WO2019216368A1 - 樹脂組成物、キット、樹脂組成物の製造方法、成形品の製造方法および成形品 - Google Patents

樹脂組成物、キット、樹脂組成物の製造方法、成形品の製造方法および成形品 Download PDF

Info

Publication number
WO2019216368A1
WO2019216368A1 PCT/JP2019/018512 JP2019018512W WO2019216368A1 WO 2019216368 A1 WO2019216368 A1 WO 2019216368A1 JP 2019018512 W JP2019018512 W JP 2019018512W WO 2019216368 A1 WO2019216368 A1 WO 2019216368A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
resin
light
mass
flame retardant
Prior art date
Application number
PCT/JP2019/018512
Other languages
English (en)
French (fr)
Inventor
岡元 章人
Original Assignee
三菱エンジニアリングプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱エンジニアリングプラスチックス株式会社 filed Critical 三菱エンジニアリングプラスチックス株式会社
Priority to JP2019538455A priority Critical patent/JP6646795B1/ja
Priority to EP19799879.2A priority patent/EP3792312B1/en
Priority to KR1020207030076A priority patent/KR20210008336A/ko
Priority to US17/044,004 priority patent/US11958973B2/en
Priority to CN201980031224.XA priority patent/CN112105694B/zh
Publication of WO2019216368A1 publication Critical patent/WO2019216368A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1616Near infrared radiation [NIR], e.g. by YAG lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8207Testing the joint by mechanical methods
    • B29C65/8215Tensile tests
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7212Fibre-reinforced materials characterised by the composition of the fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • C08J5/08Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/016Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0041Optical brightening agents, organic pigments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0066Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/5399Phosphorus bound to nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • C08L71/126Polyphenylene oxides modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/929Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools characterized by specific pressure, force, mechanical power or displacement values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/93Measuring or controlling the joining process by measuring or controlling the speed
    • B29C66/939Measuring or controlling the joining process by measuring or controlling the speed characterised by specific speed values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • B29K2105/0026Flame proofing or flame retarding agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/387Borates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2310/00Masterbatches

Definitions

  • the present invention relates to a resin composition, a kit, a method for producing a resin composition, a method for producing a molded product, and a molded product.
  • the present invention relates to a resin composition suitable for laser welding, a kit using the resin composition, a method for producing a molded product, and a molded product.
  • the resin composition of the present invention is mainly used as a resin composition on the side that transmits light for laser welding (light-transmitting resin composition).
  • the polyamide resin which is a typical engineering plastic, is easy to process and has excellent mechanical properties, electrical properties, heat resistance, and other physical and chemical properties. For this reason, it is widely used for vehicle parts, electrical / electronic equipment parts, other precision equipment parts, and the like. Recently, parts having complicated shapes have been manufactured with polyamide resin. For example, for bonding parts having a hollow portion such as an intake manifold, various welding techniques such as adhesive welding, Vibration welding, ultrasonic welding, hot plate welding, injection welding, laser welding techniques, etc. are used.
  • Laser welding is a resin member that is transmissive (also referred to as non-absorbing or weakly absorbing) to laser light (hereinafter sometimes referred to as “transmitting resin member”) and absorbable to laser light.
  • This is a method in which a resin member (hereinafter sometimes referred to as an “absorbing resin member”) having contact is welded and bonded to join both resin members.
  • the joining surface is irradiated with laser light from the side of the transmissive resin member, and the absorbing resin member forming the joining surface is melted and joined by the energy of the laser light.
  • Laser welding has no generation of wear powder or burrs, less damage to the product, and since the polyamide resin itself is a material with a relatively high laser transmittance, processing of polyamide resin products by laser welding technology, It has been attracting attention recently.
  • the transmissive resin member is usually obtained by molding a light transmissive resin composition.
  • Patent Document 1 discloses (B) a reinforcing filler having a refractive index of 23 ° C. of 1.560 to 1.600 with respect to 100 parts by mass of (A) polyamide resin.
  • a polyamide resin composition comprising 1 to 150 parts by mass, wherein at least one monomer constituting at least one of the (A) polyamide resin contains an aromatic ring, A fused polyamide resin composition is described.
  • a resin composition in which a blend of polyamide MXD6 and polyamide 66, or a blend of polyamide 6I / 6T and polyamide 6 is mixed with glass fiber and a colorant is disclosed. .
  • the molded article (permeable member) made of the resin composition is required to be excellent in laser weldability with the absorbing resin member. Moreover, when using for laser welding, the transparent member is calculated
  • the present invention aims to solve such a problem, and has a high light transmittance and a resin composition capable of providing a molded article excellent in laser weldability with an absorbing resin member, and It aims at providing the manufacturing method of a kit, a resin composition, the manufacturing method of a molded article, and a molded article.
  • the above problems can be solved by using a maleic anhydride-modified polyphenylene ether resin, a phosphazene flame retardant, and a zinc metal oxide in combination.
  • a maleic anhydride-modified polyphenylene ether resin a phosphazene flame retardant
  • a zinc metal oxide a zinc metal oxide.
  • a resin composition comprising a polyamide resin, a maleic anhydride-modified polyphenylene ether resin, a phosphazene flame retardant, a zinc metal oxide, and a light-transmitting dye.
  • ⁇ 2> The resin composition according to ⁇ 1>, wherein a transmittance at a wavelength of 1070 nm measured according to ISO13468-2 is 40% or more when the resin composition is molded to a thickness of 1 mm.
  • the polyamide resin includes a semi-aromatic polyamide resin.
  • the polyamide resin is composed of a structural unit derived from a diamine and a structural unit derived from a dicarboxylic acid, and 50 mol% or more of the structural unit derived from the diamine is derived from xylylenediamine, and the structural unit derived from the dicarboxylic acid.
  • 50 mol% or more of the polymer comprises a polyamide resin derived from an ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms.
  • the zinc metal oxide includes zinc borate.
  • ⁇ 7> Any one of ⁇ 1> to ⁇ 6>, comprising at least a phosphazene-based flame retardant masterbatch using a maleic anhydride-modified polyphenylene ether-based resin and then kneading with other components
  • Zinc metal oxide is partly masterbatched with a maleic anhydride-modified polyphenylene ether resin together with a phosphazene flame retardant, kneaded with other components, and zinc metal oxide
  • ⁇ 7> The manufacturing method of the resin composition as described in ⁇ 7> including kneading
  • a kit comprising the resin composition according to any one of ⁇ 1> to ⁇ 6>, and a light-absorbing resin composition containing a thermoplastic resin and a light-absorbing dye.
  • Kit. ⁇ 11> The resin composition and the light-absorbing resin composition are respectively ASTM standard No.
  • dumbbell pieces molded into a 1.5 mm-thick test piece, and in galvanometer mirror scanning fiber laser welding
  • the kit according to ⁇ 10> wherein the tensile strength is 900 N or more at a press pressure of 600 N, a laser beam diameter of 2 mm, a welding width of 16 mm by laser, and a total energy input amount of 160 J when welding.
  • ⁇ 12> A molded article obtained by molding the resin composition according to any one of ⁇ 1> to ⁇ 6>, and a light-absorbing resin composition comprising a thermoplastic resin and a light-absorbing dye.
  • a resin composition having a high light transmittance and capable of providing a molded article excellent in laser weldability with an absorbing resin member and a kit, a method for producing the resin composition, and production of the molded article It has become possible to provide methods and molded articles.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the resin composition of the present invention comprises a polyamide resin, a maleic anhydride-modified polyphenylene ether resin, a phosphazene flame retardant, a zinc metal oxide, and a light-transmitting dye.
  • Phosphazene-based flame retardants and zinc metal oxides are known as flame retardants and flame retardant aids, respectively, and it is extremely surprising that such compounds are blended to improve laser weldability. Furthermore, in the present invention, the total energy input amount of light irradiation for laser welding can also be reduced.
  • the resin composition of the present invention contains a polyamide resin.
  • the type of polyamide resin used in the present invention is not particularly limited, and examples thereof include aliphatic polyamide resins and semi-aromatic polyamide resins.
  • the polyamide resin used in the present invention preferably contains a semi-aromatic polyamide resin.
  • the semi-aromatic polyamide resin is composed of a structural unit derived from diamine and a structural unit derived from dicarboxylic acid, and 20 to 80 mol% of the total structural unit of the structural unit derived from diamine and the structural unit derived from dicarboxylic acid.
  • the structural unit includes an aromatic ring, and 40 to 60 mol% of the total structural unit of the structural unit derived from diamine and the structural unit derived from dicarboxylic acid is preferably a structural unit including an aromatic ring.
  • Examples of the semi-aromatic polyamide resin include terephthalic acid-based polyamide resins (polyamide 6T, polyamide 9T, polyamide 10T), xylylenediamine-based polyamide resins described later, and the like.
  • Examples of the aliphatic polyamide resin include polyamide 6, polyamide 66, polyamide 11, and polyamide 12.
  • the description in paragraphs 0011 to 0013 of JP2011-132550A can be referred to, and the contents thereof are incorporated in the present specification.
  • the polyamide resin used in the present invention at least one kind is composed of a structural unit derived from diamine and a structural unit derived from dicarboxylic acid, and 50 mol% or more of the structural unit derived from diamine is derived from xylylenediamine, and dicarboxylic acid
  • a polyamide resin in which 50 mol% or more of the derived structural unit is derived from an ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms is preferred.
  • the polyamide resin may be referred to as a xylylenediamine-based polyamide resin.
  • the xylylenediamine is preferably metaxylylenediamine and / or paraxylylenediamine, more preferably at least metaxylylenediamine, and 30 to 100 mol% of the structural unit derived from diamine is metaxylylenediamine. Is more preferable.
  • the structural unit derived from the diamine of the xylylenediamine-based polyamide resin is more preferably 70 mol% or more, further preferably 75 mol% or more, more preferably 80 mol% or more, still more preferably 85 mol% or more, and even more preferably. 90 mol% or more is derived from xylylenediamine.
  • the structural unit derived from dicarboxylic acid of the xylylenediamine-based polyamide resin is more preferably 70 mol% or more, further preferably 80 mol% or more, more preferably 90 mol% or more, and even more preferably 95 mol% or more.
  • diamines other than metaxylylenediamine and paraxylylenediamine that can be used as raw material diamine components for xylylenediamine polyamide resins include tetramethylenediamine, pentamethylenediamine, 2-methylpentanediamine, hexamethylenediamine, and heptamethylene.
  • Aliphatic diamines such as diamine, octamethylenediamine, nonamethylenediamine, decamethylenediamine, dodecamethylenediamine, 2,2,4-trimethyl-hexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, 1,3- Bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, 1,3-diaminocyclohexane, 1,4-diaminocyclohexane, bis (4-aminocyclohexyl) me , 2,2-bis (4-aminocyclohexyl) propane, bis (aminomethyl) decalin, alicyclic diamines such as bis (aminomethyl) tricyclodecane, bis (4-aminophenyl) ether, paraphenylenediamine, Examples thereof include diamines having an aromatic ring such as bis (aminomethyl) naphthalene, and
  • Preferred examples of the ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms to be used as the raw material dicarboxylic acid component of the xylylenediamine polyamide resin include succinic acid, glutaric acid, pimelic acid, suberic acid, and azelain.
  • Examples thereof include aliphatic dicarboxylic acids such as acid, adipic acid, sebacic acid, undecanedioic acid, and dodecanedioic acid, and one or a mixture of two or more can be used.
  • the melting point of the polyamide resin is molded. Therefore, adipic acid or sebacic acid is more preferable.
  • dicarboxylic acid component other than the ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms examples include phthalic acid compounds such as isophthalic acid, terephthalic acid and orthophthalic acid, 1,2-naphthalenedicarboxylic acid, 1,3 -Naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 1,6-naphthalenedicarboxylic acid, 1,7-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, 2,3-naphthalene
  • isomers of naphthalenedicarboxylic acid such as dicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and 2,7-naphthalenedicarboxylic acid can be given, and one kind or a mixture of two or more kinds can be used.
  • 50 mol% or more (preferably 70 mol% or more, more preferably 90 mol% or more) of the structural unit derived from diamine is derived from xylylenediamine
  • examples are those in which 50 mol% or more (preferably 70 mol% or more, more preferably 90 mol% or more) of the structural unit derived from dicarboxylic acid is derived from adipic acid or sebacic acid.
  • the xylylenediamine is preferably metaxylylenediamine and / or paraxylylenediamine, more preferably at least metaxylylenediamine, and 30 to 100 mol% of the structural unit derived from diamine. More preferred is metaxylylenediamine.
  • the xylylenediamine-based polyamide resin is composed mainly of a structural unit derived from a diamine and a structural unit derived from a dicarboxylic acid, but does not completely exclude other structural units, and ⁇ -caprolactam or lauro It goes without saying that structural units derived from lactams such as lactam, and aliphatic aminocarboxylic acids such as aminocaproic acid and aminoundecanoic acid may be included.
  • the main component means that among the constituent units constituting the xylylenediamine-based polyamide resin, the total number of constituent units derived from diamine and constituent units derived from dicarboxylic acid is the largest among all constituent units.
  • the total of diamine-derived structural units and dicarboxylic acid-derived structural units in the xylylenediamine-based polyamide resin preferably occupies 90% or more of all the structural units, and more preferably 95% or more.
  • the melting point of the polyamide resin is preferably 150 to 350 ° C., more preferably 180 to 330 ° C., still more preferably 190 to 300 ° C., and further preferably 200 to 280 ° C.
  • the melting point can be measured according to JIS K7121 and K7122 according to the differential scanning calorific value.
  • the lower limit of the number average molecular weight (Mn) is preferably 6,000 or more, more preferably 8,000 or more, further preferably 10,000 or more, and 15,000 or more. Is more preferably 20,000 or more, and further preferably 22,000 or more.
  • the upper limit of the Mn is preferably 35,000 or less, more preferably 30,000 or less, further preferably 28,000 or less, and further preferably 26,000 or less. Within such a range, the heat resistance, elastic modulus, dimensional stability, and moldability become better.
  • the resin composition of the present invention preferably contains a xylylenediamine-based polyamide resin in a proportion of 20 to 70% by mass of the resin composition.
  • the xylylenediamine-based polyamide resin is preferably contained in a proportion of 22% by mass or more of the resin composition, more preferably in a proportion of 25% by mass or more, and further preferably 30% by mass or more. Moreover, it is preferable to include in the ratio of 65 mass% or less, and it is more preferable to include in the ratio of 60 mass% or less.
  • the xylylenediamine-based polyamide resin may contain only one type or two or more types. When 2 or more types are included, the total amount is preferably within the above range.
  • the resin composition of the present invention preferably contains a polyamide resin in a proportion of 20 to 70% by mass of the resin composition.
  • the polyamide resin is preferably contained in a proportion of 22% by mass or more of the resin composition, more preferably in a proportion of 25% by mass or more, and further preferably 28% by mass or more. Moreover, it is preferable to include in the ratio of 65 mass% or less, and it is more preferable to include in the ratio of 60 mass% or less.
  • the polyamide resin may contain only 1 type, and may contain 2 or more types. When 2 or more types are included, the total amount is preferably within the above range.
  • the maleic anhydride-modified polyphenylene ether resin is obtained by modifying a polyphenylene ether resin with maleic anhydride.
  • the amount of maleic anhydride in the maleic anhydride-modified polyphenylene ether-based resin is 0.01 to 1.0% by mass, preferably 0.1 to 0.7% by mass in terms of maleic acid. . By setting it as such a range, high mechanical strength can be achieved.
  • the amount of maleic anhydride in the maleic anhydride-modified polyphenylene ether resin refers to the amount of maleic anhydride used to modify the polyphenylene ether resin reacted with the polyphenylene ether resin in terms of maleic acid amount. If you say mass.
  • polyphenylene ether resin examples include poly (2,6-dimethyl-1,4-phenylene) ether, poly (2,6-diethyl-1,4-phenylene) ether, poly (2,6 -Dipropyl-1,4-phenylene) ether, poly (2-methyl-6-ethyl-1,4-phenylene) ether, poly (2-methyl-6-propyl-1,4-phenylene) ether -Tele and the like, and poly (2,6-dimethyl-1,4-phenylene) ether is particularly preferable.
  • a preferable polyphenylene ether resin has an intrinsic viscosity of usually 0.2 to 0.6 dL / g, more preferably 0.3 to 0.5 dL / g measured in chloroform at a temperature of 30 ° C.
  • the intrinsic viscosity is less than 0.2 dL / g, the impact resistance may be insufficient, and when it exceeds 0.6 dL / g, the moldability and appearance tend to deteriorate.
  • the intrinsic viscosity within the above range may be adjusted by using two or more polyphenylene ether resins having different intrinsic viscosities.
  • the lower limit of the content of the maleic anhydride-modified polyphenylene ether resin is preferably 1.0% by mass or more, and more preferably 2.5% by mass or more of the resin composition.
  • the upper limit is preferably 20.0% by mass or less, more preferably 15.0% by mass or less, further preferably 12.0% by mass or less, and 9.0% by mass or less. More preferably, it is more preferably 7.0% by mass or less, and still more preferably 5.5% by mass or less. By setting it to 20.0 mass% or less, even if it reduces the total energy input amount in the case of laser welding, laser welding property can be made higher.
  • the resin composition of the present invention may contain only one type of maleic anhydride-modified polyphenylene ether resin, or may contain two or more types. When 2 or more types are included, the total amount is preferably within the above range.
  • the resin composition of the present invention may contain other resin components other than the polyamide resin and the maleic anhydride-modified polyphenylene ether resin.
  • polyester resins such as polyethylene terephthalate and polybutylene terephthalate
  • thermoplastic resins such as polycarbonate resin and polyacetal resin
  • the resin composition of the present invention may be configured so as not to contain substantially any resin component other than the polyamide resin and the maleic anhydride-modified polyphenylene ether resin, for example, 5% by mass or less of the total amount of the resin component contained in the resin composition. Furthermore, it may be 1% by mass or less, and particularly 0.4% by mass or less. That is, the resin composition of the present invention preferably occupies 95% by mass or more of the resin component contained in the resin composition in total of the polyamide resin and the maleic anhydride-modified polyphenylene ether resin.
  • the resin composition of the present invention contains a phosphazene flame retardant.
  • a phosphazene flame retardant By blending a phosphazene flame retardant, the flame retardancy of the resin composition is enhanced, and the colorant strength of the LTW dye is excellent compared to brominated polystyrene flame retardants, etc., and the effect of being excellent in compatibility with the resin is expected. it can.
  • the phosphazene flame retardant used in the present invention is an organic compound having a —P ⁇ N— bond in the molecule, preferably a cyclic phosphazene flame retardant represented by the formula (1), represented by the formula (2).
  • a crosslinked phosphazene flame retardant obtained by crosslinking the phosphazene flame retardant with a crosslinking group.
  • an oxygen atom is preferable.
  • Bridging groups, R 1 of formula R 1 and / or R 2 cyclic phosphazene flame retardants represented by the formula (1)
  • a is an integer of 3 to 25, R 1 and R 2 may be the same or different, and an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an allyloxy group, an amino group, A hydroxy group, an aryl group or an alkylaryl group is shown.
  • R 3 and R 4 may be the same or different, and an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an allyloxy group, an amino group, A hydroxy group, an aryl group or an alkylaryl group is shown.
  • R 5 is selected from —N ⁇ P (OR 3 ) 3 groups, —N ⁇ P (OR 4 ) 3 groups, —N ⁇ P (O) OR 3 groups, and —N ⁇ P (O) OR 4 groups.
  • R 6 represents at least one type, and R 6 represents —P (OR 3 ) 4 group, —P (OR 4 ) 4 group, —P (O) (OR 3 ) 2 group, —P (O) (OR 4 ) 2 At least one selected from the group is shown.
  • examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a t-butyl group, a pentyl group, a hexyl group, an octyl group, a decyl group, Examples thereof include alkyl groups having 1 to 15 carbon atoms such as dodecyl, and alkyl groups having 1 to 6 carbon atoms such as methyl, ethyl, propyl, isopropyl, butyl, t-butyl, pentyl, and hexyl groups.
  • An alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, or a propyl group is particularly preferable.
  • cycloalkyl group examples include a cycloalkyl group having 5 to 14 carbon atoms such as a cyclopentyl group and a cyclohexyl group, and a cycloalkyl group having 5 to 8 carbon atoms is preferable.
  • alkenyl group examples include alkenyl groups having 2 to 8 carbon atoms such as vinyl group and allyl group.
  • cycloalkenyl group examples include cycloalkenyl groups having 5 to 12 carbon atoms such as a cyclopentyl group and a cyclohexyl group.
  • alkynyl group examples include an alkynyl group having an aryl group such as an alkynyl group having 2 to 8 carbon atoms such as an ethynyl group and a propynyl group and an ethynylbenzene group as a substituent.
  • aryl group examples include aryl groups having 6 to 20 carbon atoms such as a phenyl group, a methylphenyl (ie, tolyl) group, a dimethylphenyl (ie, xylyl) group, a trimethylphenyl group, and a naphthyl group.
  • a phenyl group having 6 to 10 carbon atoms is preferable, and a phenyl group is particularly preferable.
  • alkylaryl group examples include aralkyl groups having 6 to 20 carbon atoms such as benzyl group, phenethyl group, and phenylpropyl group. Among them, aralkyl groups having 7 to 10 carbon atoms are preferable, and benzyl group is particularly preferable. .
  • R 1 and R 2 in the formula (1) and R 3 and R 4 in the formula (2) are an aryl group or an arylalkyl group.
  • R 1 , R 2 , R 3 and R 4 are more preferably aryl groups, and particularly preferably phenyl groups.
  • Examples of the phosphazene flame retardant represented by the formula (1) or (2) include phenoxyphosphazene, o-tolyloxyphosphazene, m-tolyloxyphosphazene, and p-tolyloxyphosphazene.
  • (Poly) xylyl such as (poly) tolyloxyphosphazene, o, m-xylyloxyphosphazene, o, p-xylyloxyphosphazene, m, p-xylyloxyphosphazene
  • phenoxy such as oxyphosphazene, o, m, p-trimethylphenyloxyphosphazene, phenoxy o-tolyloxyphosphazene, phenoxy m-tolyloxyphosphazene, phenoxy p-tolyloxyphosphazene
  • phenoxytolyloxyxylyloxyphosphazene phenoxyo, m, p-trimethylphenyloxyphosphazene, such as xyoxy, p-xylyloxyphosphazene
  • cyclic phosphazene flame retardant represented by the formula (1) cyclic phenoxyphosphazene in which R 1 and R 2 are phenyl groups is particularly preferable.
  • a cyclic phenoxyphosphazene flame retardant include, for example, a hexachlorochlorosilane and a linear chlorophosphazene mixture obtained by reacting ammonium chloride and phosphorus pentachloride at a temperature of 120 to 130 ° C.
  • Cyclic phosphazenes such as cyclotriphosphazene, octachlorocyclotetraphosphazene, decachlorocyclopentaphosphazene, etc.
  • the cyclic phenoxyphosphazene flame retardant is preferably a compound in which a in the formula (1) is an integer of 3 to 8, and may be a mixture of compounds having different a.
  • a chain phenoxy phosphazene flame retardant in which R 3 and R 4 are phenyl groups is particularly preferable.
  • Such a chain phenoxyphosphazene flame retardant is, for example, direct polymerization of hexachlorocyclotriphosphazene obtained by the above method at a temperature of 220 to 250 ° C., and the obtained degree of polymerization is 3 to 10,000. Examples thereof include compounds obtained by substituting chain dichlorophosphazene with a phenoxy group.
  • b in the formula (2) is preferably 3 to 1000, more preferably 3 to 100, and further preferably 3 to 25.
  • Examples of the crosslinked phosphazene-based flame retardant include a compound having a crosslinked structure of 4,4′-sulfonyldiphenylene (that is, bisphenol S residue), and a crosslinked 2,2- (4,4′-diphenylene) isopropylidene group.
  • a crosslinked structure of a 4,4′-diphenylene group such as a compound having a crosslinked structure of a 4,4′-oxydiphenylene group or a compound having a crosslinked structure of 4,4′-thiodiphenylene group. And the like.
  • crosslinked phosphazene-based flame retardant a crosslinked phenoxyphosphazene-based flame retardant obtained by crosslinking a cyclic phenoxyphosphazene-based flame retardant in which R 1 and R 2 are phenyl groups in the formula (1) with the above-described crosslinking group.
  • a crosslinked phenoxyphosphazene-based flame retardant obtained by crosslinking a chain phenoxyphosphazene-based flame retardant in which R 3 and R 4 are phenyl groups in the formula (2) with the crosslinking group A crosslinked phenoxyphosphazene flame retardant obtained by crosslinking a cyclic phenoxyphosphazene flame retardant with the above crosslinking group is more preferable.
  • the lower limit of the content of the phosphazene flame retardant in the resin composition of the present invention is preferably 1% by mass or more, and more preferably 2% by mass or more of the resin composition.
  • the upper limit is preferably 20% by mass or less, preferably 15% by mass or less, more preferably 14% by mass or less, still more preferably 13% by mass or less, and 12% by mass. It is even more preferable that: By setting it as 11 mass% or less, even if it reduces the total energy input amount in the case of laser welding, laser weldability can be made higher.
  • the resin composition of the present invention may contain only one type of phosphazene flame retardant or two or more types. When 2 or more types are included, the total amount is preferably within the above range.
  • the resin composition of the present invention preferably contains substantially no flame retardant other than the phosphazene flame retardant. “Substantially free” means that the content of the flame retardant other than the phosphazene-based flame retardant is 10% by mass or less of the amount of the phosphazene-based flame retardant, preferably 5% by mass or less. It is more preferable that the amount is not more than mass%.
  • the resin composition of the present invention contains a zinc metal oxide.
  • the zinc metal oxide is preferably zinc borate.
  • Zinc borate can be obtained from zinc oxide and boric acid, for example, ZnO ⁇ B 2 O 3 ⁇ 2H 2 O and 2ZnO ⁇ 3B 2 O 3 ⁇ 3.5H 2 dihydrate and anhydrides such O Is mentioned.
  • the lower limit of the zinc metal oxide content in the resin composition of the present invention is preferably 3% by mass or more, more preferably 4% by mass or more, and more preferably 5% by mass or more. More preferably it is.
  • As an upper limit it is preferable that it is 16 mass% or less, It is more preferable that it is 15 mass% or less, It is further more preferable that it is 14 mass% or less.
  • the resin composition of the present invention may contain only one kind of zinc metal oxide, or may contain two or more kinds. When 2 or more types are included, the total amount is preferably within the above range. It is preferable that the resin composition of the present invention does not substantially contain a flame retardant aid other than zinc metal oxide. “Substantially free” means that the content of the flame retardant aid other than zinc metal oxide is 10% by mass or less of the compounding amount of zinc metal oxide, and preferably 5% by mass or less. More preferably, it is 1 mass% or less.
  • the resin composition of the present invention preferably contains glass fibers.
  • a glass fiber consists of glass compositions, such as A glass, C glass, E glass, and S glass, and E glass (an alkali free glass) is especially preferable. Also included are zero boron glass and boron free glass.
  • the glass fiber used for the resin composition of the present invention may be a single fiber or a plurality of single fibers twisted together.
  • the form of glass fiber is “glass roving” in which single fibers or a plurality of twisted strands are continuously wound, “chopped strand” having a cut length (number average fiber length) of 1 to 10 mm, and grinding length ( Any of “milled fiber” having a number average fiber length) of 10 to 500 ⁇ m may be used.
  • Such glass fibers are commercially available from Asahi Fiber Glass Co., Ltd. under the trade names “Glasslon Chopped Strand” and “Glasslon Milled Fiber”, and are easily available. Glass fibers having different forms can be used in combination.
  • glass fibers having an irregular cross-sectional shape are also preferable.
  • This irregular cross-sectional shape means that the flatness indicated by the long diameter / short diameter ratio (D2 / D1) when the long diameter of the cross section perpendicular to the length direction of the fiber is D2 and the short diameter is D1, is, for example, 1. It is preferably 5 to 10, more preferably 2.5 to 10, more preferably 2.5 to 8, and particularly preferably 2.5 to 5.
  • the description in paragraphs 0065 to 0072 of JP2011-195820A can be referred to, and the contents thereof are incorporated in the present specification.
  • the glass fiber in the present invention may be a glass bead.
  • the glass beads are spherical ones having an outer diameter of 10 to 100 ⁇ m.
  • they are commercially available from Potters Barotini under the trade name “EGB731” and can be easily obtained.
  • Glass flakes are flakes having a thickness of 1 to 20 ⁇ m and a side length of 0.05 to 1 mm.
  • they are commercially available from Nippon Sheet Glass under the trade name “Fureka”. Are readily available.
  • the glass fiber used in the present invention is particularly preferably a glass fiber having a weight average fiber diameter of 1 to 20 ⁇ m and a cut length (number average fiber length) of 1 to 10 mm.
  • the weight average fiber diameter is calculated as a weight average fiber diameter in a circle having the same area.
  • the glass fiber used in the present invention may be bundled with a sizing agent.
  • the sizing agent is preferably a urethane sizing agent.
  • the glass fiber content in the resin composition of the present invention is preferably 20% by mass or more, and more preferably 25% by mass or more in the resin composition. Further, the glass fiber content in the resin composition of the present invention is preferably 50% by mass or less, more preferably 45% by mass or less, and 40% by mass or less in the resin composition. More preferably, it is more preferably 35% by mass or less.
  • the resin composition of the present invention may contain only one type of glass fiber, or may contain two or more types. When 2 or more types are included, the total amount is preferably within the above range.
  • the light-transmitting dye used in the present invention is usually a black dye, specifically, nigrosine, naphthalocyanine, aniline black, phthalocyanine, porphyrin, perinone, quaterylene, azo dye, anthraquinone, pyrazolone, squaric acid derivative, and Examples include immonium dyes.
  • Commercially available products include e-BIND LTW-8931H and e-BIND LTW-8701H, which are colorants manufactured by Orient Chemical Industry Co., Ltd., Past Yellow 8000, Plas Red M 8315, and Oil Green manufactured by Arimoto Chemical Co., Ltd.
  • the light-transmitting dye may be a mixture of chromatic colorants. For example, a mode in which a red colorant, a blue colorant, and a green colorant are mixed to approach the black colorant is exemplified.
  • the content of the light-transmitting pigment in the resin composition of the present invention is preferably 0.001 part by mass or more and more preferably 0.006 part by mass or more with respect to 100 parts by mass of the resin composition. Furthermore, it may be 0.018 parts by mass or more, 0.024 parts by mass or more, 0.030 parts by mass or more, 0.050 parts by mass or more. Further, the upper limit of the content of the light-transmitting pigment is preferably 5.0 parts by mass or less, more preferably 3.0 parts by mass or less, and 1.0 part by mass or less of the resin composition. More preferably, it may be 0.20 parts by mass or less, 0.10 parts by mass or less, or 0.060 parts by mass or less.
  • One kind of light-transmitting dye may be contained, or two or more kinds thereof may be contained. When 2 or more types are included, the total amount is preferably within the above range. Moreover, it is preferable that the resin composition of this invention does not contain carbon black substantially. “Substantially free” means, for example, 0.0001% by mass or less of the resin composition.
  • the resin composition of the present invention may contain a nucleating agent in order to adjust the crystallization rate.
  • the kind of the nucleating agent is not particularly limited, but talc, boron nitride, mica, kaolin, calcium carbonate, barium sulfate, silicon nitride, potassium titanate and molybdenum disulfide are preferable, and talc and boron nitride are more preferable. Talc is more preferable.
  • the resin composition of the present invention contains a nucleating agent, the content thereof is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 8 parts by mass with respect to 100 parts by mass of the specific polyamide resin. 0.1 to 6 parts by mass is more preferable.
  • the resin composition of the present invention may contain only one kind of nucleating agent, or may contain two or more kinds. When 2 or more types are included, the total amount is preferably within the above range.
  • the resin composition of the present invention may contain a lubricant.
  • a lubricant include aliphatic carboxylic acids, salts of aliphatic carboxylic acids, esters of aliphatic carboxylic acids and alcohols, aliphatic hydrocarbon compounds having a number average molecular weight of 200 to 15,000, and polysiloxane silicone oils. Can be mentioned.
  • the aliphatic carboxylic acid examples include saturated or unsaturated aliphatic monovalent, divalent, or trivalent carboxylic acids.
  • the aliphatic carboxylic acid includes alicyclic carboxylic acid.
  • preferred aliphatic carboxylic acids are monovalent or divalent carboxylic acids having 6 to 36 carbon atoms, and aliphatic saturated monovalent carboxylic acids having 6 to 36 carbon atoms are more preferred.
  • aliphatic carboxylic acids include palmitic acid, stearic acid, caproic acid, capric acid, lauric acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, mellicic acid, tetratriacontanoic acid, montanic acid, adipine Examples include acids and azelaic acid.
  • the salt of the aliphatic carboxylic acid include sodium salt, potassium salt, calcium salt, and magnesium salt.
  • the aliphatic carboxylic acid in the ester of an aliphatic carboxylic acid and an alcohol for example, the same one as the aliphatic carboxylic acid can be used.
  • the alcohol include saturated or unsaturated monohydric or polyhydric alcohols. These alcohols may have a substituent such as a fluorine atom or an aryl group. Among these, monohydric or polyvalent saturated alcohols having 30 or less carbon atoms are preferable, and aliphatic or alicyclic saturated monohydric alcohols or aliphatic saturated polyhydric alcohols having 30 or less carbon atoms are more preferable.
  • alcohols include octanol, decanol, dodecanol, stearyl alcohol, behenyl alcohol, ethylene glycol, diethylene glycol, glycerin, pentaerythritol, 2,2-dihydroxyperfluoropropanol, neopentylene glycol, ditrimethylolpropane, dipentaerythritol and the like. Is mentioned.
  • esters of aliphatic carboxylic acids and alcohols include beeswax (a mixture based on myricyl palmitate), stearyl stearate, behenyl behenate, stearyl behenate, glycerin monopalmitate, glycerin monostearate
  • esters of aliphatic carboxylic acids and alcohols include beeswax (a mixture based on myricyl palmitate), stearyl stearate, behenyl behenate, stearyl behenate, glycerin monopalmitate, glycerin monostearate
  • examples thereof include rate, glycerol distearate, glycerol tristearate, pentaerythritol monopalmitate, pentaerythritol monostearate, pentaerythritol distearate, pentaerythritol tristearate, pentaerythritol tetrastea
  • Examples of the aliphatic hydrocarbon having a number average molecular weight of 200 to 15,000 include liquid paraffin, paraffin wax, microwax, polyethylene wax, Fischer-Tropsch wax, and ⁇ -olefin oligomer having 3 to 12 carbon atoms.
  • the aliphatic hydrocarbon includes alicyclic hydrocarbons.
  • the number average molecular weight of the aliphatic hydrocarbon is preferably 5,000 or less.
  • paraffin wax, polyethylene wax, or a partial oxide of polyethylene wax is preferable, and paraffin wax and polyethylene wax are more preferable.
  • the content thereof is preferably 0.05 to 1 part by mass, more preferably 0.1 to 0.8 part by mass with respect to 100 parts by mass of the specific polyamide resin.
  • the amount is preferably 0.2 to 0.6 parts by mass.
  • the resin composition of the present invention may contain only one type of lubricant, or may contain two or more types. When 2 or more types are included, the total amount is preferably within the above range.
  • the resin composition of the present invention may contain other components without departing from the spirit of the present invention.
  • additives include fillers other than glass fibers, light stabilizers, antioxidants, flame retardants other than phosphazene flame retardants, flame retardant aids other than zinc metal oxides, ultraviolet absorbers, and optical brighteners.
  • the content of the resin component and the light-transmitting pigment, and further glass fibers and other additives are adjusted so that the total of each component is 100% by mass.
  • the polyamide resin composition of the present invention particularly as a polyamide resin, 70 mol% or more of the structural units derived from dicarboxylic acid are derived from ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 9 to 20 carbon atoms. And more preferably at least one of pyrazolone, perinone, and anthraquinone as a light-transmitting dye, using a polyamide resin (more preferably, a polyamide resin in which 70 mol% or more of a structural unit derived from diamine is derived from metaxylylenediamine)
  • the form containing is mentioned. By setting it as such a form, the color transfer after the wet heat test of the obtained molded article can be suppressed more effectively, and it becomes possible to maintain high mechanical strength.
  • the resin composition of the present invention preferably has a transmittance of 40% or more at a wavelength of 1070 nm measured according to ISO 13468-2 when molded to a thickness of 1 mm, more preferably 45% or more, 50% or more, 53%. It can also be set as above.
  • the upper limit is not particularly defined, but even 60% or less sufficiently satisfies the practical performance.
  • the method for producing the resin composition of the present invention is not particularly limited, but a method of using a uniaxial or biaxial extruder having equipment capable of devolatilization from a vent port as a kneader is preferable.
  • the polyamide resin component, the glass fiber, and other additives blended as necessary may be supplied all at once to the kneader, or other blending components may be sequentially supplied to the polyamide resin component.
  • the glass fiber is preferably supplied from the middle of the extruder in order to suppress crushing during kneading. Moreover, you may mix and knead
  • the light-transmitting dye is prepared in advance as a masterbatch with a polyamide resin or the like, and then kneaded with other components (polyamide resin, glass fiber, etc.) to obtain the resin composition in the present invention.
  • a phosphazene flame retardant is masterbatched with a maleic anhydride-modified polyphenylene ether resin and then kneaded with other components.
  • the zinc metal oxide is partly masterbatched with a maleic anhydride-modified polyphenylene ether resin together with a phosphazene flame retardant, kneaded with other components, and the zinc metal oxide It is preferable to knead the remainder directly with the polyamide resin.
  • zinc metal oxide is disperse
  • the method for producing a molded product using the resin composition of the present invention is not particularly limited, and is a molding method generally used for thermoplastic resins, that is, molding methods such as injection molding, hollow molding, extrusion molding, press molding, and the like. Can be applied.
  • a particularly preferable molding method is injection molding because of good fluidity.
  • the resin temperature is preferably controlled at 250 to 300 ° C.
  • the present invention also discloses a kit having the resin composition and a light-absorbing resin composition containing a thermoplastic resin and a light-absorbing dye.
  • the kit of the present invention is preferably used for producing a molded article by laser welding. That is, the resin composition included in the kit plays a role as a light-transmitting resin composition, and a molded product formed by molding the light-transmitting resin composition is a transparent resin member for laser light at the time of laser welding. Become. On the other hand, a molded product formed by molding the light-absorbing resin composition serves as an absorbing resin member for laser light during laser welding.
  • the light absorbing resin composition used in the present invention includes a thermoplastic resin and a light absorbing dye.
  • the thermoplastic resin include polyamide resin, olefin resin, vinyl resin, styrene resin, acrylic resin, polyphenylene ether resin, polyester resin, polycarbonate resin, polyacetal resin, etc., and good compatibility with the resin composition From these points, a polyamide resin, a polyester resin, and a polycarbonate resin are particularly preferable, and a polyamide resin is more preferable.
  • 1 type may be sufficient as a thermoplastic resin, and 2 or more types may be sufficient as it.
  • the polyamide resin used in the light-absorbing resin composition is not limited in its kind, but the above-mentioned xylylenediamine-based polyamide resin is preferable.
  • the inorganic filler include glass fiber, carbon fiber, silica, alumina, talc, carbon black, and filler capable of absorbing laser light such as inorganic powder coated with a material that absorbs laser, and glass fiber is preferable. Glass fiber is synonymous with the glass fiber which may be mix
  • the light-absorbing dye has a maximum absorption wavelength in the range of the wavelength of laser light to be irradiated, that is, in the present invention, a wavelength range of 800 nm to 1100 nm, and is an inorganic pigment (carbon black (for example, acetylene black, lamp black). , Thermal black, furnace black, channel black, ketjen black, etc.), red pigments such as iron oxide red, orange pigments such as molybdate orange, white pigments such as titanium oxide), organic pigments (yellow pigments, Orange pigment, red pigment, blue pigment, green pigment, etc.). Among these, inorganic pigments are generally preferred because of their strong hiding power, and black pigments are more preferred. These light-absorbing dyes may be used in combination of two or more.
  • the content of the light absorbing pigment is preferably 0.01 to 30 parts by mass with respect to 100 parts by mass of the resin component.
  • the light-absorbing resin composition comprises a polyamide resin, a maleic anhydride-modified polyphenylene ether-based resin, a phosphazene-based flame retardant, and a zinc metal oxide.
  • the embodiment is a composition containing a light-absorbing dye.
  • glass fiber may be included. Details of the preferred range of polyamide resin, maleic anhydride-modified polyphenylene ether resin, phosphazene flame retardant, zinc metal oxide, and glass fiber in the light-absorbing resin composition are the same as those of the resin composition of the present invention. The same.
  • the component excluding the light-transmitting dye in the resin composition and the component excluding the light-absorbing dye in the light-absorbing resin composition are common, and 90% by mass.
  • the above is more common, and 95 to 100% by mass is more common.
  • a molded product (transparent resin member) formed by molding the resin composition of the present invention and a molded product (absorbing resin member) formed by molding the light-absorbing resin composition are molded by laser welding.
  • Product can be manufactured.
  • the transmissive resin member and the absorbing resin member can be firmly welded without using an adhesive.
  • the shape of the member is not particularly limited, but is usually a shape having at least a surface contact portion (a flat surface or a curved surface) because the members are joined and used by laser welding.
  • laser welding laser light that has passed through the transmissive resin member is absorbed by the absorbing resin member and melted, and both members are welded.
  • the molded article of the resin composition of the present invention has high permeability to laser light, it can be preferably used as a transmissive resin member.
  • the thickness of the member through which the laser beam is transmitted (the thickness in the laser transmission direction at the portion through which the laser beam is transmitted) can be appropriately determined in consideration of the application, the composition of the resin composition, and the like. Preferably, it is 4 mm or less.
  • the laser light source used for laser welding can be determined according to the light absorption wavelength of the light-absorbing dye, and is preferably a laser having a wavelength in the range of 800 to 1100 nm.
  • a semiconductor laser or a fiber laser can be used.
  • the total energy input amount during laser irradiation can be 200 J or less, and can be 180 J or less. Thus, even if the total energy input amount is reduced, the value is high in that high laser weldability can be achieved.
  • the lower limit value of the total energy input can be, for example, 5 J or more, further 10 J or more, and particularly 50 J or more.
  • the welded portions are brought into contact with each other.
  • surface contact is desirable between the welded portions of the two, and may be flat surfaces, curved surfaces, or a combination of flat and curved surfaces.
  • laser light is irradiated from the transparent resin member side.
  • the laser beam may be condensed at the interface between the two using a lens. The condensed beam passes through the transmissive resin member, is absorbed near the surface of the absorbent resin member, generates heat, and melts.
  • the heat is transferred to the permeable resin member by heat conduction and melted to form a molten pool at the interface between the two, and after cooling, both are joined.
  • the molded product in which the permeable resin member and the absorbent resin member are welded in this manner has high welding strength.
  • the molded product in this invention is the meaning containing the member which comprises those parts other than a finished product and components.
  • the resin composition and the light-absorbing resin composition are respectively ASTM standard No.
  • the tensile strength can be 900 N or more at a press pressure of 600 N, a laser beam diameter of 2 mm, a laser welding width of 16 mm, and a total energy input amount of 160 J when welding. Furthermore, it can be set to 1000 N or more, particularly 1300 N or more, more particularly 1500 N. The upper limit is not particularly defined, but, for example, the performance requirement is sufficiently satisfied even at 2000N or less.
  • the welding strength is measured according to the method described in Examples described later.
  • the molded product obtained by laser welding according to the present invention has good mechanical strength, high welding strength, and little resin damage due to laser light irradiation, so that it can be used in various applications such as various storage containers, -It can be applied to electronic equipment parts, office automate (OA) equipment parts, home appliance parts, machine mechanism parts, vehicle mechanism parts, and the like.
  • OA office automate
  • the resin composition and kit of the present invention are suitable for an in-vehicle camera module.
  • Polyamide resin MP10 Polymadoreraxylylene sebasamide, synthesized by the following method.
  • MXD6 polymetaxylylene adipamide
  • MP6 polymadoreraxylylene adipamide manufactured by Mitsubishi Gas Chemical Co., Inc., synthesized by the following method.
  • PA66 Polyamide 66, manufactured by Solvay, Stabamid 26AE1K
  • the internal temperature was raised, and when the temperature reached 250 ° C., the pressure inside the reaction vessel was reduced to 0.08 MPa, the internal temperature was further raised, and the melt polycondensation reaction was continued at 255 ° C. for 20 minutes to obtain a molecular weight.
  • the amount of ingredients of 1,000 or less was adjusted.
  • the inside of the system was pressurized with nitrogen, the contents were taken out in a strand shape, and pelletized with a pelletizer to obtain a polyamide resin.
  • the phosphorus atom concentration was 250 mass ppm.
  • This blend was charged from the screw root of an extruder (TEM 26SS manufactured by Toshiba Machine Co., Ltd.) using a twin screw cassette weighing feeder (CE-W-1-MP manufactured by Kubota Co.) and melt kneaded.
  • the temperature setting of the extruder was 265 ° C.
  • the strand exiting from the die exit was cut and pelletized with a pelletizer to obtain a flame retardant master batch.
  • Zinc metal oxide fire break ZB Zinc borate, manufactured by Hayakawa Shoji
  • Brominated polystyrene SAYTEX HP-3010 Albemarle Nippon Antimony Trioxide SICABATCH 404003: Masterbatch of polyamide 66 of antimony trioxide (antimony oxide content is 70% by mass) manufactured by SICA
  • Glass fiber T-296GH manufactured by Nippon Electric Glass Co., Ltd.
  • Light-transmissive dye LTW-8701H e-BIND LTW-8701H, polyamide 66 and light-transmissive dye masterbatch, manufactured by Orient Chemical Industries
  • CB1 Carbon black (manufactured by Mitsubishi Chemical Corporation, MA600B) master batch, the resin used for the master batch is MP6, and the content of carbon black in the master batch is 30% by mass.
  • CB2 Carbon black (manufactured by Mitsubishi Chemical Corporation, MA600B) masterbatch, the resin used in the masterbatch is MP10, and the carbon black content in the masterbatch is 30% by mass.
  • Example 1 Light transmitting member forming pellets (resin composition) and light absorbing member forming pellets (light absorbing resin composition) described in Table 1 below were produced. Specifically, each component shown in Table 1 to be described later, and the components other than glass fibers shown in Table 1 (units are mass%) are weighed and dry blended, and then biaxial. From the screw root of an extruder (Toshiki Machine Co., Ltd., TEM26SS), a twin screw type cassette weighing feeder (manufactured by Kubota Corporation, CE-W-1-MP) was used.
  • Glass fiber is fed into the above-mentioned twin screw extruder from the side of the extruder using a vibration cassette weighing feeder (manufactured by Kubota Corporation, CE-V-1B-MP) and melt kneaded with resin components and the like. Then, a light transmitting member forming pellet (resin composition) and a light absorbing member forming pellet (light absorbing resin composition) were obtained.
  • the temperature setting of the extruder was 280 ° C.
  • Each of the light transmitting member forming pellets and the light absorbing member forming pellets obtained above was dried at 120 ° C.
  • test piece for light transmitting member (1.0 mm thickness) and a test piece for light absorbing member (1.0 mm thickness) were prepared.
  • the cylinder temperature was 280 ° C.
  • the mold surface temperature of Example 1 and Comparative Example 1 was 110 ° C.
  • the mold surface temperature of Examples 2, 3 and Comparative Examples 2 and 3 was 130 ° C.
  • Light transmittance> The light transmission member test piece obtained above was measured for light transmittance (unit:%) at a wavelength of 1070 nm in accordance with ISO13468-2.
  • the welding strength of the test piece welded by the galvano mirror type scanning fiber laser welding was measured using the test piece for light transmitting member and the test piece for light absorbing member obtained above. Specifically, as shown in FIG. 1, the test pieces were overlapped and welded.
  • 1 indicates a test piece for a transmissive resin member
  • 2 indicates a test piece for an absorbent resin member
  • 3 indicates a laser irradiation site.
  • transmission resin member 1 and the protrusion part of the right lower end part of the absorption resin member 2 have each shown the gate side.
  • Laser irradiation uses a general galvanometer mirror type scan (distributor: Fine Device Co., Ltd., laser beam diameter: 2 mm diameter), laser output 30 W to 200 W, scan speed 70 to 2000 mm / sec, laser welding width ( The fiber laser (wavelength: 1070 nm) was irradiated so that the width (3 in FIG. 1) was 16 mm.
  • the press pressure of the light-transmitting member test piece and the light-absorbing member test piece was 0.5 MPa (600 N). Laser welding strength measurement was performed using the welded test piece.
  • the measurement of the welding strength was performed by using a tensile tester (Instron “5544 type”) (load cell ⁇ 2 kN), and welding and integrating the light transmitting member test piece and the light absorbing member test piece. Both ends in the major axis direction were clamped, and the test was performed at a tensile speed of 5 mm / min.
  • the base material failure means not the peel strength that is peeled off from the weld surface but the strength when the dumbbell pieces themselves other than the weld surface are broken.
  • Total energy input The relationship between the welding strength and the amount of energy input at the time of welding of the light transmitting member test piece and the light absorbing member test piece obtained above was confirmed. Specifically, it was calculated from the following formula.
  • Energy density (J / mm) Laser output (W) ⁇ Scan speed (mm / sec)
  • Total energy input (J) energy density (J / mm) x number of scans (times) x scan width (16 mm)
  • FIG. 1 shows the total energy input obtained by changing the number of scans in various ways.
  • Example 2 Example 3, Comparative Example 1, Comparative Example 2, Comparative Example 3 In Example 1, it changed similarly as shown in Table 1 and performed similarly. However, since Comparative Examples 1 to 3 were not welded, the total energy input amount could not be measured.
  • the resin composition of the present invention had high light transmittance and excellent laser weldability (Examples 1 to 3). Furthermore, as shown in FIG. 2, high laser weldability could be achieved even when the total amount of energy accompanying laser irradiation was small. On the other hand, even when other flame retardants and flame retardant aids were used, the light transmittance was low and laser welding was not performed (Comparative Examples 1 to 3).
  • Test piece for transparent resin member 2
  • Test piece for absorbent resin member 3 Laser irradiation site

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

高い光線透過率を有し、かつ、吸収樹脂部材とのレーザー溶着性に優れた成形品を提供可能な樹脂組成物、ならびに、キット、樹脂組成物の製造方法、成形品の製造方法および成形品の提供。ポリアミド樹脂と、無水マレイン酸変性ポリフェニレンエーテル系樹脂と、フォスファゼン系難燃剤と、亜鉛金属酸化物と、光透過性色素を含む、樹脂組成物。

Description

樹脂組成物、キット、樹脂組成物の製造方法、成形品の製造方法および成形品
 本発明は、樹脂組成物、キット、樹脂組成物の製造方法、成形品の製造方法および成形品に関する。特に、レーザー溶着用に適した樹脂組成物、ならびに、前記樹脂組成物を用いたキット、成形品の製造方法および成形品に関する。本発明の樹脂組成物は、レーザー溶着用の光を透過する側の樹脂組成物(光透過性樹脂組成物)として主として用いられる。
 代表的なエンジニアリングプラスチックであるポリアミド樹脂は、加工が容易であり、さらに、機械物性、電気特性、耐熱性、その他の物理的・化学的特性に優れている。このため、車両部品、電気・電子機器部品、その他の精密機器部品等に幅広く使用されている。最近では形状の複雑な部品もポリアミド樹脂で製造されるようになって来ており、例えば、インテークマニホールドのような中空部を有する部品などの接着には、各種溶着技術、例えば、接着剤溶着、振動溶着、超音波溶着、熱板溶着、射出溶着、レーザー溶着技術などが使用されている。
 しかしながら、接着剤による溶着は、硬化するまでの時間的ロスに加え、周囲の汚染などの環境負荷の問題がある。超音波溶着、熱板溶着などは、振動、熱による製品へのダメージや、摩耗粉やバリの発生により後処理が必要になるなどの問題が指摘されている。また、射出溶着は、特殊な金型や成形機が必要である場合が多く、さらに、材料の流動性が良くないと使用できないなどの問題がある。
 一方、レーザー溶着は、レーザー光に対して透過性(非吸収性、弱吸収性とも言う)を有する樹脂部材(以下、「透過樹脂部材」ということがある)と、レーザー光に対して吸収性を有する樹脂部材(以下、「吸収樹脂部材」ということがある)とを接触し溶着して、両樹脂部材を接合させる方法である。具体的には、透過樹脂部材側からレーザー光を接合面に照射して、接合面を形成する吸収樹脂部材をレーザー光のエネルギーで溶融させ接合する方法である。レーザー溶着は、摩耗粉やバリの発生が無く、製品へのダメージも少なく、さらに、ポリアミド樹脂自体、レーザー透過率が比較的高い材料であることから、ポリアミド樹脂製品のレーザー溶着技術による加工が、最近注目されている。
 上記透過樹脂部材は、通常、光透過性樹脂組成物を成形して得られる。このような光透過性樹脂組成物として、特許文献1には、(A)ポリアミド樹脂100質量部に対し、(B)23℃の屈折率が、1.560~1.600である強化充填材1~150質量部を配合してなるポリアミド樹脂組成物であって、前記(A)ポリアミド樹脂の少なくとも1種を構成する、少なくとも1種のモノマーが芳香環を含有することを特徴とする、レーザー溶着用ポリアミド樹脂組成物が記載されている。特許文献1の実施例では、ポリアミドMXD6とポリアミド66とのブレンド物、または、ポリアミド6I/6Tとポリアミド6とのブレンド物に、ガラス繊維と、着色剤を配合した樹脂組成物が開示されている。
特開2008-308526号公報
 ここで、樹脂組成物からなる成形品(透過性部材)は、吸収樹脂部材とのレーザー溶着性に優れることが求められる。また、レーザー溶着に用いる場合、透過性部材は、高い光線透過率が求められる。
 本発明はかかる課題を解決することを目的とするものであって、高い光線透過率を有し、かつ、吸収樹脂部材とのレーザー溶着性に優れた成形品を提供可能な樹脂組成物、ならびに、キット、樹脂組成物の製造方法、成形品の製造方法および成形品を提供することを目的とする。
 上記課題のもと、本発明者が鋭意検討を行った結果、無水マレイン酸変性ポリフェニレンエーテル系樹脂と、フォスファゼン系難燃剤と、亜鉛金属酸化物を併用することにより、上記課題を解決しうることを見出した。具体的には、下記手段<1>により、好ましくは<2>~<13>により、上記課題は解決された。
<1>ポリアミド樹脂と、無水マレイン酸変性ポリフェニレンエーテル系樹脂と、フォスファゼン系難燃剤と、亜鉛金属酸化物と、光透過性色素を含む、樹脂組成物。
<2>前記樹脂組成物を、1mm厚に成形したときの、ISO13468-2に従って測定した波長1070nmにおける透過率が40%以上である、<1>に記載の樹脂組成物。
<3>前記ポリアミド樹脂が、半芳香族ポリアミド樹脂を含む、<1>または<2>に記載の樹脂組成物。
<4>前記ポリアミド樹脂が、ジアミン由来の構成単位とジカルボン酸由来の構成単位から構成され、前記ジアミン由来の構成単位の50モル%以上がキシリレンジアミンに由来し、前記ジカルボン酸由来の構成単位の50モル%以上が、炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸に由来するポリアミド樹脂を含む、<1>または<2>に記載の樹脂組成物。
<5>前記亜鉛金属酸化物がホウ酸亜鉛を含む、<1>~<4>のいずれか1つに記載の樹脂組成物。
<6>さらにガラス繊維を含む、<1>~<5>のいずれか1つに記載の樹脂組成物。
<7>少なくとも、フォスファゼン系難燃剤を、無水マレイン酸変性ポリフェニレンエーテル系樹脂を用いてマスターバッチ化した後、他の成分と混練することを含む、<1>~<6>のいずれか1つに記載の樹脂組成物の製造方法。
<8>亜鉛金属酸化物は、その一部をフォスファゼン系難燃剤と共に、無水マレイン酸変性ポリフェニレンエーテル系樹脂を用いて、マスターバッチ化した後、他の成分と混練し、かつ、亜鉛金属酸化物の残余をポリアミド樹脂と直接に混練することを含む、<7>に記載の樹脂組成物の製造方法。
<9><1>~<6>のいずれか1つに記載の樹脂組成物と、熱可塑性樹脂と光吸収性色素とを含む光吸収性樹脂組成物とを有するキット。
<10>前記光吸収性樹脂組成物が、ポリアミド樹脂と、無水マレイン酸変性ポリフェニレンエーテル系樹脂と、フォスファゼン系難燃剤と、亜鉛金属酸化物と、光吸収性色素を含む、<9>に記載のキット。
<11>前記樹脂組成物と、前記光吸収性樹脂組成物を、それぞれ、ASTM規格4号ダンベル片であって、1.5mm厚の試験片に成形し、ガルバノミラースキャン式ファイバーレーザー溶着において、プレス圧600N、レーザービーム径2mm、レーザーによる溶着幅16mm、溶着した際の総エネルギー投入量160Jにおいて、引張強さが900N以上である、<10>に記載のキット。
<12><1>~<6>のいずれか1つに記載の樹脂組成物を成形してなる成形品と、熱可塑性樹脂と光吸収性色素とを含む光吸収性樹脂組成物を成形してなる成形品を、レーザー溶着させることを含む、成形品の製造方法。
<13><1>~<6>のいずれか1つに記載の樹脂組成物、または、<9>~<11>のいずれか1つに記載のキットを成形してなる成形品。
 本発明により、高い光線透過率を有し、かつ、吸収樹脂部材とのレーザー溶着性に優れた成形品を提供可能な樹脂組成物、ならびに、キット、樹脂組成物の製造方法、成形品の製造方法および成形品を提供可能になった。
ASTM規格4号ダンベル片を溶着させた状態を示す概略図である。 ガルバノミラースキャン式ファイバーレーザー溶着したときの、総エネルギー投入量と透過樹脂部材と吸収樹脂部材の溶着状態の関係を示す図である。
 以下において、本発明の内容について詳細に説明する。なお、本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
 本発明の樹脂組成物は、ポリアミド樹脂と、無水マレイン酸変性ポリフェニレンエーテル系樹脂と、フォスファゼン系難燃剤と、亜鉛金属酸化物と、光透過性色素を含むことを特徴とする。このような構成とすることにより、光吸収性樹脂組成物とのレーザー溶着性に優れた樹脂組成物が得られる。このメカニズムは推定であるが、フォスファゼン系難燃剤が、樹脂の固化速度を遅くし、溶着強度を高めると推測される。さらに、無水マレイン酸変性ポリフェニレンエーテル系樹脂は、流動性が低いため、樹脂の流れをコントロールでき、フォスファゼン系難燃剤と相まって、溶着強度を高めたと推測される。フォスファゼン系難燃剤と亜鉛金属酸化物は、それぞれ、難燃剤および難燃助剤として知られているが、かかる化合物を配合して、レーザー溶着性が向上することは極めて驚くべきことである。さらに、本発明では、レーザー溶着のための光照射の総エネルギー投入量も少なくすることができる。
<ポリアミド樹脂>
 本発明の樹脂組成物は、ポリアミド樹脂を含む。
 本発明で用いるポリアミド樹脂は、その種類を特に定めるものではなく、脂肪族ポリアミド樹脂、半芳香族ポリアミド樹脂が例示される。
 本発明で用いるポリアミド樹脂は、半芳香族ポリアミド樹脂を含むことが好ましい。ここで、半芳香族ポリアミド樹脂とは、ジアミン由来の構成単位とジカルボン酸由来の構成単位から構成され、ジアミン由来の構成単位およびジカルボン酸由来の構成単位の合計構成単位の20~80モル%が芳香環を含む構成単位であることをいい、ジアミン由来の構成単位およびジカルボン酸由来の構成単位の合計構成単位の40~60モル%が芳香環を含む構成単位であることが好ましい。このような半芳香族ポリアミド樹脂を用いることにより、得られる樹脂成形品の機械的強度を高くすることができる。半芳香族ポリアミド樹脂としては、テレフタル酸系ポリアミド樹脂(ポリアミド6T、ポリアミド9T、ポリアミド10T)、後述するキシリレンジアミン系ポリアミド樹脂などが例示される。
 また、脂肪族ポリアミド樹脂としては、ポリアミド6、ポリアミド66、ポリアミド11、ポリアミド12等が例示される。
 さらに、本発明で用いるポリアミド樹脂としては、特開2011-132550号公報の段落0011~0013の記載を参酌することができ、これらの内容は本明細書に組み込まれる。
 本発明で用いるポリアミド樹脂は、少なくとも1種が、ジアミン由来の構成単位とジカルボン酸由来の構成単位から構成され、前記ジアミン由来の構成単位の50モル%以上がキシリレンジアミンに由来し、ジカルボン酸由来の構成単位の50モル%以上が、炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸に由来するポリアミド樹脂が好ましい。本明細書では、前記ポリアミド樹脂を、キシリレンジアミン系ポリアミド樹脂ということがある。キシリレンジアミンは、メタキシリレンジアミンおよび/またはパラキシリレンジアミンが好ましく、少なくともメタキシリレンジアミンを含むことがより好ましく、ジアミン由来の構成単位の30~100モル%がメタキシリレンジアミンであることがさらに好ましい。
 キシリレンジアミン系ポリアミド樹脂のジアミン由来の構成単位は、より好ましくは70モル%以上、さらに好ましくは75モル%以上、一層好ましくは80モル%以上、より一層好ましくは85モル%以上、さらに一層好ましくは90モル%以上がキシリレンジアミンに由来する。キシリレンジアミン系ポリアミド樹脂のジカルボン酸由来の構成単位は、より好ましくは70モル%以上、さらに好ましくは80モル%以上、一層好ましくは90モル%以上、より一層好ましくは95モル%以上が、炭素数が4~20のα,ω-直鎖脂肪族ジカルボン酸に由来する。
 キシリレンジアミン系ポリアミド樹脂の原料ジアミン成分として用いることができるメタキシリレンジアミンおよびパラキシリレンジアミン以外のジアミンとしては、テトラメチレンジアミン、ペンタメチレンジアミン、2-メチルペンタンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ドデカメチレンジアミン、2,2,4-トリメチル-ヘキサメチレンジアミン、2,4,4-トリメチルヘキサメチレンジアミン等の脂肪族ジアミン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、1,3-ジアミノシクロヘキサン、1,4-ジアミノシクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、2,2-ビス(4-アミノシクロヘキシル)プロパン、ビス(アミノメチル)デカリン、ビス(アミノメチル)トリシクロデカン等の脂環式ジアミン、ビス(4-アミノフェニル)エーテル、パラフェニレンジアミン、ビス(アミノメチル)ナフタレン等の芳香環を有するジアミン等を例示することができ、1種または2種以上を混合して使用できる。
 キシリレンジアミン系ポリアミド樹脂の原料ジカルボン酸成分として用いるのに好ましい炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸としては、例えば、コハク酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、アジピン酸、セバシン酸、ウンデカン二酸、ドデカン二酸等の脂肪族ジカルボン酸が例示でき、1種または2種以上を混合して使用できるが、これらの中でもポリアミド樹脂の融点が成形加工するのに適切な範囲となることから、アジピン酸またはセバシン酸がより好ましい。
 上記炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸以外のジカルボン酸成分としては、イソフタル酸、テレフタル酸、オルソフタル酸等のフタル酸化合物、1,2-ナフタレンジカルボン酸、1,3-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、1,6-ナフタレンジカルボン酸、1,7-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸といったナフタレンジカルボン酸の異性体等を例示することができ、1種または2種以上を混合して使用できる。
 本発明におけるキシリレンジアミン系ポリアミド樹脂の好ましい一実施形態として、ジアミン由来の構成単位の50モル%以上(好ましくは70モル%以上、より好ましくは90モル%以上)がキシリレンジアミンに由来し、ジカルボン酸由来の構成単位の50モル%以上(好ましくは70モル%以上、より好ましくは90モル%以上)がアジピン酸またはセバシン酸に由来するものが例示される。
 さらに、上記実施形態において、キシリレンジアミンは、メタキシリレンジアミンおよび/またはパラキシリレンジアミンが好ましく、少なくともメタキシリレンジアミンを含むことがより好ましく、ジアミン由来の構成単位の30~100モル%がメタキシリレンジアミンであることがさらに好ましい。
 なお、キシリレンジアミン系ポリアミド樹脂は、ジアミン由来の構成単位とジカルボン酸由来の構成単位を主成分として構成されるが、これら以外の構成単位を完全に排除するものではなく、ε-カプロラクタムやラウロラクタム等のラクタム類、アミノカプロン酸、アミノウンデカン酸等の脂肪族アミノカルボン酸類由来の構成単位を含んでいてもよいことは言うまでもない。ここで主成分とは、キシリレンジアミン系ポリアミド樹脂を構成する構成単位のうち、ジアミン由来の構成単位とジカルボン酸由来の構成単位の合計数が全構成単位のうち最も多いことをいう。本発明では、キシリレンジアミン系ポリアミド樹脂における、ジアミン由来の構成単位とジカルボン酸由来の構成単位の合計は、全構成単位の90%以上を占めることが好ましく、95%以上を占めることがより好ましい。
 ポリアミド樹脂の融点は、150~350℃であることが好ましく、180~330℃であることがより好ましく、190~300℃であることがさらに好ましく、200~280℃であることが一層好ましい。
 融点は、示差走査熱量に従い、JIS K7121およびK7122に準じて測定できる。
 ポリアミド樹脂は、数平均分子量(Mn)の下限が、6,000以上であることが好ましく、8,000以上であることがより好ましく、10,000以上であることがさらに好ましく、15,000以上であることが一層好ましく、20,000以上であることがより一層好ましく、22,000以上であることがさらに一層好ましい。上記Mnの上限は、35,000以下が好ましく、30,000以下がより好ましく、28,000以下がさらに好ましく、26,000以下が一層好ましい。このような範囲であると、耐熱性、弾性率、寸法安定性、成形加工性がより良好となる。
 本発明の樹脂組成物は、キシリレンジアミン系ポリアミド樹脂を樹脂組成物の20~70質量%の割合で含むことが好ましい。キシリレンジアミン系ポリアミド樹脂は、樹脂組成物の22質量%以上の割合で含むことが好ましく、25質量%以上の割合で含むことがより好ましく、30質量%以上であることがさらに好ましい。また、65質量%以下の割合で含むことが好ましく、60質量%以下の割合で含むことがより好ましい。
 キシリレンジアミン系ポリアミド樹脂は、1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合は、合計量が上記範囲となることが好ましい。
 本発明の樹脂組成物は、ポリアミド樹脂を樹脂組成物の20~70質量%の割合で含むことが好ましい。ポリアミド樹脂は、樹脂組成物の22質量%以上の割合で含むことが好ましく、25質量%以上の割合で含むことがより好ましく、28質量%以上であることがさらに好ましい。また、65質量%以下の割合で含むことが好ましく、60質量%以下の割合で含むことがより好ましい。
 ポリアミド樹脂は、1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合は、合計量が上記範囲となることが好ましい。
<無水マレイン酸変性ポリフェニレンエーテル系樹脂>
 無水マレイン酸変性ポリフェニレンエーテル系樹脂は、ポリフェニレンエーテル系樹脂が無水マレイン酸変性されたものである。また、無水マレイン酸変性ポリフェニレンエーテル系樹脂中の無水マレイン酸の量が、マレイン酸量換算で0.01~1.0質量%であり、0.1~0.7質量%であることが好ましい。このような範囲とすることにより、高い機械的強度を達成できる。
 ここで、無水マレイン酸変性ポリフェニレンエーテル系樹脂中の無水マレイン酸の量とは、ポリフェニレンエーテル系樹脂を変性するために用いた無水マレイン酸がポリフェニレンエーテル系樹脂と反応した量をマレイン酸量で換算した場合の質量を言う。
 ポリフェニレンエーテル系樹脂としては、例えば、ポリ(2,6-ジメチル-1,4-フェニレン)エ-テル、ポリ(2,6-ジエチル-1,4-フェニレン)エ-テル、ポリ(2,6-ジプロピル-1,4-フェニレン)エ-テル、ポリ(2-メチル-6-エチル-1,4-フェニレン)エ-テル、ポリ(2-メチル-6-プロピル-1,4-フェニレン)エ-テル等が挙げられ、特に、ポリ(2,6-ジメチル-1,4-フェニレン)エ-テルが好ましい。
 好ましいポリフェニレンエーテル系樹脂は、クロロホルム中、温度30℃で測定した固有粘度が通常0.2~0.6dL/g、より好ましくは0.3~0.5dL/gである。固有粘度が0.2dL/g未満の場合は耐衝撃性が不十分な場合があり、0.6dL/gを超えると成形性や外観が低下する傾向にある。なお、上記範囲内の固有粘度の調整は、異なる固有粘度のポリフェニレンエーテル系樹脂2種以上を併用することにより行ってもよい。
 無水マレイン酸変性ポリフェニレンエーテル系樹脂の含有量は、下限値が、樹脂組成物の1.0質量%以上であることが好ましく、2.5質量%以上であることがより好ましい。上限値としては、20.0質量%以下であることが好ましく、15.0質量%以下であることがより好ましく、12.0質量%以下であることがさらに好ましく、9.0質量%以下であることが一層好ましく、7.0質量%以下であることがより一層好ましく、5.5質量%以下であることがさらに一層好ましい。
20.0質量%以下とすることにより、レーザー溶着の際の総エネルギー投入量を減らしても、レーザー溶着性をより高くすることができる。
 本発明の樹脂組成物は、無水マレイン酸変性ポリフェニレンエーテル系樹脂を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
<他の樹脂成分>
 本発明の樹脂組成物は、ポリアミド樹脂および無水マレイン酸変性ポリフェニレンエーテル系樹脂以外の他の樹脂成分を含んでいてもよい。
 他の樹脂としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル樹脂、ポリカーボネート樹脂、ポリアセタール樹脂等の熱可塑性樹脂を用いることができる。
 本発明の樹脂組成物は、ポリアミド樹脂および無水マレイン酸変性ポリフェニレンエーテル系樹脂以外の樹脂成分を実質的に配合しない構成としてもよく、例えば、樹脂組成物に含まれる樹脂成分全量の5質量%以下であることをいい、さらには、1質量%以下、特には、0.4質量%以下とすることもできる。
 すなわち、本発明の樹脂組成物は、ポリアミド樹脂と無水マレイン酸変性ポリフェニレンエーテル系樹脂の合計で、樹脂組成物に含まれる樹脂成分の95質量%以上を占めることが好ましい。
<フォスファゼン系難燃剤>
 本発明の樹脂組成物は、フォスファゼン系難燃剤を含む。フォスファゼン系難燃剤を配合することにより、樹脂組成物の難燃性を高めるとともに、臭素化ポリスチレン系難燃剤などと比べるとLTW染料の着色力に優れ、樹脂との相溶性に優れるという効果が期待できる。
 本発明で用いるフォスファゼン系難燃剤は、分子中に-P=N-結合を有する有機化合物であり、好ましくは、式(1)で表される環状フォスファゼン系難燃剤、式(2)で表される鎖状フォスファゼン系難燃剤、ならびに、前記フォスファゼン系難燃剤が架橋基によって架橋されてなる架橋フォスファゼン系難燃剤からなる群より選択される少なくとも1種であることが好ましい。架橋基としては、酸素原子が好ましい。架橋基は、式(1)で表される環状フォスファゼン系難燃剤(分子)のRおよび/またはRが他の分子(式(1)で表される環状フォスファゼン系難燃剤)のRおよび/またはRと、酸素原子によって架橋されていることがより好ましい。
Figure JPOXMLDOC01-appb-C000001
式(1)中、aは3~25の整数であり、R1およびR2は、同一または異なっていてもよく、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリロキシ基、アミノ基、ヒドロキシ基、アリール基またはアルキルアリール基を示す。
Figure JPOXMLDOC01-appb-C000002
式(2)中、bは3~10000の整数であり、R3およびR4は、同一または異なっていてもよく、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリロキシ基、アミノ基、ヒドロキシ基、アリール基またはアルキルアリール基を示す。
 R5は、-N=P(OR33基、-N=P(OR43基、-N=P(O)OR3基、-N=P(O)OR4基から選ばれる少なくとも1種を示し、R6は、-P(OR34基、-P(OR44基、-P(O)(OR32基、-P(O)(OR42基から選ばれる少なくとも1種を示す。
 式(1)および式(2)中、アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、ドデシル等の炭素数1~15のアルキル基が挙げられ、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基、ペンチル基、ヘキシル基等の炭素数1~6のアルキル基が好ましく、メチル基、エチル基、プロピル基等の炭素数1~4のアルキル基が特に好ましい。
 シクロアルキル基としては、例えば、シクロペンチル基、シクロヘキシル基等の炭素数5~14のシクロアルキル基が挙げられ、炭素数5~8のシクロアルキル基が好ましい。
 アルケニル基としては、例えば、ビニル基、アリル基等の炭素数2~8のアルケニル基が挙げられる。シクロアルケニル基としては、例えば、シクロペンチル基、シクロヘキシル基等の炭素数5~12のシクロアルケニル基が挙げられる。
 アルキニル基としては、例えば、エチニル基、プロピニル基等の炭素数2~8のアルキニル基やエチニルベンゼン基等のアリール基を置換基として有するアルキニル基等も挙げられる。
 アリール基としては、例えば、フェニル基、メチルフェニル(すなわち、トリル)基、ジメチルフェニル(すなわち、キシリル)基、トリメチルフェニル基、ナフチル基等の炭素数6~20のアリール基が挙げられるが、なかでも炭素数6~10のアリール基が好ましく、フェニル基が特に好ましい。
 アルキルアリール基としては、例えば、ベンジル基、フェネチル基、フェニルプロピル基等の炭素数6~20のアラルキル基が挙げられるが、なかでも炭素数7~10のアラルキル基が好ましく、ベンジル基が特に好ましい。
 なかでも、式(1)におけるR1およびR2、式(2)におけるR3およびR4が、アリール基、アリールアルキル基であるものが好ましい。このような芳香族フォスファゼン系難燃剤を用いることで、樹脂組成物の熱安定性をより効果的に高めることができる。このような観点より、上記R1、R2、R3およびR4は、アリール基であることがより好ましく、フェニル基であることが特に好ましい。
 式(1)または式(2)で表されるフォスファゼン系難燃剤としては、例えば、フェノキシフォスファゼン、o-トリルオキシフォスファゼン、m-トリルオキシフォスファゼン、p-トリルオキシフォスファゼン等の(ポリ)トリルオキシフォスファゼン、o,m-キシリルオキシフォスファゼン、o,p-キシリルオキシフォスファゼン、m,p-キシリルオキシフォスファゼン等の(ポリ)キシリルオキシフォスファゼン、o,m,p-トリメチルフェニルオキシフォスファゼン、フェノキシo-トリルオキシフォスファゼン、フェノキシm-トリルオキシフォスファゼン、フェノキシp-トリルオキシフォスファゼン等の(ポリ)フェノキシトリルオキシフォスファゼン、フェノキシo,m-キシリルオキシフォスファゼン、フェノキシo,p-キシリルオキシフォスファゼン、フェノキシm,p-キシリルオキシフォスファゼン等(ポリ)フェノキシトリルオキシキシリルオキシフォスファゼン、フェノキシo,m,p-トリメチルフェニルオキシフォスファゼン等が例示できる。
 式(1)で表される環状フォスファゼン系難燃剤としては、R1およびR2がフェニル基である環状フェノキシフォスファゼンが特に好ましい。このような環状フェノキシフォスファゼン系難燃剤としては、例えば、塩化アンモニウムと五塩化リンとを120~130℃の温度で反応させて得られる環状および直鎖状のクロロフォスファゼン混合物から、ヘキサクロロシクロトリフォスファゼン、オクタクロロシクロテトラフォスファゼン、デカクロロシクロペンタフォスファゼン等の環状のクロルフォスファゼンを取り出した後にフェノキシ基で置換して得られる、フェノキシシクロトリフォスファゼン、オクタフェノキシシクロテトラフォスファゼン、デカフェノキシシクロペンタフォスファゼン等の化合物が挙げられる。また、前記環状フェノキシフォスファゼン系難燃剤は、式(1)中のaが3~8の整数である化合物が好ましく、aの異なる化合物の混合物であってもよい。
 上記aの平均は、3~5であることが好ましく、3~4であることがより好ましい。また、なかでも、a=3のものが50質量%以上、a=4のものが10~40質量%、a=5以上のものが合わせて30質量%以下である化合物の混合物が好ましい。
 式(2)で表される鎖状フォスファゼン系難燃剤としては、R3およびR4がフェニル基である鎖状フェノキシフォスファゼン系難燃剤が特に好ましい。このような鎖状フェノキシフォスファゼン系難燃剤は、例えば、上記の方法で得られるヘキサクロロシクロトリフォスファゼンを220~250℃の温度で開還重合し、得られた重合度3~10000の直鎖状ジクロロフォスファゼンをフェノキシ基で置換することにより得られる化合物が挙げられる。前記直鎖状フェノキシフォスファゼン系難燃剤の、式(2)中のbは、好ましくは3~1000、より好ましくは3~100、さらに好ましくは3~25である。
 架橋フォスファゼン系難燃剤としては、例えば、4,4'-スルホニルジフェニレン(すなわち、ビスフェノールS残基)の架橋構造を有する化合物、2,2-(4,4'-ジフェニレン)イソプロピリデン基の架橋構造を有する化合物、4,4'-オキシジフェニレン基の架橋構造を有する化合物、4,4'-チオジフェニレン基の架橋構造を有する化合物等の、4,4'-ジフェニレン基の架橋構造を有する化合物等が挙げられる。
 また、架橋フォスファゼン系難燃剤としては、式(1)においてR1、R2がフェニル基である環状フェノキシフォスファゼン系難燃剤が上記架橋基によって架橋されてなる架橋フェノキシフォスファゼン系難燃剤、または、式(2)においてR3、R4がフェニル基である鎖状フェノキシフォスファゼン系難燃剤が上記架橋基によって架橋されてなる架橋フェノキシフォスファゼン系難燃剤が難燃性の点から好ましく、環状フェノキシフォスファゼン系難燃剤が上記架橋基によって架橋されてなる架橋フェノキシフォスファゼン系難燃剤がより好ましい。
 本発明の樹脂組成物におけるフォスファゼン系難燃剤の含有量は、下限値が、樹脂組成物の1質量%以上であることが好ましく、2質量%以上であることがより好ましい。上限としては、20質量%以下であることが好ましく、15質量%以下であることが好ましく、14質量%以下であることが一層好ましく、13質量%以下であることがより一層好ましく、12質量%以下であることがさらに一層好ましい。11質量%以下とすることにより、レーザー溶着の際の総エネルギー投入量を減らしても、レーザー溶着性をより高くすることができる。
 本発明の樹脂組成物は、フォスファゼン系難燃剤を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
 本発明の樹脂組成物は、フォスファゼン系難燃剤以外の難燃剤を実質的に含まないことが好ましい。実質的に含まないとは、フォスファゼン系難燃剤以外の難燃剤の含有量が、フォスファゼン系難燃剤の配合量の10質量%以下であることをいい、5質量%以下であることが好ましく、1質量%以下であることがより好ましい。
<亜鉛金属酸化物>
 本発明の樹脂組成物は、亜鉛金属酸化物を含む。亜鉛金属酸化物を配合することにより、樹脂組成物の難燃性を高めるとともに、その添加量とポリアミド樹脂のリン原子濃度に関わらず、樹脂の透過率を低下させることが無いという効果が期待できる。亜鉛金属酸化物は、ホウ酸亜鉛が好ましい。ホウ酸亜鉛は、酸化亜鉛とホウ酸とから得ることができ、例えば、ZnO・B・2HOおよび2ZnO・3B・3.5HO等の水和物や無水物が挙げられる。
 本発明の樹脂組成物における亜鉛金属酸化物の含有量は、下限値が、樹脂組成物の3質量%以上であることが好ましく、4質量%以上であることがより好ましく、5質量%以上であることがさらに好ましい。上限としては、16質量%以下であることが好ましく、15質量%以下であることがより好ましく、14質量%以下であることがさらに好ましい。
 本発明の樹脂組成物は、亜鉛金属酸化物を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
 本発明の樹脂組成物は、亜鉛金属酸化物以外の難燃助剤を実質的に含まないことが好ましい。実質的に含まないとは、亜鉛金属酸化物以外の難燃助剤の含有量が、亜鉛金属酸化物の配合量の10質量%以下であることをいい、5質量%以下であることが好ましく、1質量%以下であることがより好ましい。
<ガラス繊維>
 本発明の樹脂組成物は、ガラス繊維を含むことが好ましい。
 ガラス繊維は、Aガラス、Cガラス、Eガラス、Sガラスなどのガラス組成からなり、特に、Eガラス(無アルカリガラス)が好ましい。また、ゼロボロンガラス、ボロンフリーガラスなども含まれる。
 本発明の樹脂組成物に用いるガラス繊維は、単繊維または単繊維を複数本撚り合わせたものであってもよい。
 ガラス繊維の形態は、単繊維や複数本撚り合わせたものを連続的に巻き取った「ガラスロービング」、カット長(数平均繊維長が)1~10mmである「チョップドストランド」、粉砕長さ(数平均繊維長)10~500μmである「ミルドファイバー」などのいずれであってもよい。かかるガラス繊維としては、旭ファイバーグラス社より、「グラスロンチョップドストランド」や「グラスロンミルドファイバー」の商品名で市販されており、容易に入手可能である。ガラス繊維は、形態が異なるものを併用することもできる。
 また、本発明ではガラス繊維として、異形断面形状を有するものも好ましい。この異形断面形状とは、繊維の長さ方向に直角な断面の長径をD2、短径をD1とするときの長径/短径比(D2/D1)で示される扁平率が、例えば、1.5~10であり、中でも2.5~10、さらには2.5~8、特に2.5~5であることが好ましい。かかる扁平ガラスについては、特開2011-195820号公報の段落0065~0072の記載を参酌でき、この内容は本明細書に組み込まれる。
 本発明におけるガラス繊維は、ガラスビーズであってもよい。ガラスビーズとは、外径10~100μmの球状のものであり、例えば、ポッターズ・バロティーニ社より、商品名「EGB731」として市販されており、容易に入手可能である。また、ガラスフレークとは、厚さ1~20μm、一辺の長さが0.05~1mmの燐片状のものであり、例えば、日本板硝子社より、「フレカ」の商品名で市販されており、容易に入手可能である。
 本発明で用いるガラス繊維は、特に、重量平均繊維径が1~20μm、カット長(数平均繊維長)が1~10mmのガラス繊維が好ましい。ここで、ガラス繊維の断面が扁平の場合、重量平均繊維径は、同じ面積の円における重量平均繊維径として算出する。
 本発明で用いるガラス繊維は、集束剤で集束されていてもよい。この場合の集束剤としては、ウレタン系集束剤が好ましい。
 本発明の樹脂組成物におけるガラス繊維の含有量は、樹脂組成物中、20質量%以上であることが好ましく、25質量%以上であることがより好ましい。さらに、本発明の樹脂組成物におけるガラス繊維の含有量は、樹脂組成物中、50質量%以下であることが好ましく、45質量%以下であることがより好ましく、40質量%以下であることがさらに好ましく、35質量%以下であることが一層好ましい。
 本発明の樹脂組成物は、ガラス繊維を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合は、合計量が上記範囲となることが好ましい。
<光透過性色素>
 本発明で用いる光透過性色素は、通常、黒色色素であり、具体的には、ニグロシン、ナフタロシアニン、アニリンブラック、フタロシアニン、ポルフィリン、ペリノン、クオテリレン、アゾ染料、アントラキノン、ピラゾロン、スクエア酸誘導体、およびインモニウム染料等が挙げられる。
 市販品としては、オリエント化学工業社製の着色剤であるe-BIND LTW-8731H、e-BIND LTW-8701H、有本化学社製の着色剤であるPlast Yellow 8000、Plast Red M 8315、Oil Green 5602、LANXESS社製の着色剤であるMacrolex Yellow 3G、Macrolex Red EG、Macrolex Green 3等が例示される。
 特に、光透過性色素として、ピラゾロン、ペリノンおよびアントラキノンの少なくとも1種を含むポリアミド樹脂組成物を用いると、得られる成形品の湿熱試験後の色移りを効果的に抑制できる。
 また、光透過性色素は、有彩色着色剤の混合物であってもよい。例えば、赤色着色剤と、青色着色剤と、緑色着色剤を混合して、黒色着色剤に近づける態様などが例示される。
 本発明の樹脂組成物における光透過性色素の含有量は、樹脂組成物の100質量部に対し、0.001質量部以上であることが好ましく、0.006質量部以上であることがより好ましく、さらには、0.018質量部以上、0.024質量部以上、0.030質量部以上、0.050質量部以上であってもよい。また、光透過性色素の含有量の上限値は、樹脂組成物の5.0質量部以下であることが好ましく、3.0質量部以下であることがより好ましく、1.0質量部以下であることが一層好ましく、0.20質量部以下、0.10質量部以下、0.060質量部以下であってもよい。
 光透過性色素は、1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合は、合計量が上記範囲となることが好ましい。
 また、本発明の樹脂組成物は、カーボンブラックを実質的に含まないことが好ましい。実質的に含まないとは、例えば、樹脂組成物の0.0001質量%以下であることをいう。
<核剤>
 本発明の樹脂組成物は、結晶化速度を調整するために、核剤を含んでいてもよい。核剤の種類は、特に、限定されるものではないが、タルク、窒化ホウ素、マイカ、カオリン、炭酸カルシウム、硫酸バリウム、窒化珪素、チタン酸カリウムおよび二硫化モリブデンが好ましく、タルクおよび窒化ホウ素がより好ましく、タルクがさらに好ましい。
 本発明の樹脂組成物が核剤を含む場合、その含有量は、特定ポリアミド樹脂100質量部に対し、0.01~10質量部であることが好ましく、0.1~8質量部がより好ましく、0.1~6質量部がさらに好ましい。
 本発明の樹脂組成物は、核剤を、1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
<滑剤>
 本発明の樹脂組成物は、滑剤を含んでいてもよい。
 滑剤としては、例えば、脂肪族カルボン酸、脂肪族カルボン酸の塩、脂肪族カルボン酸とアルコールとのエステル、数平均分子量200~15,000の脂肪族炭化水素化合物、ポリシロキサン系シリコーンオイルなどが挙げられる。
 脂肪族カルボン酸としては、例えば、飽和または不飽和の脂肪族一価、二価または三価カルボン酸を挙げることができる。ここで脂肪族カルボン酸とは、脂環式のカルボン酸も包含する。これらの中で好ましい脂肪族カルボン酸は炭素数6~36の一価または二価カルボン酸であり、炭素数6~36の脂肪族飽和一価カルボン酸がより好ましい。かかる脂肪族カルボン酸の具体例としては、パルミチン酸、ステアリン酸、カプロン酸、カプリン酸、ラウリン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、メリシン酸、テトラトリアコンタン酸、モンタン酸、アジピン酸、アゼライン酸などが挙げられる。また、脂肪族カルボン酸の塩としては、ナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩が例示される。
 脂肪族カルボン酸とアルコールとのエステルにおける脂肪族カルボン酸としては、例えば、前記脂肪族カルボン酸と同じものが使用できる。一方、アルコールとしては、例えば、飽和または不飽和の一価または多価アルコールが挙げられる。これらのアルコールは、フッ素原子、アリール基などの置換基を有していてもよい。これらの中では、炭素数30以下の一価または多価の飽和アルコールが好ましく、炭素数30以下の脂肪族または脂環式飽和一価アルコールまたは脂肪族飽和多価アルコールがより好ましい。
 かかるアルコールの具体例としては、オクタノール、デカノール、ドデカノール、ステアリルアルコール、ベヘニルアルコール、エチレングリコール、ジエチレングリコール、グリセリン、ペンタエリスリトール、2,2-ジヒドロキシペルフルオロプロパノール、ネオペンチレングリコール、ジトリメチロールプロパン、ジペンタエリスリトール等が挙げられる。
 脂肪族カルボン酸とアルコールとのエステルの具体例としては、蜜ロウ(ミリシルパルミテートを主成分とする混合物)、ステアリン酸ステアリル、ベヘン酸ベヘニル、ベヘン酸ステアリル、グリセリンモノパルミテート、グリセリンモノステアレート、グリセリンジステアレート、グリセリントリステアレート、ペンタエリスリトールモノパルミテート、ペンタエリスリトールモノステアレート、ペンタエリスリトールジステアレート、ペンタエリスリトールトリステアレート、ペンタエリスリトールテトラステアレート等が挙げられる。
 数平均分子量200~15,000の脂肪族炭化水素としては、例えば、流動パラフィン、パラフィンワックス、マイクロワックス、ポリエチレンワックス、フィッシャ-トロプシュワックス、炭素数3~12のα-オレフィンオリゴマー等が挙げられる。なお、ここで脂肪族炭化水素としては、脂環式炭化水素も含まれる。また、脂肪族炭化水素の数平均分子量は好ましくは5,000以下である。
 これらの中では、パラフィンワックス、ポリエチレンワックスまたはポリエチレンワックスの部分酸化物が好ましく、パラフィンワックス、ポリエチレンワックスがより好ましい。
 本発明の樹脂組成物が滑剤を含む場合、その含有量は、特定ポリアミド樹脂100質量部に対し、0.05~1質量部であることが好ましく、0.1~0.8質量部がより好ましく、0.2~0.6質量部がさらに好ましい。
 本発明の樹脂組成物は、滑剤を、1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
<他の成分>
 本発明の樹脂組成物は、本発明の趣旨を逸脱しない範囲で他の成分を含んでいてもよい。このような添加剤としては、ガラス繊維以外のフィラー、光安定剤、酸化防止剤、フォスファゼン系難燃剤以外の難燃剤、亜鉛金属酸化物以外の難燃助剤、紫外線吸収剤、蛍光増白剤、滴下防止剤、帯電防止剤、防曇剤、アンチブロッキング剤、流動性改良剤、可塑剤、分散剤、抗菌剤などが挙げられる。これらの成分は、1種のみを用いてもよいし、2種以上を併用してもよい。
 なお、本発明の樹脂組成物は、各成分の合計が100質量%となるように、樹脂成分および光透過性色素、さらには、ガラス繊維や他の添加剤の含有量等が調整される。
 本発明のポリアミド樹脂組成物の実施形態の一例として、特に、ポリアミド樹脂として、ジカルボン酸由来の構成単位の70モル%以上が炭素数9~20のα,ω-直鎖脂肪族ジカルボン酸に由来するポリアミド樹脂(より好ましくは、さらに、ジアミン由来の構成単位の70モル%以上がメタキシリレンジアミンに由来するポリアミド樹脂)を用い、かつ、光透過性色素としてピラゾロン、ペリノンおよびアントラキノンの少なくとも1種を含む形態が挙げられる。このような形態とすることより、得られる成形品の湿熱試験後の色移りをより効果的に抑制でき、かつ、高い機械的強度を維持することが可能になる。
<樹脂組成物の特性>
 本発明の樹脂組成物は、1mm厚に成形したときの、ISO13468-2に従って測定した波長1070nmにおける透過率が40%以上であることが好ましく、さらには、45%以上、50%以上、53%以上とすることもできる。上限値については、特に定めるものではないが、60%以下でも十分に実用性能を満たすものである。
<樹脂組成物の製造方法>
 本発明の樹脂組成物の製造方法は、特に制限されないが、ベント口から脱揮できる設備を有する1軸または2軸の押出機を混練機として使用する方法が好ましい。上記ポリアミド樹脂成分、ガラス繊維および必要に応じて配合される他の添加剤は、混練機に一括して供給してもよいし、ポリアミド樹脂成分に他の配合成分を順次供給してもよい。ガラス繊維は、混練時に破砕するのを抑制するため、押出機の途中から供給することが好ましい。また、各成分から選ばれた2種以上の成分を予め混合、混練しておいてもよい。
 本発明では、光透過性色素は、ポリアミド樹脂等で、マスターバッチ化したものをあらかじめ調製した後、他の成分(ポリアミド樹脂、ガラス繊維等)と混練して、本発明における樹脂組成物を得ることができる。
 本発明では、少なくとも、フォスファゼン系難燃剤を無水マレイン酸変性ポリフェニレンエーテル系樹脂を用いてマスターバッチ化した後、他の成分と混練することを含むことが好ましい。特に、亜鉛金属酸化物は、その一部をフォスファゼン系難燃剤と共に、無水マレイン酸変性ポリフェニレンエーテル系樹脂を用いて、マスターバッチ化した後、他の成分と混練し、かつ、亜鉛金属酸化物の残余をポリアミド樹脂と直接に混練することが好ましい。このような構成とすることにより、亜鉛金属酸化物がより効果的に分散され、レーザー溶着の際にボイドが生じにくくなり、溶着性がより向上する傾向にある。
 本発明の樹脂組成物を用いた成形品の製造方法は、特に制限されず、熱可塑性樹脂について一般に使用されている成形方法、すなわち、射出成形、中空成形、押出成形、プレス成形などの成形方法を適用することができる。この場合、特に好ましい成形方法は、流動性の良さから、射出成形である。射出成形に当たっては、樹脂温度を250~300℃にコントロールするのが好ましい。
<キット>
 本発明は、また、上記樹脂組成物と、熱可塑性樹脂と光吸収性色素とを含む光吸収性樹脂組成物とを有するキットを開示する。本発明のキットは、レーザー溶着による成形品の製造に好ましく用いられる。
 すなわち、キットに含まれる樹脂組成物は、光透過性樹脂組成物としての役割を果たし、光透過性樹脂組成物を成形してなる成形品は、レーザー溶着の際のレーザー光に対する透過樹脂部材となる。一方、光吸収性樹脂組成物を成形してなる成形品は、レーザー溶着の際のレーザー光に対する吸収樹脂部材となる。
<<光吸収性樹脂組成物>>
 本発明で用いる光吸収性樹脂組成物は、熱可塑性樹脂と光吸収性色素とを含む。
 熱可塑性樹脂は、ポリアミド樹脂、オレフィン系樹脂、ビニル系樹脂、スチレン系樹脂、アクリル系樹脂、ポリフェニレンエーテル樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリアセタール樹脂等が例示され、樹脂組成物との相溶性が良好な点から、特に、ポリアミド樹脂、ポリエステル樹脂、ポリカーボネート樹脂が好ましく、ポリアミド樹脂がさらに好ましい。また、熱可塑性樹脂は1種であってもよいし、2種以上であってもよい。
 光吸収性樹脂組成物に用いるポリアミド樹脂としては、その種類等を定めるものではないが、上述キシリレンジアミン系ポリアミド樹脂が好ましい。
 無機フィラーは、ガラス繊維、炭素繊維、シリカ、アルミナ、タルク、カーボンブラックおよびレーザーを吸収する材料をコートした無機粉末等のレーザー光を吸収しうるフィラーが例示され、ガラス繊維が好ましい。ガラス繊維は、上記本発明の樹脂組成物に配合してもよいガラス繊維と同義であり、好ましい範囲も同様である。
 光吸収性色素としては、照射するレーザー光波長の範囲、すなわち、本発明では、波長800nm~1100nmの範囲に極大吸収波長を持つものであり、無機顔料(カーボンブラック(例えば、アセチレンブラック、ランプブラック、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラックなど)などの黒色顔料、酸化鉄赤などの赤色顔料、モリブデートオレンジなどの橙色顔料、酸化チタンなどの白色顔料)、有機顔料(黄色顔料、橙色顔料、赤色顔料、青色顔料、緑色顔料など)などが挙げられる。なかでも、無機顔料は一般に隠ぺい力が強く好ましく、黒色顔料がさらに好ましい。これらの光吸収性色素は2種以上組み合わせて使用してもよい。光吸収性色素の含有量は、樹脂成分100質量部に対し0.01~30質量部であることが好ましい。
 本発明における光吸収性樹脂組成物の第一の実施形態は、光吸収性樹脂組成物が、ポリアミド樹脂と、無水マレイン酸変性ポリフェニレンエーテル系樹脂と、フォスファゼン系難燃剤と、亜鉛金属酸化物と、光吸収性色素を含む組成物である態様である。さらに、ガラス繊維を含んでいてもよい。光吸収性樹脂組成物における、ポリアミド樹脂、無水マレイン酸変性ポリフェニレンエーテル系樹脂、フォスファゼン系難燃剤、亜鉛金属酸化物、および、ガラス繊維の好ましい範囲等の詳細は、上記本発明の樹脂組成物と同じである。
 本発明のキットは、樹脂組成物中の光透過性色素を除く成分と、光吸収性樹脂組成物中の光吸収性色素を除く成分の80質量%以上が共通することが好ましく、90質量%以上が共通することがより好ましく、95~100質量%が共通することが一層好ましい。
<<レーザー溶着方法>>
 次に、レーザー溶着方法について説明する。本発明では、本発明の樹脂組成物を成形してなる成形品(透過樹脂部材)と、上記光吸収性樹脂組成物を成形してなる成形品(吸収樹脂部材)を、レーザー溶着させて成形品を製造することができる。レーザー溶着することによって透過樹脂部材と吸収樹脂部材を接着剤を用いずに、強固に溶着することができる。
 部材の形状は特に制限されないが、部材同士をレーザー溶着により接合して用いるため、通常、少なくとも面接触箇所(平面、曲面)を有する形状である。レーザー溶着では、透過樹脂部材を透過したレーザー光が、吸収樹脂部材に吸収されて、溶融し、両部材が溶着される。本発明の樹脂組成物の成形品は、レーザー光に対する透過性が高いので、透過樹脂部材として好ましく用いることができる。ここで、レーザー光が透過する部材の厚み(レーザー光が透過する部分におけるレーザー透過方向の厚み)は、用途、樹脂組成物の組成その他を勘案して、適宜定めることができるが、例えば5mm以下であり、好ましくは4mm以下である。
 レーザー溶着に用いるレーザー光源としては、光吸収性色素の光の吸収波長に応じて定めることができ、波長800~1100nmの範囲のレーザーが好ましく、例えば、半導体レーザーまたはファイバーレーザーが利用できる。
 本発明では、レーザー照射に際しての総エネルギー投入量を200J以下とすることができ、180J以下とすることもできる。このように総エネルギー投入量を少なくしても、高いレーザー溶着性を達成できる点で価値が高い。総エネルギー投入量の下限値は、例えば、5J以上、さらには10J以上、特には、50J以上とすることができる。
 より具体的には、例えば、透過樹脂部材と吸収樹脂部材を溶着する場合、まず、両者の溶着する箇所同士を相互に接触させる。この時、両者の溶着箇所は面接触が望ましく、平面同士、曲面同士、または平面と曲面の組み合わせであってもよい。次いで、透過樹脂部材側からレーザー光を照射する。この時、必要によりレンズを利用して両者の界面にレーザー光を集光させてもよい。その集光ビームは、透過樹脂部材中を透過し、吸収樹脂部材の表面近傍で吸収されて発熱し溶融する。次にその熱は熱伝導によって透過樹脂部材にも伝わって溶融し、両者の界面に溶融プールを形成し、冷却後、両者が接合する。
 このようにして透過樹脂部材と吸収樹脂部材を溶着された成形品は、高い溶着強度を有する。なお、本発明における成形品とは、完成品や部品の他、これらの一部分を成す部材も含む趣旨である。
 本発明のキットは、前記樹脂組成物と、前記光吸収性樹脂組成物を、それぞれ、ASTM規格4号ダンベル片であって、1.5mm厚の試験片に成形し、ガルバノミラースキャン式ファイバーレーザー溶着において、プレス圧600N、レーザービーム径2mm、レーザーの溶着幅16mm、溶着した際の総エネルギー投入量160Jにおいて、引張強さが900N以上である構成とすることができる。さらには1000N以上、特には1300N以上、より特には1500Nとすることができる。上限値については、特に定めるものではないが、例えば、2000N以下でも十分に性能要求を満たすものである。前記溶着強度は、後述する実施例に記載の方法に従って測定される。
 本発明でレーザー溶着して得られた成形品は、機械的強度が良好で、高い溶着強度を有し、レーザー光照射による樹脂の損傷も少ないため、種々の用途、例えば、各種保存容器、電気・電子機器部品、オフィスオートメート(OA)機器部品、家電機器部品、機械機構部品、車両機構部品などに適用できる。特に、食品用容器、薬品用容器、油脂製品容器、車両用中空部品(各種タンク、インテークマニホールド部品、カメラ筐体など)、車両用電装部品(各種コントロールユニット、イグニッションコイル部品など)、モーター部品、各種センサー部品、コネクター部品、スイッチ部品、ブレーカー部品、リレー部品、コイル部品、トランス部品、ランプ部品などに好適に用いることができる。特に、本発明の樹脂組成物およびキットは、車載カメラモジュールに適している。
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。
<原料>
ポリアミド樹脂
MP10:ポリメタパラキシリレンセバサミド、下記方法によって合成した。
MXD6:ポリメタキシリレンアジパミド、三菱ガス化学社製
MP6:ポリメタパラキシリレンアジパミド、下記方法によって合成した。
PA66:ポリアミド66、ソルベイ社製、Stabamid 26AE1K
<MP6の合成例>
 アジピン酸を窒素雰囲気下の反応缶内で加熱溶解した後、内容物を撹拌しながら、パラキシリレンジアミン(三菱ガス化学社製)とメタキシリレンジアミン(三菱ガス化学社製)のモル比が3:7の混合ジアミンを、加圧(0.35MPa)下でジアミンとアジピン酸(ローディア社製)とのモル比が約1:1になるように徐々に滴下しながら、温度を270℃まで上昇させた。滴下終了後、0.06MPaまで減圧し10分間反応を続け分子量1,000以下の成分量を調整した。その後、内容物をストランド状に取り出し、ペレタイザーにてペレット化し、ポリアミド樹脂を得た。
<MP10の合成例>
 セバシン酸を窒素雰囲気下の反応缶内で加熱溶解した後、内容物を撹拌しながら、パラキシリレンジアミン(三菱ガス化学社製)とメタキシリレンジアミン(三菱ガス化学社製)のモル比が3:7の混合ジアミンを、加圧(0.35MPa)下でジアミンとセバシン酸とのモル比が約1:1になるように徐々に滴下しながら、温度を240℃まで2時間かけて上昇させた。滴下終了後、内温を上昇させ、250℃に達した時点で反応容器内を0.08MPaに減圧にし、さらに内温を上昇させて255℃で20分間、溶融重縮合反応を継続し、分子量1,000以下の成分量を調整した。反応終了後、系内を窒素で加圧し、内容物をストランド状に取り出し、ペレタイザーにてペレット化し、ポリアミド樹脂を得た。リン原子濃度は250質量ppmであった。
無水マレイン酸変性ポリフェニレンエーテル系樹脂、フォスファゼン系難燃剤、亜鉛金属酸化物
PME-91FR:三菱エンジニアリングプラスチックス社製
ポリフェニレンエーテル系樹脂34.72質量%、フォスファゼン系難燃剤35.0質量%、ホウ酸亜鉛30.0質量%、無水マレイン酸0.28質量%から構成されている。
<PME-91FRの製造例>
 上記構成比率に調整した諸原料を、すべてヘンシェルミキサー(羽根付の強制撹拌装置)に一括投入し、2分間撹拌してブレンド物を得た。このブレンド物を、押出機(東芝機械社製TEM26SS)のスクリュー根元から2軸スクリュー式カセットウェイングフィーダ(クボタ社製CE-W-1-MP)を用いて投入し、溶融混錬した。押出機の温度設定は265℃とした。ダイ出口から出るストランドを、ペレタイザーでカットしてペレット化し、難燃剤マスターバッチを得た。
亜鉛金属酸化物
ファイアーブレイクZB:ホウ酸亜鉛、早川商事社製
臭素化ポリスチレン
SAYTEX HP-3010:アルベマール日本社製
三酸化アンチモン
SICABATCH 404003:三酸化アンチモンのポリアミド66のマスターバッチ(酸化アンチモン含有量は70質量%)SICA社製
核剤
5000A、林化成社製、ミクロンホワイト5000A、タルク
5000S、林化成社製、ミクロンホワイト5000S、タルク
滑剤
WH255:エチレンビスステアロアマイド系滑剤、ライトアマイドWH255、共栄社化学社製
CS-CP:モンタン酸カルシウム、日東化成工業社製
ガラス繊維
T-296GH:日本電気硝子社製
光透過性色素
LTW-8701H:オリエント化学工業社製、e-BIND LTW-8701H、ポリアミド66と光透過性色素のマスターバッチ
光吸収性色素
CB1:カーボンブラック(三菱ケミカル社製、MA600B)のマスターバッチ、マスターバッチに用いた樹脂は、MP6であり、マスターバッチ中のカーボンブラックの含有量は30質量%である。
CB2:カーボンブラック(三菱ケミカル社製、MA600B)のマスターバッチ、マスターバッチに用いた樹脂は、MP10であり、マスターバッチ中のカーボンブラックの含有量は30質量%である。
実施例1
<コンパウンド>
 後述する下記表1に記載の光透過部材形成用ペレット(樹脂組成物)と光吸収部材形成用ペレット(光吸収性樹脂組成物)を製造した。
 具体的には、後述する下記表1に示す各成分であって、ガラス繊維以外の成分を表1に示す割合(単位は、質量%である)をそれぞれ秤量し、ドライブレンドした後、二軸押出機(東芝機械社製、TEM26SS)のスクリュー根元から2軸スクリュー式カセットウェイングフィーダ(クボタ社製、CE-W-1-MP)を用いて投入した。また、ガラス繊維については振動式カセットウェイングフィーダ(クボタ社製、CE-V-1B-MP)を用いて押出機のサイドから上述の二軸押出機に投入し、樹脂成分等と溶融混練し、光透過部材形成用ペレット(樹脂組成物)および光吸収部材形成用ペレット(光吸収性樹脂組成物)を得た。押出機の温度設定は、280℃とした。
 上記で得られた光透過部材形成用ペレットおよび光吸収部材形成用ペレットを、それぞれ、120℃で4時間乾燥した後、射出成形機(住友重機械工業社製、SE-50D)を用いて、光透過部材用試験片(1.0mm厚)および光吸収部材用試験片(1.0mm厚)をそれぞれ作製した。成形に際し、シリンダー温度は280℃、実施例1及び比較例1の金型表面温度は110℃、実施例2、3および比較例2、3の金型表面温度は130℃にて実施した。
<光透過率>
 上記で得られた光透過部材用試験片について、ISO13468-2に従い、波長1070nmにおける光線透過率(単位:%)を測定した。
<ASTM規格4号ダンベル片の溶着強度(N)>
 上記で得られた光透過部材用試験片および光吸収部材用試験片を用いてガルバノミラー式スキャン型ファイバーレーザー溶着によって溶着した試験片の溶着強度を測定した。
 具体的には、図1に示す様に試験片を重ねあわせて溶着した。図1において、1は透過樹脂部材用試験片を、2は吸収樹脂部材用試験片を、3はレーザー照射部位をそれぞれ示している。また、図1において、透過樹脂部材1の左上端部の突出部および吸収樹脂部材2の右下端部の突出部がゲート側をそれぞれ示している。
 レーザー照射は、一般的なガルバノミラー式スキャン(販売元:株式会社ファインデバイス)、レーザービーム径:直径2mm)を用い、レーザー出力30W~200W、スキャン速度70~2000mm/sec、レーザーの溶着幅(図1の3の幅)が16mmとなるように、ファイバーレーザー(波長:1070nm)を照射して行った。光透過部材用試験片および光吸収部材用試験片のプレス圧は0.5MPa(600N)とした。
 溶着された試験片を用い、レーザー溶着強度測定を行った。溶着強度の測定は、引張試験機(インストロン製「5544型」)(ロードセル±2kN)を使用し、溶着して一体化された光透過部材用試験片および光吸収部材用試験片を、その長軸方向の両端をクランプで挟み、引張速度5mm/分で試験を行い、測定した。
 表1において、母材破壊とは、溶着面から剥がれて破壊した剥離強度ではなく、溶着面以外の部分のダンベル片自体が破壊した時の強度を意味する。
<総エネルギー投入量>
 上記で得られた光透過部材用試験片および光吸収部材用試験片の溶着の際の溶着強度とエネルギー投入量の関係を確認した。具体的には、以下の式より算出した。
エネルギー密度(J/mm)=レーザー出力(W)×スキャン速度(mm/秒)
総エネルギー投入量(J)=エネルギー密度(J/mm)×スキャン回数(回)×スキャン幅(16mm)
 スキャン回数を色々に変更し、得られた総エネルギー投入量を図1に示した。
実施例2、実施例3、比較例1、比較例2、比較例3
 実施例1において、表1に示す通り変更した他は同様に行った。但し、比較例1~3は、溶着しなかったため、総エネルギー投入量は、測定できなかった。
Figure JPOXMLDOC01-appb-T000003
 上記結果から明らかなとおり、本発明の樹脂組成物は、光透過率が高く、レーザー溶着性に優れていた(実施例1~3)。さらに、図2に示す通り、レーザー照射に伴う総エネルギー量が少なくても、高いレーザー溶着性を達成できた。
 これに対し、他の難燃剤および難燃助剤を用いても、光線透過率が低く、レーザー溶着しなかった(比較例1~3)。
1  透過樹脂部材用試験片
2  吸収樹脂部材用試験片
3  レーザー照射部位

Claims (13)

  1. ポリアミド樹脂と、無水マレイン酸変性ポリフェニレンエーテル系樹脂と、フォスファゼン系難燃剤と、亜鉛金属酸化物と、光透過性色素を含む、樹脂組成物。
  2. 前記樹脂組成物を、1mm厚に成形したときの、ISO13468-2に従って測定した波長1070nmにおける透過率が40%以上である、請求項1に記載の樹脂組成物。
  3. 前記ポリアミド樹脂が、半芳香族ポリアミド樹脂を含む、請求項1または2に記載の樹脂組成物。
  4. 前記ポリアミド樹脂が、ジアミン由来の構成単位とジカルボン酸由来の構成単位から構成され、前記ジアミン由来の構成単位の50モル%以上がキシリレンジアミンに由来し、前記ジカルボン酸由来の構成単位の50モル%以上が、炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸に由来するポリアミド樹脂を含む、請求項1または2に記載の樹脂組成物。
  5. 前記亜鉛金属酸化物がホウ酸亜鉛を含む、請求項1~4のいずれか1項に記載の樹脂組成物。
  6. さらにガラス繊維を含む、請求項1~5のいずれか1項に記載の樹脂組成物。
  7. 少なくとも、フォスファゼン系難燃剤を、無水マレイン酸変性ポリフェニレンエーテル系樹脂を用いてマスターバッチ化した後、他の成分と混練することを含む、請求項1~6のいずれか1項に記載の樹脂組成物の製造方法。
  8. 亜鉛金属酸化物は、その一部をフォスファゼン系難燃剤と共に、無水マレイン酸変性ポリフェニレンエーテル系樹脂を用いて、マスターバッチ化した後、他の成分と混練し、かつ、亜鉛金属酸化物の残余をポリアミド樹脂と直接に混練することを含む、請求項7に記載の樹脂組成物の製造方法。
  9. 請求項1~6のいずれか1項に記載の樹脂組成物と、熱可塑性樹脂と光吸収性色素とを含む光吸収性樹脂組成物とを有するキット。
  10. 前記光吸収性樹脂組成物が、ポリアミド樹脂と、無水マレイン酸変性ポリフェニレンエーテル系樹脂と、フォスファゼン系難燃剤と、亜鉛金属酸化物と、光吸収性色素を含む、請求項9に記載のキット。
  11. 前記樹脂組成物と、前記光吸収性樹脂組成物を、それぞれ、ASTM規格4号ダンベル片であって、1.5mm厚の試験片に成形し、ガルバノミラースキャン式ファイバーレーザー溶着において、プレス圧600N、レーザービーム径2mm、レーザーによる溶着幅16mm、溶着した際の総エネルギー投入量160Jにおいて、引張強さが900N以上である、請求項10に記載のキット。
  12. 請求項1~6のいずれか1項に記載の樹脂組成物を成形してなる成形品と、熱可塑性樹脂と光吸収性色素とを含む光吸収性樹脂組成物を成形してなる成形品を、レーザー溶着させることを含む、成形品の製造方法。
  13. 請求項1~6のいずれか1項に記載の樹脂組成物、または、請求項9~11のいずれか1項に記載のキットを成形してなる成形品。
PCT/JP2019/018512 2018-05-10 2019-05-09 樹脂組成物、キット、樹脂組成物の製造方法、成形品の製造方法および成形品 WO2019216368A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019538455A JP6646795B1 (ja) 2018-05-10 2019-05-09 樹脂組成物、キット、樹脂組成物の製造方法、成形品の製造方法および成形品
EP19799879.2A EP3792312B1 (en) 2018-05-10 2019-05-09 Resin composition, kit, method for manufacturing resin composition, method for manufacturing formed article, and formed article
KR1020207030076A KR20210008336A (ko) 2018-05-10 2019-05-09 수지 조성물, 키트, 수지 조성물의 제조 방법, 성형품의 제조 방법 및 성형품
US17/044,004 US11958973B2 (en) 2018-05-10 2019-05-09 Resin composition, kit, method for manufacturing resin composition, method for manufacturing formed article, and formed article
CN201980031224.XA CN112105694B (zh) 2018-05-10 2019-05-09 树脂组合物、组合物组合、树脂组合物的制造方法、成型品的制造方法及成型品

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018091151 2018-05-10
JP2018-091151 2018-05-10
JP2018244713 2018-12-27
JP2018-244713 2018-12-27

Publications (1)

Publication Number Publication Date
WO2019216368A1 true WO2019216368A1 (ja) 2019-11-14

Family

ID=68468187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018512 WO2019216368A1 (ja) 2018-05-10 2019-05-09 樹脂組成物、キット、樹脂組成物の製造方法、成形品の製造方法および成形品

Country Status (6)

Country Link
US (1) US11958973B2 (ja)
EP (1) EP3792312B1 (ja)
JP (1) JP6646795B1 (ja)
KR (1) KR20210008336A (ja)
CN (1) CN112105694B (ja)
WO (1) WO2019216368A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021123643A (ja) * 2020-02-05 2021-08-30 三菱エンジニアリングプラスチックス株式会社 樹脂組成物、キット、成形品の製造方法および成形品
WO2021225153A1 (ja) * 2020-05-07 2021-11-11 三菱エンジニアリングプラスチックス株式会社 ガルバノ式レーザー溶着用樹脂組成物、成形品、ガルバノ式レーザー溶着用キット、車載カメラ部品、車載カメラモジュール、紫外線暴露体、および、成形品の製造方法
CN115667403A (zh) * 2020-05-25 2023-01-31 三菱工程塑料株式会社 激光熔敷用透光性树脂组合物、成型品、组合物组合及成型品的制造方法
WO2024017700A1 (en) 2022-07-21 2024-01-25 Basf Se Molding composition comprising black colorant

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102499710B1 (ko) * 2020-10-21 2023-02-15 주식회사 삼양사 레이저 용접이 가능한 열가소성 수지 조성물 및 이를 포함하는 성형품
CN115491033B (zh) * 2022-11-17 2023-03-14 江苏博云塑业股份有限公司 一种注塑材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007098939A (ja) * 2005-08-18 2007-04-19 Mitsubishi Engineering Plastics Corp レーザーマーキング用ポリアミド樹脂組成物およびレーザーマーキングが施されたポリアミド樹脂成形体
JP2008308526A (ja) 2007-06-12 2008-12-25 Mitsubishi Engineering Plastics Corp レーザー溶着用ポリアミド樹脂組成物、成形品および成形品の製造方法
JP2011132550A (ja) 2011-04-07 2011-07-07 Mitsubishi Engineering Plastics Corp ポリアミド樹脂組成物および導電性軸状成形品
JP2011195820A (ja) 2010-02-26 2011-10-06 Mitsubishi Engineering Plastics Corp ポリアルキレンテレフタレート系樹脂組成物および成形体
JP2015025127A (ja) * 2013-06-21 2015-02-05 三菱エンジニアリングプラスチックス株式会社 熱可塑性樹脂組成物、樹脂成形品、及びメッキ層付樹脂成形品の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5243006B2 (ja) 2006-12-04 2013-07-24 三菱エンジニアリングプラスチックス株式会社 難燃性ポリアミド樹脂組成物および成形品
WO2015091429A1 (de) 2013-12-20 2015-06-25 Ems-Patent Ag Polyamidformmasse und deren verwendung
CN108473762B (zh) * 2015-12-25 2021-04-09 三菱工程塑料株式会社 聚酰胺树脂组合物、组件、成型品的制造方法及成型品
JP6534135B2 (ja) * 2017-05-30 2019-06-26 オリヱント化学工業株式会社 レーザー溶着体及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007098939A (ja) * 2005-08-18 2007-04-19 Mitsubishi Engineering Plastics Corp レーザーマーキング用ポリアミド樹脂組成物およびレーザーマーキングが施されたポリアミド樹脂成形体
JP2008308526A (ja) 2007-06-12 2008-12-25 Mitsubishi Engineering Plastics Corp レーザー溶着用ポリアミド樹脂組成物、成形品および成形品の製造方法
JP2011195820A (ja) 2010-02-26 2011-10-06 Mitsubishi Engineering Plastics Corp ポリアルキレンテレフタレート系樹脂組成物および成形体
JP2011132550A (ja) 2011-04-07 2011-07-07 Mitsubishi Engineering Plastics Corp ポリアミド樹脂組成物および導電性軸状成形品
JP2015025127A (ja) * 2013-06-21 2015-02-05 三菱エンジニアリングプラスチックス株式会社 熱可塑性樹脂組成物、樹脂成形品、及びメッキ層付樹脂成形品の製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021123643A (ja) * 2020-02-05 2021-08-30 三菱エンジニアリングプラスチックス株式会社 樹脂組成物、キット、成形品の製造方法および成形品
JP7387470B2 (ja) 2020-02-05 2023-11-28 グローバルポリアセタール株式会社 樹脂組成物、キット、成形品の製造方法および成形品
WO2021225153A1 (ja) * 2020-05-07 2021-11-11 三菱エンジニアリングプラスチックス株式会社 ガルバノ式レーザー溶着用樹脂組成物、成形品、ガルバノ式レーザー溶着用キット、車載カメラ部品、車載カメラモジュール、紫外線暴露体、および、成形品の製造方法
CN115427515A (zh) * 2020-05-07 2022-12-02 三菱工程塑料株式会社 振镜式激光焊接用树脂组合物、成型品、振镜式激光焊接用套组、车载照相机部件、车载照相机模块、紫外线暴露体和成型品的制造方法
EP4148495A4 (en) * 2020-05-07 2023-11-01 Mitsubishi Engineering-Plastics Corporation GALVANOMETRIC TYPE LASER WELDING RESIN COMPOSITION, MOLDED ARTICLE, GALVANOMETRIC TYPE LASER WELDING KIT, ON-BOARD CAMERA COMPONENT, ON-BOARD CAMERA MODULE, UV RAY EXPOSURE BODY, AND METHOD FOR MANUFACTURING MOLDED ARTICLE
CN115427515B (zh) * 2020-05-07 2024-05-24 三菱化学株式会社 振镜式激光焊接用树脂组合物、成型品、振镜式激光焊接用套组、车载照相机部件、车载照相机模块、紫外线暴露体和成型品的制造方法
CN115667403A (zh) * 2020-05-25 2023-01-31 三菱工程塑料株式会社 激光熔敷用透光性树脂组合物、成型品、组合物组合及成型品的制造方法
WO2024017700A1 (en) 2022-07-21 2024-01-25 Basf Se Molding composition comprising black colorant

Also Published As

Publication number Publication date
EP3792312A1 (en) 2021-03-17
JP6646795B1 (ja) 2020-02-14
EP3792312A4 (en) 2022-01-12
KR20210008336A (ko) 2021-01-21
US20210032468A1 (en) 2021-02-04
CN112105694B (zh) 2023-06-30
EP3792312B1 (en) 2023-09-13
US11958973B2 (en) 2024-04-16
JPWO2019216368A1 (ja) 2020-05-28
CN112105694A (zh) 2020-12-18

Similar Documents

Publication Publication Date Title
WO2019216368A1 (ja) 樹脂組成物、キット、樹脂組成物の製造方法、成形品の製造方法および成形品
CN108473762B (zh) 聚酰胺树脂组合物、组件、成型品的制造方法及成型品
JP6691771B2 (ja) ポリアミド樹脂組成物、キット、成形品の製造方法、成形品およびポリアミド樹脂組成物の製造方法
CN113302235B (zh) 树脂组合物、成型品、组合物组合及成型品的制造方法
JP7492517B2 (ja) 樹脂組成物、成形品、キット、および、成形品の製造方法
JP7197350B2 (ja) ポリアミド樹脂組成物、キット、成形品の製造方法および成形品
JP6872986B2 (ja) 成形品、キットおよび成形品の製造方法
JP6941488B2 (ja) 樹脂組成物、キット、成形品の製造方法および成形品
CN111936580B (zh) 聚酰胺树脂组合物及成型品
KR20230016166A (ko) 레이저 용착용 광 투과성 수지 조성물, 성형품, 키트, 및, 성형품의 제조 방법
JP2021123643A (ja) 樹脂組成物、キット、成形品の製造方法および成形品
JP7459414B1 (ja) 樹脂組成物、キット、ペレット、成形品、および、成形品の製造方法
CN115667415B (zh) 激光熔敷用透光性树脂组合物、组合物组合、成型品、以及成型品的制造方法
CN113717519B (zh) 激光熔敷用透光性树脂组合物、成型品、组合物组合及成型品的制造方法
WO2024176693A1 (ja) 樹脂組成物、キット、ペレット、成形品、および、成形品の製造方法
JP2023168132A (ja) 樹脂組成物、成形品、キット、および、成形品の製造方法
CN115698184A (zh) 激光熔敷用透射性树脂组合物、组合物组合、成型品及成型品的制造方法
JP2023168133A (ja) 樹脂組成物、成形品、キット、および、成形品の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019538455

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19799879

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019799879

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019799879

Country of ref document: EP

Effective date: 20201210