of the station when transmitting data is high, resulting in site consumption. Higher power and higher power consumption.
  • the abscissa is the battery capacity (unit: mAh)
  • the ordinate is the current consumption (unit: microamperes)
  • the communication device is an IoT device
  • the IoT device sends data at 500 microamps (uA)
  • the IoT device has a battery capacity of 230-240 mAh (mAh); when the IoT device sends data at 2.5 mA, the Internet of Things
  • the battery capacity of the device is 175mAh; it can be seen that as the operating current of the battery of the IoT device increases, the effective capacity of the battery decreases.
  • FIG. 3 is a schematic diagram of a scenario provided by an embodiment of the present application. As shown in FIG. 3, the application relates to an access point 101 and multiple sites.
  • the site includes a site 11, a site 12, a site 13, a site 14, and a site 15, respectively.
  • FIG. 4 is a signaling diagram of a data transmission method according to an embodiment of the present disclosure. As shown in FIG. 4, the method includes:
  • the site receives the second data of one or more other sites except the site in the collaboration group to which the site belongs.
  • each of the at least one collaboration group includes a plurality of sites.
  • the site receives second data sent by one or more other sites, for example, other sites directly send the second data to the site, or other sites forward the second data to the site through other sites; when multiple other sites will each When the second data is sent to the site, the order in which the one or more other sites send the respective second data is not limited. For example, one or more other sites may send the second according to the sequence of the sites in the collaboration group. Data, which may also be that one or more other sites send the second data through contention, or one or more other sites may send the second data according to the order specified by the site; the second data sent by different other sites The content can be different.
  • the station sends the first data to one or more other stations.
  • the site sends its own first data to one or more other sites in the collaboration group to which the site belongs, and the other sites do not include the site that sent the first data.
  • site 11, site 12, and site 13 belong to the same collaboration group; site 11 transmits its own data to site 12, which transmits its own data to site 11.
  • the site 11, the site 12, and the site 13 belong to the same collaboration group; the site 11 transmits its own data to the site 12 and the site 13, and the site 12 sends its own data to Site 11 and Site 13, Site 1, 3 send their own data to Site 11 and Site 12.
  • the site 11, the site 12, and the site 13 belong to the same collaboration group; the site 11 transmits its own data to the site 12, and the site 11 transmits its own data to the site 13
  • the site 12 sends its own data to the site 11, and the site 12 sends its own data to the site 3; the site 13 also participates in the collaboration, but the site 13 has no data to send, the site can transmit a null frame (Null packet), To inform the site 11 and the site 12 that they will participate in the collaboration, but no data needs to be transmitted, ie the site 13 sends a null frame to the site 11 and the site 12.
  • Null packet Null packet
  • step 11 The order of execution between step 11 and step S12 is not limited.
  • the site generates a first aggregation frame, where the first aggregation frame includes: first data and second data.
  • the station aggregates the first data and the second data to obtain aggregated data, and the aggregated data is referred to as a first aggregated frame, and the station generates a first aggregated frame.
  • the station splices the data packet of the first data and the data packet of the second data into a growing packet to obtain a first aggregated frame. If a other site sends a null frame to the site, the site does not need to consider the data of the other station when performing data aggregation, that is, it does not need to process the null frame.
  • the other station generates a second aggregation frame, where the second aggregation frame includes: first data and second data, an aggregation order of the first data and the second data in the first aggregation frame, and a first data and a second data in the second aggregation frame.
  • the aggregation order of the two data is the same.
  • other sites participating in the collaboration also aggregate the first data with the second data to obtain aggregated data, and then generate a second aggregated frame for each other site participating in the collaboration.
  • the aggregation order of the data is consistent to ensure that the aggregated frames generated by different sites are the same.
  • the site 11 receives the data transmitted by the site 12 and the data transmitted by the site 13, the site 12 receives the data transmitted by the site 11 and the data transmitted by the site 13, and the site 13 receives the site 11
  • the data is aggregated with the data of the site 13, and then the data of the site 12 is aggregated to generate an aggregated frame; the site 13 also needs to aggregate the data of the site 11 with the data of the site 3, and then aggregate the data of the site 12. Come in and generate aggregated frames.
  • step 13 The order of execution between step 13 and step S14 is not limited.
  • the station sends a first aggregation frame to the access point.
  • the one or more other sites send the second aggregation frame to the access point.
  • the time when the first aggregation frame is sent by the station is the same as the time when the one or more other sites send the second aggregation frame to the access point.
  • the transmit power of the aggregated frame is smaller than the power when the station separately sends the first data to the access point; the transmit power of the second aggregated frame sent by one or more other stations is less than one or more other sites separately sending the second data to the access point. Time power.
  • the transmit power of the station is the power of the first data sent by the station to the access point multiplied by the transmit power coefficient of the station, and the transmit power of other stations is the power of the second data transmitted by other stations separately multiplied by the transmit power coefficient of other stations.
  • the transmission power coefficient of the station is greater than 0 and less than 1
  • the transmission power coefficient of the other station is greater than 0 and less than 1
  • the sum of the transmission power coefficient of the station and the transmission power coefficient of one or more other stations is greater than or equal to 1.
  • the transmit power factor of the site is equal to the transmit power factor of one or more other sites, and the value is 1/N, where N is the total number of sites for this site and one or more other sites, and N is greater than A positive integer equal to 2.
  • the station sends the generated first aggregated frame to the access point, and because the site that generated the aggregated frame in the collaborative group sends the second generated aggregated frame to the access point;
  • the action of transmitting the first aggregated frame and the action of transmitting the second aggregated frame with other stations are performed simultaneously, that is, step S15 and step S16 are simultaneously performed.
  • the “simultaneous” involved in the embodiment is substantial, and does not need to be strictly limited to the time of sending the first aggregated frame and the second aggregated frame without any time. The difference only needs to be satisfied as a whole.
  • the above processing is roughly the same in the time dimension.
  • this allows each of the multiple sites in the collaborative group to send aggregated frames to the access point with less transmit power, reducing the transmit power of a single site and extending the single site's Battery life, from the point of view of the access point, multiple sites in the collaboration group use smaller transmit power to send aggregated frames at the same time.
  • the access point can still receive data from each site normally, not because of the single site.
  • the transmission power is reduced and the data of each station cannot be received normally. Therefore, it is beneficial for multiple sites to simultaneously send aggregated frames to the AP.
  • the time when the first aggregation frame is sent by the station is the same as the time when the first aggregation frame is sent by the one or more other stations, so that the sending power of the first aggregation frame sent by the station is smaller than when the first data is sent to the access point by the station separately.
  • Power, and the transmission power of the second aggregation frame sent by other stations is smaller than the power when the other station separately transmits the second data to the access point; thus, the transmission power of the stations participating in the cooperation is smaller than when the respective data is separately sent to the access point. Power.
  • the site 11 generates an aggregated frame
  • the site 12 generates an aggregated frame
  • the site 13 generates an aggregated frame
  • the site 11, the site 12, and the site 13 simultaneously Sending the generated aggregated frame to the access point
  • the transmission power when the station 11 sends the aggregated frame is smaller than the power when the station 11 sends its own data to the access point separately
  • the transmit power when the station 12 sends the aggregated frame Less than the power when the station 12 transmits its own data to the access point alone
  • the transmission power when the station 13 transmits the aggregated frame is smaller than the power when the station 13 separately transmits its own data to the access point.
  • the transmission power of the station is the power of the station transmitting its own data to the access point separately multiplied by the transmission power coefficient of the station
  • the transmission power of the other stations is the power P of the second data separately transmitted by other stations multiplied by the transmission power of the other stations.
  • the transmission power of the station may be agreed by a protocol, such as a transmission power coefficient of the agreed site.
  • the transmission power coefficient of each station participating in the collaboration is 1/N
  • the transmission power of each station participating in the cooperation is 1/N times of the data transmitted by the station separately, where N is the participation in the cooperation group.
  • the total number of stations that send aggregated frames. N is a positive integer greater than or equal to 2.
  • the transmission power coefficient of each station participating in the collaboration is 1.5/N
  • the transmission power of each station participating in the cooperation is 1.5/N times of the data transmitted by the station separately, where N is in the cooperation group.
  • the number of stations participating in the transmission of the aggregated frame, N being a positive integer greater than or equal to 2.
  • N is the number of all the sites in the collaboration group. If some sites in the collaboration group participate in sending the aggregation frame, the value of N is The number of partial sites in the collaboration group that send aggregated frames.
  • the transmission power coefficients of each of the stations participating in the cooperation are different; or, the transmission power coefficients of some of the stations participating in the cooperation are the same, and the transmission power coefficients of the other stations are different.
  • the transmission power of the stations participating in the cooperation may be the same or different.
  • the station in the collaboration group generates an aggregation frame according to the first data of the first data and the received second data, where the second data is data of one or more other sites except the site in the collaboration group to which the site belongs. Then, the site that generated the aggregated frame sends its respective aggregated frame to the access point at the same time.
  • One or more sites in the collaboration group can perform the above processes separately.
  • the data in the aggregated frames generated by the participating sites is the same, and the aggregation order is the same, thereby ensuring the consistency of the aggregated frames of different sites.
  • the transmit power of the aggregate frame sent by each station is smaller than the power when the station separately sends its own data to the access point, and the total transmit power of the cooperative group can be maintained to meet the normal receiving requirement of the access point side; and the single site is reduced.
  • the transmission power can effectively reduce the current of the station and increase the service life of the station.
  • the total capacity of the battery of the IoT device can be increased, and the life of the battery of the IoT device can be prolonged.
  • FIG. 5 is a signaling diagram of another data transmission method according to an embodiment of the present application. As shown in FIG. 5, the method includes:
  • the access point broadcasts a trigger frame, where the trigger frame includes information required by the station to determine the transmit power of the station.
  • the first field in the user information field corresponding to the site in the collaboration group in the trigger frame is the same, and the first field is used to indicate the resource unit of the aggregated frame; that is, the first in the user information field corresponding to the site in the trigger frame a field, and a first field in a user information field corresponding to one or more other sites in the trigger frame, the first field of the site indicating a resource unit carrying the first aggregated frame, one or more other sites
  • the first field indicates a resource unit that carries the second aggregated frame, and the resource unit that carries the first aggregated frame is the same as the resource unit that carries the second aggregated frame.
  • the first aggregation frame sent by the station may be sent on the full bandwidth, and the second aggregate frame sent by one or more other stations may also be in the manner agreed by the protocol.
  • the resource indication field in the user information field corresponding to each station participating in the cooperation in the trigger frame may not be used to indicate the resource unit, but may be used to indicate the transmission power coefficient of each station.
  • the second field in the user information field corresponding to the site in the collaboration group in the trigger frame is the same, and the second field is used to indicate the coding type of the bearer aggregation frame; that is, in the user information field corresponding to the site in the trigger frame.
  • the second field, and the second field in the user information field corresponding to one or more other sites in the trigger frame indicates the coding type of the first aggregate frame, one or more other sites.
  • the second field indicates the encoding type of the second aggregated frame, and the encoding type of the first aggregated frame is the same as the encoding type of the second aggregated frame.
  • the third field in the user information field corresponding to the site in the collaboration group in the trigger frame is the same, and the third field is used to indicate the modulation and coding system of the aggregated frame; that is, in the user information field corresponding to the site in the trigger frame.
  • the third field is the same as the third field in the user information field corresponding to one or more other sites in the trigger frame, and the third field of the site indicates the modulation and coding mode of the first aggregated frame, one or more other
  • the third field of the station indicates a modulation and coding mode of the second aggregated frame, and the modulation and coding mode of the first aggregated frame is the same as the modulation and coding mode of the second aggregated frame.
  • the fourth field in the user information field corresponding to the site in the collaboration group in the trigger frame is the same, and the fourth field is used to indicate the dual carrier modulation of the aggregation frame; that is, in the user information field corresponding to the site in the trigger frame.
  • the fourth field, and the fourth field in the user information field corresponding to one or more other stations in the trigger frame indicates dual carrier modulation of the first aggregated frame, one or more other
  • the fourth field of the station indicates dual carrier modulation of the second aggregated frame, and the dual carrier modulation mode of the first aggregated frame is the same as the dual carrier modulation mode of the second aggregated frame.
  • the fifth field in the user information field corresponding to the site in the collaboration group in the trigger frame is the same, and the fifth field is used to indicate the spatial stream allocation. That is, the fifth field in the user information field corresponding to the site in the trigger frame is the same as the fifth field in the user information field corresponding to one or more other sites in the trigger frame, and the fifth field of the site
  • the field indicates the spatial stream allocation of the first aggregated frame
  • the fourth field of the one or more other stations indicates the spatial stream allocation of the second aggregated frame
  • the spatial stream allocation manner of the first aggregated frame and the spatial stream allocation manner of the second aggregated frame the same.
  • the information required to determine the transmit power carried in the trigger frame includes but is not limited to the following implementation modes:
  • the information required to determine the transmit power in the trigger frame indicates that the number of sites that send the aggregated frame in the cooperative group is N or the transmit power coefficient of the site that sends the aggregated frame in the cooperative group is 1/ N
  • the station can determine the transmission power is 1/N times of the power when the station sends the first data to the access point separately according to the number of stations N or the transmission power coefficient 1/N. It can be understood that if the cooperation group All the sites participate in the sending of the aggregation frame. The value of N is the number of all the sites in the collaboration group. If some sites in the collaboration group participate in sending the aggregation frame, the value of N is the part of the collaboration group that sends the aggregation frame. The number of sites.
  • N is a positive integer greater than or equal to 2. It can be understood that if the user information field corresponding to the site other than the site in the collaboration group is not included in the trigger frame, only the user information field corresponding to the site in the collaboration group is included, and the site may also be based on the user information field in the trigger frame. Number, determine its transmit power factor.
  • the information required to determine the transmit power in the trigger frame indicates the transmit power coefficient ki, i ⁇ [2, N], i of the i th station among the N stations participating in the transmit aggregate frame.
  • a positive integer the sum of the transmission power coefficients of the N stations is greater than or equal to 1; then the transmission power of the i-th station is ki times the power when the station i in the N stations separately transmits data to the access point.
  • the information required to determine the transmit power in the trigger frame is that the user information field corresponding to the site includes a target received signal strength indication field, and the signal strength indication field field indicates the transmit power.
  • the information required to determine the transmit power in the trigger frame is a resource allocation field corresponding to the station in the trigger frame and a target received signal strength indication field, and a resource allocation field corresponding to the station indicates a transmit power coefficient of the station.
  • the target received signal strength indication field corresponding to the station is used by the station to determine the power at which the station separately transmits the first data. It can be understood that when the resource unit allocation field of each station is not used to carry the transmission power coefficient, and the other field carries the transmission power coefficient of each station participating in the cooperation, the resource unit allocation field of each station participating in the cooperation may be used to indicate each Site resource unit.
  • the site needs to be instructed to simultaneously send aggregated frames with other sites.
  • the access point may broadcast a trigger, so that the station in the collaboration group may receive the trigger frame; wherein the trigger frame indicates that the station sends data after the preset time, for example, in the scenario shown in FIG. 3, the access point
  • the broadcast trigger frame is received by the site 11, the site 12, and the site 13 participating in the collaboration.
  • the site 11, the site 12, and the site 13 all simultaneously have a short interframe space (SIFS) time after the end of the trigger frame.
  • SIFS short interframe space
  • FIG. 6 is a schematic diagram of a frame structure of a trigger frame provided by the present application.
  • the trigger frame includes a frame control field, a duration field, an RA field, and a timing advance (TA) field.
  • TA timing advance
  • a common info field, a padding field, a frame check sequence (FCS) field, and a triggering frame further includes M user info fields, where M is greater than or equal to 2 A positive integer, the N user information fields in the M user information fields are in one-to-one correspondence with the N sites participating in the collaboration group, and the user information field corresponding to the site is used to carry the parameter settings of the site corresponding to the user information field.
  • M is greater than or equal to 2 A positive integer
  • the N user information fields in the M user information fields are in one-to-one correspondence with the N sites participating in the collaboration group
  • the user information field corresponding to the site is used to carry the parameter settings of the site corresponding to the user information field.
  • Each of the N user information fields includes a last twelve bits of an association identifier (AID), a first field, a second field, a third field, a fourth field, a fifth field, and , a target receive signal strength indicator (Target RSSI) field, a reserved field (reserved), a trigger dependent user information (trigger dependent user info) field, etc.; wherein, the bottom ten of the AID in the user information field The second digit is the last twelve digits of the AID of the site corresponding to the user information field.
  • AID association identifier
  • Target RSSI target receive signal strength indicator
  • Trigger dependent user info trigger dependent user info
  • the first field in the user information field corresponding to the site in the collaboration group in the trigger frame is the same, the first field is used to indicate the resource unit that carries the aggregated frame, and preferably, the first field is a resource unit allocation. (RU Allocation) field; the second field in the user information field corresponding to the site in the collaboration group in the trigger frame is the same, the second field is used to indicate the coding type of the aggregation frame, and preferably, the second field is the coding type (coding The type field is the same as the third field in the user information field corresponding to the station in the collaboration group, and the third field is used to indicate the modulation and coding system of the aggregated frame. Preferably, the third field is a modulation and coding system (modulation).
  • modulation modulation and coding system
  • the fourth field in the user information field corresponding to the site in the collaboration group in the trigger frame is the same, and the fourth field is used to indicate dual carrier modulation of the aggregation frame.
  • the fourth field is dual A carrier-modulation (DCM) field; a field in a user information field corresponding to a site in a collaboration group in a trigger frame The same field, a fifth field indicating the aggregate frame space for flow distribution, preferably, the fifth spatial stream allocation field (spatial stream allocation, SS Allocation) field.
  • DCM dual A carrier-modulation
  • the first field in the user information field corresponding to the site in the collaboration group is the same, the second field in the user information field corresponding to the site in the collaboration group is the same, and the user information field corresponding to the site in the collaboration group is The third field is the same, the fourth field in the user information field corresponding to the site in the collaboration group is the same, and the fifth field in the user information field corresponding to the site in the collaboration group is the same, thereby ensuring that the participating sites are in the sending aggregation.
  • MCS modulation and coding scheme
  • the aggregation frame is sent in exactly the same way, so that the multiple aggregated frames received by the access point achieve power superposition, ensuring that the reduction of the transmission power of a single station does not affect the reception of data of the access points by the access point.
  • the user information field 1 in the trigger frame corresponds to the STA11
  • the user information field 2 in the trigger frame corresponds to the STA12
  • the user information field 3 in the trigger frame corresponds to the STA13
  • the RU Allocation field of the information field 2 is the same as the RU Allocation field of the user information field 3
  • the coding type field of the user information field 1 is the same as the coding type field of the user information field 2 and the coding type field of the user information field 3
  • the MCS field is the same as the MCS field of the User Information field 2 and the MCS field of the User Information Field 3
  • the DCM field of the User Information Field 1 is the same as the DCM field of the User Information Field 2 and the DCM field of the User Information Field 3,
  • the SS Allocation field is the same as the SS Allocation field of User Information Field 2 and the SS Allocation field of User Information Field 3.
  • the trigger frame further includes information required by the station to determine the transmission power when transmitting the aggregated frame. There are three implementations available here.
  • the triggering frame indicates that the sending power is 1/N times the power when the station separately sends its own data to the access point. It can be understood that if all the sites in the collaborative group participate in sending the aggregated frame, The value of N is the number of all the sites in the collaboration group. If some sites in the collaboration group participate in sending the aggregation frame, the value of N is the number of sites in the collaboration group that send the aggregation frame. N is a positive integer greater than or equal to 2. Therefore, the transmission power when the station transmits the aggregated frame to the access point is P/N, and P is the power when the station separately transmits its own first data to the access point. It should be noted that the transmission power is 1/N times the power when the station separately transmits its own data to the access point, and may not be indicated by the trigger frame, but may be predetermined.
  • P 1 is a single station 11 transmission power of its own data to the access point
  • P 2 is a single site 12
  • P 3 is the power when the station 13 separately transmits its own data to the access point; after the site 11 and the station 12 participate in the cooperation process of the present application, the site 11 accesses
  • the transmission power when the point transmits the aggregated frame is P 1 /3
  • the transmission power when the station 12 transmits the aggregated frame to the access point is P 2 /3
  • the transmission power when the station 13 transmits the aggregated frame to the access point is P 3 / 3.
  • the trigger frame indicates a transmit power coefficient ki of the i-th station in the cooperative group, where i ⁇ [2, N], i is a positive integer, and a sum of transmission power coefficients of all stations is greater than Equal to 1. Therefore, the transmission power when the station transmits the aggregated frame to the access point is ki*P, where P is the power when the station separately transmits its own first data to the access point.
  • the signal-to-noise ratio (SNR) of an aggregated frame can be guaranteed when a single station transmits an aggregated frame; when the sum of the transmission power coefficients of all stations is greater than 1, the access point can be increased. Receive energy, thereby improving the robustness of data reception and extending the communication distance.
  • the Target RSSI field in the user information field in the trigger frame indicates the sending power of the site corresponding to the user information field.
  • the Target RSSI field in the user information field corresponding to the site indicates that the transmission power of the site is P/N, and P is the power when the station separately sends its own first data to the access point; or, with the site
  • the Target RSSI field in the corresponding user information field indicates the transmission power coefficient ki of the station, so that the transmission power of the station is ki*P, and P is the power when the station separately transmits its own first data to the access point, and this
  • the sum of the transmit power coefficients of all stations is greater than or equal to 1, or the Target RSSI field of each station in the trigger frame indicates the transmit power of the aggregated frame sent by the station.
  • the RU Allocation field corresponding to the site in the user information field in the trigger frame indicates the transmit power coefficient of the site
  • the Target RSSI field is used by the site to determine the power of the first data sent by the site separately
  • the power P of the first data sent by the station may be determined according to the Target RSSI field, and then the station multiplies the P by the RU Allocation field to indicate the transmission power coefficient ki of the station, and obtains the transmission power of the aggregate frame sent by the station.
  • the UL Target RSSI field in the user info field in the trigger frame is modified into a transmit power coefficient field, so that the actual transmit power of the aggregated frame transmitted by the station is equal to the transmit power when transmitted alone multiplied by the power transmission coefficient; or, yet another
  • the RU Allocation field in each user information field may carry a transmission power coefficient of each station participating in the cooperation.
  • the station may first calculate the original transmit power according to the UL target RSSI field, and then calculate the actual transmit power of the aggregate frame sent by the station according to the transmit power coefficient indicated by the RU Allocation field, and the actual transmit power is equal to the original transmit power multiplied by Power transmission factor.
  • step S21 only needs to be executed before step S26.
  • step S21 can also be performed after step S23.
  • the site receives the second data of one or more other sites in the collaboration group to which the site belongs except the site.
  • this step can be referred to step S11 of FIG. 4.
  • the station sends the first data to one or more other stations.
  • this step can be referred to step S12 of FIG. 4.
  • the site generates a first aggregation frame, where the first aggregation frame includes: first data and second data.
  • the aggregation relationship regarding the data in the aggregated frame may include, but is not limited to, the following implementation manners:
  • the first embodiment the aggregation order of the first data and the second data in the aggregated frame corresponds to the order of the user information fields in the trigger frame.
  • the second implementation manner the aggregation order of the first data and the second data in the aggregation frame corresponds to the order relationship between the stations in the collaboration group.
  • the aggregation order of the first data and the second data in the aggregation frame corresponds to a chronological relationship when the station sends the first data and one or more other stations send the second data.
  • the site when generating an aggregated frame, the site aggregates the first data and the second data according to a certain order relationship.
  • a site when generating an aggregated frame, it can be implemented in the following ways.
  • the first implementation manner is: the aggregation order corresponds to the order of the user information field in the trigger frame broadcast by the access point; at this time, the station sequentially processes the user information field according to the trigger frame sent by the access point. A data and a second data are aggregated to obtain an aggregated frame.
  • the user information field in the trigger frame corresponds to the site one by one
  • the user information field 1 corresponds to the site 11
  • the user information field 2 corresponds to the site 13, and the user information field 3 and the site Corresponding to 12
  • Site 1 can aggregate the data of Site 11 with the data of Site 13, and then aggregate the data of Site 12
  • Site 12 can aggregate the data of Site 11 with the data of Site 13, and then the data of Site 12. Aggregation comes in;
  • site 13 can aggregate the data of site 11 with the data of site 13 and then aggregate the data of site 12.
  • the second implementation manner is: the aggregation order corresponds to the order relationship between the sites in the collaboration group; at this time, the site sequentially aggregates the first data and the second data according to the order relationship between the sites in the collaboration group. , get the aggregated frame.
  • each site in the collaboration group is site 13, site 11, site 12, and each site will aggregate the data of the site 13 with the data of the site 11, and then The data from site 12 is then aggregated.
  • the third implementation manner is: the aggregation order corresponds to the time sequence relationship of the data sent by the station; at this time, the station sequentially aggregates the first data and the second data according to the time sequence relationship of the data sent by the stations participating in the collaboration to obtain an aggregation. frame.
  • the site 11 first transmits the data of the site itself, the site 13 transmits its own data, and the site 12 transmits its own data, and the site 11 sequentially receives the data and site of the site 13. 12, the site 12 will receive the data of the site 11 and the data of the site site 13 in turn, and the site 13 will receive the data of the site 11 and the data of the site site 12 in turn, but each site can determine the order in which the data is sent separately. For site 11, site 13, site 12; then each site will first aggregate the data of site 11 with the data of site 13, and then the data of site 12 will be aggregated.
  • the other station generates a second aggregation frame, where the second aggregation frame includes: first data and second data, an aggregation order of the first data and the second data in the first aggregation frame, and a first data and a second data in the second aggregation frame.
  • the aggregation order of the two data is the same.
  • step S24 the process of generating aggregated frames by other stations.
  • the station sends a first aggregation frame to the access point.
  • the one or more other stations send the second aggregation frame to the access point.
  • the time when the first aggregation frame is sent by the station is the same as the time when the one or more other stations send the second aggregation frame, and the station sends the first aggregation frame.
  • the power is less than the power when the station separately sends the first data to the access point; the transmit power of the second aggregated frame sent by one or more other stations is less than the power when the one or more other stations separately send the second data to the access point.
  • the access point may broadcast a trigger frame to the site in the collaboration group, where the trigger frame includes information required by the station to determine the transmit power, and the access point may determine the transmit power when the aggregate frame is sent according to the trigger frame, and send When the power is smaller than the power when the station sends its own data to the access point, the total transmit power of the cooperative group can be maintained to meet the normal receiving requirement of the access point.
  • the access point may indicate the sending power when the station in the cooperative group sends the aggregated frame, and ensure that the sending power may be less than the power when the station separately sends the first data to the access point; thereby reducing the sending power of the single station, effectively reducing the station.
  • the current increases the lifetime of the station; and provides a sequence of relationships indicating the data in the aggregated frames in a number of ways to ensure consistency in the aggregation order of the aggregated frames.
  • FIG. 7 is a signaling diagram of still another data transmission method according to an embodiment of the present application. As shown in FIG. 7, the method includes:
  • the station sends a control frame to other stations, where the control frame includes information required by the station to determine the transmit power.
  • the control frame includes a common information field and N-1 user information fields. It can be understood that if all the sites in the collaboration group participate in sending the aggregation frame, the value of N is the value of all the sites in the collaboration group. If the number of sites in the collaboration group participate in sending aggregated frames, the value of N is the number of partial sites in the collaboration group that send the aggregated frames. Therefore N is the total number of sites participating in the collaboration and one or more other sites.
  • N is a positive integer greater than or equal to 2; N-1 is the number of one or more other sites participating in the collaboration, and N-1 user information fields are in one-to-one correspondence with one or more other sites participating in the collaboration;
  • the field includes a first field, a second field, a third field, a fourth field, and a fifth field, where the first field is used to indicate a resource unit that carries the aggregated frame, and the second field is used to indicate an encoding type of the aggregated frame.
  • the third field is used to indicate a modulation and coding scheme of the aggregated frame, the fourth field is used to indicate dual carrier modulation of the aggregated frame, and the fifth field is used to indicate spatial stream allocation.
  • the control frame includes information required by the station to determine the transmit power, which may include, but is not limited to, the following implementation manners.
  • the first implementation manner is: the information required to determine the transmission power in the control frame indicates that the number of stations participating in the collaboration in the collaboration group is N or the transmission power coefficient of the station participating in the collaboration group is 1/N, and the station may According to the number of stations N or the transmission power coefficient is 1/N, the transmission power is determined to be 1/N times the power when the station separately transmits the first data to the access point.
  • the information required to determine the transmission power in the control frame indicates the transmission power coefficient ki of the i-th station in the N stations, i ⁇ [2, N], i is a positive integer, N sites
  • the sum of the transmission power coefficients is greater than or equal to 1; then the transmission power of the i-th station is ki times the power when the station separately transmits the first data to the access point.
  • the transmit power coefficients of the N stations may be included in the user information fields corresponding to the N sites.
  • the site needs to be instructed to simultaneously send aggregated frames with other sites.
  • One of the other sites in the collaboration group may send a control frame to the site participating in the collaboration, so that the participating sites in the collaboration group may receive the control frame, where the control frame includes information required by the site to determine the transmission power;
  • Other sites that send control frames can be sites that participate in collaboration or sites that do not participate in collaboration.
  • the station sends a control frame to other stations participating in the collaboration, and the control frame includes information required by the station to determine the transmit power.
  • the control frame includes information for determining the transmission power of all stations participating in the cooperation.
  • the control frame may include participation.
  • the transmission power coefficient of other stations that cooperate may not include the transmission power coefficient of the station that transmits the control frame.
  • Control frames can also be referred to as sync frames, trigger frames, and the like.
  • FIG. 8 is a schematic diagram of a frame structure of a control frame provided by the present application.
  • the control frame includes a common information field and N-1 user information fields, wherein each of the N-1 user information fields The user information field is in one-to-one correspondence with N-1 other stations except the station that sends the control frame in the N stations participating in the collaboration group.
  • the control frame may further include a frame control field, a duration field, and an RA.
  • the field, the TA field, the padding field, and the FCS field; the user information field in the control frame corresponds to N-1 other sites one by one, that is, the user information field of the station in the control frame where the control frame is not transmitted.
  • each of the N-1 user information fields includes the last twelve digits of the AID; the last twelve digits of the AID in the user information field are the last ten digits of the AID of the site corresponding to the user information field. Two bits; and each user information field also includes a Target RSSI field, a reserved field, and a collector dependent user info field.
  • the common information field includes a first field, a second field, a third field, a fourth field, and a fifth field, where the first field is used to indicate a resource unit of the aggregated frame, and preferably, the first field is a RU Allocation field; The second field is used to indicate the coding type of the aggregated frame.
  • the second field is a coding type field
  • the third field is used to indicate a modulation and coding system of the aggregated frame.
  • the third field is an MCS field
  • the fourth field is a DCM field
  • the fifth field is used to indicate spatial stream allocation of the aggregated frame, and preferably, the fifth field is an SS Allocation field.
  • the first field, the second field, the third field, the fourth field, and the fifth field in the common information field are corresponding to all participating sites, by carrying the first field, the second field, and the common information field
  • the third field, the fourth field, and the fifth field are not carried in the N-1 user information fields, which can avoid repeated transmission of fields, save signaling overhead, and save network resources.
  • the above control frame further includes information required by the station to determine the transmission power when transmitting the aggregated frame. Two implementations are provided here.
  • the control frame indicates that the sending power is 1/N times the power when the station separately sends its own data to the access point, and N is the number of stations participating in the cooperative group, that is, accessing The number of sites that send aggregated frames, where N is a positive integer greater than or equal to 2. Therefore, the transmission power when the station transmits the aggregated frame to the access point is P/N, and P is the power when the station separately transmits its own first data to the access point. It should be noted that the transmission power is 1/N times the power when the station separately transmits its own data to the access point, and may not be indicated by the control frame, but may be predetermined by the protocol.
  • the control frame indicates a transmission power coefficient ki of the i-th station in the cooperation group, where i ⁇ [2, N], i is a positive integer, and the sum of transmission power coefficients of all stations is greater than Equal to 1. Therefore, the transmission power when the station transmits the aggregated frame to the access point is ki*N, where P is the power when the station separately transmits its own first data to the access point.
  • the signal-to-noise ratio (SNR) of an aggregated frame can be guaranteed when a single station transmits an aggregated frame; when the sum of the transmission power coefficients of all stations is greater than 1, the access point can be increased. Receive energy, thereby improving the robustness of data reception and extending the communication distance.
  • step S31 only needs to be executed before steps S36 and S37.
  • step S31 may also be performed after step S33.
  • this step can be referred to step S11 of FIG. 4.
  • the station sends the first data to one or more other stations.
  • this step can be referred to step S12 of FIG. 4.
  • the site generates a first aggregation frame, where the first aggregation frame includes: first data and second data.
  • the first embodiment the aggregation order of the first data and the second data in the aggregated frame corresponds to the order of the user information fields in the control frame.
  • the second embodiment the aggregation order of the first data and the second data in the aggregated frame corresponds to the order relationship between the stations in the collaborative group.
  • the aggregation order of the first data and the second data in the aggregation frame corresponds to a chronological relationship between the first data sent by the station and the second data sent by the other station.
  • the site when generating an aggregated frame, the site aggregates the first data and the second data according to a certain order relationship.
  • a site when generating an aggregated frame, it can be implemented in the following ways.
  • the first implementation manner is: the order relationship of each data in the aggregation frame corresponds to the order of the user information fields in the control frame sent by the station; at this time, the station sequentially processes the order according to the order of the user information fields in the control frame. A data and a second data are aggregated to obtain an aggregated frame. Because the user information field of the station that does not have the control frame is not in the control frame, the data aggregation order of the station that sends the control frame may be fixedly set in advance, for example, the data of the station that sends the control frame is first aggregated, or the control frame is sent last. The data of the site is aggregated.
  • the site 11 sends a control frame to the site 12 and the site 13 participating in the collaboration.
  • the control frame includes a user information field 1 and a user information field 2, and the user information field 1 corresponds to the site 12, and the user information field 2 Corresponding to the site 13;
  • the site 11 can aggregate the data of the site 12 with the data of the site 13, and then aggregate the data of the site 11;
  • the site 12 aggregates the data of the site 12 with the data of the site 13, and then aggregates
  • the data of the site 11 is then aggregated;
  • the site 13 aggregates the data of the site 12 with the data of the site 13, and then aggregates the data of the site 11.
  • the second implementation manner is: the order relationship of each data in the aggregation frame corresponds to the order relationship between the sites in the collaboration group; at this time, the site sequentially performs the first according to the order relationship between the sites in the collaboration group.
  • the data and the second data are aggregated to obtain an aggregated frame.
  • the third implementation manner is: the aggregation order corresponds to the time sequence relationship of the data sent by the station; at this time, the station sequentially aggregates the first data and the second data according to the time sequence relationship of the data transmitted by the stations participating in the collaboration, and obtains the first data and the second data in sequence. Aggregate frames.
  • the other station generates a second aggregation frame, where the second aggregation frame includes: first data and second data, an aggregation order of the first data and the second data in the first aggregation frame, and a first data and a second in the second aggregation frame.
  • the aggregation order of the two data is the same.
  • step S34 the process of generating aggregated frames by other sites may participate in step S34.
  • the station sends a first aggregation frame to the access point.
  • the one or more other stations send the second aggregation frame to the access point.
  • the time when the first aggregation frame is sent by the station is the same as the time when the one or more other stations send the second aggregation frame, and the station sends the first aggregation frame.
  • the power is less than the power when the station separately sends the first data to the access point; the transmit power of the second aggregated frame sent by one or more other stations is less than the power when the one or more other stations separately send the second data to the access point.
  • step S31 the description of the transmission power in steps S36 and S37 can be referred to step S31.
  • the station may send a control frame to other stations participating in the collaboration in the collaboration group, or one other station sends a control frame to the site, where the control frame includes information required by the station to determine the transmission power, and the access point may be based on
  • the control frame determines the transmit power when the aggregated frame is sent, and the transmit power is smaller than the power when the first data is sent to the access point by the station.
  • the total transmit power of the cooperative group can be maintained to meet the normal receiving requirement of the access point. Therefore, the access point may indicate the sending power when the station in the cooperative group sends the aggregated frame, and ensure that the sending power may be less than the power when the station separately sends the first data to the access point; thereby reducing the sending power of the single station, effectively reducing the station.
  • the current increases the lifetime of the station; and provides a sequence of relationships indicating the data in the aggregated frames in a number of ways to ensure consistency in the aggregation order of the aggregated frames.
  • FIG. 9 is a signaling diagram of still another data transmission method according to an embodiment of the present application. As shown in FIG. 9, the method includes:
  • Step S41 has the following implementation modes:
  • step S41 the station receives the group target wake time information broadcast by the access point, and the target wake time information indicates that the website in the cooperation group wakes up; the station wakes up according to the target wake time information.
  • the second implementation manner of the step S41 the station receives the association identifier corresponding to the collaboration group sent by the access point; the station receives the management frame broadcast by the access point, and the bit corresponding to the association identifier in the management frame is 1, the bit The bit characterizes the site in the wake-up collaboration group; the site wakes up based on the management frame.
  • step S41 the site negotiates target wake-up time information with one or more other sites participating in the collaboration, and the target wake-up time information indicates that the site in the collaborative group wakes up at a preset time point; the site wakes up according to the target The information wakes up; the site sends the target wake time information to the access point.
  • the sites in the collaboration group need to participate in the collaborative site without the problem of being awake at the same time before the collaboration, so it is recommended to give a power save mechanism to these sites.
  • the site needs to wake up before the site receives and sends data.
  • the access point schedules the site to wake up in a packet form. Specifically, the access point establishes a group target wake time (Groupcast TWT) information; the access point broadcasts the Groupcast TWT information, and the groupcast The TWT information indicates that the site in the collaboration group wakes up; the site can receive the Groupcast TWT information, and then the site wakes up according to the Groupcast TWT information; thus, each site that receives the Groupcast TWT information wakes up according to the Groupcast TWT information.
  • Groupcast TWT group target wake time
  • the access point schedules the site to wake up at the same time. Specifically, the access point allocates an AID to the collaboration group, and associates the AID with the collaboration group, and the access point and the collaboration group The corresponding AID is sent to each site in the collaboration group; the access point configures a management frame, and the management frame has a bit corresponding to the AID, and the bit is set to 1, so that the bit characterizes the site in the wakeup cooperation group.
  • the management frame may be a traffic indication map (TIM); the access point broadcasts the management frame; thus, the site receives the AID corresponding to the collaboration group, and the site receives the management frame, and the site wakes up according to the management frame. Therefore, each site in the collaboration group wakes up at the same time according to the AID corresponding to the collaboration group and the management frame.
  • TIM traffic indication map
  • the participating sites in the collaboration group negotiate a target wake time (TWT) information, and the TWT information indicates that the site in the collaboration group wakes up at a preset time point; After the TWT information is negotiated, the station can wake up according to the negotiated TWT information; then, the station sends the negotiated TWT information to the access point.
  • TWT target wake time
  • the station sends the first data to one or more other stations.
  • the site generates a first aggregation frame, where the first aggregation frame includes: first data and second data.
  • the other station generates a second aggregation frame, where the second aggregation frame includes: first data and second data, an aggregation order of the first data and the second data in the first aggregation frame, and a first data and a second data in the second aggregation frame.
  • the aggregation order of the two data is the same.
  • the station sends a first aggregation frame to the access point.
  • the one or more other stations send the second aggregation frame to the access point.
  • the time when the first aggregation frame is sent by the station is the same as the time when the one or more other stations send the second aggregation frame, and the station sends the first aggregation frame.
  • the power is less than the power when the station separately sends the first data to the access point; the transmit power of the second aggregated frame sent by one or more other stations is less than the power when the one or more other stations separately send the second data to the access point.
  • step S46 and step S47 each of the stations participating in the cooperation simultaneously transmits the generated aggregated frames to the access point in a space-time block coding (STBC) manner.
  • STBC space-time block coding
  • this step is based on FIG. 4-7, and the station can adopt the STBC mode when transmitting the aggregated frame.
  • each station is equivalent to one antenna.
  • the encoding matrix of the two sites when two sites participate in collaboration, set the encoding matrix of the two sites to c 1 and c 2 represent two data; the coding matrix characterizes that after the aggregated frame is encoded, the data represented by every two symbols is transmitted by two stations using the coding matrix in two time slots.
  • Site 1 and Site 2 use the first time slot to data a 1 and data * sent to the access point, station 1 and station 2 use the second time slot to data a 2 and data Sent to the access point; for data b 1 and b 2 , Site 1 and Site 2 use the second time slot to data b 1 and data Sent to the access point, Site 1 and Site 2 use the fourth time slot to data b 2 and data
  • the data is sent to the access point; for the data that needs to be sent later, the two data are still used to form an encoding matrix for transmission.
  • the station wakes up according to the indication of the access point, or wakes up between the stations to ensure that the sites in the collaboration group are awake at the same time before the collaboration; the site generates an aggregation frame, and the site aggregates in STBC mode.
  • the frame is sent to the access point. Since the STBC data transmission mode can provide better diversity gain, after the STBC mode is used to transmit the aggregation frame, the reception performance of the access point can be improved, and the error rate can be reduced.
  • FIG. 10 is a schematic flowchart of a data transmission result confirmation provided by an embodiment of the present application. It can be understood that the present embodiment can be applied to an error recovery process after the access point AP receives the first aggregated frame sent by the station and the second aggregated frame sent by one or more stations, and the embodiment can also be applied to In other scenarios, there is no limit here.
  • a scenario in which the access point AP receives the first aggregated frame sent by the station and the second aggregated frame sent by one or more stations is taken as an example.
  • the method includes:
  • the access point sends an acknowledgement frame or a block acknowledgement frame to the station participating in the collaboration.
  • the station determines whether an acknowledgement frame or a block acknowledgement frame sent by the access point is received, or the station determines whether the bit corresponding to the station in the received block acknowledgement frame is 1 or 0.
  • an acknowledgment frame means that when the station receives the acknowledgment frame, it indicates that the data sent by the station to the access point is correctly received by the access point; when the station does not receive the acknowledgment frame, It is characterized that the data sent by the station to the access point is not correctly received by the access point.
  • the Block Acknowledgement (BA) is in the form of a bitmap, and each bit in the bitmap corresponds to a MAC service data unit (MAC).
  • MSDU Service Data Unit
  • MSDU Service Data Unit
  • the station when the station does not receive the block acknowledgment frame, it indicates that all the stations in the collaboration group send data to the access point are not correctly received by the access point; when the station receives the block acknowledgment frame, Determining that the corresponding bit of the station is 0, determining that the data sent by the station to the access point is not correctly received by the access point, and if it is determined that the bit corresponding to the station is 1, determining that the data sent by the station to the access point is determined to be The access point receives it correctly.
  • MSDU Service Data Unit
  • the access point After receiving the aggregated frame sent by the participating stations, the access point needs to send feedback information to the participating stations, and the feedback information is the above acknowledgement frame or block acknowledgement frame.
  • the station sends the confirmation request information to one or more other stations in the collaboration group when determining that the acknowledgement frame or the block acknowledgement frame sent by the access point is not received, where the acknowledgement frame indicates that the access point successfully receives the first An aggregated frame, the acknowledgment request information is used to determine whether other stations receive an acknowledgment frame or a block acknowledgment frame.
  • the site needs to query one or more other sites in the collaboration group. Further, the site sends confirmation request information to one or more other sites participating in the collaboration to inquire whether other sites have received an acknowledgement frame or a block acknowledgement frame.
  • the other station sends a confirmation response message to the station.
  • the acknowledgment response information indicates whether the other station receives the acknowledgment frame or the block acknowledgment frame, and when the acknowledgment response message indicates that the other station receives the block acknowledgment frame, the acknowledgment response information carries the specific information in the block acknowledgment frame.
  • the station determines the A data transmission was unsuccessful.
  • the station determines that the acknowledgment response information indicates that the other station does not receive the acknowledgment frame, the station determines that the data sent by the station to the access point is not correctly received by the access point.
  • the station determines that the acknowledgment response message indicates that the other station has not received the block acknowledgment frame, the station determines that all the stations in the coordinating group send data to the access point are not correctly received by the access point, and of course, the station can determine that the station itself is accessing The data sent by the point is not correctly received by the access point; if the station confirms that the response information indicates that the bit corresponding to the current station in the block acknowledgement frame received by the other station is 0, the station determines that the data sent by the station to the access point is not The access point receives it correctly.
  • the sites in the collaboration group can be retransmitted.
  • the station determines that the first data transmission is successful.
  • the station determines that the acknowledgment response information indicates that the other station receives the acknowledgment frame, the station determines that the data sent by the station to the access point is correctly received by the access point; or If the station determines that the acknowledgment response information indicates that the bit corresponding to the current station in the block acknowledgment frame received by the other station is 1, the station determines that the data sent by the one or more other stations to the access point is correctly received by the access point.
  • the site does not need to retransmit.
  • the station determines to receive an acknowledgement frame sent by the access point, where the acknowledgement frame indicates that the access point successfully receives the first aggregated frame, or the station determines that the bit corresponding to the site in the received block acknowledgement frame is 1 , the site determines that the first data is successfully sent.
  • the station determines that the access point successfully receives the data sent by the site.
  • the station determines that the access point successfully receives the data sent by the site.
  • the station when determining that the acknowledgment frame or block acknowledgment frame sent by the access point is not received, the station asks one or more other sites in the collaboration group whether an acknowledgment frame or a block acknowledgment frame is received, and the site passes the inquiry.
  • One or more other sites confirm the reception and avoid retransmission, reducing transmission overhead and saving network resources.
  • FIG. 11 is a schematic flowchart diagram of another data transmission result confirmation provided by an embodiment of the present application. It can be understood that the present embodiment can be applied to an error recovery process after the access point AP receives the first aggregated frame sent by the station and the second aggregated frame sent by one or more stations, and the embodiment can also be applied to In other scenarios, there is no limit here.
  • the scenario in which the access point AP receives the first aggregated frame sent by the station and the second aggregated frame sent by the one or more sites is taken as an example.
  • the method includes:
  • the access point sends an acknowledgement frame or a block acknowledgement frame to the station participating in the collaboration.
  • the station determines whether an acknowledgement frame or a block acknowledgement frame sent by the access point is received, or the station determines whether the bit corresponding to the station in the received block acknowledgement frame is 1 or 0.
  • the station determines that the acknowledgment frame or the block acknowledgment frame sent by the access point is not received, or the station determines that the block aggregation frame sent by the access point is received, and the block aggregation frame
  • the bit corresponding to the station is 0, it is determined that the first data transmission fails, and at this time, the station can perform retransmission.
  • the station determines that the acknowledgment frame sent by the access point is not received, the station determines that the access point does not receive the aggregated frame sent by the station; and in one step, the station may perform retransmission.
  • the station determines that the block acknowledgment frame sent by the access point is not received, the station determines that all the stations in the cooperation group send data to the access point are not correctly received by the access point, and of course, it can be determined that the access point does not receive the access point.
  • the aggregated frame sent by the site; in one step, the site can be retransmitted.
  • the station determines that the block acknowledgment frame sent by the access point is received, but the bit corresponding to the station in the block aggregation frame is 0, the station determines that the access point does not receive the aggregated frame sent by the station; The site can be retransmitted.
  • the station determines to receive the acknowledgement frame sent by the access point, where the acknowledgement frame indicates that the access point successfully receives the first aggregated frame, or the station determines the correspondence in the received block acknowledgement frame. If the corresponding bit of the station is 1, the station determines that the first data is successfully transmitted.
  • the station determines that the access point successfully receives the data sent by the site.
  • the station determines that the access point successfully receives the data sent by the site.
  • the site does not need to retransmit the data.
  • the access point when the access point successfully receives the aggregated frame, the access point needs to notify the station, so as to prevent the station from sending data to the access point again, saving network resources; the station determines that the access point has not successfully received the aggregated frame.
  • the aggregation frame transmission process needs to be repeated to ensure that the access point can receive the aggregated frame.
  • FIG. 12 is a schematic diagram of an interaction process of a site establishment collaboration group according to an embodiment of the present application. As shown in FIG. 12, the method includes:
  • the station sends a first grouping request frame to the access point, where the first grouping request frame is used to request a cooperation group with one other station.
  • the station sends a first packet request frame (grouping request 1) to the access point, the first packet request frame characterizing the site request forming a collaborative group with one of the other sites.
  • grouping request 1 a first packet request frame characterizing the site request forming a collaborative group with one of the other sites.
  • the access point sends a second group request frame to another station, where the identifier of the collaboration group is included in the second group request frame.
  • the access point sends a second grouping request frame (Grouping Request 2) to one of the other stations, and the second grouping request frame includes a group ID of the collaboration group.
  • Grouping Request 2 a second grouping request frame
  • the second grouping request frame includes a group ID of the collaboration group.
  • a other station sends a first packet response frame to the access point, where the first packet response frame indicates that one other station determines to cooperate with the site to form a cooperative group.
  • one other station sends a first grouping response 1 to the access point, the first group response frame indicating that one other site and site are allowed to form a collaborative group.
  • the access point sends a second packet response frame to the station, where the second packet response frame includes an identifier of the collaboration group, and the second packet response frame indicates that another site determines that the site constitutes a collaboration group.
  • the access point sends a second packet response frame (grouping response 2) to the station, the second packet response frame characterizes the confirmation site and one other site grouping success, and the second packet response frame includes the identity of the above-mentioned collaboration group.
  • the identifier of the collaboration group may be allocated by the access point, and the identifier of the collaboration group is used to identify the site and one other site to form a collaboration group.
  • the station When it is necessary to join another other site, the station sends a fourth grouping request frame (grouping request 4) to the access point, and the fourth grouping request frame characterizes the site request to join another other site to the above-mentioned collaborative group;
  • the access point Sending a fifth packet request frame (grouping request 5) to another other station, the fifth group request frame includes an identifier of the cooperation group;
  • another other station sends a fourth group response response frame (grouping response 4) to the access point, fourth The packet response frame indicates that another other site is allowed to join the collaboration group;
  • the access point sends a fifth packet response frame (grouping response 5) to the site, and the fifth packet response frame representation confirms that another other site successfully joins the collaboration group,
  • the identifier of the above-mentioned collaboration group is included in the fifth packet response frame. Repeat the process when you need to join another site.
  • the station initiates a group request to the access point, and requests to form a collaboration group with one other site; thus, a collaboration group can be established, and multiple sites in the collaboration group can complete the collaboration process of the foregoing embodiment, and reduce the site.
  • the transmit power reduces the current at the site and increases the lifetime of the site.
  • FIG. 13 is a schematic diagram of an interaction process of a site establishment collaboration group according to an embodiment of the present application. As shown in FIG. 13, the method includes:
  • the station sends a third grouping request frame to a other station, where the third grouping request frame is used to request a cooperation group with one other station, and the third grouping request frame includes the identifier of the cooperation group.
  • the site assigns an identity of a collaboration group; the site sends a third packet request frame (grouping request 3) to one of the other sites, the third packet request frame characterizes the site request to form a collaboration group with one other site, and the third packet request
  • grouping request 3 the third packet request frame characterizes the site request to form a collaboration group with one other site, and the third packet request
  • the identifier of the above collaboration group is carried in the frame.
  • a other station sends a third packet response frame to the station, where the third group response frame indicates that one other station determines to cooperate with the site to form a cooperative group.
  • one other station sends a third grouping response frame (siteing response 3) to the station, the third group response frame characterizing one other site agreeing and the site forming a collaborative group.
  • siteing response 3 the third group response frame characterizing one other site agreeing and the site forming a collaborative group.
  • the site When it is necessary to join another other site, the site sends a sixth packet request frame (grouping request 6) to another other site, and the sixth packet request frame characterizes the site requesting another other site to join the collaboration group, the sixth packet
  • the request frame carries the identifier of the above-mentioned collaboration group; another other station sends a sixth packet response frame (grouping response 6), and the sixth packet response frame indicates that another other site agrees to join the cooperation group. Repeat the process when you need to join another site.
  • the station sends the packet report frame to the access point, where the packet report frame includes an identifier of the collaboration group.
  • the station sends a grouping report to the access point.
  • the access point sends the packet acknowledgement frame to the station.
  • the access point sends a grouping confirm to the station.
  • the station initiates a grouping request to other sites to request a collaboration group with one other site; then the site sends the information of the configured collaboration group to the access point; thereby establishing a collaboration group, the collaboration group
  • Multiple sites can complete the cooperation process of the above embodiments, reduce the transmission power of the site, reduce the current of the site, and increase the service life of the site.
  • the embodiment of the present application describes in detail the schematic structure of the data transmission device on the site side.
  • FIG. 14 shows a schematic block diagram of a site-side data transmission device 1400 of an embodiment of the present application.
  • the device 1400 in the embodiment of the present application may be a site in the foregoing method embodiment, or may be one or more chips in the site.
  • Apparatus 1400 can be used to perform some or all of the functions of the stations in the above method embodiments.
  • the device 1400 can include a processing module 1410, a receiving module 1420, and a sending module 1430.
  • the device 1400 can further include a storage module 1440.
  • the processing module 1410 may be configured to perform step S13 of FIG. 4 in the foregoing method embodiment, or to perform step S14 of FIG. 4.
  • the processing module 1410 can be used to perform step S24 of FIG. 5 in the foregoing method embodiment, or to perform step S25 of FIG. 5.
  • the processing module 1410 may be configured to perform step S34 of FIG. 7 in the foregoing method embodiment, or to perform step S35 of FIG. 7.
  • the processing module 1410 may be configured to perform step S44 of FIG. 9 in the foregoing method embodiment, or to perform step S45 of FIG. 9.
  • the processing module 1410 may be configured to perform step S72 of FIG. 10 in the foregoing method embodiment, for performing step S75 of FIG. 10, or for performing step S76 of FIG.
  • the processing module 1410 may be configured to perform step S82 of FIG. 11 in the foregoing method embodiment, for performing the generating step in step S83 of FIG. 11, or for performing step S84 of FIG.
  • the receiving module 1420 can be configured to perform step S11 of FIG. 4 in the foregoing method embodiment.
  • the receiving module 1420 can be configured to perform step S22 of FIG. 5 in the foregoing method embodiment.
  • the receiving module 1420 can be configured to perform step S32 of FIG. 7 in the foregoing method embodiment.
  • the receiving module 1420 can be configured to perform step S42 of FIG. 9 in the foregoing method embodiment.
  • the sending module 1430 may be configured to perform step S12 of FIG. 4 in the foregoing method embodiment, for performing step S14 of FIG. 4, or for performing step S16 of FIG.
  • the sending module 1430 can be configured to perform step S23 of FIG. 5 in the foregoing method embodiment, for performing step S26 of FIG. 5, or for performing step S27 of FIG.
  • the sending module 1430 may be configured to perform step S33 of FIG. 7 in the foregoing method embodiment, for performing step S36 of FIG. 7, or for performing step S37 of FIG.
  • the sending module 1430 may be configured to perform step S43 of FIG. 9 in the foregoing method embodiment, for performing step S46 of FIG. 9, or for performing step S47 of FIG.
  • the sending module 1430 may be configured to perform step S73 of FIG.
  • the sending module 1430 can be configured to perform the sending step in step S83 of FIG. 11 in the foregoing method embodiment.
  • the sending module 1430 may be configured to perform step S191 of FIG. 12 in the foregoing method embodiment, or to perform step S193 of FIG.
  • the sending module 1430 may be configured to perform step S211 of FIG. 13 in the foregoing method embodiment, or to perform step S212 of FIG. 13; and to perform step S213 of FIG.
  • the device 1400 can also be configured as a general purpose processing system, such as generally referred to as a chip
  • the processing module 1410 can include one or more processors that provide processing functionality;
  • the receiving module 1420 can be, for example, an input interface, a pin, or a circuit
  • the sending module 1430 can be, for example, an output interface, a pin or a circuit, etc.
  • the input/output interface can be used to be responsible for information interaction between the chip system and the outside world.
  • the input/output interface can output the aggregated frame generated by the site to the Other modules outside the chip are processed.
  • the processing module can execute computer executed instructions stored in the storage module to implement the functions of the site in the above method embodiments.
  • the optional storage module 1440 included in the device 1400 may be a storage unit within the chip, such as a register, a cache, etc., and the storage module 1440 may also be a storage unit outside the chip, such as a read-only memory. (read-only memory, ROM) or other types of static storage devices, random access memory (RAM), etc. that can store static information and instructions.
  • a read-only memory read-only memory
  • ROM read-only memory
  • RAM random access memory
  • FIG. 15 shows a schematic block diagram of another site-side data transmission device 1500 of an embodiment of the present application.
  • the device 1500 of the embodiment of the present application may be a site in the foregoing method embodiment, and the device 1500 may be used to perform some or all functions of the site in the foregoing method embodiment.
  • the apparatus 1500 can include a processor 1510, a baseband circuit 1530, a radio frequency circuit 1540, and an antenna 1550.
  • the apparatus 1500 can further include a memory 1520.
  • the various components of device 1500 are coupled together by a bus 1560, which in addition to the data bus includes a power bus, a control bus, and a status signal bus. However, for clarity of description, various buses are labeled as bus system 1560 in the figure.
  • the processor 1510 can be used to implement control of a site for performing processing performed by a site in the above embodiments, and can perform a process involving a site in the foregoing method embodiments and/or other processes for the techniques described in this application. It is also possible to run an operating system that is responsible for managing the bus and for executing programs or instructions stored in memory.
  • Baseband circuit 1530, radio frequency circuit 1540, and antenna 1550 can be used to support the transmission and reception of information between the site and the access points involved in the above embodiments to support wireless communication between the site and the access point, and also to support sites and other The site interacts with signaling and information to enable collaboration between sites.
  • the acknowledgement frame or block acknowledgement frame sent from the access point is received via the antenna 1550, filtered, amplified, downconverted, digitized, etc. by the radio frequency circuit 1540, and then decoded by the baseband circuit 1530 and decapsulated by protocol.
  • processing is performed by the processor 1510; in yet another example, the processor 1510 generates the first data, or the second data, or the aggregated frame, the first data, or the second data, or the aggregated frame via the baseband circuit 1530.
  • the baseband processing such as encapsulation, coding, and the like is performed, and further subjected to radio frequency processing such as analog conversion, filtering, amplification, and up-conversion by the radio frequency circuit 1540, and then transmitted through the antenna 1550.
  • the memory 1520 can be used to store program code and data for the site, and the memory 1520 can be the storage module 1540 of FIG. It can be understood that the baseband circuit 1530, the radio frequency circuit 1540, and the antenna 1550 can also be used to support the station to communicate with other network entities, for example, to support the station to communicate with the network element on the core network side.
  • the memory 1520 of Figure 15 is shown separate from the processor 1510, however, it will be readily apparent to those skilled in the art that the memory 1520, or any portion thereof, can be located 1500.
  • memory 1520 can include transmission lines, and/or computer products separate from wireless nodes, all of which can be accessed by processor 1510 through bus interface 1560.
  • memory 1520, or any portion thereof may be integrated into processor 1510, for example, may be a cache and/or a general purpose register.
  • Figure 15 only shows a simplified design of the site.
  • a station may include any number of transmitters, receivers, processors, memories, etc., and all stations that can implement the present invention are within the scope of the present invention.
  • the data transmission device on the site side can also be implemented by using one or more field-programmable gate arrays (FPGAs) and programmable logic devices (programmable logic devices). PLD), controller, state machine, gate logic, discrete hardware components, any other suitable circuitry, or any combination of circuitry capable of performing the various functions described throughout this application.
  • FPGAs field-programmable gate arrays
  • programmable logic devices programmable logic devices
  • controller state machine
  • gate logic discrete hardware components
  • discrete hardware components any other suitable circuitry
  • any combination of circuitry capable of performing the various functions described throughout this application.
  • the embodiment of the present application further provides a computer storage medium, where the computer storage medium may store program instructions for indicating any of the foregoing methods, so that the processor executes the program instructions to implement the foregoing method embodiments. The methods and functions involved in the site.
  • FIG. 16 shows a schematic block diagram of an access point side data transmission device 1600 of an embodiment of the present application.
  • the device 1600 in the embodiment of the present application may be an access point in the foregoing method embodiment, or may be one or more chips in the access point.
  • Apparatus 1600 can be used to perform some or all of the functions of the access point in the above method embodiments.
  • the device 1600 can include a processing module 1610, a receiving module 1620, and a transmitting module 1630.
  • the device 1600 can further include a storage module 1640.
  • the receiving module 1620 may be configured to receive the aggregated frame from the site in step S15 and step S16 of FIG. 4 in the foregoing method embodiment; or, to receive the aggregation from the site in step S26 and step S27 of FIG. a frame; or, for receiving an aggregated frame from the station in steps S36 and S37 of FIG. 7; or for receiving an aggregated frame from the station in step S46 and step S47 of FIG.
  • the receiving module 1620 may be configured to receive a first grouping request frame from the station in step S191 of FIG. 12, for receiving a first packet response frame from the station in step 193 of FIG. 12; for receiving step S213 of FIG. The packet report frame from the site.
  • the sending module 1630 may be configured to perform step S21 of FIG. 5 in the foregoing method embodiment; or for performing step S31 of FIG. 7; or for performing step S71 of FIG. 10; or for performing FIG. Step S81; or, for performing step S192 and step S194 of FIG. 12; or for performing step S212 and step S214 of FIG.
  • the processing module 1610 can be configured to generate a trigger frame or to generate an acknowledgement frame or a block acknowledgement frame.
  • device 1600 can also be configured as a general purpose processing system, such as generally referred to as a chip, which can include one or more processors that provide processing functionality; receiving module 1620 can be, for example, an input interface, a pin, or a circuit
  • receiving module 1630 can be, for example, an output interface, a pin or a circuit, etc.
  • the input/output interface can be used to be responsible for the information interaction between the chip system and the outside world.
  • the input interface can output the aggregated frame of the station to the off-chip.
  • Other modules are processed.
  • the one or more processors can execute computer executed instructions stored in the storage module to implement the functions of the access point in the above method embodiments.
  • the optional storage module 1640 included in the device 1600 may be a storage unit within the chip, such as a register, a cache, etc., and the storage module 1640 may also be a storage unit outside the chip, such as a ROM, within the access point. Or other types of static storage devices, RAM, etc. that can store static information and instructions.
  • FIG. 17 shows a schematic block diagram of another access point side data transmission device 1700 of the embodiment of the present application.
  • the device 1700 in the embodiment of the present application may be an access point in the foregoing method embodiment, and the device 1700 may be used to perform some or all functions of the access point in the foregoing method embodiment.
  • the device 1700 can include a processor 1710, a baseband circuit 1730, a radio frequency circuit 1740, and an antenna 1750.
  • the device 1700 can further include a memory 1720.
  • the various components of device 1700 are coupled together by a bus 1760, which in addition to the data bus includes a power bus, a control bus, and a status signal bus. However, for clarity of description, various buses are labeled as bus system 1760 in the figure.
  • the processor 1710 can be used to implement control of an access point for performing processing performed by an access point in the foregoing embodiment, and can perform a process involving a site in the foregoing method embodiment and/or used in the description of the present application.
  • Other processes of the technology can also run an operating system that is responsible for managing the bus and can execute programs or instructions stored in memory.
  • the baseband circuit 1730, the radio frequency circuit 1740, and the antenna 1750 can be used to support the transmission and reception of information between the access point and the stations involved in the above embodiments to support wireless communication between the access point and the station.
  • the aggregated frame sent from the station is received by the antenna 1750, processed by the RF circuit, filtered, amplified, down-converted, digitized, etc., and then processed by the baseband circuit, de-encapsulated data by protocol, and the like.
  • the acknowledgement frame or the block acknowledgement frame of the access point may be processed by the processor 1710, subjected to baseband circuit 1730 for protocol encapsulation, encoding and other baseband processing, and further subjected to analog conversion and filtering by the radio frequency circuit 1740.
  • the memory 1720 can be used to store the program code and data of the station, and the memory 1720 can be the storage module 1740 in FIG.
  • the baseband circuit 1730, the radio frequency circuit 1740, and the antenna 1750 can also be used to support the access point to communicate with other network entities, for example, to support the access point to communicate with the site associated with the access point, for example, The site shown in Figure 3.
  • Figure 17 only shows a simplified design of the access point.
  • an access point may include any number of transmitters, receivers, processors, memories, etc., and all access points that can implement the present invention are within the scope of the present invention.
  • the data transmission device on the access point side can also be implemented by using one or more FPGAs, PLDs, controllers, state machines, gate logic, discrete hardware components, any other suitable circuits. Or any combination of circuits capable of performing the various functions described throughout the application.
  • the embodiment of the present application further provides a computer storage medium, where the computer storage medium may store program instructions for indicating any of the foregoing methods, so that the processor executes the program instructions to implement the foregoing method embodiments. Access point methods and functions.
  • the processor involved in the foregoing apparatus 1500 and the apparatus 1700 may be a general-purpose processor, such as a general-purpose central processing unit (CPU), a network processor (NP), a microprocessor, etc., or may be an application-specific integrated circuit (application). -specific integrated circBIt, ASIC), or one or more integrated circuits for controlling the execution of the program of the present application. It can also be a digital signal processor (DSP), a field-programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component.
  • DSP digital signal processor
  • FPGA field-programmable gate array
  • the controller/processor may also be a combination of computing functions, such as one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the processor typically performs logical and arithmetic operations based on program instructions stored in the memory.
  • the memory involved in the above device 1600 and device 1700 can also hold an operating system and other applications.
  • the program can include program code, the program code including computer operating instructions.
  • the above memory may be ROM) other types of static storage devices that store static information and instructions, RAM, other types of dynamic storage devices that store information and instructions, disk storage, and the like.
  • the memory can be a combination of the above types of storage.
  • the computer readable storage medium/memory described above may be distributed in the processor, external to the processor, or on multiple entities including the processor or processing circuitry.
  • the computer readable storage medium/memory described above may be embodied in a computer program product.
  • a computer program product can include a computer readable medium in a packaging material.
  • the embodiment of the present application provides a communication system including at least one site-side data transmission device provided in FIG. 14 and an access point-side data transmission device provided in FIG.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of cells is only a logical function division.
  • multiple units or components may be combined or integrated. Go to another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • a computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, computer instructions can be wired from a website site, computer, server or data center (eg Coax, fiber, digital subscriber line) or wireless (eg, infrared, wireless, microwave, etc.) to another website, computer, server, or data center.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state hard disk).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种基于多站点协作的数据传输方法和装置,其中,该方法包括:站点接收站点所属的协作组中除站点之外的其他站点的第二数据;站点向其他站点发送第一数据,其他站点生成包括第一数据和第二数据的第二聚合帧;站点向接入点发送第一聚合帧,第一聚合帧包括第一数据和第二数据;站点发送第一聚合帧的时间与其他站点向接入点发送第二聚合帧的时间相同,第一聚合帧中数据的聚合次序与第二聚合帧中数据的聚合次序相同;站点发送第一聚合帧的发送功率小于站点单独向接入点发送第一数据时的功率;其他站点发送第二聚合帧的发送功率小于其他站点单独向接入点发送第二数据时的功率。降低单个站点的发送功率,延长站点的使用寿命。

Description

基于多站点协作的数据传输方法和装置
本申请要求于2018年5月18日提交中国专利局、申请号为201810480241.9、申请名称为“基于多站点协作的数据传输方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别涉及基于多站点协作的数据传输方法和装置。
背景技术
随着无线通信技术的发展,无线通信设备将渗透进生产和生活中的方方面面。未来,无线通信设备将在工业生产,智能城市,智能家居和健康管理等方面发挥重要作用。
无线通信设备中的一部分的设备,比如物联网设备,通常运行在纽扣电池上,为了延长无线通信设备的寿命,需要尽可能地降低无线通信设备的功耗,包括无线传输的功耗。
然而当无线通信设备内的纽扣电池运行电流增大时,电池的有效容量会降低。如图2所示,当电流为500uA,电池容量为230-240mAh;当电流为2.5mA,电池容量为175mAh.而为了增大无线通信设备传输范围,通常无线通信设备需要提高发射电流,以提高无线通信设备的发送功率。因此无线通信设备发送功率增大的同时反而会降低了电池容量,使得通信设备的电池寿命被缩短。
因此,如何降低无线通信设备通信过程中的发送功率,延长电池寿命,至关重要。
发明内容
本申请提供了一种基于多站点协作的数据传输方法和装置,通过多个站点协作,降低单个站点传输过程中的发送功率,延长电池寿命。
第一方面,本申请提供一种数据传输方法,包括:
站点接收站点所属的协作组中除站点之外的一个或多个其他站点的第二数据;并向一个或多个其他站点发送第一数据,以使得一个或多个其他站点生成第二聚合帧,第二聚合帧包括:第一数据和第二数据。
进一步的,站点向接入点发送包括第一数据和第二数据的第一聚合帧,站点发送第一聚合帧的时间与一个或多个其他站点向接入点发送第二聚合帧的时间相同,且第一聚合帧中第一数据和第二数据的聚合次序与第二聚合帧中第一数据和第二数据的聚合次序相同;其中,站点发送第一聚合帧的发送功率小于站点单独向接入点发送第一数据时的功率;一个或多个其他站点发送第二聚合帧的发送功率小于一个或多个其他站点单独向接入点发送第二数据时的功率。在本方案中,通过多个站点协作,使得单个站点可以适当的减低自身的发送功率,由于以较低功率发送时,电池的总容量会显 著增加,,因此通过多个站点协作,可以延长每个站点的电池寿命,并保障传输的有效性。
在一种可能的实现方式中,站点的发送功率为站点单独向接入点发送第一数据的功率乘以站点的发送功率系数,其他站点的发送功率为其他站点单独发送第二数据的功率乘以其他站点的发送功率系数,其中,站点的发送功率系数大于0小于1,其他站点的发送功率系数大于0小于1,站点的发送功率系数与一个或多个其他站点的发送功率系数之和大于等于1。
在一种可能的实现方式中,站点的发送功率系数与一个或多个其他站点的发送功率系数相等,取值为1/N,其中,N为此站点和一个或多个其他站点的站点总个数,N为大于等于2的正整数。
在一种可能的实现方式中,在站点接收一个或多个其他站点的第二数据之前,还包括:
站点接收接入点广播的触发帧,其中,触发帧包括站点确定此站点的发送功率所需的信息。
在一种可能的实现方式中,此信息包括:站点的发送功率系数;触发帧还包括:一个或多个其他站点的发送功率系数。
在一种可能的实现方式中,此信息为触发帧中与站点对应的用户信息字段中的目标接收信号强度指示字段,目标接收信号强度指示字段指示发送功率。
在一种可能的实现方式中,此信息为触发帧中与站点对应的资源分配字段和目标接收信号强度指示字段,与站点对应的资源分配字段指示此站点的发送功率系数,目标接收信号强度指示字段用于此站点确定此站点单独发送第一数据的功率。
在一种可能的实现方式中,触发帧中与协作组中的站点对应的用户信息字段中的第一字段相同,第一字段用于指示承载聚合帧的资源单元。也就是说,触发帧中与此站点对应的用户信息字段中的第一字段,和,触发帧中与一个或多个其他站点对应的用户信息字段中的第一字段相同,此站点的第一字段指示承载第一聚合帧的资源单元,一个或多个其他站点的第一字段指示承载第二聚合帧的资源单元,承载第一聚合帧的资源单元与承载第二聚合帧的资源单元相同。
触发帧中与协作组中的站点对应的用户信息字段中的第二字段相同,第二字段用于指示聚合帧的编码类型;也就是说,触发帧中与此站点对应的用户信息字段中的第二字段,和,触发帧中与一个或多个其他站点对应的用户信息字段中的第二字段相同,此站点的第二字段指示第一聚合帧的编码类型,一个或多个其他站点的第二字段指示第二聚合帧的编码类型,第一聚合帧的编码类型与第二聚合帧的编码类型相同。
触发帧中与协作组中的站点对应的用户信息字段中的第三字段相同,第三字段用于指示聚合帧的调制编码制式;也就是说,触发帧中与此站点对应的用户信息字段中的第三字段,和,触发帧中与一个或多个其他站点对应的用户信息字段中的第三字段相同,此站点的第三字段指示第一聚合帧的调制编码方式,一个或多个其他站点的第三字段指示第二聚合帧的调制编码方式,第一聚合帧的调制编码方式与第二聚合帧的调制编码方式相同。
触发帧中与协作组中的站点对应的用户信息字段中的第四字段相同,第四字段用 于指示聚合帧的双载波调制;也就是说,触发帧中与此站点对应的用户信息字段中的第四字段,和,触发帧中与一个或多个其他站点对应的用户信息字段中的第四字段相同,此站点的第四字段指示第一聚合帧的双载波调制,一个或多个其他站点的第四字段指示第二聚合帧的双载波调制,第一聚合帧的双载波调制方式与第二聚合帧的双载波调制方式相同。
触发帧中与协作组中的站点对应的用户信息字段中的第五字段相同,第五字段用于指示空间流分配。也就是说,触发帧中与此站点对应的用户信息字段中的第五字段,和,触发帧中与一个或多个其他站点对应的用户信息字段中的第五字段相同,此站点的第五字段指示第一聚合帧的空间流分配,一个或多个其他站点的第四字段指示第二聚合帧的空间流分配,第一聚合帧的空间流分配方式与第二聚合帧的空间流分配方式相同。
在一种可能的实现方式中,在站点接收一个或多个其他站点的第二数据之前,还包括:
站点向一个或多个其他站点发送控制帧,其中,控制帧中包括一个或多个其他站点的发送功率系数。
在一种可能的实现方式中,控制帧中包括一个公用信息字段和N-1个用户信息字段,其中,N-1为一个或多个其他站点的个数,N为大于等于2的正整数;
N-1个用户信息字段与一个或多个其他站点一一对应;
公用信息字段中包括第一字段、第二字段、第三字段、第四字段和第五字段,其中,第一字段用于指示承载聚合帧的资源单元,第二字段用于指示聚合帧的编码类型,第三字段用于指示聚合帧的调制编码制式,第四字段用于指示聚合帧的双载波调制,第五字段用于指示空间流分配。
在一种可能的实现方式中,聚合次序与触发帧中的用户信息字段的次序对应。
在一种可能的实现方式中,聚合次序与控制帧中的用户信息字段的次序对应。
在一种可能的实现方式中,聚合次序与协作组中的站点之间的次序关系对应。
在一种可能的实现方式中,聚合次序与站点发送第一数据和一个或多个其他站点发送第二数据的时间顺序关系对应。
在一种可能的实现方式中,在站点接收一个或多个其他站点的第二数据之前,还包括:站点接收接入点广播的组目标苏醒时间信息,目标苏醒时间信息指示协作组中的站点醒来;
站点根据目标苏醒时间信息醒来。
在一种可能的实现方式中,在站点接收一个或多个其他站点的第二数据之前,还包括:站点接收接入点发送的与协作组对应的关联标识符;
站点接收接入点广播的管理帧,管理帧中与关联标识符对应的比特位为1,比特位表征唤醒协作组中的站点;
站点根据管理帧醒来。
在一种可能的实现方式中,在站点接收一个或多个其他站点的第二数据之前,还包括:
站点根据与一个或多个其他站点协商出的目标苏醒时间信息醒来,目标苏醒时间 信息表征协作组中的站点在预设时间点醒来;
站点将目标苏醒时间信息发送给接入点。
在一种可能的实现方式中,站点向接入点发送第一聚合帧,包括:
站点以空时块编码STBC方式,将第一聚合帧发送给接入点。
在一种可能的实现方式中,在站点向接入点发送第一聚合帧之后,还包括:
站点在确定没有接收到接入点发送的确认帧或块确认帧时,将确认请求信息发送给协作组中的一个或多个其他站点,其中,确认帧表征接入点成功接收到第一聚合帧,确认请求信息用于确定其他站点是否接收到确认帧或块确认帧;
站点接收其他站点发送的确认响应信息;
在接收到的确认响应信息表征其他站点没有接收到确认帧、或其他站点没有接收到块确认帧、或其他站点接收到的块确认帧中与站点对应的比特为0时,确定第一数据发送失败;
在接收到的确认响应信息表征其他站点接收到确认帧、或其他站点接收到的块确认帧中与站点对应的比特为1时,确定第一数据发送成功。
通过此方案,站点在确定没有接收到接入点发送的确认帧或块确认帧时,向协作组中的一个或多个其他站点询问是否接收到确认帧或块确认帧,此站点通过询问一个或多个其他站点的确认接收情况而避免重传,减少了传输开销,节约网络资源。
在一种可能的实现方式中,在站点向接入点发送第一聚合帧之后,还包括:
站点在确定没有接收到接入点发送的确认帧或块确认帧时,或者,站点在确定接收到接入点发送的块聚合帧、且块聚合帧中的与站点对应的比特位为0时,其中,确认帧表征接入点成功接收到第一聚合帧,确定第一数据发送失败。
在一种可能的实现方式中,在站点向接入点发送第一聚合帧之后,还包括:
站点接收接入点发送的确认帧或块确认帧,其中,确认帧表征接入点成功接收到第一聚合帧,块确认帧中的与站点对应的比特位为1。
在一种可能的实现方式中,在站点接收一个或多个其他站点的第二数据之前,还包括:
站点将第一分组请求帧发送给接入点,其中,第一分组请求帧用于请求与一个其他站点构成协作组,以使接入点向一个其他站点发送第二分组请求帧之后接收一个其他站点返回的第一分组响应帧,第二分组请求帧中包括协作组的标识,第一分组响应帧表征一个其他站点确定与站点构成协作组;
站点接收接入点发送的第二分组响应帧,其中,第二分组响应帧中包括协作组的标识,第二分组响应帧表征一个其他站点确定与站点构成协作组。
在一种可能的实现方式中,在站点接收一个或多个其他站点的第二数据之前,还包括:
站点将第三分组请求帧发送给一个其他站点,其中,第三分组请求帧用于请求与一个其他站点构成协作组,第三分组请求帧中包括协作组的标识;
站点接收一个其他站点发送的第三分组响应帧,其中,第三分组响应帧表征一个其他站点确定与站点构成协作组;
站点将分组报告帧发送给接入点,其中,分组报告帧中包括协作组的标识;
站点接收接入点发送的分组确认帧。
第二方面,本申请提供一种接入点侧的数据传输方法,包括:
接入点接收站点发送的第一聚合帧,和,接收站点所属的协作组中除站点之外的一个或多个其他站点发送的第二聚合帧;
其中,第一聚合帧包括第一数据和第二数据,第二聚合帧包括第一数据和第二数据,第一数据为站点的数据,第二数据为一个或多个其他站点的数据,第一聚合帧中第一数据和第二数据的聚合次序与第二聚合帧中第一数据和第二数据的聚合次序相同;
并且,站点发送第一聚合帧的发送功率小于站点单独向接入点发送第一数据的功率;一个或多个其他站点发送第二聚合帧的发送功率小于一个或多个其他站点单独向接入点发送第二数据时的功率。在本方案中,通过多个站点协作,由于多个站点协作同时发送各自是生成的聚合帧,使得聚合帧的功率在接入点侧得到叠加,因此接入点接收到的接收功率并未减小,从而不仅降低单个站点的发送功率,延长了电池寿命,还保证了接入点侧数据的正常接收。
在一种可能的实现方式中,站点的发送功率为站点单独向接入点发送第一数据的功率乘以站点的发送功率系数,其他站点的发送功率为其他站点单独发送第二数据的功率乘以其他站点的发送功率系数,其中,站点的发送功率系数大于0小于1,其他站点的发送功率系数大于0小于1,站点的发送功率系数与一个或多个其他站点的发送功率系数之和大于等于1。
在一种可能的实现方式中,站点的发送功率系数与一个或多个其他站点的发送功率系数相等,取值为1/N,其中,N为站点和一个或多个其他站点的总个数,N为大于等于2的正整数。
在一种可能的实现方式中,在接入点接收站点发送的第一聚合帧,和,接收一个或多个其他站点发送的第二聚合帧之前,还包括:
接入点广播的触发帧,其中,触发帧中包括站点确定发送功率所需的信息。
在一种可能的实现方式中,此站点确定发送功率所需的信息包括:站点的发送功率系数;触发帧还包括:一个或多个其他站点的发送功率系数。
在一种可能的实现方式中,此站点确定发送功率所需的信息为触发帧中与站点对应的用户信息字段中的目标接收信号强度指示字段,字段指示发送功率。
在一种可能的实现方式中,此站点确定发送功率所需的信息为触发帧中与站点对应的资源分配字段和目标接收信号强度指示字段,与站点对应的资源分配字段指示此站点的发送功率系数,与站点对应的目标接收信号强度指示字段用于此站点确定此站点单独发送第一数据的功率。
在一种可能的实现方式中,触发帧中与协作组中的站点对应的用户信息字段中第一字段相同,第一字段用于指示承载聚合帧的资源单元;触发帧中与协作组中的站点对应的用户信息字段中的第二字段相同,第二字段用于指示聚合帧的编码类型;触发帧中与协作组中的站点对应的用户信息字段中的第三字段相同,第三字段用于指示聚合帧的调制编码制式;触发帧中与协作组中的站点对应的用户信息字段中的第四字段相同,第四字段用于指示聚合帧的双载波调制;触发帧中与协作组中的站点对应的用户信息字段中的第五字段相同,第五字段用于指示空间流分配。
在一种可能的实现方式中,聚合次序与触发帧中的用户信息字段的次序对应。
在一种可能的实现方式中,聚合次序与站点接收到的控制帧中的用户信息字段的次序对应。
在一种可能的实现方式中,聚合次序与协作组中的站点之间的次序关系对应。
在一种可能的实现方式中,聚合次序与站点发送第一数据和一个或多个其他站点发送第二数据的时间顺序关系对应。
在一种可能的实现方式中,在接入点接收站点发送的第一聚合帧,和,接收站点所属的协作组中除站点之外的一个或多个其他站点发送的第二聚合帧之前,还包括:
接入点广播组目标苏醒时间信息,其中,目标苏醒时间信息指示协作组中的站点醒来。
在一种可能的实现方式中,在接入点接收站点发送的第一聚合帧,和,接收站点所属的协作组中除站点之外的一个或多个其他站点发送的第二聚合帧之前,还包括:
接入点将与协作组对应的关联标识符发送给站点;
接入点广播管理帧,其中,管理帧中与关联标识符对应的比特位为1,比特位表征唤醒协作组中的站点。
在一种可能的实现方式中,在接入点接收站点发送的第一聚合帧,和,接收站点所属的协作组中除站点之外的一个或多个其他站点发送的第二聚合帧之前,还包括:
接入点接收站点发送的目标苏醒时间信息,其中,目标苏醒时间信息为站点与协作组中的其他站点协商出的,目标苏醒时间信息表征协作组中的站点在预设时间点醒来。
在一种可能的实现方式中,在接入点接收站点发送的第一聚合帧,和,接收站点所属的协作组中除站点之外的一个或多个其他站点发送的第二聚合帧之后,还包括:
接入点将确认帧或块确认帧发送给站点,其中,确认帧表征接入点成功接收到第一聚合帧,块确认帧中与站点对应的比特位为1或0。
在一种可能的实现方式中,在接入点接收站点发送的第一聚合帧,和,接收站点所属的协作组中除站点之外的一个或多个其他站点发送的第二聚合帧之前,还包括:
接入点接收站点发送的第一分组请求帧,其中,第一分组请求帧用于站点请求与一个其他站点构成协作组;
接入点向一个其他站点发送第二分组请求帧,其中,第二分组请求帧中包括协作组的标识;
接入点接收一个其他站点发送的第一分组响应帧,其中,第一分组响应帧表征一个其他站点确定与站点构成协作组;
接入点将第二分组响应帧发送给站点,其中,第二分组响应帧中包括协作组的标识,第二分组响应帧表征一个其他站点确定与站点构成协作组。
在一种可能的实现方式中,在接入点接收站点发送的第一聚合帧,和,接收站点所属的协作组中除站点之外的一个或多个其他站点发送的第二聚合帧之前,还包括:
接入点接收站点发送的分组报告帧,其中,分组报告帧中包括协作组的标识,分组报告帧为站点与一个其他站点确定构成协作组之后发出的;
接入点将分组确认帧发送给站点。
第三方面,提供了一种站点侧的数据传输装置,该装置可以是站点,也可以是站点内的芯片。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。
在一种可能的设计中,当该装置为站点时,装置包括:处理模块、接收模块和发送模块,处理模块例如可以是处理器,接收模块例如可以是接收器,发送模块例如可以是发送器,接收模块可以包括射频电路和基带电路,发送模块可以包括射频电路和基带电路。
可选地,装置还可以包括存储单元,该存储单元例如可以是存储器。当装置包括存储单元时,该存储单元用于存储计算机执行指令,该处理模块与该存储单元连接,该处理模块执行该存储单元存储的计算机执行指令,以使该装置执行上述涉及站点功能的数据传输方法。
在另一种可能的设计中,当该装置为站点内的芯片时,该芯片包括:处理模块、接收模块和发送模块,处理模块例如可以是处理器,接收模块/发送模块例如可以是该芯片上的输入/输出接口、管脚或电路等。可选的,该装置还可以包括存储单元,该处理模块可执行存储单元存储的计算机执行指令,以使该装置内的芯片执行上述任一方面涉及站点功能的数据传输方法。
可选地,存储单元为芯片内的存储单元,如寄存器、缓存等,存储单元还可以是站点内的位于芯片外部的存储单元,如只读存储器(read-only memory,简称ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,简称RAM)等。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(Central Processing Unit,简称CPU),微处理器,特定应用集成电路(application-specific integrated circuit,简称ASIC),或一个或多个用于控制上述各方面信道资源协调分配的方法的程序执行的集成电路。
第四方面,本申请提供一种接入点侧的数据传输装置,该装置可以是接入点,也可以是接入点内的芯片。该装置具有实现上述各方面涉及接入点的各实施例的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。
在一种可能的设计中,当该装置为接入点时,接入点包括:处理模块、接收模块和发送模块,处理模块例如可以是处理器,接收模块例如可以是接收器,发送模块例如可以是发送器,接收器包括射频电路,发送器包括射频电路,可选地,接入点还包括存储单元,该存储单元例如可以是存储器。当接入点包括存储单元时,该存储单元用于存储计算机执行指令,该处理模块与该存储单元连接,该处理模块执行该存储单元存储的计算机执行指令,以使该装置执行上述第二方面涉及接入点功能的数据传输方法。
在另一种可能的设计中,当该装置为接入点内的芯片时,该芯片包括:处理模块、接收模块和发送模块,处理模块例如可以是处理器,接收模块例如可以是该芯片上的输入接口、管脚或电路等,发送模块例如可以是该芯片上的输出接口、管脚或电路等。该处理模块可执行存储单元存储的计算机执行指令,以使该接入点内的芯片执行上述 各方面涉及接入点功能的数据传输方法。可选地,存储单元为芯片内的存储单元,如寄存器、缓存等,存储单元还可以是接入点内的位于芯片外部的存储单元,如ROM或可存储静态信息和指令的其他类型的静态存储设备,RAM等。
其中,上述任一处提到的处理器,可以是一个CPU,微处理器,ASIC,或一个或多个用于控制上述信道资源协调分配的方法的程序执行的集成电路。
第五方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码用于指示执行上述第一方面或其任意可能的实现方式中的方法的指令。
第六方面,提供了一种处理器,用于与存储器耦合,用于执行上述第一方面或其任意可能的实现方式中的方法。
第七方面,提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述第一方面或其任意可能的实现方式中的方法。
第八方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码用于指示执行上述第二方面或其任意可能的实现方式中的方法的指令。
第九方面,提供了一种处理器,用于与存储器耦合,用于执行上述第二方面或其任意可能的实现方式中的方法。
第十方面,提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述第二方面或其任意可能的实现方式中的方法。
第十一方面,提供了一种通信系统,该系统包括:上述第三方面或其任意可能的实现方式中的至少两个站点;该系统还包括:上述第四方面或其任意可能的实现方式中的接入点。
本实施例中,协作组中的站点根据自身的第一数据和接收到的第二数据生成聚合帧,第二数据为站点所属的协作组中除站点之外的一个或多个其他站点的数据;然后,生成了聚合帧的站点将各自的聚合帧,同时发送给接入点。协作组中的一个或多个站点都可以分别执行以上过程,参与协作的站点所生成的聚合帧中的数据相同,聚合次序也相同,进而保证了不同站点的聚合帧的一致性;通过以上协作过程,每一个站点发送聚合帧的发送功率小于该站点单独向接入点发送自身的数据时的功率,可保持协作组的总发送功率满足接入点侧正常接收的需求;并且降低了单个站点的发送功率,增加站点的使用寿命,对于物联网中的物联网设备来说,可以增加物联网设备的电池的总容量、延长物联网设备的电池的寿命。
附图说明
图1为物联网设备的通信场景图;
图2为通信设备的电池容量与消耗电流的关系图;
图3为本申请实施例提供的场景示意图;
图4为本申请实施例提供的一种数据传输方法的信令图;
图5为本申请实施例提供的另一种数据传输方法的信令图;
图6本申请提供的触发帧的帧结构示意图;
图7为本申请实施例提供的又一种数据传输方法的信令图;
图8为本申请提供的控制帧的帧结构示意图;
图9为本申请实施例提供的再一种数据传输方法的信令图;
图10示出了本申请实施例提供的一种数据发送结果确认的流程示意图;
图11示出了本申请实施例提供的另一种数据发送结果确认的流程示意图;
图12示出了本申请实施例提供的一种站点建立协作组的交互流程示意图;
图13示出了本申请实施例提供的一种站点建立协作组的交互流程示意图;
图14示出了本申请实施例的一种站点侧的数据传输装置1400的示意性框图;
图15示出了本申请实施例的另一种站点侧的数据传输装置1500的示意性框图;
图16示出了本申请实施例的一种接入点侧的数据传输装置1600的示意性框图;
图17示出了本申请实施例的另一种接入点侧的数据传输装置1700的示意性框图。
具体实施方式
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
应理解,本申请实施例的技术方案可以应用于各种通信系统,例如:无线局域网通信(wireless local area network,WLAN)系统,全球移动通信(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、以及未来的5G通信系统或未来可能出现的其他系统。以下对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。为描述方便,本申请实施例基于WLAN通信系统为例进行说明,并不构成对本申请的限定,且需要说明的是,当本申请实施例的方案应用于其他系统时,站点、接入点的名称可能发生变化,但这并不影响本申请实施例方案的实施。
下面将结合附图,对本申请实施例的技术方案进行描述。
首先,对本申请所涉及的技术名词进行解释:
1)站点(station,STA),又称为站点设备;站点可以是向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等;站点也可以是检测数据的设备,例如,传感器等;站点也可以是智能设备,例如,部署于室内的智能家居设备、可穿戴设备等。常见的终端设备例如包括:空气质量监测传感器、温度传感器、烟雾传感器手机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,其中,可穿戴设备例如包括:智能手表、智能手环、计步器等。站点为现在和未来可能的无线通信站点或有限通信站点,例如,站点为WLAN站点、蜂窝站点等等。
2)接入点(access point,AP),又称为接入点设备,接入点设备可以是网络设备、或无线接入网(radio access network,RAN)设备,接入点是一种将站点通过授权频谱和非授权频谱接入到网络的设备,其包括各种通信制式中的网络设备,例如包括 但不限于:无线接入点(例如无线局域网接入点),基站、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、网络设备控制器(base station controller,BSC)、网络设备收发台(base transceiver station,BTS)、家庭网络设备(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU)等。
3)“多个”是指两个或两个以上,其它量词与之类似。
4)“对应”可以指的是一种关联关系或绑定关系,A与B相对应指的是A与B之间是一种关联关系或绑定关系。
需要指出的是,本申请实施例中涉及的名词或术语可以相互参考,不再赘述。
现有技术中,通常一个接入点会关联多个站点,每一个站点可以单独将各自的数据发送给接入点。通常,为了保证接入点的信号质量,距离接入点较近的站点可以采用较低的发送功率将数据发送给接入点,距离接入点较远的站点可以采用较高的发送功率将数据发送给接入点。
举例来说,随着物联网(internet of things,IoT)技术的发展,物联网设备(internet of things station,IoT STA)逐渐的应用到生产和生活中;物联网是指通过各种信息传感设备,实时采集任何需要监控、连接、互动的物体或过程等各种需要的信息的网络;物联网与互联网结合形成的一个巨大网络,进而实现物与物、物与人,所有的物品与网络的连接,方便识别、管理和控制;现在的物联网设备采用的无线通信协议有IEEE(institute of electrical and electronics engineers,IEEE)802.15.4、802.11n、蓝牙低功耗(bluetooth low energy,BLE)等。物联网设备通常运行在纽扣电池上,即通过纽扣电池为物联网设备提供电能;因为物联网设备一般会设置在工厂、机场等大型建筑中,因此要求物联网设备可以进行长距离通信;但是因为纽扣电池的容量有限,为了延长物联网设备的寿命,需要尽可能地降低物联网设备的功耗。可知,对于物联网设备来说,物联网设备的通信标准需要满足物联网设备低功耗、长距离通信的要求,物联网设备的通信标准可以称为无线局域网-物联网(WLAN-IoT)。图1为物联网设备的通信场景图,如图1所示,在物联网的通信标准中,距离接入点101较近的物联网设备11可以采用较低的发送功率,距离接入点101较远的物联网设备12可以采用较高的发送功率,这样的方式可以增大物联网设备12的通信距离、保证接入点101的信号质量;例如,由于电磁波在自由空间(free space)中传播的路径损耗(pass loss)可以表示为free space path loss(dB)=20log 10(d)+20log 10(f)+32.44,当物联网设备12传输距离扩大一倍时,物联网设备12的发送率需要提高6dB。
由于站点与接入点之间具有一定的距离,为了保证站点在一定的工作寿命内将数据发送给接入点,需要降低站点的功耗,但是现有技术中,站点在将数据发送给接入点的时候,各个站点所消耗的发送功率依然较高,尤其是距离接入点较远的站点在发送数据时的发送功率很高,从而站点在发送数据时的电流较高,导致站点耗电量较高、功耗较高。举例来说,在图1所示场景下,如图2所示,横坐标为电池容量(单位:毫安时),纵坐标为消耗电流(单位:微安),当通信设备为物联网设备的时候,当物联网设备发送数据的电流为500微安(uA),物联网设备的电池容量为230-240毫安时(mAh);当物联网设备发送数据的电流为2.5mA,物联网设备的电池容量为 175mAh;可知,随着物联网设备的电池的运行电流增大,电池的有效容量会降低;在实际应用场景中,为了增大传输范围,需要提高物联网设备的发送功率,这样会降低物联网设备的电池容量,进而缩短物联网设备的电池寿命,即缩短物联网设备的使用寿命。
图3为本申请实施例提供的场景示意图,如图3所示,本申请涉及了接入点101和多个站点,站点分别包括了站点11、站点12、站点13、站点14、站点15和站点16;其中,站点11、站点12和站点13构成一个协作组。
图4为本申请实施例提供的一种数据传输方法的信令图,如图4所示,该方法包括:
S11、站点接收站点所属的协作组中除站点之外的一个或多个其他站点的第二数据。
示例性地,在接入点下已经具有至少一个协作组,至少一个协作组中的每一个协作组中包括了多个站点。
站点接收一个或多个其他站点发送的第二数据,例如,其他站点直接将第二数据发送给站点,或者,其他站点通过其他站点将第二数据转发给站点;当多个其他站点将各自的第二数据发送给站点的时候,一个或多个其他站点发送各自的第二数据的顺序不做限定,例如,可以是一个或多个其他站点根据站点在协作组内的前后顺序来发送第二数据,也可以是一个或多个其他站点通过竞争方式来发送第二数据,也可以是一个或多个其他站点根据站点指定的顺序来发送第二数据;不同的其他站点发送的第二数据的内容可以是不同的。
S12、站点向一个或多个其他站点发送第一数据。
示例性地,站点将自身的第一数据,发送给站点所属的协作组中的一个或多个其他站点,这些其他站点中不包括发送第一数据的站点。
举例来说,在图3所示的场景下,站点11、站点12和站点13属于同一个协作组;站点11将自身的数据发送给站点12,站点12将自身的数据发送给站点11。
再举例来说,在图3所示的场景下,站点11、站点12和站点13属于同一个协作组;站点11将自身的数据发送给站点12和站点13,站点12将自身的数据发送给站点11和站点13,站点1,3将自身的数据发送给站点11和站点12。
又举例来说,在图3所示的场景下,站点11、站点12和站点13属于同一个协作组;站点11将自身的数据发送给站点12,并且站点11将自身的数据发送给站点13;站点12将自身的数据发送给站点11,并且站点12将自身的数据发送给站点3;站点13也参与协作,但是站点13没有数据需要发送,则站点可以传输一个空帧(Null packet),以告知站点11和站点12将参与协作,但是没有数据需要传输,即站点13将一个空帧发送给站点11和站点12。
其中,步骤11和步骤S12之间的执行次序不做限制。
S13、站点生成第一聚合帧,其中,第一聚合帧包括:第一数据和第二数据。
示例性地,站点将第一数据与第二数据进行聚合,得到聚合后的数据,该聚合后的数据称为第一聚合帧,进而站点生成第一聚合帧。例如,站点将第一数据的数据包和第二数据的数据包拼接成长包,从而得到第一聚合帧。如果一个其他站点向站点发送的是空帧,则站点在进行数据聚合的时候,不需要考虑该其他站的数据,即不需要 对空帧进行处理。
S14、其他站点生成第二聚合帧,第二聚合帧包括:第一数据和第二数据,第一聚合帧中第一数据和第二数据的聚合次序与第二聚合帧中第一数据和第二数据的聚合次序相同。
示例性地,参与协作的其他站点也将第一数据与第二数据进行聚合,得到聚合后的数据,进而每一个参与协作的其他站点生成第二聚合帧。并且,参与协作的站点在进行数据聚合的时候,数据的聚合次序是一致的,以保证不同的站点生成的聚合帧是相同的。
举例来说,在图3所示场景下,站点11接收到了站点12发送的数据和站点13发送的数据,站点12接收到了站点11发送的数据和站点13发送的数据,站点13接收到了站点11发送的数据和站点12发送的数据;站点11先将站点11的数据与站点3发送的数据进行聚合,然后再将站点12的数据聚合进来,生成聚合帧;则站点12也需要先将站点11的数据与站点13的数据进行聚合,然后再将站点12的数据聚合进来,生成聚合帧;站点13也需要先将站点11的数据与站点3的数据进行聚合,然后再将站点12的数据聚合进来,生成聚合帧。
其中,步骤13和步骤S14之间的执行次序不做限制。
S15、站点向接入点发送第一聚合帧。
S16、一个或多个其他站点向接入点发送第二聚合帧,站点发送第一聚合帧的时间与一个或多个其他站点向接入点发送第二聚合帧的时间相同,站点发送第一聚合帧的发送功率小于站点单独向接入点发送第一数据时的功率;一个或多个其他站点发送第二聚合帧的发送功率小于一个或多个其他站点单独向接入点发送第二数据时的功率。
其中,站点的发送功率为站点单独向接入点发送第一数据的功率乘以站点的发送功率系数,其他站点的发送功率为其他站点单独发送第二数据的功率乘以其他站点的发送功率系数,其中,站点的发送功率系数大于0小于1,其他站点的发送功率系数大于0小于1,站点的发送功率系数与一个或多个其他站点的发送功率系数之和大于等于1。
例如,站点的发送功率系数与一个或多个其他站点的发送功率系数相等,取值为1/N,其中,N为此站点和一个或多个其他站点的站点的总个数,N为大于等于2的正整数。例如,在如图3所示的场景中,站点为STA11,一个或多个其他站点为STA12,STA13,站点总个数为N=3。
示例性地,站点将生成的第一聚合帧发送给接入点,并且,由于协作组中的生成了聚合帧的站点会将各自生成的第二聚合帧,发送给接入点;其中,站点发送第一聚合帧的动作,与其他站点发送第二聚合帧的动作,是同时执行的,即步骤S15和步骤S16是同时执行的。
需要说明的是,基于收发机的工作原理,本实施例所涉及到的“同时”是实质的同时,不需要严格限定在上述第一聚合帧和第二聚合帧的发送的没有任何时间上的差异,只需要满足整体上上述处理在时间维度大致相同即可。且本申请实施例方案中多个站点同时向AP发送聚合帧是有益的。例如,从站点侧的角度看,这可允许协作组中多个站点中的每个站点采用较小的发送功率向接入点发送聚合帧,减小了单个站点发送 功率,延长了单个站点的电池寿命,从接入点侧的角度看,协作组中多个站点采用较小发送功率“同时”发送聚合帧,接入点仍可以正常接收到各个站点的数据,并不会因为单个站点的发送功率的减小而无法正常接收到各个站点的数据。因此,多个站点同时向AP发送聚合帧是有益的。
由于,站点发送第一聚合帧的时间与一个或多个其他站点发送第二聚合帧的时间相同,从而,站点发送第一聚合帧的发送功率小于站点单独向接入点发送第一数据时的功率,并且其他站点发送第二聚合帧的发送功率小于其他站点单独向接入点发送第二数据时的功率;从而参与协作的站点的发送功率都会小于各自单独向接入点发送各自的数据时的功率。
举例来说,在图3所示场景下,协作组中具有3个站点,站点11生成了聚合帧,站点12生成了聚合帧,站点13生成了聚合帧;站点11、站点12和站点13同时将各自生成的聚合帧发送给接入点,那么,站点11发送聚合帧时的发送功率会小于站点11单独向接入点发送自身的数据时的功率,站点12发送聚合帧时的发送功率会小于站点12单独向接入点发送自身的数据时的功率,站点13发送聚合帧时的发送功率会小于站点13单独向接入点发送自身的数据时的功率。
并且,站点的发送功率为站点单独向接入点发送自身的数据的功率乘以站点的发送功率系数,其他站点的发送功率为其他站点单独发送第二数据的功率P乘以其他站点的发送功率系数,其中,参与协作的所有站点的发送功率系数之和大于等于1,并且参与协作的每一个站点的发送功率系数是大于0小于1的。
一个可能的实施方式中,站点的发送功率可以通过协议约定的方式,例如约定站点的发送功率系数。
例如,参与协作的每一个站点的发送功率系数都是1/N,则参与协作的每一个站的的发送功率为站点单独发送自身的数据的1/N倍,其中,N为协作组中参与发送聚合帧的站点的总个数,N为大于等于2的正整数。
再例如,参与协作的每一个站点的发送功率系数都是1.5/N,则参与协作的每一个站的的发送功率为站点单独发送自身的数据的1.5/N倍,其中,N为协作组中参与发送聚合帧的站点的个数,N为大于等于2的正整数。
可以理解的,如果协作组中的所有站点都参与发送聚合帧,则N的取值为协作组中所有站点的个数,如果协作组中的部分站点参与发送聚合帧,则N的取值为协作组中发送聚合帧的部分站点的个数。
又例如,参与协作的每一个站点的发送功率系数是不同的;或者,参与协作的一部分站点的发送功率系数相同,而另一部分站点的发送功率系数不同。
基于以上发送功率系数的不同情况,可能会使得参与协作的站点的发送功率相同或不同。
本实施例中,协作组中的站点根据自身的第一数据和接收到的第二数据生成聚合帧,第二数据为站点所属的协作组中除站点之外的一个或多个其他站点的数据;然后,生成了聚合帧的站点将各自的聚合帧,同时发送给接入点。协作组中的一个或多个站点都可以分别执行以上过程,参与协作的站点所生成的聚合帧中的数据相同,聚合次序也相同,进而保证了不同站点的聚合帧的一致性;通过以上协作过程,每一个站点 发送聚合帧的发送功率小于该站点单独向接入点发送自身的数据时的功率,可保持协作组的总发送功率满足接入点侧正常接收的需求;并且降低了单个站点的发送功率,可以有效降低站点的电流,增加站点的使用寿命,对于物联网中的物联网设备来说,可以增加物联网设备的电池的总容量、延长物联网设备的电池的寿命。
图5为本申请实施例提供的另一种数据传输方法的信令图。如图5所示,该方法包括:
S21、接入点广播触发帧,其中,触发帧包括站点确定站点的发送功率所需的信息。
触发帧中与协作组中的站点对应的用户信息字段中第一字段相同,第一字段用于指示聚合帧的资源单元;也就是说,触发帧中与此站点对应的用户信息字段中的第一字段,和,触发帧中与一个或多个其他站点对应的用户信息字段中的第一字段相同,此站点的第一字段指示承载第一聚合帧的资源单元,一个或多个其他站点的第一字段指示承载第二聚合帧的资源单元,承载第一聚合帧的资源单元与承载第二聚合帧的资源单元相同。在另一种可能的实现方式中个,也可以采用协议约定的方式,约定站点发送的第一聚合帧可以在全带宽上发送,而一个或多个其他站点发送的第二聚合帧也可以在全带宽上发送,因此,触发帧中与参与协作的各个站点对应的用户信息字段中的资源指示字段可以不用于指示资源单元,而可以复用于指示各个站点的发送功率系数。
触发帧中与协作组中的站点对应的用户信息字段中的第二字段相同,第二字段用于指示承载聚合帧的编码类型;也就是说,触发帧中与此站点对应的用户信息字段中的第二字段,和,触发帧中与一个或多个其他站点对应的用户信息字段中的第二字段相同,此站点的第二字段指示第一聚合帧的编码类型,一个或多个其他站点的第二字段指示第二聚合帧的编码类型,第一聚合帧的编码类型与第二聚合帧的编码类型相同。
触发帧中与协作组中的站点对应的用户信息字段中的第三字段相同,第三字段用于指示聚合帧的调制编码制式;也就是说,触发帧中与此站点对应的用户信息字段中的第三字段,和,触发帧中与一个或多个其他站点对应的用户信息字段中的第三字段相同,此站点的第三字段指示第一聚合帧的调制编码方式,一个或多个其他站点的第三字段指示第二聚合帧的调制编码方式,第一聚合帧的调制编码方式与第二聚合帧的调制编码方式相同。
触发帧中与协作组中的站点对应的用户信息字段中的第四字段相同,第四字段用于指示聚合帧的双载波调制;也就是说,触发帧中与此站点对应的用户信息字段中的第四字段,和,触发帧中与一个或多个其他站点对应的用户信息字段中的第四字段相同,此站点的第四字段指示第一聚合帧的双载波调制,一个或多个其他站点的第四字段指示第二聚合帧的双载波调制,第一聚合帧的双载波调制方式与第二聚合帧的双载波调制方式相同。
触发帧中与协作组中的站点对应的用户信息字段中的第五字段相同,第五字段用于指示空间流分配。也就是说,触发帧中与此站点对应的用户信息字段中的第五字段,和,触发帧中与一个或多个其他站点对应的用户信息字段中的第五字段相同,此站点的第五字段指示第一聚合帧的空间流分配,一个或多个其他站点的第四字段指示第二 聚合帧的空间流分配,第一聚合帧的空间流分配方式与第二聚合帧的空间流分配方式相同。
触发帧中携带的确定发送功率所需的信息包括但不限于以下几种实现方式:
第一种实现方式中:触发帧中确定发送功率所需的信息指示协作组中的发送聚合帧的站点个数为N或者是指示协作组中的发送聚合帧的站点的发送功率系数为1/N,则站点可以根据站点个数N或者发送功率系数1/N,确定其发送功率为站点单独向接入点发送第一数据时的功率的1/N倍,可以理解的,如果协作组中的所有站点都参与发送聚合帧,则N的取值为协作组中所有站点的个数,如果协作组中的部分站点参与发送聚合帧,则N的取值为协作组中发送聚合帧的部分站点的个数。N为大于等于2的正整数。可以理解的,若触发帧中不包括的除协作组中站点之外的站点对应的用户信息字段,只包括协作组中站点对应的用户信息字段,站点还可以根据触发帧中用户信息字段的个数,确定其发送功率系数。
第二种实现方式中,触发帧中确定发送功率所需的信息指示出了参与发送聚合帧的N个站点中的第i个站点的发送功率系数ki,i∈[2,N],i为正整数,N个站点的发送功率系数之和大于等于1;则第i个站点的发送功率为N个站点中的站点i单独向接入点发送数据时的功率的ki倍。
第三种实现方式中,触发帧中确定发送功率所需的信息为站点对应的用户信息字段中包括目标接收信号强度指示字段,此信号强度指示字段字段指示出了发送功率。
第四种实现方式中,触发帧中确定发送功率所需的信息为触发帧中与站点对应的资源分配字段和目标接收信号强度指示字段,与站点对应的资源分配字段指示此站点的发送功率系数,与站点对应的目标接收信号强度指示字段用于此站点确定此站点单独发送第一数据的功率。可以理解的,当各个站点的资源单元分配字段不用于携带发送功率系数,而采用其他字段携带参与协作的各个站点的发送功率系数时,参与协作的各个站点的资源单元分配字段可以用于指示各个站点资源单元。
示例性地,在站点生成了聚合帧之后,站点需要被指示与其他站点一起同时发送聚合帧。接入点可以广播触发帧(trigger),从而协作组中的站点可以接收到触发帧;其中,触发帧指示站点在预设时间之后发送数据,例如,在图3所示场景下,接入点广播触发帧,参与协作的站点11、站点12和站点13都接收到该触发帧,站点11、站点12和站点13都在触发帧结束之后的短帧间间隔(short interframe space,SIFS)时间同时发送各自的聚合帧。从而由于参与协作的站点根据接入点的指示去同时发送聚合帧,可以保证数据的同步。
图6本申请提供的触发帧的帧结构示意图,如图6所示,触发帧中包括帧控制(frame control)字段、持续(duration)字段、RA字段、提前量(timing advance,TA)字段、公用信息(common info)字段、容量(padding)字段、帧校验序列(frame check sequence,FCS)字段,并且,触发帧中还包括M个用户信息(user info)字段,其中M为大于等于2的正整数,M个用户信息字段中的N个用户信息字段与协作组中参与协作的N个站点一一对应,站点对应的用户信息字段用于承载用户信息字段所对应的站点的参数设置。N个用户信息字段中的每一个用户信息字段中包括关联标识符(association identifier,AID)的后十二位、第一字段、第二字段、第三字段、第四 字段、第五字段、以及,目标接收信号强度指示(target receive signal strength indicator,Target RSSI)字段、预留字段(reserved)、触发器相关用户信息(trigger dependent user info)字段等;其中,用户信息字段中的AID的后十二位,为用户信息字段所对应的站点的AID的后十二位。
并且,触发帧中与协作组中的站点对应的用户信息字段中的第一字段相同,第一字段用于指示承载聚合帧的资源单元,优选的,第一字段为资源单元分配(resource unit allocation,RU Allocation)字段;触发帧中与协作组中的站点对应的用户信息字段中的第二字段相同,第二字段用于指示聚合帧的编码类型,优选的,第二字段为编码类型(coding type)字段;触发帧中与协作组中的站点对应的用户信息字段中的第三字段相同,第三字段用于指示聚合帧的调制编码制式,优选的,第三字段为调制编码制式(modulation and coding scheme,MCS)字段;触发帧中与协作组中的站点对应的用户信息字段中的第四字段相同,第四字段用于指示聚合帧的双载波调制,优选的,第四字段为双载波调制(dual carrier modulation,DCM)字段;触发帧中与协作组中的站点对应的用户信息字段中的第五字段相同,第五字段用于指示聚合帧的空间流分配,优选的,第五字段为空间流分配(spatial stream allocation,SS Allocation)字段。
由于与协作组中的站点对应的用户信息字段中的第一字段相同、与协作组中的站点对应的用户信息字段中的第二字段相同、与协作组中的站点对应的用户信息字段中的第三字段相同、与协作组中的站点对应的用户信息字段中的第四字段相同、与协作组中的站点对应的用户信息字段中的第五字段相同,从而保证参与协作的站点在发送聚合帧时,可以采用相同的资源单元、相同的调制与编码策略(modulation and coding scheme,MCS)、相同的信道等,即保证参与协作的站点在发送聚合帧时,可以在相同的资源单元上使用完全相同的方式发送聚合帧,从而使得接入点接收到的多个聚合帧实现功率的叠加,确保单个站点的发送功率的减小并不影响接入点对各个站点的数据的接收。
举例来说,触发帧中的用户信息字段1与STA11对应,触发帧中的用户信息字段2与STA12对应,触发帧中的用户信息字段3与STA13对应,用户信息字段1的RU Allocation字段与用户信息字段2的RU Allocation字段和用户信息字段3的RU Allocation字段相同,用户信息字段1的coding type字段与用户信息字段2的coding type字段和用户信息字段3的coding type字段相同,用户信息字段1的MCS字段与用户信息字段2的MCS字段和用户信息字段3的MCS字段相同,用户信息字段1的DCM字段与用户信息字段2的DCM字段和用户信息字段3的DCM字段相同,用户信息字段1的SS Allocation字段与用户信息字段2的SS Allocation字段和用户信息字段3的SS Allocation字段相同。
上述触发帧中还包括了站点确定发送聚合帧时的发送功率所需的信息。这里提供了三种实现方式。
第一种实现方式,触发帧指示出了发送功率为站点单独向接入点发送自身的数据时的功率的1/N倍,可以理解的,如果协作组中的所有站点都参与发送聚合帧,则N的取值为协作组中所有站点的个数,如果协作组中的部分站点参与发送聚合帧,则N的取值为协作组中发送聚合帧的部分站点的个数。N为大于等于2的正整数。从而, 站点向接入点发送聚合帧时的发送功率为P/N,P为站点单独向接入点发送自身的第一数据时的功率。需要说明的是,发送功率为站点单独向接入点发送自身的数据时的功率的1/N倍,也可以不是触发帧指示出来的,而是预先规定的。
举例来说,在图3所示的场景下,站点11、站点12和站点13参与了上述协作,P 1为站点11单独向接入点发送自身的数据时的功率,P 2为站点12单独向接入点发送自身的数据时的功率,P 3为站点13单独向接入点发送自身的数据时的功率;在站点11和站点12参与了本申请的协作过程之后,站点11向接入点发送聚合帧时的发送功率为P 1/3,站点12向接入点发送聚合帧时的发送功率为P 2/3,站点13向接入点发送聚合帧时的发送功率为P 3/3。
第二种实现方式,触发帧指示出了协作组中的第i个站点的发送功率系数ki,其中,i∈[2,N],i为正整数,并且所有站点的发送功率系数之和大于等于1。从而,站点向接入点发送聚合帧时的发送功率为ki*P,P为站点单独向接入点发送自身的第一数据时的功率。当所有站点的发送功率系数之和等于1的时候,可以保证单个站点发送聚合帧时的信噪比(SNR);当所有站点的发送功率系数之和大于1的时候,可以增加接入点的接收能量,进而提高数据接收的鲁棒性、扩展通信距离。
第三种实现方式,触发帧中的用户信息字段中Target RSSI字段,指示出了用户信息字段对应的站点的发送功率。举例来说,与站点对应的用户信息字段中的Target RSSI字段指示出了站点的发送功率为P/N,P为站点单独向接入点发送自身的第一数据时的功率;或者,与站点对应的用户信息字段中的Target RSSI字段指示出了站点的发送功率系数ki,从而站点的发送功率为ki*P,P为站点单独向接入点发送自身的第一数据时的功率,并且此时,所有站点的发送功率系数之和大于等于1,或者是触发帧中的每一个站点的Target RSSI字段指示出了该站点发送聚合帧的发送功率。
第四种实现方式,触发帧中的用户信息字段中与站点对应的RU Allocation字段指示此站点的发送功率系数,Target RSSI字段用于此站点确定此站点单独发送第一数据的功率;从而,站点可以根据Target RSSI字段确定出站点单独发送第一数据的功率P,然后站点将P乘以RU Allocation字段指示此站点的发送功率系数ki,得到该站点发送聚合帧的发送功率。
举例来说,触发帧中的user info字段中的UL Target RSSI字段修改成发送功率系数字段,从而站点发送聚合帧的实际发送功率等于单独发送时的发送功率乘以功率发送系数;或者,又一种实现方式中,各个用户信息字段中的RU Allocation字段可以携带参与协作的各个站点的发送功率系数。在实际实施的时候,站点可以先根据UL target RSSI字段计算出原始发送功率,再根据RU Allocation字段指示的发送功率系数计算出站点发送聚合帧的实际发送功率,实际发送功率等于原始发送功率乘以功率发送系数。
对没有站点参与协作(现有技术的情形)、2个站点参与协作和3个站点参与协作,三种情况进行分析,假设单个站点与接入通信需要的发送功率为9分贝毫X(dBm),站点之间交互采用的发送功率为1-2dBm,可以得到表1所示的功耗对比。表1中的U代表电压,I代表电流,t代表时间,另外为了表述方便,令c=U*t;假定发送功率为接收功率的两倍,站点之间交互的时候发送数据的电流为0.5毫安,这样在站点间进 行交互的时候发送能量消耗为U*0.5*t,接收能量消耗为U*0.5*t*0.5。
表1功耗对比
Figure PCTCN2019086758-appb-000001
表1中,在2个站点参与协作的时候,根据1.97c%除以3.00c%,可以得到65%;在3个站点参与协作的时候,根据1.93c%除以3.00c%,可以得到64%;通过表1的分析可知,协作组中的站点参与协作之后,站点的电池消耗会降低,站点的功耗较小。
可以理解的,S21只需要在步骤S26之前执行即可,例如,步骤S21也可以在步骤S23之后执行。
S22、站点接收站点所属的协作组中除站点之外的一个或多个其他站点的第二数据。
示例性的,本步骤可以参见图4的步骤S11。
S23、站点向一个或多个其他站点发送第一数据。
示例性的,本步骤可以参见图4的步骤S12。
S24、站点生成第一聚合帧,其中,第一聚合帧包括:第一数据和第二数据。
关于聚合帧中的数据的聚合关系可以包括但不限于以下几种实施方式:
第一种实施方式:聚合帧中第一数据和第二数据的聚合次序与触发帧中的用户信息字段的次序对应。
第二种实施方式:聚合帧中第一数据和第二数据的聚合次序与协作组中的站点之间的次序关系对应。
第三种实施方式:聚合帧中第一数据和第二数据的聚合次序与站点发送第一数据和一个或多个其他站点发送第二数据时的时间顺序关系对应。
示例性地,站点在生成聚合帧的时候,是根据一定的次序关系将第一数据和第二数据进行聚合的。站点生成聚合帧的时候,可以由以下几种实施方式。
第一种实施方式为:聚合次序与接入点广播的触发帧中的用户信息字段的次序相对应;此时,站点根据接入点发送的触发帧中的用户信息字段的次序,依次对第一数据和第二数据进行聚合,得到聚合帧。
举例来说,在图3所示的场景下,触发帧中的用户信息字段与站点一一对应,用户信息字段1与站点11对应,用户信息字段2与站点13对应,用户信息字段3与站点12对应;站点1可以将站点11的数据与站点13的数据聚合,然后再将站点12的数据聚合进来;站点12可以将站点11的数据与站点13的数据聚合,然后再将站点12的数据聚合进来;同样的,站点13可以将站点11的数据与站点13的数据聚合,然后再将站点12的数据聚合进来。
第二种实施方式为:聚合次序与协作组中的站点之间的次序关系相对应;此时,站点根据协作组中的各站点之间次序关系,依次对第一数据和第二数据进行聚合,得到聚合帧。
举例来说,在图3所示的场景下,协作组中的各站点的次序关系为站点13、站点11、站点12,则各站点分别将将站点13的数据与站点11的数据聚合,然后再将站点12的数据聚合进来。
第三种实施方式为:聚合次序与站点发送数据的时间顺序关系对应;此时,站点根据参与协作的各站点发送数据的时间顺序关系,依次将第一数据与第二数据进行聚合,得到聚合帧。
举例来说,在图3所示场景下,站点11先发送站点自身的数据,站点13再发送自身的数据,站点12再发送自身的数据,则站点11会依次接收到站点13的数据和站点12的数据,站点12会依次接收到站点11的数据和站点站点13的数据,站点13会依次接收到站点11的数据和站点站点12的数据,但是每一个站点都可以确定数据的发送次序分别为站点11、站点13、站点12;则各站点会先将站点11的数据与站点13的数据聚合,然后站点12的数据聚合进来。
参与协作的站点的数据聚合次序是相同的。其他过程可以参见图4的步骤S101,不再赘述。
S25、其他站点生成第二聚合帧,第二聚合帧包括:第一数据和第二数据,第一聚合帧中第一数据和第二数据的聚合次序与第二聚合帧中第一数据和第二数据的聚合次序相同。
示例性地,其他站点生成聚合帧的过程可以参见步骤S24。
S26、站点向接入点发送第一聚合帧。
S27、一个或多个其他站点向接入点发送第二聚合帧,站点发送第一聚合帧的时间与一个或多个其他站点发送第二聚合帧的时间相同,站点发送第一聚合帧的发送功率小于站点单独向接入点发送第一数据时的功率;一个或多个其他站点发送第二聚合帧的发送功率小于一个或多个其他站点单独向接入点发送第二数据时的功率。
示例性地,步骤S26和S27中对于发送功率的介绍可以参见步骤S21。本实施例中,接入点可以向协作组中的站点广播触发帧,触发帧中包括站点确定发送功率所需的信息,接入点可以根据触发帧确定发送聚合帧时的发送功率,且发送功率小于站点单独向接入点发送自身的数据时的功率,可保持协作组的总发送功率满足接入点侧正常接收的需求。从而接入点可以指示出协作组中的站点发送聚合帧时的发送功率,保证发送功率可以小于站点单独向接入点发送第一数据时的功率;从而降低单个站点的发送功率,有效降低站点的电流,增加站点的使用寿命;并且提供了采用多种方式指 示出了聚合帧中的数据的次序关系,确保聚合帧聚合次序的一致性。
图7为本申请实施例提供的又一种数据传输方法的信令图。如图7所示,该方法包括:
S31、站点向其他站点发送控制帧,其中,控制帧中包括站点确定发送功率所需的信息。
其中,控制帧中包括一个公用信息字段和N-1个用户信息字段,其中,可以理解的,如果协作组中的所有站点都参与发送聚合帧,则N的取值为协作组中所有站点的个数,如果协作组中的部分站点参与发送聚合帧,则N的取值为协作组中发送聚合帧的部分站点的个数。因此N为参与协作的站点和一个或多个其他站点的站点总个数。,N为大于等于2的正整数;N-1为参与协作的一个或多个其他站点的个数,N-1个用户信息字段与参与协作的一个或多个其他站点一一对应;公用信息字段中包括第一字段、第二字段、第三字段、第四字段和第五字段,其中,第一字段用于指示承载聚合帧的资源单元,第二字段用于指示聚合帧的编码类型,第三字段用于指示聚合帧的调制编码制式,第四字段用于指示聚合帧的双载波调制,第五字段用于指示空间流分配。
控制帧中包括站点确定发送功率所需的信息,可以包括但不限于以下几种实现方式。
第一种实现方式:控制帧中确定发送功率所需的信息指示协作组中的参与协作的站点个数为N或者是指示协作组中参与协作的站点发送功率系数为1/N,则站点可以根据站点个数N或者发送功率系数为1/N,确定其发送功率为站点单独向接入点发送第一数据时的功率的1/N倍。
第二种实现方式:控制帧中确定发送功率所需的信息指示出了N个站点中的第i个站点的发送功率系数ki,i∈[2,N],i为正整数,N个站点的发送功率系数之和大于等于1;则第i个站点的发送功率为站点单独向接入点发送第一数据时的功率的ki倍。一个示例中,N个站点的发送功率系数可包含于N个站点对应的用户信息字段中。
示例性地,在站点生成了聚合帧之后,站点需要被指示与其他站点一起同时发送聚合帧。协作组中的一个其他站点可以向参与协作的站点发送控制帧,从而,协作组中的参与协作的站点可以接收到控制帧,其中,控制帧中包括站点确定发送功率所需的信息;并且,发送控制帧的其他站点可以为参与协作的站点,也可以为不参与协作的站点。或者,站点向参与协作的其他站点发送控制帧,控制帧中包括站点确定发送功率所需的信息。需要说明的是,当不参与协作的站点发送控制帧时,控制帧中包括用于参与协作的所有站点的确定发送功率的信息,当参与协作的站点发送控制帧时,控制帧中可以包括参与协作的其他站点的发送功率系数,可以不包括发送此控制帧的站点的发送功率系数。控制帧也可以称为同步帧、触发帧等等。
图8为本申请提供的控制帧的帧结构示意图,如图8所示,控制帧中包括一个公用信息字段和N-1个用户信息字段,其中,N-1个用户信息字段中的每一个用户信息字段与协作组中参与协作的N个站点中的除去发送控制帧的站点之外的N-1个其他站点一一对应;另外,控制帧中还可以包括frame control字段、duration字段、RA字段、TA字段、padding字段、FCS字段;控制帧中的用户信息字段与N-1个其他站点一一 对应,即控制帧中没有发送该控制帧的站点的用户信息字段。并且,N-1个用户信息字段中的每一个用户信息字段中包括AID的后十二位;用户信息字段中的AID的后十二位,为用户信息字段所对应的站点的AID的后十二位;并且,每一个用户信息字段中还包括了Target RSSI字段、reserved字段、trigger dependent user info字段。公用信息字段中包括第一字段、第二字段、第三字段、第四字段和第五字段,其中,第一字段用于指示聚合帧的资源单元,优选的,第一字段为RU Allocation字段;第二字段用于指示聚合帧的编码类型,优选的,第二字段为coding type字段;第三字段用于指示聚合帧的调制编码制式,优选的,第三字段为MCS字段;第四字段用于指示聚合帧的双载波调制,优选的,第四字段为DCM字段;第五字段用于指示聚合帧的空间流分配,优选的,第五字段为SS Allocation字段。公用信息字段中的第一字段、第二字段、第三字段、第四字段和第五字段,是与所有参与协作的站点对应的,通过在公用信息字段中携带第一字段、第二字段、第三字段、第四字段和第五字段,而不是将这些字段分别重复的携带在N-1个用户信息字段中,可以避免字段的重复发,节约信令的开销,节约网络资源。
上述控制帧中还包括了站点确定发送聚合帧时的发送功率所需的信息。这里提供了两种实施方式。
第一种实现方式,控制帧指示出了发送功率为站点单独向接入点发送自身的数据时的功率的1/N倍,N为协作组中参与协作的站点的个数,即向接入点发送聚合帧的站点的个数,N为大于等于2的正整数。从而,站点向接入点发送聚合帧时的发送功率为P/N,P为站点单独向接入点发送自身的第一数据时的功率。需要说明的是,发送功率为站点单独向接入点发送自身的数据时的功率的1/N倍,也可以不是控制帧指示出来的,而是协议预先规定的。
第二种实现方式,控制帧指示出了协作组中的第i个站点的发送功率系数ki,其中,i∈[2,N],i为正整数,并且所有站点的发送功率系数之和大于等于1。从而,站点向接入点发送聚合帧时的发送功率为ki*N,P为站点单独向接入点发送自身的第一数据时的功率。当所有站点的发送功率系数之和等于1的时候,可以保证单个站点发送聚合帧时的信噪比(SNR);当所有站点的发送功率系数之和大于1的时候,可以增加接入点的接收能量,进而提高数据接收的鲁棒性、扩展通信距离。
其中,S31只需要在步骤S36和S37之前执行即可,例如,步骤S31也可以在步骤S33之后执行。
S32、站点接收站点所属的协作组中除站点之外的一个或多个其他站点的第二数据。
示例性的,本步骤可以参见图4的步骤S11。
S33、站点向一个或多个其他站点发送第一数据。
示例性的,本步骤可以参见图4的步骤S12。
S34、站点生成第一聚合帧,其中,第一聚合帧包括:第一数据和第二数据。
关于聚合帧中的数据的聚合关系有以下几种实施方式:
第一种实施方式:聚合帧中第一数据和第二数据的聚合次序与控制帧中的用户信息字段的次序对应。
第二种实施方式:聚合帧中第一数据和第二数据的聚合次序与协作组中的站点之 间的次序关系对应。
第三种实施方式:聚合帧中第一数据和第二数据的聚合次序与站点发送第一数据和一个或多个其他站点发送第二数据的时间顺序关系对应。
示例性地,站点在生成聚合帧的时候,是根据一定的次序关系将第一数据和第二数据进行聚合的。站点生成聚合帧的时候,可以由以下几种实施方式。
第一种实施方式为:聚合帧中的各数据的次序关系与站点发送的控制帧中的用户信息字段的次序相对应;此时,站点根据控制帧中的用户信息字段的次序,依次对第一数据和第二数据进行聚合,得到聚合帧。由于控制帧中不具有发送控制帧的站点的用户信息字段,可以预先固定设置发送控制帧的站点的数据聚合次序,例如最先将发送控制帧的站点的数据进行聚合,或者最后将发送控制帧的站点的数据进行聚合。
举例来说,若约定最后将发送控制帧的站点的数据进行聚合。在图3所示场景下,站点11向参与协作的站点12、站点13发送控制帧,控制帧包括了用户信息字段1和用户信息字段2,用户信息字段1与站点12对应,用户信息字段2与站点13对应;站点11可以将站点12的数据与站点13的数据进行聚合,然后再将站点11的数据聚合进来;同样的,站点12将站点12的数据与站点13的数据进行聚合,然后再将站点11的数据聚合进来;站点13将站点12的数据与站点13的数据进行聚合,然后再将站点11的数据聚合进来。
第二种实施方式为:聚合帧中的各数据的次序关系与协作组中的站点之间的次序关系相对应;此时,站点根据协作组中的各站点之间次序关系,依次对第一数据和第二数据进行聚合,得到聚合帧。
第三种实施方式为:聚合次序与站点发送数据的时间顺序关系对应;此时,站点根据参与协作的各站的发送数据的时间顺序关系,依次将第一数据与第二数据进行聚合,得到聚合帧。
并且,参与协作的站点的数据的聚合次序是相同的。其他过程可以参见图4的步骤S101,不再赘述。
S35、其他站点生成第二聚合帧,第二聚合帧包括:第一数据和第二数据,第一聚合帧中第一数据和第二数据的聚合次序与第二聚合帧中第一数据和第二数据的聚合次序相同。
示例性地,其他站点生成聚合帧的过程,可以参加步骤S34。
S36、站点向接入点发送第一聚合帧。
S37、一个或多个其他站点向接入点发送第二聚合帧,站点发送第一聚合帧的时间与一个或多个其他站点发送第二聚合帧的时间相同,站点发送第一聚合帧的发送功率小于站点单独向接入点发送第一数据时的功率;一个或多个其他站点发送第二聚合帧的发送功率小于一个或多个其他站点单独向接入点发送第二数据时的功率。
示例性地,步骤S36和S37中对于发送功率的介绍可以参见步骤S31。
本实施例中,站点可以向协作组中的参与协作的其他站点发送控制帧,或者,一个其他站点向站点发送控制帧,控制帧中包括站点确定发送功率所需的信息,接入点可以根据控制帧确定发送聚合帧时的发送功率,且发送功率小于站点单独向接入点发送第一数据时的功率,可保持协作组的总发送功率满足接入点侧正常接收的需求。从 而接入点可以指示出协作组中的站点发送聚合帧时的发送功率,保证发送功率可以小于站点单独向接入点发送第一数据时的功率;从而降低单个站点的发送功率,有效降低站点的电流,增加站点的使用寿命;并且提供了采用多种方式指示出了聚合帧中的数据的次序关系,确保聚合帧聚合次序的一致性。
图9为本申请实施例提供的再一种数据传输方法的信令图。如图9所示,该方法包括:
S41、站点醒来。
步骤S41具有以下几种实现方式:
步骤S41的第一种实现方式:站点接收接入点广播的组目标苏醒时间信息,目标苏醒时间信息指示协作组中的站点醒来;站点根据目标苏醒时间信息醒来。
步骤S41的第二种实现方式:站点接收接入点发送的与协作组对应的关联标识符;站点接收接入点广播的管理帧,管理帧中与关联标识符对应的比特位为1,比特位表征唤醒协作组中的站点;站点根据管理帧醒来。
步骤S41的第三种实现方式:站点与参与协作的一个或多个其他站点协商出目标苏醒时间信息,目标苏醒时间信息表征协作组中的站点在预设时间点醒来;站点根据目标苏醒时间信息醒来;站点将目标苏醒时间信息发送给接入点。
示例性地,协作组中的站点在进行协作之前,需要参与协作的站点没有同时处于苏醒状态的问题,因此需要建议给予这些站点的功率节省(power save)机制。在站点接收数据和发送数据之前,站点需要醒来,本申请提供了以下几种实施方式。
第一种实现方式,接入点以分组的形式调度站点醒来,具体的,接入点建立一个组目标苏醒时间(group target wake time,Groupcast TWT)信息;接入点广播Groupcast TWT信息,Groupcast TWT信息指示协作组中的站点醒来;站点可以接收到Groupcast TWT信息,然后,站点根据Groupcast TWT信息醒来;从而接收到Groupcast TWT信息的各站点根据Groupcast TWT信息同时醒来。
第二种实现方式,接入点以分组的形式调度站点进行同时醒来,具体的,接入点为协作组分配一个AID,并且将该AID与协作组对应起来,接入点将与协作组对应的AID发送给协作组中的各站点;接入点配置一个管理帧,管理帧中具有与AID对应的比特位,将该比特位设置为1,从而该比特位表征唤醒协作组中的站点,其中,管理帧可以为业务指示地图(traffic indication map,TIM);接入点广播上述管理帧;从而,站点接收到与协作组对应的AID,并且站点接收到管理帧,站点根据管理帧醒来;从而协作组中的各站点根据与协作组对应的AID、和管理帧,同时醒来。
第三种实现方式,协作组中参与协作的站点协商出一个目标苏醒时间(target wake time,TWT)信息,该TWT信息表征协作组中的站点在预设时间点醒来;在参与协作的站点协商出TWT信息之后,站点就可以根据协商出的TWT信息醒来;然后,站点将协商出的TWT信息发送给接入点。
S42、站点接收站点所属的协作组中除站点之外的一个或多个其他站点的第二数据。
S43、站点向一个或多个其他站点发送第一数据。
S44、站点生成第一聚合帧,其中,第一聚合帧包括:第一数据和第二数据。
S45、其他站点生成第二聚合帧,第二聚合帧包括:第一数据和第二数据,第一聚合帧中第一数据和第二数据的聚合次序与第二聚合帧中第一数据和第二数据的聚合次序相同。
S46、站点向接入点发送第一聚合帧。
S47、一个或多个其他站点向接入点发送第二聚合帧,站点发送第一聚合帧的时间与一个或多个其他站点发送第二聚合帧的时间相同,站点发送第一聚合帧的发送功率小于站点单独向接入点发送第一数据时的功率;一个或多个其他站点发送第二聚合帧的发送功率小于一个或多个其他站点单独向接入点发送第二数据时的功率。
示例性地,上述步骤S42-S47,可以参见图4的各步骤,或者参见图5的各步骤,或者,参见图7的各步骤。
在步骤S46和步骤S47中,参与协作的每一个站点以空时块编码(space-time block coding,STBC)方式,将各自生成的聚合帧同时发送给接入点。
示例性地,本步骤在图4-图7的基础上,站点在发送聚合帧的时候可以采用STBC方式。站点在采用STBC方式发送聚合帧的时候,每一个站点等效于一根天线。
举例来说,当两个站点参与协作的时候,设置两个站点的编码矩阵为
Figure PCTCN2019086758-appb-000002
c 1和c 2表示了两个数据;编码矩阵表征了将聚合帧进行编码之后,每两个符号表征的数据由两个站点使用编码矩阵分两个时隙进行发送。例如,对于数据a 1和a 2,站点1和站点2采用第一个时隙将数据a 1和数据
Figure PCTCN2019086758-appb-000003
*发送给接入点,站点1和站点2采用第二个时隙将数据a 2和数据
Figure PCTCN2019086758-appb-000004
发送给接入点;对于数据b 1和b 2,站点1和站点2采用第二个时隙将数据b 1和数据
Figure PCTCN2019086758-appb-000005
发送给接入点,站点1和站点2采用第四个时隙将数据b 2和数据
Figure PCTCN2019086758-appb-000006
发送给接入点;对于后续需要发送的数据,依然采用这样的两个数据构成一个编码矩阵的方式进行发送。
本实施例中,站点根据接入点的指示醒来,或者站点之间协商醒来,从而保证协作组中的站点在进行协作之前同时处于清醒状态;站点生成聚合帧,站点以STBC方式将聚合帧发送给接入点,由于STBC的数据发送方式能够提供更好的分集增益,在采用STBC方式发送聚合帧之后,可以提高接入点的接收性能,并且降低误包率。
图10示出了本申请实施例提供的一种数据发送结果确认的流程示意图。可以理解的,本实施例可以应用于当接入点AP接收到站点发送的第一聚合帧和一个或多个站点发送的第二聚合帧之后的错误恢复过程中,本实施例还可以应用于其他场景中,此处不作限定。这里,以接入点AP接收到站点发送的第一聚合帧和一个或多个站点发送的第二聚合帧的场景为例进行说明。如图10所示,该方法包括:
S71、接入点向参与协作的站点发送确认帧或块确认帧。
S72、站点确定是否接收到接入点发送的确认帧或块确认帧,或者,站点确定接收到的块确认帧中与站点对应的比特为1还是0。
示例性地,确认帧((Acknowledgement,简称ACK)指的是,当站点接收到确认帧,就表征了站点向接入点发送的数据被接入点正确接收;当站点没有接收到确认帧,就表征了该站点向接入点发送的数据没有被接入点正确接收。块确认帧(Block  Acknowledgement,简称BA)采用的是bitmap的形式,bitmap中每个bit对应一个MAC服务数据单元(MAC Service Data Unit,简称MSDU),当站点没有接收到块确认帧,则表示协作组中所有站点向接入点发送的数据都没有被接入点正确接收;当站点接收到块确认帧时,若确定站点对应的比特位为0,则确定该站点向接入点发送的数据没有被接入点正确接收,若确定站点对应的比特位为1,则确定该站点向接入点发送的数据被接入点正确接收。
接入点接收到参与协作的站点发送的聚合帧之后,需要向参与协作的站点发送反馈信息,该反馈信息为上述确认帧或块确认帧。
S73、站点在确定没有接收到接入点发送的确认帧或块确认帧时,将确认请求信息发送给协作组中的一个或多个其他站点,其中,确认帧表征接入点成功接收到第一聚合帧,确认请求信息用于确定其他站点是否接收到确认帧或块确认帧。
示例性地,第一种情形中,在步骤S72之后,站点若确定没有接收到接入点发送的确认帧或块确认帧,则站点需要向协作组中的一个或多个其他站点进行询问,进一步的,站点向参与协作的一个或多个其他站点发送确认请求信息,以询问其他站点是否接收到了确认帧或块确认帧。
S74、其他站点向站点发送确认响应信息。
示例性地,确认响应信息表征其他站点是否接收到确认帧或块确认帧,在确认响应信息表征其他站点接收到块确认帧时,确认响应信息中携带块确认帧中的具体信息。
S75、在接收到的确认响应信息表征其他站点没有接收到确认帧、或其他站点没有接收到块确认帧、或其他站点接收到的块确认帧中与站点对应的比特为0时,站点确定第一数据发送不成功。
示例性地,在步骤S74之后,站点接收到确认响应信息之后,站点若确定确认响应信息表征其他站点没有接收到确认帧,则站点确定自己向接入点发送的数据没有被接入点正确接收;站点若确定确认响应信息表征其他站点没有接收到块确认帧,则站点确定协作组中所有站点向接入点发送的数据都没有被接入点正确接收,当然可以确定该站点自己向接入点发送的数据没有被接入点正确接收;站点若确认响应信息表征其他站点接收到的块确认帧中与当前站点对应的比特为0的时候,站点确定自己向接入点发送的数据没有被接入点正确接收。
进一步的,协作组中的站点可以进行重传。
S76、在接收到的确认响应信息表征其他站点接收到确认帧、或其他站点接收到的块确认帧中与站点对应的比特为1时,站点确定第一数据发送成功。
示例性地,在步骤S74之后,站点接收到确认响应信息之后,站点若确定确认响应信息表征其他站点接收到确认帧,则站点确定自己向接入点发送的数据被接入点正确接收;或者,站点若确定确认响应信息表征其他站点接收到块确认帧中与当前站点对应的比特为1,则站点确定一个或多个其他站点向接入点发送的数据被接入点正确接收。
然后,站点不需要进行重传。
S77、站点确定接收到接入点发送的确认帧,其中,确认帧表征接入点成功接收到第一聚合帧,或者,站点确定接收到的块确认帧中的与站点对应的比特位为1,则站 点确定第一数据发送成功。
示例性的,第二种情形中,在S72之后,站点若确定接收到接入点发送的确认帧,则站点确定接入点成功接收到该站点发送的数据。或者,站点若确定接收到接入点发送的块确认帧,且确认帧中的与该站点对应的比特位为1,则站点确定接入点成功接收到该站点发送的数据。
本实施例中,站点在确定没有接收到接入点发送的确认帧或块确认帧时,向协作组中的一个或多个其他站点询问是否接收到确认帧或块确认帧,此站点通过询问一个或多个其他站点的确认接收情况而避免重传,减少了传输开销,节约网络资源。
图11示出了本申请实施例提供的另一种数据发送结果确认的流程示意图。可以理解的,本实施例可以应用于当接入点AP接收到站点发送的第一聚合帧和一个或多个站点发送的第二聚合帧之后的错误恢复过程中,本实施例还可以应用于其他场景中,此处不作限定。此处,以接入点AP接收到站点发送的第一聚合帧和一个或多个站点发送的第二聚合帧的场景为例进行说明,如图11所示,该方法包括:
S81、接入点向参与协作的站点发送确认帧或块确认帧。
S82、站点确定是否接收到接入点发送的确认帧或块确认帧,或者,站点确定接收到的块确认帧中与站点对应的比特为1还是0。
示例性地,确认帧和块确认帧的介绍,请见图10的步骤S71-S72。
在第一种情形中,S83、站点在确定没有接收到接入点发送的确认帧或块确认帧时,或者,站点在确定接收到接入点发送的块聚合帧、且块聚合帧中的与站点对应的比特位为0时,确定第一数据发送失败,此时,站点可以进行重传。
示例性地,在S82之后,站点若确定没有接收到接入点发送的确认帧,则站点确定接入点没有接收到该站点发送的聚合帧;进行一步的,站点可以进行重传。
或者,站点若确定没有接收到接入点发送的块确认帧,则站点确定协作组中所有站点向接入点发送的数据都没有被接入点正确接收,当然可以确定接入点没有接收到该站点发送的聚合帧;进行一步的,站点可以进行重传。
或者,站点若确定接收到了接入点发送的块确认帧,但是该块聚合帧中的与站点对应的比特位为0,则站点确定接入点没有接收到该站点发送的聚合帧;进行一步的,站点可以进行重传。
在第二种情形中,S84、站点确定接收到接入点发送的确认帧,其中,确认帧表征接入点成功接收到第一聚合帧,或者,站点确定接收到的块确认帧中的与站点对应的比特位为1,则站点确定第一数据发送成功。
示例性的,在S82之后,站点若确定接收到接入点发送的确认帧,则站点确定接入点成功接收到该站点发送的数据。或者,站点若确定接收到接入点发送的块确认帧,且确认帧中的与该站点对应的比特位为1,则站点确定接入点成功接收到该站点发送的数据。
然后,站点不需要进行数据重传。
本实施例中,接入点成功接收到聚合帧的时候,接入点需要告知站点,进而避免站点再次向接入点发送数据,节约网络资源;站点在确定接入点没有成功接收到聚合 帧的时候,需要重复进行聚合帧发送过程,从而保证接入点可以接收到聚合帧。
图12示出了本申请实施例提供的一种站点建立协作组的交互流程示意图。如图12所示,该方法包括:
S191、站点将第一分组请求帧发送给接入点,其中,第一分组请求帧用于请求与一个其他站点构成协作组。
示例性地,站点向接入点发送第一分组请求帧(grouping request 1),第一分组请求帧表征站点请求与一个其他站点形成一个协作组。
S192、接入点向一个其他站点发送第二分组请求帧,其中,第二分组请求帧中包括协作组的标识。
示例性地,接入点向一个其他站点发送第二分组请求帧(grouping request 2),第二分组请求帧中包括协作组的标识(Group ID)。
S193、一个其他站点向接入点发送第一分组响应帧,其中,第一分组响应帧表征一个其他站点确定与站点构成协作组。
示例性地,一个其他站点向接入点发送第一分组响应帧(grouping response 1),第一分组响应帧表示同意一个其他站点和站点组成一个协作组。
S194、接入点向站点发送第二分组响应帧,其中,第二分组响应帧中包括协作组的标识,第二分组响应帧表征一个其他站点确定与站点构成协作组。
示例性地,接入点向站点发送第二分组响应帧(grouping response 2),第二分组响应帧表征确认站点和一个其他站点分组成功,第二分组响应帧中包括上述协作组的标识。其中,上述协作组的标识可以是接入点分配的,上述协作组的标识用于标识站点和一个其他站点形成一个协作组。
当再需要加入另一个其他站点的时候,站点向接入点发送第四分组请求帧(grouping request 4),第四分组请求帧表征站点请求将另一个其他站点加入到上述协作组;接入点向另一个其他站点发送第五分组请求帧(grouping request 5),第五分组请求帧中包括协作组的标识;另一个其他站点向接入点发送第四分组响应帧(grouping response4),第四分组响应帧表示同意另一个其他站点加入到协作组中;接入点向站点发送第五分组响应帧(grouping response 5),第五分组响应帧表征确认另一个其他站点成功加入到协作组中,第五分组响应帧中包括上述协作组的标识。当再需要加入又一个其他站点的时候,重复上述过程。
本实施例中,站点向接入点发起分组请求,去请求与一个其他站点构成一个协作组;从而可以建立起协作组,协作组中的多个站点可以完成上述实施例的协作过程,降低站点的发送功率,降低站点的电流,增加站点的使用寿命。
图13示出了本申请实施例提供的一种站点建立协作组的交互流程示意图。如图13所示,该方法包括:
S211、站点将第三分组请求帧发送给一个其他站点,其中,第三分组请求帧用于请求与一个其他站点构成协作组,第三分组请求帧中包括协作组的标识。
示例性地,站点分配一个协作组的标识;站点向一个其他站点发送第三分组请求 帧(grouping request 3),第三分组请求帧表征站点请求与一个其他站点形成一个协作组,第三分组请求帧中携带有上述协作组的标识。
S212、一个其他站点向站点发送第三分组响应帧,其中,第三分组响应帧表征一个其他站点确定与站点构成协作组。
示例性地,一个其他站点向站点发送第三分组响应帧(grouping response 3),第三分组响应帧表征一个其他站点同意和站点形成一个协作组。
当再需要加入另一个其他站点的时候,站点向另一个其他站点发送第六分组请求帧(grouping request 6),第六分组请求帧表征站点请求另一个其他站点加入到协作组中,第六分组请求帧中携带有上述协作组的标识;另一个其他站点向站点发送第六分组响应帧(grouping response 6),第六分组响应帧表征另一个其他站点同意加入到协作组中。当再需要加入又一个其他站点的时候,重复上述过程。
S213、站点将分组报告帧发送给接入点,其中,分组报告帧中包括协作组的标识。
示例性地,站点向接入点发送分组报告帧(grouping report)。
S214、接入点将分组确认帧发送给站点。
示例性地,接入点向站点发送分组确认帧(grouping confirm)。
本实施例中,站点向其他站点发起分组请求,去请求与一个其他站点构成一个协作组;然后站点将构成的协作组的信息发送给接入点;从而可以建立起协作组,协作组中的多个站点可以完成上述实施例的协作过程,降低站点的发送功率,降低站点的电流,增加站点的使用寿命。
上文中详细描述了根据本申请实施例的数据传输方法,下面将描述本申请实施例的数据传输装置。
本申请实施例详细描述了站点侧的数据传输装置的示意性结构。
在一个示例中,图14示出了本申请实施例的一种站点侧的数据传输装置1400的示意性框图。本申请实施例的装置1400可以是上述方法实施例中的站点,也可以是站点内的一个或多个芯片。装置1400可以用于执行上述方法实施例中的站点的部分或全部功能。如图1414所示,该装置1400可以包括处理模块1410、接收模块1420和发送模块1430,可选的,该装置1400还可以包括存储模块1440。
例如,该处理模块1410,可以用于执行前述方法实施例中的图4的步骤S13,或者用于执行图4的步骤S14。该处理模块1410,可以用于执行前述方法实施例中的图5的步骤S24,或者用于执行图5的步骤S25。该处理模块1410,可以用于执行前述方法实施例中的图7的步骤S34,或者用于执行图7的步骤S35。该处理模块1410,可以用于执行前述方法实施例中的图9的步骤S44,或者用于执行图9的步骤S45。该处理模块1410,可以用于执行前述方法实施例中的图10的步骤S72;用于执行图10的步骤S75,或者用于执行图10的步骤S76,或者用于执行图10的步骤S77。该处理模块1410,可以用于执行前述方法实施例中的图11的步骤S82;用于执行图11的步骤S83中的生成步骤,或者用于执行图11的步骤S84。该接收模块1420,可以用于执行前述方法实施例中的图4的步骤S11。该接收模块1420,可以用于执行前述方法实施例中的图5的步骤S22。该接收模块1420,可以用于执行前述方法实施例中的图7的 步骤S32。该接收模块1420,可以用于执行前述方法实施例中的图9的步骤S42。
该发送模块1430,可以用于执行前述方法实施例中的图4的步骤S12;用于执行图4的步骤S14,或者,用于执行图4的步骤S16。该发送模块1430,可以用于执行前述方法实施例中的图5的步骤S23;用于执行图5的步骤S26,或者用于执行图5的步骤S27。该发送模块1430,可以用于执行前述方法实施例中的图7的步骤S33;用于执行图7的步骤S36,或者用于执行图7的步骤S37。该发送模块1430,可以用于执行前述方法实施例中的图9的步骤S43;用于执行图9的步骤S46,或者用于执行图9的步骤S47。该发送模块1430,可以用于执行前述方法实施例中的图10的步骤S73,或者用于执行图10的步骤S74。该发送模块1430,可以用于执行前述方法实施例中的图11的步骤S83中的发送步骤。该发送模块1430,可以用于执行前述方法实施例中的图12的步骤S191,或者用于执行图12的步骤S193。该发送模块1430,可以用于执行前述方法实施例中的图13的步骤S211,或者用于执行图13的步骤S212;用于执行图13的步骤S213。
可以替换的,装置1400也可配置成通用处理系统,例如通称为芯片,该处理模块1410可以包括:提供处理功能的一个或多个处理器;接收模块1420例如可以是输入接口、管脚或电路等,发送模块1430例如可以是输出接口、管脚或电路等,输入/输出接口可用于负责此芯片系统与外界的信息交互,例如,此输入/输出接口可将站点生成的聚合帧输出给此芯片外的其他模块进行处理。该处理模块可执行存储模块中存储的计算机执行指令以实现上述方法实施例中站点的功能。在一个示例中,装置1400中可选的包括的存储模块1440可以为芯片内的存储单元,如寄存器、缓存等,存储模块1440还可以是站点内的位于芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
在另一个示例中,图15示出了本申请实施例的另一种站点侧的数据传输装置1500的示意性框图。本申请实施例的装置1500可以是上述方法实施例中的站点,装置1500可以用于执行上述方法实施例中的站点的部分或全部功能。该装置1500可以包括:处理器1510,基带电路1530,射频电路1540以及天线1550,可选的,该装置1500还可以包括存储器1520。装置1500的各个组件通过总线1560耦合在一起,其中总线系统1560除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线系统1560。
处理器1510可用于实现对站点的控制,用于执行上述实施例中由站点进行的处理,可以执行上述方法实施例中涉及站点的处理过程和/或用于本申请所描述的技术的其他过程,还可以运行操作系统,负责管理总线以及可以执行存储在存储器中的程序或指令。
基带电路1530、射频电路1540以及天线1550可以用于支持站点和上述实施例中涉及的接入点之间收发信息,以支持站点与接入点之间进行无线通信,还用于支持站点和其他站点进行信令和信息的交互,以实现站点间的协作。
一个示例中,来自接入点发送的确认帧或块确认帧经由天线1550接收,由射频电 路1540进行滤波、放大、下变频以及数字化等处理后,再经由基带电路1530解码、按协议解封装数据等基带处理后,由处理器1510进行处理;又一个示例中,处理器1510生成第一数据、或第二数据、或聚合帧,第一数据、或第二数据、或聚合帧经由基带电路1530进行按协议封装,编码等基带处理,进一步由射频电路1540进行模拟转换、滤波、放大和上变频等射频处理后,经由天线1550发射出去。
存储器1520可以用于存储站点的程序代码和数据,存储器1520可以是图14中的存储模块1540。可以理解的,基带电路1530、射频电路1540以及天线1550还可以用于支持站点与其他网络实体进行通信,例如,用于支持站点与核心网侧的网元进行通信。图15中存储器1520被示为与处理器1510分离,然而,本领域技术人员很容易明白,存储器1520或其任意部分可位于1500之外。举例来说,存储器1520可以包括传输线、和/或与无线节点分离开的计算机制品,这些介质均可以由处理器1510通过总线接口1560来访问。可替换地,存储器1520或其任意部分可以集成到处理器1510中,例如,可以是高速缓存和/或通用寄存器。
可以理解的是,图15仅仅示出了站点的简化设计。例如,在实际应用中,站点可以包含任意数量的发射器,接收器,处理器,存储器等,而所有可以实现本发明的站点都在本发明的保护范围之内。
一种可能的实现方式中,站点侧的数据传输装置也可以使用下述来实现:一个或多个现场可编程门阵列(field-programmable gate array,FPGA)、可编程逻辑器件(programmable logic device,PLD)、控制器、状态机、门逻辑、分立硬件部件、任何其它适合的电路、或者能够执行本申请通篇所描述的各种功能的电路的任意组合。在又一个示例中,本申请实施例还提供一种计算机存储介质,该计算机存储介质可以存储用于指示上述任一种方法的程序指令,以使得处理器执行此程序指令实现上述方法实施例中涉及站点的方法和功能。
本申请实施例详细描述接入点侧的数据传输装置的示意性结构。在一个示例中,图16示出了本申请实施例的一种接入点侧的数据传输装置1600的示意性框图。本申请实施例的装置1600可以是上述方法实施例中的接入点,也可以是接入点内的一个或多个芯片。装置1600可以用于执行上述方法实施例中的接入点的部分或全部功能。该装置1600可以包括处理模块1610、接收模块1620和发送模块1630,可选的,该装置1600还可以包括存储模块1640。
例如,该接收模块1620,可以用于接收前述方法实施例中的图4的步骤S15和步骤S16中来自站点的聚合帧;或者,用于接收图5的步骤S26和步骤S27中来自站点的聚合帧;或者,用于接收图7的步骤S36和步骤S37中来自站点的聚合帧;或者,用于接收图9的步骤S46和步骤S47中来自站点的聚合帧。该接收模块1620,可以用于接收图12的步骤S191中来自站点的第一分组请求帧,用于接收图12的步骤193中来自站点的第一分组响应帧;用于接收图13的步骤S213中来自站点的分组报告帧。
该发送模块1630,可以用于执行前述方法实施例中的图5的步骤S21;或者,用于执行图7的步骤S31;或者,用于执行图10的步骤S71;或者,用于执行图11的步骤S81;或者,用于执行图12的步骤S192和步骤S194;或者,用于执行图13的步 骤S212和步骤S214。
处理模块1610可用于生成触发帧,或者,用于生成确认帧或块确认帧。
可以替换的,装置1600也可配置成通用处理系统,例如通称为芯片,该处理模块1610可以包括:提供处理功能的一个或多个处理器;接收模块1620例如可以是输入接口、管脚或电路等,发送模块1630例如可以是输出接口、管脚或电路等,输入/输出接口可用于负责此芯片系统与外界的信息交互,例如,此输入接口可将站点发送聚合帧输出给此芯片外的其他模块进行处理。该一个或多个处理器可执行存储模块中存储的计算机执行指令以实现上述方法实施例中接入点的功能。在一个示例中,装置1600中可选的包括的存储模块1640可以为芯片内的存储单元,如寄存器、缓存等,存储模块1640还可以是接入点内的位于芯片外部的存储单元,如ROM或可存储静态信息和指令的其他类型的静态存储设备,RAM等。
在另一个示例中,图17示出了本申请实施例的另一种接入点侧的数据传输装置1700的示意性框图。本申请实施例的装置1700可以是上述方法实施例中的接入点,装置1700可以用于执行上述方法实施例中的接入点的部分或全部功能。该装置1700可以包括:处理器1710,基带电路1730,射频电路1740以及天线1750,可选的,该装置1700还可以包括存储器1720。装置1700的各个组件通过总线1760耦合在一起,其中总线系统1760除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线系统1760。
处理器1710可用于实现对接入点的控制,用于执行上述实施例中由接入点进行的处理,可以执行上述方法实施例中涉及站点的处理过程和/或用于本申请所描述的技术的其他过程,还可以运行操作系统,负责管理总线以及可以执行存储在存储器中的程序或指令。
基带电路1730、射频电路1740以及天线1750可以用于支持接入点和上述实施例中涉及的站点之间收发信息,以支持接入点与站点之间进行无线通信。一个示例中,来自站点发送的聚合帧经由天线1750接收,由射频电路进行滤波、放大、下变频以及数字化等处理后,再经由基带电路解码、按协议解封装数据等基带处理后,由处理器1710进行处理;又一个示例中,接入点的确认帧或块确认帧可由处理器1710进行处理,经由基带电路1730进行按协议封装,编码等基带处理,进一步由射频电路1740进行模拟转换、滤波、放大和上变频等射频处理后,经由天线1750发射出去,存储器1720可以用于存储站点的程序代码和数据,存储器1720可以是图16中的存储模块1740。可以理解的,基带电路1730、射频电路1740以及天线1750还可以用于支持接入点与其他网络实体进行通信,例如,用于支持接入点与该接入点关联的站点进行通信,例如,图3中所示的站点。
可以理解的是,图17仅仅示出了接入点的简化设计。例如,在实际应用中,接入点可以包含任意数量的发射器,接收器,处理器,存储器等,而所有可以实现本发明的接入点都在本发明的保护范围之内。
一种可能的实现方式中,接入点侧的数据传输装置也可以使用下述来实现:一个或多个FPGA、PLD、控制器、状态机、门逻辑、分立硬件部件、任何其它适合的电 路、或者能够执行本申请通篇所描述的各种功能的电路的任意组合。
在又一个示例中,本申请实施例还提供一种计算机存储介质,该计算机存储介质可以存储用于指示上述任一种方法的程序指令,以使得处理器执程序指令实现上述方法实施例中涉及接入点的方法和功能。
上述装置1500和装置1700中涉及的处理器可以是通用处理器,例如通用中央处理器(CPU)、网络处理器(network processor,NP)、微处理器等,也可以是特定应用集成电路(application-specific integrated circBIt,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。还可以是数字信号处理器(digital signal processor,DSP)、现场可编程门阵列(field-programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。控制器/处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。处理器通常是基于存储器内存储的程序指令来执行逻辑和算术运算。
上述装置1600和装置1700中涉及的存储器还可以保存有操作系统和其他应用程序。具体地,程序可以包括程序代码,程序代码包括计算机操作指令。更具体的,上述存储器可以是ROM)可存储静态信息和指令的其他类型的静态存储设备、RAM、可存储信息和指令的其他类型的动态存储设备、磁盘存储器等等。存储器可以是上述存储类型的组合。并且上述计算机可读存储介质/存储器可以在处理器中,还可以在处理器的外部,或在包括处理器或处理电路的多个实体上分布。上述计算机可读存储介质/存储器可以具体体现在计算机程序产品中。举例而言,计算机程序产品可以包括封装材料中的计算机可读介质。
本申请实施例提供了一种通信系统,该通信系统包括图14所提供的至少一个站点侧的数据传输装置和图16所提供的接入点侧的数据传输装置。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk)等。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (38)

  1. 一种数据传输方法,其特征在于,包括:
    站点接收所述站点所属的协作组中除所述站点之外的一个或多个其他站点的第二数据;
    所述站点向所述一个或多个其他站点发送第一数据,以使得所述一个或多个其他站点生成第二聚合帧,所述第二聚合帧包括:所述第一数据和所述第二数据;
    所述站点向接入点发送第一聚合帧,所述第一聚合帧包括:所述第一数据和所述第二数据;所述站点发送所述第一聚合帧的时间与所述一个或多个其他站点向所述接入点发送所述第二聚合帧的时间相同,所述第一聚合帧中所述第一数据和所述第二数据的聚合次序与所述第二聚合帧中所述第一数据和所述第二数据的聚合次序相同;
    其中,所述站点发送所述第一聚合帧的发送功率小于所述站点单独向所述接入点发送所述第一数据时的功率;所述一个或多个其他站点发送所述第二聚合帧的发送功率小于所述一个或多个其他站点单独向所述接入点发送所述第二数据时的功率。
  2. 根据权利要求1所述的方法,其特征在于,所述站点的发送功率为所述站点单独向所述接入点发送所述第一数据的功率乘以所述站点的发送功率系数,所述其他站点的发送功率为所述其他站点单独发送所述第二数据的功率乘以所述其他站点的发送功率系数,其中,所述站点的发送功率系数大于0小于1,所述其他站点的发送功率系数大于0小于1,所述站点的发送功率系数与所述一个或多个其他站点的发送功率系数之和大于等于1。
  3. 根据权利要求2所述的方法,其特征在于,所述站点的发送功率系数与所述一个或多个其他站点的发送功率系数相等,取值为1/N,其中,N为所述站点和所述一个或多个其他站点的总个数,N为大于等于2的正整数。
  4. 根据权利要求2或3所述的方法,其特征在于,在所述站点接收所述站点所属的协作组中除所述站点之外的一个或多个其他站点的第二数据之前,所述方法还包括:
    所述站点接收所述接入点广播的触发帧,其中,所述触发帧包括所述站点确定所述站点的发送功率所需的信息。
  5. 根据权利要求4所述的方法,其特征在于,所述确定所述站点的发送功率所需的信息包括:所述站点的发送功率系数;所述触发帧还包括:所述一个或多个其他站点的发送功率系数。
  6. 根据权利要求4或5所述的方法,其特征在于,所述触发帧中与所述协作组中的站点对应的用户信息字段中的第一字段相同,所述第一字段用于指示承载所述聚合帧的资源单元;所述触发帧中与所述协作组中的站点对应的用户信息字段中的第二字段相同,所述第二字段用于指示所述聚合帧的编码类型;所述触发帧中与所述协作组中的站点对应的用户信息字段中的第三字段相同,所述第三字段用于指示所述聚合帧的调制编码制式;所述触发帧中与所述协作组中的站点对应的用户信息字段中的第四字段相同,所述第四字段用于指示所述聚合帧的双载波调制;所述触发帧中与所述协作组中的站点对应的用户信息字段中的第五字段相同,所述第五字段用于指示空间流分配。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,在所述站点接收所述站 点所属的协作组中除所述站点之外的一个或多个其他站点的第二数据之前,还包括:
    所述站点接收所述接入点广播的组目标苏醒时间信息,所述目标苏醒时间信息指示所述协作组中的站点醒来;
    所述站点根据所述目标苏醒时间信息醒来。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,所述站点向所述接入点发送第一聚合帧,包括:
    所述站点以空时块编码STBC方式,将所述第一聚合帧发送给所述接入点。
  9. 根据权利要求1-8中任一项所述的方法,其特征在于,在所述站点向所述接入点发送第一聚合帧之后,还包括:
    所述站点在确定没有接收到所述接入点发送的确认帧或块确认帧时,将确认请求信息发送给所述协作组中的一个或多个其他站点,其中,所述确认帧表征所述接入点成功接收到所述第一聚合帧,所述确认请求信息用于确定所述其他站点是否接收到确认帧或块确认帧;
    所述站点接收所述其他站点发送的确认响应信息;
    在接收到的所述确认响应信息表征所述其他站点没有接收到确认帧、或所述其他站点没有接收到块确认帧、或所述其他站点接收到的块确认帧中与所述站点对应的比特为0时,确定所述第一数据发送失败;
    在接收到的所述确认响应信息表征所述其他站点接收到确认帧、或所述其他站点接收到的块确认帧中与所述站点对应的比特为1时,确定所述第一数据发送成功。
  10. 一种数据传输方法,其特征在于,包括:
    接入点接收站点发送的第一聚合帧,和,接收所述站点所属的协作组中除所述站点之外的一个或多个其他站点发送的第二聚合帧;
    其中,所述第一聚合帧包括第一数据和第二数据,所述第二聚合帧包括所述第一数据和所述第二数据,所述第一数据为所述站点的数据,所述第二数据为所述一个或多个其他站点的数据,所述第一聚合帧中所述第一数据和所述第二数据的聚合次序与所述第二聚合帧中所述第一数据和所述第二数据的聚合次序相同;
    所述站点发送所述第一聚合帧的发送功率小于所述站点单独向所述接入点发送所述第一数据的功率;所述一个或多个其他站点发送所述第二聚合帧的发送功率小于所述一个或多个其他站点单独向所述接入点发送所述第二数据时的功率。
  11. 根据权利要求10所述的方法,其特征在于,所述站点的发送功率为所述站点单独向所述接入点发送所述第一数据的功率乘以所述站点的发送功率系数,所述其他站点的发送功率为所述其他站点单独发送所述第二数据的功率乘以所述其他站点的发送功率系数,其中,所述站点的发送功率系数大于0小于1,所述其他站点的发送功率系数大于0小于1,所述站点的发送功率系数与所述一个或多个其他站点的发送功率系数之和大于等于1。
  12. 根据权利要求11所述的方法,其特征在于,所述站点的发送功率系数与所述一个或多个其他站点的发送功率系数相等,取值为1/N,其中,N为所述站点和所述一个或多个其他站点的总个数,N为大于等于2的正整数。
  13. 根据权利要求11或12所述的方法,其特征在于,在所述接入点接收站点发 送的第一聚合帧,和,接收所述站点所属的协作组中除所述站点之外的一个或多个其他站点发送的第二聚合帧之前,还包括:
    所述接入点广播的触发帧,其中,所述触发帧中包括所述站点确定所述发送功率所需的信息。
  14. 根据权利要求13所述的方法,其特征在于,所述确定所述站点的发送功率所需的信息包括:所述站点的发送功率系数;所述触发帧还包括:所述一个或多个其他站点的发送功率系数。
  15. 根据权利要求13或14中任一项所述的方法,其特征在于,所述触发帧中与所述协作组中的站点对应的用户信息字段中的第一字段相同,所述第一字段用于指示承载所述聚合帧的资源单元;所述触发帧中与所述协作组中的站点对应的用户信息字段中的第二字段相同,所述第二字段用于指示所述聚合帧的编码类型;所述触发帧中与所述协作组中的站点对应的用户信息字段中的第三字段相同,所述第三字段用于指示所述聚合帧的调制编码制式;所述触发帧中与所述协作组中的站点对应的用户信息字段中的第四字段相同,所述第四字段用于指示所述聚合帧的双载波调制;所述触发帧中与所述协作组中的站点对应的用户信息字段中的第五字段相同,所述第五字段用于指示空间流分配。
  16. 根据权利要求10-15中任一项所述的方法,其特征在于,在所述接入点接收站点发送的第一聚合帧,和,接收所述站点所属的协作组中除所述站点之外的一个或多个其他站点发送的第二聚合帧之前,还包括:
    所述接入点广播组目标苏醒时间信息,其中,所述目标苏醒时间信息指示所述协作组中的站点醒来。
  17. 一种站点侧的数据传输装置,其特征在于,包括:
    接收模块,用于接收所述站点所属的协作组中除所述站点之外的一个或多个其他站点的第二数据;
    发送模块,用于向所述一个或多个其他站点发送第一数据,以使得所述一个或多个其他站点生成第二聚合帧,所述第二聚合帧包括:所述第一数据和所述第二数据;
    处理模块,用于生成第一聚合帧,所述第一聚合帧包括:所述第一数据和所述第二数据;
    所述发送模块,还用于向接入点发送所述第一聚合帧,所述站点发送所述第一聚合帧的时间与所述一个或多个其他站点向所述接入点发送所述第二聚合帧的时间相同,所述第一聚合帧中所述第一数据和所述第二数据的聚合次序与所述第二聚合帧中所述第一数据和所述第二数据的聚合次序相同;
    其中,所述站点发送所述第一聚合帧的发送功率小于所述站点单独向所述接入点发送所述第一数据时的功率;所述一个或多个其他站点发送所述第二聚合帧的发送功率小于所述一个或多个其他站点单独向所述接入点发送所述第二数据时的功率。
  18. 根据权利要求17所述的装置,其特征在于,所述站点的发送功率为所述站点单独向所述接入点发送所述第一数据的功率乘以所述站点的发送功率系数,所述其他站点的发送功率为所述其他站点单独发送所述第二数据的功率乘以所述其他站点的发送功率系数,其中,所述站点的发送功率系数大于0小于1,所述其他站点的发送功 率系数大于0小于1,所述站点的发送功率系数与所述一个或多个其他站点的发送功率系数之和大于等于1。
  19. 根据权利要求18所述的装置,其特征在于,所述站点的发送功率系数与所述一个或多个其他站点的发送功率系数相等,取值为1/N,其中,N为所述站点与所述一个或多个其他站点的总个数,N为大于等于2的正整数。
  20. 根据权利要求18或19所述的装置,其特征在于,所述接收模块,还用于:
    在接收所述站点所属的协作组中除所述站点之外的一个或多个其他站点的第二数据之前,接收所述接入点广播的触发帧,其中,所述触发帧包括所述站点确定所述站点的发送功率所需的信息。
  21. 根据权利要求20所述的装置,其特征在于,所述确定所述站点的发送功率所需的信息包括:所述站点的发送功率系数;所述触发帧还包括:所述一个或多个其他站点的发送功率系数。
  22. 根据权利要求20或21中任一项所述的装置,其特征在于,所述触发帧中与所述协作组中的站点对应的用户信息字段中第一字段相同,所述第一字段用于指示承载所述聚合帧的资源单元;所述触发帧中与所述协作组中的站点对应的用户信息字段中的第二字段相同,所述第二字段用于指示所述聚合帧的编码类型;所述触发帧中与所述协作组中的站点对应的用户信息字段中的第三字段相同,所述第三字段用于指示所述聚合帧的调制编码制式;所述触发帧中与所述协作组中的站点对应的用户信息字段中的第四字段相同,所述第四字段用于指示所述聚合帧的双载波调制;所述触发帧中与所述协作组中的站点对应的用户信息字段中的第五字段相同,所述第五字段用于指示空间流分配。
  23. 根据权利要求17-22中任一项所述的装置,其特征在于,所述接收模块,还用于:
    在所述接收模块接收所述站点所属的协作组中除所述站点之外的一个或多个其他站点的第二数据之前,接收所述接入点广播的组目标苏醒时间信息,所述目标苏醒时间信息指示所述协作组中的站点醒来;
    所述处理模块,还用于根据所述目标苏醒时间信息醒来。
  24. 根据权利要求17-23中任一项所述的装置,其特征在于,所述发送模块,具体用于:
    以空时块编码STBC方式,将所述第一聚合帧发送给所述接入点。
  25. 根据权利要求17-24中任一项所述的装置,其特征在于,所述发送模块,还用于:
    在所述发送模块向所述接入点发送第一聚合帧之后,在确定没有接收到所述接入点发送的确认帧或块确认帧时,将确认请求信息发送给所述协作组中的一个或多个其他站点,其中,所述确认帧表征所述接入点成功接收到所述第一聚合帧,所述确认请求信息用于确定所述其他站点是否接收到确认帧或块确认帧;
    所述接收模块,还用于接收所述其他站点发送的确认响应信息;
    所述处理模块,还用于在接收到的所述确认响应信息表征所述其他站点没有接收到确认帧、或所述其他站点没有接收到块确认帧、或所述其他站点接收到的块确认帧 中与所述站点对应的比特为0时,确定所述第一数据发送失败;
    所述处理模块,还用于在接收到的所述确认响应信息表征所述其他站点接收到确认帧、或所述其他站点接收到的块确认帧中与所述站点对应的比特为1时,确定所述第一数据发送成功。
  26. 一种接入点侧的数据传输装置,其特征在于,包括:
    接收模块,用于接收站点发送的第一聚合帧,以及,还用于接收所述站点所属的协作组中除所述站点之外的一个或多个其他站点发送的第二聚合帧;
    其中,所述第一聚合帧包括第一数据和第二数据,所述第二聚合帧包括所述第一数据和所述第二数据,所述第一数据为所述站点的数据,所述第二数据为所述一个或多个其他站点的数据,所述第一聚合帧中所述第一数据和所述第二数据的聚合次序与所述第二聚合帧中所述第一数据和所述第二数据的聚合次序相同;
    所述站点发送所述第一聚合帧的发送功率小于所述站点单独向所述接入点发送所述第一数据的功率;所述一个或多个其他站点发送所述第二聚合帧的发送功率小于所述一个或多个其他站点单独向所述接入点发送所述第二数据时的功率。
  27. 根据权利要求26所述的装置,其特征在于,所述站点的发送功率为所述站点单独向所述接入点发送所述第一数据的功率乘以所述站点的发送功率系数,所述其他站点的发送功率为所述其他站点单独发送所述第二数据的功率乘以所述其他站点的发送功率系数,其中,所述站点的发送功率系数大于0小于1,所述其他站点的发送功率系数大于0小于1,所述站点的发送功率系数与所述一个或多个其他站点的发送功率系数之和大于等于1。
  28. 根据权利要求27所述的装置,其特征在于,所述站点的发送功率系数与所述一个或多个其他站点的发送功率系数相等,取值为1/N,其中,N为所述站点和所述一个或多个其他站点的总个数,N为大于等于2的正整数。
  29. 根据权利要求27或28所述的装置,其特征在于,所述装置,还包括:
    发送模块,用于在所述接收模块接收站点发送的第一聚合帧,和,接收所述站点所属的协作组中除所述站点之外的一个或多个其他站点发送的第二聚合帧之前,广播的触发帧,其中,所述触发帧中包括所述站点确定所述发送功率所需的信息。
  30. 根据权利要求29所述的装置,其特征在于,所述确定所述发送功率所需的信息包括:所述站点的发送功率系数;所述触发帧还包括:所述一个或多个其他站点的发送功率系数。
  31. 根据权利要求29或30中任一项所述的装置,其特征在于,所述触发帧中与所述协作组中的站点对应的用户信息字段中的第一字段相同,所述第一字段用于指示承载所述聚合帧的资源单元;所述触发帧中与所述协作组中的站点对应的用户信息字段中的第二字段相同,所述第二字段用于指示所述聚合帧的编码类型;所述触发帧中与所述协作组中的站点对应的用户信息字段中的第三字段相同,所述第三字段用于指示所述聚合帧的调制编码制式;所述触发帧中与所述协作组中的站点对应的用户信息字段中的第四字段相同,所述第四字段用于指示所述聚合帧的双载波调制;所述触发帧中与所述协作组中的站点对应的用户信息字段中的第五字段相同,所述第五字段用于指示空间流分配。
  32. 根据权利要求26-31中任一项所述的装置,其特征在于,所述发送模块,还用于:
    在所述接收模块接收站点发送的第一聚合帧,和,接收所述站点所属的协作组中除所述站点之外的一个或多个其他站点发送的第二聚合帧之前,广播组目标苏醒时间信息,其中,所述目标苏醒时间信息指示所述协作组中的站点醒来。
  33. 一种装置,其特征在于,包括:处理器和存储器,所述存储器用于存储指令,当所述处理器执行所述指令时,所述装置用于执行如权利要求1至16中任一项所述的方法。
  34. 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1至16中任一项所述的方法。
  35. 一种计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机执行权利要求1至16中任一项所述的方法。
  36. 一种处理器,其特征在于,所述处理器用于与存储器耦合,所述存储器用于存储指令,当所述处理器执行所述指令时用于执行权利要求1至权利要求16中的任一项所述方法。
  37. 一种装置,其特征在于,用于执行权利要求1至权利要求16中任一项所述方法。
  38. 一种通信系统,其特征在于,该系统包括:至少一个权利要求17至权利要求25所述的装置,以及,至少一个权利要求26至权利要求32所述的装置。
PCT/CN2019/086758 2018-05-18 2019-05-14 基于多站点协作的数据传输方法和装置 WO2019218989A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/949,794 US11405865B2 (en) 2018-05-18 2020-11-13 Multistation coordination-based data transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810480241.9 2018-05-18
CN201810480241.9A CN110505677B (zh) 2018-05-18 2018-05-18 基于多站点协作的数据传输方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/949,794 Continuation US11405865B2 (en) 2018-05-18 2020-11-13 Multistation coordination-based data transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2019218989A1 true WO2019218989A1 (zh) 2019-11-21

Family

ID=68539463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086758 WO2019218989A1 (zh) 2018-05-18 2019-05-14 基于多站点协作的数据传输方法和装置

Country Status (3)

Country Link
US (1) US11405865B2 (zh)
CN (1) CN110505677B (zh)
WO (1) WO2019218989A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI756911B (zh) * 2020-11-10 2022-03-01 瑞昱半導體股份有限公司 WiFi STA分組方法和相關裝置
JP2023047755A (ja) * 2021-09-27 2023-04-06 キヤノン株式会社 通信装置、通信方法、およびプログラム
CN117651322B (zh) * 2024-01-29 2024-06-07 南京云程半导体有限公司 一种功率管理方法、装置、终端及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101583183A (zh) * 2008-05-12 2009-11-18 株式会社Ntt都科摩 无线电通信装置和无线电通信方法
CN103684662A (zh) * 2012-09-10 2014-03-26 华为技术有限公司 通信方法与装置
WO2017112207A1 (en) * 2015-12-21 2017-06-29 Intel Corporation Radio configuration optimization for full-duplex communications
CN107005786A (zh) * 2014-10-24 2017-08-01 高通股份有限公司 数据聚合和传送
CN107787018A (zh) * 2016-08-26 2018-03-09 华为技术有限公司 通信方法、设备及系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10085393B2 (en) 2005-02-04 2018-10-02 The Toro Company Long range, battery powered, wireless environmental sensor interface devices
US8761064B2 (en) 2010-04-14 2014-06-24 Qualcomm Incorporated Power savings through cooperative operation of multiradio devices
CN104219025B (zh) * 2014-09-16 2018-04-10 西安电子科技大学 Ap下行聚合帧长度和速率的自适应调整系统和方法
WO2016109921A1 (zh) * 2015-01-05 2016-07-14 华为技术有限公司 数据传输的方法、站点、接入点和接入控制器
US9455758B1 (en) 2015-05-18 2016-09-27 The Regents Of The University Of Michigan Ultra-low power long range transceiver
US20170055255A1 (en) * 2015-08-18 2017-02-23 Qualcomm Incorporated Techniques for response frames in cooperative reception
CN107040356B (zh) * 2016-02-04 2021-01-26 中兴通讯股份有限公司 无线局域网中协作传输的方法及装置
US9930713B2 (en) * 2016-08-19 2018-03-27 Intel IP Corporation Multi-band link aggregation setup frames

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101583183A (zh) * 2008-05-12 2009-11-18 株式会社Ntt都科摩 无线电通信装置和无线电通信方法
CN103684662A (zh) * 2012-09-10 2014-03-26 华为技术有限公司 通信方法与装置
CN107005786A (zh) * 2014-10-24 2017-08-01 高通股份有限公司 数据聚合和传送
WO2017112207A1 (en) * 2015-12-21 2017-06-29 Intel Corporation Radio configuration optimization for full-duplex communications
CN107787018A (zh) * 2016-08-26 2018-03-09 华为技术有限公司 通信方法、设备及系统

Also Published As

Publication number Publication date
US20210068052A1 (en) 2021-03-04
CN110505677B (zh) 2023-07-07
CN110505677A (zh) 2019-11-26
US11405865B2 (en) 2022-08-02

Similar Documents

Publication Publication Date Title
US11770774B2 (en) Communication apparatus and communication method
US11212866B2 (en) Method and apparatus for providing cellular IoT service in mobile communication system
US11405865B2 (en) Multistation coordination-based data transmission method and apparatus
WO2021208903A1 (zh) 一种通信方法和通信装置
US20090022125A1 (en) Direct link teardown procedure in tunneled direct link setup (tdls) wireless network and station supporting the same
US11310759B2 (en) Method and device for transmitting data and storage medium thereof
WO2022205234A1 (zh) 一种通信方法及装置
WO2021233217A1 (zh) 能力信息上报方法及其装置
JP2023521639A (ja) 通信装置および基地局
WO2021036910A1 (zh) 数据传输方法及装置
US20230076835A1 (en) Harq feedback method and apparatus, terminal, and network device
WO2022193945A1 (zh) 直连链路寻址方法及装置
CN112152761A (zh) 一种通信方法、装置及存储介质
EP3714611B1 (en) Method and apparatus for providing cellular iot service in mobile communication system
CN114667768A (zh) 用户设备和调度节点
WO2023051473A1 (zh) 一种信号的发送方法、接收方法及通信装置
WO2022141332A1 (zh) 一种通信方法及装置
WO2022027594A1 (zh) 一种通信方法及通信装置
WO2021134763A1 (zh) 一种恢复传输的方法、装置及设备
WO2021088063A1 (zh) 一种通信方法及装置
WO2023116352A1 (zh) 基于目标唤醒时间的通信方法、装置及系统
WO2023123241A1 (zh) 无线通信方法、终端设备和网络设备
WO2024131809A1 (zh) 一种通信的方法和通信装置
WO2022151284A1 (zh) 半静态调度资源配置方法、半静态调度方法及装置
WO2024067467A1 (zh) 通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19802681

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19802681

Country of ref document: EP

Kind code of ref document: A1