WO2019215811A1 - Drive assist device and drive assist method - Google Patents

Drive assist device and drive assist method Download PDF

Info

Publication number
WO2019215811A1
WO2019215811A1 PCT/JP2018/017767 JP2018017767W WO2019215811A1 WO 2019215811 A1 WO2019215811 A1 WO 2019215811A1 JP 2018017767 W JP2018017767 W JP 2018017767W WO 2019215811 A1 WO2019215811 A1 WO 2019215811A1
Authority
WO
WIPO (PCT)
Prior art keywords
occupant
vehicle
swing
correlation
unit
Prior art date
Application number
PCT/JP2018/017767
Other languages
French (fr)
Japanese (ja)
Inventor
中川 幸彦
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/017767 priority Critical patent/WO2019215811A1/en
Publication of WO2019215811A1 publication Critical patent/WO2019215811A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present invention relates to a driving support device for determining occupant sickness.
  • the occupant head position detection unit detects the position of the occupant's head, and the occupant influence calculation unit calculates the behavior of the occupant's head. Then, when the head of the occupant is greatly shaken, it is determined that the occupant may have a car sickness.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a driving support device that improves the accuracy of determination of car sickness.
  • the driving support device includes an occupant swing detection unit that detects a swing of the first occupant using image data of an image taken inside the vehicle, and a vehicle swing that detects the swing of the vehicle using vehicle information.
  • a detecting unit, and a swing correlation calculating unit that calculates a first correlation value indicating a correlation between the first passenger's shake detected by the passenger's swing detecting unit and the vehicle shake detected by the vehicle swing detecting unit;
  • the first correlation value calculated by the reference correlation value acquisition unit for acquiring the reference correlation value indicating the correlation between the shake of the passenger and the shake of the vehicle when the occupant is not sick is the first correlation value calculated by the swing correlation calculation unit.
  • a determination unit that determines that the first occupant is drunken when the reference correlation value deviates from the setting by more than a setting.
  • FIG. 4 is a flowchart illustrating an example of processing by the driving support device according to the first embodiment. It is a block diagram which shows the structure of the driving assistance device which concerns on Embodiment 2, and its periphery. 6 is a flowchart illustrating an example of processing performed by a driving support apparatus according to Embodiment 2.
  • FIG. 1 is a block diagram illustrating a configuration of the driving support device 3 according to the first embodiment and its surroundings.
  • the driving support device 3 is mounted on a vehicle.
  • the driving support device 3 is connected to the occupant detection unit 1, the vehicle state detection unit 2, the vehicle unit 4, and the notification unit 5.
  • the occupant detection unit 1 is mounted on a vehicle and outputs image data of an image taken inside the vehicle to the driving support device 3.
  • the occupant detection unit 1 is realized by a camera 10, a stereo camera 11, a TOF (Time of Flight) camera, or the like.
  • the vehicle state detection unit 2 outputs vehicle information indicating the state of the vehicle to the driving support device 3.
  • the vehicle state detection unit 2 acquires a CAN (Controller Area Network) signal 20 and outputs it to the driving support device 3 as vehicle information.
  • the CAN signal 20 indicates information such as the vehicle speed, the steering angle of the steering wheel, or the brake amount.
  • the vehicle state detection part 2 is implement
  • the driving support device 3 includes an occupant swing detection unit 30, a vehicle swing detection unit 31, a swing correlation calculation unit 32, a determination unit 33, and a control unit 34.
  • the occupant swing detection unit 30 acquires the image data output from the occupant detection unit 1, and detects the sway of the occupant using the image data. In addition, it is possible to detect the swaying of an occupant appearing in an image by a known image processing technique.
  • the occupant swing detection unit 30 outputs the detected occupant swing to the swing correlation calculation unit 32.
  • the swing specifically refers to the swing amount.
  • the vehicle swing detection unit 31 acquires the vehicle information output by the vehicle state detection unit 2, and detects the swing of the vehicle using the vehicle information. Note that it is possible to detect a vehicle shake by a known calculation method using the CAN signal 20 or the acceleration of the vehicle. The vehicle swing detection unit 31 outputs the detected vehicle swing to the swing correlation calculation unit 32.
  • the swing correlation calculation unit 32 calculates a correlation value indicating a correlation between the passenger swing detected by the passenger swing detection unit 30 and the vehicle swing detected by the vehicle swing detection unit 31.
  • the swing correlation calculation unit 32 outputs the calculated correlation value to the determination unit 33.
  • the correlation value calculated by the swing correlation calculating unit 32 may be any value as long as it indicates the correlation between the passenger's shake and the vehicle shake.
  • the correlation value indicating the correlation between passenger sway and vehicle sway is a non-patent document “Shizushima Shimada,“ Vibration Analysis of Structures by Correlation Analysis Method ”, JSCE Proceedings, February 1970, 174th. No., p. It can be calculated using the equations (4)-(8) disclosed in “11-23”.
  • the determination unit 33 uses the correlation value calculated by the rocking correlation calculation unit 32 to determine whether the occupant is intoxicated.
  • the determination unit 33 outputs the determination result to the control unit 34.
  • the control unit 34 When the determination unit 33 determines that the occupant is intoxicated, the control unit 34 notifies that the occupant is intoxicated or controls the vehicle. Specifically, the control unit 34 outputs a control signal to the vehicle unit 4 to control the vehicle. In addition, the control unit 34 outputs a control signal to the notification unit 5 and notifies the passenger that the occupant is intoxicated through the notification unit 5.
  • the vehicle unit 4 indicates an accelerator 40, a brake 41, a window 42, a suspension 43, a handle 44, or the like.
  • the vehicle unit 4 operates according to the control signal.
  • the notification unit 5 is realized by an indicator 50 or a speaker 51 mounted on the vehicle.
  • the notification unit 5 performs a warning display or a warning sound output indicating that the occupant is intoxicated according to the control signal.
  • FIG. 2 shows an occupant swing amount as the occupant swing and a vehicle swing amount as the vehicle swing.
  • the swaying of the occupant indicates the relative swaying when viewed from the vehicle, and the swaying of the vehicle indicates the relative swaying when viewed from the ground.
  • the occupant's swing amount and the vehicle's swing amount show a correlation of approximately the same degree from time 0 (sec) to time 100 (sec).
  • the degree of correlation between the occupant swing amount and the vehicle swing amount after the time 60 (sec) is 0 (sec) before that time. From the degree of correlation between the occupant's rocking amount and the vehicle's rocking amount from time to time 60 (sec). This is because when the vehicle shakes due to the operation of the accelerator 40, the brake 41 or the handle 44, the occupant shakes the vehicle with inertial force unless he / she is intoxicated. When this occurs, the occupant stops suspending himself / herself from the inertial force and prevents the vehicle from shaking relative to the worsening of car sickness.
  • the driving support device 3 utilizes the fact that the correlation value indicating the correlation between the swaying of the occupant and the swaying of the vehicle shows different values when the occupant is not sick and when the occupant is sick. , Make a determination of car sickness.
  • the functions of the occupant swing detection unit 30, the vehicle swing detection unit 31, the swing correlation calculation unit 32, the determination unit 33, and the control unit 34 of the driving support device 3 are realized by a processing circuit.
  • the processing circuit may be dedicated hardware or a CPU (Central Processing Unit) that executes a program stored in a memory.
  • the CPU is also called a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a processor, or a DSP (Digital Signal Processor).
  • the functions of the occupant sway detection unit 30, the vehicle sway detection unit 31, the sway correlation calculation unit 32, the determination unit 33, and the control unit 34 are realized by a processing circuit 100 that is dedicated hardware. It is a figure which shows the hardware structural example in a case.
  • the processing circuit 100 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit) or FPGA (Field Programmable Gate Array), or a combination thereof. To do.
  • the functions of the occupant swing detection unit 30, the vehicle swing detection unit 31, the swing correlation calculation unit 32, the determination unit 33, and the control unit 34 may be realized by combining separate processing circuits 100. These functions may be realized by one processing circuit 100.
  • FIG. 3B shows the functions of the occupant sway detection unit 30, the vehicle sway detection unit 31, the sway correlation calculation unit 32, the determination unit 33, and the control unit 34.
  • the CPU 102 executes a program stored in the memory 101. It is a figure which shows the hardware structural example at the time of implement
  • the functions of the occupant sway detection unit 30, the vehicle sway detection unit 31, the sway correlation calculation unit 32, the determination unit 33, and the control unit 34 are based on software, firmware, or a combination of software and firmware. Realized. Software and firmware are described as programs and stored in the memory 101.
  • the CPU 102 reads out and executes the program stored in the memory 101 to thereby execute functions of the occupant swing detection unit 30, the vehicle swing detection unit 31, the swing correlation calculation unit 32, the determination unit 33, and the control unit 34.
  • the driving support device 3 includes a memory 101 for storing a program or the like that results in the processing of steps ST1 to ST11 shown in the flowchart of FIG. 4 to be described later.
  • these programs may cause a computer to execute the procedures or methods of the occupant swing detection unit 30, the vehicle swing detection unit 31, the swing correlation calculation unit 32, the determination unit 33, and the control unit 34. I can say that.
  • the memory 101 is, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable ROM) or an EEPROM (Electrically Erasable Programmable Semiconductor ROM).
  • a RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory an EPROM (Erasable Programmable ROM) or an EEPROM (Electrically Erasable Programmable Semiconductor ROM).
  • EPROM Erasable Programmable ROM
  • EEPROM Electrical Erasable Programmable Semiconductor ROM
  • the functions of the occupant sway detection unit 30, the vehicle sway detection unit 31, the sway correlation calculation unit 32, the determination unit 33, and the control unit 34 are realized by dedicated hardware, and part of them. It may be realized by software or firmware.
  • the functions of the occupant swing detection unit 30 and the vehicle swing detection unit 31 are realized by a processing circuit as dedicated hardware, and the swing correlation calculation unit 32, the determination unit 33, and the control unit 34 are processed by a processing circuit.
  • the function can be realized by reading and executing the program stored in the memory.
  • the processing circuit is configured by the above-described occupant swing detection unit 30, vehicle swing detection unit 31, swing correlation calculation unit 32, determination unit 33, and control unit 34 by hardware, software, firmware, or a combination thereof.
  • the function of each part can be realized.
  • the process shown in FIG. 4 is started when the driving of the vehicle is started, for example.
  • the occupant swing detection unit 30 acquires image data from the occupant detection unit 1 (step ST1).
  • the occupant swing detection unit 30 determines whether an occupant other than the driver is on board using the image data (step ST2).
  • passengers other than the driver are simply referred to as “occupants”.
  • step ST2 When an occupant other than the driver is not on board (step ST2; NO), the process of step ST1 is performed again. Note that, when no passenger other than the driver is on board, the process of step ST1 is not performed again, and the driving support device 3 may end the process as it is. On the other hand, when an occupant other than the driver is on board (step ST2; YES), the vehicle swing detection unit 31 acquires vehicle information from the vehicle state detection unit 2 (step ST3).
  • the occupant swing detection unit 30 detects the swaying of the occupant using the image data from the occupant detection unit 1 (step ST4).
  • the occupant swing detection unit 30 outputs the detected first occupant swing to the swing correlation calculation unit 32.
  • the vehicle swing detection unit 31 detects vehicle swing using the vehicle information from the vehicle state detection unit 2 (step ST5).
  • the vehicle swing detection unit 31 outputs the detected vehicle swing to the swing correlation calculation unit 32.
  • the occupant swing detection unit 30 and the vehicle swing detection unit 31 detect the swing of the first occupant and the swing of the vehicle during the first set time from the start of operation, for example, for 10 minutes from the start of the drive, and the swing correlation calculation unit Continue to output to 32.
  • the swing correlation calculation unit 32 uses the first occupant's shake and the vehicle's shake detected during the 10 minutes from the start of driving to correlate the first occupant's shake and the vehicle's shake during the 10 minutes from the start of driving. Is calculated (step ST6).
  • the 1st setting time should just be set to the time considered that normal car sickness does not generate
  • the reference correlation value calculated in step ST6 is a value indicating the correlation between the shake of the first occupant and the shake of the vehicle when the first occupant is not sick.
  • the swing correlation calculation unit 32 outputs the calculated reference correlation value to the determination unit 33.
  • the reference correlation value is calculated for each passenger.
  • the acquisition of the image data and the detection of the first occupant's shake are continuously performed by the occupant fluctuation detection unit 30, and the detected first occupant fluctuation is calculated as the fluctuation correlation. Is output to the unit 32.
  • vehicle information acquisition and vehicle shake detection by the vehicle swing detection unit 31 are continued, and the detected vehicle swing is detected by the swing correlation calculation unit. 32.
  • the swing correlation calculation unit 32 uses the first occupant shake and the vehicle shake detected after the reference correlation value is calculated, and the first occupant shake and the vehicle shake after the calculation of the reference correlation value.
  • the first correlation value indicating the correlation with is calculated (step ST7).
  • the first correlation value does not use only one instantaneous value for each of the first occupant's shake and the vehicle's shake, but rather the first occupant's shake and the vehicle's shake for a certain amount of time, or a certain number of times. It is calculated using the first passenger's shake of the minute and the shake of the vehicle.
  • the rocking correlation calculation unit 32 outputs the calculated first correlation value to the determination unit 33.
  • the determination unit 33 determines whether or not the first correlation value calculated by the swing correlation calculation unit 32 deviates from the reference correlation value by a setting or more (step ST8).
  • the determination unit 33 outputs a determination result that the first occupant is intoxicated to the control unit 34.
  • the determination unit 33 determines that the first occupant is not sick, and the process returns to step ST7.
  • a first correlation value calculation process using the newly detected shake and the shake of the vehicle for the first occupant is performed.
  • the control unit 34 When the determination unit 33 determines that the first occupant is intoxicated, the control unit 34 outputs a control signal to the notification unit 5 and notifies that the occupant is intoxicated through the notification unit 5. (Step ST9).
  • control unit 34 determines whether to control the vehicle (step ST10). For example, when the driver uses the input unit (not shown) such as a touch panel to select the control unit 34 to control the vehicle, the control unit 34 determines to control the vehicle. When it is determined that the control unit 34 does not control the vehicle (step ST10; NO), the process returns to step ST7, and the first correlation using the newly detected shake and the shake of the vehicle for the first occupant. A value calculation process is performed.
  • step ST10 when the control unit 34 determines to control the vehicle (step ST10; YES), the control unit 34 outputs a control signal to the vehicle unit 4, and the accelerator 40, the brake 41, the handle 44, the suspension 43, or the window.
  • the vehicle such as 42 is controlled (step ST11).
  • the control unit 34 adjusts at least one of the effect of the accelerator 40, the effect of the brake 41, the effect of the handle 44, the effect of the suspension 43, and the opening degree of the window 42.
  • the accelerator 40 is effective, an adjustment is made so that the accelerator 40 becomes less effective with respect to the amount of depression of the driver's accelerator pedal in order to suppress sudden acceleration of the vehicle.
  • step ST11 the process returns to step ST7, and a first correlation value calculation process using the newly detected shake and vehicle shake for the first occupant is performed.
  • the driving support device 3 determines whether the first occupant is swinging by using the relationship between the swing of the first occupant and the swing of the vehicle other than the first occupant. Thus, the determination accuracy can be improved.
  • the vehicle is not limited to manual driving, but may be one that can be driven automatically.
  • the control unit 34 may perform control to change the mode of automatic driving. Good. For example, when there are a plurality of modes depending on how gently acceleration and deceleration are performed as the mode of automatic operation, the control unit 34 changes to a mode in which acceleration and deceleration are performed more gently. . Whether or not to change the mode of the automatic driving may be selectable by the occupant. Further, the control unit 34 may select the mode desired by the occupant manually instead of automatically changing the mode of automatic driving. In addition, the control unit 34 may propose switching from automatic operation to manual operation via the notification unit 5. Further, in the case of automatic operation, the above-described process of step ST2 can be omitted.
  • control unit 34 causes the navigation device (not illustrated) to search for a guide route with a small curve, or to perform a process of changing the guide route. May be.
  • the driving support device 3 may be built in a server (not shown).
  • the server receives image data and vehicle information of an image taken inside the vehicle from the vehicle by wireless communication. And the said server transmits the control signal which the control part 34 produces
  • the server may function as the driving support device 3.
  • the driving support device 3 may be built in a smartphone brought into the vehicle.
  • the occupant swing detection unit 30 and the vehicle swing detection unit 31 may be built in a server (not shown), and the server may detect the passenger swing and the vehicle swing.
  • the server receives image data and vehicle information of an image taken inside the vehicle from the vehicle by wireless communication, and transmits the detected passenger shake and vehicle shake to the vehicle.
  • the swing correlation calculation unit 32, the determination unit 33, and the control unit 34 are provided in the vehicle, and perform processing using the passenger's shake and the vehicle shake received from the server.
  • each part which comprises the driving assistance apparatus 3 may be disperse
  • the driving support device 3 includes the control unit 34.
  • the driving support device 3 does not include the control unit 34, and may be a device that simply performs processing up to determining occupant sickness. Good. For example, when the driving support device 3 uploads the location where the car sickness occurs to the server, information from a plurality of vehicles is accumulated in the server, and it becomes possible to find a bad road where the car sickness is likely to occur. .
  • the reference correlation value is calculated using the occupant shake and the vehicle shake detected during the first set time from the start of driving of the vehicle.
  • the reference correlation value is not calculated every time the vehicle is driven, but the reference correlation value calculated between the start of driving and the first set time when the vehicle first rides is not individual.
  • the reference correlation value of the corresponding individual may be read out from the storage unit according to the personal authentication result of the occupant that is stored in the illustrated storage unit and then boarded on the vehicle. Further, the reference correlation value calculated for the first ride on the vehicle stored for each individual in the storage unit may be updated using the reference correlation value calculated during subsequent driving.
  • the reference correlation value is not calculated using the occupant swing detection unit 30, the vehicle swing detection unit 31, and the swing correlation calculation unit 32 of the driving support device 3, but already when the driving support device 3 is shipped.
  • the reference correlation value may be stored in a storage unit (not shown) of the driving support device 3. For example, by generating statistical data for several people for values indicating the correlation between passenger sway and vehicle sway when there is no car sickness, an average reference correlation value for a human can be calculated.
  • the driving assistance device 3 is shipped in a state where such an average reference correlation value is stored in the driving assistance device 3.
  • a test run mode for acquiring a reference correlation value is provided in the driving support device 3 so that the reference correlation value calculated for each individual during traveling in the test run mode is stored in a storage unit (not shown). Also good. For example, after confirming that the driver is not intoxicated, the driver instructs the driving support device 3 to execute the test run mode.
  • the reference correlation value only needs to indicate the correlation between the swaying of the occupant and the swaying of the vehicle when the occupant is not sick.
  • the driving support device 3 acquires the reference correlation value from the storage unit and outputs the reference correlation value to the determination unit 33 (not shown).
  • the reference correlation value acquisition unit is provided.
  • the rocking correlation calculation unit 32 calculates the reference correlation value and outputs the reference correlation value to the determination unit 33 in step ST ⁇ b> 6, the rocking correlation calculation unit 32 It functions as a reference correlation value acquisition unit that acquires correlation values.
  • the driving support apparatus 3 calculates the first correlation value indicating the correlation between the passenger's shake and the vehicle's shake, and the first correlation value indicates that the passenger is not sick. It is determined that the occupant is intoxicated when the reference correlation value indicating the correlation between the occupant's sway and the vehicle's sway is more than the setting.
  • the determination accuracy can be improved by determining the car sickness by utilizing the relationship between the vibration of the occupant and the vibration of the vehicle other than the occupant.
  • the driving support device 3 when the determination unit 33 determines that the first occupant is drunken, the driving support device 3 notifies that the occupant is drunken or controls the vehicle. Is provided. Therefore, it is possible to notify the driver of the occurrence of car sickness or to control the vehicle so that the car sickness does not deteriorate.
  • control unit 34 adjusts at least one of the effect of the accelerator 40, the effect of the brake 41, the effect of the handle 44, the effect of the suspension 43, and the opening degree of the window 42. Therefore, it is possible to adjust factors that affect car sickness.
  • the control unit 34 changes the mode of automatic driving. Therefore, automatic driving considering car sickness is possible.
  • FIG. 5 is a block diagram showing the configuration of the driving support device 3A according to the second embodiment and its surroundings. Components having the same or corresponding functions as those already described in the first embodiment are denoted by the same reference numerals, and description thereof is omitted or simplified as appropriate.
  • the driving support device 3A is capable of executing processing for determining car sickness when there are at least three passengers.
  • the occupant swing detection unit 30 acquires the image data output by the occupant detection unit 1, and detects occupant swings for a plurality of occupants using the image data.
  • the occupant swing detection unit 30 outputs each detected swing of the occupants to the swing correlation calculation unit 32.
  • the rocking correlation calculation unit 32 calculates a second correlation value that is a correlation value indicating the correlation between the shaking of the occupant detected by the occupant rocking detection unit 30 and the shaking of a plurality of occupants other than the occupant. Similar to the first correlation value and the reference correlation value described in the first embodiment, the second correlation value can be calculated using, for example, equations (4) to (8) disclosed in the non-patent document. it can.
  • the swing correlation calculation unit 32 outputs the calculated second correlation value to the determination unit 33.
  • the determination unit 33 uses the second correlation value calculated by the rocking correlation calculation unit 32 to determine whether the occupant is intoxicated.
  • step ST1 the occupant swing detection unit 30 determines whether three or more occupants are on board using the image data from the occupant detection unit 1 (step ST20). .
  • step ST20 When the number of passengers is less than three (step ST20; NO), the process of step ST1 is performed again. When the number of passengers is less than three, the process of step ST1 is not performed again, and the driving support device 3A may end the process as it is.
  • the occupant swing detection unit 30 detects the sway of the occupant using the image data from the occupant detection unit 1 (step ST21). In the following description, it is assumed that there are three occupants in the vehicle and that the occupant swing detection unit 30 detects the swings of the first occupant, the second occupant, and the third occupant. The occupant swing detection unit 30 outputs the detected first occupant swing, second occupant swing, and third occupant swing to the swing correlation calculation unit 32, respectively.
  • the swing correlation calculation unit 32 calculates a second correlation value indicating the correlation between the swing of one passenger and the swings of a plurality of passengers other than the passenger (step ST22). For example, in calculating the second correlation value indicating the correlation between the shaking of the first occupant and the shaking of the second and third occupants other than the first occupant, the average of the shaking of the second occupant and the shaking of the third occupant, And the shaking of the first occupant is used. That is, the second correlation value indicating the correlation between the shaking of the first occupant and the shaking of the second and third occupants other than the first occupant is that the shaking of the first occupant is the shaking of the second occupant and the shaking of the third occupant. It shows how much it correlates with the average.
  • the second correlation value indicating the correlation between the shaking of the second occupant and the shaking of the first and third occupants other than the second occupant, the shaking of the third occupant and the shaking of the first and second occupants other than the third occupant The same applies to the second correlation value indicating the correlation.
  • the swing correlation calculation unit 32 calculates, for each occupant, the second correlation value indicating the correlation between the swing of one occupant and the swings of a plurality of occupants other than the occupant. Then, the rocking correlation calculation unit 32 outputs the lowest second correlation value, that is, the second correlation value indicating the lowest correlation to the determination unit 33.
  • the second correlation value indicating the correlation between the shake of the first occupant and the shake of the second and third occupants other than the first occupant is the lowest among the three second correlation values calculated for each occupant.
  • the determination unit 33 sets the second correlation value, which is calculated by the swing correlation calculation unit 32, and indicates the correlation between the swing of the first occupant and the swings of the second and third occupants other than the first occupant. It is determined whether the value is greater than or equal to the value (step ST23). When the second correlation value is less than the set value, that is, when the correlation greater than the set value is not indicated (step ST23; NO), the determination unit 33 notifies the control unit 34 of the determination result that the first occupant is intoxicated. Output.
  • step ST23 when the second correlation value is greater than or equal to the set value, that is, when the correlation is greater than or equal to the set value (step ST23; YES), the determination unit 33 determines that the first occupant is not sick, and the process proceeds to step ST21. And the second correlation value calculation process using the newly detected shake for each occupant is performed.
  • steps ST9 to ST11 in FIG. 6 are as described in the first embodiment.
  • the driving assistance device 3A does not simply determine whether the first occupant is shaking, but uses the relationship between the shaking of the first occupant and the shaking of the second and third occupants other than the first occupant.
  • the determination accuracy can be improved by determining the sickness.
  • the motion sickness determination method shown in the second embodiment may be used in combination with the motion sickness determination method shown in the first embodiment. That is, the determination unit 33 is a case where the first correlation value indicating the correlation between the shake of the first occupant and the shake of the vehicle deviates from the reference correlation value by more than a set value, and the first occupant shake and the first occupant It is determined that the first occupant is intoxicated when the second correlation value indicating the correlation with the shaking of the second and third occupants other than the above indicates no correlation greater than the set value.
  • the driving assistance apparatus 3A calculates the second correlation value indicating the correlation between the swaying of the occupant and the swaying of a plurality of occupants other than the occupant, and the second correlation value is set.
  • the above correlation is not shown, it is determined that the occupant is drunken.
  • the determination accuracy can be improved by determining the car sickness using the relationship between the vibration of the occupant and the vibration other than the occupant.
  • the driving assistance apparatus has improved accuracy of determination of car sickness, and thus can be used, for example, to be mounted on a vehicle and assist driving of the driver.

Abstract

A passenger shaking detection unit (30) detects shaking of a first passenger using image data of an image in which the interior of a vehicle is captured. A vehicle shaking detection unit (31) detects shaking of the vehicle using vehicle information. A shaking relationship calculation unit (32) calculates a first relationship value indicating the relationship between the shaking of the first passenger as detected by the passenger shaking detection unit (30) and the shaking of the vehicle as detected by the vehicle shaking detection unit (31). A reference relationship value acquisition unit acquires a reference relationship value indicating the relationship between the shaking of a passenger and the shaking of the vehicle when the passenger is not carsick. When the first relationship value calculated by the shaking relationship calculation unit (32) has deviated from the reference relationship value by a set amount or greater, a determination unit (33) determines that the first passenger is carsick.

Description

運転支援装置及び運転支援方法Driving support device and driving support method
 この発明は、乗員の車酔いを判定する運転支援装置に関するものである。 The present invention relates to a driving support device for determining occupant sickness.
 特許文献1の運転支援装置では、乗員頭部位置検出部が乗員の頭部の位置を検出し、乗員影響算出部が乗員の頭部の挙動を算出する。そして、乗員の頭部が大きく揺れた場合に、乗員に車酔いが生じる可能性があるとの判定がされる。 In the driving support device of Patent Document 1, the occupant head position detection unit detects the position of the occupant's head, and the occupant influence calculation unit calculates the behavior of the occupant's head. Then, when the head of the occupant is greatly shaken, it is determined that the occupant may have a car sickness.
特開2005-326962号公報Japanese Patent Laid-Open No. 2005-326962
 しかしながら、単に乗員が揺れているからといって、車酔いが生じるとは限らない。乗員の個人的な癖等、車酔い以外の要因によって乗員が揺れている場合も考えられるからである。したがって、単に乗員が揺れているかにより判定を行う上記特許文献1の運転支援装置は、車酔いの判定精度が低いという課題があった。 However, just because the occupant is shaking does not mean that car sickness will occur. This is because there may be a case where the occupant is swaying due to factors other than car sickness such as a personal habit of the occupant. Therefore, the driving support device of Patent Document 1 that makes a determination based on whether the occupant is simply shaking has a problem that the determination accuracy of car sickness is low.
 この発明は、上記のような課題を解決するためになされたもので、車酔いの判定精度が向上する運転支援装置を得ることを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a driving support device that improves the accuracy of determination of car sickness.
 この発明に係る運転支援装置は、車内を撮影した画像の画像データを用いて、第1乗員の揺れを検出する乗員揺動検出部と、車両情報を用いて車両の揺れを検出する車両揺動検出部と、乗員揺動検出部により検出された第1乗員の揺れと、車両揺動検出部により検出された車両の揺れとの相関を示す第1相関値を算出する揺動相関算出部と、乗員が車酔いしていないときの当該乗員の揺れと車両の揺れとの相関を示す基準相関値を取得する基準相関値取得部と、揺動相関算出部により算出された第1相関値が、基準相関値から設定以上乖離している場合に、第1乗員が車酔いしていると判定する判定部とを備えることを特徴とするものである。 The driving support device according to the present invention includes an occupant swing detection unit that detects a swing of the first occupant using image data of an image taken inside the vehicle, and a vehicle swing that detects the swing of the vehicle using vehicle information. A detecting unit, and a swing correlation calculating unit that calculates a first correlation value indicating a correlation between the first passenger's shake detected by the passenger's swing detecting unit and the vehicle shake detected by the vehicle swing detecting unit; The first correlation value calculated by the reference correlation value acquisition unit for acquiring the reference correlation value indicating the correlation between the shake of the passenger and the shake of the vehicle when the occupant is not sick is the first correlation value calculated by the swing correlation calculation unit. And a determination unit that determines that the first occupant is drunken when the reference correlation value deviates from the setting by more than a setting.
 この発明によれば、車酔いの判定精度が向上する。 According to this invention, the accuracy of determination of car sickness is improved.
実施の形態1に係る運転支援装置及びその周辺の構成を示すブロック図である。It is a block diagram which shows the structure of the driving assistance device which concerns on Embodiment 1, and its periphery. 乗員の揺動量と車両の揺動量とを示したグラフである。3 is a graph showing the amount of occupant swing and the amount of vehicle swing. 図3A及び図3Bは、実施の形態1に係る運転支援装置のハードウェア構成例を示す図である。3A and 3B are diagrams illustrating a hardware configuration example of the driving support apparatus according to Embodiment 1. FIG. 実施の形態1に係る運転支援装置による処理の一例を示すフローチャートである。4 is a flowchart illustrating an example of processing by the driving support device according to the first embodiment. 実施の形態2に係る運転支援装置及びその周辺の構成を示すブロック図である。It is a block diagram which shows the structure of the driving assistance device which concerns on Embodiment 2, and its periphery. 実施の形態2に係る運転支援装置による処理の一例を示すフローチャートである。6 is a flowchart illustrating an example of processing performed by a driving support apparatus according to Embodiment 2.
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1. 
 図1は、実施の形態1に係る運転支援装置3及びその周辺の構成を示すブロック図である。
 運転支援装置3は、車両に搭載されている。運転支援装置3は、乗員検出部1、車両状態検出部2、車両部4及び通知部5と接続している。
Hereinafter, in order to explain the present invention in more detail, modes for carrying out the present invention will be described with reference to the accompanying drawings.
Embodiment 1 FIG.
FIG. 1 is a block diagram illustrating a configuration of the driving support device 3 according to the first embodiment and its surroundings.
The driving support device 3 is mounted on a vehicle. The driving support device 3 is connected to the occupant detection unit 1, the vehicle state detection unit 2, the vehicle unit 4, and the notification unit 5.
 乗員検出部1は、車両に搭載されており、車内を撮影した画像の画像データを運転支援装置3へ出力する。乗員検出部1は、カメラ10、ステレオカメラ11又はTOF(Time of Flight)カメラ等で実現される。 The occupant detection unit 1 is mounted on a vehicle and outputs image data of an image taken inside the vehicle to the driving support device 3. The occupant detection unit 1 is realized by a camera 10, a stereo camera 11, a TOF (Time of Flight) camera, or the like.
 車両状態検出部2は、車両の状態を示す車両情報を運転支援装置3へ出力する。車両状態検出部2は、例えば、CAN(Controller Area Network)信号20を取得して、車両情報として運転支援装置3へ出力する。CAN信号20には、車速、ハンドルの操舵角、又は、ブレーキ量等の情報が示されている。また、車両状態検出部2は、例えば加速度センサ21で実現され、車両の加速度を車両情報として運転支援装置3へ出力する。 The vehicle state detection unit 2 outputs vehicle information indicating the state of the vehicle to the driving support device 3. For example, the vehicle state detection unit 2 acquires a CAN (Controller Area Network) signal 20 and outputs it to the driving support device 3 as vehicle information. The CAN signal 20 indicates information such as the vehicle speed, the steering angle of the steering wheel, or the brake amount. Moreover, the vehicle state detection part 2 is implement | achieved by the acceleration sensor 21, for example, and outputs the acceleration of a vehicle to the driving assistance apparatus 3 as vehicle information.
 運転支援装置3は、乗員揺動検出部30、車両揺動検出部31、揺動相関算出部32、判定部33及び制御部34を備える。
 乗員揺動検出部30は、乗員検出部1が出力した画像データを取得し、当該画像データを用いて、乗員の揺れを検出する。なお、周知の画像処理技術により、画像に写る乗員の揺れを検出することが可能である。乗員揺動検出部30は、検出した乗員の揺れを揺動相関算出部32へ出力する。ここで、揺れとは、具体的には揺動量を指す。
The driving support device 3 includes an occupant swing detection unit 30, a vehicle swing detection unit 31, a swing correlation calculation unit 32, a determination unit 33, and a control unit 34.
The occupant swing detection unit 30 acquires the image data output from the occupant detection unit 1, and detects the sway of the occupant using the image data. In addition, it is possible to detect the swaying of an occupant appearing in an image by a known image processing technique. The occupant swing detection unit 30 outputs the detected occupant swing to the swing correlation calculation unit 32. Here, the swing specifically refers to the swing amount.
 車両揺動検出部31は、車両状態検出部2が出力した車両情報を取得し、当該車両情報を用いて、車両の揺れを検出する。なお、CAN信号20又は車両の加速度等を用いた周知の計算方法により、車両の揺れを検出することが可能である。車両揺動検出部31は、検出した車両の揺れを揺動相関算出部32へ出力する。 The vehicle swing detection unit 31 acquires the vehicle information output by the vehicle state detection unit 2, and detects the swing of the vehicle using the vehicle information. Note that it is possible to detect a vehicle shake by a known calculation method using the CAN signal 20 or the acceleration of the vehicle. The vehicle swing detection unit 31 outputs the detected vehicle swing to the swing correlation calculation unit 32.
 揺動相関算出部32は、乗員揺動検出部30により検出された乗員の揺れと、車両揺動検出部31により検出された車両の揺れとの相関を示す相関値を算出する。揺動相関算出部32は、算出した相関値を判定部33へ出力する。なお、揺動相関算出部32が算出する相関値は、乗員の揺れと車両の揺れとの相関を示すものであれば、どのようなものであってもよい。例えば、乗員の揺れと車両の揺れとの相関を示す相関値は、非特許文献「島田静雄、「相関解析手法による構造物の振動解析」、土木学会論文報告集、1970年2月、第174号、p.11-23」に開示された式(4)-(8)を用いて算出することができる。 The swing correlation calculation unit 32 calculates a correlation value indicating a correlation between the passenger swing detected by the passenger swing detection unit 30 and the vehicle swing detected by the vehicle swing detection unit 31. The swing correlation calculation unit 32 outputs the calculated correlation value to the determination unit 33. The correlation value calculated by the swing correlation calculating unit 32 may be any value as long as it indicates the correlation between the passenger's shake and the vehicle shake. For example, the correlation value indicating the correlation between passenger sway and vehicle sway is a non-patent document “Shizushima Shimada,“ Vibration Analysis of Structures by Correlation Analysis Method ”, JSCE Proceedings, February 1970, 174th. No., p. It can be calculated using the equations (4)-(8) disclosed in “11-23”.
 判定部33は、揺動相関算出部32により算出された相関値を用いて、乗員が車酔いしているかを判定する。判定部33は、判定結果を制御部34へ出力する。 The determination unit 33 uses the correlation value calculated by the rocking correlation calculation unit 32 to determine whether the occupant is intoxicated. The determination unit 33 outputs the determination result to the control unit 34.
 制御部34は、判定部33により乗員が車酔いしていると判定された場合に、乗員が車酔いしていることを通知する、又は、車両の制御を行う。具体的には、制御部34は、車両部4へ制御信号を出力し、車両の制御を行う。また、制御部34は、通知部5へ制御信号を出力し、乗員が車酔いしていることを通知部5を介して通知する。 When the determination unit 33 determines that the occupant is intoxicated, the control unit 34 notifies that the occupant is intoxicated or controls the vehicle. Specifically, the control unit 34 outputs a control signal to the vehicle unit 4 to control the vehicle. In addition, the control unit 34 outputs a control signal to the notification unit 5 and notifies the passenger that the occupant is intoxicated through the notification unit 5.
 車両部4は、アクセル40、ブレーキ41、窓42、サスペンション43又はハンドル44等を指す。車両部4は、制御部34から制御信号が出力されると、当該制御信号に従って動作する。 The vehicle unit 4 indicates an accelerator 40, a brake 41, a window 42, a suspension 43, a handle 44, or the like. When the control signal is output from the control unit 34, the vehicle unit 4 operates according to the control signal.
 通知部5は、車両に搭載されているインジケータ50又はスピーカ51等で実現される。通知部5は、制御部34から制御信号が出力されると、当該制御信号に従って乗員が車酔いしていることを示す警告表示又は警告音出力を行う。 The notification unit 5 is realized by an indicator 50 or a speaker 51 mounted on the vehicle. When the control signal is output from the control unit 34, the notification unit 5 performs a warning display or a warning sound output indicating that the occupant is intoxicated according to the control signal.
 ここで、運転支援装置3が行う車酔い判定の考え方を、図2に示すグラフを用いて説明する。図2には、乗員の揺れとして乗員の揺動量と、車両の揺れとして車両の揺動量とを示している。なお、乗員の揺れは車両から見たときの相対的な揺れを指し、車両の揺れは地面から見たときの相対的な揺れを指す。
 乗員が車酔いしていない場合、乗員の揺動量と車両の揺動量とは、時間0(sec)から時間100(sec)に亘り、ほぼ同じ度合いの相関を示す。
Here, the concept of car sickness determination performed by the driving assistance device 3 will be described using the graph shown in FIG. FIG. 2 shows an occupant swing amount as the occupant swing and a vehicle swing amount as the vehicle swing. The swaying of the occupant indicates the relative swaying when viewed from the vehicle, and the swaying of the vehicle indicates the relative swaying when viewed from the ground.
When the occupant is not intoxicated, the occupant's swing amount and the vehicle's swing amount show a correlation of approximately the same degree from time 0 (sec) to time 100 (sec).
 一方、乗員に時間60(sec)あたりで車酔いが発生したとすると、時間60(sec)以降の乗員の揺動量と車両の揺動量との相関の度合いは、それ以前の時間0(sec)から時間60(sec)までの乗員の揺動量と車両の揺動量との相関の度合いから乖離したものとなる。これは、アクセル40、ブレーキ41又はハンドル44の操作等により車両が揺れたとき、乗員は、車酔いしていなければ慣性力に身を任せて車両に対して揺れるが、一方で、車酔いが発生すると、乗員は、慣性力に身を任せていたのを止め、車酔いの悪化を防ごうと車両に対して揺れないようにするからである。 On the other hand, assuming that a car sickness occurs in the occupant around the time 60 (sec), the degree of correlation between the occupant swing amount and the vehicle swing amount after the time 60 (sec) is 0 (sec) before that time. From the degree of correlation between the occupant's rocking amount and the vehicle's rocking amount from time to time 60 (sec). This is because when the vehicle shakes due to the operation of the accelerator 40, the brake 41 or the handle 44, the occupant shakes the vehicle with inertial force unless he / she is intoxicated. When this occurs, the occupant stops suspending himself / herself from the inertial force and prevents the vehicle from shaking relative to the worsening of car sickness.
 運転支援装置3は、乗員の揺れと車両の揺れとの相関を示す相関値が、乗員が車酔いしていないときと乗員が車酔いしているときとで異なる値を示すことを利用して、車酔いの判定を行う。 The driving support device 3 utilizes the fact that the correlation value indicating the correlation between the swaying of the occupant and the swaying of the vehicle shows different values when the occupant is not sick and when the occupant is sick. , Make a determination of car sickness.
 次に、運転支援装置3のハードウェア構成例について、図3A及び図3Bを用いて説明する。
 運転支援装置3の乗員揺動検出部30、車両揺動検出部31、揺動相関算出部32、判定部33及び制御部34の各部の機能は、処理回路により実現される。当該処理回路は、専用のハードウェアであっても、メモリに格納されるプログラムを実行するCPU(Central Processing Unit)であってもよい。CPUは、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ又はDSP(Digital Signal Processor)とも呼ばれる。
Next, a hardware configuration example of the driving support device 3 will be described with reference to FIGS. 3A and 3B.
The functions of the occupant swing detection unit 30, the vehicle swing detection unit 31, the swing correlation calculation unit 32, the determination unit 33, and the control unit 34 of the driving support device 3 are realized by a processing circuit. The processing circuit may be dedicated hardware or a CPU (Central Processing Unit) that executes a program stored in a memory. The CPU is also called a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a processor, or a DSP (Digital Signal Processor).
 図3Aは、乗員揺動検出部30、車両揺動検出部31、揺動相関算出部32、判定部33及び制御部34の各部の機能を、専用のハードウェアである処理回路100で実現した場合のハードウェア構成例を示す図である。処理回路100は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)若しくはFPGA(Field Programmable Gate Array)、又は、これらを組み合わせたものが該当する。乗員揺動検出部30、車両揺動検出部31、揺動相関算出部32、判定部33及び制御部34の各部の機能を別個の処理回路100を組み合わせて実現してもよいし、当該各部の機能を1つの処理回路100で実現してもよい。 3A, the functions of the occupant sway detection unit 30, the vehicle sway detection unit 31, the sway correlation calculation unit 32, the determination unit 33, and the control unit 34 are realized by a processing circuit 100 that is dedicated hardware. It is a figure which shows the hardware structural example in a case. The processing circuit 100 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit) or FPGA (Field Programmable Gate Array), or a combination thereof. To do. The functions of the occupant swing detection unit 30, the vehicle swing detection unit 31, the swing correlation calculation unit 32, the determination unit 33, and the control unit 34 may be realized by combining separate processing circuits 100. These functions may be realized by one processing circuit 100.
 図3Bは、乗員揺動検出部30、車両揺動検出部31、揺動相関算出部32、判定部33及び制御部34の各部の機能を、メモリ101に格納されるプログラムを実行するCPU102で実現した場合のハードウェア構成例を示す図である。この場合、乗員揺動検出部30、車両揺動検出部31、揺動相関算出部32、判定部33及び制御部34の各部の機能は、ソフトウェア、ファームウェア、又は、ソフトウェアとファームウェアとの組合せにより実現される。ソフトウェア及びファームウェアはプログラムとして記述され、メモリ101に格納される。CPU102は、メモリ101に格納されたプログラムを読み出して実行することにより、乗員揺動検出部30、車両揺動検出部31、揺動相関算出部32、判定部33及び制御部34の各部の機能を実現する。すなわち、運転支援装置3は、後述する図4のフローチャートで示すステップST1~ST11の処理が結果的に実行されることになるプログラム等を格納するためのメモリ101を有する。また、これらのプログラムは、乗員揺動検出部30、車両揺動検出部31、揺動相関算出部32、判定部33及び制御部34の各部の手順又は方法をコンピュータに実行させるものであるとも言える。ここで、メモリ101は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)若しくはEEPROM(Electrically Erasable Programmable ROM)等の、不揮発性若しくは揮発性の半導体メモリ、又は、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク若しくはDVD(Digital Versatile Disc)等のディスク状の記録媒体等が該当する。 FIG. 3B shows the functions of the occupant sway detection unit 30, the vehicle sway detection unit 31, the sway correlation calculation unit 32, the determination unit 33, and the control unit 34. The CPU 102 executes a program stored in the memory 101. It is a figure which shows the hardware structural example at the time of implement | achieving. In this case, the functions of the occupant sway detection unit 30, the vehicle sway detection unit 31, the sway correlation calculation unit 32, the determination unit 33, and the control unit 34 are based on software, firmware, or a combination of software and firmware. Realized. Software and firmware are described as programs and stored in the memory 101. The CPU 102 reads out and executes the program stored in the memory 101 to thereby execute functions of the occupant swing detection unit 30, the vehicle swing detection unit 31, the swing correlation calculation unit 32, the determination unit 33, and the control unit 34. Is realized. That is, the driving support device 3 includes a memory 101 for storing a program or the like that results in the processing of steps ST1 to ST11 shown in the flowchart of FIG. 4 to be described later. In addition, these programs may cause a computer to execute the procedures or methods of the occupant swing detection unit 30, the vehicle swing detection unit 31, the swing correlation calculation unit 32, the determination unit 33, and the control unit 34. I can say that. Here, the memory 101 is, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable ROM) or an EEPROM (Electrically Erasable Programmable Semiconductor ROM). This corresponds to a memory or a disk-shaped recording medium such as a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, or a DVD (Digital Versatile Disc).
 なお、乗員揺動検出部30、車両揺動検出部31、揺動相関算出部32、判定部33及び制御部34の各部の機能について、一部を専用のハードウェアで実現し、一部をソフトウェア又はファームウェアで実現するようにしてもよい。例えば、乗員揺動検出部30及び車両揺動検出部31については専用のハードウェアとしての処理回路でその機能を実現し、揺動相関算出部32、判定部33及び制御部34については処理回路がメモリに格納されたプログラムを読み出して実行することによってその機能を実現することが可能である。 Note that some of the functions of the occupant sway detection unit 30, the vehicle sway detection unit 31, the sway correlation calculation unit 32, the determination unit 33, and the control unit 34 are realized by dedicated hardware, and part of them. It may be realized by software or firmware. For example, the functions of the occupant swing detection unit 30 and the vehicle swing detection unit 31 are realized by a processing circuit as dedicated hardware, and the swing correlation calculation unit 32, the determination unit 33, and the control unit 34 are processed by a processing circuit. The function can be realized by reading and executing the program stored in the memory.
 このように、処理回路は、ハードウェア、ソフトウェア、ファームウェア又はこれらの組合せによって、上記の乗員揺動検出部30、車両揺動検出部31、揺動相関算出部32、判定部33及び制御部34の各部の機能を実現することができる。 As described above, the processing circuit is configured by the above-described occupant swing detection unit 30, vehicle swing detection unit 31, swing correlation calculation unit 32, determination unit 33, and control unit 34 by hardware, software, firmware, or a combination thereof. The function of each part can be realized.
 次に、上記のように構成された運転支援装置3による処理の一例について、図4に示すフローチャートを用いて説明する。図4に示す処理は、例えば車両の運転が開始されることで開始される。
 乗員揺動検出部30は、乗員検出部1から画像データを取得する(ステップST1)。乗員揺動検出部30は、当該画像データを用いて、運転手以外の乗員が乗車しているかを判定する(ステップST2)。なお、以下では運転手以外の乗員のことを単に「乗員」という。
Next, an example of processing by the driving support device 3 configured as described above will be described with reference to the flowchart shown in FIG. The process shown in FIG. 4 is started when the driving of the vehicle is started, for example.
The occupant swing detection unit 30 acquires image data from the occupant detection unit 1 (step ST1). The occupant swing detection unit 30 determines whether an occupant other than the driver is on board using the image data (step ST2). Hereinafter, passengers other than the driver are simply referred to as “occupants”.
 運転手以外の乗員が乗車していない場合(ステップST2;NO)、ステップST1の処理が再度行われる。なお、運転手以外の乗員が乗車していない場合、ステップST1の処理が再度行われるのではなく、運転支援装置3はそのまま処理を終了してもよい。
 一方、運転手以外の乗員が乗車している場合(ステップST2;YES)、車両揺動検出部31は、車両状態検出部2から車両情報を取得する(ステップST3)。
When an occupant other than the driver is not on board (step ST2; NO), the process of step ST1 is performed again. Note that, when no passenger other than the driver is on board, the process of step ST1 is not performed again, and the driving support device 3 may end the process as it is.
On the other hand, when an occupant other than the driver is on board (step ST2; YES), the vehicle swing detection unit 31 acquires vehicle information from the vehicle state detection unit 2 (step ST3).
 続いて、乗員揺動検出部30は、乗員検出部1からの画像データを用いて、乗員の揺れを検出する(ステップST4)。以下では、説明の簡略化のために、乗員は第1乗員1人だけであり、当該第1乗員の揺れが乗員揺動検出部30で検出されたとして説明する。乗員揺動検出部30は、検出した第1乗員の揺れを揺動相関算出部32へ出力する。
 なお、乗員が複数いる場合は、乗員揺動検出部30は、乗員ごとに揺れを検出する。
 また、車両揺動検出部31は、車両状態検出部2からの車両情報を用いて、車両の揺れを検出する(ステップST5)。車両揺動検出部31は、検出した車両の揺れを揺動相関算出部32へ出力する。
Subsequently, the occupant swing detection unit 30 detects the swaying of the occupant using the image data from the occupant detection unit 1 (step ST4). In the following description, for simplification of description, it is assumed that there is only one occupant and that the first occupant swing detection unit 30 has detected the swing of the first occupant. The occupant swing detection unit 30 outputs the detected first occupant swing to the swing correlation calculation unit 32.
When there are a plurality of occupants, the occupant swing detection unit 30 detects the swing for each occupant.
Further, the vehicle swing detection unit 31 detects vehicle swing using the vehicle information from the vehicle state detection unit 2 (step ST5). The vehicle swing detection unit 31 outputs the detected vehicle swing to the swing correlation calculation unit 32.
 乗員揺動検出部30及び車両揺動検出部31は、運転開始から第1設定時間の間、例えば運転開始から10分間、第1乗員の揺れ及び車両の揺れを検出し、揺動相関算出部32へ出力し続ける。揺動相関算出部32は、運転開始から10分間の間に検出された第1乗員の揺れ及び車両の揺れを用いて、運転開始から10分間における第1乗員の揺れと車両の揺れとの相関を示す基準相関値を算出する(ステップST6)。なお、第1設定時間は、通常車酔いが発生しないと考えられる時間に設定されていればよく、10分間に限らない。つまり、ステップST6で算出される基準相関値は、第1乗員が車酔いしていないときの第1乗員の揺れと車両の揺れとの相関を示す値である。揺動相関算出部32は、算出した基準相関値を判定部33へ出力する。
 なお、乗員が複数いる場合は、基準相関値は、乗員ごとに算出される。
The occupant swing detection unit 30 and the vehicle swing detection unit 31 detect the swing of the first occupant and the swing of the vehicle during the first set time from the start of operation, for example, for 10 minutes from the start of the drive, and the swing correlation calculation unit Continue to output to 32. The swing correlation calculation unit 32 uses the first occupant's shake and the vehicle's shake detected during the 10 minutes from the start of driving to correlate the first occupant's shake and the vehicle's shake during the 10 minutes from the start of driving. Is calculated (step ST6). In addition, the 1st setting time should just be set to the time considered that normal car sickness does not generate | occur | produce, and is not restricted to 10 minutes. That is, the reference correlation value calculated in step ST6 is a value indicating the correlation between the shake of the first occupant and the shake of the vehicle when the first occupant is not sick. The swing correlation calculation unit 32 outputs the calculated reference correlation value to the determination unit 33.
When there are a plurality of passengers, the reference correlation value is calculated for each passenger.
 基準相関値が算出された後も、乗員揺動検出部30による画像データの取得及び第1乗員の揺れの検出は引き続き行われており、検出された第1乗員の揺れは、揺動相関算出部32へ出力される。同様に、基準相関値が算出された後も、車両揺動検出部31による車両情報の取得及び車両の揺れの検出は引き続き行われており、検出された車両の揺れは、揺動相関算出部32へ出力される。
 揺動相関算出部32は、これら基準相関値が算出された後に検出された第1乗員の揺れと車両の揺れとを用いて、基準相関値の算出後における第1乗員の揺れと車両の揺れとの相関を示す第1相関値を算出する(ステップST7)。なお、第1相関値は、第1乗員の揺れ及び車両の揺れそれぞれの瞬時値1つだけを用いるのではなく、ある程度の時間分の第1乗員の揺れ及び車両の揺れ、又は、ある程度の回数分の第1乗員の揺れ及び車両の揺れを用いて算出される。揺動相関算出部32は、算出した第1相関値を判定部33へ出力する。
Even after the reference correlation value is calculated, the acquisition of the image data and the detection of the first occupant's shake are continuously performed by the occupant fluctuation detection unit 30, and the detected first occupant fluctuation is calculated as the fluctuation correlation. Is output to the unit 32. Similarly, after the reference correlation value is calculated, vehicle information acquisition and vehicle shake detection by the vehicle swing detection unit 31 are continued, and the detected vehicle swing is detected by the swing correlation calculation unit. 32.
The swing correlation calculation unit 32 uses the first occupant shake and the vehicle shake detected after the reference correlation value is calculated, and the first occupant shake and the vehicle shake after the calculation of the reference correlation value. The first correlation value indicating the correlation with is calculated (step ST7). The first correlation value does not use only one instantaneous value for each of the first occupant's shake and the vehicle's shake, but rather the first occupant's shake and the vehicle's shake for a certain amount of time, or a certain number of times. It is calculated using the first passenger's shake of the minute and the shake of the vehicle. The rocking correlation calculation unit 32 outputs the calculated first correlation value to the determination unit 33.
 続いて、判定部33は、揺動相関算出部32により算出された第1相関値が、基準相関値から設定以上乖離しているかを判定する(ステップST8)。第1相関値が基準相関値から設定以上乖離している場合(ステップST8;YES)、判定部33は、第1乗員が車酔いしているとの判定結果を制御部34へ出力する。一方、第1相関値が基準相関値から設定以上乖離していない場合(ステップST8;NO)、判定部33は第1乗員が車酔いしていないと判定し、ステップST7に処理が戻って、第1乗員について新たに検出された揺れと車両の揺れとを用いた第1相関値の算出処理が行われる。 Subsequently, the determination unit 33 determines whether or not the first correlation value calculated by the swing correlation calculation unit 32 deviates from the reference correlation value by a setting or more (step ST8). When the first correlation value deviates from the reference correlation value by more than the setting (step ST8; YES), the determination unit 33 outputs a determination result that the first occupant is intoxicated to the control unit 34. On the other hand, if the first correlation value has not deviated from the reference correlation value by more than the setting (step ST8; NO), the determination unit 33 determines that the first occupant is not sick, and the process returns to step ST7. A first correlation value calculation process using the newly detected shake and the shake of the vehicle for the first occupant is performed.
 判定部33により第1乗員が車酔いしていると判定された場合、制御部34は、制御信号を通知部5へ出力し、通知部5を介して乗員が車酔いしていることを通知する(ステップST9)。 When the determination unit 33 determines that the first occupant is intoxicated, the control unit 34 outputs a control signal to the notification unit 5 and notifies that the occupant is intoxicated through the notification unit 5. (Step ST9).
 続いて、制御部34は、車両の制御を行うかを判定する(ステップST10)。例えば、タッチパネル等の不図示の入力部を用いて運転手が制御部34に車両の制御を行わせることを選択した場合、制御部34は、車両の制御を行うと判定する。
 制御部34が車両の制御を行わないと判定した場合(ステップST10;NO)、ステップST7に処理が戻って、第1乗員について新たに検出された揺れと車両の揺れとを用いた第1相関値の算出処理が行われる。
Subsequently, the control unit 34 determines whether to control the vehicle (step ST10). For example, when the driver uses the input unit (not shown) such as a touch panel to select the control unit 34 to control the vehicle, the control unit 34 determines to control the vehicle.
When it is determined that the control unit 34 does not control the vehicle (step ST10; NO), the process returns to step ST7, and the first correlation using the newly detected shake and the shake of the vehicle for the first occupant. A value calculation process is performed.
 一方、制御部34が車両の制御を行うと判定した場合(ステップST10;YES)、制御部34は、制御信号を車両部4へ出力し、アクセル40、ブレーキ41、ハンドル44、サスペンション43又は窓42等の車両の制御を行う(ステップST11)。例えば、制御部34は、アクセル40の効き、ブレーキ41の効き、ハンドル44の効き、サスペンション43の効き、及び、窓42の開け具合のうちの少なくとも1つを調整する。例えばアクセル40の効きであれば、車両の急加速を抑えるために、運転手のアクセルペダルの踏み込み量に対してアクセル40の効きが鈍くなるような調整が行われる。
 ステップST11の後は、ステップST7に処理が戻って、第1乗員について新たに検出された揺れと車両の揺れとを用いた第1相関値の算出処理が行われる。
On the other hand, when the control unit 34 determines to control the vehicle (step ST10; YES), the control unit 34 outputs a control signal to the vehicle unit 4, and the accelerator 40, the brake 41, the handle 44, the suspension 43, or the window. The vehicle such as 42 is controlled (step ST11). For example, the control unit 34 adjusts at least one of the effect of the accelerator 40, the effect of the brake 41, the effect of the handle 44, the effect of the suspension 43, and the opening degree of the window 42. For example, if the accelerator 40 is effective, an adjustment is made so that the accelerator 40 becomes less effective with respect to the amount of depression of the driver's accelerator pedal in order to suppress sudden acceleration of the vehicle.
After step ST11, the process returns to step ST7, and a first correlation value calculation process using the newly detected shake and vehicle shake for the first occupant is performed.
 このように、運転支援装置3は、単に第1乗員が揺れているかではなく、第1乗員の揺れと、車両という第1乗員以外の揺れとの関係性を利用して車酔いの判定を行うことで、判定精度を向上させることができる。 In this way, the driving support device 3 determines whether the first occupant is swinging by using the relationship between the swing of the first occupant and the swing of the vehicle other than the first occupant. Thus, the determination accuracy can be improved.
 なお、車両は、手動運転に限らず、自動運転が可能なものであってもよい。そして、車両が自動運転により走行しているときに、判定部33により第1乗員が車酔いしていると判定された場合、制御部34は、自動運転のモードを変更する制御を行ってもよい。例えば、自動運転のモードとして、加速及び減速等をどの程度穏やかに行うかに応じて複数のモードが存在する場合、制御部34は、加速及び減速等をより穏やかに行うモードへの変更を行う。自動運転のモード変更を行うか否かは、乗員により選択可能であってもよい。
 また、制御部34が自動運転のモードを自動で変更するのではなく、乗員が手動で希望するモードを選択してもよい。
 また、制御部34が、通知部5を介して自動運転から手動運転への切替を提案してもよい。
 また、自動運転の場合、上記したステップST2の処理は省略可能である。
The vehicle is not limited to manual driving, but may be one that can be driven automatically. When the determination unit 33 determines that the first occupant is drunken while the vehicle is traveling by automatic driving, the control unit 34 may perform control to change the mode of automatic driving. Good. For example, when there are a plurality of modes depending on how gently acceleration and deceleration are performed as the mode of automatic operation, the control unit 34 changes to a mode in which acceleration and deceleration are performed more gently. . Whether or not to change the mode of the automatic driving may be selectable by the occupant.
Further, the control unit 34 may select the mode desired by the occupant manually instead of automatically changing the mode of automatic driving.
In addition, the control unit 34 may propose switching from automatic operation to manual operation via the notification unit 5.
Further, in the case of automatic operation, the above-described process of step ST2 can be omitted.
 また、制御部34は、判定部33により乗員が車酔いしていると判定された場合に、不図示のナビゲーション装置にカーブの少ない案内経路を検索させるなど、案内経路を変更する処理を行わせてもよい。 In addition, when the determination unit 33 determines that the occupant is drunken, the control unit 34 causes the navigation device (not illustrated) to search for a guide route with a small curve, or to perform a process of changing the guide route. May be.
 また、上記では、運転支援装置3が車両に搭載されている場合を示した。しかしながら、運転支援装置3は不図示のサーバ内に構築されてもよい。この場合、当該サーバは、車内を撮影した画像の画像データ及び車両情報を無線通信により車両から受信する。そして、当該サーバは、制御部34が生成する制御信号を車両に向けて送信する。このように、サーバが運転支援装置3として機能してもよい。
 また、同様に、運転支援装置3が車両に持ち込まれたスマートフォン内に構築されてもよい。
Moreover, in the above, the case where the driving assistance apparatus 3 was mounted in the vehicle was shown. However, the driving support device 3 may be built in a server (not shown). In this case, the server receives image data and vehicle information of an image taken inside the vehicle from the vehicle by wireless communication. And the said server transmits the control signal which the control part 34 produces | generates toward a vehicle. In this way, the server may function as the driving support device 3.
Similarly, the driving support device 3 may be built in a smartphone brought into the vehicle.
 また、例えば乗員揺動検出部30及び車両揺動検出部31が不図示のサーバ内に構築され、乗員の揺れ及び車両の揺れの検出を当該サーバが行うようにしてもよい。この場合、当該サーバは、車内を撮影した画像の画像データ及び車両情報を無線通信により車両から受信し、検出した乗員の揺れ及び車両の揺れを車両に向けて送信する。揺動相関算出部32、判定部33及び制御部34は、車両に設けられており、サーバから受信した乗員の揺れ及び車両の揺れを用いて処理を行う。このように、運転支援装置3を構成する各部が、車両とサーバという異なる場所に分散していてもよい。 Further, for example, the occupant swing detection unit 30 and the vehicle swing detection unit 31 may be built in a server (not shown), and the server may detect the passenger swing and the vehicle swing. In this case, the server receives image data and vehicle information of an image taken inside the vehicle from the vehicle by wireless communication, and transmits the detected passenger shake and vehicle shake to the vehicle. The swing correlation calculation unit 32, the determination unit 33, and the control unit 34 are provided in the vehicle, and perform processing using the passenger's shake and the vehicle shake received from the server. Thus, each part which comprises the driving assistance apparatus 3 may be disperse | distributed to a different place called a vehicle and a server.
 また、上記では、運転支援装置3が制御部34を備えるとして説明したが、運転支援装置3は制御部34を備えず、単に乗員の車酔いを判定するまでの処理を行う装置であってもよい。例えば、運転支援装置3が車酔いの発生場所等をサーバにアップロードすることで、当該サーバには複数の車両からの情報が蓄積され、車酔いが発生しやすい悪路の発見等が可能となる。 In the above description, the driving support device 3 includes the control unit 34. However, the driving support device 3 does not include the control unit 34, and may be a device that simply performs processing up to determining occupant sickness. Good. For example, when the driving support device 3 uploads the location where the car sickness occurs to the server, information from a plurality of vehicles is accumulated in the server, and it becomes possible to find a bad road where the car sickness is likely to occur. .
 また、上記では、車両の運転開始から第1設定時間の間に検出された乗員の揺れと車両の揺れとを用いて、基準相関値が算出されるとした。しかしながら、車両の運転が開始される都度、基準相関値が算出されるのではなく、車両に初めて乗ったときに運転開始から第1設定時間の間で算出された基準相関値が個人ごとに不図示の記憶部に記憶され、その後は車両への乗車時に行う乗員の個人認証結果に応じて当該記憶部から該当する個人の基準相関値が読み出されるようにしてもよい。また、当該記憶部に個人ごとに記憶された、車両に初めて乗ったときに算出された基準相関値は、その後の運転時に算出された基準相関値を用いて更新されるようにしてもよい。
 また、運転支援装置3の乗員揺動検出部30と車両揺動検出部31と揺動相関算出部32とを用いて基準相関値を算出するのではなく、運転支援装置3の出荷時点で既に基準相関値が運転支援装置3の不図示の記憶部に記憶されていてもよい。例えば、車酔いしていないときの乗員の揺れと車両の揺れとの相関を示す値について数人分の統計データを作成することで、人間にとって平均的な基準相関値を算出することができる。このような平均的な基準相関値が運転支援装置3に記憶された状態で、運転支援装置3は出荷される。
 また、運転支援装置3に基準相関値を取得するためのテストランモードを設け、テストランモードで走行中に個人ごとに算出された基準相関値が不図示の記憶部に記憶されるようにしてもよい。例えば、運転手は、乗員に車酔いしていないことを確認した後、テストランモードの実行を運転支援装置3に指示する。
 要は、基準相関値は、乗員が車酔いしていないときの当該乗員の揺れと車両の揺れとの相関を示すものであればよい。
In the above description, the reference correlation value is calculated using the occupant shake and the vehicle shake detected during the first set time from the start of driving of the vehicle. However, the reference correlation value is not calculated every time the vehicle is driven, but the reference correlation value calculated between the start of driving and the first set time when the vehicle first rides is not individual. The reference correlation value of the corresponding individual may be read out from the storage unit according to the personal authentication result of the occupant that is stored in the illustrated storage unit and then boarded on the vehicle. Further, the reference correlation value calculated for the first ride on the vehicle stored for each individual in the storage unit may be updated using the reference correlation value calculated during subsequent driving.
In addition, the reference correlation value is not calculated using the occupant swing detection unit 30, the vehicle swing detection unit 31, and the swing correlation calculation unit 32 of the driving support device 3, but already when the driving support device 3 is shipped. The reference correlation value may be stored in a storage unit (not shown) of the driving support device 3. For example, by generating statistical data for several people for values indicating the correlation between passenger sway and vehicle sway when there is no car sickness, an average reference correlation value for a human can be calculated. The driving assistance device 3 is shipped in a state where such an average reference correlation value is stored in the driving assistance device 3.
In addition, a test run mode for acquiring a reference correlation value is provided in the driving support device 3 so that the reference correlation value calculated for each individual during traveling in the test run mode is stored in a storage unit (not shown). Also good. For example, after confirming that the driver is not intoxicated, the driver instructs the driving support device 3 to execute the test run mode.
In short, the reference correlation value only needs to indicate the correlation between the swaying of the occupant and the swaying of the vehicle when the occupant is not sick.
 上記のように不図示の記憶部に記憶された基準相関値が処理で利用される場合、運転支援装置3には、当該記憶部から基準相関値を取得して判定部33へ出力する不図示の基準相関値取得部が備えられる。なお、図4のフローチャートを用いた説明では、ステップST6にて揺動相関算出部32が基準相関値を算出して判定部33へ出力したことから分かるように、揺動相関算出部32が基準相関値を取得する基準相関値取得部として機能している。 When the reference correlation value stored in the storage unit (not shown) as described above is used in the process, the driving support device 3 acquires the reference correlation value from the storage unit and outputs the reference correlation value to the determination unit 33 (not shown). The reference correlation value acquisition unit is provided. In the description using the flowchart of FIG. 4, as can be seen from the fact that the rocking correlation calculation unit 32 calculates the reference correlation value and outputs the reference correlation value to the determination unit 33 in step ST <b> 6, the rocking correlation calculation unit 32 It functions as a reference correlation value acquisition unit that acquires correlation values.
 以上のように、実施の形態1に係る運転支援装置3は、乗員の揺れと車両の揺れとの相関を示す第1相関値を算出し、第1相関値が、乗員が車酔いしていないときの乗員の揺れと車両の揺れとの相関を示す基準相関値から設定以上乖離している場合に、乗員が車酔いしていると判定する。乗員の揺れと、車両という乗員以外の揺れとの関係性を利用して車酔いの判定を行うことで、判定精度を向上させることができる。 As described above, the driving support apparatus 3 according to Embodiment 1 calculates the first correlation value indicating the correlation between the passenger's shake and the vehicle's shake, and the first correlation value indicates that the passenger is not sick. It is determined that the occupant is intoxicated when the reference correlation value indicating the correlation between the occupant's sway and the vehicle's sway is more than the setting. The determination accuracy can be improved by determining the car sickness by utilizing the relationship between the vibration of the occupant and the vibration of the vehicle other than the occupant.
 また、運転支援装置3は、判定部33により第1乗員が車酔いしていると判定された場合に、乗員が車酔いしていることを通知する、又は、車両の制御を行う制御部34を備える。したがって、運転手に車酔いの発生を知らせること、又は、車酔いが悪化しない状態に車両を制御することができる。 In addition, when the determination unit 33 determines that the first occupant is drunken, the driving support device 3 notifies that the occupant is drunken or controls the vehicle. Is provided. Therefore, it is possible to notify the driver of the occurrence of car sickness or to control the vehicle so that the car sickness does not deteriorate.
 また、制御部34は、アクセル40の効き、ブレーキ41の効き、ハンドル44の効き、サスペンション43の効き、及び、窓42の開け具合のうちの少なくとも1つを調整する。したがって、車酔いに影響を与える要素を調整することが可能である。 Further, the control unit 34 adjusts at least one of the effect of the accelerator 40, the effect of the brake 41, the effect of the handle 44, the effect of the suspension 43, and the opening degree of the window 42. Therefore, it is possible to adjust factors that affect car sickness.
 また、車両が自動運転により走行しているときに判定部33により第1乗員が車酔いしていると判定された場合、制御部34は、自動運転のモードを変更する。したがって、車酔いを考慮した自動運転が可能となる。 Further, when the determination unit 33 determines that the first occupant is drunken while the vehicle is traveling by automatic driving, the control unit 34 changes the mode of automatic driving. Therefore, automatic driving considering car sickness is possible.
実施の形態2.
 車内に複数の乗員が存在し、その中で1人が車酔いし始めると、車酔いしている乗員は、その他の乗員とは異なる揺れを示す傾向にある。実施の形態2では、他の複数の乗員と異なる揺れをしている乗員について、車酔いしていると判定する形態について説明する。
 図5は、実施の形態2に係る運転支援装置3A及びその周辺の構成を示すブロック図である。実施の形態1で既に説明した構成と同一又は相当する機能を有する構成については、同一の符号を付し、適宜その説明を省略又は簡略化する。
Embodiment 2. FIG.
When a plurality of occupants are present in the vehicle and one of them begins to get intoxicated, the occupant who is intoxicated tends to swing differently from other occupants. In the second embodiment, a description will be given of a mode in which an occupant who is shaking differently from other occupants is determined to be intoxicated.
FIG. 5 is a block diagram showing the configuration of the driving support device 3A according to the second embodiment and its surroundings. Components having the same or corresponding functions as those already described in the first embodiment are denoted by the same reference numerals, and description thereof is omitted or simplified as appropriate.
 運転支援装置3Aは、乗員が少なくとも3人いるときに車酔いを判定する処理を実行可能なものである。
 乗員揺動検出部30は、乗員検出部1が出力した画像データを取得し、当該画像データを用いて、乗員の揺れを複数の乗員について検出する。乗員揺動検出部30は、検出した複数の乗員の揺れそれぞれを揺動相関算出部32へ出力する。
The driving support device 3A is capable of executing processing for determining car sickness when there are at least three passengers.
The occupant swing detection unit 30 acquires the image data output by the occupant detection unit 1, and detects occupant swings for a plurality of occupants using the image data. The occupant swing detection unit 30 outputs each detected swing of the occupants to the swing correlation calculation unit 32.
 揺動相関算出部32は、乗員揺動検出部30により検出された乗員の揺れと、当該乗員以外の複数の乗員の揺れとの相関を示す相関値である第2相関値を算出する。第2相関値は、実施の形態1で説明した第1相関値及び基準相関値と同様に、例えば、上記非特許文献に開示された式(4)-(8)を用いて算出することができる。揺動相関算出部32は、算出した第2相関値を判定部33へ出力する。 The rocking correlation calculation unit 32 calculates a second correlation value that is a correlation value indicating the correlation between the shaking of the occupant detected by the occupant rocking detection unit 30 and the shaking of a plurality of occupants other than the occupant. Similar to the first correlation value and the reference correlation value described in the first embodiment, the second correlation value can be calculated using, for example, equations (4) to (8) disclosed in the non-patent document. it can. The swing correlation calculation unit 32 outputs the calculated second correlation value to the determination unit 33.
 判定部33は、揺動相関算出部32により算出された第2相関値を用いて、乗員が車酔いしているかを判定する。 The determination unit 33 uses the second correlation value calculated by the rocking correlation calculation unit 32 to determine whether the occupant is intoxicated.
 次に、上記のように構成された運転支援装置3Aによる処理の一例について、図6に示すフローチャートを用いて説明する。図6に示す処理は、例えば車両の運転が開始されることで開始される。
 実施の形態1で説明したステップST1の処理に続き、乗員揺動検出部30は、乗員検出部1からの画像データを用いて、乗員が3人以上乗車しているかを判定する(ステップST20)。
Next, an example of processing performed by the driving support apparatus 3A configured as described above will be described with reference to the flowchart shown in FIG. The process shown in FIG. 6 is started when the driving of the vehicle is started, for example.
Following the processing of step ST1 described in the first embodiment, the occupant swing detection unit 30 determines whether three or more occupants are on board using the image data from the occupant detection unit 1 (step ST20). .
 乗員が3人未満の場合(ステップST20;NO)、ステップST1の処理が再度行われる。なお、乗員が3人未満の場合、ステップST1の処理が再度行われるのではなく、運転支援装置3Aはそのまま処理を終了してもよい。
 一方、乗員が3人以上乗車している場合(ステップST20;YES)、乗員揺動検出部30は、乗員検出部1からの画像データを用いて、乗員の揺れを検出する(ステップST21)。以下では、車内に乗員が3人存在しており、第1乗員、第2乗員及び第3乗員の揺れが乗員揺動検出部30で検出されたとして説明する。乗員揺動検出部30は、検出した第1乗員の揺れ、第2乗員の揺れ及び第3乗員の揺れをそれぞれ、揺動相関算出部32へ出力する。
When the number of passengers is less than three (step ST20; NO), the process of step ST1 is performed again. When the number of passengers is less than three, the process of step ST1 is not performed again, and the driving support device 3A may end the process as it is.
On the other hand, when three or more occupants are on board (step ST20; YES), the occupant swing detection unit 30 detects the sway of the occupant using the image data from the occupant detection unit 1 (step ST21). In the following description, it is assumed that there are three occupants in the vehicle and that the occupant swing detection unit 30 detects the swings of the first occupant, the second occupant, and the third occupant. The occupant swing detection unit 30 outputs the detected first occupant swing, second occupant swing, and third occupant swing to the swing correlation calculation unit 32, respectively.
 揺動相関算出部32は、1人の乗員の揺れと当該乗員以外の複数の乗員の揺れとの相関を示す第2相関値を算出する(ステップST22)。例えば、第1乗員の揺れと第1乗員以外である第2,3乗員の揺れとの相関を示す第2相関値の算出には、第2乗員の揺れと第3乗員の揺れとの平均、及び、第1乗員の揺れが用いられる。つまり、第1乗員の揺れと第1乗員以外である第2,3乗員の揺れとの相関を示す第2相関値は、第1乗員の揺れが、第2乗員の揺れと第3乗員の揺れとの平均とどの程度相関しているかを示している。第2乗員の揺れと第2乗員以外である第1,3乗員の揺れとの相関を示す第2相関値、第3乗員の揺れと第3乗員以外である第1,2乗員の揺れとの相関を示す第2相関値についても同様である。
 このように、揺動相関算出部32は、1人の乗員の揺れと当該乗員以外の複数の乗員の揺れとの相関を示す第2相関値を、乗員ごとに算出する。そして、揺動相関算出部32は、最も低い第2相関値、つまり、最も低い相関を示している第2相関値を判定部33へ出力する。ここでは、乗員ごとに算出された計3つの第2相関値のうち、第1乗員の揺れと第1乗員以外である第2,3乗員の揺れとの相関を示す第2相関値が最も低くなったとする。
The swing correlation calculation unit 32 calculates a second correlation value indicating the correlation between the swing of one passenger and the swings of a plurality of passengers other than the passenger (step ST22). For example, in calculating the second correlation value indicating the correlation between the shaking of the first occupant and the shaking of the second and third occupants other than the first occupant, the average of the shaking of the second occupant and the shaking of the third occupant, And the shaking of the first occupant is used. That is, the second correlation value indicating the correlation between the shaking of the first occupant and the shaking of the second and third occupants other than the first occupant is that the shaking of the first occupant is the shaking of the second occupant and the shaking of the third occupant. It shows how much it correlates with the average. The second correlation value indicating the correlation between the shaking of the second occupant and the shaking of the first and third occupants other than the second occupant, the shaking of the third occupant and the shaking of the first and second occupants other than the third occupant The same applies to the second correlation value indicating the correlation.
As described above, the swing correlation calculation unit 32 calculates, for each occupant, the second correlation value indicating the correlation between the swing of one occupant and the swings of a plurality of occupants other than the occupant. Then, the rocking correlation calculation unit 32 outputs the lowest second correlation value, that is, the second correlation value indicating the lowest correlation to the determination unit 33. Here, the second correlation value indicating the correlation between the shake of the first occupant and the shake of the second and third occupants other than the first occupant is the lowest among the three second correlation values calculated for each occupant. Suppose that
 続いて、判定部33は、揺動相関算出部32により算出された、第1乗員の揺れと第1乗員以外である第2,3乗員の揺れとの相関を示す第2相関値が、設定値以上であるかを判定する(ステップST23)。第2相関値が設定値未満、つまり、設定以上の相関を示していない場合(ステップST23;NO)、判定部33は、第1乗員が車酔いしているとの判定結果を制御部34へ出力する。一方、第2相関値が設定値以上、つまり、設定以上の相関を示している場合(ステップST23;YES)、判定部33は第1乗員が車酔いしていないと判定し、ステップST21に処理が戻って、各乗員について新たに検出された揺れを用いた第2相関値の算出処理が行われる。
 図6中のステップST9~ST11の処理は、実施の形態1で説明した通りである。
Subsequently, the determination unit 33 sets the second correlation value, which is calculated by the swing correlation calculation unit 32, and indicates the correlation between the swing of the first occupant and the swings of the second and third occupants other than the first occupant. It is determined whether the value is greater than or equal to the value (step ST23). When the second correlation value is less than the set value, that is, when the correlation greater than the set value is not indicated (step ST23; NO), the determination unit 33 notifies the control unit 34 of the determination result that the first occupant is intoxicated. Output. On the other hand, when the second correlation value is greater than or equal to the set value, that is, when the correlation is greater than or equal to the set value (step ST23; YES), the determination unit 33 determines that the first occupant is not sick, and the process proceeds to step ST21. And the second correlation value calculation process using the newly detected shake for each occupant is performed.
The processes in steps ST9 to ST11 in FIG. 6 are as described in the first embodiment.
 このように、運転支援装置3Aは、単に第1乗員が揺れているかではなく、第1乗員の揺れと、第2,第3乗員という第1乗員以外の揺れとの関係性を利用して車酔いの判定を行うことで、判定精度を向上させることができる。 In this way, the driving assistance device 3A does not simply determine whether the first occupant is shaking, but uses the relationship between the shaking of the first occupant and the shaking of the second and third occupants other than the first occupant. The determination accuracy can be improved by determining the sickness.
 なお、実施の形態2で示した車酔いの判定方法は、実施の形態1で示した車酔いの判定方法と組み合わせて使われてもよい。つまり、判定部33は、第1乗員の揺れと車両の揺れとの相関を示す第1相関値が基準相関値から設定以上乖離している場合であって、第1乗員の揺れと第1乗員以外である第2,3乗員の揺れとの相関を示す第2相関値が設定以上の相関を示していない場合に、第1乗員が車酔いしていると判定する。 Note that the motion sickness determination method shown in the second embodiment may be used in combination with the motion sickness determination method shown in the first embodiment. That is, the determination unit 33 is a case where the first correlation value indicating the correlation between the shake of the first occupant and the shake of the vehicle deviates from the reference correlation value by more than a set value, and the first occupant shake and the first occupant It is determined that the first occupant is intoxicated when the second correlation value indicating the correlation with the shaking of the second and third occupants other than the above indicates no correlation greater than the set value.
 以上のように、実施の形態2に係る運転支援装置3Aは、乗員の揺れと当該乗員以外の複数の乗員の揺れとの相関を示す第2相関値を算出し、第2相関値が、設定以上の相関を示していない場合に、乗員が車酔いしていると判定する。乗員の揺れと、当該乗員以外の揺れとの関係性を利用して車酔いの判定を行うことで、判定精度を向上させることができる。 As described above, the driving assistance apparatus 3A according to Embodiment 2 calculates the second correlation value indicating the correlation between the swaying of the occupant and the swaying of a plurality of occupants other than the occupant, and the second correlation value is set. When the above correlation is not shown, it is determined that the occupant is drunken. The determination accuracy can be improved by determining the car sickness using the relationship between the vibration of the occupant and the vibration other than the occupant.
 また、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態においての任意の構成要素の省略が可能である。 Further, within the scope of the invention, the invention of the present application can be freely combined with each embodiment, modified with any component in each embodiment, or omitted with any component in each embodiment. is there.
 以上のように、この発明に係る運転支援装置は、車酔いの判定精度が向上しているので、例えば車両に搭載して、運転手の運転を支援するために用いることができる。 As described above, the driving assistance apparatus according to the present invention has improved accuracy of determination of car sickness, and thus can be used, for example, to be mounted on a vehicle and assist driving of the driver.
 1 乗員検出部、2 車両状態検出部、3,3A 運転支援装置、4 車両部、5 通知部、10 カメラ、11 ステレオカメラ、12 TOFカメラ、20 CAN信号、21 加速度センサ、30 乗員揺動検出部、31 車両揺動検出部、32 揺動相関算出部、33 判定部、34 制御部、40 アクセル、41 ブレーキ、42 窓、43 サスペンション、44 ハンドル、50 インジケータ、51 スピーカ、100 処理回路、101 メモリ、102 CPU。 1 occupant detection unit, 2 vehicle state detection unit, 3, 3A driving support device, 4 vehicle unit, 5 notification unit, 10 camera, 11 stereo camera, 12 TOF camera, 20 CAN signal, 21 acceleration sensor, 30 occupant swing detection Unit, 31 vehicle swing detection unit, 32 swing correlation calculation unit, 33 determination unit, 34 control unit, 40 accelerator, 41 brake, 42 window, 43 suspension, 44 handle, 50 indicator, 51 speaker, 100 processing circuit, 101 Memory, 102 CPU.

Claims (7)

  1.  車内を撮影した画像の画像データを用いて、第1乗員の揺れを検出する乗員揺動検出部と、
     車両情報を用いて車両の揺れを検出する車両揺動検出部と、
     前記乗員揺動検出部により検出された第1乗員の揺れと、前記車両揺動検出部により検出された車両の揺れとの相関を示す第1相関値を算出する揺動相関算出部と、
     乗員が車酔いしていないときの当該乗員の揺れと車両の揺れとの相関を示す基準相関値を取得する基準相関値取得部と、
     前記揺動相関算出部により算出された第1相関値が、前記基準相関値から設定以上乖離している場合に、第1乗員が車酔いしていると判定する判定部とを備えることを特徴とする運転支援装置。
    An occupant swing detection unit that detects the swing of the first occupant using image data of an image taken inside the vehicle;
    A vehicle sway detector that detects vehicle sway using vehicle information;
    A rocking correlation calculating unit that calculates a first correlation value indicating a correlation between the swing of the first occupant detected by the occupant rocking detection unit and the vibration of the vehicle detected by the vehicle rocking detection unit;
    A reference correlation value acquisition unit that acquires a reference correlation value indicating a correlation between the vibration of the passenger and the vibration of the vehicle when the passenger is not intoxicated;
    And a determination unit that determines that the first occupant is intoxicated when the first correlation value calculated by the swing correlation calculation unit deviates from the reference correlation value by a setting or more. A driving support device.
  2.  車内を撮影した画像の画像データを用いて、乗員の揺れを複数の乗員について検出する乗員揺動検出部と、
     前記乗員揺動検出部により検出された第1乗員の揺れと、当該第1乗員以外の複数の乗員の揺れとの相関を示す第2相関値を算出する揺動相関算出部と、
     前記揺動相関算出部により算出された第2相関値が、設定以上の相関を示していない場合に、第1乗員が車酔いしていると判定する判定部とを備えることを特徴とする運転支援装置。
    An occupant swing detection unit that detects occupant swing for a plurality of occupants using image data of an image taken inside the vehicle;
    A rocking correlation calculating unit that calculates a second correlation value indicating a correlation between the shaking of the first occupant detected by the occupant rocking detection unit and the shaking of a plurality of occupants other than the first occupant;
    And a determination unit that determines that the first occupant is drunken when the second correlation value calculated by the swing correlation calculation unit does not indicate a correlation greater than or equal to the setting. Support device.
  3.  前記判定部により第1乗員が車酔いしていると判定された場合に、乗員が車酔いしていることを通知する、又は、車両の制御を行う制御部を備えることを特徴とする請求項1又は請求項2記載の運転支援装置。 The control unit for notifying that the occupant is intoxicated or controlling the vehicle when the determining unit determines that the first occupant is intoxicated. The driving support device according to claim 1 or 2.
  4.  前記制御部は、アクセルの効き、ブレーキの効き、ハンドルの効き、サスペンションの効き、及び、窓の開け具合のうちの少なくとも1つを調整することを特徴とする請求項3記載の運転支援装置。 The driving support device according to claim 3, wherein the control unit adjusts at least one of an accelerator effect, a brake effect, a handle effect, a suspension effect, and a window opening condition.
  5.  前記揺動相関算出部は、前記乗員揺動検出部により検出された第1乗員の揺れと、当該第1乗員以外の複数の乗員の揺れとの相関を示す第2相関値を算出し、
     前記判定部は、前記第1相関値が前記基準相関値から設定以上乖離している場合であって、前記第2相関値が設定以上の相関を示していない場合に、第1乗員が車酔いしていると判定することを特徴とする請求項1記載の運転支援装置。
    The swing correlation calculating unit calculates a second correlation value indicating a correlation between the swing of the first occupant detected by the occupant swing detection unit and the swings of a plurality of occupants other than the first occupant;
    The determination unit determines that the first occupant is intoxicated when the first correlation value deviates from the reference correlation value by a setting or more and the second correlation value does not indicate a setting or more. The driving support device according to claim 1, wherein it is determined that the vehicle is operating.
  6.  車両が自動運転により走行しているときに前記判定部により第1乗員が車酔いしていると判定された場合、前記制御部は、自動運転のモードを変更することを特徴とする請求項3記載の運転支援装置。 The control unit changes the mode of automatic driving when the determination unit determines that the first occupant is drunken while the vehicle is traveling by automatic driving. The driving assistance apparatus as described.
  7.  乗員揺動検出部が、車内を撮影した画像の画像データを用いて、第1乗員の揺れを検出する乗員揺動検出ステップと、
     車両揺動検出部が、車両情報を用いて車両の揺れを検出する車両揺動検出ステップと、
     揺動相関算出部が、乗員揺動検出ステップにより検出された第1乗員の揺れと、前記車両揺動検出ステップにより検出された車両の揺れとの相関を示す第1相関値を算出する揺動相関算出ステップと、
     基準相関値取得部が、乗員が車酔いしていないときの当該乗員の揺れと車両の揺れとの相関を示す基準相関値を取得する基準相関値取得ステップと、
     判定部が、前記揺動相関算出ステップにより算出された第1相関値が、前記基準相関値から設定以上乖離している場合に、第1乗員が車酔いしていると判定する判定ステップとを備えることを特徴とする運転支援方法。
    An occupant swing detection step in which the occupant swing detection unit detects the swing of the first occupant using image data of an image taken inside the vehicle;
    A vehicle swing detection step in which the vehicle swing detection unit detects the swing of the vehicle using the vehicle information;
    A swing for calculating a first correlation value indicating a correlation between the swing of the first occupant detected by the occupant swing detection step and the swing of the vehicle detected by the vehicle swing detection step. A correlation calculation step;
    A reference correlation value acquisition unit for acquiring a reference correlation value indicating a correlation between the shaking of the occupant and the shaking of the vehicle when the occupant is not sick;
    A determination step in which the determination unit determines that the first occupant is intoxicated when the first correlation value calculated in the swing correlation calculation step deviates from the reference correlation value by a setting or more; A driving support method comprising the steps of:
PCT/JP2018/017767 2018-05-08 2018-05-08 Drive assist device and drive assist method WO2019215811A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/017767 WO2019215811A1 (en) 2018-05-08 2018-05-08 Drive assist device and drive assist method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/017767 WO2019215811A1 (en) 2018-05-08 2018-05-08 Drive assist device and drive assist method

Publications (1)

Publication Number Publication Date
WO2019215811A1 true WO2019215811A1 (en) 2019-11-14

Family

ID=68467378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017767 WO2019215811A1 (en) 2018-05-08 2018-05-08 Drive assist device and drive assist method

Country Status (1)

Country Link
WO (1) WO2019215811A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020170640A1 (en) * 2019-02-18 2020-08-27 三菱電機株式会社 Motion sickness estimation device, motion sickness reducing device and motion sickness estimation method
WO2023145168A1 (en) * 2022-01-26 2023-08-03 日立Astemo株式会社 Vehicle integration control device and vehicle integration control method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005326962A (en) * 2004-05-12 2005-11-24 Fujitsu Ten Ltd Driving support device
JP2006036012A (en) * 2004-07-27 2006-02-09 Matsushita Electric Ind Co Ltd Carsickness prevention device
JP2007236644A (en) * 2006-03-09 2007-09-20 Nissan Motor Co Ltd Device and method for estimating motion sickness, and vehicle including the device
JP2012059274A (en) * 2011-10-07 2012-03-22 Toyota Motor Corp Automatic drive vehicle
WO2016126522A1 (en) * 2015-02-05 2016-08-11 Sony Computer Entertainment Inc. Motion sickness monitoring and application of supplemental sound to counteract sickness
WO2018070330A1 (en) * 2016-10-11 2018-04-19 三菱電機株式会社 Motion sickness estimating device, motion sickness preventing device, and motion sickness estimating method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005326962A (en) * 2004-05-12 2005-11-24 Fujitsu Ten Ltd Driving support device
JP2006036012A (en) * 2004-07-27 2006-02-09 Matsushita Electric Ind Co Ltd Carsickness prevention device
JP2007236644A (en) * 2006-03-09 2007-09-20 Nissan Motor Co Ltd Device and method for estimating motion sickness, and vehicle including the device
JP2012059274A (en) * 2011-10-07 2012-03-22 Toyota Motor Corp Automatic drive vehicle
WO2016126522A1 (en) * 2015-02-05 2016-08-11 Sony Computer Entertainment Inc. Motion sickness monitoring and application of supplemental sound to counteract sickness
WO2018070330A1 (en) * 2016-10-11 2018-04-19 三菱電機株式会社 Motion sickness estimating device, motion sickness preventing device, and motion sickness estimating method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020170640A1 (en) * 2019-02-18 2020-08-27 三菱電機株式会社 Motion sickness estimation device, motion sickness reducing device and motion sickness estimation method
WO2023145168A1 (en) * 2022-01-26 2023-08-03 日立Astemo株式会社 Vehicle integration control device and vehicle integration control method

Similar Documents

Publication Publication Date Title
JP6501998B2 (en) Automatic operation control device
JP6565859B2 (en) Vehicle control system
US10414411B2 (en) Notification control apparatus and notification control method
JP4973551B2 (en) Driver status determination device
JP6690582B2 (en) Operation mode switching control device, method and program
US10906550B2 (en) Vehicle control apparatus
JP4370915B2 (en) In-vehicle application selection system and in-vehicle application selection device
JP7338397B2 (en) vehicle controller
WO2019215811A1 (en) Drive assist device and drive assist method
JP7252416B2 (en) Systems and methods for providing audio information in vehicles
JP2009087274A (en) Drive recorder
JP2007257505A (en) Driving state alarm device
WO2018158809A1 (en) Image pickup control device for vehicle, driver monitoring device, and image pickup control method for vehicle
JP2019091292A (en) Abnormality detection device, abnormality detection method, abnormality detection program, and recording device for vehicle
JP6647323B2 (en) Vehicle control device
JP6381864B2 (en) Notification sound output control device and notification sound output control method
JP2018010360A (en) Driving support device
JP2009059229A (en) Operation support method and operation support system
US11142216B2 (en) Seat haptics
JP2006331317A (en) Device and method for recording vehicle accident
JP2008049828A (en) Yaw rate estimating device
JPWO2020008568A1 (en) Notification target detection device, alarm system and notification target detection method
JP7376893B2 (en) Vehicle braking control device
US11220181B2 (en) Operation control device, operation control method, and storage medium
JP2021126919A (en) Vehicle seat and vehicle equipped with vehicle seat, vehicle control method and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18918074

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18918074

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP