WO2019216623A1 - Cellular vaccine having immune tolerance for treatment of diabetes and obesity and method for producing insulin-secreting cells - Google Patents

Cellular vaccine having immune tolerance for treatment of diabetes and obesity and method for producing insulin-secreting cells Download PDF

Info

Publication number
WO2019216623A1
WO2019216623A1 PCT/KR2019/005437 KR2019005437W WO2019216623A1 WO 2019216623 A1 WO2019216623 A1 WO 2019216623A1 KR 2019005437 W KR2019005437 W KR 2019005437W WO 2019216623 A1 WO2019216623 A1 WO 2019216623A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
insulin
diabetes
dendritic
present
Prior art date
Application number
PCT/KR2019/005437
Other languages
French (fr)
Korean (ko)
Inventor
황인후
Original Assignee
Hwang In Hu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hwang In Hu filed Critical Hwang In Hu
Publication of WO2019216623A1 publication Critical patent/WO2019216623A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0639Dendritic cells, e.g. Langherhans cells in the epidermis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0676Pancreatic cells
    • C12N5/0677Three-dimensional culture, tissue culture or organ culture; Encapsulated cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/515Animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/70Undefined extracts
    • C12N2500/80Undefined extracts from animals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/22Colony stimulating factors (G-CSF, GM-CSF)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]
    • C12N2501/2304Interleukin-4 (IL-4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/13Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells
    • C12N2506/1346Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells from mesenchymal stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/13Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells
    • C12N2506/1346Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells from mesenchymal stem cells
    • C12N2506/1353Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells from mesenchymal stem cells from bone marrow mesenchymal stem cells (BM-MSC)

Definitions

  • the present invention relates to a method for producing an immune tolerant cell vaccine for the treatment of diabetes and obesity. More specifically, insulin-secreting pancreatic ⁇ -cell ellipsoid culture is added to a medium containing GM-CSF, and immature dendritic cells are cultured for immunity.
  • the present invention relates to a method for producing immune tolerant cells, a cell vaccine prepared according to the method and a method for producing the same, and a composition for preventing or treating diabetes or obesity comprising the cells.
  • Dendritic cells are antigen-presenting cells of the mammalian immune system and have branched or dendritic spines. The main function of dendritic cells is to process antigenic substances and present them on the cell surface to T cells of the immune system. Dendritic cells, therefore, are the major antigen-labeling cells that activate non-sensitized T lymphocytes, acting as messengers between the innate and adaptive immune systems. It is located in peripheral tissues, forms a dense network, plays a role in monitoring the immune system through the expression and response to pathogen-aware receptors such as Toll-like receptors (TLR). Dendritic cells in peripheral tissues have an immature phenotype characterized by low levels of major histocompatibility complex (MHC) and costimulatory molecules (CD80, CD86) and high endoctic rates.
  • MHC major histocompatibility complex
  • CD80, CD86 costimulatory molecules
  • Prophylactic vaccines are one of the most effective ways to prevent disease, and prophylactic vaccines are designed to prevent the spread of infection, and their activity is associated with the induction of specific antibodies and memory B cells.
  • Therapeutic vaccines are designed to eliminate the cause of a given disease. The activity of therapeutic vaccines is primarily dependent on antigen specific CD8 + T cells sensitized to produce Cytotoxic T Lymphocytes (CTLs) that reject cancer or infected cells.
  • CTLs Cytotoxic T Lymphocytes
  • Diabetes mellitus is due to quantitative deficiency or lack of action in insulin, resulting in elevated blood sugar levels compared to normal people, resulting in markedly healthy blood vessels such as microvascular disorders in the kidneys, retina, nerves, and atherosclerosis. It is a metabolic disease that damages life.
  • hypoglycemic agents such as insulin, insulin secretagogues, insulin resistance enhancers, and ⁇ -glucosidase inhibitors have been widely applied as clinical treatments.
  • hypoglycemic agents have been widely applied as clinical treatments.
  • hypoglycemic agents have been widely applied as clinical treatments.
  • these hypoglycemic agents have been recognized for their usefulness, each has many problems. For example, insulin is at risk of causing hypoglycemia when administered in an inappropriate manner or at a dose.
  • the effectiveness of insulin secretagogues and insulin resistance improving agents is decreased in diabetic patients whose insulin secretion capacity of the pancreas is remarkably decreased, or the effectiveness of insulin and insulin secretagogues is decreased in diabetic patients with
  • non-obese diabetes In connection with the treatment or prevention of diabetes, various treatments for preventing diabetes using a non-obese diabetes (NOD) mouse model have been studied (Immunity. 2005 Aug; 23 (2): 115-26). However, only a few of the various therapies are known to inhibit the development of diabetes or reverse hyperglycemia, and few therapies inhibit obesity-related insulin resistant diabetes and reverse hyperglycemia.
  • NOD non-obese diabetes
  • the present inventors have studied for the development of vaccine composition using dendritic cells, matured immunity by treating the insulin-secreting pancreatic ⁇ -cell culture or exosomes extracted therefrom to increase insulin secretion ability through 3D ellipsoid culture. It was confirmed that there is an effect of inducing tolerant dendritic cells, and confirmed that the cells exhibit a vaccine effect against metabolic diseases such as type 1, type 2 diabetes and obesity, and completed the present invention.
  • a method for producing dendritic cells for immune tolerance characterized in that immature dendritic cells are cultured in a medium containing GM-CSF to which pancreatic ⁇ -cell exosomes are added and differentiated into mature immune tolerant dendritic cells.
  • the immature dendritic cells are obtained through cell culture in a medium containing IL-4 and GM-CSF,
  • pancreatic ⁇ cell exosomes The pancreatic ⁇ cell exosomes
  • Another object of the present invention is to provide a dendritic cell for immune tolerance prepared by the above method.
  • Still another object of the present invention is to provide a dendritic cell vaccine comprising the above-mentioned immune tolerance dendritic cells as an active ingredient.
  • Another object of the present invention is to provide a dendritic cell vaccine comprising the immune tolerance dendritic cells as an active ingredient.
  • Another object of the present invention to provide a dendritic cell vaccine consisting essentially of the immune tolerance dendritic cells as an active ingredient.
  • Still another object of the present invention is to provide a composition for preventing or treating type 1, type 2 diabetes or obesity, comprising the immune tolerant dendritic cells of the present invention.
  • Another object of the present invention is to provide a composition for preventing or treating type 1, type 2 diabetes or obesity, which is composed of the immune tolerant dendritic cells of the present invention.
  • Still another object of the present invention is to provide a composition for preventing or treating type 1, type 2 diabetes or obesity, which is essentially composed of the immune tolerant dendritic cells of the present invention.
  • composition which further comprises insulin secreting cells having the following properties in the immunotolerant dendritic cells of the present invention:
  • IPCs insulin producing cells
  • Another object of the present invention is to provide the use of the immunotolerant dendritic cells of the present invention for the preparation of a prophylactic or therapeutic agent for the prevention or treatment of type 1, type 2 diabetes or obesity.
  • Another object of the present invention is to prevent or treat type 1, type 2 diabetes or obesity, comprising administering to a subject in need thereof an effective amount of a composition comprising the immune tolerant dendritic cells of the present invention as an active ingredient.
  • a method for producing dendritic cells for immune tolerance characterized in that immature dendritic cells are cultured in a medium containing GM-CSF to which pancreatic ⁇ -cell exosomes are added and differentiated into mature immune tolerant dendritic cells.
  • the immature dendritic cells are obtained through stem cell culture in a medium containing IL-4 and GM-CSF,
  • pancreatic ⁇ cell exosomes The pancreatic ⁇ cell exosomes
  • the present invention provides a dendritic cell for immune tolerance prepared by the above method.
  • the present invention provides a dendritic cell vaccine comprising the above-mentioned immune tolerance dendritic cells as an active ingredient.
  • the present invention also provides a dendritic cell vaccine composed of the above-mentioned immune tolerance dendritic cells as an active ingredient.
  • the present invention also provides a dendritic cell vaccine consisting essentially of the immune tolerance dendritic cells as an active ingredient.
  • the present invention provides a composition for the prevention or treatment of type 1, type 2 diabetes or obesity comprising the immune tolerant dendritic cells of the present invention.
  • the present invention also provides a composition for the prevention or treatment of type 1, type 2 diabetes or obesity composed of the dendritic cells for immune tolerance of the present invention.
  • the present invention provides a composition for the prevention or treatment of type 1, type 2 diabetes or obesity consisting essentially of the immune tolerant dendritic cells of the present invention.
  • the present invention provides a composition characterized in that it further comprises insulin secreting cells differentiated from mesenchymal stem cells having the following characteristics to the immunotolerant dendritic cells of the present invention:
  • IPCs insulin producing cells
  • the present invention provides a use of the immunotolerant dendritic cells of the present invention for the preparation of a prophylactic or therapeutic agent for the prevention or treatment of type 1, type 2 diabetes or obesity.
  • the present invention comprises administering to a subject in need thereof an effective amount of a composition comprising the immune tolerant dendritic cells of the present invention as an active ingredient. Or a method for preventing or treating obesity.
  • the present invention is a method for producing dendritic cells for immune tolerance, characterized in that immature dendritic cells are cultured in a medium containing GM-CSF to which pancreatic ⁇ -cell exosomes are added to differentiate into mature immune tolerant dendritic cells.
  • the immature dendritic cells are obtained through stem cell culture in a medium containing IL-4 and GM-CSF,
  • pancreatic ⁇ cell exosomes The pancreatic ⁇ cell exosomes
  • dendritic cells for immune tolerance In the method of producing dendritic cells for immune tolerance according to the present invention, three-dimensional spheroid culture of pancreatic ⁇ cells from which the TSPAN2 gene has been removed is confirmed to increase insulin secretion, and culture of these pancreatic ⁇ cells or exosomes derived therefrom The immature dendritic cells are treated to induce maturation of the immature dendritic cells, and then to the immature dendritic cells.
  • the stem cell refers to an undifferentiated cell having the ability to differentiate into various types of body tissues, which are totipotent stem cells, pluripotent stem cells, and multipotent stem cells.
  • multipotent stem cell stem cell
  • Stem cells are differentiated into a variety of tissue cells when appropriate conditions are set in an undifferentiated state, and research for applying them to treatment such as regenerating damaged tissues is being conducted.
  • Stem cells may be derived from umbilical cord, umbilical cord blood, bone marrow, fat, muscle, nerves, skin, amniotic membrane, chorion, decidual membrane, or placenta, and are preferably bone marrow-derived stem cells.
  • immunotolerance is also referred to as immunological tolerance, and refers to a state that does not show an immune response to a specific antigen.
  • the immune tolerant dendritic cell means a dendritic cell that induces tolerance to autologous antigen and inhibits the proliferation of T cells.
  • the immune tolerant dendritic cell is immune to an antigen causing diabetes. Dendritic cells that induce tolerance.
  • the immune tolerance dendritic cells of the present invention can be obtained by inducing differentiation of immature dendritic cells.
  • Immature dendritic cells (DCs) of the invention can be obtained by a method of isolating DC progenitor cells from a suitable tissue source containing progenitor cells or by making immature DCs.
  • the method of producing immature DC refers to a method of producing immature DCs by differentiating progenitor cells in vitro, wherein the progenitor cells may be blood mononuclear cells or hematopoietic stem cells derived from a suitable tissue source.
  • Suitable tissue sources may be bone marrow, peripheral blood, umbilical cord blood, and the like, more preferably derived from bone marrow cells.
  • the granulocyte-macrophage colony stimulating factor may help to induce differentiation of dendritic cells by rapidly increasing the number of cells.
  • the immature dendritic cells and exosomes obtained from pancreatic ⁇ cell cultures are mixed with 30 ⁇ L and cultured to obtain mature dendritic cells, and then the immune tolerance induced dendritic cells are induced. Prepared.
  • bone marrow-derived stem cells from the tibia and the femur of the mouse were isolated and cultured in a medium containing IL-4 and GM-CSF to obtain immature dendritic cells, (2) the following a) to c Pancreatic ⁇ cell culture was prepared by the method of step).
  • TSPAN2 tetraspanin-2
  • Immature dendritic cells of step 1) were then mixed with (3) pancreatic ⁇ cell culture of step 2) to differentiate immature dendritic cells into mature dendritic cells.
  • 'TSPAN-2 (tetraspanin-2) gene' of the present invention is a gene encoding the tetraspanin-2 protein, which belongs to the transmembrane 4 superfamily or the tetraspanin family.
  • Tetraspanin-2 protein is a membrane protein with four characteristic hydrophobic domains, also known as NET3, TSN2, TSPAN2, TSPAN-2, and the like, and three major isoforms are known. It plays an important role in cell development, activation, growth and motility, also known as NET3, TSN2, TSPAN2, TSPAN-2 and the like, and three major isoforms are known. It is also known that tetraspanin-2 plays a role in regulating JNK / ⁇ -catenin signaling in human pancreatic ⁇ cells and promoting apoptosis.
  • pancreatic ⁇ cells from which the tetraspanin-2 gene of the present invention has been removed can reduce the serine phosphorylation of IRS-1 and increase the tyrosine phosphorylation of IRS-1, thereby increasing insulin sensitivity. have.
  • the three-dimensional spheroid cultured pancreatic ⁇ cells are characterized by an increase in insulin secretion ability.
  • the pancreatic ⁇ cells of the present invention increase the expression of 'E-cadherin' in 3D ellipsoid.
  • E-cadherin is a protein that plays an essential role in early embryonic epithelialization, cell rearrangement, tissue morphogenesis, establishment of cell polarity and maintenance of tissue structure.
  • E-cadherin may be used as a major marker for exosome isolation.
  • E-cadherin increases insulin protein secretion in a contact-dependent manner.
  • the culture of step b) is characterized in that it comprises an immunogenic exosomes.
  • the 'exosome' is a vesicle of membrane structure secreted from various types of cells, and is known to play various roles such as binding to other cells and tissues to deliver membrane components, proteins, and RNA. have.
  • the present invention also provides mature dendritic cells prepared by the above method. Also provided is a dendritic cell vaccine comprising mature dendritic cells according to the present invention.
  • the immature dendritic cells are differentiated into mature dendritic cells according to the above method ((1) to (3)), and (4) undifferentiated immature dendritic cells are removed. It includes a step.
  • the immune tolerant dendritic cell vaccine prepared by the above method may preferably be a vaccine for preventing diabetes or obesity, or may be a vaccine for treating diabetes or obesity.
  • diabetes may be type 1 diabetes or type 2 diabetes.
  • the 'vaccine' refers to a biological agent containing an antigen that immunizes the living body, and refers to an immunogen or antigenic substance that immunizes the living body by injection or oral administration to a human or animal to prevent infection.
  • In vivo immunization is largely divided into autoimmunity, in which immunity is automatically obtained after infection by pathogens, and passive immunity obtained by an externally injected vaccine. While autoimmunity is characterized by a long period of generation of antibodies related to immunity and continuous immunity, passive immunization with vaccines acts immediately to treat infectious diseases, but has a disadvantage of poor sustainability.
  • the vaccine composition of the present invention may include a pharmaceutically acceptable carrier.
  • a pharmaceutically acceptable carrier Any component suitable for delivery of an antigenic substance to an in vivo site, for example, water, saline, phosphate buffered saline, Ringer's solution, dextrose solution, serum-containing solution, Hans' solution, other water soluble physiological equilibrium solutions , Oils, esters and glycols, and the like.
  • Carriers of the present invention may include suitable auxiliary ingredients and preservatives to enhance chemical stability and isotonicity, and may include temperature stabilizers or freezes by including stabilizers such as trehalose, glycine, sorbitol, lactose or monosodium glutamate (MSG).
  • the vaccine composition can be protected against drying.
  • the vaccine composition of the present invention may comprise a suspension liquid, such as sterile water or saline (preferably buffered saline).
  • the vaccine composition of the present invention may contain any adjuvant in an amount sufficient to enhance the immune response to the immunogen.
  • Suitable adjuvants include aluminum salts (aluminum phosphate or aluminum hydroxide, squalene mixtures (SAF-1), muramyl peptides, saponin derivatives, mycobacteria ( mycobacterium cell wall preparation, monophosphoryl lipid A, mycolic acid derivatives, nonionic block copolymer surfactants, Quil A, cholera toxin B subunit, polyphosphazene ) And derivatives, and immuno-stimulating complexes (ISCOMs).
  • aluminum salts aluminum phosphate or aluminum hydroxide, squalene mixtures (SAF-1), muramyl peptides, saponin derivatives, mycobacteria ( mycobacterium cell wall preparation, monophosphoryl lipid A, mycolic acid derivatives, nonionic block copolymer surfactants, Quil A, cholera to
  • the immunologically effective amount of an immunogen should be determined empirically, in which case factors that may be considered include immunogenicity, route of administration and frequency of immune administration administered. It can also be controlled according to the progression and instability of complications caused by obesity and blood glucose in the patient, the type of formulation, the age, sex, weight, health condition, diet, time of administration and method of administration of the patient.
  • the ellipsoid cultured pancreatic ⁇ cell culture which is the antigenic substance in the vaccine composition of the present invention, may be present in various concentrations in the composition of the present invention, but in general, the antigenic substance is sufficient to induce the formation of an appropriate level of antibody in vivo. Include in the required concentration.
  • the term “administration” means introducing a predetermined substance into a patient by any suitable method, and the route of administration of the dendritic cell vaccine of the present invention is administered through any general route as long as they can reach the target tissue. Can be.
  • the vaccine composition of the present invention can be used to treat pancreatic cancer by administering via the systemic or mucosal route.
  • Administration of the vaccine composition may include intramuscular, intraperitoneal, subcutaneous or subcutaneous, intestinal mesentery, pancreatic ⁇ cells, intrahepatic, renal subcutaneous injection, oral / meal, respiratory, mucosal administration to the genitourinary tract. But it is not limited thereto.
  • cytokines that help activate T cells such as IL-12
  • IL-12 a combination of cytokines that help activate T cells, such as IL-12, may be used in combination with dendritic cells, or dendritic cells transfected with the cytokine gene may be used.
  • Cells containing dendritic cells which are the active ingredients of the vaccine produced by the present invention, are inoculated as a therapeutic vaccine in the human body, so that cell proliferation can be eliminated in order to increase safety.
  • it can be treated with heat treatment, radiation treatment, or mitomycin C (MMC) treatment to selectively use it more safely as a cell vaccine, and eliminate the proliferative ability while remaining functioning as a vaccine.
  • MMC mitomycin C
  • 25-50 ⁇ g / ml of mitomycin C may be added to dendritic cells to be insulated at 37 ° C. for 30 minutes to 60 minutes.
  • the cell processing method by heat can be heat-processed for 20 minutes at 50 to 65 degreeC, for example.
  • the present invention provides a composition for preventing or treating diabetes, comprising the dendritic cells for immune tolerance of the present invention as an active ingredient.
  • the present invention also provides a composition for preventing or treating obesity, comprising the dendritic cells for immune tolerance of the present invention as an active ingredient.
  • the composition of the present invention may preferably be a pharmaceutical composition.
  • the pharmaceutical composition according to the invention may contain the mature dendritic cells according to the invention alone or may be formulated in a suitable form with a pharmaceutically acceptable carrier and may further contain excipients or diluents.
  • 'pharmaceutically acceptable refers to a non-toxic composition that, when administered to human beings, is physiologically acceptable and typically does not cause allergic or similar reactions such as gastrointestinal disorders, dizziness, and the like.
  • composition of the present invention may be administered to any mammal, including humans.
  • it can be administered orally or parenterally.
  • Parenteral administration methods include, but are not limited to, intravenous, intramuscular, intraarterial, intramedullary, intradural, intrarenal, transdermal, subcutaneous, intraperitoneal, intraperitoneal, intranasal, intestinal, topical, and sublingual Or rectal administration.
  • composition of the present invention may be formulated into a preparation for oral or parenteral administration according to the route of administration as described above.
  • compositions of the present invention may be formulated using methods known in the art as powders, granules, tablets, pills, dragees, capsules, solutions, gels, syrups, slurries, suspensions and the like.
  • oral formulations can be obtained by tablets or dragees by combining the active ingredients with solid excipients and then grinding them, adding suitable auxiliaries and processing them into granule mixtures.
  • excipients examples include sugars, including lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol and maltitol and starch, cellulose, including starch, corn starch, wheat starch, rice starch and potato starch, and the like. Fillers such as cellulose, gelatin, polyvinylpyrrolidone, and the like, including methyl cellulose, sodium carboxymethylcellulose, hydroxypropylmethyl-cellulose, and the like. In addition, crosslinked polyvinylpyrrolidone, agar, alginic acid or sodium alginate and the like may optionally be added as a disintegrant. Furthermore, the pharmaceutical composition of the present invention may further include an anticoagulant, a lubricant, a humectant, a perfume, an emulsifier, a preservative, and the like.
  • Formulations for parenteral administration may be formulated by methods known in the art in the form of injections, creams, lotions, external ointments, oils, humectants, gels, aerosols and nasal inhalants. These formulations are generally known in all pharmaceutical chemistries.
  • compositions of the present invention may be formulated with a cell therapeutic agent according to the route of administration as described above.
  • the 'cell therapy' refers to proliferating, selecting, or otherwise changing the biological characteristics of living autologous, allogenic, and xenogenic cells in vitro to restore the function of cells and tissues. Medicines used for the purpose of treatment, diagnosis and prevention through a series of activities. Since 1993, the United States has managed cell therapy as a medicine since 2002. These cell therapies can be broadly classified into two fields. The first is stem cell therapy for tissue regeneration or long-term function recovery, and the second is immunization for the regulation of immune responses such as suppressing the immune response or enhancing the immune response in vivo. Can be classified as a cell therapy.
  • cell therapeutic agents they may be administered by any device capable of moving to the target cell.
  • the cell therapy may be administered parenterally, and may be administered by intravenous infusion, subcutaneous infusion, intraperitoneal infusion, transdermal administration, etc.
  • Suitable dosages may be formulated by method of administration, mode of administration, age, weight, sex, time of administration and Various prescriptions may be made by such factors as the route of administration, but preferably 1 ⁇ 10 5 to 10 ⁇ 10 9 cells per dose.
  • the total effective amount of the composition of the present invention may be administered to a patient in a single dose and may be administered by a fractionated treatment protocol which is administered in multiple doses for a long time.
  • the pharmaceutical composition of the present invention may vary the content of the active ingredient depending on the extent of the disease.
  • the preferred total dose of the pharmaceutical composition of the present invention may be about 0.01 ⁇ g to 10,000 mg, most preferably 0.1 ⁇ g to 500 mg per kg of patient body weight per day.
  • the dosage of the pharmaceutical composition is determined in consideration of various factors such as the formulation method, route of administration and frequency of treatment, as well as various factors such as the patient's age, weight, health status, sex, severity of the disease, diet and excretion rate.
  • compositions of the present invention are not particularly limited to its formulation, route of administration and method of administration as long as the effect of the present invention is shown.
  • the present invention provides a composition, characterized in that it further comprises an insulin secreting cell having the following properties:
  • IPCs insulin producing cells
  • the insulin secreting cells of the present invention may be induced differentiation from mesenchymal stem cells, and when additionally administering or transplanting insulin secreting cells in which such tetraspanin-2 gene is removed, IRS-1 Increasing insulin sensitivity may be achieved by reducing serine phosphorylation and further increasing tyrosine phosphorylation of IRS-1.
  • the amount of insulin secretion increased more than two times in the 3D ellipsoid culture compared to the control (2D planar culture) It could be confirmed that (Fig. 1).
  • the present invention confirmed the effect of the dendritic cell vaccine of the present invention on diabetes incidence in diabetic non-obesity (NOD) mice to be a type 1 diabetes model, 16 weeks of age in the case of a control (No injection)
  • the incidence of diabetes among the whole group gradually increased, whereas, in the group receiving the dendritic cell vaccine (DC-Vac), diabetes did not develop (FIG. 4), and only DC-Vac was administered even after stopping the insulin administration. Normal blood sugar was found to be maintained (Fig. 5a to 5c).
  • the weight, blood sugar, plasma of fasting mice As a result of measuring the insulin concentration, it was confirmed that the dendritic cell vaccine-administered group was lower than the control group, and even lower when the TK-IPCs were administered in combination (FIGS. 9A to 9C).
  • the phosphorylation of IRS-1 at Ser307 or at tyrosine results in that phosphorylation of IRS-1 at Ser307 is reduced when treated with dendritic cell vaccine, and TK-IPCs In combination with and decreased even more, the treatment of DC-Vac and TK-IPCs was found to increase tyrosine phosphorylation (Fig. 10a and 10b).
  • the present invention also provides the use of the immune tolerant dendritic cells of the present invention for the preparation of a type 1, type 2 diabetes or obesity prophylaxis or treatment.
  • the present invention also provides a method for preventing or treating type 1, type 2 diabetes or obesity, comprising administering to a subject in need thereof an effective amount of a composition comprising the immune tolerant dendritic cells of the present invention as an active ingredient. do.
  • the 'effective amount' of the present invention when administered to an individual, refers to an amount that shows the effect of improving, treating, preventing, detecting, diagnosing or preventing or reducing diabetes or obesity in an individual, wherein the 'individual' is an animal, preferably It may be a mammal, especially an animal including a human, and may be cells, tissues, organs or the like derived from the animal. The subject may be a patient in need of the effect.
  • the 'treatment' of the present invention refers generically to improving symptoms of diabetes, obesity or diabetes, obesity, which may include treating, substantially preventing, or improving the condition of diabetes or obesity, It includes, but is not limited to, alleviating, healing or preventing one or most of the symptoms resulting from diabetes or obesity.
  • the present invention provides a method for producing immune tolerant dendritic cells suitable for the prevention or treatment of diabetes and obesity, it is possible to obtain a prophylactic or therapeutic effect against diabetes and obesity when inoculating the immune tolerant dendritic cells of the present invention.
  • insulin sensitivity may be further increased by decreasing serine phosphorylation of IRS-1 and increasing tyrosine phosphorylation of IRS-1, which may be useful for the prevention or treatment of diabetes and obesity. have.
  • Figure 2a shows that dendritic cells are induced into immune tolerant dendritic cells after maturation, so that immune tolerant dendritic cells (tDC) show low levels of MHC II expression.
  • tDC expresses 3-dioxygenase (IDO) immunosuppressive molecule by western blotting.
  • IDO 3-dioxygenase
  • 2c shows that mature dendritic cells (mDCs) show high secretion compared to tDCs showing low IL-10, IL-12 and TNF- ⁇ secretion.
  • IPCs and TK + IPCs increase insulin production when stimulated with high glucose (10 mM) concentrations.
  • MSC was used as a control.
  • Figure 4 shows that the treatment of dendritic cell vaccine (DC-Vac) in the development of a mouse model of diabetes newly prevent the development of diabetes in the mouse.
  • DC-Vac dendritic cell vaccine
  • FIG. 5A to 5C show dendritic cell vaccines (DC-Vac) only (FIG. 5A), dendritic cell vaccines and exendin-4 (DC-Vac + exendin) (FIG. 5B). And it shows the result of measuring the blood glucose change when treated with bone marrow-derived insulin secreting cells (DC-Vac + TK-IPCs) (Fig. 5c).
  • Figure 6 is treated only with dendritic cell vaccine (DC-Vac) (middle panel), treated with dendritic cell vaccine and bone marrow-derived insulin secreting cells (DC-Vac + TK-IPCs) (lower panel) The result of observation under a microscope of the change of fat accumulation in the liver (upper panel) is shown.
  • DC-Vac dendritic cell vaccine
  • DC-Vac + TK-IPCs bone marrow-derived insulin secreting cells
  • FIG. 7A-7D show the body fat mass of mice (FIG. 7A), the adiponectin in mice when treated with dendritic cell vaccine (DC-Vac), dendritic cell vaccine and bone marrow-derived insulin secreting cells (DC-Vac + TK-IPCs).
  • DC-Vac dendritic cell vaccine
  • DC-Vac + TK-IPCs bone marrow-derived insulin secreting cells
  • adiponectin concentration FIG. 7B
  • blood glucose concentration FIG. 7C
  • plasma insulin concentration FIG. 7D
  • DC-Vac dendritic cell vaccine
  • DC-Vac + TK-IPCs bone marrow-derived insulin secreting cells
  • FIGS. 9A-9C show body weights 6 and 10 weeks after treatment of dendritic cell vaccine (DC-Vac), dendritic cell vaccine and bone marrow-derived insulin secreting cells (DC-Vac + TK-IPCs) in obese mice (FIG. 9A). , Blood glucose concentration (FIG. 9B) and blood insulin concentration (FIG. 9C) are measured.
  • DC-Vac dendritic cell vaccine
  • DC-Vac + TK-IPCs bone marrow-derived insulin secreting cells
  • FIG. 9B Blood glucose concentration
  • FIG. 9C blood insulin concentration
  • FIGS. 10A and 10B show IRS-1 in Ser307 in hepatocytes extracted from mice treated with dendritic cell vaccine (DC-Vac), dendritic cell vaccine and bone marrow-derived insulin secreting cells (DC-Vac + TK-IPCs) in obese mice.
  • DC-Vac dendritic cell vaccine
  • DC-Vac + TK-IPCs bone marrow-derived insulin secreting cells
  • FIG. 10A Phosphorylation of insulin receptor substrate-1) (increased insulin resistance)
  • FIG. 10B tyrosine phosphorylation of IRS-1 (reduced insulin resistance)
  • RNAKT-15 cell line was generated by permanently removing the TSPAN2 gene using RNA scissors (Crispr / Cas9) from RNAKT-15 cells, a human pancreatic ⁇ cell line.
  • the TSPAN2-KO RNAKT-15 cell line prepared above was prepared by adding 10% fetal bovine serum (Thermo, Rockville, MD, USA), 1% penicillin-streptomycin, 10 mM nicotinamide, 10 ⁇ M troglitazone, and 16.7 ⁇ M zinc sulfate. Cultured in glucose (5 mM) DMEM medium at 37 ° C. and 5% CO 2 conditions. Cells were then harvested in 15 mL tubes and centrifuged at 13,000 rpm for 3 minutes, the supernatant was removed and resuspended in fresh culture medium. Resuspended cells were incubated in ultra-low attachment surface 96-well at a concentration of 1 ⁇ 10 4 cells / ml.
  • pancreatic cell culture was prepared by increasing the insulin secretion ability through the ⁇ -cell spheroid culture.
  • FITC-labeled monoclonal antibodies against CD44, CD90, CD31, CD45 molecules purified monoclonal antibodies against PE-conjugated monoclonal antibodies against MHC-II (Santa Cruz Biotechnology, Santa Cruz, Calif.). Samples were analyzed on FACSCalibur (BD Biosciences).
  • Insulin secretion was measured by replacing the buffer culture medium in RNAKT-15 cells incubated with 2D plane and 3D ellipsoid. After 1 hour equilibration at 37 ° C., the cells were incubated with buffer containing 10 mM glucose concentration for 1 hour. After 1 hour, the supernatants were pooled and insulin content was measured using the Human Insulin ELISA Kit (Thermo Fisher Scientific).
  • Exosomes were extracted from the 3D spheroid cultured RNAKT-15 cell culture prepared as described above. First, the cells and culture were collected in a tube, and then centrifuged for 10 minutes at a speed of 300xg. The supernatant thus obtained was transferred to a 50 ml centrifuge tube and centrifuged at 4 ° C. for 20 minutes at a rate of 2000 ⁇ g.
  • the separated supernatant was obtained and transferred to a polyalloy tube or polycarbonate bottle suitable for ultracentrifugation rotor, then centrifuged at 4 ° C. for 30 minutes at a rate of 10,000 ⁇ g, and pellets were obtained. (At this time, for swing-bucket rotors, the pellets are at the bottom of the tube. For fixed-angle rotors, the pellets are on the side of the tube facing up near the bottom of the tube).
  • the supernatant was then completely removed after centrifugation at 4 ° C. for at least 70 minutes at a rate of 100,000 ⁇ g.
  • the pellet was then resuspended in each tube of 1 mL phosphate buffer saline (PBS). Resuspended pellets were collected from all the tubes, and then PBS was added thereto to completely fill the tubes and centrifuged at 100,000 xg and 4 ° C for 70 minutes. Then all supernatant was removed. The pellet (exosome) obtained by removing the supernatant was resuspended or concentrated.
  • PBS phosphate buffer saline
  • the supernatant obtained above was centrifuged at 4 ° C. for 1 hour at a rate of 100,000 ⁇ g using a TLA-100.3 rotor and a corresponding thick walled polycarbonate tube. . Most of the PBS on the visible pellets was removed and exosomes were resuspended in 20-50 ⁇ l of fresh PBS.
  • DCs Immature dendritic cells
  • BD-MSCs bone marrow derived mesenchyma stem cells
  • TSPAN2-KO IPCs TSPAN2-KO IPCs (TK-IPCs) cell line was generated by permanent removal of the TSPAN2 gene using gene shears (Crispr / Cas9) in the cells. 3 ⁇ 10 6 TK-IPCs were implanted into the pancreas.
  • Diabetic mice were measured once per week urine glucose, three consecutive positive values were defined as diabetes, it was confirmed that the blood glucose level is> 250mg / dl. Diabetic mice were divided into two groups, one group containing 13 mg of insulin, and blood glucose levels for 40 days after subcutaneous transplantation of insulin pellets continuously released at 0.1 units / implant (LinShin Canada, Inc.) Was maintained at ⁇ 250 mg / dl. The insulin pellets were then removed.
  • DC-Vac exosome pulsed dendritic cells
  • mice with different genotypes Male mice with different genotypes (C57BL / 6) (5 weeks old, Samta Cobio Korea Co., Ltd.) Male mice with different genotypes were placed in a barrier-free facility and followed for 12 weeks.
  • the normal diet (ND) and the high fat diet (HFD) were divided into six groups per group.
  • ND normal diet
  • HFD high fat diet
  • Polyclonal rabbit anti-mouse ACRP30 / adiponectin antibodies were purchased from invitrogen for the measurement of serum adiponectin using the ELISA method.
  • RNAKT-15 cell culture After lysing the RNAKT-15 cell culture prepared above, it was mixed with loading buffer and separated by SDS-PAGE. The protein was then transferred to a nitrocellulose membrane. Nonspecific binding sites on the membrane were blocked using 5% skim milk for 90 minutes at room temperature.
  • Anti-insulin-receptor-b purchaseds Santa Cruz
  • anti-phosphotyrosine purchased Santa Cruz
  • anti-IRS-1 purchased Upstate Biotechnology and anti-IRS-1-pSer307 (Upstate)
  • the primary antibodies at 4 ° C Incubated with Biotechnology
  • secondary antibody for 1 hour at room temperature Protein bands in the membrane bands were visualized using Santa Cruz Biotechnology Inc.'s ECL Plus Blotting Detection System.
  • TGF2 knockout (TSPAN2-KO) RNAKT-15 cell line was allowed to increase insulin secretion ability through three-dimensional ellipsoidal culture according to the method described above. Then, as a control, other conditions except three-dimensional culture were compared by measuring the insulin secretion in each of the same cell line.
  • dendritic cells are induced into immune tolerant dendritic cells (tDCs) after maturation, showing low levels of MHC II expression ( Figure 2a), where tDCs are 3-dioxygenase (IDO) immunity.
  • tDCs immune tolerant dendritic cells
  • FIG. 2c immune tolerant dendritic cells
  • mDCs mature dendritic cells
  • DC-Vac Dendritic Cell Vaccine
  • the onset of diabetes was evaluated based on blood glucose above 250 mg / dl.
  • DC-Vac dendritic cell vaccine
  • the group containing the dendritic cell vaccine compared to the control group (No injection) was found to have a lower fat content of the cell, even more when the DC-Vac + TK-IPCs administration It was confirmed that the fat content was small and close to normal.
  • Bruker minispec Body Composition Analyzer was performed to determine the body fat of each mouse. As a result, as shown in FIG. 7A, body fat was decreased in the DC-Vac-administered group and further decreased in the DC-Vac + TK-IPCs-administered group compared to the non-administered control group (No injection).
  • adiponectin shows protective activity in various processes such as energy metabolism, inflammation and cell proliferation, therefore, adiponectin plays an important role for the prevention and / or treatment of obesity and obesity related diseases.
  • Figure 7b compared with the control group was increased in the DC-Vac administration group, DC-Vac + TK-IPCs administration group was found to be higher blood adiponectin content.
  • blood glucose levels (FIG. 7c) and plasma insulin levels (FIG. 7d) were measured using a kit for measuring blood glucose and insulin concentrations, respectively, and blood glucose levels and insulin concentrations were decreased in the DC-Vac-administered group compared to the control group. In the DC-Vac + TK-IPCs administration group, the blood content was found to be lower.
  • mice Five-week-old mice were reared in groups of 8 per group in the normal diet (ND) and high fat diet (HFD) groups. On day 0 of breeding, 1.5 ⁇ 10 6 DC-Vac vaccine was administered and IPCs were transplanted on day 1, and insulin sensitivity (FIG. 8A) and glucose tolerance (FIG. 8B) of diet-induced obese mice were measured.
  • ND normal diet
  • HFD high fat diet
  • HFD high-fat diet group
  • IP intraperitoneal
  • FIG. 8A blood glucose levels were measured after insulin administration.
  • blood glucose was rapidly removed from blood in the dendritic cell vaccine-administered group (Ob / Ob Dc-Vac) compared to the obese mouse control (Obese-no injection).
  • the blood glucose level was changed to normal mouse level (Lean-no injection).
  • Figs. 9a to 9c body weight (Fig. 9a), blood sugar (Fig. 9b), plasma insulin (Fig. 9c) compared to the DC-Vac administration group, compared to the control group, DC-Vac + TK-IPCs administration group It was found to be even lower.
  • the dendritic cell vaccine of the present invention was performed as follows. Obese mice were given a dendritic cell vaccine (DC-Vac), and the mice were sacrificed to remove liver tissue. Hepatocytes were then extracted from liver tissue by conventional methods in the art. Then, 10 ng / ml TNF- ⁇ was treated for 1 hour, and then cells were obtained to extract the protein. Then, the phosphorylation of IRS-1 (insulin receptor substrate-1) in Ser307 was analyzed to determine insulin resistance by Western blot method according to the experimental method.
  • DC-Vac dendritic cell vaccine
  • the TRSF- ⁇ treatment increased the phosphorylation of IRS-1 (IRS-1 pSer307 ) in Ser307 compared to the control group, but the phosphorylation of IRS-1 in Ser307 was decreased when treated with TNF- ⁇ and dendritic cell vaccine (TNF- ⁇ + DC-Vac) and further decreased with TNF- ⁇ + DC-Vac + TK-IPCs. This shows that treatment of DC-Vac and TK-IPCs reduces insulin resistance.
  • type 2 diabetic obese mice were treated with DC-Vac, DC-Vac + TK-IPCs, and then 25mIU / kg insulin (Eli Lilly) was administered with an insulin pump. After 4 weeks, mice were sacrificed to remove liver tissue. The protein was then extracted from liver tissue by conventional methods in the art. Then, the insulin signal was analyzed by tyrosine phosphorylation (IRS-1 pTyr ) of IRS-1, which means a decrease in insulin resistance by Western blot method according to the experimental method.
  • IRS-1 pTyr tyrosine phosphorylation
  • the present invention provides a method for producing immune-tolerant dendritic cells suitable for the prevention or treatment of diabetes and obesity, and when the inoculation of the immune-tolerant dendritic cells of the present invention to obtain a preventive or therapeutic effect on diabetes and obesity Can be.
  • insulin sensitivity is further increased by reducing serine phosphorylation of IRS-1 and increasing tyrosine phosphorylation of IRS-1, thereby preventing or treating type 1, type 2 diabetes and obesity. It can be usefully used for.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Diabetes (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biochemistry (AREA)
  • Obesity (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Cell Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Endocrinology (AREA)
  • Emergency Medicine (AREA)
  • Mycology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

The present invention relates to a method for preparing an immune-tolerant cellular vaccine for treating diabetes and obesity, and more specifically, to a method for preparing immune-tolerant cells, the method comprising adding a culture of insulin-secreting pancreatic β-cell spheroids to a medium containing GM-CSF, and culturing immature dendritic cells and inducing same to differentiate into immune-tolerant cells; a cellular vaccine prepared by the method; a method for preparing the cellular vaccine; and a composition comprising the cells for preventing or treating diabetes or obesity.

Description

당뇨병 및 비만 치료용 면역관용 세포 백신 및 인슐린 분비 세포의 제조 방법Method for producing immune tolerant cell vaccine and insulin secreting cells for the treatment of diabetes and obesity
본 출원은 2018년 5월 11일에 출원된 대한민국 특허출원 제10-2018-0054515호를 우선권으로 주장하고, 상기 명세서 전체는 본 출원의 참고문헌이다.This application claims priority to Korean Patent Application No. 10-2018-0054515, filed May 11, 2018, the entire disclosure of which is incorporated herein by reference.
본 발명은 당뇨병 및 비만 치료용 면역관용 세포 백신의 제조 방법에 관한 것으로, 보다 상세하게는 GM-CSF를 포함하는 배지에 인슐린분비 췌장 β 세포 타원체 배양물을 첨가하고, 미성숙 수지상 세포를 배양하여 면역관용 세포로 분화 유도하는 것을 특징으로 하는 면역관용 세포의 제조 방법, 상기 방법에 따라 제조한 세포 백신 및 이의 제조 방법, 및 상기 세포를 포함하는 당뇨병 또는 비만의 예방 또는 치료용 조성물에 관한 것이다. The present invention relates to a method for producing an immune tolerant cell vaccine for the treatment of diabetes and obesity. More specifically, insulin-secreting pancreatic β-cell ellipsoid culture is added to a medium containing GM-CSF, and immature dendritic cells are cultured for immunity. The present invention relates to a method for producing immune tolerant cells, a cell vaccine prepared according to the method and a method for producing the same, and a composition for preventing or treating diabetes or obesity comprising the cells.
수지상 세포(Dendritic Cell, DC)는 포유류 면역계의 항원 제시 세포이며 막성 혹은 가시와 같은 나뭇가지 모양의 돌기를 가지고 있다. 수지상 세포의 주요 기능은 항원 물질을 처리하여 면역계의 T 세포에 세포 표면에 제시하는 것이다. 따라서 수지상세포는 비감작 T 림프구를 활성화시키는 주요한 항원표지세포로, 타고난 면역 체계와 적응 면역 체계 사이의 메신저 역할을 한다. 말초 조직에 위치하며, 밀집된 네트워크를 형성하고, Toll-like receptors(TLR)와 같은 병원체 인식 수용체의 발현 및 병원체에 반응하는 특성을 통해 면역 체계의 감시 역할을 한다. 말초 조직에서 수지상 세포는 주요 조직 적합성 복합체(MHC) 및 보조 자극 분자 (CD80, CD86)의 낮은 수준과 높은 식균작용(endocytic) 속도로 특징 지어지는 미성숙한 표현형을 가지고 있다.Dendritic cells (Dendritic Cells) are antigen-presenting cells of the mammalian immune system and have branched or dendritic spines. The main function of dendritic cells is to process antigenic substances and present them on the cell surface to T cells of the immune system. Dendritic cells, therefore, are the major antigen-labeling cells that activate non-sensitized T lymphocytes, acting as messengers between the innate and adaptive immune systems. It is located in peripheral tissues, forms a dense network, plays a role in monitoring the immune system through the expression and response to pathogen-aware receptors such as Toll-like receptors (TLR). Dendritic cells in peripheral tissues have an immature phenotype characterized by low levels of major histocompatibility complex (MHC) and costimulatory molecules (CD80, CD86) and high endoctic rates.
예방 백신은 질병을 예방하는 가장 효과적인 방법 중 하나로, 예방 백신은 감염의 확산을 막기 위해 고안되었으며, 이들의 활동은 특정 항체 및 기억 B 세포(memory B cell)의 유도와 관련이 있다. 반면에 치료 백신은 주어진 질병의 원인을 제거하기 위해 고안되었다. 치료 백신의 활동은 주로 암 또는 감염된 세포를 거부하는 세포 독성 T 림프구(Cytotoxic T Lymphocyte, CTL)를 생성하도록 감작된 항원 특이 CD8 + T 세포에 대해 의존적이다. Prophylactic vaccines are one of the most effective ways to prevent disease, and prophylactic vaccines are designed to prevent the spread of infection, and their activity is associated with the induction of specific antibodies and memory B cells. Therapeutic vaccines, on the other hand, are designed to eliminate the cause of a given disease. The activity of therapeutic vaccines is primarily dependent on antigen specific CD8 + T cells sensitized to produce Cytotoxic T Lymphocytes (CTLs) that reject cancer or infected cells.
당뇨병은 인슐린의 체내에서의 양적 부족 혹은 작용 부족에 기인하여 혈당이 정상인에 비해 상승해, 그 결과로 신장, 망막, 신경 등에서의 미소혈관 장해나, 동맥 경화 등의 대혈관 장해에 의해 현저하게 건강한 생활이 손상되는 대사성 질환이다. 지금까지 인슐린, 인슐린 분비 촉진제, 인슐린 저항성 개선제, α-글루코시다제 저해제 등의 혈당 강하제가 임상 치료법으로서 넓게 적용되고 있다. 그러나 이들의 혈당 강하제는 유용성이 인정되고 있지만, 각각이 많은 문제점을 안고 있다. 예를 들어, 인슐린은 부적절한 용법, 또는 용량으로 투여했을 경우, 저혈당을 초래하는 위험성이 있다. 또, 췌장의 인슐린 분비 용량이 현저하게 저하한 당뇨병 환자에서는 인슐린 분비 촉진제 및 인슐린 저항성 개선제의 유효성이 감소하거나, 인슐린 저항성이 현저한 당뇨병 환자에서는 인슐린이나 인슐린 분비 촉진제의 유효성이 감소한다.Diabetes mellitus is due to quantitative deficiency or lack of action in insulin, resulting in elevated blood sugar levels compared to normal people, resulting in markedly healthy blood vessels such as microvascular disorders in the kidneys, retina, nerves, and atherosclerosis. It is a metabolic disease that damages life. Until now, hypoglycemic agents such as insulin, insulin secretagogues, insulin resistance enhancers, and α-glucosidase inhibitors have been widely applied as clinical treatments. However, although these hypoglycemic agents have been recognized for their usefulness, each has many problems. For example, insulin is at risk of causing hypoglycemia when administered in an inappropriate manner or at a dose. In addition, the effectiveness of insulin secretagogues and insulin resistance improving agents is decreased in diabetic patients whose insulin secretion capacity of the pancreas is remarkably decreased, or the effectiveness of insulin and insulin secretagogues is decreased in diabetic patients with significant insulin resistance.
이에 당뇨병 치료 또는 예방과 관련하여 비-비만성 당뇨병(NOD) 마우스 모델을 이용하여 당뇨병을 예방할 수 있는 다양한 치료법이 연구되고 있다(Immunity. 2005 Aug;23(2):115-26). 그러나, 다양한 치료법 중 몇 가지 치료법만이 당뇨병 발달을 억제하거나, 고혈당을 역전시킬 수 있다고 알려져 있을 뿐, 비만 관련 인슐린 저항성 당뇨병을 억제하고 고혈당을 역전시키는 치료법은 거의 알려져 있지 않다. In connection with the treatment or prevention of diabetes, various treatments for preventing diabetes using a non-obese diabetes (NOD) mouse model have been studied (Immunity. 2005 Aug; 23 (2): 115-26). However, only a few of the various therapies are known to inhibit the development of diabetes or reverse hyperglycemia, and few therapies inhibit obesity-related insulin resistant diabetes and reverse hyperglycemia.
한편, 당뇨병 예방 또는 치료용 제제의 임상연구에 있어서, 현재 연구 개발된 제1형 당뇨병의 세포 백신은 기대에 크게 미치지 못한 성과를 보이고 있으며, 제2형 당뇨병 및 비만 관련 세포 백신은 개발된 사례가 아직 없다.On the other hand, in the clinical studies of diabetes prevention or treatment agents, cell vaccines of type 1 diabetes, which have been currently researched and developed, have failed to meet expectations. Type 2 diabetes and obesity-related cell vaccines have been developed. not yet.
이에 본 발명자들은 수지상 세포를 이용한 백신 조성물 개발을 위하여 연구한 결과, 3D 타원체 배양을 통해 인슐린 분비능력을 증가시킨 인슐린분비 췌장 β 세포 배양물 또는 이로부터 추출한 엑소좀을 미성숙 수지상 세포에 처리하여 성숙한 면역관용 수지상 세포로 유도하는 효과가 있음을 확인하였고, 이 세포가 제1형, 제2형 당뇨병 및 비만 등의 대사성 질환에 대한 백신 효과를 나타내는 것을 확인하여 본 발명을 완성하였다. Therefore, the present inventors have studied for the development of vaccine composition using dendritic cells, matured immunity by treating the insulin-secreting pancreatic β-cell culture or exosomes extracted therefrom to increase insulin secretion ability through 3D ellipsoid culture. It was confirmed that there is an effect of inducing tolerant dendritic cells, and confirmed that the cells exhibit a vaccine effect against metabolic diseases such as type 1, type 2 diabetes and obesity, and completed the present invention.
따라서 본 발명의 목적은 Therefore, the object of the present invention
췌장 β 세포 엑소좀을 첨가한, GM-CSF를 포함하는 배지에서 미성숙 수지상 세포를 배양하여 성숙한 면역관용 수지상 세포로 분화하는 것을 특징으로 하는 면역관용 수지상 세포의 제조 방법:A method for producing dendritic cells for immune tolerance characterized in that immature dendritic cells are cultured in a medium containing GM-CSF to which pancreatic β-cell exosomes are added and differentiated into mature immune tolerant dendritic cells.
상기 미성숙 수지상 세포는 IL-4 및 GM-CSF를 포함하는 배지에서 세포 배양을 통해 수득하며,The immature dendritic cells are obtained through cell culture in a medium containing IL-4 and GM-CSF,
상기 췌장 β 세포 엑소좀은, The pancreatic β cell exosomes,
a) TSPAN2(tetraspanin-2) 유전자가 제거된 췌장 β 세포를 원심분리하여 3차원 회전 타원체 배양하는 단계; a) centrifuging pancreatic β cells from which the TSPAN2 (tetraspanin-2) gene has been removed and culturing three-dimensional spheroids;
b) 상기 배양물에서 엑소좀을 분리하거나 상기 엑소좀이 포함된 배양배지를 분리하여 수득하는 단계;를 포함하는 방법에 의해서 제조된 것을 특징으로 하는 방법을 제공하는 것이다.b) separating the exosomes from the culture or obtaining a culture medium containing the exosomes; to provide a method characterized in that it is prepared by a method comprising a.
본 발명의 다른 목적은 상기의 방법으로 제조한 면역관용 수지상 세포를 제공하는 것이다.Another object of the present invention is to provide a dendritic cell for immune tolerance prepared by the above method.
본 발명의 또 다른 목적은 상기의 면역관용 수지상 세포를 유효성분으로 포함하는 수지상 세포 백신을 제공하는 것이다.Still another object of the present invention is to provide a dendritic cell vaccine comprising the above-mentioned immune tolerance dendritic cells as an active ingredient.
또한, 본 발명의 또 다른 목적은 상기의 면역관용 수지상 세포를 유효성분으로 구성되는 수지상 세포 백신을 제공하는 것이다.In addition, another object of the present invention is to provide a dendritic cell vaccine comprising the immune tolerance dendritic cells as an active ingredient.
또한, 본 발명의 또 다른 목적은 상기의 면역관용 수지상 세포를 유효성분으로 필수적으로 구성되는 수지상 세포 백신을 제공하는 것이다.In addition, another object of the present invention to provide a dendritic cell vaccine consisting essentially of the immune tolerance dendritic cells as an active ingredient.
본 발명의 또 다른 목적은 본 발명의 면역관용 수지상 세포를 포함하는 제1형, 제2형 당뇨병 또는 비만의 예방 또는 치료용 조성물을 제공하는 것이다.Still another object of the present invention is to provide a composition for preventing or treating type 1, type 2 diabetes or obesity, comprising the immune tolerant dendritic cells of the present invention.
또한, 본 발명의 또 다른 목적은 본 발명의 면역관용 수지상 세포로 구성되는 제1형, 제2형 당뇨병 또는 비만의 예방 또는 치료용 조성물을 제공하는 것이다.Further, another object of the present invention is to provide a composition for preventing or treating type 1, type 2 diabetes or obesity, which is composed of the immune tolerant dendritic cells of the present invention.
또한, 본 발명의 또 다른 목적은 본 발명의 면역관용 수지상 세포로 필수적으로 구성되는 제1형, 제2형 당뇨병 또는 비만의 예방 또는 치료용 조성물을 제공하는 것이다.Still another object of the present invention is to provide a composition for preventing or treating type 1, type 2 diabetes or obesity, which is essentially composed of the immune tolerant dendritic cells of the present invention.
본 발명의 또 다른 목적은 본 발명의 면역관용 수지상 세포에 하기 특성을 가지는 인슐린 분비 세포를 추가로 포함하는 것을 특징으로 하는 조성물을 제공하는 것이다:It is still another object of the present invention to provide a composition, which further comprises insulin secreting cells having the following properties in the immunotolerant dendritic cells of the present invention:
a) 인슐린 분비 세포(insulin producing cells, IPCs)일 것;a) be insulin producing cells (IPCs);
b) 테트라스파닌-2 (tetraspanin-2) 유전자가 제거(knock-out)됨.b) The tetraspanin-2 gene is knocked out.
본 발명의 또 다른 목적은 제1형, 제2형 당뇨병 또는 비만의 예방 또는 치료용 예방 또는 치료용 제제를 제조하기 위한 본 발명의 면역관용 수지상 세포의 용도를 제공하는 것이다.Another object of the present invention is to provide the use of the immunotolerant dendritic cells of the present invention for the preparation of a prophylactic or therapeutic agent for the prevention or treatment of type 1, type 2 diabetes or obesity.
본 발명의 또 다른 목적은 본 발명의 면역관용 수지상 세포를 유효성분으로 포함하는 조성물의 유효량을 이를 필요로 하는 개체에 투여하는 단계를 포함하는 제1형, 제2형 당뇨병 또는 비만의 예방 또는 치료 방법을 제공하는 것이다.Another object of the present invention is to prevent or treat type 1, type 2 diabetes or obesity, comprising administering to a subject in need thereof an effective amount of a composition comprising the immune tolerant dendritic cells of the present invention as an active ingredient. To provide a way.
상기와 같은 목적을 달성하기 위하여, 본 발명은 In order to achieve the above object, the present invention
췌장 β 세포 엑소좀을 첨가한, GM-CSF를 포함하는 배지에서 미성숙 수지상 세포를 배양하여 성숙한 면역관용 수지상 세포로 분화하는 것을 특징으로 하는 면역관용 수지상 세포의 제조 방법:A method for producing dendritic cells for immune tolerance characterized in that immature dendritic cells are cultured in a medium containing GM-CSF to which pancreatic β-cell exosomes are added and differentiated into mature immune tolerant dendritic cells.
상기 미성숙 수지상 세포는 IL-4 및 GM-CSF를 포함하는 배지에서 줄기세포 배양을 통해 수득하며,The immature dendritic cells are obtained through stem cell culture in a medium containing IL-4 and GM-CSF,
상기 췌장 β 세포 엑소좀은, The pancreatic β cell exosomes,
a) TSPAN2(tetraspanin-2) 유전자가 제거된 췌장 β 세포를 원심분리하여 3차원 회전 타원체 배양하는 단계; a) centrifuging pancreatic β cells from which the TSPAN2 (tetraspanin-2) gene has been removed and culturing three-dimensional spheroids;
b) 상기 배양물에서 엑소좀을 분리하거나 상기 엑소좀이 포함된 배양배지를 분리하여 수득하는 단계;를 포함하는 방법에 의해서 제조된 것을 특징으로 하는 방법을 제공한다.b) separating the exosomes from the culture or obtaining a culture medium containing the exosomes; provides a method characterized in that it is prepared by a method comprising a.
본 발명의 다른 목적을 달성하기 위하여 본 발명은 상기의 방법으로 제조한 면역관용 수지상 세포를 제공한다.In order to achieve another object of the present invention, the present invention provides a dendritic cell for immune tolerance prepared by the above method.
본 발명의 또 다른 목적을 달성하기 위하여 본 발명은 상기의 면역관용 수지상 세포를 유효성분으로 포함하는 수지상 세포 백신을 제공한다.In order to achieve another object of the present invention, the present invention provides a dendritic cell vaccine comprising the above-mentioned immune tolerance dendritic cells as an active ingredient.
또한, 본 발명은 상기의 면역관용 수지상 세포를 유효성분으로 구성되는 수지상 세포 백신을 제공한다.The present invention also provides a dendritic cell vaccine composed of the above-mentioned immune tolerance dendritic cells as an active ingredient.
또한, 본 발명은 상기의 면역관용 수지상 세포를 유효성분으로 필수적으로 구성되는 수지상 세포 백신을 제공한다.The present invention also provides a dendritic cell vaccine consisting essentially of the immune tolerance dendritic cells as an active ingredient.
본 발명의 또 다른 목적을 달성하기 위하여 본 발명은 본 발명의 면역관용 수지상 세포를 포함하는 제1형, 제2형 당뇨병 또는 비만의 예방 또는 치료용 조성물을 제공한다.In order to achieve another object of the present invention, the present invention provides a composition for the prevention or treatment of type 1, type 2 diabetes or obesity comprising the immune tolerant dendritic cells of the present invention.
또한, 본 발명은 본 발명의 면역관용 수지상 세포로 구성되는 제1형, 제2형 당뇨병 또는 비만의 예방 또는 치료용 조성물을 제공한다.The present invention also provides a composition for the prevention or treatment of type 1, type 2 diabetes or obesity composed of the dendritic cells for immune tolerance of the present invention.
또한, 본 발명은 본 발명의 면역관용 수지상 세포로 필수적으로 구성되는 제1형, 제2형 당뇨병 또는 비만의 예방 또는 치료용 조성물을 제공한다.In addition, the present invention provides a composition for the prevention or treatment of type 1, type 2 diabetes or obesity consisting essentially of the immune tolerant dendritic cells of the present invention.
본 발명의 또 다른 목적을 달성하기 위하여 본 발명은 본 발명의 면역관용 수지상 세포에 하기 특성을 가지는 중간엽 줄기세포로부터 분화된 인슐린 분비 세포를 추가로 포함하는 것을 특징으로 하는 조성물을 제공한다:In order to achieve another object of the present invention, the present invention provides a composition characterized in that it further comprises insulin secreting cells differentiated from mesenchymal stem cells having the following characteristics to the immunotolerant dendritic cells of the present invention:
a) 인슐린 분비 세포(insulin producing cells, IPCs)일 것;a) be insulin producing cells (IPCs);
b) 테트라스파닌-2 (tetraspanin-2) 유전자가 제거(knock-out)됨.b) The tetraspanin-2 gene is knocked out.
본 발명의 또 다른 목적을 달성하기 위하여 본 발명은 제1형, 제2형 당뇨병 또는 비만의 예방 또는 치료용 예방 또는 치료용 제제를 제조하기 위한 본 발명의 면역관용 수지상 세포의 용도를 제공한다.In order to achieve another object of the present invention, the present invention provides a use of the immunotolerant dendritic cells of the present invention for the preparation of a prophylactic or therapeutic agent for the prevention or treatment of type 1, type 2 diabetes or obesity.
본 발명의 또 다른 목적을 달성하기 위하여 본 발명은 본 발명의 면역관용 수지상 세포를 유효성분으로 포함하는 조성물의 유효량을 이를 필요로 하는 개체에 투여하는 단계를 포함하는 제1형, 제2형 당뇨병 또는 비만의 예방 또는 치료 방법을 제공한다.In order to achieve another object of the present invention, the present invention comprises administering to a subject in need thereof an effective amount of a composition comprising the immune tolerant dendritic cells of the present invention as an active ingredient. Or a method for preventing or treating obesity.
이하 본 발명을 상세히 설명한다. Hereinafter, the present invention will be described in detail.
본 발명은 췌장 β 세포 엑소좀을 첨가한, GM-CSF를 포함하는 배지에서 미성숙 수지상 세포를 배양하여 성숙한 면역관용 수지상 세포로 분화하는 것을 특징으로 하는 면역관용 수지상 세포의 제조 방법:The present invention is a method for producing dendritic cells for immune tolerance, characterized in that immature dendritic cells are cultured in a medium containing GM-CSF to which pancreatic β-cell exosomes are added to differentiate into mature immune tolerant dendritic cells.
상기 미성숙 수지상 세포는 IL-4 및 GM-CSF를 포함하는 배지에서 줄기세포 배양을 통해 수득하며,The immature dendritic cells are obtained through stem cell culture in a medium containing IL-4 and GM-CSF,
상기 췌장 β 세포 엑소좀은, The pancreatic β cell exosomes,
a) TSPAN2(tetraspanin-2) 유전자가 제거된 췌장 β 세포를 원심분리하여 3차원 회전 타원체 배양하는 단계; a) centrifuging pancreatic β cells from which the TSPAN2 (tetraspanin-2) gene has been removed and culturing three-dimensional spheroids;
b) 상기 배양물에서 엑소좀을 분리하거나 상기 엑소좀이 포함된 배양배지를 분리하여 수득하는 단계;를 포함하는 방법에 의해서 제조된 것을 특징으로 하는 방법을 제공한다.b) separating the exosomes from the culture or obtaining a culture medium containing the exosomes; provides a method characterized in that it is prepared by a method comprising a.
본 발명에 따른 면역관용 수지상 세포의 제조 방법은 TSPAN2 유전자가 제거된 췌장 β세포를 3차원 회전 타원체 배양하여 인슐린 분비의 증가를 확인하고, 이러한 췌장 β 세포의 배양물 또는 이로부터 유래한 엑소좀을 미성숙 수지상 세포에 처리하여, 미성숙 수지상 세포의 성숙을 유도한 후, 다시 면역관용 수지상 세포로 유도하는 것을 특징으로 한다.In the method of producing dendritic cells for immune tolerance according to the present invention, three-dimensional spheroid culture of pancreatic β cells from which the TSPAN2 gene has been removed is confirmed to increase insulin secretion, and culture of these pancreatic β cells or exosomes derived therefrom The immature dendritic cells are treated to induce maturation of the immature dendritic cells, and then to the immature dendritic cells.
본 발명에서 상기 줄기세포는 여러 종류의 신체 조직으로 분화할 수 있는 능력을 가진 미분화 세포를 의미하며, 이는 만능 줄기 세포(totipotent stem cell), 전분화능 줄기세포 (pluripotent stem cell), 다분화능 줄기세포(multipotent stem cell)를 포함한다. 줄기세포는 미분화 상태에서 적절한 조건을 맞춰주면 다양한 조직 세포로 분화할 수 있는 특성으로 인해, 손상된 조직을 재생하는 등의 치료에 응용하기 위한 연구가 진행되고 있다. 줄기세포는 제대, 제대혈, 골수, 지방, 근육, 신경, 피부, 양막, 융모막, 탈락막, 또는 태반에서 유래된 것일 수 있으며, 바람직하게는 골수 유래 줄기세포인 것을 특징으로 한다.In the present invention, the stem cell refers to an undifferentiated cell having the ability to differentiate into various types of body tissues, which are totipotent stem cells, pluripotent stem cells, and multipotent stem cells. (multipotent stem cell). Stem cells are differentiated into a variety of tissue cells when appropriate conditions are set in an undifferentiated state, and research for applying them to treatment such as regenerating damaged tissues is being conducted. Stem cells may be derived from umbilical cord, umbilical cord blood, bone marrow, fat, muscle, nerves, skin, amniotic membrane, chorion, decidual membrane, or placenta, and are preferably bone marrow-derived stem cells.
본 발명에서 면역관용이란 면역학적 관용이라고도 하며, 특정 항원에 대하여 면역 반응을 나타내지 않는 상태를 의미한다. 본 발명에서 면역관용 수지상 세포는 자가 항원에 대한 관용을 유도하고 T 세포의 증식을 억제하는 수지상 세포를 의미하며, 본 발명의 목적상, 본 발명의 면역관용 수지상 세포는 당뇨병을 일으키는 항원에 대하여 면역관용을 유도하는 수지상 세포를 의미한다. 본 발명의 면역관용 수지상 세포는 미성숙 수지상 세포를 분화 유도시켜서 얻을 수 있다.In the present invention, immunotolerance is also referred to as immunological tolerance, and refers to a state that does not show an immune response to a specific antigen. In the present invention, the immune tolerant dendritic cell means a dendritic cell that induces tolerance to autologous antigen and inhibits the proliferation of T cells. For the purpose of the present invention, the immune tolerant dendritic cell is immune to an antigen causing diabetes. Dendritic cells that induce tolerance. The immune tolerance dendritic cells of the present invention can be obtained by inducing differentiation of immature dendritic cells.
본 발명의 미성숙 수지상 세포(Dendritic Cell, DC)는 전구 세포를 함유하는 적합한 조직 공급원으로부터 DC 전구 세포를 분리하거나 또는 미성숙 DC를 제조하는 방법에 의해 취득할 수 있다. 미성숙 DC를 제조하는 방법이란, 전구세포를 시험관내에서 분화시켜 미성숙 DC를 생산하는 방법을 말하며, 상기 전구세포는 적합한 조직공급원으로부터 유래한 혈액 단핵구 세포(mononuclear cell) 또는 조혈모세포일 수 있으며, 상기 적합한 조직 공급원이란 골수, 말초 혈액 및 제대혈 등일 수 있으며, 보다 바람직하게는 골수 세포로부터 유래된 것이다.Immature dendritic cells (DCs) of the invention can be obtained by a method of isolating DC progenitor cells from a suitable tissue source containing progenitor cells or by making immature DCs. The method of producing immature DC refers to a method of producing immature DCs by differentiating progenitor cells in vitro, wherein the progenitor cells may be blood mononuclear cells or hematopoietic stem cells derived from a suitable tissue source. Suitable tissue sources may be bone marrow, peripheral blood, umbilical cord blood, and the like, more preferably derived from bone marrow cells.
본 발명에 있어서, 상기 과립구-대식세포 콜로니 자극 인자(GM-CSF)는 세포의 수를 급격히 증가시켜 수지상 세포의 분화를 유도하는데 도움을 줄 수 있다.In the present invention, the granulocyte-macrophage colony stimulating factor (GM-CSF) may help to induce differentiation of dendritic cells by rapidly increasing the number of cells.
본 발명의 일실시예에서는 성숙 수지상 세포를 제조하기 위하여, 미성숙 수지상 세포 및 췌장 β 세포 배양물로부터 얻은 엑소좀을 30μL로 혼합하여 배양하는 것으로 성숙 수지상 세포를 얻은 후 면역관용이 유도된 수지상 세포를 제조하였다. In one embodiment of the present invention, in order to prepare mature dendritic cells, the immature dendritic cells and exosomes obtained from pancreatic β cell cultures are mixed with 30 μL and cultured to obtain mature dendritic cells, and then the immune tolerance induced dendritic cells are induced. Prepared.
보다 구체적으로는 (1) 마우스의 경골과 대퇴골에서 골수 유래 줄기세포를 분리하여, IL-4 및 GM-CSF를 포함하는 배지에서 배양하여 미성숙 수지상 세포를 수득하였으며, (2) 하기 a) 내지 c) 단계의 방법으로 췌장 β 세포 배양물을 제조하였다.More specifically, (1) bone marrow-derived stem cells from the tibia and the femur of the mouse were isolated and cultured in a medium containing IL-4 and GM-CSF to obtain immature dendritic cells, (2) the following a) to c Pancreatic β cell culture was prepared by the method of step).
a) 췌장 β 세포주인 RNAKT-15 세포주에서 TSPAN2(tetraspanin-2) 유전자를 제거하는 단계;a) removing the TSPAN2 (tetraspanin-2) gene from the pancreatic β cell line, RNAKT-15 cell line;
b) 상기 TSPAN2 유전자가 제거된 췌장 β 세포를 원심분리하여 3차원 회전 타원체 배양을 형성하는 단계; b) centrifuging the pancreatic β cells from which the TSPAN2 gene has been removed to form a three-dimensional spheroid culture;
c) 상기 TSPAN2 유전자가 제거된 췌장 β 세포 및 배지로 이루어진 군에서 선택된 어느 하나 이상을 포함하는 세포 배양물을 수득하는 단계;c) obtaining a cell culture comprising any one or more selected from the group consisting of pancreatic β cells and medium from which the TSPAN2 gene has been removed;
그 다음, (3) 상기 2)단계의 췌장 β 세포 배양물에 1) 단계의 미성숙 수지상 세포를 혼합하여, 미성숙 수지상 세포를 성숙 수지상 세포로 분화시켰다.Immature dendritic cells of step 1) were then mixed with (3) pancreatic β cell culture of step 2) to differentiate immature dendritic cells into mature dendritic cells.
본 발명의 ‘TSPAN-2(tetraspanin-2) 유전자’는 transmembrane 4 superfamily 또는 tetraspanin family에 속하는 단백질인 테트라스파닌-2 단백질을 암호화하는 유전자이다. 테트라스파닌-2 단백질은 특징적인 4개의 소수성 도메인을 갖는 막단백질이며, NET3, TSN2, TSPAN2, TSPAN-2 등으로도 알려져 있으며, 3개의 주요한 동형(isoform)이 알려져 있다. 이는 세포 발달, 활성화, 성장 및 운동성에 중요한 역할을 담당하며, NET3, TSN2, TSPAN2, TSPAN-2 등으로도 알려져 있고, 3개의 주요한 동형(isoform)이 알려져 있다. 또한 테트라스파닌-2가 인간의 췌장 β 세포에서 JNK/β-catenin 신호체계를 조절하고 세포사멸을 촉진하는 역할을 한다는 것이 알려져 있다. 'TSPAN-2 (tetraspanin-2) gene' of the present invention is a gene encoding the tetraspanin-2 protein, which belongs to the transmembrane 4 superfamily or the tetraspanin family. Tetraspanin-2 protein is a membrane protein with four characteristic hydrophobic domains, also known as NET3, TSN2, TSPAN2, TSPAN-2, and the like, and three major isoforms are known. It plays an important role in cell development, activation, growth and motility, also known as NET3, TSN2, TSPAN2, TSPAN-2 and the like, and three major isoforms are known. It is also known that tetraspanin-2 plays a role in regulating JNK / β-catenin signaling in human pancreatic β cells and promoting apoptosis.
본 발명의 상기 테트라스파닌-2 (tetraspanin-2) 유전자가 제거된 췌장 β 세포는 IRS-1의 세린 인산화를 감소시키고 IRS-1의 티로신 인산화를 추가적으로 증가시킴으로써 인슐린 감수성을 증가시키는 효과를 얻을 수 있다.The pancreatic β cells from which the tetraspanin-2 gene of the present invention has been removed can reduce the serine phosphorylation of IRS-1 and increase the tyrosine phosphorylation of IRS-1, thereby increasing insulin sensitivity. have.
본 발명에서 상기 3차원 회전 타원체 배양한 췌장 β 세포는 인슐린 분비 능력이 증가함을 특징으로 한다.In the present invention, the three-dimensional spheroid cultured pancreatic β cells are characterized by an increase in insulin secretion ability.
본 발명의 상기 췌장 β 세포를 3D 타원체시 ‘E-카데린(E-cadherin)’의 발현이 증가한다. E-카데린는 초기 배아의 상피화, 세포 재배치, 조직형태형성, 세포극성의 확립 및 조직구조의 유지에 필수적인 기능을 하는 단백질로, 본 발명에서는 엑소좀 분리 상태를 위한 주요한 마커로 활용할 수 있다. 회전 타원체에서 E-cadherin는 접촉 의존적으로 인슐린 단백질 분비를 증가시킨다.The pancreatic β cells of the present invention increase the expression of 'E-cadherin' in 3D ellipsoid. E-cadherin is a protein that plays an essential role in early embryonic epithelialization, cell rearrangement, tissue morphogenesis, establishment of cell polarity and maintenance of tissue structure. In the present invention, E-cadherin may be used as a major marker for exosome isolation. In spheroids, E-cadherin increases insulin protein secretion in a contact-dependent manner.
본 발명에서 상기 b) 단계의 배양물은 면역원성 엑소좀을 포함하는 것을 특징으로 한다.In the present invention, the culture of step b) is characterized in that it comprises an immunogenic exosomes.
본 발명에서 상기 ‘엑소좀(exosome)’은 여러 종류의 세포들로부터 분비되는 막 구조의 소낭체로, 다른 세포 및 조직에 결합하여 막 구성요소, 단백질, RNA를 전달하는 등 다양한 역할을 하는 것으로 알려져 있다.In the present invention, the 'exosome' is a vesicle of membrane structure secreted from various types of cells, and is known to play various roles such as binding to other cells and tissues to deliver membrane components, proteins, and RNA. have.
또한 본 발명은 상기의 방법으로 제조한 성숙 수지상 세포를 제공한다. 또한 본 발명에 따른 성숙 수지상 세포를 포함하는 수지상 세포 백신을 제공한다.The present invention also provides mature dendritic cells prepared by the above method. Also provided is a dendritic cell vaccine comprising mature dendritic cells according to the present invention.
본 발명의 성숙 수지상 세포 백신의 제조 방법은, 상기의 방법에 따라 미성숙 수지상 세포를 성숙 수지상 세포로 분화시킨 다음((1)~(3) 단계), (4) 분화되지 않은 미성숙 수지상 세포를 제거하는 단계를 포함한다.In the method for producing a mature dendritic cell vaccine of the present invention, the immature dendritic cells are differentiated into mature dendritic cells according to the above method ((1) to (3)), and (4) undifferentiated immature dendritic cells are removed. It includes a step.
본 발명은 상기의 방법으로 제조한 면역관용 수지상 세포 백신은 바람직하게, 당뇨병 또는 비만의 예방용 백신일 수 있으며, 또는 당뇨병 또는 비만의 치료용 백신일 수 있다. 본 발명에서 당뇨병은 제1형 당뇨병 또는 제2형 당뇨병일 수 있다.In the present invention, the immune tolerant dendritic cell vaccine prepared by the above method may preferably be a vaccine for preventing diabetes or obesity, or may be a vaccine for treating diabetes or obesity. In the present invention, diabetes may be type 1 diabetes or type 2 diabetes.
본 발명에서 상기 ‘백신’은 생체에 면역을 주는 항원을 함유한 생물학적인 제제로서, 감염증의 예방을 위하여 사람이나 동물에 주사하거나 경구 투여함으로써 생체에 면역이 생기게 하는 면역원 또는 항원성 물질을 말한다. 생체 내 면역은 병원균의 감염 후에 생체 내 면역력이 자동으로 얻어지는 자동면역과 외부에서 주입한 백신에 의하여 얻어지는 수동 면역으로 크게 나누어진다. 자동면역이 면역에 관계하는 항체의 생성 기간이 길고 지속적인 면역력의 특징이 있는 반면, 백신에 의한 수동 면역은 감염증 치료에 즉시 작용하나 지속력이 떨어지는 단점이 있다.In the present invention, the 'vaccine' refers to a biological agent containing an antigen that immunizes the living body, and refers to an immunogen or antigenic substance that immunizes the living body by injection or oral administration to a human or animal to prevent infection. In vivo immunization is largely divided into autoimmunity, in which immunity is automatically obtained after infection by pathogens, and passive immunity obtained by an externally injected vaccine. While autoimmunity is characterized by a long period of generation of antibodies related to immunity and continuous immunity, passive immunization with vaccines acts immediately to treat infectious diseases, but has a disadvantage of poor sustainability.
본 발명의 백신 조성물에는 약제학적으로 허용되는 담체를 포함할 수 있다. 항원 물질을 생체 내 부위에 전달하는데 적합한 임의의 성분을 의미하며, 예를 들어, 물, 식염수, 인산염 완충 식염수, 링거 용액, 덱스트로스 용액, 혈청 함유 용액, 한스 용액, 기타 수용성의 생리학적 평형 용액, 오일, 에스테르 및 글리콜 등이 포함되나, 이에 한정되지 않는다.The vaccine composition of the present invention may include a pharmaceutically acceptable carrier. Any component suitable for delivery of an antigenic substance to an in vivo site, for example, water, saline, phosphate buffered saline, Ringer's solution, dextrose solution, serum-containing solution, Hans' solution, other water soluble physiological equilibrium solutions , Oils, esters and glycols, and the like.
본 발명의 담체는 화학적 안정성 및 등장성을 증진시키기 위해 적합한 보조 성분과 보존제를 포함할 수 있으며, 트레할로스, 글라이신, 솔비톨, 락토오스 또는 모노소듐 글루타메이트(MSG)와 같은 안정화제를 포함시켜 온도 변화 또는 동결건조에 대해 백신 조성물을 보호할 수 있다. 본 발명의 백신 조성물은 멸균수 또는 식염수(바람직하게는 완충된 식염수)와 같은 현탁 액체를 포함할 수 있다.Carriers of the present invention may include suitable auxiliary ingredients and preservatives to enhance chemical stability and isotonicity, and may include temperature stabilizers or freezes by including stabilizers such as trehalose, glycine, sorbitol, lactose or monosodium glutamate (MSG). The vaccine composition can be protected against drying. The vaccine composition of the present invention may comprise a suspension liquid, such as sterile water or saline (preferably buffered saline).
본 발명의 백신 조성물은 면역원에 대한 면역반응을 향상시키기에 충분한 양의 임의의 애쥬번트(adjuvant)를 함유할 수 있다. 적합한 애쥬번트는 알루미늄염(알루미늄 포스페이트(Aluminium phosphate) 또는 알루미늄 히드록시드(Aluminium hydroxide), 스쿠알렌(Squalene) 혼합물(SAF-1), 무라밀(muramyl) 펩티드, 사포닌(Saponin) 유도체, 마이코박테리아(mycobacterium) 세포벽 제조물, 모노포스포릴(monophosphoryl) 지질 A, 미콜산(mycolic acid) 유도체, 비이온성 블록 공중합체 계면활성제, Quil A, 콜레라 독소 B 서브유닛(cholera toxin B subunit), 폴리포스파젠(polyphosphazene) 및 유도체, 및 면역자극 복합체(immune-stimulating complexes, ISCOMs)를 포함하나, 이에 한정되지는 않는다.The vaccine composition of the present invention may contain any adjuvant in an amount sufficient to enhance the immune response to the immunogen. Suitable adjuvants include aluminum salts (aluminum phosphate or aluminum hydroxide, squalene mixtures (SAF-1), muramyl peptides, saponin derivatives, mycobacteria ( mycobacterium cell wall preparation, monophosphoryl lipid A, mycolic acid derivatives, nonionic block copolymer surfactants, Quil A, cholera toxin B subunit, polyphosphazene ) And derivatives, and immuno-stimulating complexes (ISCOMs).
다른 모든 백신 조성물과 마찬가지로, 면역원의 면역학적 유효량은 경험적으로 결정되어야 하며, 이 경우 고려될 수 있는 인자는 면역원성, 투여 경로 및 투여되는 면역 투여 횟수를 들 수 있다. 또한 환자의 비만 및 혈당에 의한 합병증의 진행과 불안정한 상태, 제형의 종류, 환자의 연령, 성별, 체중, 건강 상태, 식이, 투여 시간 및 투여 방법에 따라 조절될 수 있다.As with all other vaccine compositions, the immunologically effective amount of an immunogen should be determined empirically, in which case factors that may be considered include immunogenicity, route of administration and frequency of immune administration administered. It can also be controlled according to the progression and instability of complications caused by obesity and blood glucose in the patient, the type of formulation, the age, sex, weight, health condition, diet, time of administration and method of administration of the patient.
본 발명의 백신 조성물 중의 항원물질인 타원체 배양한 췌장 β 세포 배양물은 본 발명의 조성물 내에서 다양한 농도로 존재할 수 있으나, 통상적으로, 상기 항원물질이 생체 내에서 적절한 수준의 항체 형성을 유도하기에 필요한 농도로 포함한다.The ellipsoid cultured pancreatic β cell culture, which is the antigenic substance in the vaccine composition of the present invention, may be present in various concentrations in the composition of the present invention, but in general, the antigenic substance is sufficient to induce the formation of an appropriate level of antibody in vivo. Include in the required concentration.
본 발명에서 용어, “투여”는 어떠한 적절한 방법으로 환자에 소정의 물질을 도입하는 것을 의미하며, 본 발명의 수지상 세포 백신의 투여경로는 이들이 목적 조직에 도달할 수 있는 한 어떠한 일반적인 경로를 통하여 투여될 수 있다.As used herein, the term “administration” means introducing a predetermined substance into a patient by any suitable method, and the route of administration of the dendritic cell vaccine of the present invention is administered through any general route as long as they can reach the target tissue. Can be.
본 발명의 백신 조성물은 전신 또는 점막 경로를 통해 투여함으로써, 췌장암을 치료하기 위해 사용될 수 있다. 백신 조성물의 투여는 근내, 복막내, 피내 또는 피하, 소장의 장간막, 췌장의 β 세포, 간내, 신장의 피막하 경로를 통한 주사, 경구/식사, 호흡기, 비뇨 생식관으로의 점막 투여를 포함할 수 있으나, 이에 한정되지 않는다.The vaccine composition of the present invention can be used to treat pancreatic cancer by administering via the systemic or mucosal route. Administration of the vaccine composition may include intramuscular, intraperitoneal, subcutaneous or subcutaneous, intestinal mesentery, pancreatic β cells, intrahepatic, renal subcutaneous injection, oral / meal, respiratory, mucosal administration to the genitourinary tract. But it is not limited thereto.
또한, 수지상세포에 근거한 백신의 효능을 높이기 위하여 수지상세포를 주입시에 IL-12와 같은 T 세포의 활성화를 도와주는 사이토카인을 병용 투여하거나, 이러한 사이토카인 유전자를 트랜스펙션 시킨 수지상세포를 사용할 수 있을 것이다.In addition, in order to enhance the efficacy of a dendritic cell-based vaccine, a combination of cytokines that help activate T cells, such as IL-12, may be used in combination with dendritic cells, or dendritic cells transfected with the cytokine gene may be used. Could be.
본 발명에 의해 제조되는 백신의 유효성분인 수지상세포를 포함하는 세포는, 인간 체내에 치료용 백신으로서 접종하기 때문에, 안전성을 높이기 위해 세포 증식성을 없애 두는 것도 가능하다. 예를 들면, 선택적으로 세포 백신으로서 보다 안전하게 이용하기 위해, 가열처리, 방사선처리, 또는 마이토마이신 C(mitomycin C, MMC) 처리 등으로 처리하고, 백신으로서의 기능을 남긴 채, 증식성을 없앨 수 있다. 예를 들면, 수지상세포에 25~50㎍/㎖의 마이토마이신 C를 첨가하여, 37℃, 30분 내지 60분간 보온 처리할 수 있다. 열에 의한 세포처리방법은, 예를 들면, 50℃ 내지 65℃에서 20분간 가열처리를 행할 수 있다.Cells containing dendritic cells, which are the active ingredients of the vaccine produced by the present invention, are inoculated as a therapeutic vaccine in the human body, so that cell proliferation can be eliminated in order to increase safety. For example, it can be treated with heat treatment, radiation treatment, or mitomycin C (MMC) treatment to selectively use it more safely as a cell vaccine, and eliminate the proliferative ability while remaining functioning as a vaccine. have. For example, 25-50 µg / ml of mitomycin C may be added to dendritic cells to be insulated at 37 ° C. for 30 minutes to 60 minutes. The cell processing method by heat can be heat-processed for 20 minutes at 50 to 65 degreeC, for example.
또한, 본 발명은 본 발명의 면역관용 수지상 세포를 유효성분으로 포함하는 당뇨병 예방 또는 치료용 조성물을 제공한다. 또한, 본 발명은 본 발명의 면역관용 수지상 세포를 유효성분으로 포함하는 비만 예방 또는 치료용 조성물을 제공한다. 본 발명의 조성물은 바람직하게는 약학적 조성물일 수 있다.In addition, the present invention provides a composition for preventing or treating diabetes, comprising the dendritic cells for immune tolerance of the present invention as an active ingredient. The present invention also provides a composition for preventing or treating obesity, comprising the dendritic cells for immune tolerance of the present invention as an active ingredient. The composition of the present invention may preferably be a pharmaceutical composition.
본 발명에 따른 약학적 조성물은 본 발명에 따른 성숙 수지상 세포를 단독으로 함유하거나 약학적으로 허용되는 담체와 함께 적합한 형태로 제형화 될 수 있으며, 부형제 또는 희석제를 추가로 함유할 수 있다. 상기에서 '약학적으로 허용되는'이란 생리학적으로 허용되고 인간에게 투여될 때, 통상적으로 위장 장애, 현기증 등과 같은 알레르기 반응 또는 이와 유사한 반응을 일으키지 않는 비독성의 조성물을 말한다.The pharmaceutical composition according to the invention may contain the mature dendritic cells according to the invention alone or may be formulated in a suitable form with a pharmaceutically acceptable carrier and may further contain excipients or diluents. As used herein, 'pharmaceutically acceptable' refers to a non-toxic composition that, when administered to human beings, is physiologically acceptable and typically does not cause allergic or similar reactions such as gastrointestinal disorders, dizziness, and the like.
본 발명의 조성물은 인간을 비롯한 포유동물에 어떠한 방법으로도 투여할 수 있다. 예를 들면, 경구 또는 비경구적으로 투여할 수 있다. 비경구적인 투여방법으로는 이에 한정되지는 않으나, 정맥내, 근육내, 동맥내, 골수내, 경막내, 신장 피막내, 경피, 피하, 복막내, 복강내, 비강내, 장관, 국소, 설하 또는 직장내 투여일 수 있다.The composition of the present invention may be administered to any mammal, including humans. For example, it can be administered orally or parenterally. Parenteral administration methods include, but are not limited to, intravenous, intramuscular, intraarterial, intramedullary, intradural, intrarenal, transdermal, subcutaneous, intraperitoneal, intraperitoneal, intranasal, intestinal, topical, and sublingual Or rectal administration.
본 발명의 약학적 조성물은 상술한 바와 같은 투여 경로에 따라 경구 투여용 또는 비경구 투여용 제제로 제형화 할 수 있다.The pharmaceutical composition of the present invention may be formulated into a preparation for oral or parenteral administration according to the route of administration as described above.
경구 투여용 제제의 경우에 본 발명의 조성물은 분말, 과립, 정제, 환제, 당의정제, 캡슐제, 액제, 겔제, 시럽제, 슬러리제, 현탁액 등으로 당업계에 공지된 방법을 이용하여 제형화될 수 있다. 예를 들어, 경구용 제제는 활성성분을 고체 부형제와 배합한 다음 이를 분쇄하고 적합한 보조제를 첨가한 후 과립 혼합물로 가공함으로써 정제 또는 당의정제를 수득할 수 있다. 적합한 부형제의 예로는 락토즈, 덱스트로즈, 수크로즈, 솔비톨, 만니톨, 자일리톨, 에리스리톨 및 말티톨 등을 포함하는 당류와 옥수수 전분, 밀 전분, 쌀 전분 및 감자 전분 등을 포함하는 전분류, 셀룰로즈, 메틸 셀룰로즈, 나트륨 카르복시메틸셀룰로오즈 및 하이드록시프로필메틸-셀룰로즈 등을 포함하는 셀룰로즈류, 젤라틴, 폴리비닐피롤리돈 등과 같은 충전제가 포함될 수 있다. 또한, 경우에 따라 가교결합 폴리비닐피롤리돈, 한천, 알긴산 또는 나트륨 알기네이트 등을 붕해제로 첨가할 수 있다. 나아가, 본 발명의 약학적 조성물은 항응집제, 윤활제, 습윤제, 향료, 유화제 및 방부제 등을 추가로 포함할 수 있다.In the case of preparations for oral administration, the compositions of the present invention may be formulated using methods known in the art as powders, granules, tablets, pills, dragees, capsules, solutions, gels, syrups, slurries, suspensions and the like. Can be. For example, oral formulations can be obtained by tablets or dragees by combining the active ingredients with solid excipients and then grinding them, adding suitable auxiliaries and processing them into granule mixtures. Examples of suitable excipients include sugars, including lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol and maltitol and starch, cellulose, including starch, corn starch, wheat starch, rice starch and potato starch, and the like. Fillers such as cellulose, gelatin, polyvinylpyrrolidone, and the like, including methyl cellulose, sodium carboxymethylcellulose, hydroxypropylmethyl-cellulose, and the like. In addition, crosslinked polyvinylpyrrolidone, agar, alginic acid or sodium alginate and the like may optionally be added as a disintegrant. Furthermore, the pharmaceutical composition of the present invention may further include an anticoagulant, a lubricant, a humectant, a perfume, an emulsifier, a preservative, and the like.
비경구 투여용 제제의 경우에는 주사제, 크림제, 로션제, 외용연고제, 오일제, 보습제, 겔제, 에어로졸 및 비강 흡입제의 형태로 당업계에 공지된 방법으로 제형화할 수 있다. 이들 제형은 모든 제약 화학에 일반적으로 공지되어 있다.Formulations for parenteral administration may be formulated by methods known in the art in the form of injections, creams, lotions, external ointments, oils, humectants, gels, aerosols and nasal inhalants. These formulations are generally known in all pharmaceutical chemistries.
또한, 본 발명의 약학적 조성물은 상술한 바와 같은 투여 경로에 따라 세포 치료제로 제형화할 수 있다. In addition, the pharmaceutical compositions of the present invention may be formulated with a cell therapeutic agent according to the route of administration as described above.
상기 ‘세포 치료제’란 세포와 조직의 기능을 복원시키기 위하여 살아있는 자가(autologous), 동종(allogenic), 이종(xenogenic) 세포를 체외에서 증식ㆍ선별하거나 여타한 방법으로 세포의 생물학적 특성을 변화시키는 등의 일련의 행위를 통하여 치료, 진단 및 예방의 목적으로 사용되는 의약품을 말한다. 미국은 1993년부터, 우리나라는 2002년부터 세포치료제를 의약품으로 관리하고 있다. 이러한 세포치료제는 크게 두 분야로 분류할 수 있으며 그 첫 번째는 조직재생 혹은 장기기능 회복을 위한 줄기세포 치료제이며, 두 번째는 생체 내 면역반응의 억제 혹은 면역반응의 항진 등 면역반응 조절을 위한 면역세포 치료제로 분류할 수 있다.The 'cell therapy' refers to proliferating, selecting, or otherwise changing the biological characteristics of living autologous, allogenic, and xenogenic cells in vitro to restore the function of cells and tissues. Medicines used for the purpose of treatment, diagnosis and prevention through a series of activities. Since 1993, the United States has managed cell therapy as a medicine since 2002. These cell therapies can be broadly classified into two fields. The first is stem cell therapy for tissue regeneration or long-term function recovery, and the second is immunization for the regulation of immune responses such as suppressing the immune response or enhancing the immune response in vivo. Can be classified as a cell therapy.
세포 치료제의 경우에는 표적 세포로 이동할 수 있는 임의의 장치에 의해 투여될 수 있다. 또한, 세포 치료제는 비경구로 투여하며, 정맥내 주입, 피하 주입, 복강 주입, 경피 투여 등으로 투여할 수 있고, 적합한 투여량은 제제화 방법, 투여 방식, 환자의 연령, 체중, 성, 투여 시간 및 투여 경로와 같은 요인들에 의해 다양하게 처방될 수 있으나, 바람직하게는 1회당 1X10 5~10X10 9 세포이다.In the case of cell therapeutic agents, they may be administered by any device capable of moving to the target cell. In addition, the cell therapy may be administered parenterally, and may be administered by intravenous infusion, subcutaneous infusion, intraperitoneal infusion, transdermal administration, etc. Suitable dosages may be formulated by method of administration, mode of administration, age, weight, sex, time of administration and Various prescriptions may be made by such factors as the route of administration, but preferably 1 × 10 5 to 10 × 10 9 cells per dose.
본 발명의 조성물의 총 유효량은 단일 투여량(single dose)으로 환자에게 투여될 수 있으며, 다중 투여량(multiple dose)으로 장기간 투여되는 분할 치료 방법(fractionated treatment protocol)에 의해 투여될 수 있다. 본 발명의 약학적 조성물은 질환의 정도에 따라 유효성분의 함량을 달리할 수 있다. 바람직하게 본 발명의 약학적 조성물의 바람직한 전체 용량은 1일당 환자 체중 1㎏ 당 약 0.01㎍ 내지 10,000mg, 가장 바람직하게는 0.1㎍ 내지 500mg일 수 있다. 그러나 상기 약학적 조성물의 용량은 제제화 방법, 투여 경로 및 치료 횟수뿐만 아니라 환자의 연령, 체중, 건강 상태, 성별, 질환의 중증도, 식이 및 배설율 등 다양한 요인들을 고려하여 환자에 대한 유효 투여량이 결정되는 것이므로, 이러한 점을 고려할 때 당 분야의 통상적인 지식을 가진 자라면 본 발명의 조성물의 적절한 유효 투여량을 결정할 수 있을 것이다. 본 발명에 따른 약학적 조성물은 본 발명의 효과를 보이는 한 그 제형, 투여 경로 및 투여 방법에 특별히 제한되지 아니한다.The total effective amount of the composition of the present invention may be administered to a patient in a single dose and may be administered by a fractionated treatment protocol which is administered in multiple doses for a long time. The pharmaceutical composition of the present invention may vary the content of the active ingredient depending on the extent of the disease. Preferably the preferred total dose of the pharmaceutical composition of the present invention may be about 0.01 μg to 10,000 mg, most preferably 0.1 μg to 500 mg per kg of patient body weight per day. However, the dosage of the pharmaceutical composition is determined in consideration of various factors such as the formulation method, route of administration and frequency of treatment, as well as various factors such as the patient's age, weight, health status, sex, severity of the disease, diet and excretion rate. In view of this, one of ordinary skill in the art will be able to determine the appropriate effective dosage of the compositions of the present invention. The pharmaceutical composition according to the present invention is not particularly limited to its formulation, route of administration and method of administration as long as the effect of the present invention is shown.
또한 본 발명은 상기의 조성물에 하기 특성을 가지는 인슐린 분비 세포를 추가로 포함하는 것을 특징으로 하는 조성물을 제공한다:In another aspect, the present invention provides a composition, characterized in that it further comprises an insulin secreting cell having the following properties:
a) 인슐린 분비 세포(insulin producing cells, IPCs)일 것;a) be insulin producing cells (IPCs);
b) 테트라스파닌-2 (tetraspanin-2) 유전자가 제거(knock-out)됨.b) The tetraspanin-2 gene is knocked out.
본 발명의 상기 인슐린 분비 세포는 중간엽 줄기세포로부터 분화가 유도된 것일 수 있으며, 이와 같은 테트라스파닌-2 (tetraspanin-2) 유전자가 제거된 인슐린 분비 세포를 추가적으로 투여 또는 이식하는 경우 IRS-1의 세린 인산화를 감소시키고 IRS-1의 티로신 인산화를 추가적으로 증가시킴으로써 인슐린 감수성을 추가적으로 증가시키는 효과를 얻을 수 있다.The insulin secreting cells of the present invention may be induced differentiation from mesenchymal stem cells, and when additionally administering or transplanting insulin secreting cells in which such tetraspanin-2 gene is removed, IRS-1 Increasing insulin sensitivity may be achieved by reducing serine phosphorylation and further increasing tyrosine phosphorylation of IRS-1.
본 발명의 일실시예에서 3D 타원체 배양이 췌장 유래 세포의 인슐린 분비능력에 미치는 영향을 확인한 결과, 대조군(2D 평면 배양)의 경우에 비해서 3D 타원체 배양한 경우가 인슐린 분비량이 2배 이상으로 크게 증가하는 것을 확인할 수 있었다(도 1).As a result of confirming the effect of the 3D ellipsoid culture on the insulin secretion ability of the pancreas-derived cells in one embodiment of the present invention, the amount of insulin secretion increased more than two times in the 3D ellipsoid culture compared to the control (2D planar culture) It could be confirmed that (Fig. 1).
본 발명의 일실시예에서 본 발명의 수지상 세포 백신이 제1형 당뇨병 모델이 되는 당뇨병성 비-비만(NOD)마우스에서의 당뇨 발병에 미치는 영향을 확인한 결과, 대조군(No injection)의 경우 16주령을 시작으로 하여 전체 군 중 당뇨병 발병비율이 점차 증가하는 반면, 수지상 세포 백신 (DC-Vac)을 투여한 군에서는 당뇨병이 발병하지 않았고(도 4), 인슐린 투여를 중단한 후에도 DC-Vac만을 투여하는 경우 정상 혈당이 유지됨을 알 수 있었다(도 5a 내지 도 5c).In one embodiment of the present invention confirmed the effect of the dendritic cell vaccine of the present invention on diabetes incidence in diabetic non-obesity (NOD) mice to be a type 1 diabetes model, 16 weeks of age in the case of a control (No injection) The incidence of diabetes among the whole group gradually increased, whereas, in the group receiving the dendritic cell vaccine (DC-Vac), diabetes did not develop (FIG. 4), and only DC-Vac was administered even after stopping the insulin administration. Normal blood sugar was found to be maintained (Fig. 5a to 5c).
본 발명의 또 다른 일실시예에서는 비-비만(NOD) 마우스에 본 발명에 따른 수지상 세포 백신 (DC-Vac) 및 이의 병용 (DC-Vac + TK-IPCs)을 투여한 후, 마우스의 지방 조직을 관찰한 결과, 백신을 투여한 경우에 지방 세포의 크기가 더 작은 것을 확인하였다(도 6). 또한, 마우스의 체지방량 및 혈청 내 아디포넥틴의 함량을 측정한 결과, 백신을 투여한 경우에, 체지방량이 적고, 아디포넥틴 함량이 높으며, 혈당 농도 및 인슐린 농도 모두 대조군에 비해 DC-Vac 투여군에서 감소하고, DC-Vac + TK-IPCs 투여군에서 더욱더 혈중 함량이 더 낮아지는 것으로 나타났다(도 7a 내지 도 7d).In another embodiment of the present invention, after administering the dendritic cell vaccine (DC-Vac) and a combination thereof (DC-Vac + TK-IPCs) according to the present invention to a non-obese (NOD) mouse, the adipose tissue of the mouse As a result, it was confirmed that the fat cell size was smaller when the vaccine was administered (FIG. 6). In addition, as a result of measuring the amount of adiponectin and the amount of adiponectin in the mouse, when the vaccine is administered, the body fat amount is low, the adiponectin content is high, and both the blood glucose level and the insulin concentration decrease in the DC-Vac group compared to the control group, DC In the -Vac + TK-IPCs administration group, the blood content was found to be lower (FIGS. 7A to 7D).
본 발명의 또 다른 일실시예에서 고지방식이로 비만을 유도한 마우스와 정상식이 마우스에 본 발명에 따른 수지상 세포 백신을 투여한 후, 인슐린 감수성 및 내당능을 측정한 결과, 백신을 투여한 경우에 대조군에 비해서 효과를 보였으며, TK-IPCs를 병용하여 투여한 경우에는 더욱 더 효과가 좋아 정상 마우스와 유사하게 조절되는 것을 확인할 수 있었다(도 8a 및 도 8b).In another embodiment of the present invention, after administering the dendritic cell vaccine according to the present invention to a high fat diet-induced obesity mouse and a normal diet mouse, insulin sensitivity and glucose tolerance were measured. Compared with the control group, and when administered in combination with TK-IPCs it was confirmed that the effect is much better and controlled similarly to normal mice (Figs. 8a and 8b).
본 발명의 또 다른 일실시예에서, 고지방식이로 비만을 유도한 마우스와 정상식이 마우스에 본 발명에 따른 수지상 세포 백신 또는 이의 병용 제제를 투여한 후, 공복 상태의 마우스의 체중, 혈당, 혈장 인슐린 농도를 측정한 결과, 대조군에 비해 수지상 세포 백신 투여군에서 감소하고, TK-IPCs를 병용하여 투여한 경우 더욱 더 낮아지는 것을 확인할 수 있었다(도 9a 내지 도 9c) In another embodiment of the present invention, after administration of the dendritic cell vaccine or a combination thereof according to the present invention to mice fed high fat diet and normal diet mice, the weight, blood sugar, plasma of fasting mice As a result of measuring the insulin concentration, it was confirmed that the dendritic cell vaccine-administered group was lower than the control group, and even lower when the TK-IPCs were administered in combination (FIGS. 9A to 9C).
본 발명의 또 다른 일실시예에서, IRS-1의 Ser307에서의 또는 티로신에서의 인산화를 관찰한 결과, Ser307에서의 IRS-1의 인산화는 수지상 세포 백신을 처리한 경우에 감소하고, TK-IPCs와 병용하여 처리한 경우는 더욱 더 감소하였으며, DC-Vac과 TK-IPCs의 처리가 티로신 인산화를 증가시킴을 알 수 있었다(도 10a 및 도 10b). In another embodiment of the invention, the phosphorylation of IRS-1 at Ser307 or at tyrosine results in that phosphorylation of IRS-1 at Ser307 is reduced when treated with dendritic cell vaccine, and TK-IPCs In combination with and decreased even more, the treatment of DC-Vac and TK-IPCs was found to increase tyrosine phosphorylation (Fig. 10a and 10b).
또한, 본 발명은 제1형, 제2형 당뇨병 또는 비만 예방 또는 치료용 제제를 제조하기 위한 본 발명의 면역관용 수지상 세포의 용도를 제공한다.The present invention also provides the use of the immune tolerant dendritic cells of the present invention for the preparation of a type 1, type 2 diabetes or obesity prophylaxis or treatment.
또한, 본 발명은 본 발명의 면역관용 수지상 세포를 유효성분으로 포함하는 조성물의 유효량을 이를 필요로 하는 개체에 투여하는 단계를 포함하는 제1형, 제2형 당뇨병 또는 비만 예방 또는 치료 방법을 제공한다.The present invention also provides a method for preventing or treating type 1, type 2 diabetes or obesity, comprising administering to a subject in need thereof an effective amount of a composition comprising the immune tolerant dendritic cells of the present invention as an active ingredient. do.
본 발명의 상기 ‘유효량’이란 개체에게 투여하였을 때, 당뇨병 또는 비만의 개선, 치료, 예방, 검출, 진단 또는 당뇨병 또는 비만의 억제 또는 감소 효과를 나타내는 양을 말하며, 상기 ‘개체’란 동물, 바람직하게는 포유동물, 특히 인간을 포함하는 동물일 수 있으며, 동물에서 유래한 세포, 조직, 기관 등일 수도 있다. 상기 개체는 상기 효과가 필요한 환자(patient) 일 수 있다.The 'effective amount' of the present invention, when administered to an individual, refers to an amount that shows the effect of improving, treating, preventing, detecting, diagnosing or preventing or reducing diabetes or obesity in an individual, wherein the 'individual' is an animal, preferably It may be a mammal, especially an animal including a human, and may be cells, tissues, organs or the like derived from the animal. The subject may be a patient in need of the effect.
본 발명의 상기 ‘치료’는 당뇨병, 비만 또는 당뇨병, 비만의 증상을 개선시키는 것을 포괄적으로 지칭하고, 이는 당뇨병 또는 비만을 치유하거나, 실질적으로 예방하거나, 또는 상태를 개선시키는 것을 포함할 수 있으며, 당뇨병 또는 비만으로부터 비롯된 한 가지 증상 또는 대부분의 증상을 완화시키거나, 치유하거나 예방하는 것을 포함하나, 이에 제한되는 것은 아니다.The 'treatment' of the present invention refers generically to improving symptoms of diabetes, obesity or diabetes, obesity, which may include treating, substantially preventing, or improving the condition of diabetes or obesity, It includes, but is not limited to, alleviating, healing or preventing one or most of the symptoms resulting from diabetes or obesity.
본 발명의 용어 ‘~을 포함하는(comprising)’이란 ‘함유하는’ 또는 ‘특징으로 하는’과 동일하게 사용되며, 조성물 또는 방법에 있어서, 언급되지 않은 추가적인 성분 요소 또는 방법 단계 등을 배제하지 않는다. 용어 ‘~로 구성되는(consisting of)’이란 별도로 기재되지 않은 추가적인 요소, 단계 또는 성분 등을 제외하는 것을 의미한다. 용어 ‘필수적으로 구성되는(consisting essentially of)’이란 조성물 또는 방법의 범위에 있어서, 기재된 성분 요소 또는 단계와 더불어 이의 기본적인 특성에 실질적으로 영향을 미치지 않는 성분 요소 또는 단계 등을 포함하는 것을 의미한다.The term 'comprising' of the present invention is used in the same way as 'containing' or 'featured' and does not exclude additional component elements or method steps not mentioned in the composition or method. . The term 'consisting of' means to exclude additional elements, steps or components, etc., unless otherwise noted. The term “consisting essentially of” means within the scope of the composition or method, including the component elements or steps described, as well as the component elements or steps that do not substantially affect its basic properties, and the like.
따라서, 본 발명은 당뇨 및 비만의 예방 또는 치료에 적합한 면역관용 수지상 세포를 제조하는 방법을 제공하며, 본 발명의 면역관용 수지상 세포의 접종시 당뇨병 및 비만에 대한 예방 또는 치료 효과를 얻을 수 있다. 이와 더불어 골수유래 인슐린 분비 세포와 병합 사용시, IRS-1의 세린 인산화를 감소시키고 IRS-1의 티로신 인산화를 증가시킴으로써 인슐린 감수성을 추가적으로 증가시켜, 당뇨병 및 비만의 예방 또는 치료용으로 유용하게 이용될 수 있다.Accordingly, the present invention provides a method for producing immune tolerant dendritic cells suitable for the prevention or treatment of diabetes and obesity, it is possible to obtain a prophylactic or therapeutic effect against diabetes and obesity when inoculating the immune tolerant dendritic cells of the present invention. In addition, when used in combination with bone marrow-derived insulin secreting cells, insulin sensitivity may be further increased by decreasing serine phosphorylation of IRS-1 and increasing tyrosine phosphorylation of IRS-1, which may be useful for the prevention or treatment of diabetes and obesity. have.
도 1은 췌장 β 세포를 3D 타원체 배양시 인슐린 분비 능력이 증가되는 것을 나타낸 것이다.1 shows that insulin secretion ability is increased in 3D ellipsoid culture of pancreatic β cells.
도 2a는 수지상세포가 성숙후 면역관용 수지상 세포로 유도되어 면역관용 수지상 세포(tDC)는 낮은 수준의 MHC II 발현을 보이는 것을 나타낸 것이다. Figure 2a shows that dendritic cells are induced into immune tolerant dendritic cells after maturation, so that immune tolerant dendritic cells (tDC) show low levels of MHC II expression.
도 2b는 웨스턴 블롯팅에 의해서 tDC가 3-dioxygenase (IDO) 면역 억제 분자를 발현함을 나타낸 것이다.  2b shows that tDC expresses 3-dioxygenase (IDO) immunosuppressive molecule by western blotting.
도 2c는 tDC가 낮은 IL-10, IL-12 및 TNF-α 분비를 보이는 데에 비해서 성숙 수지상 세포(mDC)는 높은 분비를 보이는 것을 나타낸 것이다.2c shows that mature dendritic cells (mDCs) show high secretion compared to tDCs showing low IL-10, IL-12 and TNF-α secretion.
도 3은 고농도 포도당(10mM) 농도로 자극할 때 IPCs 및 TK+IPCs는 인슐린의 생산이 증가함을 나타낸다. MSC를 대조군으로 사용하였다.3 shows that IPCs and TK + IPCs increase insulin production when stimulated with high glucose (10 mM) concentrations. MSC was used as a control.
도 4는 신규로 당뇨가 발병하는 마우스 모델에서 수지상 세포 백신(DC-Vac)을 처리한 경우 마우스의 당뇨의 발생이 예방되는 것을 나타낸 것이다. Figure 4 shows that the treatment of dendritic cell vaccine (DC-Vac) in the development of a mouse model of diabetes newly prevent the development of diabetes in the mouse.
도 5a 내지 도 5c는 수지상 세포 백신(DC-Vac)만 처리한 경우(도 5a), 수지상 세포 백신 및 엑센딘-4(DC-Vac + exendin)을 처리한 경우(도 5b), 수지상 세포 백신 및 골수 유래 인슐린 분비세포(DC-Vac + TK-IPCs)를 처리한 경우(도 5c)의 혈당 변화를 측정한 결과를 나타낸 것이다.5A to 5C show dendritic cell vaccines (DC-Vac) only (FIG. 5A), dendritic cell vaccines and exendin-4 (DC-Vac + exendin) (FIG. 5B). And it shows the result of measuring the blood glucose change when treated with bone marrow-derived insulin secreting cells (DC-Vac + TK-IPCs) (Fig. 5c).
도 6은 수지상 세포 백신(DC-Vac)만 처리한 경우(중간 패널), 수지상 세포 백신 및 골수유래 인슐린 분비세포(DC-Vac + TK-IPCs)를 처리한 경우(하부 패널), 아무것도 처리하지 않은 경우(상부 패널)의 간의 지방 축적의 변화를 현미경으로 관찰한 결과를 나타낸 것이다.Figure 6 is treated only with dendritic cell vaccine (DC-Vac) (middle panel), treated with dendritic cell vaccine and bone marrow-derived insulin secreting cells (DC-Vac + TK-IPCs) (lower panel) The result of observation under a microscope of the change of fat accumulation in the liver (upper panel) is shown.
도 7a 내지 도 7d는 수지상 세포 백신(DC-Vac), 수지상 세포 백신 및 골수유래 인슐린 분비세포(DC-Vac + TK-IPCs)를 처리한 경우, 마우스의 체지방량(도 7a), 마우스의 혈중 아디포넥틴(adiponectin) 농도(도 7b), 혈당 농도 (도 7c) 및 혈장의 인슐린 농도(도 7d)를 측정한 결과를 나타낸 것이다.7A-7D show the body fat mass of mice (FIG. 7A), the adiponectin in mice when treated with dendritic cell vaccine (DC-Vac), dendritic cell vaccine and bone marrow-derived insulin secreting cells (DC-Vac + TK-IPCs). (adiponectin) concentration (FIG. 7B), blood glucose concentration (FIG. 7C), and plasma insulin concentration (FIG. 7D) are measured.
도 8a 및 도 8b은 제2형 당뇨병의 비만 마우스 모델(ob/ob mouse)에서 수지상 세포 백신(DC-Vac), 수지상 세포 백신 및 골수유래 인슐린 분비세포(DC-Vac + TK-IPCs)를 처리한 경우, 비만 마우스의 혈중 포도당 농도(도 8a) 및 인슐린 감수성 검사 결과(도 8b)를 나타낸 것이다.8A and 8B show dendritic cell vaccine (DC-Vac), dendritic cell vaccine and bone marrow-derived insulin secreting cells (DC-Vac + TK-IPCs) in an obese mouse model of type 2 diabetes (ob / ob mouse) In one case, blood glucose levels (FIG. 8A) and insulin sensitivity test results (FIG. 8B) of obese mice are shown.
도 9a 내지 도 9c는 비만 마우스에 수지상 세포 백신(DC-Vac), 수지상 세포 백신 및 골수유래 인슐린 분비세포(DC-Vac + TK-IPCs)를 처리하고 6주 및 10주 후에 체중(도 9a), 혈중 포도당 농도(도 9b) 및 혈중 인슐린 농도(도 9c)를 측정한 결과를 나타낸 것이다.9A-9C show body weights 6 and 10 weeks after treatment of dendritic cell vaccine (DC-Vac), dendritic cell vaccine and bone marrow-derived insulin secreting cells (DC-Vac + TK-IPCs) in obese mice (FIG. 9A). , Blood glucose concentration (FIG. 9B) and blood insulin concentration (FIG. 9C) are measured.
도 10a 및 도 10b는 비만 마우스에 수지상 세포 백신(DC-Vac), 수지상 세포 백신 및 골수유래 인슐린 분비세포(DC-Vac + TK-IPCs)를 처리한 마우스에서 추출한 간세포에서 Ser307에서 IRS-1(insulin receptor substrate-1)의 인산화(인슐린 저항성의 증가) (도 10a) 및 IRS-1의 티로신 인산화(인슐린 저항성의 감소)(도 10b)를 웨스턴 블랏으로 확인한 결과를 나타낸 것이다.10A and 10B show IRS-1 in Ser307 in hepatocytes extracted from mice treated with dendritic cell vaccine (DC-Vac), dendritic cell vaccine and bone marrow-derived insulin secreting cells (DC-Vac + TK-IPCs) in obese mice. Phosphorylation of insulin receptor substrate-1) (increased insulin resistance) (FIG. 10A) and tyrosine phosphorylation of IRS-1 (reduced insulin resistance) (FIG. 10B) are shown by Western blot.
이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.However, the following examples are merely to illustrate the invention, but the content of the present invention is not limited to the following examples.
실험 방법Experiment method
1. TSPAN2-넉아웃 (TSPAN2-KO) RNAKT-15 세포주 생성1.Creation of TSPAN2-knockout (TSPAN2-EN) RNAKT-15 Cell Line
인간 췌장 β 세포주인 RNAKT-15(가천 의과 대학 당뇨병 연구소) 세포에서 유전자 가위(Crispr/Cas9)를 이용하여 TSPAN2 유전자를 영구제거하여 TSPAN2-KO RNAKT-15 세포주를 생성하였다.TSPAN2-KO RNAKT-15 cell line was generated by permanently removing the TSPAN2 gene using RNA scissors (Crispr / Cas9) from RNAKT-15 cells, a human pancreatic β cell line.
Crispr/Cas9 sequence: GGGGACTGGGGATCCCGCCGCCGGGCCGCAGC(서열번호 1)Crispr / Cas9 sequence: GGGGACTGGGGATCCCGCCGCCGGGCCGCAGC (SEQ ID NO: 1)
2. 세포 배양 및 인간 췌장 β 세포 배양물 제조 2. Cell Culture and Human Pancreatic β Cell Culture Preparation
상기에서 제조한 TSPAN2-KO RNAKT-15 세포주를 10% 우태아혈청(Thermo, Rockville, MD, USA), 1% 페니실린-스트렙토마이신, 10 mM 니코틴 아미드, 10μM 트로글리타존 및 16.7μM 황산아연이 첨가된 저포도당(5 mM) DMEM 배지에서 37℃ 및 5% CO 2조건으로 배양하였다. 그 다음 세포를 15 mL 튜브에 수확하고 13,000 rpm으로 3 분간 원심 분리하였고, 상등액을 제거하여, 새로운 배양 배지에 재현탁시켰다. 재현탁된 세포를 1×10 4 cells/ml의 농도로 초저부착 표면 96-웰 둥근 바닥 플레이트(Ultra-Low Attachment Surface 96-well)에 넣고 배양하였다. 그 다음 1,800 rpm에서 3분간 원심 분리하여 3차원(3D) 회전 타원체(spheroid)를 형성하고, β-세포 타원체 배양을 통해 인슐린 분비능력을 증가시켜 췌장세포 배양물을 제조하였다.The TSPAN2-KO RNAKT-15 cell line prepared above was prepared by adding 10% fetal bovine serum (Thermo, Rockville, MD, USA), 1% penicillin-streptomycin, 10 mM nicotinamide, 10 μM troglitazone, and 16.7 μM zinc sulfate. Cultured in glucose (5 mM) DMEM medium at 37 ° C. and 5% CO 2 conditions. Cells were then harvested in 15 mL tubes and centrifuged at 13,000 rpm for 3 minutes, the supernatant was removed and resuspended in fresh culture medium. Resuspended cells were incubated in ultra-low attachment surface 96-well at a concentration of 1 × 10 4 cells / ml. Then, centrifuged at 1,800 rpm for 3 minutes to form a three-dimensional (3D) spheroid (spheroid), and the pancreatic cell culture was prepared by increasing the insulin secretion ability through the β-cell spheroid culture.
3. 유세포 분석 3. Flow Cytometry
CD44, CD90, CD31, CD45 분자에 대한 FITC-표지된 단클론 항체, MHC-II에 대한 PE- 접합 단클론 항체 (Santa Cruz Biotechnology, Santa Cruz, CA)에 대한 정제된 단클론 항체를 사용하였다. 샘플을 FACSCalibur (BD Biosciences)상에서 분석하였다. FITC-labeled monoclonal antibodies against CD44, CD90, CD31, CD45 molecules, purified monoclonal antibodies against PE-conjugated monoclonal antibodies against MHC-II (Santa Cruz Biotechnology, Santa Cruz, Calif.). Samples were analyzed on FACSCalibur (BD Biosciences).
4. 인슐린 분비 분석 4. Insulin Secretion Assay
2D 평면과 3D 타원체로 배양된 RNAKT-15 세포에서 완충액 배양배지를 교체하여 인슐린분비를 측정하였다. 37℃에서 1시간 평형 후 세포를 1시간 동안 10mM 포도당 농도를 함유한 완충액과 함께 배양했다. 1시간 후, 상등액을 모으고 휴먼 인슐린 ELISA 키트(Thermo Fisher Scientific)를 사용하여 인슐린 함량을 측정하였다. Insulin secretion was measured by replacing the buffer culture medium in RNAKT-15 cells incubated with 2D plane and 3D ellipsoid. After 1 hour equilibration at 37 ° C., the cells were incubated with buffer containing 10 mM glucose concentration for 1 hour. After 1 hour, the supernatants were pooled and insulin content was measured using the Human Insulin ELISA Kit (Thermo Fisher Scientific).
5. 엑소좀 추출5. EXOsome Extraction
상기와 같이 제조한 3D 회전 타원체 배양시킨 RNAKT-15 세포 배양물로부터 엑소좀을 추출하였다. 먼저 세포 및 배양액을 튜브에 모은 후, 300xg의 속도로 10분간 원심분리하였다. 이를 통해 수득한 상등액을 50ml 원심분리 튜브에 옮기고 2000xg의 속도로 4℃에서 20 분간 원심분리하였다. Exosomes were extracted from the 3D spheroid cultured RNAKT-15 cell culture prepared as described above. First, the cells and culture were collected in a tube, and then centrifuged for 10 minutes at a speed of 300xg. The supernatant thus obtained was transferred to a 50 ml centrifuge tube and centrifuged at 4 ° C. for 20 minutes at a rate of 2000 × g.
분리된 상등액을 수득하여 초원심분리 로터에 적합한 폴리 알로머 튜브 또는 폴리카보네이트 병으로 옮긴 후, 10,000 xg의 속도로 4 ℃에서 30 분간 원심분리하고, 펠렛을 수득하였다. (이때, 스윙-버킷 로터의 경우, 펠렛은 튜브의 바닥에 있다. 고정 각도 로터의 경우 펠렛은 튜브의 바닥 근처에서 위를 향한 튜브 측면에 있다.). The separated supernatant was obtained and transferred to a polyalloy tube or polycarbonate bottle suitable for ultracentrifugation rotor, then centrifuged at 4 ° C. for 30 minutes at a rate of 10,000 × g, and pellets were obtained. (At this time, for swing-bucket rotors, the pellets are at the bottom of the tube. For fixed-angle rotors, the pellets are on the side of the tube facing up near the bottom of the tube).
그런 후, 100,000 xg의 속도로, 4℃에서 최소 70 분간 원심 분리한 후, 상등액을 완전히 제거하였다.The supernatant was then completely removed after centrifugation at 4 ° C. for at least 70 minutes at a rate of 100,000 × g.
그런 후 1 mL 인산염완충식염수(phosphate buffer saline, PBS)의 각 튜브에 펠렛을 재부유시켰다. 모든 튜브로부터 재부유된 펠렛을 모은 후 이에 PBS를 넣어 튜브를 완전히 채우고 100,000 xg, 4℃에서 70분간 원심 분리하였다. 그 후 모든 상등액을 제거하였다. 상등액을 제거하여 수득한 펠렛(엑소좀)을 재부유하거나, 농축하여 사용하였다.The pellet was then resuspended in each tube of 1 mL phosphate buffer saline (PBS). Resuspended pellets were collected from all the tubes, and then PBS was added thereto to completely fill the tubes and centrifuged at 100,000 xg and 4 ° C for 70 minutes. Then all supernatant was removed. The pellet (exosome) obtained by removing the supernatant was resuspended or concentrated.
재부유하는 경우, 50 내지 100μl의 PBS 또는 TBS를 첨가하여 재부유시켰다. When resuspended, resuspended by adding 50-100 μl of PBS or TBS.
엑소좀을 농축하는 경우, TLA-100.3 로터와 상응하는 두꺼운 벽의 폴리카보네이트 튜브를 사용하여 탁상형 초원심 분리기에서 상기에서 수득한 상등액을 100,000 xg의 속도로, 4℃에서 1시간 동안 원심 분리하였다. 눈에 보이는 펠렛 위의 PBS 대부분을 제거하고 20 내지 50μl의 신선한 PBS에 엑소좀을 재부유시켰다.When concentrating the exosomes, the supernatant obtained above was centrifuged at 4 ° C. for 1 hour at a rate of 100,000 × g using a TLA-100.3 rotor and a corresponding thick walled polycarbonate tube. . Most of the PBS on the visible pellets was removed and exosomes were resuspended in 20-50 μl of fresh PBS.
6. 수지상 세포의 배양6. Culture of Dendritic Cells
암컷 NOD 마우스(5주령, ㈜샘타코바이오코리아)의 경골과 대퇴골에서 수득한 골수 유래 세포를 수득하였다. 그다음 골수 유래 세포에서 미성숙 수지상 세포(immature dendritic cells(DC)를 분리하여, RPMI1640 배지에 10% 우태아혈청(Fetal Bovine Serum), 1% 페니실린/스트렙토마이신, rmIL-4 및 rmGM-CSF 를 첨가하여 배양하였다. 그 다음 배양 6-9일째에 엑소좀(30ul)을 넣고 24시간 동안 배양하였다. 또한, LPS(lipopolysaccharide)(투여량), 항원 마이오신 (Myosin, From Porcine heart; Sigma)을 투여하여 배양하였다. 그 후, 성숙 수지상 세포를 수득하였으며, 면역관용 수지상 세포는 10일째에 metformin 과 vitamin D를 처리하여 수득하였다.Bone marrow-derived cells obtained from tibia and femur of female NOD mice (5 weeks old, Samtacobio Korea Co., Ltd.) were obtained. Immature dendritic cells (DCs) were then isolated from bone marrow-derived cells and 10% Fetal Bovine Serum, 1% penicillin / streptomycin, rmIL-4 and rmGM-CSF were added to RPMI1640 medium. Next, exosomes (30 ul) were added and cultured for 24 hours on days 6-9, and administration of LPS (lipopolysaccharide) and antigen myosin (Myosin, From Porcine heart; Sigma) were performed. Thereafter, mature dendritic cells were obtained, and immunotolerant dendritic cells were obtained by treatment of metformin and vitamin D on day 10.
7. 골수 중간엽줄기세포 인슐린 분비 세포 유도7. Induced bone marrow mesenchymal stem cells insulin secreting cells
골수로부터 중간엽줄기세포(bone marrow derived mesenchyma stem cells; BD-MSC)를 분리하기 위해 암컷 비당뇨병성 C57BL/6 mouse의 bone marrow에서 얻어낸 골수세포를 alpha-MEM(15% fbs) media에서 8~12일간 배양을 한다. 3일마다 media 교체를 하고 이후 5% FBS high DMEM 15일 배양을 진행하여 MSC를 분리하였다. 다음 단계에서 BD-MSC를 5% FBS, 20μmol/L 니코틴 아미드를 함유한 Low DMEM 배지에서 7일간 배양하고 마지막 3단계에서 10 μmol/L의 Exclusive-4를 첨가한 Low DMEM 배지에서 7일간 더 배양하여 인슐린 분비 β 세포(insulin producing cells; IPCs)를 유도하였다. 세포에서 유전자 가위(Crispr/Cas9)를 이용하여 TSPAN2 유전자를 영구제거하여 TSPAN2-KO IPCs(TK-IPCs) 세포주를 생성하였다. 3x10 6개의 TK-IPCs를 췌장에 이식하였다.To separate bone marrow derived mesenchyma stem cells (BD-MSCs) from bone marrow, bone marrow cells obtained from bone marrow of female non-diabetic C57BL / 6 mice were treated with 8 ~ 10 media in alpha-MEM (15% fbs) media. Incubate for 12 days. Media change every 3 days and then MSC was isolated by 15 days of 5% FBS high DMEM. In the next step, BD-MSC was incubated for 7 days in Low DMEM medium containing 5% FBS, 20 μmol / L nicotinamide, and in the last step for another 7 days in Low DMEM medium with 10 μmol / L Exclusive-4. Insulin secreting β cells (IPCs) were induced. TSPAN2-KO IPCs (TK-IPCs) cell line was generated by permanent removal of the TSPAN2 gene using gene shears (Crispr / Cas9) in the cells. 3 × 10 6 TK-IPCs were implanted into the pancreas.
8. 마우스 모델에 수지상 세포 백신 투여방법8. How to administer dendritic cell vaccine to mouse model
13주령 암컷 비당뇨병성 C57Bl/6J 마우스와 당뇨병 마우스를 이용하여 실험을 실시하였다. 당뇨병성 마우스는 주당 1회 뇨당을 측정하였고, 3회 연속 양성 수치인 경우를 당뇨병으로 정의하였으며, 혈당 수치가 >250mg/dl 인 것을 확인하였다. 당뇨병성 마우스를 두 그룹으로 나누어 한 그룹에 13mg의 인슐린이 포함되어 있으며, 지속적으로 0.1단위/임플란트 (LinShin Canada, Inc.) 이하로 방출되는 인슐린 펠릿을 피하에 이식한 후, 40일 동안 혈당 수치는 <250mg/dl로 유지시켰다. 그 다음 인슐린 펠릿을 제거하였다. 그 다음, 비당뇨병성 마우스와 당뇨병성 마우스 각각에 상기 실험방법에서 제조한 TSPAN2 넉아웃 β세포 타원체의 용액으로부터 추출된 엑소좀 펄스화된 수지상 세포(DC-Vac)를 1.5×10 6/ml의 농도로, 0일 및 14 일에 피하주사 하였다. 그 다음, 0일, 1일, 2일, 7일, 8일 및 9일째에 50ng의 엑센딘-4 (Bachem)를 복강내(i.p.)로 주입하였다. 당뇨병의 후속 발달은 혈당 수치를 주당 2 ~3회 측정하여 관찰하였다. 이는 최소 2개월 내지 4개월 동안 추적하여 모니터링하였다. 비만 및 제2형 당뇨병 모델도 상기와 같이 실험하였으며, 수지상 세포 백신(DC-Vac)을 1.5×10 6개/ml의 농도로 0일 및 14일에 피하 주사하였다.Experiments were performed using 13-week-old female non-diabetic C57Bl / 6J mice and diabetic mice. Diabetic mice were measured once per week urine glucose, three consecutive positive values were defined as diabetes, it was confirmed that the blood glucose level is> 250mg / dl. Diabetic mice were divided into two groups, one group containing 13 mg of insulin, and blood glucose levels for 40 days after subcutaneous transplantation of insulin pellets continuously released at 0.1 units / implant (LinShin Canada, Inc.) Was maintained at <250 mg / dl. The insulin pellets were then removed. Next, 1.5 × 10 6 / ml of exosome pulsed dendritic cells (DC-Vac) extracted from a solution of TSPAN2 knockout β-cell ellipsoid prepared in the above-described method in each of the non-diabetic and diabetic mice were obtained. At concentrations, subcutaneous injections were made on days 0 and 14. Then 50 ng of exendin-4 (Bachem) was injected intraperitoneally (ip) on days 0, 1, 2, 7, 8 and 9. Subsequent development of diabetes was observed by measuring blood glucose levels 2-3 times per week. This was followed and monitored for a minimum of 2-4 months. Obesity and type 2 diabetes models were also tested as above, and dendritic cell vaccine (DC-Vac) was injected subcutaneously on days 0 and 14 at a concentration of 1.5 × 10 6 cells / ml.
9. 비만 마우스 모델의 신진 대사 측정9. Metabolic Measurements in Obese Mouse Models
상이한 유전형(C57BL/6)을 가진 수컷 마우스(5주령, ㈜샘타코바이오코리아)상이한 유전형을 가진 수컷 쥐를 배리어-프리 시설에 넣고 12주 동안 추적관찰하였다. 정상식이군(normal diet, ND)과 고지방식이 군(high fat diet, HFD)으로 군당 6마리씩 나누어 사육하였다. 자유롭게 정상(ND)군의 사료는 엔비고사(Envigo, Alconbury Huntingdon, UK)의 2018S 사료를, 고지방식이(HFD)군의 사료는 60%의 지방을 함유하는 Research Diets사(New Brunswick, NJ, USA)의 D12492 사료를 사용하였다. ELISA법을 이용 혈청 아디포넥틴의 측정을 위해 폴리클로날 토끼 항마우스 ACRP30/아디포넥틴 항체는 invitrogen으로부터 구매하였다. Male mice with different genotypes (C57BL / 6) (5 weeks old, Samta Cobio Korea Co., Ltd.) Male mice with different genotypes were placed in a barrier-free facility and followed for 12 weeks. The normal diet (ND) and the high fat diet (HFD) were divided into six groups per group. For free (ND) feed, Envigo, Alconbury Huntingdon, UK, 2018S feed, and high-fat feed (HFD) feed contain 60% fat, Research Diets (New Brunswick, NJ, USA D12492 feed. Polyclonal rabbit anti-mouse ACRP30 / adiponectin antibodies were purchased from invitrogen for the measurement of serum adiponectin using the ELISA method.
10. 웨스턴 블랏10. Western Blot
상기에서 제조한 RNAKT-15 세포 배양물을 용해한 후, 이를 로딩 완충액과 혼합하고 SDS-PAGE로 분리하였다. 이어서 단백질을 니트로 셀룰로오스막(nitrocellulose membrane)으로 옮겼다. 막 상에 비특이적 결합 부위는 실온에서 90분 동안 5 % 비지방 분유(skim milk)를 사용하여 차단하였다. 막을 섭씨 4℃에서 1차 항체인 anti-insulin-receptor-b(Santa Cruz 구매), anti-phosphotyrosine(Santa Cruz 구매), anti-IRS-1(Upstate Biotechnology 구매 및 anti-IRS-1-pSer307(Upstate Biotechnology 구매)와 함께 항온 배양한 후, 실온에서 1시간 동안 2차 항체를 처리하였다. 막밴드에 있는 단백질 밴드는 Santa Cruz Biotechnology Inc. 의 ECL Plus Blotting Detection System을 사용하여 시각화하였다.After lysing the RNAKT-15 cell culture prepared above, it was mixed with loading buffer and separated by SDS-PAGE. The protein was then transferred to a nitrocellulose membrane. Nonspecific binding sites on the membrane were blocked using 5% skim milk for 90 minutes at room temperature. Anti-insulin-receptor-b (purchases Santa Cruz), anti-phosphotyrosine (purchase Santa Cruz), anti-IRS-1 (purchase Upstate Biotechnology and anti-IRS-1-pSer307 (Upstate), the primary antibodies at 4 ° C Incubated with Biotechnology), and then treated with secondary antibody for 1 hour at room temperature Protein bands in the membrane bands were visualized using Santa Cruz Biotechnology Inc.'s ECL Plus Blotting Detection System.
실시예 1: 제1형 당뇨병에 수지상 세포 백신이 미치는 영향Example 1 Effect of Dendritic Cell Vaccine on Type 1 Diabetes
1-1. 3D 타원체 배양이 RNAKT-15 세포의 인슐린 분비능력에 미치는 영향1-1. Effect of 3D Ellipsoid Culture on Insulin Secretion Capacity of RNAKT-15 Cells
TSPAN2이 넉아웃 (TSPAN2-KO)된 RNAKT-15 세포주에 대해서 상기에 기재된 방법에 따라서 3차원 타원체 배양을 통해서 인슐린 분비능력이 증가되도록 하였다. 그 후 대조군으로써 3차원 배양을 제외한 다른 조건은 동일하게 한 세포주를 대상으로 하여 각각 인슐린 분비량을 측정하여 비교하였다.TGF2 knockout (TSPAN2-KO) RNAKT-15 cell line was allowed to increase insulin secretion ability through three-dimensional ellipsoidal culture according to the method described above. Then, as a control, other conditions except three-dimensional culture were compared by measuring the insulin secretion in each of the same cell line.
그 결과 도 1에 나타난 바와 같이, 대조군(2D 평면 배양)의 경우에 비해서 3D 타원체 배양한 경우가 인슐린 분비량이 2배 이상으로 크게 증가하는 것을 확인할 수 있었다.As a result, as shown in Figure 1, it was confirmed that the amount of insulin secretion increased more than two times in the case of 3D ellipsoid culture compared to the control (2D planar culture).
1-2. 면역관용 수지상 세포의 특성 분석1-2. Characterization of Dendritic Cells for Immunity
본 발명의 방법에 따라서 제조한 면역관용 수지상 세포의 발현 및 분자적 수준에서의 조절 특성을 분석하고자 MHC II, IDO 또는 주요 사이토카인의 발현/분비를 각각 유세포 분석이나 웨스턴 블롯 등으로 확인하였다.Expression and secretion of MHC II, IDO or major cytokines were confirmed by flow cytometry or Western blot, respectively, in order to analyze the expression and molecular characterization of immunotolerant dendritic cells prepared according to the method of the present invention.
그 결과, 도 2a 내지 도 2c에서 보듯이, 수지상세포가 성숙 후 면역관용 수지상 세포(tDC)로 유도되어, 낮은 수준의 MHC II 발현을 나타내고 (도 2a), tDC가 3-dioxygenase (IDO) 면역 억제 분자를 발현함으로써 수지상세포가 성숙한 이후 면역관용 수지상 세포로 유도되어 면역 억제 효과가 있음을 나타내었다 (도 2b). 또한, 면역관용 수지상 세포(tDC)는 IL-10, IL-12 및 TNF-α가 낮은 수준으로 분비되는데 비해서 성숙 수지상 세포(mDC)는 IL-10, IL-12 및 TNF-α가 높은 수준으로 분비되는 것을 확인하여 IL-10, IL-12 및 TNF-α 등의 조절을 통해 면역관용 수지상세포(tDC)가 숙주 방어 및 면역 항상성에서 매우 중요한 면역 조절 역할을 함을 알 수 있었다(도 2c)As a result, as shown in Figures 2a to 2c, dendritic cells are induced into immune tolerant dendritic cells (tDCs) after maturation, showing low levels of MHC II expression (Figure 2a), where tDCs are 3-dioxygenase (IDO) immunity. By expressing the inhibitory molecules, dendritic cells were induced into the immune tolerant dendritic cells after maturation, indicating that there is an immunosuppressive effect (FIG. In addition, immune tolerant dendritic cells (tDCs) secrete low levels of IL-10, IL-12 and TNF-α, whereas mature dendritic cells (mDCs) have high levels of IL-10, IL-12 and TNF-α. It was confirmed that secretion of immune tolerant dendritic cells (tDC) through the regulation of IL-10, IL-12 and TNF-α plays a very important role in immune defense and host defense (Fig. 2c)
1-3. 고농도 포도당 자극에 대한 인슐린 생성능의 비교1-3. Comparison of Insulin Production Capacity for High Glucose Stimulation
본 발명에서 골수 유래 중간엽줄기세포를 대조군으로 하여 인슐린 분비세포(IPCs), 테트라스파닌-2 유전자를 넉아웃 (knock-out)시킨 IPCs(TK-IPCS)에 각각 고농도의 포도당을 처리하는 경우에 인슐린 분비 수준을 확인하였다In the present invention, when bone marrow-derived mesenchymal stem cells are treated as a control group, high concentrations of glucose are administered to IPCs (TK-IPCS) knocked-out insulin secreting cells (IPCs) and tetraspanin-2 gene, respectively. Insulin secretion level was confirmed
그 결과, 도 3에서 보듯이, 고농도 포도당(10mM) 농도로 자극할 때 IPCs 및 TK+IPCs는 인슐린의 생산이 증가되는 것에 비해서 음성대조군인 중간엽 줄기세포(MSC)의 경우 인슐린 분비가 거의 측정되지 않았다. 이와 같은 결과는 MSC에서 IPCs로 분화되어 인슐린 분비가 증가되었음을 나타내고, 특히 TK+IPCs는 고농도의 혈당 상태에서도 높은 인슐린 분비능을 유지하는 것을 확인할 수 있었다.As a result, as shown in Figure 3, when stimulated with a high concentration of glucose (10mM) concentrations of IPCs and TK + IPCs compared with the increase in insulin production, insulin secretion is almost measured in the mesenchymal stem cells (MSC) negative control group It wasn't. These results indicate that insulin secretion was increased by differentiation of IPCs from MSCs, and in particular, TK + IPCs were confirmed to maintain high insulin secretion ability even at high blood glucose levels.
실시예 2: 제1형 당뇨병에 수지상 세포 백신이 미치는 영향Example 2: Effect of Dendritic Cell Vaccine on Type 1 Diabetes
2-1. 마우스의 제1형 당뇨병 발병율에 미치는 영향2-1. Effect on Type 1 Diabetes Incidence in Mice
제1형 당뇨병 모델이 되는 당뇨병성 비-비만(NOD)마우스를 대상으로 하여 본 발명의 방법에 따라서 제조한 수지상 세포 백신(DC-Vac)를 투여한 암컷 마우스와 투여하지 않은 암컷 마우스의 당뇨병의 발병비율(percentage diabetic)을 매주 측정하였다.Diabetes Mellitus of Female Mice Treated with Dendritic Cell Vaccine (DC-Vac) Prepared According to the Method of the Present Invention in Diabetic Non-obese (NOD) Mice That Are Type 1 Diabetes Models Percentage diabetic was measured weekly.
당뇨병의 발병은 혈당을 250mg/dl 이상을 기준으로 하여 평가하였다.The onset of diabetes was evaluated based on blood glucose above 250 mg / dl.
그 결과 도 4에 나타난 바와 같이, 대조군(No injection)의 경우 16주령을 시작으로 하여 전체 군 중 당뇨병 발병비율이 점차 증가하는 반면, 수지상 세포 백신 (DC-Vac) 1.5 × 10 6 세포를 13주령의 암컷 비당뇨병성 마우스에 0일, 14일에 투여한 군의 경우는 당뇨병이 발병하지 않았다. As a result, as shown in FIG. 4, in the control group (No injection), the incidence rate of diabetes among the whole group gradually increased, starting from 16 weeks of age, while the dendritic cell vaccine (DC-Vac) 1.5 × 10 6 cells were 13 weeks of age. Diabetes did not develop in the group administered to female non-diabetic mice at day 0 and day 14.
이와 같은 결과는 소량의 DC-Vac을 당뇨병이 생기기 전에 투여시 당뇨병의 발생을 억제할 수 있음을 보여준다.These results show that administration of a small amount of DC-Vac before the onset of diabetes can suppress the development of diabetes.
2-2. 혈당량에 미치는 영향2-2. Effect on blood glucose
이와 같은 결과를 확인하기 위하여 상기와 같이 수지상 세포 백신(DC-Vac)을 투여 또는 미투여한 마우스에 대해서 혈당량에 미치는 영향을 확인하였다.In order to confirm these results, the effect on the blood glucose level was confirmed in the mice administered or not administered the dendritic cell vaccine (DC-Vac) as described above.
13주령 당뇨병 암컷 NOD 마우스(각 군에 대해서 4마리씩)에게 0일 및 14일, 1일 및 14일에 1.5x10 6 수지상 세포 백신(DC-Vac) 만을 투여한 경우(도 5a), DC-Vac + 엑센딘-4(exendin-4)을 투여한 경우(도 5b), DC-Vac + TSPAN2 knockout IPS(TK-IPCs)을 투여한 경우(도 5c)로 나누어 실험하였다. TK-IPCs의 경우 3x10 6 세포의 TK-IPCs를 췌장에 이식하였다. 마우스의 피하에 인슐린 펌프(micro-osmotic pump, 0.2 U/day)를 삽입한 후, 21일 째에 인슐린 펌프를 제거하였다. 그 후 매일 정맥혈로부터 혈당 수치를 측정하였다. When 13-week-old diabetic female NOD mice (four for each group) received only 1.5 × 10 6 dendritic cell vaccine (DC-Vac) at days 0 and 14, 1 and 14 (FIG. 5A), DC-Vac Experiments were performed by dividing with + exendin-4 (FIG. 5B) and with DC-Vac + TSPAN2 knockout IPS (TK-IPCs) (FIG. 5C). For TK-IPCs TK-IPCs of 3x10 6 cells were transplanted into the pancreas. Insulin pump (micro-osmotic pump, 0.2 U / day) was inserted in the subcutaneous of the mouse, the insulin pump was removed on day 21. Thereafter, blood glucose levels were measured from venous blood every day.
그 결과, 도 5a 내지 도 5c에서 보듯이 인슐린 투여를 중단한 후에도 DC-Vac만을 투여하는 경우 3/4이 정상 혈당이 유지되었고, DC-Vac + 엑센딘의 경우 모두 정상 혈당이 유지되었고, DC-Vac + TK-IPCs의 경우 모두 혈당이 정상 마우스에 근접하게 유지되었다. 이와 같은 결과는 본 발명의 수지상 세포 백신에 대해서 다른 당뇨 치료제와 병용하는 경우에 더욱더 우수한 효과를 발휘할 수 있음을 나타낸다.As a result, as shown in FIGS. 5A to 5C, 3/4 of normal blood glucose levels were maintained even when DC-Vac alone was administered, and normal blood sugar levels were maintained in case of DC-Vac + exendin. In the case of -Vac + TK-IPCs, blood glucose remained close to normal mice. These results indicate that the dendritic cell vaccine of the present invention can exert even better effects when used in combination with other diabetes therapeutics.
실시예Example 3: 비만에 수지상 세포 백신이 미치는 영향 3: Effect of Dendritic Cell Vaccine on Obesity
3-1. 지방 조직에 미치는 영향3-1. Effect on adipose tissue
고지방식이로 비만이 유도된 13주령 수컷 마우스에 1.5x10 6/mL 수지상 세포 백신 (DC-Vac)만을 투여한 경우, DC-Vac + TK-IPCs를 투여하였다. 대조군의 경우 아무런 주입도 하지 않았다. 8주 후에 마우스를 희생시켜 지방 조직을 적출하였으며, 적출된 조직을 현미경을 이용하여 비만으로 인한 간조직의 지질 침착 정도를 확인하였다 (H&E 염색 (X400 배율))13-week-old male mice induced with high-fat obesity were administered DC-Vac + TK-IPCs when only 1.5x10 6 / mL dendritic cell vaccine (DC-Vac) was administered. No infusion was done in the control group. After 8 weeks, the mice were sacrificed and the adipose tissue was extracted. The extracted tissue was examined under a microscope to determine the degree of lipid deposition in liver tissue due to obesity (H & E staining (X400 magnification)).
그 결과 도 6에 나타난 바와 같이, 대조군 (No injection)에 비해 수지상 세포 백신을 투여한 군의 경우 세포의 지방 함유도가 더 작음을 알 수 있었으며, DC-Vac + TK-IPCs을 투여한 경우 더욱더 지방 함유도가 작게되어 정상에 가까운 것을 확인할 수 있었다.As a result, as shown in Figure 6, the group containing the dendritic cell vaccine compared to the control group (No injection) was found to have a lower fat content of the cell, even more when the DC-Vac + TK-IPCs administration It was confirmed that the fat content was small and close to normal.
3-2. 체지방 및 3-2. Body fat and 아디포넥틴Adiponectin 함량에 미치는 영향 Effect on content
13주령 수컷 마우스(n=8)에 DC-Vac만을 투여한 경우, DC-Vac + TK-IPCs를 투여한 경우에서 투여 4주 후에 마우스의 체지방량, 혈중 아디포넥틴, 혈당, 혈장 인슐린 농도를 측정하였다. When only DC-Vac was administered to 13-week-old male mice (n = 8), the body fat mass, blood adiponectin, blood glucose, and plasma insulin concentrations of the mice were measured 4 weeks after the administration of DC-Vac + TK-IPCs.
각각의 마우스의 체지방을 결정하기 위해 Bruker minispec Body Composition Analyzer을 수행하였다. 그 결과 도 7a에 나타난 바와 같이, 체지방은 투여하지 않은 대조군(No injection)에 비해 DC-Vac 투여군에서 감소하고, DC-Vac + TK-IPCs 투여군에서 더욱더 감소하는 것으로 나타났다.Bruker minispec Body Composition Analyzer was performed to determine the body fat of each mouse. As a result, as shown in FIG. 7A, body fat was decreased in the DC-Vac-administered group and further decreased in the DC-Vac + TK-IPCs-administered group compared to the non-administered control group (No injection).
또한, 마우스에서 혈액을 채취한 다음 원심분리방법으로 혈청을 분리하여 ELISA 법으로 혈청 내의 아디포넥틴(adiponectin)의 함량을 측정하였다. 아디포넥틴은 에너지 대사, 염증 및 세포 증식과 같은 다양한 과정에서 보호 활성을 나타낸다, 따라서, 아디포넥틴은 비만 및 비만 관련 질환의 예방 및/또는 치료를 위한 중요한 역할을 한다. 그 결과, 도 7b에서 보듯이 대조군에 비해 DC-Vac 투여군에서 증가하고, DC-Vac + TK-IPCs 투여군에서 더욱더 혈중 아디포넥틴 함량이 더 높아지는 것으로 나타났다. In addition, blood was collected from the mice, and serum was separated by centrifugation, and the content of adiponectin in the serum was measured by ELISA. Adiponectin shows protective activity in various processes such as energy metabolism, inflammation and cell proliferation, therefore, adiponectin plays an important role for the prevention and / or treatment of obesity and obesity related diseases. As a result, as shown in Figure 7b compared with the control group was increased in the DC-Vac administration group, DC-Vac + TK-IPCs administration group was found to be higher blood adiponectin content.
또한, 혈당 농도 (도 7c)과 혈장의 인슐린 농도(도 7d)는 각각 혈당 및 인슐린 농도를 측정하는 키트를 사용하여 측정하였으며, 혈당 농도 및 인슐린 농도 모두 대조군에 비해 DC-Vac 투여군에서 감소하고, DC-Vac + TK-IPCs 투여군에서 더욱더 혈중 함량이 더 낮아지는 것으로 나타났다.In addition, blood glucose levels (FIG. 7c) and plasma insulin levels (FIG. 7d) were measured using a kit for measuring blood glucose and insulin concentrations, respectively, and blood glucose levels and insulin concentrations were decreased in the DC-Vac-administered group compared to the control group. In the DC-Vac + TK-IPCs administration group, the blood content was found to be lower.
이를 통해, 본 발명의 수지상 세포 백신 DC-Vac 및 이의 병용 투여 (DC-Vac + TK-IPCs)이 우수한 비만 개선 효과를 갖는 것을 확인할 수 있었다.Through this, it was confirmed that the dendritic cell vaccine DC-Vac of the present invention and its concomitant administration (DC-Vac + TK-IPCs) had an excellent obesity improving effect.
실시예 4: 제2형 당뇨병에 세포 백신이 미치는 영향Example 4 Effect of Cell Vaccine on Type 2 Diabetes
4-1. 인슐린 감수성 및 내당능에 미치는 영향4-1. Effect on insulin sensitivity and glucose tolerance
5주령 마우스를 정상식이군(normal diet, ND)과 고지방식이군(high fat diet, HFD)으로 군당 8마리씩 나누어 사육하였다. 사육 0일에 에 1.5 × 10 6 DC-Vac 백신를 투여하고 IPCs는 1일에 이식하고, 식이-유발성 비만마우스의 인슐린 감수성(도 8a) 및 내당능(도 8b)을 측정하였다.Five-week-old mice were reared in groups of 8 per group in the normal diet (ND) and high fat diet (HFD) groups. On day 0 of breeding, 1.5 × 10 6 DC-Vac vaccine was administered and IPCs were transplanted on day 1, and insulin sensitivity (FIG. 8A) and glucose tolerance (FIG. 8B) of diet-induced obese mice were measured.
이를 위하여 고지방식이군(HFD) (60 kcal% fat) 및 정상식이군으로서 표준 chow 식이군(18 kcal% fat)에서 경구 포도당 내성 검사 및 인슐린 내성 검사를 수행하였다. 포도당(체중의 2g kg -1)은 경구 투여하였다. 인슐린 (체중의 0.5U kg - 1)은 복강내(IP) 주사로 투여하였다. 글루코스 수준은 테일 블리드법에 의해 검사전 30, 검사 후 30, 60, 90 및 120 분에서 모니터링하였다. For this purpose, oral glucose tolerance test and insulin resistance test were performed in the high-fat diet group (HFD) (60 kcal% fat) and the normal chow diet group (18 kcal% fat). Glucose (2 g kg -1 in body weight) was administered orally. Insulin (0.5 U kg - 1 body weight) was administered by intraperitoneal (IP) injection. Glucose levels were monitored at 30, 60, 90 and 120 minutes before the test by the tail bleed method.
그 결과 도 8a에서 보듯이 인슐린 투여 후 혈당량을 측정한 결과 비만 마우스 대조군(Obese-no injection)에 비하여 수지상 세포 백신 투여군(Ob/Ob Dc-Vac)의 경우 혈당이 혈액에서 빨리 제거되는 것으로 나타났으며, DC-Vac 및 TK-IPCs를 병용하여 투여한 군에서는 정상 마우스 수준(Lean-no injection)으로 혈당이 변화됨을 확인할 수 있었다.As a result, as shown in FIG. 8A, blood glucose levels were measured after insulin administration. As a result, blood glucose was rapidly removed from blood in the dendritic cell vaccine-administered group (Ob / Ob Dc-Vac) compared to the obese mouse control (Obese-no injection). In addition, in the group administered with DC-Vac and TK-IPCs, the blood glucose level was changed to normal mouse level (Lean-no injection).
또한, 도 8b에서 보듯이, 포도당 투여 후 시간에 따른 혈당량의 변화를 측정한 결과 비만 마우스 대조군의 경우 90분까지는 혈당량이 감소하지 않으며, 90분 이후에 감소하는 반면, 수지상 세포 백신 투여군(Ob/Ob Dc-Vac)의 경우의 증가된 혈당량이 30분 이후부터는 서서히 감소하는 것으로 나타났으며, DC-Vac 및 TK-IPCs를 병용하여 투여한 군에서는 정상 마우스 수준(Lean-no injection)과 유사하게 혈당이 조절되는 것을 확인할 수 있었다.In addition, as shown in Figure 8b, after measuring the change in blood glucose with time after administration of glucose, in the obese mouse control group, the blood glucose level did not decrease until 90 minutes, whereas after 90 minutes, the dendritic cell vaccine administration group (Ob / In the case of Ob Dc-Vac), the increased blood glucose level gradually decreased after 30 minutes, and in the group administered with DC-Vac and TK-IPCs, similar to the normal mouse level (Lean-no injection) It was confirmed that blood sugar is controlled.
4-2. 체중, 혈당 및 혈장 인슐린 농도에 미치는 영향4-2. Effect on body weight, blood sugar and plasma insulin concentration
본 발명의 수지상 세포 백신 및 이에 TK-IPCs를 병용하여 투여하는 경우 체중, 혈당 및 혈장 인슐린 농도에 미치는 영향을 확인하기 위하여, 고지방식이를 통해 비만이 유도된 마우스에 대해서 각각의 투여방법에 따라서 투여하였다. 투여 6주 후와 10주 후에 6시간 동안 음식을 금식하였다. 그 다음 마우스의 체중을 측정하였고, 혈당과 혈장 인슐린 농도를 각각 측정하였다. In order to determine the effect of the dendritic cell vaccine and the TK-IPCs in combination with the present invention on body weight, blood glucose and plasma insulin concentration, according to the respective administration method for obesity-induced mice through a high-fat diet Administered. The foods were fasted for 6 hours after and 6 weeks after dosing. The mice were then weighed and blood glucose and plasma insulin concentrations were measured respectively.
그 결과, 도 9a 내지 도 9c에서 보듯이, 체중 (도 9a), 혈당(도 9b), 혈장 인슐린 (도 9c) 대조군에 비해 DC-Vac 투여군에서 감소하고, DC-Vac + TK-IPCs 투여군에서 더욱 더 낮아지는 것으로 나타났다.As a result, as shown in Figs. 9a to 9c, body weight (Fig. 9a), blood sugar (Fig. 9b), plasma insulin (Fig. 9c) compared to the DC-Vac administration group, compared to the control group, DC-Vac + TK-IPCs administration group It was found to be even lower.
실시예 5: 인슐린 신호에 수지상 세포 백신이 미치는 영향Example 5: Effect of Dendritic Cell Vaccines on Insulin Signaling
5-1. IRS-1 인산화에 미치는 영향5-1. Impact on IRS-1 Phosphorylation
본 발명의 수지상 세포 백신이 생체내의 인슐린 신호 전달에 미치는 영향을 확인하기 위하여 다음과 같이 수행하였다. 비만 마우스에 수지상 세포 백신(DC-Vac)을 투여한 다음, 마우스를 희생시켜 간 조직을 적출하였다. 그 다음 당업계의 통상적인 방법으로 간 조직에서 간세포를 추출하였다. 그 다음, 10ng/ml TNF-α를 1시간 동안 처리한 후, 세포를 수득하여 단백질을 추출하였다. 그 다음 상기 실험방법에 따른 웨스턴 블랏 방법으로 인슐린 저항성을 알아보기 위해 Ser307에서의 IRS-1(insulin receptor substrate-1)의 인산화를 분석하였다.To determine the effect of the dendritic cell vaccine of the present invention on insulin signal transmission in vivo, it was performed as follows. Obese mice were given a dendritic cell vaccine (DC-Vac), and the mice were sacrificed to remove liver tissue. Hepatocytes were then extracted from liver tissue by conventional methods in the art. Then, 10 ng / ml TNF-α was treated for 1 hour, and then cells were obtained to extract the protein. Then, the phosphorylation of IRS-1 (insulin receptor substrate-1) in Ser307 was analyzed to determine insulin resistance by Western blot method according to the experimental method.
그 결과 도 10a에 나타난 바와 같이, 대조군에 비해 TNF-α를 처리한 경우에 Ser307에서의 IRS-1의 인산화(IRS-1 pSer307)가 증가하는 것으로 나타났으나, Ser307에서의 IRS-1의 인산화는 TNF-α와 수지상 세포 백신(TNF-α+DC-Vac)를 처리한 경우에 감소하고, TNF-α+DC-Vac+TK-IPCs 처리한 경우는 더욱 더 감소하는 것으로 나타났다. 이는 DC-Vac과 TK-IPCs의 처리가 인슐린 저항성을 감소시키는 것을 보여준다.As a result, as shown in Figure 10a, the TRSF-α treatment increased the phosphorylation of IRS-1 (IRS-1 pSer307 ) in Ser307 compared to the control group, but the phosphorylation of IRS-1 in Ser307 Was decreased when treated with TNF-α and dendritic cell vaccine (TNF-α + DC-Vac) and further decreased with TNF-α + DC-Vac + TK-IPCs. This shows that treatment of DC-Vac and TK-IPCs reduces insulin resistance.
5-2. IRS-1 인산화에 미치는 영향5-2. Impact on IRS-1 Phosphorylation
또한 상기 실험방법에 따라 제2형 당뇨 비만 마우스에 DC-Vac, DC-Vac+TK-IPCs을 처리한 다음에 25mIU/kg 인슐린(Eli Lilly)을 인슐린 펌프로 투여하였다. 4주 후, 마우스를 희생시켜 간 조직을 적출하였다. 그 다음 당업계의 통상적인 방법으로 간 조직에서 단백질을 추출하였다. 그 다음 상기 실험방법에 따른 웨스턴 블랏 방법으로 인슐린 저항성의 감소를 의미하는 IRS-1의 티로신 인산화(IRS-1 pTyr )를 통해 인슐린 신호를 분석하였다.In addition, according to the experimental method, type 2 diabetic obese mice were treated with DC-Vac, DC-Vac + TK-IPCs, and then 25mIU / kg insulin (Eli Lilly) was administered with an insulin pump. After 4 weeks, mice were sacrificed to remove liver tissue. The protein was then extracted from liver tissue by conventional methods in the art. Then, the insulin signal was analyzed by tyrosine phosphorylation (IRS-1 pTyr ) of IRS-1, which means a decrease in insulin resistance by Western blot method according to the experimental method.
그 결과 도 10b에 나타난 바와 같이, 인슐린을 투여한 경우가 투여하지 않은 경우에 비해 IRS-1의 티로신 인산화(IRS-1 pTyr)가 증가하였으며, 대조군에 비해 DC-Vac과 TK-IPCs의 처리가 인슐린 신호를 증가 시켜, 인슐린 저항성을 감소시키는 것을 보여준다. As a result, as shown in Figure 10b, the administration of insulin increased the tyrosine phosphorylation (IRS-1 pTyr ) of IRS-1 compared to the case without administration, DC-Vac and TK-IPCs treatment compared to the control group Increasing insulin signaling has been shown to reduce insulin resistance.
이상 살펴본 바와 같이, 본 발명은 당뇨 및 비만의 예방 또는 치료에 적합한 면역관용 수지상 세포를 제조하는 방법을 제공하며, 본 발명의 면역관용 수지상 세포의 접종시 당뇨병 및 비만에 대한 예방 또는 치료 효과를 얻을 수 있다. 이와 더불어 골수유래 인슐린 분비 세포와 병합 사용시, IRS-1의 세린 인산화를 감소시키고 IRS-1의 티로신 인산화를 증가시킴으로써 인슐린 감수성을 추가적으로 증가시켜, 제1형, 제2형 당뇨병 및 비만의 예방 또는 치료용으로 유용하게 이용될 수 있다. As described above, the present invention provides a method for producing immune-tolerant dendritic cells suitable for the prevention or treatment of diabetes and obesity, and when the inoculation of the immune-tolerant dendritic cells of the present invention to obtain a preventive or therapeutic effect on diabetes and obesity Can be. In addition, when used in combination with bone marrow-derived insulin secreting cells, insulin sensitivity is further increased by reducing serine phosphorylation of IRS-1 and increasing tyrosine phosphorylation of IRS-1, thereby preventing or treating type 1, type 2 diabetes and obesity. It can be usefully used for.

Claims (20)

  1. 췌장 β 세포 엑소좀을 첨가한, GM-CSF를 포함하는 배지에서 미성숙 수지상 세포를 배양하여 성숙한 면역관용 수지상 세포로 분화하는 것을 특징으로 하는 면역관용 수지상 세포의 제조 방법:A method for producing dendritic cells for immune tolerance characterized in that immature dendritic cells are cultured in a medium containing GM-CSF to which pancreatic β-cell exosomes are added and differentiated into mature immune tolerant dendritic cells.
    상기 미성숙 수지상 세포는 IL-4 및 GM-CSF를 포함하는 배지에서 줄기세포 배양을 통해 수득하며,The immature dendritic cells are obtained through stem cell culture in a medium containing IL-4 and GM-CSF,
    상기 췌장 β 세포 엑소좀은, The pancreatic β cell exosomes,
    a) TSPAN2(tetraspanin-2) 유전자가 제거된 췌장 β 세포를 원심분리하여 3차원 회전 타원체 배양하는 단계; a) centrifuging pancreatic β cells from which the TSPAN2 (tetraspanin-2) gene has been removed and culturing three-dimensional spheroids;
    b) 상기 배양물에서 엑소좀을 분리하거나 상기 엑소좀이 포함된 배양배지를 분리하여 수득하는 단계;를 포함하는 방법에 의해서 제조된 것을 특징으로 하는 방법.b) separating the exosomes from the culture or obtaining a culture medium containing the exosomes; to obtain the method.
  2. 제1항에 있어서, 상기 줄기세포는 골수 유래 중간엽줄기세포(Bone Marrow derived stem cells)인 것을 특징으로 하는 면역관용 수지상 세포의 제조 방법. The method of claim 1, wherein the stem cells are bone marrow-derived mesenchymal stem cells (Bone Marrow derived stem cells).
  3. 제1항에 있어서, 상기 췌장 β 세포를 3차원 회전 타원체 배양하여 인슐린 분비 능력이 증가된 것을 특징으로 하는 면역관용 수지상 세포의 제조 방법.The method of claim 1, wherein the pancreatic β cells are cultured in three-dimensional spheroids to increase insulin secretion ability.
  4. 제1항에 있어서, 상기 췌장 인슐린 분비 β세포는 중간엽 줄기세포로부터 인슐린분비 세포 (insulin producing cells, IPCs)로 분화가 유도된 것임을 특징으로 하는 면역관용 수지상 세포의 제조 방법.The method of claim 1, wherein the pancreatic insulin secreting β cells are induced differentiation from mesenchymal stem cells to insulin producing cells (IPCs).
  5. 제1항에 있어서, 상기 면역 관용 수지상 세포는 IRS-1의 세린 인산화를 감소시키고 IRS-1의 티로신 인산화를 증가시킴으로써 인슐린 감수성을 증가시키는 것임을 특징으로 하는 면역관용 수지상 세포의 제조방법.The method of claim 1, wherein the immune tolerant dendritic cells increase insulin sensitivity by reducing serine phosphorylation of IRS-1 and increasing tyrosine phosphorylation of IRS-1.
  6. 제1항에 있어서, 상기 3차원 회전 타원체 배양한 췌장 β 세포는 인슐린 분비능력이 향상되는 것을 특징으로 하는 성숙 수지상 세포의 제조 방법.The method of claim 1, wherein the three-dimensional spheroid cultured pancreatic β cells are characterized in that insulin secretion ability is improved.
  7. 제1항에 있어서, 상기 b)단계의 배양물은 면역원성 엑소좀을 포함하는 것을 특징으로 하는 성숙 수지상 세포의 제조 방법.The method of claim 1, wherein the culture of step b) comprises immunogenic exosomes.
  8. 제1항 내지 제7항 중 어느 한 항의 방법으로 제조한 면역관용 수지상 세포.A dendritic cell for immune tolerance prepared by the method of any one of claims 1 to 7.
  9. 제8항의 면역관용 수지상 세포를 유효성분으로 포함하는 수지상 세포 백신.Dendritic cell vaccine comprising a dendritic cell for immune tolerance of claim 8 as an active ingredient.
  10. 제9항에 있어서, 상기 수지상 세포 백신은 분화되지 않은 미성숙 수지상 세포를 실질적으로 포함하지 않은 것을 특징으로 하는 수지상 세포 백신.10. The dendritic cell vaccine of claim 9, wherein the dendritic cell vaccine is substantially free of undifferentiated immature dendritic cells.
  11. 제8항의 면역관용 수지상 세포를 유효성분으로 포함하는 당뇨병 예방 또는 치료용 조성물.A composition for preventing or treating diabetes, comprising the dendritic cell for immune tolerance of claim 8 as an active ingredient.
  12. 제11항에 있어서, 상기 당뇨병은 제1형 당뇨병 또는 제2형 당뇨병인 것을 특징으로 하는 조성물.12. The composition of claim 11, wherein the diabetes is type 1 diabetes or type 2 diabetes.
  13. 제8항의 면역관용 수지상 세포를 유효성분으로 포함하는 비만 예방 또는 치료용 조성물.Claim 8 composition for preventing or treating obesity comprising the dendritic cells for immune tolerance as an active ingredient.
  14. 제11항 또는 제13항에 있어서, 상기 조성물은 하기 특성을 가지는 인슐린 분비 세포를 추가로 포함하는 것을 특징으로 하는 조성물:The composition of claim 11 or 13, wherein the composition further comprises insulin secreting cells having the following properties:
    a) 인슐린 분비 세포(insulin producing cells, IPCs)일 것;a) be insulin producing cells (IPCs);
    b) 테트라스파닌-2 (tetraspanin-2) 유전자가 제거(knock-out)됨.b) The tetraspanin-2 gene is knocked out.
  15. 제14항에 있어서, 상기 인슐린 분비 세포는 중간엽 줄기세포로부터 분화가 유도된 것임을 특징으로 하는 조성물.The composition of claim 14, wherein the insulin secreting cells are induced differentiation from mesenchymal stem cells.
  16. 제14항에 있어서, 상기 조성물은 IRS-1의 세린 인산화를 감소시키고 IRS-1의 티로신 인산화를 증가시킴으로써 인슐린 감수성을 증가시키는 것을 특징으로 하는 조성물.The composition of claim 14, wherein the composition increases insulin sensitivity by reducing serine phosphorylation of IRS-1 and increasing tyrosine phosphorylation of IRS-1.
  17. 당뇨병 예방 또는 치료용 제제를 제조하기 위한 제8항의 면역관용 수지상 세포의 용도.Use of the immune tolerant dendritic cells of claim 8 for the preparation of a prophylactic or therapeutic agent for diabetes.
  18. 제8항의 면역관용 수지상 세포를 유효성분으로 포함하는 조성물의 유효량을 이를 필요로 하는 개체에 투여하는 단계를 포함하는 당뇨병 치료 방법.A method for treating diabetes comprising administering to a subject in need thereof an effective amount of a composition comprising the immune tolerant dendritic cells of claim 8 as an active ingredient.
  19. 비만 예방 또는 치료용 제제를 제조하기 위한 제8항의 면역관용 수지상 세포의 용도.Use of the immune tolerant dendritic cell of claim 8 for the preparation of an agent for the prevention or treatment of obesity.
  20. 제8항의 면역관용 수지상 세포를 유효성분으로 포함하는 조성물의 유효량을 이를 필요로 하는 개체에 투여하는 단계를 포함하는 비만 치료 방법.A method of treating obesity, comprising administering to a subject in need thereof an effective amount of a composition comprising the immune tolerant dendritic cells of claim 8 as an active ingredient.
PCT/KR2019/005437 2018-05-11 2019-05-07 Cellular vaccine having immune tolerance for treatment of diabetes and obesity and method for producing insulin-secreting cells WO2019216623A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0054515 2018-05-11
KR1020180054515A KR101950008B1 (en) 2018-05-11 2018-05-11 Method of preparing tolerogenic cells and insulin producing cells based diabetes and obesity vaccine

Publications (1)

Publication Number Publication Date
WO2019216623A1 true WO2019216623A1 (en) 2019-11-14

Family

ID=65528638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/005437 WO2019216623A1 (en) 2018-05-11 2019-05-07 Cellular vaccine having immune tolerance for treatment of diabetes and obesity and method for producing insulin-secreting cells

Country Status (2)

Country Link
KR (1) KR101950008B1 (en)
WO (1) WO2019216623A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112773889A (en) * 2020-12-15 2021-05-11 重庆医科大学附属永川医院 VDBP/VSIG 4-based immune negative regulation multivalent vaccine and preparation method thereof
CN113925960A (en) * 2021-08-31 2022-01-14 苏州大学 Vaccine system for preventing or treating type I diabetes and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101950008B1 (en) * 2018-05-11 2019-02-19 황인후 Method of preparing tolerogenic cells and insulin producing cells based diabetes and obesity vaccine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030070454A (en) * 2002-02-25 2003-08-30 크레아젠 주식회사 Method of Preparing Mature Dendritic Cell-Vaccine for Immunotherapy
KR20150056694A (en) * 2013-11-15 2015-05-27 차의과학대학교 산학협력단 Method for preparing a immune tolerant dendritic cell and the immune tolerant dendritic cell prepared by the method
KR101524079B1 (en) * 2014-12-03 2015-06-04 서울대학교산학협력단 Method for inducing differentiation of adult cells into insulin producing cells using exosome
KR20170121096A (en) * 2017-10-18 2017-11-01 충북대학교 산학협력단 A tolerogenic dendritic cell prepared by using minocycline and a preparation method thereof
KR20180034830A (en) * 2016-09-28 2018-04-05 한국기초과학지원연구원 Composition for preventing or treating diabetes and method for screening antidiabetic agents using tetraspanin-2
KR101950008B1 (en) * 2018-05-11 2019-02-19 황인후 Method of preparing tolerogenic cells and insulin producing cells based diabetes and obesity vaccine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030070454A (en) * 2002-02-25 2003-08-30 크레아젠 주식회사 Method of Preparing Mature Dendritic Cell-Vaccine for Immunotherapy
KR20150056694A (en) * 2013-11-15 2015-05-27 차의과학대학교 산학협력단 Method for preparing a immune tolerant dendritic cell and the immune tolerant dendritic cell prepared by the method
KR101524079B1 (en) * 2014-12-03 2015-06-04 서울대학교산학협력단 Method for inducing differentiation of adult cells into insulin producing cells using exosome
KR20180034830A (en) * 2016-09-28 2018-04-05 한국기초과학지원연구원 Composition for preventing or treating diabetes and method for screening antidiabetic agents using tetraspanin-2
KR20170121096A (en) * 2017-10-18 2017-11-01 충북대학교 산학협력단 A tolerogenic dendritic cell prepared by using minocycline and a preparation method thereof
KR101950008B1 (en) * 2018-05-11 2019-02-19 황인후 Method of preparing tolerogenic cells and insulin producing cells based diabetes and obesity vaccine

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HWANG, I. H.: "Tetraspanin-2 promotes glucotoxic apoptosis by regulating the JNK/13-catenin signaling pathway in human pancreatic beta cells", THE FASEB JOURNAL, vol. 30, no. 9, September 2016 (2016-09-01), pages 3107 - 3116, XP055651842 *
SIM, W. J.: "Metabolism is central to tolerogenic dendritic cell function", MEDIATORS OF INFLAMMATION, vol. 2016, 2636701, 2016, pages 1 - 10, XP055651840 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112773889A (en) * 2020-12-15 2021-05-11 重庆医科大学附属永川医院 VDBP/VSIG 4-based immune negative regulation multivalent vaccine and preparation method thereof
CN113925960A (en) * 2021-08-31 2022-01-14 苏州大学 Vaccine system for preventing or treating type I diabetes and preparation method thereof

Also Published As

Publication number Publication date
KR101950008B1 (en) 2019-02-19

Similar Documents

Publication Publication Date Title
WO2019216623A1 (en) Cellular vaccine having immune tolerance for treatment of diabetes and obesity and method for producing insulin-secreting cells
WO2016122147A1 (en) Method for mass producing natural killer cell and use of natural killer cell obtained by the method as anti-cancer agent
WO2012026712A4 (en) Pharmaceutical composition for preventing or treating immune diseases or inflammatory diseases, containing stem cells treated with nod2 agonist or cultured product thereof
WO2018097540A9 (en) Serum-free immune cell-culturing medium-added kit, method for culturing immune cells by using same kit, serum-free immune cell culture obtained by same kit or culturing method, and cosmetic composition comprising same culture
WO2016048107A1 (en) Pharmaceutical composition for preventing or treating immune diseases or inflammatory diseases, comprising interferon-gamma or interleukin-1 beta treated stem cell or culture thereof
WO2011142514A1 (en) Composition containing pias3 as an active ingredient for preventing or treating cancer or immune disease
WO2011052883A2 (en) Method for activating a natural killer cell by adjusting the expression of the socs2 gene
US20130230487A1 (en) Immunomodulatory Methods and Systems for Treatment and/or Prevention of Hypertension
WO2010038991A2 (en) Composition for preventing or treating aids containing plant stem cell line derived from cambium of panax ginseng including wild ginseng or ginseng as active ingredient
WO2021033990A1 (en) Composition comprising exosomes derived from induced pluripotent stem cell-derived mesenchymal stem cell precursor for prevention or treatment of non-alcoholic steatohepatitis
WO2022030973A1 (en) Cell therapeutic composition comprising t memory stem cells dedifferentiated from tumor-infiltrating lymphocytes, and method for producing composition
WO2020017788A1 (en) Composition for preventing or treating diabetes by using cd9, and method for screening for antidiabetic agents
WO2023277639A1 (en) Medium for culturing natural killer cells, and method for mass-propagating natural killer cells using same
WO2019027214A9 (en) Allogeneic mesenchymal stem cell and use thereof
WO2019059713A2 (en) Method for producing natural killer cell and use thereof
WO2013162330A1 (en) Chimeric mesenchymal stem cell population and preparation method therefor, and method for producing parathyroid hormone using tonsil-derived stem cells
WO2021107635A1 (en) Composition for anticancer treatment, comprising nk cells and fusion protein which comprises il-2 protein and cd80 protein
WO2020149538A1 (en) Pharmaceutical composition comprising clonal stem cell for prevention or treatment of atopic dermatitis
WO2020122498A1 (en) Pharmaceutical composition for treating pancreatitis, comprising clonal stem cells
WO2023003406A1 (en) Pharmaceutical composition comprising clec5a-expressing immunotolerant dendritic cell or culture thereof for prevention or treatment of degenerative brain disease
WO2020032780A1 (en) Cancer antigen-specific cytotoxic t cells
WO2020032782A1 (en) Method for preparing and cryopreserving cancer antigen-specific cd8+ t cells
WO2019212123A1 (en) Method for increasing dendritic cell migration ability, and use thereof
WO2018143649A1 (en) Pharmaceutical composition for preventing or treating autoimmune disease, and method for producing same
WO2022131700A1 (en) Method for mass production of highly pure, stem cell-derived extracellular vesicle by using peptide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19799404

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19799404

Country of ref document: EP

Kind code of ref document: A1