WO2019215788A1 - Parking support device - Google Patents

Parking support device Download PDF

Info

Publication number
WO2019215788A1
WO2019215788A1 PCT/JP2018/017643 JP2018017643W WO2019215788A1 WO 2019215788 A1 WO2019215788 A1 WO 2019215788A1 JP 2018017643 W JP2018017643 W JP 2018017643W WO 2019215788 A1 WO2019215788 A1 WO 2019215788A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
parking
corner edge
distance
parked
Prior art date
Application number
PCT/JP2018/017643
Other languages
French (fr)
Japanese (ja)
Inventor
元気 山下
裕 小野寺
亘 辻田
努 朝比奈
聡史 上田
井上 悟
真一 原瀬
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020517637A priority Critical patent/JP7034271B2/en
Priority to PCT/JP2018/017643 priority patent/WO2019215788A1/en
Publication of WO2019215788A1 publication Critical patent/WO2019215788A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes

Definitions

  • the present invention relates to a parking assistance device.
  • the distance measuring sensor is configured by, for example, sonar, millimeter wave radar, or laser radar.
  • the sonar (30a) directed to the front of the vehicle (100) and the sonar (30b) directed to the side of the vehicle (100) are used for parallel parking. It is described that the side surface portion and the front surface portion of each of the two parked vehicles (102, 104) are detected.
  • the side surfaces of the parked vehicles (102, 104) cannot be accurately detected by using the sonar (30a, 30b) oriented in these directions due to the principle of the TOF method. For this reason, each corner edge part of parked vehicles (102,104) cannot be detected correctly, but parking of vehicles (100) to the space between parked vehicles (102,104) is possible. There was a problem that could not be determined accurately.
  • the present invention has been made to solve the above-described problems, and can accurately detect a corner edge portion of a parked vehicle by using a plurality of distance measuring sensors provided in the vehicle. It aims at providing a parking assistance device.
  • a parking assistance device is provided in a vehicle, and among a plurality of distance measuring sensors having a predetermined radiation angle, a first distance measuring sensor directed to the side of the vehicle, the vehicle obliquely A parking assist device using a second distance sensor directed forward and a third distance sensor directed obliquely behind the vehicle, wherein the first distance sensor, the second distance sensor, and the third distance measurement A surface detection unit that detects two surface portions including the side surface portion of the parked vehicle using distance measurement information by the distance sensor, and a corner edge that detects a corner edge portion of the parked vehicle using the detection result of the surface detection unit.
  • a detection part and the parking space determination part which determines the presence or absence of a parking space using the detection result by a corner edge detection part are provided.
  • the corner edge portion of the parked vehicle can be accurately detected using a plurality of distance measuring sensors provided in the vehicle.
  • FIG. 1 It is explanatory drawing which shows the state in which the several ranging sensor for parking assistance apparatuses which concern on Embodiment 1 is provided in the vehicle. It is a block diagram which shows the state in which the parking assistance apparatus which concerns on Embodiment 1 is provided in the electronic control unit in a vehicle. It is a block diagram which shows the principal part of the parking assistance apparatus which concerns on Embodiment 1.
  • FIG. It is explanatory drawing which shows an example of the some reflective point corresponding to two parked vehicles in parallel parking. It is explanatory drawing which shows an example of two reflective point groups corresponding to two parked vehicles in parallel parking one-on-one. It is explanatory drawing which shows an example of three reflection point groups corresponding to three surface parts in each of the two parked vehicles in parallel parking.
  • FIG. 9A is a block diagram illustrating a hardware configuration of the parking assistance device according to the first embodiment.
  • FIG. 9B is a block diagram showing another hardware configuration of the parking assistance apparatus according to Embodiment 1.
  • 3 is a flowchart showing an operation of the parking assistance device according to the first embodiment.
  • FIG. 11A is an explanatory diagram illustrating a state in which the search wave is reflected only by the rear surface portion of one parked vehicle.
  • FIG. 11B is an explanatory diagram illustrating a state in which the search wave is reflected by the rear and right side portions of one parked vehicle.
  • FIG. 11C is an explanatory diagram illustrating a state in which the search wave is reflected only by the right side surface portion of one parked vehicle.
  • FIG. 12A is an explanatory diagram illustrating a state in which the search wave is reflected by the rear and right side portions of one parked vehicle.
  • FIG. 12B is an explanatory diagram illustrating a state in which the search wave is reflected only by the right side surface portion of one parked vehicle.
  • FIG. 12C is an explanatory diagram illustrating a state in which the search wave is reflected only by the right side surface portion of one parked vehicle.
  • FIG. 1 is an explanatory diagram illustrating a state in which a plurality of distance measuring sensors for a parking assistance apparatus according to Embodiment 1 are provided in a vehicle.
  • FIG. 2 is a block diagram illustrating a state in which the parking assist device according to Embodiment 1 is provided in an electronic control unit in the vehicle.
  • FIG. 3 is a block diagram illustrating a main part of the parking assistance apparatus according to the first embodiment. With reference to FIGS. 1 to 3, a parking assistance apparatus 100 according to the first embodiment will be described.
  • the first electronic control unit (hereinafter referred to as “first ECU”) 3 is connected to a computer network (for example, CAN (Controller Area Network)) in the vehicle 1.
  • the first ECU 3 can appropriately acquire various signals from the computer network.
  • the various signals include, for example, a signal indicating the traveling speed of the vehicle 1, a signal indicating the yaw rate of the vehicle 1, and a signal indicating the outside temperature of the vehicle 1.
  • the vehicle 1 has a first distance sensor 2a, a second distance sensor 2b, and a third distance sensor 2c.
  • the first distance measuring sensor 2a is provided on the side surface portion (for example, the left side surface portion) of the vehicle 1 and is directed to the side of the vehicle 1 (for example, the left side).
  • the second distance measuring sensor 2b is provided at a corner edge portion of the vehicle 1 (for example, the corner edge portion of the left front end) and is directed obliquely forward (for example, diagonally left front) of the vehicle 1.
  • the third distance measuring sensor 2c is provided at a corner edge portion (for example, the corner edge portion at the left rear end) of the vehicle 1 and is directed obliquely rearward (for example, diagonally rearward left) of the vehicle 1.
  • Each of the first distance sensor 2a, the second distance sensor 2b, and the third distance sensor 2c has a predetermined radiation angle ⁇ . That is, each of the first distance measuring sensor 2a, the second distance measuring sensor 2b, and the third distance measuring sensor 2c has a beam width with an angle of 2 ⁇ ⁇ .
  • the value of the radiation angle ⁇ may be different for each distance measuring sensor.
  • An angle ⁇ 1 in the main beam direction of the first distance measuring sensor 2a with respect to the longitudinal direction of the vehicle 1 is set to approximately 90 °.
  • the angle ⁇ 2 in the main beam direction of the second distance measuring sensor 2b with respect to the longitudinal direction of the vehicle 1 is set to a value equal to or greater than the radiation angle ⁇ .
  • the angle ⁇ 3 in the main beam direction of the third distance measuring sensor 2c with respect to the front-rear direction of the vehicle 1 is set to a value equal to or greater than the radiation angle ⁇ .
  • these angles ⁇ 1, ⁇ 2, and ⁇ 3 are referred to as “main beam angles”.
  • Each of the first distance sensor 2a, the second distance sensor 2b, and the third distance sensor 2c is configured by, for example, sonar, millimeter wave radar, or laser radar.
  • search waves ultrasonic waves, radio waves, light, and the like that are targets of transmission / reception by the distance measuring sensors 2 are collectively referred to as “search waves”.
  • search waves ultrasonic waves, radio waves, light, and the like that are targets of transmission / reception by the distance measuring sensors 2
  • search waves ultrasonic waves, radio waves, light, and the like that are targets of transmission / reception by the distance measuring sensors 2
  • search waves ultrasonic waves, radio waves, light, and the like that are targets of transmission / reception by the distance measuring sensors 2
  • search waves ultrasonic waves, radio waves, light, and the like that are targets of transmission / reception by the distance measuring sensors 2
  • search waves reflected by an object O outside the vehicle 1 (for example, a parked vehicle V)
  • reflected wave is referred to as a “reflected wave”.
  • the ranging information generation unit 11 measures the distance D between the vehicle 1 and the object O using the ranging sensor 2.
  • the ranging information generating unit 11 outputs information indicating the result of the measurement (hereinafter referred to as “ranging information”) to the parking assistance device 100.
  • the distance measurement information generation unit 11 causes the first distance measurement sensor 2a to transmit a search wave at a predetermined time interval when the vehicle 1 is traveling at a speed equal to or lower than a predetermined speed (for example, every 30 kilometers). .
  • a reflected wave is received by the first distance measuring sensor 2a
  • the distance measurement information generation unit 11 calculates a distance value d by TOF, and a point where the search wave is reflected (hereinafter referred to as “reflection point”) P.
  • the position of is calculated.
  • the distance measurement information generation unit 11 includes information indicating the calculated position in the distance measurement information.
  • the distance measuring information generating unit 11 calculates the propagation speed of the ultrasonic wave according to the vehicle outside temperature of the vehicle 1, and uses the calculated propagation speed. It may be used to calculate the distance value d.
  • the position of the reflection point P is, for example, a first axis (hereinafter referred to as “X-axis”) corresponding to the longitudinal direction of the vehicle 1 and a second axis (hereinafter referred to as “Y-axis”) corresponding to the left-right direction of the vehicle 1. It is represented by the coordinate value in the coordinate system of meter unit (hereinafter referred to as “XY coordinate system”).
  • XY coordinate system coordinate system of meter unit
  • the distance measurement information generation unit 11 has an origin corresponding to the position of the first distance measurement sensor 2a at the measurement timing of the distance D (more specifically, the transmission timing of the search wave or the reception timing of the reflected wave),
  • the position of the reflection point P is calculated by obtaining a vector having an orientation corresponding to the main beam angle ⁇ 1 and a magnitude corresponding to the distance value d.
  • the ranging information generation unit 11 transmits a search wave to the second ranging sensor 2b at a predetermined time interval when the vehicle 1 is traveling at a speed equal to or lower than a predetermined speed (for example, every 30 kilometers).
  • a predetermined speed for example, every 30 kilometers.
  • the ranging information generating unit 11 calculates the distance value d by TOF and calculates the position of the reflection point P.
  • the distance measurement information generation unit 11 includes information indicating the calculated position in the distance measurement information.
  • the ranging information generating unit 11 calculates the ultrasonic propagation velocity according to the vehicle outside temperature of the vehicle 1, and uses the calculated propagation velocity. It may be used to calculate the distance value d.
  • the position of the reflection point P is represented by a coordinate value in the XY coordinate system, for example.
  • Various known methods can be used to calculate the position of the reflection point P, and detailed description thereof is omitted.
  • the distance measurement information generation unit 11 has an origin corresponding to the position of the second distance sensor 2b at the measurement timing of the distance D (more specifically, the transmission timing of the search wave or the reception timing of the reflected wave),
  • the position of the reflection point P is calculated by obtaining a vector having an orientation corresponding to the main beam angle ⁇ 2 and a magnitude corresponding to the distance value d.
  • the ranging information generating unit 11 transmits a search wave to the third ranging sensor 2c at a predetermined time interval when the vehicle 1 is traveling at a speed equal to or lower than a predetermined speed (for example, every 30 kilometers).
  • a predetermined speed for example, every 30 kilometers.
  • the ranging information generating unit 11 calculates the distance value d by TOF and calculates the position of the reflection point P.
  • the distance measurement information generation unit 11 includes information indicating the calculated position in the distance measurement information.
  • the ranging information generating unit 11 calculates the ultrasonic propagation velocity according to the vehicle outside temperature of the vehicle 1, and uses the calculated propagation velocity. It may be used to calculate the distance value d.
  • the position of the reflection point P is represented by a coordinate value in the XY coordinate system, for example.
  • Various known methods can be used to calculate the position of the reflection point P, and detailed description thereof is omitted.
  • the distance measurement information generation unit 11 has an origin corresponding to the position of the third distance sensor 2c at the measurement timing of the distance D (more specifically, the transmission timing of the search wave or the reception timing of the reflected wave),
  • the position of the reflection point P is calculated by obtaining a vector having an orientation corresponding to the main beam angle ⁇ 3 and a magnitude corresponding to the distance value d.
  • information indicating the position of the first distance measuring sensor 2a at the measurement timing of the distance D (more specifically, the transmission timing of the search wave or the reception timing of the reflected wave)
  • Information indicating the position of the second ranging sensor 2b at the timing and information indicating the position of the third ranging sensor 2c at the timing are output by the position information generation unit 12.
  • Other information (for example, information indicating the main beam angles ⁇ 1, ⁇ 2, and ⁇ 3) is stored in the distance measurement information generation unit 11 in advance.
  • the distance measurement information generation unit 11 groups the plurality of reflection points P, whereby a reflection point group corresponding to the object O (hereinafter referred to as a one-to-one correspondence). "Group") G is set. In this grouping, for example, when the distance between two adjacent reflection points P is less than a predetermined distance, the two reflection points P are included in the same group G.
  • the distance measurement information generation unit 11 includes information indicating the group G in which each of the plurality of reflection points P is included in the distance measurement information.
  • the distance measurement information generation unit 11 When the distance measurement sensor receives reflected waves from a plurality of points, the distance measurement information generation unit 11 reflects the reflection point P corresponding to the smallest distance value d among the distance values d of the plurality of points (hereinafter “most recently reflected”). Only the information related to “dot” is included in the distance measurement information. That is, the distance measurement information generation unit 11 excludes information related to the remaining reflection points P among the plurality of reflection points P from the distance measurement information. Thereby, the noise contained in ranging information can be reduced.
  • the position information generation unit 12 is a distance D measurement timing by the distance measurement information generation unit 11 (more specifically, a search wave transmission timing by the first distance sensor 2a or a reflected wave reception timing by the first distance sensor 2a). ) To calculate the position of the vehicle 1 (hereinafter referred to as “own vehicle position”). The position information generation unit 12 calculates the position of the first ranging sensor 2a at the timing (hereinafter referred to as “first sensor position”). These positions are represented by, for example, coordinate values in the XY coordinate system. The position information generation unit 12 outputs information indicating the first sensor position to the distance measurement information generation unit 11. The information indicating the first sensor position is used for calculating the position of the reflection point P in the distance measurement information generation unit 11.
  • the position information generation unit 12 is configured to measure the distance D by the distance measurement information generation unit 11 (more specifically, the transmission timing of the search wave by the second distance sensor 2b or the reflected wave by the second distance sensor 2b). The vehicle position at the reception timing) is calculated.
  • the position information generation unit 12 calculates the position of the second distance measuring sensor 2b at the timing (hereinafter referred to as “second sensor position”). These positions are represented by, for example, coordinate values in the XY coordinate system.
  • the position information generation unit 12 outputs information indicating the second sensor position to the distance measurement information generation unit 11.
  • the information indicating the second sensor position is used for calculation of the position of the reflection point P in the distance measurement information generation unit 11.
  • the position information generation unit 12 determines the distance D measurement timing by the distance measurement information generation unit 11 (more specifically, the search wave transmission timing by the third distance sensor 2c or the reflected wave by the third distance sensor 2c). The vehicle position at the reception timing) is calculated.
  • the position information generation unit 12 calculates the position of the third ranging sensor 2c at the timing (hereinafter referred to as “third sensor position”). These positions are represented by, for example, coordinate values in the XY coordinate system.
  • the position information generation unit 12 outputs information indicating the third sensor position to the distance measurement information generation unit 11.
  • the information indicating the third sensor position is used for calculating the position of the reflection point P in the distance measurement information generation unit 11.
  • Information used for calculating the first sensor position for example, information indicating the installation position of the first distance measuring sensor 2a in the vehicle 1
  • information used for calculating the second sensor position for example, the second distance measuring sensor 2b in the vehicle 1).
  • Information indicating the installation position and information used for calculating the third sensor position are stored in advance in the position information generation unit 12.
  • FIG. 4A shows an example of a plurality of reflection points P1 corresponding to one of the two parked vehicles V1 and V2 adjacent to each other, and FIG. 4B shows a group corresponding to the parked vehicle V1.
  • An example of G1 is shown.
  • 4A shows an example of a plurality of reflection points P2 corresponding to the other parked vehicle V2 of the two parked vehicles V1 and V2 adjacent to each other, and FIG. 4B corresponds to the parked vehicle V2.
  • An example of the group G2 is shown.
  • the parking mode of the parked vehicles V1 and V2 is parallel parking.
  • each white circle ( ⁇ ) corresponds to each reflection point P.
  • FIG. 5A shows another example of a plurality of reflection points P1 corresponding to one of the two parked vehicles V1 and V2 adjacent to each other, and FIG. 5B corresponds to the parked vehicle V1.
  • Another example of the group G1 is shown.
  • 5A shows an example of a plurality of reflection points P2 corresponding to the other parked vehicle V2 of the two parked vehicles V1 and V2 adjacent to each other, and FIG. 5B corresponds to the parked vehicle V2.
  • An example of the group G2 is shown.
  • the parking form of the parked vehicles V1 and V2 is parallel parking.
  • each white circle ( ⁇ ) corresponds to each reflection point P.
  • FIG. 6A shows another example of a plurality of reflection points P1 corresponding to one of the two parked vehicles V1 and V2 adjacent to each other, and FIG. 6B corresponds to the parked vehicle V1.
  • Another example of the group G1 is shown.
  • 6A shows an example of a plurality of reflection points P2 corresponding to the other parked vehicle V2 of the two parked vehicles V1 and V2 adjacent to each other, and FIG. 6B corresponds to the parked vehicle V2.
  • An example of the group G2 is shown.
  • the parking form of the parked vehicles V1 and V2 is diagonal parking.
  • each white circle ( ⁇ ) corresponds to each reflection point P.
  • FIG. 7A shows another example of a plurality of reflection points P1 corresponding to one of the two parked vehicles V1 and V2 adjacent to each other, and FIG. 7B corresponds to the parked vehicle V1.
  • Another example of the group G1 is shown.
  • FIG. 7A shows an example of a plurality of reflection points P2 corresponding to the other parked vehicle V2 of the two parked vehicles V1 and V2 adjacent to each other, and
  • FIG. 7B corresponds to the parked vehicle V2.
  • An example of the group G2 is shown.
  • the parking form of the parked vehicles V1 and V2 is diagonal parking.
  • each white circle ( ⁇ ) corresponds to each reflection point P.
  • each of the parked vehicles V1, V2 has four surface portions S (that is, a front surface portion S1, a rear surface portion S2, a left surface portion S3, and a right surface portion S4).
  • the front surface portion S1 and the rear surface portion S2 (hereinafter collectively referred to as “nose surface portion”) are compared with the left side surface portion S3 and the right side surface portion S4 (hereinafter collectively referred to as “side surface portion”).
  • the length between the nose surface portions S1 and S2 is larger than the width between the side surface portions S3 and S4 (so-called “full width”).
  • the first distance measuring sensor 2 a directed to the side of the vehicle 1
  • the second distance measuring sensor 2 b directed obliquely forward of the vehicle 1
  • a distance measuring sensor 2 c is provided in the vehicle 1.
  • the main beam angles ⁇ 2 and ⁇ 3 are set to values equal to or larger than the radiation angle ⁇ . Accordingly, as shown in FIGS. 4 to 7, regardless of the parking mode of the parked vehicles V1 and V2, each of the groups G1 and G2 is placed on at least one of the left side surface portion S3 or the right side surface portion S4 (that is, the side surface portion).
  • a plurality of corresponding reflection points P and a plurality of reflection points P corresponding to at least one of the front surface portion S1 or the rear surface portion S2 (that is, the nose surface portion) are included. Further, in each of the groups G1 and G2, the arrangement direction of the plurality of reflection points P corresponding to the nose surface portion is substantially orthogonal to the arrangement direction of the plurality of reflection points P corresponding to the side surface portion.
  • the grouping unit 21 further groups the plurality of reflection points P1 in the group G1, thereby causing a group of reflection points (hereinafter referred to as “subgroups”) g corresponding to the surface portion S of the parked vehicle V1. Is set. This grouping is based on the arrangement direction of the plurality of reflection points P1.
  • the grouping part 21 sets the subgroup g corresponding to the surface part S of the parked vehicle V2 on a one-to-one basis by further grouping the plurality of reflection points P2 in the group G2. This grouping is based on the arrangement direction of the plurality of reflection points P2.
  • FIG. 4C shows an example of the subgroups g1 to g3 when the parking mode of the parked vehicles V1 and V2 is parallel parking.
  • the subgroup g1 corresponds to the rear surface portion S2
  • the subgroup g2 corresponds to the right side surface portion S4
  • the subgroup g3 corresponds to the front surface portion S1.
  • FIG. 5C shows an example of the subgroups g1 to g3 when the parking mode of the parked vehicles V1 and V2 is parallel parking.
  • the subgroup g1 corresponds to the right side surface portion S4
  • the subgroup g2 corresponds to the front surface portion S1
  • the subgroup g3 corresponds to the left side surface portion S3.
  • FIG. 6C shows an example of the subgroups g1 and g2 when the parking mode of the parked vehicles V1 and V2 is diagonal parking.
  • the subgroup g1 corresponds to the front surface portion S1
  • the subgroup g2 corresponds to the left side surface portion S3.
  • FIG. 7C shows another example of the subgroups g1 and g2 when the parking mode of the parked vehicles V1 and V2 is diagonal parking.
  • the subgroup g1 corresponds to the right side surface portion S4
  • the subgroup g2 corresponds to the front surface portion S1.
  • the number of reflection points P included in the subgroup g corresponding to the side surface portion is greater than the number of reflection points P included in the subgroup g corresponding to the nose surface portion. Will also increase.
  • the side surface determination unit 22 determines that the sub group g in which the number of reflection points P1 is larger than the other sub group g in the group G1 is the sub group g corresponding to the side surface portion of the parked vehicle V1. Is. Moreover, the side surface determination part 22 determines that the said other subgroup g is the subgroup g corresponding to the nose surface part of the parked vehicle V1.
  • the side surface determination unit 22 determines that the subgroup g having a larger number of reflection points P2 than the other subgroups g in the group G2 is the subgroup g corresponding to the side surface portion of the parked vehicle V2. To do. Moreover, the side surface determination part 22 determines that the said other subgroup g is the subgroup g corresponding to the nose surface part of the parked vehicle V2.
  • the side surface determination unit 22 has one subgroup g2 out of three subgroups g1 to g3 corresponding to the side surface portion, and the remaining two subgroups. It is determined that g1 and g3 correspond to the nose surface portion.
  • the side determination unit 22 includes two subgroups g1 and g3 out of the three subgroups g1 to g3 corresponding to the side surface, and the remaining one subgroup. It is determined that the group g2 corresponds to the nose surface portion.
  • FIG. 5C the side determination unit 22 includes two subgroups g1 and g3 out of the three subgroups g1 to g3 corresponding to the side surface, and the remaining one subgroup. It is determined that the group g2 corresponds to the nose surface portion.
  • the side determination unit 22 has one subgroup g2 of the two subgroups g1 and g2 corresponding to the side surface, and one remaining subgroup g1. Is determined to correspond to the nose surface portion.
  • the side surface determination unit 22 has one subgroup g1 out of two subgroups g1 and g2 corresponding to the side surface portion, and one remaining subgroup g2 Is determined to correspond to the nose surface portion.
  • the grouping unit 21 and the side determination unit 22 constitute a surface detection unit 23. That is, the surface detection unit 23 detects at least two surface portions S including the side surface portion of the parked vehicle V1 using the distance measurement information. Moreover, the surface detection part 23 detects at least 2 surface part S including the side part of the parked vehicle V2 using ranging information.
  • each of the parked vehicles V1 and V2 has four corner edge portions C (that is, a corner edge portion C1 at the left front end, a corner edge portion C2 at the right front end, and a left rear portion).
  • the corner edge detection unit 24 detects at least one corner edge part C of the parked vehicle V1 and also detects at least one corner edge part C of the parked vehicle V2 using the detection result by the surface detection unit 23. Is. More specifically, the corner edge detection unit 24 calculates a position coordinate PC corresponding to the at least one corner edge part C in the XY coordinate system.
  • the position coordinates between the end portions on the side correspond to the position of the corner edge portion C1.
  • the corner edge detection unit 24 calculates the position coordinates PC1 corresponding to the corner edge part C1 by calculating the position coordinates.
  • the position coordinates between the end portions on the side correspond to the position of the corner edge portion C2.
  • the corner edge detection unit 24 calculates the position coordinates PC2 corresponding to the corner edge part C2 by calculating the position coordinates.
  • the position coordinates between the end portions on the side correspond to the position of the corner edge portion C3.
  • the corner edge detection unit 24 calculates the position coordinates PC3 corresponding to the corner edge part C3 by calculating the position coordinates.
  • the position coordinates between the end portions on the side correspond to the position of the corner edge portion C4.
  • the corner edge detection unit 24 calculates the position coordinates PC4 corresponding to the corner edge part C4 by calculating the position coordinates.
  • FIG. 4D shows an example of position coordinates PC2 and PC4 corresponding to the two corner edge portions C2 and C4 of each of the two parked vehicles V1 and V2 that are parked in parallel.
  • FIG. 5D shows an example of position coordinates PC1 and PC2 corresponding to the two corner edge portions C1 and C2 of each of the two parked vehicles V1 and V2 that are parked in parallel.
  • FIG. 6D shows an example of position coordinates PC1 corresponding to one corner edge portion C1 of each of the two parked vehicles V1, V2 that are parked obliquely.
  • FIG. 7D shows an example of position coordinates PC2 corresponding to one corner edge portion C2 of each of the two parked vehicles V1, V2 that are parked obliquely.
  • the corner edge interval calculation unit 25 uses the detection result by the corner edge detection unit 24 to use the interval L between the position coordinates PC2 and PC4 in the example shown in FIG. 4D and the interval between the position coordinates PC1 and PC2 in the example shown in FIG. 5D. L, the distance L between the position coordinates PC1 and PC1 in the example shown in FIG. 6D, or the distance L between the position coordinates PC2 and PC2 in the example shown in FIG. 7D.
  • these intervals L are referred to as “corner edge intervals”. That is, the corner edge interval calculation unit 25 calculates the corner edge interval L between two adjacent vehicles V1, V2.
  • the parking mode determination unit 26 determines the parking mode of the parked vehicles V1 and V2 using the detection result by the corner edge detection unit 24.
  • the parking pattern determination unit 26 is in the direction along the side surface of the parked vehicles V1, V2 (that is, on the side surface of the parked vehicles V1, V2) with respect to the traveling direction of the vehicle 1 (that is, the direction along the X axis).
  • the inclination angle ⁇ of the arrangement direction of the plurality of reflection points P in the corresponding subgroup g is calculated.
  • angle ranges ⁇ 1 to ⁇ 5 to be compared with the inclination angle ⁇ are set in advance.
  • FIG. 8 shows an example of the angle range ⁇ 1 to ⁇ 5.
  • the parking form determination unit 26 determines that the parking form of the parked vehicles V1 and V2 is parallel parking when the inclination angle ⁇ is a value within the angle range ⁇ 1 or a value within the angle range ⁇ 5.
  • the parking form determination unit 26 determines that the parking form of the parked vehicles V1 and V2 is parallel parking.
  • the parking form determination unit 26 determines that the parking form of the parked vehicles V1 and V2 is oblique parking.
  • the parking mode determination unit 26 determines whether the inclination angle ⁇ is a value within the angle range ⁇ 2 or a value within the angle range ⁇ 4. Accordingly, the oblique direction in the oblique parking is determined. That is, the parking pattern determination unit 26 determines whether the diagonal parking is a so-called “right diagonal” diagonal parking or a so-called “left diagonal” diagonal parking.
  • the parking availability determination unit 27 determines whether or not the vehicle 1 can be parked in the space between the parked vehicles V1 and V2 according to the corner edge interval L and the parking mode of the parked vehicles V1 and V2. .
  • the parking availability determination unit 27 sets a threshold value Lth to be compared with the corner edge interval L according to the parking mode of the parked vehicles V1 and V2.
  • the parking availability determination unit 27 compares the corner edge interval L with a threshold value Lth.
  • the parking availability determination unit 27 determines that the vehicle 1 can be parked in the space between the parked vehicles V1, V2.
  • the parking availability determination unit 27 determines that the vehicle 1 cannot be parked in the space between the parked vehicles V1, V2.
  • a parking space determination unit 28 is configured by the corner edge interval calculation unit 25, the parking mode determination unit 26, and the parking availability determination unit 27. That is, the parking space determination part 28 determines the presence or absence of the parking space for the vehicles 1 between the parked vehicles V1 and V2 using the detection result by the corner edge detection part 24.
  • the parking support device 100 is configured by the surface detection unit 23, the corner edge detection unit 24, and the parking space determination unit 28.
  • the distance measurement information generation unit 11, the position information generation unit 12, and the parking assistance device 100 constitute a main part of the first ECU 3.
  • the second electronic control unit (hereinafter referred to as “second ECU”) 4 has a function of controlling the accelerator, brake, steering, and the like of the vehicle 1.
  • the second ECU 4 determines that the parking of the vehicle 1 in the space between the parked vehicles V1 and V2 is possible by the parking permission determination unit 27, the second ECU 4 performs control for realizing so-called “automatic parking”. .
  • the parking assistance device 100 is configured by a computer, and the computer has a processor 31 and a memory 32.
  • the memory 32 stores a program for causing the computer to function as the surface detection unit 23, the corner edge detection unit 24, and the parking space determination unit 28.
  • the processor 31 reads and executes the program stored in the memory 32, the functions of the surface detection unit 23, the corner edge detection unit 24, and the parking space determination unit 28 are realized.
  • the parking assistance device 100 may be configured by a processing circuit 33.
  • the functions of the surface detection unit 23, the corner edge detection unit 24, and the parking space determination unit 28 may be realized by the processing circuit 33.
  • the parking assistance apparatus 100 may be comprised by the processor 31, the memory 32, and the processing circuit 33 (not shown). In this case, some of the functions of the surface detection unit 23, the corner edge detection unit 24, and the parking space determination unit 28 are realized by the processor 31 and the memory 32, and the remaining functions are realized by the processing circuit 33. It may be a thing.
  • the processor 31 uses, for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a microprocessor, a microcontroller, or a DSP (Digital Signal Processor).
  • a CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • microprocessor a microcontroller
  • DSP Digital Signal Processor
  • the memory 32 uses, for example, a semiconductor memory or a magnetic disk. More specifically, the memory 32 includes a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory EMM, an EEPROM (Electrically Erasable Memory). (State Drive) or HDD (Hard Disk Drive) or the like is used.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory an EPROM (Erasable Programmable Read Only Memory EMM, an EEPROM (Electrically Erasable Memory).
  • State Drive Spin Drive
  • HDD Hard Disk Drive
  • the processing circuit 33 may be, for example, an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field-Programmable Gate Array), an SoC (System-LargeSemi-ChemicalLargeSigureSystem). Is used.
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • SoC System-LargeSemi-ChemicalLargeSigureSystem
  • the hardware configuration of the first ECU 3 excluding the parking support device 100 (that is, the site including the distance measurement information generation unit 11 and the position information generation unit 12) is the same as the hardware configuration of the parking support device 100. The illustration and description are omitted. Further, the hardware configuration of the second ECU 4 is the same as the hardware configuration of the parking assist device 100, and therefore illustration and description thereof are omitted.
  • the parking assistance apparatus 100 starts the process of step ST1 when the ranging information generating unit 11 outputs the ranging information.
  • the grouping unit 21 further sets the subgroup g corresponding to the surface portion S of the parked vehicle V1 by further grouping the plurality of reflection points P1 in the group G1. Moreover, the grouping part 21 sets the subgroup g corresponding to the surface part S of the parked vehicle V2 on a one-to-one basis by further grouping the plurality of reflection points P2 in the group G2.
  • step ST2 the side determination unit 22 determines that the subgroup g in which the number of reflection points P1 is larger than the other subgroup g in the group G1 corresponds to the side surface of the parked vehicle V1. It is determined that Moreover, the side surface determination part 22 determines with the subgroup g in which the number of reflection points P2 is large compared with the other subgroup g in the group G2 being the subgroup g corresponding to the side surface part of the parked vehicle V2. .
  • step ST3 the corner edge detector 24 detects at least one corner edge C of the parked vehicle V1 using the detection result by the surface detector 23, and at least one of the parked vehicle V2. A corner edge portion C is detected. More specifically, the corner edge detection unit 24 calculates a position coordinate PC corresponding to the at least one corner edge part C in the XY coordinate system.
  • step ST4 the corner edge interval calculation unit 25 calculates the corner edge interval L between the parked vehicles V1, V2.
  • the parking mode determination unit 26 determines the parking mode of the parked vehicles V1, V2. More specifically, the parking mode determination unit 26 determines whether the parking mode of the parked vehicles V1 and V2 is parallel parking, parallel parking, or diagonal parking. Moreover, when it determines with the parking form of the parked vehicles V1 and V2 being diagonal parking, the parking form determination part 26 determines the diagonal direction in the said diagonal parking.
  • step ST6 the parking permission determination unit 27 determines whether or not the vehicle 1 can be parked in the space between the parked vehicles V1 and V2. At this time, the parking availability determination unit 27 sets a threshold value Lth according to the parking mode of the parked vehicles V1 and V2, and compares the corner edge interval L with the threshold value Lth.
  • the control for realizing automatic parking is executed by the second ECU 4 after step ST6.
  • FIG. 11 shows an example in which the main beam angle ⁇ 2 is set to a value equal to or larger than the radiation angle ⁇ .
  • FIG. 12 shows an example in which the main beam angle ⁇ 2 is set to a value smaller than the radiation angle ⁇ as a comparison object with respect to FIG.
  • the search wave is first reflected by the rear surface portion S2 and the right side surface portion S4 (see FIG. 12A), and then The search wave is reflected only by the right side surface portion S4 (see FIGS. 12B and 12C).
  • the search wave is reflected not only by the rear surface portion S2 and the right surface portion S4 but also by the corner edge portion C4.
  • the corner edge portion C4 Of the rear surface portion S2, the right side surface portion S4, and the corner edge portion C4, the most recent portion with respect to the second distance measuring sensor 2b is the corner edge portion C4. For this reason, in the state shown in FIG.
  • the reflection point P corresponding to the corner edge portion C4 becomes the most recent reflection point, and only information relating to the reflection point P corresponding to the corner edge portion C4 is included in the distance measurement information.
  • the rear surface portion S2 cannot be detected in any of the states shown in FIGS. 12A to 12C.
  • the search wave is first reflected only by the rear surface portion S2 (see FIG. 11A).
  • the search wave is reflected by the rear surface portion S2 and the right side surface portion S4 (see FIG. 11B), and then the search wave is reflected only by the right side surface portion S4 (see FIG. 11C).
  • the rear surface portion S2 can be detected in the state shown in FIG. 11A, and the right side surface portion S4 can be detected in the state shown in FIG. 11C.
  • the main beam angle ⁇ 3 is set to a value equal to or larger than the radiation angle ⁇ , so that the front surface portion S1 can be detected and the right side surface portion S4 can be detected. it can. Therefore, the rear surface portion S2, the right side surface portion S4, and the front surface portion S1 can be detected by using the second distance measuring sensor 2b and the third distance measuring sensor 2c.
  • noise included in the distance measurement information can be reduced by setting the radiation angle ⁇ to a small value. Therefore, it is preferable to set the radiation angle ⁇ to a small value from the viewpoint of reducing the noise.
  • the radiation angle ⁇ is set to a small value
  • the traveling speed of the vehicle 1 is high (for example, when the vehicle is traveling at a maximum speed below a predetermined speed)
  • the number of corresponding reflection points P decreases. For this reason, the accuracy of the determination by the side surface determination unit 22 and the detection by the corner edge detection unit 24 may be reduced.
  • the number of reflection points P corresponding to at least one of the plurality of surface portions S can be increased.
  • the right side S4 in the example shown in FIG. 4 the front side S1 in the example shown in FIG. 5, the front side S1 and the left side S3 in the example shown in FIG. 6, and the right side S4 in the example shown in FIG.
  • the number of reflection points P corresponding to the front surface portion S1 can be increased.
  • the 1st ranging sensor 2a may be provided in each of the left side part and the right side part of the vehicle 1.
  • the 2nd ranging sensor 2b may be provided in each of the corner edge part of the left front end of the vehicle 1, and the corner edge part of the right front end.
  • the third distance measuring sensor 2c may be provided in each of the corner edge portion at the left rear end and the corner edge portion at the right rear end of the vehicle 1.
  • two first distance measuring sensors 2 a may be provided on the left side surface portion of the vehicle 1.
  • two first ranging sensors 2 a may be provided on each of the left side surface portion and the right side surface portion of the vehicle 1.
  • the 2nd ranging sensor 2b may be provided in each of the corner edge part of the left front end of the vehicle 1, and the corner edge part of the right front end.
  • the third distance measuring sensor 2c may be provided in each of the corner edge portion at the left rear end and the corner edge portion at the right rear end of the vehicle 1.
  • the distance measurement information generation unit 11 may calculate the position of the reflection point P by the two-circle intersection method, the two-circle tangent method, or the aperture synthesis method.
  • the position information generation unit 12 may calculate the vehicle position by satellite navigation instead of or in addition to autonomous navigation.
  • the first ECU 3 may acquire a GNSS signal from a GNSS (Global Navigation Satellite System) receiver provided in the vehicle 1.
  • GNSS Global Navigation Satellite System
  • the parking assist device 100 is provided in the vehicle 1 and is directed toward the side of the vehicle 1 among the plurality of distance measuring sensors 2 having the predetermined radiation angle ⁇ .
  • a parking assistance device 100 that uses a first distance sensor 2a that is directed, a second distance sensor 2b that is directed obliquely forward of the vehicle 1, and a third distance sensor 2c that is directed obliquely rearward of the vehicle 1.
  • a surface detection unit that detects two surface portions S including the side surface portion of the parked vehicle V using distance measurement information obtained by the first distance measurement sensor 2a, the second distance measurement sensor 2b, and the third distance measurement sensor 2c.
  • the corner edge detection unit 24 for detecting the corner edge part C of the parked vehicle V, and the detection result by the corner edge detection unit 24 are used to determine whether there is a parking space.
  • Parking space judgment part 2 Provided with a door. Thereby, the corner edge part C of the parked vehicle V can be detected correctly. In addition, it is possible to achieve both reduction in noise by reducing the radiation angle ⁇ and improvement in determination accuracy during high-speed traveling.
  • the parking space determination unit 28 calculates the inclination angle ⁇ in the direction along the side surface of the parked vehicle V with respect to the traveling direction of the vehicle 1 and determines the parking mode of the parked vehicle V based on the inclination angle ⁇ . Thereby, the presence determination of the parking space according to a parking form is realizable.
  • the main beam angle ⁇ 2 of the second distance measuring sensor 2b is set to a value equal to or larger than the radiation angle ⁇
  • the main beam angle ⁇ 3 of the third distance measuring sensor 2c is set to a value equal to or larger than the radiation angle ⁇ .
  • any component of the embodiment can be modified or any component of the embodiment can be omitted within the scope of the invention.
  • the parking assist device of the present invention can be applied to automatic parking, for example.
  • 1 vehicle 2 distance sensor, 2a first distance sensor, 2b second distance sensor, 2c third distance sensor, 3 first electronic control unit (first ECU), 4 second electronic control unit (second ECU) , 11 Ranging information generation unit, 12 Position information generation unit, 21 Grouping unit, 22 Side determination unit, 23 Surface detection unit, 24 Corner edge detection unit, 25 Corner edge interval calculation unit, 26 Parking type determination unit, 27 Parking Availability determination unit, 28 parking space determination unit, 31 processor, 32 memory, 33 processing circuit, 100 parking support device.
  • first ECU first electronic control unit
  • second ECU second electronic control unit
  • 11 Ranging information generation unit 12 Position information generation unit, 21 Grouping unit, 22 Side determination unit, 23 Surface detection unit, 24 Corner edge detection unit, 25 Corner edge interval calculation unit, 26 Parking type determination unit, 27 Parking Availability determination unit, 28 parking space determination unit, 31 processor, 32 memory, 33 processing circuit, 100 parking support device.

Abstract

A parking support device (100) comprises: a surface detection unit (23) that uses range information from a first range sensor (2a), a second range sensor (2b), and a third range sensor (2c) to detect two surface sections (S) including a side surface section of a parked vehicle (V); a corner edge detection unit (24) that uses the detection results from the surface detection unit (23) to detect a corner edge section (C) of the parked vehicle (V); and a parking space determination unit (28) that uses the detection results from the corner edge detection unit (24) to determine the presence or absence of a parking space.

Description

駐車支援装置Parking assistance device
 本発明は、駐車支援装置に関する。 The present invention relates to a parking assistance device.
 従来、車両に設けられているTOF(Time of Flight)方式の測距センサを用いて、駐車中の他車両(以下「駐車車両」という。)を検出する技術が開発されている(例えば、特許文献1参照。)。測距センサは、例えば、ソナー、ミリ波レーダ又はレーザレーダにより構成されている。 2. Description of the Related Art Conventionally, a technology for detecting another vehicle being parked (hereinafter referred to as “parked vehicle”) using a TOF (Time of Flight) range sensor provided in the vehicle has been developed (for example, patents). Reference 1). The distance measuring sensor is configured by, for example, sonar, millimeter wave radar, or laser radar.
特開2017-7499号公報JP 2017-7499 A
 特許文献1の図4等には、車両(100)の前方に向けられているソナー(30a)及び車両(100)の側方に向けられているソナー(30b)を用いて、並列駐車中の2台の駐車車両(102,104)の各々の側面部及び前面部を検出することが記載されている。しかしながら、実際上、TOF方式の原理により、これらの方向に向けられているソナー(30a,30b)を用いて駐車車両(102,104)の各々の側面部を正確に検出することはできない。このため、駐車車両(102,104)の各々のコーナーエッジ部を正確に検出することができず、駐車車両(102,104)間のスペースに対する車両(100)の駐車が可能であるか否かを正確に判定することができない問題があった。 In FIG. 4 of Patent Document 1, the sonar (30a) directed to the front of the vehicle (100) and the sonar (30b) directed to the side of the vehicle (100) are used for parallel parking. It is described that the side surface portion and the front surface portion of each of the two parked vehicles (102, 104) are detected. However, in practice, the side surfaces of the parked vehicles (102, 104) cannot be accurately detected by using the sonar (30a, 30b) oriented in these directions due to the principle of the TOF method. For this reason, each corner edge part of parked vehicles (102,104) cannot be detected correctly, but parking of vehicles (100) to the space between parked vehicles (102,104) is possible. There was a problem that could not be determined accurately.
 本発明は、上記のような課題を解決するためになされたものであり、車両に設けられている複数個の測距センサを用いて、駐車車両のコーナーエッジ部を正確に検出することができる駐車支援装置を提供することを目的とする。 The present invention has been made to solve the above-described problems, and can accurately detect a corner edge portion of a parked vehicle by using a plurality of distance measuring sensors provided in the vehicle. It aims at providing a parking assistance device.
 本発明の駐車支援装置は、車両に設けられており、かつ、所定の放射角を有する複数個の測距センサのうち、車両の側方に向けられている第1測距センサ、車両の斜め前方に向けられている第2測距センサ及び車両の斜め後方に向けられている第3測距センサを用いる駐車支援装置であって、第1測距センサ、第2測距センサ及び第3測距センサによる測距情報を用いて、駐車車両の側面部を含む2個の面部を検出する面検出部と、面検出部による検出結果を用いて、駐車車両のコーナーエッジ部を検出するコーナーエッジ検出部と、コーナーエッジ検出部による検出結果を用いて、駐車スペースの有無を判定する駐車スペース判定部とを備えるものである。 A parking assistance device according to the present invention is provided in a vehicle, and among a plurality of distance measuring sensors having a predetermined radiation angle, a first distance measuring sensor directed to the side of the vehicle, the vehicle obliquely A parking assist device using a second distance sensor directed forward and a third distance sensor directed obliquely behind the vehicle, wherein the first distance sensor, the second distance sensor, and the third distance measurement A surface detection unit that detects two surface portions including the side surface portion of the parked vehicle using distance measurement information by the distance sensor, and a corner edge that detects a corner edge portion of the parked vehicle using the detection result of the surface detection unit. A detection part and the parking space determination part which determines the presence or absence of a parking space using the detection result by a corner edge detection part are provided.
 本発明によれば、上記のように構成したので、車両に設けられている複数個の測距センサを用いて、駐車車両のコーナーエッジ部を正確に検出することができる。 According to the present invention, since it is configured as described above, the corner edge portion of the parked vehicle can be accurately detected using a plurality of distance measuring sensors provided in the vehicle.
実施の形態1に係る駐車支援装置用の複数個の測距センサが車両に設けられている状態を示す説明図である。It is explanatory drawing which shows the state in which the several ranging sensor for parking assistance apparatuses which concern on Embodiment 1 is provided in the vehicle. 実施の形態1に係る駐車支援装置が車両内の電子制御ユニットに設けられている状態を示すブロック図である。It is a block diagram which shows the state in which the parking assistance apparatus which concerns on Embodiment 1 is provided in the electronic control unit in a vehicle. 実施の形態1に係る駐車支援装置の要部を示すブロック図である。It is a block diagram which shows the principal part of the parking assistance apparatus which concerns on Embodiment 1. FIG. 縦列駐車中の2台の駐車車両に対応する複数個の反射点の一例を示す説明図である。It is explanatory drawing which shows an example of the some reflective point corresponding to two parked vehicles in parallel parking. 縦列駐車中の2台の駐車車両と一対一に対応する2個の反射点群の一例を示す説明図である。It is explanatory drawing which shows an example of two reflective point groups corresponding to two parked vehicles in parallel parking one-on-one. 縦列駐車中の2台の駐車車両の各々における3個の面部と一対一に対応する3個の反射点群の一例を示す説明図である。It is explanatory drawing which shows an example of three reflection point groups corresponding to three surface parts in each of the two parked vehicles in parallel parking. 縦列駐車中の2台の駐車車両の各々における2個のコーナーエッジ部に対応する位置座標の一例を示す説明図である。It is explanatory drawing which shows an example of the position coordinate corresponding to two corner edge parts in each of two parked vehicles in parallel parking. 並列駐車中の2台の駐車車両に対応する複数個の反射点の一例を示す説明図である。It is explanatory drawing which shows an example of the several reflective point corresponding to two parked vehicles currently parked in parallel. 並列駐車中の2台の駐車車両と一対一に対応する2個の反射点群の一例を示す説明図である。It is explanatory drawing which shows an example of two reflection point groups corresponding to the two parked vehicles in parallel parking one-on-one. 並列駐車中の2台の駐車車両の各々における3個の面部と一対一に対応する3個の反射点群の一例を示す説明図である。It is explanatory drawing which shows an example of three reflection point groups corresponding to three surface parts in each of the two parked vehicles in parallel parking. 並列駐車中の2台の駐車車両の各々における2個のコーナーエッジ部に対応する位置座標の一例を示す説明図である。It is explanatory drawing which shows an example of the position coordinate corresponding to two corner edge parts in each of two parked vehicles in parallel parking. 斜め駐車中の2台の駐車車両に対応する複数個の反射点の一例を示す説明図である。It is explanatory drawing which shows an example of the some reflective point corresponding to the two parked vehicles in diagonal parking. 斜め駐車中の2台の駐車車両と一対一に対応する2個の反射点群の一例を示す説明図である。It is explanatory drawing which shows an example of two reflective point groups corresponding to two parked vehicles in diagonal parking. 斜め駐車中の2台の駐車車両の各々における2個の面部と一対一に対応する2個の反射点群の一例を示す説明図である。It is explanatory drawing which shows an example of two reflection point groups corresponding to two surface parts in each of the two parked vehicles in diagonal parking. 斜め駐車中の2台の駐車車両の各々における1個のコーナーエッジ部に対応する位置座標の一例を示す説明図である。It is explanatory drawing which shows an example of the position coordinate corresponding to one corner edge part in each of the two parked vehicles in diagonal parking. 斜め駐車中の2台の駐車車両に対応する複数個の反射点の他の例を示す説明図である。It is explanatory drawing which shows the other example of several reflective points corresponding to two parked vehicles in diagonal parking. 斜め駐車中の2台の駐車車両と一対一に対応する2個の反射点群の他の例を示す説明図である。It is explanatory drawing which shows the other example of two reflective point groups corresponding to the two parked vehicles currently parked diagonally. 斜め駐車中の2台の駐車車両の各々における2個の面部と一対一に対応する2個の反射点群の他の例を示す説明図である。It is explanatory drawing which shows the other example of two reflective point groups corresponding to two surface parts in each of two parked vehicles in diagonal parking. 斜め駐車中の2台の駐車車両の各々における1個のコーナーエッジ部に対応する位置座標の他の例を示す説明図である。It is explanatory drawing which shows the other example of the position coordinate corresponding to one corner edge part in each of the two parked vehicles in diagonal parking. 傾き角度に対する比較対象となる角度範囲の一例を示す説明図である。It is explanatory drawing which shows an example of the angle range used as the comparison object with respect to an inclination angle. 図9Aは、実施の形態1に係る駐車支援装置のハードウェア構成を示すブロック図である。図9Bは、実施の形態1に係る駐車支援装置の他のハードウェア構成を示すブロック図である。FIG. 9A is a block diagram illustrating a hardware configuration of the parking assistance device according to the first embodiment. FIG. 9B is a block diagram showing another hardware configuration of the parking assistance apparatus according to Embodiment 1. 実施の形態1に係る駐車支援装置の動作を示すフローチャートである。3 is a flowchart showing an operation of the parking assistance device according to the first embodiment. 図11Aは、探索波が1台の駐車車両の後面部のみにより反射される状態を示す説明図である。図11Bは、探索波が1台の駐車車両の後面部及び右側面部により反射される状態を示す説明図である。図11Cは、探索波が1台の駐車車両の右側面部のみにより反射される状態を示す説明図である。FIG. 11A is an explanatory diagram illustrating a state in which the search wave is reflected only by the rear surface portion of one parked vehicle. FIG. 11B is an explanatory diagram illustrating a state in which the search wave is reflected by the rear and right side portions of one parked vehicle. FIG. 11C is an explanatory diagram illustrating a state in which the search wave is reflected only by the right side surface portion of one parked vehicle. 図12Aは、探索波が1台の駐車車両の後面部及び右側面部により反射される状態を示す説明図である。図12Bは、探索波が1台の駐車車両の右側面部のみにより反射される状態を示す説明図である。図12Cは、探索波が1台の駐車車両の右側面部のみにより反射される状態を示す説明図である。FIG. 12A is an explanatory diagram illustrating a state in which the search wave is reflected by the rear and right side portions of one parked vehicle. FIG. 12B is an explanatory diagram illustrating a state in which the search wave is reflected only by the right side surface portion of one parked vehicle. FIG. 12C is an explanatory diagram illustrating a state in which the search wave is reflected only by the right side surface portion of one parked vehicle. 実施の形態1に係る駐車支援装置用の複数個の測距センサが車両に設けられている他の状態を示す説明図である。It is explanatory drawing which shows the other state by which the several ranging sensor for parking assistance apparatuses which concern on Embodiment 1 is provided in the vehicle. 実施の形態1に係る駐車支援装置用の複数個の測距センサが車両に設けられている他の状態を示す説明図である。It is explanatory drawing which shows the other state by which the several ranging sensor for parking assistance apparatuses which concern on Embodiment 1 is provided in the vehicle. 実施の形態1に係る駐車支援装置用の複数個の測距センサが車両に設けられている他の状態を示す説明図である。It is explanatory drawing which shows the other state by which the several ranging sensor for parking assistance apparatuses which concern on Embodiment 1 is provided in the vehicle.
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。 Hereinafter, in order to explain the present invention in more detail, modes for carrying out the present invention will be described with reference to the accompanying drawings.
実施の形態1.
 図1は、実施の形態1に係る駐車支援装置用の複数個の測距センサが車両に設けられている状態を示す説明図である。図2は、実施の形態1に係る駐車支援装置が車両内の電子制御ユニットに設けられている状態を示すブロック図である。図3は、実施の形態1に係る駐車支援装置の要部を示すブロック図である。図1~図3を参照して、実施の形態1の駐車支援装置100について説明する。
Embodiment 1 FIG.
FIG. 1 is an explanatory diagram illustrating a state in which a plurality of distance measuring sensors for a parking assistance apparatus according to Embodiment 1 are provided in a vehicle. FIG. 2 is a block diagram illustrating a state in which the parking assist device according to Embodiment 1 is provided in an electronic control unit in the vehicle. FIG. 3 is a block diagram illustrating a main part of the parking assistance apparatus according to the first embodiment. With reference to FIGS. 1 to 3, a parking assistance apparatus 100 according to the first embodiment will be described.
 なお、第1電子制御ユニット(以下「第1ECU」と記載する。)3は車両1内のコンピュータネットワーク(例えばCAN(Controller Area Network))に接続されている。第1ECU3は当該コンピュータネットワークから種々の信号を適宜取得可能である。当該種々の信号は、例えば、車両1の走行速度を示す信号、車両1のヨーレートを示す信号及び車両1の車外温度を示す信号を含むものである。 The first electronic control unit (hereinafter referred to as “first ECU”) 3 is connected to a computer network (for example, CAN (Controller Area Network)) in the vehicle 1. The first ECU 3 can appropriately acquire various signals from the computer network. The various signals include, for example, a signal indicating the traveling speed of the vehicle 1, a signal indicating the yaw rate of the vehicle 1, and a signal indicating the outside temperature of the vehicle 1.
 車両1は第1測距センサ2a、第2測距センサ2b及び第3測距センサ2cを有している。第1測距センサ2aは、車両1の側面部(例えば左側面部)に設けられており、かつ、車両1の側方(例えば左方)に向けられている。第2測距センサ2bは、車両1のコーナーエッジ部(例えば左前端のコーナーエッジ部)に設けられており、かつ、車両1の斜め前方(例えば左斜め前方)に向けられている。第3測距センサ2cは、車両1のコーナーエッジ部(例えば左後端のコーナーエッジ部)に設けられており、かつ、車両1の斜め後方(例えば左斜め後方)に向けられている。 The vehicle 1 has a first distance sensor 2a, a second distance sensor 2b, and a third distance sensor 2c. The first distance measuring sensor 2a is provided on the side surface portion (for example, the left side surface portion) of the vehicle 1 and is directed to the side of the vehicle 1 (for example, the left side). The second distance measuring sensor 2b is provided at a corner edge portion of the vehicle 1 (for example, the corner edge portion of the left front end) and is directed obliquely forward (for example, diagonally left front) of the vehicle 1. The third distance measuring sensor 2c is provided at a corner edge portion (for example, the corner edge portion at the left rear end) of the vehicle 1 and is directed obliquely rearward (for example, diagonally rearward left) of the vehicle 1.
 第1測距センサ2a、第2測距センサ2b及び第3測距センサ2cの各々は所定の放射角φを有している。すなわち、第1測距センサ2a、第2測距センサ2b及び第3測距センサ2cの各々は2×φの角度によるビーム幅を有している。なお、異なる測距センサを組み合わせて使用する場合は、各々の測距センサで放射角φの値が異なっても良い。車両1の前後方向に対する第1測距センサ2aのメインビーム方向の角度θ1は、略90°に設定されている。車両1の前後方向に対する第2測距センサ2bのメインビーム方向の角度θ2は、放射角φ以上の値に設定されている。車両1の前後方向に対する第3測距センサ2cのメインビーム方向の角度θ3は、放射角φ以上の値に設定されている。以下、これらの角度θ1,θ2,θ3を「メインビーム角度」という。 Each of the first distance sensor 2a, the second distance sensor 2b, and the third distance sensor 2c has a predetermined radiation angle φ. That is, each of the first distance measuring sensor 2a, the second distance measuring sensor 2b, and the third distance measuring sensor 2c has a beam width with an angle of 2 × φ. When different distance measuring sensors are used in combination, the value of the radiation angle φ may be different for each distance measuring sensor. An angle θ1 in the main beam direction of the first distance measuring sensor 2a with respect to the longitudinal direction of the vehicle 1 is set to approximately 90 °. The angle θ2 in the main beam direction of the second distance measuring sensor 2b with respect to the longitudinal direction of the vehicle 1 is set to a value equal to or greater than the radiation angle φ. The angle θ3 in the main beam direction of the third distance measuring sensor 2c with respect to the front-rear direction of the vehicle 1 is set to a value equal to or greater than the radiation angle φ. Hereinafter, these angles θ1, θ2, and θ3 are referred to as “main beam angles”.
 第1測距センサ2a、第2測距センサ2b及び第3測距センサ2cの各々は、例えば、ソナー、ミリ波レーダ又はレーザレーダにより構成されている。以下、これらの測距センサ2による送受信の対象となる超音波、電波又は光などを「探索波」と総称する。また、車両1外の物体O(例えば駐車車両V)により探索波が反射された場合、当該反射された探索波を「反射波」という。 Each of the first distance sensor 2a, the second distance sensor 2b, and the third distance sensor 2c is configured by, for example, sonar, millimeter wave radar, or laser radar. Hereinafter, ultrasonic waves, radio waves, light, and the like that are targets of transmission / reception by the distance measuring sensors 2 are collectively referred to as “search waves”. Further, when a search wave is reflected by an object O outside the vehicle 1 (for example, a parked vehicle V), the reflected search wave is referred to as a “reflected wave”.
 測距情報生成部11は、測距センサ2を用いて車両1と物体O間の距離Dを計測するものである。測距情報生成部11は、当該計測の結果を示す情報(以下「測距情報」という。)を駐車支援装置100に出力するものである。 The ranging information generation unit 11 measures the distance D between the vehicle 1 and the object O using the ranging sensor 2. The ranging information generating unit 11 outputs information indicating the result of the measurement (hereinafter referred to as “ranging information”) to the parking assistance device 100.
 すなわち、測距情報生成部11は、車両1が所定速度(例えば30キロメートル毎時)以下の速度にて走行しているとき、所定の時間間隔にて第1測距センサ2aに探索波を送信させる。測距情報生成部11は、第1測距センサ2aにより反射波が受信された場合、TOFによる距離値dを算出して、探索波が反射された地点(以下「反射点」という。)Pの位置を算出する。測距情報生成部11は、当該算出された位置を示す情報を測距情報に含める。なお、第1測距センサ2aがソナーにより構成されている場合、測距情報生成部11は、車両1の車外温度に応じた超音波の伝搬速度を算出して、当該算出された伝搬速度を用いて距離値dを算出するものであっても良い。 That is, the distance measurement information generation unit 11 causes the first distance measurement sensor 2a to transmit a search wave at a predetermined time interval when the vehicle 1 is traveling at a speed equal to or lower than a predetermined speed (for example, every 30 kilometers). . When a reflected wave is received by the first distance measuring sensor 2a, the distance measurement information generation unit 11 calculates a distance value d by TOF, and a point where the search wave is reflected (hereinafter referred to as “reflection point”) P. The position of is calculated. The distance measurement information generation unit 11 includes information indicating the calculated position in the distance measurement information. When the first distance measuring sensor 2a is configured by sonar, the distance measuring information generating unit 11 calculates the propagation speed of the ultrasonic wave according to the vehicle outside temperature of the vehicle 1, and uses the calculated propagation speed. It may be used to calculate the distance value d.
 反射点Pの位置は、例えば、車両1の前後方向に対応する第1軸(以下「X軸」という。)及び車両1の左右方向に対応する第2軸(以下「Y軸」という。)によるメートル単位の座標系(以下「XY座標系」という。)における座標値により表されるものである。反射点Pの位置の算出には公知の種々の方法を用いることができるものであり、詳細な説明は省略する。例えば、測距情報生成部11は、距離Dの計測タイミング(より具体的には探索波の送信タイミング又は反射波の受信タイミング)における第1測距センサ2aの位置に対応する原点を有し、かつ、メインビーム角度θ1に対応する向きを有し、かつ、距離値dに対応する大きさを有するベクトルを求めることにより、反射点Pの位置を算出する。 The position of the reflection point P is, for example, a first axis (hereinafter referred to as “X-axis”) corresponding to the longitudinal direction of the vehicle 1 and a second axis (hereinafter referred to as “Y-axis”) corresponding to the left-right direction of the vehicle 1. It is represented by the coordinate value in the coordinate system of meter unit (hereinafter referred to as “XY coordinate system”). Various known methods can be used to calculate the position of the reflection point P, and detailed description thereof is omitted. For example, the distance measurement information generation unit 11 has an origin corresponding to the position of the first distance measurement sensor 2a at the measurement timing of the distance D (more specifically, the transmission timing of the search wave or the reception timing of the reflected wave), In addition, the position of the reflection point P is calculated by obtaining a vector having an orientation corresponding to the main beam angle θ1 and a magnitude corresponding to the distance value d.
 同様に、測距情報生成部11は、車両1が所定速度(例えば30キロメートル毎時)以下の速度にて走行しているとき、所定の時間間隔にて第2測距センサ2bに探索波を送信させる。測距情報生成部11は、第2測距センサ2bにより反射波が受信された場合、TOFによる距離値dを算出して、反射点Pの位置を算出する。測距情報生成部11は、当該算出された位置を示す情報を測距情報に含める。なお、第2測距センサ2bがソナーにより構成されている場合、測距情報生成部11は、車両1の車外温度に応じた超音波の伝搬速度を算出して、当該算出された伝搬速度を用いて距離値dを算出するものであっても良い。 Similarly, the ranging information generation unit 11 transmits a search wave to the second ranging sensor 2b at a predetermined time interval when the vehicle 1 is traveling at a speed equal to or lower than a predetermined speed (for example, every 30 kilometers). Let When the reflected wave is received by the second ranging sensor 2b, the ranging information generating unit 11 calculates the distance value d by TOF and calculates the position of the reflection point P. The distance measurement information generation unit 11 includes information indicating the calculated position in the distance measurement information. When the second ranging sensor 2b is configured by sonar, the ranging information generating unit 11 calculates the ultrasonic propagation velocity according to the vehicle outside temperature of the vehicle 1, and uses the calculated propagation velocity. It may be used to calculate the distance value d.
 反射点Pの位置は、例えば、XY座標系における座標値により表されるものである。反射点Pの位置の算出には公知の種々の方法を用いることができるものであり、詳細な説明は省略する。例えば、測距情報生成部11は、距離Dの計測タイミング(より具体的には探索波の送信タイミング又は反射波の受信タイミング)における第2測距センサ2bの位置に対応する原点を有し、かつ、メインビーム角度θ2に対応する向きを有し、かつ、距離値dに対応する大きさを有するベクトルを求めることにより、反射点Pの位置を算出する。 The position of the reflection point P is represented by a coordinate value in the XY coordinate system, for example. Various known methods can be used to calculate the position of the reflection point P, and detailed description thereof is omitted. For example, the distance measurement information generation unit 11 has an origin corresponding to the position of the second distance sensor 2b at the measurement timing of the distance D (more specifically, the transmission timing of the search wave or the reception timing of the reflected wave), In addition, the position of the reflection point P is calculated by obtaining a vector having an orientation corresponding to the main beam angle θ2 and a magnitude corresponding to the distance value d.
 同様に、測距情報生成部11は、車両1が所定速度(例えば30キロメートル毎時)以下の速度にて走行しているとき、所定の時間間隔にて第3測距センサ2cに探索波を送信させる。測距情報生成部11は、第3測距センサ2cにより反射波が受信された場合、TOFによる距離値dを算出して、反射点Pの位置を算出する。測距情報生成部11は、当該算出された位置を示す情報を測距情報に含める。なお、第3測距センサ2cがソナーにより構成されている場合、測距情報生成部11は、車両1の車外温度に応じた超音波の伝搬速度を算出して、当該算出された伝搬速度を用いて距離値dを算出するものであっても良い。 Similarly, the ranging information generating unit 11 transmits a search wave to the third ranging sensor 2c at a predetermined time interval when the vehicle 1 is traveling at a speed equal to or lower than a predetermined speed (for example, every 30 kilometers). Let When the reflected wave is received by the third ranging sensor 2c, the ranging information generating unit 11 calculates the distance value d by TOF and calculates the position of the reflection point P. The distance measurement information generation unit 11 includes information indicating the calculated position in the distance measurement information. When the third ranging sensor 2c is configured by sonar, the ranging information generating unit 11 calculates the ultrasonic propagation velocity according to the vehicle outside temperature of the vehicle 1, and uses the calculated propagation velocity. It may be used to calculate the distance value d.
 反射点Pの位置は、例えば、XY座標系における座標値により表されるものである。反射点Pの位置の算出には公知の種々の方法を用いることができるものであり、詳細な説明は省略する。例えば、測距情報生成部11は、距離Dの計測タイミング(より具体的には探索波の送信タイミング又は反射波の受信タイミング)における第3測距センサ2cの位置に対応する原点を有し、かつ、メインビーム角度θ3に対応する向きを有し、かつ、距離値dに対応する大きさを有するベクトルを求めることにより、反射点Pの位置を算出する。 The position of the reflection point P is represented by a coordinate value in the XY coordinate system, for example. Various known methods can be used to calculate the position of the reflection point P, and detailed description thereof is omitted. For example, the distance measurement information generation unit 11 has an origin corresponding to the position of the third distance sensor 2c at the measurement timing of the distance D (more specifically, the transmission timing of the search wave or the reception timing of the reflected wave), The position of the reflection point P is calculated by obtaining a vector having an orientation corresponding to the main beam angle θ3 and a magnitude corresponding to the distance value d.
 反射点Pの位置の算出に用いられる情報のうち、距離Dの計測タイミング(より具体的には探索波の送信タイミング又は反射波の受信タイミング)における第1測距センサ2aの位置を示す情報、当該タイミングにおける第2測距センサ2bの位置を示す情報及び当該タイミングにおける第3測距センサ2cの位置を示す情報は、位置情報生成部12により出力される。そのほかの情報(例えばメインビーム角度θ1,θ2,θ3を示す情報)は、測距情報生成部11に予め記憶されている。 Among the information used for calculating the position of the reflection point P, information indicating the position of the first distance measuring sensor 2a at the measurement timing of the distance D (more specifically, the transmission timing of the search wave or the reception timing of the reflected wave), Information indicating the position of the second ranging sensor 2b at the timing and information indicating the position of the third ranging sensor 2c at the timing are output by the position information generation unit 12. Other information (for example, information indicating the main beam angles θ1, θ2, and θ3) is stored in the distance measurement information generation unit 11 in advance.
 また、測距情報生成部11は、複数個の反射点Pの位置が算出された後、当該複数個の反射点Pをグルーピングすることにより、物体Oと一対一に対応する反射点群(以下「グループ」という。)Gを設定する。このグルーピングは、例えば、互いに隣接する2個の反射点P間の距離が所定距離未満である場合、当該2個の反射点Pを互いに同一のグループGに含めるものである。測距情報生成部11は、当該複数個の反射点Pの各々が含まれるグループGを示す情報を測距情報に含める。 Further, after the positions of the plurality of reflection points P are calculated, the distance measurement information generation unit 11 groups the plurality of reflection points P, whereby a reflection point group corresponding to the object O (hereinafter referred to as a one-to-one correspondence). "Group") G is set. In this grouping, for example, when the distance between two adjacent reflection points P is less than a predetermined distance, the two reflection points P are included in the same group G. The distance measurement information generation unit 11 includes information indicating the group G in which each of the plurality of reflection points P is included in the distance measurement information.
 なお、測距センサが複数地点からの反射波を受信した場合、測距情報生成部11は、当該複数地点の距離値dのうち最も小さい距離値dに対応する反射点P(以下「最近反射点」とう。)に関する情報のみを測距情報に含めるようになっている。すなわち、測距情報生成部11は、当該複数個の反射点Pのうちの残余の反射点Pに関する情報を測距情報から除外するようになっている。これにより、測距情報に含まれるノイズを低減することができる。 When the distance measurement sensor receives reflected waves from a plurality of points, the distance measurement information generation unit 11 reflects the reflection point P corresponding to the smallest distance value d among the distance values d of the plurality of points (hereinafter “most recently reflected”). Only the information related to “dot” is included in the distance measurement information. That is, the distance measurement information generation unit 11 excludes information related to the remaining reflection points P among the plurality of reflection points P from the distance measurement information. Thereby, the noise contained in ranging information can be reduced.
 位置情報生成部12は、測距情報生成部11による距離Dの計測タイミング(より具体的には第1測距センサ2aによる探索波の送信タイミング又は第1測距センサ2aによる反射波の受信タイミング)における車両1の位置(以下「自車位置」という。)を算出するものである。位置情報生成部12は、当該タイミングにおける第1測距センサ2aの位置(以下「第1センサ位置」という。)を算出するものである。これらの位置は、例えば、XY座標系における座標値により表されるものである。位置情報生成部12は、第1センサ位置を示す情報を測距情報生成部11に出力するものである。第1センサ位置を示す情報は、測距情報生成部11において反射点Pの位置の算出に用いられるものである。 The position information generation unit 12 is a distance D measurement timing by the distance measurement information generation unit 11 (more specifically, a search wave transmission timing by the first distance sensor 2a or a reflected wave reception timing by the first distance sensor 2a). ) To calculate the position of the vehicle 1 (hereinafter referred to as “own vehicle position”). The position information generation unit 12 calculates the position of the first ranging sensor 2a at the timing (hereinafter referred to as “first sensor position”). These positions are represented by, for example, coordinate values in the XY coordinate system. The position information generation unit 12 outputs information indicating the first sensor position to the distance measurement information generation unit 11. The information indicating the first sensor position is used for calculating the position of the reflection point P in the distance measurement information generation unit 11.
 同様に、位置情報生成部12は、測距情報生成部11による距離Dの計測タイミング(より具体的には第2測距センサ2bによる探索波の送信タイミング又は第2測距センサ2bによる反射波の受信タイミング)における自車位置を算出するものである。位置情報生成部12は、当該タイミングにおける第2測距センサ2bの位置(以下「第2センサ位置」という。)を算出するものである。これらの位置は、例えば、XY座標系における座標値により表されるものである。位置情報生成部12は、第2センサ位置を示す情報を測距情報生成部11に出力するものである。第2センサ位置を示す情報は、測距情報生成部11において反射点Pの位置の算出に用いられるものである。 Similarly, the position information generation unit 12 is configured to measure the distance D by the distance measurement information generation unit 11 (more specifically, the transmission timing of the search wave by the second distance sensor 2b or the reflected wave by the second distance sensor 2b). The vehicle position at the reception timing) is calculated. The position information generation unit 12 calculates the position of the second distance measuring sensor 2b at the timing (hereinafter referred to as “second sensor position”). These positions are represented by, for example, coordinate values in the XY coordinate system. The position information generation unit 12 outputs information indicating the second sensor position to the distance measurement information generation unit 11. The information indicating the second sensor position is used for calculation of the position of the reflection point P in the distance measurement information generation unit 11.
 同様に、位置情報生成部12は、測距情報生成部11による距離Dの計測タイミング(より具体的には第3測距センサ2cによる探索波の送信タイミング又は第3測距センサ2cによる反射波の受信タイミング)における自車位置を算出するものである。位置情報生成部12は、当該タイミングにおける第3測距センサ2cの位置(以下「第3センサ位置」という。)を算出するものである。これらの位置は、例えば、XY座標系における座標値により表されるものである。位置情報生成部12は、第3センサ位置を示す情報を測距情報生成部11に出力するものである。第3センサ位置を示す情報は、測距情報生成部11において反射点Pの位置の算出に用いられるものである。 Similarly, the position information generation unit 12 determines the distance D measurement timing by the distance measurement information generation unit 11 (more specifically, the search wave transmission timing by the third distance sensor 2c or the reflected wave by the third distance sensor 2c). The vehicle position at the reception timing) is calculated. The position information generation unit 12 calculates the position of the third ranging sensor 2c at the timing (hereinafter referred to as “third sensor position”). These positions are represented by, for example, coordinate values in the XY coordinate system. The position information generation unit 12 outputs information indicating the third sensor position to the distance measurement information generation unit 11. The information indicating the third sensor position is used for calculating the position of the reflection point P in the distance measurement information generation unit 11.
 自車位置の算出には公知の種々の方法を用いることができるものであり(例えば自律航法)、詳細な説明は省略する。第1センサ位置の算出に用いられる情報(例えば車両1における第1測距センサ2aの設置位置を示す情報)、第2センサ位置の算出に用いられる情報(例えば車両1における第2測距センサ2bの設置位置を示す情報)及び第3センサ位置の算出に用いられる情報(例えば車両1における第3測距センサ2cの設置位置を示す情報)は、位置情報生成部12に予め記憶されている。 Various methods known in the art can be used for calculating the vehicle position (for example, autonomous navigation), and detailed description thereof is omitted. Information used for calculating the first sensor position (for example, information indicating the installation position of the first distance measuring sensor 2a in the vehicle 1) and information used for calculating the second sensor position (for example, the second distance measuring sensor 2b in the vehicle 1). Information indicating the installation position) and information used for calculating the third sensor position (for example, information indicating the installation position of the third distance measuring sensor 2c in the vehicle 1) are stored in advance in the position information generation unit 12.
 図4Aは、互いに隣接する2台の駐車車両V1,V2のうちの一方の駐車車両V1に対応する複数個の反射点P1の一例を示しており、図4Bは、駐車車両V1に対応するグループG1の一例を示している。また、図4Aは、互いに隣接する2台の駐車車両V1,V2のうちの他方の駐車車両V2に対応する複数個の反射点P2の一例を示しており、図4Bは、駐車車両V2に対応するグループG2の一例を示している。図4に示す例において、駐車車両V1,V2の駐車形態は縦列駐車である。図中、個々の白丸(○)は個々の反射点Pに対応している。 FIG. 4A shows an example of a plurality of reflection points P1 corresponding to one of the two parked vehicles V1 and V2 adjacent to each other, and FIG. 4B shows a group corresponding to the parked vehicle V1. An example of G1 is shown. 4A shows an example of a plurality of reflection points P2 corresponding to the other parked vehicle V2 of the two parked vehicles V1 and V2 adjacent to each other, and FIG. 4B corresponds to the parked vehicle V2. An example of the group G2 is shown. In the example shown in FIG. 4, the parking mode of the parked vehicles V1 and V2 is parallel parking. In the figure, each white circle (◯) corresponds to each reflection point P.
 図5Aは、互いに隣接する2台の駐車車両V1,V2のうちの一方の駐車車両V1に対応する複数個の反射点P1の他の例を示しており、図5Bは、駐車車両V1に対応するグループG1の他の例を示している。また、図5Aは、互いに隣接する2台の駐車車両V1,V2のうちの他方の駐車車両V2に対応する複数個の反射点P2の一例を示しており、図5Bは、駐車車両V2に対応するグループG2の一例を示している。図5に示す例において、駐車車両V1,V2の駐車形態は並列駐車である。図中、個々の白丸(○)は個々の反射点Pに対応している。 FIG. 5A shows another example of a plurality of reflection points P1 corresponding to one of the two parked vehicles V1 and V2 adjacent to each other, and FIG. 5B corresponds to the parked vehicle V1. Another example of the group G1 is shown. 5A shows an example of a plurality of reflection points P2 corresponding to the other parked vehicle V2 of the two parked vehicles V1 and V2 adjacent to each other, and FIG. 5B corresponds to the parked vehicle V2. An example of the group G2 is shown. In the example shown in FIG. 5, the parking form of the parked vehicles V1 and V2 is parallel parking. In the figure, each white circle (◯) corresponds to each reflection point P.
 図6Aは、互いに隣接する2台の駐車車両V1,V2のうちの一方の駐車車両V1に対応する複数個の反射点P1の他の例を示しており、図6Bは、駐車車両V1に対応するグループG1の他の例を示している。また、図6Aは、互いに隣接する2台の駐車車両V1,V2のうちの他方の駐車車両V2に対応する複数個の反射点P2の一例を示しており、図6Bは、駐車車両V2に対応するグループG2の一例を示している。図6に示す例において、駐車車両V1,V2の駐車形態は斜め駐車である。図中、個々の白丸(○)は個々の反射点Pに対応している。 FIG. 6A shows another example of a plurality of reflection points P1 corresponding to one of the two parked vehicles V1 and V2 adjacent to each other, and FIG. 6B corresponds to the parked vehicle V1. Another example of the group G1 is shown. 6A shows an example of a plurality of reflection points P2 corresponding to the other parked vehicle V2 of the two parked vehicles V1 and V2 adjacent to each other, and FIG. 6B corresponds to the parked vehicle V2. An example of the group G2 is shown. In the example shown in FIG. 6, the parking form of the parked vehicles V1 and V2 is diagonal parking. In the figure, each white circle (◯) corresponds to each reflection point P.
 図7Aは、互いに隣接する2台の駐車車両V1,V2のうちの一方の駐車車両V1に対応する複数個の反射点P1の他の例を示しており、図7Bは、駐車車両V1に対応するグループG1の他の例を示している。また、図7Aは、互いに隣接する2台の駐車車両V1,V2のうちの他方の駐車車両V2に対応する複数個の反射点P2の一例を示しており、図7Bは、駐車車両V2に対応するグループG2の一例を示している。図7に示す例において、駐車車両V1,V2の駐車形態は斜め駐車である。図中、個々の白丸(○)は個々の反射点Pに対応している。 FIG. 7A shows another example of a plurality of reflection points P1 corresponding to one of the two parked vehicles V1 and V2 adjacent to each other, and FIG. 7B corresponds to the parked vehicle V1. Another example of the group G1 is shown. FIG. 7A shows an example of a plurality of reflection points P2 corresponding to the other parked vehicle V2 of the two parked vehicles V1 and V2 adjacent to each other, and FIG. 7B corresponds to the parked vehicle V2. An example of the group G2 is shown. In the example shown in FIG. 7, the parking form of the parked vehicles V1 and V2 is diagonal parking. In the figure, each white circle (◯) corresponds to each reflection point P.
 図4A、図5A、図6A及び図7Aに示す如く、駐車車両V1,V2の各々は4個の面部S(すなわち前面部S1、後面部S2、左側面部S3及び右側面部S4)を有している。通常、駐車車両V1,V2の各々において、前面部S1及び後面部S2(以下「ノーズ面部」と総称する。)は左側面部S3及び右側面部S4(以下「側面部」と総称する。)に対して略直交している。また、ノーズ面部S1,S2間の長さ(いわゆる「全長」)は側面部S3,S4間の幅(いわゆる「全幅」)よりも大きい。 As shown in FIGS. 4A, 5A, 6A, and 7A, each of the parked vehicles V1, V2 has four surface portions S (that is, a front surface portion S1, a rear surface portion S2, a left surface portion S3, and a right surface portion S4). Yes. Usually, in each of the parked vehicles V1, V2, the front surface portion S1 and the rear surface portion S2 (hereinafter collectively referred to as “nose surface portion”) are compared with the left side surface portion S3 and the right side surface portion S4 (hereinafter collectively referred to as “side surface portion”). Are almost orthogonal. The length between the nose surface portions S1 and S2 (so-called “full length”) is larger than the width between the side surface portions S3 and S4 (so-called “full width”).
 上記のとおり、車両1の側方に向けられている第1測距センサ2a、車両1の斜め前方に向けられている第2測距センサ2b及び車両1の斜め後方に向けられている第3測距センサ2cが車両1に設けられている。また、メインビーム角度θ2,θ3は放射角φ以上の値に設定されている。これにより、図4~図7に示す如く、駐車車両V1,V2の駐車形態にかかわらず、グループG1,G2の各々は、左側面部S3又は右側面部S4のうちの少なくとも一方(すなわち側面部)に対応する複数個の反射点Pと前面部S1又は後面部S2のうちの少なくとも一方(すなわちノーズ面部)に対応する複数個の反射点Pとを含むものとなる。また、グループG1,G2の各々において、ノーズ面部に対応する複数個の反射点Pの配列方向は、側面部に対応する複数個の反射点Pの配列方向に対して略直交したものとなる。 As described above, the first distance measuring sensor 2 a directed to the side of the vehicle 1, the second distance measuring sensor 2 b directed obliquely forward of the vehicle 1, and the third distance directed obliquely rearward of the vehicle 1. A distance measuring sensor 2 c is provided in the vehicle 1. Further, the main beam angles θ2 and θ3 are set to values equal to or larger than the radiation angle φ. Accordingly, as shown in FIGS. 4 to 7, regardless of the parking mode of the parked vehicles V1 and V2, each of the groups G1 and G2 is placed on at least one of the left side surface portion S3 or the right side surface portion S4 (that is, the side surface portion). A plurality of corresponding reflection points P and a plurality of reflection points P corresponding to at least one of the front surface portion S1 or the rear surface portion S2 (that is, the nose surface portion) are included. Further, in each of the groups G1 and G2, the arrangement direction of the plurality of reflection points P corresponding to the nose surface portion is substantially orthogonal to the arrangement direction of the plurality of reflection points P corresponding to the side surface portion.
 そこで、グループ化部21は、グループG1内の複数個の反射点P1を更にグルーピングすることにより、駐車車両V1の面部Sと一対一に対応する反射点群(以下「サブグループ」という。)gを設定するものである。このグルーピングは、複数個の反射点P1の配列方向に基づくものである。 Therefore, the grouping unit 21 further groups the plurality of reflection points P1 in the group G1, thereby causing a group of reflection points (hereinafter referred to as “subgroups”) g corresponding to the surface portion S of the parked vehicle V1. Is set. This grouping is based on the arrangement direction of the plurality of reflection points P1.
 同様に、グループ化部21は、グループG2内の複数個の反射点P2を更にグルーピングすることにより、駐車車両V2の面部Sと一対一に対応するサブグループgを設定するものである。このグルーピングは、複数個の反射点P2の配列方向に基づくものである。 Similarly, the grouping part 21 sets the subgroup g corresponding to the surface part S of the parked vehicle V2 on a one-to-one basis by further grouping the plurality of reflection points P2 in the group G2. This grouping is based on the arrangement direction of the plurality of reflection points P2.
 図4Cは、駐車車両V1,V2の駐車形態が縦列駐車である場合における、サブグループg1~g3の一例を示している。図4Cに示す例において、サブグループg1は後面部S2に対応するものであり、サブグループg2は右側面部S4に対応するものであり、サブグループg3は前面部S1に対応するものである。 FIG. 4C shows an example of the subgroups g1 to g3 when the parking mode of the parked vehicles V1 and V2 is parallel parking. In the example shown in FIG. 4C, the subgroup g1 corresponds to the rear surface portion S2, the subgroup g2 corresponds to the right side surface portion S4, and the subgroup g3 corresponds to the front surface portion S1.
 図5Cは、駐車車両V1,V2の駐車形態が並列駐車である場合における、サブグループg1~g3の一例を示している。図5Cに示す例において、サブグループg1は右側面部S4に対応するものであり、サブグループg2は前面部S1に対応するものであり、サブグループg3は左側面部S3に対応するものである。 FIG. 5C shows an example of the subgroups g1 to g3 when the parking mode of the parked vehicles V1 and V2 is parallel parking. In the example shown in FIG. 5C, the subgroup g1 corresponds to the right side surface portion S4, the subgroup g2 corresponds to the front surface portion S1, and the subgroup g3 corresponds to the left side surface portion S3.
 図6Cは、駐車車両V1,V2の駐車形態が斜め駐車である場合における、サブグループg1,g2の一例を示している。図6Cに示す例において、サブグループg1は前面部S1に対応するものであり、サブグループg2は左側面部S3に対応するものである。 FIG. 6C shows an example of the subgroups g1 and g2 when the parking mode of the parked vehicles V1 and V2 is diagonal parking. In the example shown in FIG. 6C, the subgroup g1 corresponds to the front surface portion S1, and the subgroup g2 corresponds to the left side surface portion S3.
 図7Cは、駐車車両V1,V2の駐車形態が斜め駐車である場合における、サブグループg1,g2の他の例を示している。図7Cに示す例において、サブグループg1は右側面部S4に対応するものであり、サブグループg2は前面部S1に対応するものである。 FIG. 7C shows another example of the subgroups g1 and g2 when the parking mode of the parked vehicles V1 and V2 is diagonal parking. In the example shown in FIG. 7C, the subgroup g1 corresponds to the right side surface portion S4, and the subgroup g2 corresponds to the front surface portion S1.
 図4C、図5C、図6C及び図7Cに示す如く、側面部に対応するサブグループgに含まれる反射点Pの個数は、ノーズ面部に対応するサブグループgに含まれる反射点Pの個数よりも多くなる。 As shown in FIGS. 4C, 5C, 6C, and 7C, the number of reflection points P included in the subgroup g corresponding to the side surface portion is greater than the number of reflection points P included in the subgroup g corresponding to the nose surface portion. Will also increase.
 そこで、側面判定部22は、グループG1内において、他のサブグループgに比して反射点P1の個数が多いサブグループgが駐車車両V1の側面部に対応するサブグループgであると判定するものである。また、側面判定部22は、当該他のサブグループgが駐車車両V1のノーズ面部に対応するサブグループgであると判定するものである。 Therefore, the side surface determination unit 22 determines that the sub group g in which the number of reflection points P1 is larger than the other sub group g in the group G1 is the sub group g corresponding to the side surface portion of the parked vehicle V1. Is. Moreover, the side surface determination part 22 determines that the said other subgroup g is the subgroup g corresponding to the nose surface part of the parked vehicle V1.
 同様に、側面判定部22は、グループG2内において、他のサブグループgに比して反射点P2の個数が多いサブグループgが駐車車両V2の側面部に対応するサブグループgであると判定するものである。また、側面判定部22は、当該他のサブグループgが駐車車両V2のノーズ面部に対応するサブグループgであると判定するものである。 Similarly, the side surface determination unit 22 determines that the subgroup g having a larger number of reflection points P2 than the other subgroups g in the group G2 is the subgroup g corresponding to the side surface portion of the parked vehicle V2. To do. Moreover, the side surface determination part 22 determines that the said other subgroup g is the subgroup g corresponding to the nose surface part of the parked vehicle V2.
 例えば、図4Cに示す例において、側面判定部22は、3個のサブグループg1~g3のうちの1個のサブグループg2が側面部に対応するであり、かつ、残余の2個のサブグループg1,g3がノーズ面部に対応するものであると判定する。図5Cに示す例において、側面判定部22は、3個のサブグループg1~g3のうちの2個のサブグループg1,g3が側面部に対応するものであり、かつ、残余の1個のサブグループg2がノーズ面部に対応するものであると判定する。図6Cに示す例において、側面判定部22は、2個のサブグループg1,g2のうちの1個のサブグループg2が側面部に対応するものであり、かつ、残余の1個のサブグループg1がノーズ面部に対応するものであると判定する。図7Cに示す例において、側面判定部22は、2個のサブグループg1,g2のうちの1個のサブグループg1が側面部に対応するものであり、かつ、残余の1個のサブグループg2がノーズ面部に対応するものであると判定する。 For example, in the example illustrated in FIG. 4C, the side surface determination unit 22 has one subgroup g2 out of three subgroups g1 to g3 corresponding to the side surface portion, and the remaining two subgroups. It is determined that g1 and g3 correspond to the nose surface portion. In the example shown in FIG. 5C, the side determination unit 22 includes two subgroups g1 and g3 out of the three subgroups g1 to g3 corresponding to the side surface, and the remaining one subgroup. It is determined that the group g2 corresponds to the nose surface portion. In the example illustrated in FIG. 6C, the side determination unit 22 has one subgroup g2 of the two subgroups g1 and g2 corresponding to the side surface, and one remaining subgroup g1. Is determined to correspond to the nose surface portion. In the example illustrated in FIG. 7C, the side surface determination unit 22 has one subgroup g1 out of two subgroups g1 and g2 corresponding to the side surface portion, and one remaining subgroup g2 Is determined to correspond to the nose surface portion.
 グループ化部21及び側面判定部22により、面検出部23が構成されている。すなわち、面検出部23は、測距情報を用いて、駐車車両V1の側面部を含む少なくとも2個の面部Sを検出するものである。また、面検出部23は、測距情報を用いて、駐車車両V2の側面部を含む少なくとも2個の面部Sを検出するものである。 The grouping unit 21 and the side determination unit 22 constitute a surface detection unit 23. That is, the surface detection unit 23 detects at least two surface portions S including the side surface portion of the parked vehicle V1 using the distance measurement information. Moreover, the surface detection part 23 detects at least 2 surface part S including the side part of the parked vehicle V2 using ranging information.
 図4A、図5A、図6A及び図7Aに示す如く、駐車車両V1,V2の各々は4個のコーナーエッジ部C(すなわち左前端のコーナーエッジ部C1、右前端のコーナーエッジ部C2、左後端のコーナーエッジ部C3及び右後端のコーナーエッジ部C4)を有している。コーナーエッジ検出部24は、面検出部23による検出結果を用いて、駐車車両V1の少なくとも1個のコーナーエッジ部Cを検出するとともに、駐車車両V2の少なくとも1個のコーナーエッジ部Cを検出するものである。より具体的には、コーナーエッジ検出部24は、XY座標系における当該少なくとも1個のコーナーエッジ部Cに対応する位置座標PCを算出するものである。 As shown in FIGS. 4A, 5A, 6A, and 7A, each of the parked vehicles V1 and V2 has four corner edge portions C (that is, a corner edge portion C1 at the left front end, a corner edge portion C2 at the right front end, and a left rear portion). An end corner edge portion C3 and a right rear end corner edge portion C4). The corner edge detection unit 24 detects at least one corner edge part C of the parked vehicle V1 and also detects at least one corner edge part C of the parked vehicle V2 using the detection result by the surface detection unit 23. Is. More specifically, the corner edge detection unit 24 calculates a position coordinate PC corresponding to the at least one corner edge part C in the XY coordinate system.
 すなわち、XY座標系において、前面部S1に対応するサブグループgにおける左側面部S3に対応するサブグループg側の端部と左側面部S3に対応するサブグループgにおける前面部S1に対応するサブグループg側の端部間の位置座標は、コーナーエッジ部C1の位置に対応している。コーナーエッジ検出部24は、当該位置座標を算出することにより、コーナーエッジ部C1に対応する位置座標PC1を算出する。 That is, in the XY coordinate system, the end of the subgroup g side corresponding to the left side surface portion S3 in the subgroup g corresponding to the front surface portion S1 and the subgroup g corresponding to the front surface portion S1 in the subgroup g corresponding to the left side surface portion S3. The position coordinates between the end portions on the side correspond to the position of the corner edge portion C1. The corner edge detection unit 24 calculates the position coordinates PC1 corresponding to the corner edge part C1 by calculating the position coordinates.
 また、XY座標系において、前面部S1に対応するサブグループgにおける右側面部S4に対応するサブグループg側の端部と右側面部S4に対応するサブグループgにおける前面部S1に対応するサブグループg側の端部間の位置座標は、コーナーエッジ部C2の位置に対応している。コーナーエッジ検出部24は、当該位置座標を算出することにより、コーナーエッジ部C2に対応する位置座標PC2を算出する。 Further, in the XY coordinate system, the end on the subgroup g side corresponding to the right side surface portion S4 in the subgroup g corresponding to the front surface portion S1 and the subgroup g corresponding to the front surface portion S1 in the subgroup g corresponding to the right side surface portion S4. The position coordinates between the end portions on the side correspond to the position of the corner edge portion C2. The corner edge detection unit 24 calculates the position coordinates PC2 corresponding to the corner edge part C2 by calculating the position coordinates.
 また、XY座標系において、後面部S2に対応するサブグループgにおける左側面部S3に対応するサブグループg側の端部と左側面部S3に対応するサブグループgにおける後面部S2に対応するサブグループg側の端部間の位置座標は、コーナーエッジ部C3の位置に対応している。コーナーエッジ検出部24は、当該位置座標を算出することにより、コーナーエッジ部C3に対応する位置座標PC3を算出する。 Further, in the XY coordinate system, an end on the subgroup g side corresponding to the left side surface portion S3 in the subgroup g corresponding to the rear surface portion S2 and a subgroup g corresponding to the rear surface portion S2 in the subgroup g corresponding to the left side surface portion S3. The position coordinates between the end portions on the side correspond to the position of the corner edge portion C3. The corner edge detection unit 24 calculates the position coordinates PC3 corresponding to the corner edge part C3 by calculating the position coordinates.
 また、XY座標系において、後面部S2に対応するサブグループgにおける右側面部S4に対応するサブグループg側の端部と右側面部S4に対応するサブグループgにおける後面部S2に対応するサブグループg側の端部間の位置座標は、コーナーエッジ部C4の位置に対応している。コーナーエッジ検出部24は、当該位置座標を算出することにより、コーナーエッジ部C4に対応する位置座標PC4を算出する。 Further, in the XY coordinate system, an end portion on the subgroup g side corresponding to the right side surface portion S4 in the subgroup g corresponding to the rear surface portion S2 and a subgroup g corresponding to the rear surface portion S2 in the subgroup g corresponding to the right side surface portion S4. The position coordinates between the end portions on the side correspond to the position of the corner edge portion C4. The corner edge detection unit 24 calculates the position coordinates PC4 corresponding to the corner edge part C4 by calculating the position coordinates.
 図4Dは、縦列駐車中の2台の駐車車両V1,V2の各々の2個のコーナーエッジ部C2,C4に対応する位置座標PC2,PC4の一例を示している。図5Dは、並列駐車中の2台の駐車車両V1,V2の各々の2個のコーナーエッジ部C1,C2に対応する位置座標PC1,PC2の一例を示している。図6Dは、斜め駐車中の2台の駐車車両V1,V2の各々の1個のコーナーエッジ部C1に対応する位置座標PC1の一例を示している。図7Dは、斜め駐車中の2台の駐車車両V1,V2の各々の1個のコーナーエッジ部C2に対応する位置座標PC2の一例を示している。 FIG. 4D shows an example of position coordinates PC2 and PC4 corresponding to the two corner edge portions C2 and C4 of each of the two parked vehicles V1 and V2 that are parked in parallel. FIG. 5D shows an example of position coordinates PC1 and PC2 corresponding to the two corner edge portions C1 and C2 of each of the two parked vehicles V1 and V2 that are parked in parallel. FIG. 6D shows an example of position coordinates PC1 corresponding to one corner edge portion C1 of each of the two parked vehicles V1, V2 that are parked obliquely. FIG. 7D shows an example of position coordinates PC2 corresponding to one corner edge portion C2 of each of the two parked vehicles V1, V2 that are parked obliquely.
 コーナーエッジ間隔算出部25は、コーナーエッジ検出部24による検出結果を用いて、図4Dに示す例における位置座標PC2,PC4間の間隔L、図5Dに示す例における位置座標PC1,PC2間の間隔L、図6Dに示す例における位置座標PC1,PC1間の間隔L又は図7Dに示す例における位置座標PC2,PC2間の間隔Lを算出するものである。以下、これらの間隔Lを「コーナーエッジ間隔」という。すなわち、コーナーエッジ間隔算出部25は、互いに隣接する2台の駐車車両V1,V2間のコーナーエッジ間隔Lを算出するものである。 The corner edge interval calculation unit 25 uses the detection result by the corner edge detection unit 24 to use the interval L between the position coordinates PC2 and PC4 in the example shown in FIG. 4D and the interval between the position coordinates PC1 and PC2 in the example shown in FIG. 5D. L, the distance L between the position coordinates PC1 and PC1 in the example shown in FIG. 6D, or the distance L between the position coordinates PC2 and PC2 in the example shown in FIG. 7D. Hereinafter, these intervals L are referred to as “corner edge intervals”. That is, the corner edge interval calculation unit 25 calculates the corner edge interval L between two adjacent vehicles V1, V2.
 駐車形態判定部26は、コーナーエッジ検出部24による検出結果を用いて、駐車車両V1,V2の駐車形態を判定するものである。 The parking mode determination unit 26 determines the parking mode of the parked vehicles V1 and V2 using the detection result by the corner edge detection unit 24.
 より具体的には、駐車形態判定部26は、車両1の走行方向(すなわちX軸に沿う方向)に対する、駐車車両V1,V2の側面部に沿う方向(すなわち駐車車両V1,V2の側面部に対応するサブグループgにおける複数個の反射点Pの配列方向)の傾き角度ψを算出する。駐車形態判定部26には、傾き角度ψに対する比較対象となる角度範囲Δψ1~Δψ5が予め設定されている。図8は、角度範囲Δψ1~Δψ5の一例を示している。 More specifically, the parking pattern determination unit 26 is in the direction along the side surface of the parked vehicles V1, V2 (that is, on the side surface of the parked vehicles V1, V2) with respect to the traveling direction of the vehicle 1 (that is, the direction along the X axis). The inclination angle ψ of the arrangement direction of the plurality of reflection points P in the corresponding subgroup g is calculated. In the parking form determination unit 26, angle ranges Δψ1 to Δψ5 to be compared with the inclination angle ψ are set in advance. FIG. 8 shows an example of the angle range Δψ1 to Δψ5.
 駐車形態判定部26は、傾き角度ψが角度範囲Δψ1内の値又は角度範囲Δψ5内の値である場合、駐車車両V1,V2の駐車形態が縦列駐車であると判定する。駐車形態判定部26は、傾き角度ψが角度範囲Δψ3内の値である場合、駐車車両V1,V2の駐車形態が並列駐車であると判定する。駐車形態判定部26は、傾き角度ψが角度範囲Δψ2内の値又は角度範囲Δψ4内の値である場合、駐車車両V1,V2の駐車形態が斜め駐車であると判定する。 The parking form determination unit 26 determines that the parking form of the parked vehicles V1 and V2 is parallel parking when the inclination angle ψ is a value within the angle range Δψ1 or a value within the angle range Δψ5. When the inclination angle ψ is a value within the angle range Δψ3, the parking form determination unit 26 determines that the parking form of the parked vehicles V1 and V2 is parallel parking. When the inclination angle ψ is a value within the angle range Δψ2 or a value within the angle range Δψ4, the parking form determination unit 26 determines that the parking form of the parked vehicles V1 and V2 is oblique parking.
 また、駐車形態判定部26は、駐車車両V1,V2の駐車形態が斜め駐車であると判定された場合、傾き角度ψが角度範囲Δψ2内の値であるか角度範囲Δψ4内の値であるかに応じて、当該斜め駐車における斜めの向きを判定する。すなわち、駐車形態判定部26は、当該斜め駐車がいわゆる「右斜め」の斜め駐車であるのかいわゆる「左斜め」の斜め駐車であるのかを判定する。 Further, when it is determined that the parking mode of the parked vehicles V1 and V2 is oblique parking, the parking mode determination unit 26 determines whether the inclination angle ψ is a value within the angle range Δψ2 or a value within the angle range Δψ4. Accordingly, the oblique direction in the oblique parking is determined. That is, the parking pattern determination unit 26 determines whether the diagonal parking is a so-called “right diagonal” diagonal parking or a so-called “left diagonal” diagonal parking.
 駐車可否判定部27は、コーナーエッジ間隔L及び駐車車両V1,V2の駐車形態に応じて、駐車車両V1,V2間のスペースに対する車両1の駐車が可能であるか否かを判定するものである。 The parking availability determination unit 27 determines whether or not the vehicle 1 can be parked in the space between the parked vehicles V1 and V2 according to the corner edge interval L and the parking mode of the parked vehicles V1 and V2. .
 すなわち、駐車可否判定部27は、駐車車両V1,V2の駐車形態に応じて、コーナーエッジ間隔Lに対する比較対象となる閾値Lthを設定する。駐車可否判定部27は、コーナーエッジ間隔Lを閾値Lthと比較する。コーナーエッジ間隔Lが閾値Lth以上である場合、駐車可否判定部27は、駐車車両V1,V2間のスペースに対する車両1の駐車が可能であると判定する。他方、コーナーエッジ間隔Lが閾値Lth未満である場合、駐車可否判定部27は、駐車車両V1,V2間のスペースに対する車両1の駐車が不可能であると判定する。 That is, the parking availability determination unit 27 sets a threshold value Lth to be compared with the corner edge interval L according to the parking mode of the parked vehicles V1 and V2. The parking availability determination unit 27 compares the corner edge interval L with a threshold value Lth. When the corner edge interval L is equal to or greater than the threshold value Lth, the parking availability determination unit 27 determines that the vehicle 1 can be parked in the space between the parked vehicles V1, V2. On the other hand, when the corner edge interval L is less than the threshold value Lth, the parking availability determination unit 27 determines that the vehicle 1 cannot be parked in the space between the parked vehicles V1, V2.
 コーナーエッジ間隔算出部25、駐車形態判定部26及び駐車可否判定部27により、駐車スペース判定部28が構成されている。すなわち、駐車スペース判定部28は、コーナーエッジ検出部24による検出結果を用いて、駐車車両V1,V2間における車両1用の駐車スペースの有無を判定するものである。 A parking space determination unit 28 is configured by the corner edge interval calculation unit 25, the parking mode determination unit 26, and the parking availability determination unit 27. That is, the parking space determination part 28 determines the presence or absence of the parking space for the vehicles 1 between the parked vehicles V1 and V2 using the detection result by the corner edge detection part 24.
 面検出部23、コーナーエッジ検出部24及び駐車スペース判定部28により、駐車支援装置100が構成されている。測距情報生成部11、位置情報生成部12及び駐車支援装置100により、第1ECU3の要部が構成されている。 The parking support device 100 is configured by the surface detection unit 23, the corner edge detection unit 24, and the parking space determination unit 28. The distance measurement information generation unit 11, the position information generation unit 12, and the parking assistance device 100 constitute a main part of the first ECU 3.
 第2電子制御ユニット(以下「第2ECU」と記載する。)4は、車両1のアクセル、ブレーキ及びステアリングなどを制御する機能を有している。第2ECU4は、駐車可否判定部27により駐車車両V1,V2間のスペースに対する車両1の駐車が可能であると判定された場合、いわゆる「自動駐車」を実現するための制御を実行するものである。 The second electronic control unit (hereinafter referred to as “second ECU”) 4 has a function of controlling the accelerator, brake, steering, and the like of the vehicle 1. When the second ECU 4 determines that the parking of the vehicle 1 in the space between the parked vehicles V1 and V2 is possible by the parking permission determination unit 27, the second ECU 4 performs control for realizing so-called “automatic parking”. .
 次に、図9を参照して、駐車支援装置100のハードウェア構成について説明する。 Next, the hardware configuration of the parking assistance apparatus 100 will be described with reference to FIG.
 図9Aに示す如く、駐車支援装置100はコンピュータにより構成されており、当該コンピュータはプロセッサ31及びメモリ32を有している。メモリ32には、当該コンピュータを面検出部23、コーナーエッジ検出部24及び駐車スペース判定部28として機能させるためのプログラムが記憶されている。メモリ32に記憶されているプログラムをプロセッサ31が読み出して実行することにより、面検出部23、コーナーエッジ検出部24及び駐車スペース判定部28の機能が実現される。 As shown in FIG. 9A, the parking assistance device 100 is configured by a computer, and the computer has a processor 31 and a memory 32. The memory 32 stores a program for causing the computer to function as the surface detection unit 23, the corner edge detection unit 24, and the parking space determination unit 28. When the processor 31 reads and executes the program stored in the memory 32, the functions of the surface detection unit 23, the corner edge detection unit 24, and the parking space determination unit 28 are realized.
 または、図9Bに示す如く、駐車支援装置100は処理回路33により構成されているものであっても良い。この場合、面検出部23、コーナーエッジ検出部24及び駐車スペース判定部28の機能が処理回路33により実現されるものであっても良い。 Alternatively, as illustrated in FIG. 9B, the parking assistance device 100 may be configured by a processing circuit 33. In this case, the functions of the surface detection unit 23, the corner edge detection unit 24, and the parking space determination unit 28 may be realized by the processing circuit 33.
 または、駐車支援装置100はプロセッサ31、メモリ32及び処理回路33により構成されているものであっても良い(不図示)。この場合、面検出部23、コーナーエッジ検出部24及び駐車スペース判定部28の機能のうちの一部の機能がプロセッサ31及びメモリ32により実現されて、残余の機能が処理回路33により実現されるものであっても良い。 Or the parking assistance apparatus 100 may be comprised by the processor 31, the memory 32, and the processing circuit 33 (not shown). In this case, some of the functions of the surface detection unit 23, the corner edge detection unit 24, and the parking space determination unit 28 are realized by the processor 31 and the memory 32, and the remaining functions are realized by the processing circuit 33. It may be a thing.
 プロセッサ31は、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、マイクロプロセッサ、マイクロコントローラ又はDSP(Digital Signal Processor)を用いたものである。 The processor 31 uses, for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a microprocessor, a microcontroller, or a DSP (Digital Signal Processor).
 メモリ32は、例えば、半導体メモリ又は磁気ディスクを用いたものである。より具体的には、メモリ32は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read-Only Memory)、SSD(Solid State Drive)又はHDD(Hard Disk Drive)などを用いたものである。 The memory 32 uses, for example, a semiconductor memory or a magnetic disk. More specifically, the memory 32 includes a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory EMM, an EEPROM (Electrically Erasable Memory). (State Drive) or HDD (Hard Disk Drive) or the like is used.
 処理回路33は、例えば、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field-Programmable Gate Array)、SoC(System-on-a-Chip)又はシステムLSI(Large-Scale Integration)を用いたものである。 The processing circuit 33 may be, for example, an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field-Programmable Gate Array), an SoC (System-LargeSemi-ChemicalLargeSigureSystem). Is used.
 なお、第1ECU3のうちの駐車支援装置100を除く部位(すなわち測距情報生成部11及び位置情報生成部12を含む部位)のハードウェア構成は駐車支援装置100のハードウェア構成と同様であるため、図示及び説明を省略する。また、第2ECU4のハードウェア構成は駐車支援装置100のハードウェア構成と同様であるため、図示及び説明を省略する。 The hardware configuration of the first ECU 3 excluding the parking support device 100 (that is, the site including the distance measurement information generation unit 11 and the position information generation unit 12) is the same as the hardware configuration of the parking support device 100. The illustration and description are omitted. Further, the hardware configuration of the second ECU 4 is the same as the hardware configuration of the parking assist device 100, and therefore illustration and description thereof are omitted.
 次に、図10のフローチャートを参照して、駐車支援装置100の動作について説明する。駐車支援装置100は、測距情報生成部11により測距情報が出力されたとき、ステップST1の処理を開始するようになっている。 Next, the operation of the parking assistance apparatus 100 will be described with reference to the flowchart of FIG. The parking assistance apparatus 100 starts the process of step ST1 when the ranging information generating unit 11 outputs the ranging information.
 まず、ステップST1にて、グループ化部21は、グループG1内の複数個の反射点P1を更にグルーピングすることにより、駐車車両V1の面部Sと一対一に対応するサブグループgを設定する。また、グループ化部21は、グループG2内の複数個の反射点P2を更にグルーピングすることにより、駐車車両V2の面部Sと一対一に対応するサブグループgを設定する。 First, in step ST1, the grouping unit 21 further sets the subgroup g corresponding to the surface portion S of the parked vehicle V1 by further grouping the plurality of reflection points P1 in the group G1. Moreover, the grouping part 21 sets the subgroup g corresponding to the surface part S of the parked vehicle V2 on a one-to-one basis by further grouping the plurality of reflection points P2 in the group G2.
 次いで、ステップST2にて、側面判定部22は、グループG1内において、他のサブグループgに比して反射点P1の個数が多いサブグループgが駐車車両V1の側面部に対応するサブグループgであると判定する。また、側面判定部22は、グループG2内において、他のサブグループgに比して反射点P2の個数が多いサブグループgが駐車車両V2の側面部に対応するサブグループgであると判定する。 Next, in step ST2, the side determination unit 22 determines that the subgroup g in which the number of reflection points P1 is larger than the other subgroup g in the group G1 corresponds to the side surface of the parked vehicle V1. It is determined that Moreover, the side surface determination part 22 determines with the subgroup g in which the number of reflection points P2 is large compared with the other subgroup g in the group G2 being the subgroup g corresponding to the side surface part of the parked vehicle V2. .
 次いで、ステップST3にて、コーナーエッジ検出部24は、面検出部23による検出結果を用いて、駐車車両V1の少なくとも1個のコーナーエッジ部Cを検出するとともに、駐車車両V2の少なくとも1個のコーナーエッジ部Cを検出する。より具体的には、コーナーエッジ検出部24は、XY座標系における当該少なくとも1個のコーナーエッジ部Cに対応する位置座標PCを算出する。 Next, in step ST3, the corner edge detector 24 detects at least one corner edge C of the parked vehicle V1 using the detection result by the surface detector 23, and at least one of the parked vehicle V2. A corner edge portion C is detected. More specifically, the corner edge detection unit 24 calculates a position coordinate PC corresponding to the at least one corner edge part C in the XY coordinate system.
 次いで、ステップST4にて、コーナーエッジ間隔算出部25は、駐車車両V1,V2間のコーナーエッジ間隔Lを算出する。 Next, in step ST4, the corner edge interval calculation unit 25 calculates the corner edge interval L between the parked vehicles V1, V2.
 次いで、ステップST5にて、駐車形態判定部26は、駐車車両V1,V2の駐車形態を判定する。より具体的には、駐車形態判定部26は、駐車車両V1,V2の駐車形態が縦列駐車、並列駐車又は斜め駐車のうちのいずれであるかを判定する。また、駐車車両V1,V2の駐車形態が斜め駐車であると判定された場合、駐車形態判定部26は、当該斜め駐車における斜めの向きを判定する。 Next, in step ST5, the parking mode determination unit 26 determines the parking mode of the parked vehicles V1, V2. More specifically, the parking mode determination unit 26 determines whether the parking mode of the parked vehicles V1 and V2 is parallel parking, parallel parking, or diagonal parking. Moreover, when it determines with the parking form of the parked vehicles V1 and V2 being diagonal parking, the parking form determination part 26 determines the diagonal direction in the said diagonal parking.
 次いで、ステップST6にて、駐車可否判定部27は、駐車車両V1,V2間のスペースに対する車両1の駐車が可能であるか否かを判定する。このとき、駐車可否判定部27は、駐車車両V1,V2の駐車形態に応じた閾値Lthを設定して、コーナーエッジ間隔Lを閾値Lthと比較する。 Next, in step ST6, the parking permission determination unit 27 determines whether or not the vehicle 1 can be parked in the space between the parked vehicles V1 and V2. At this time, the parking availability determination unit 27 sets a threshold value Lth according to the parking mode of the parked vehicles V1 and V2, and compares the corner edge interval L with the threshold value Lth.
 駐車可否判定部27により駐車車両V1,V2間のスペースに対する車両1の駐車が可能であると判定された場合、ステップST6に次いで、第2ECU4により自動駐車を実現するための制御が実行される。 When it is determined by the parking permission determination unit 27 that the vehicle 1 can be parked in the space between the parked vehicles V1, V2, the control for realizing automatic parking is executed by the second ECU 4 after step ST6.
 次に、図11及び図12を参照して、メインビーム角度θ2,θ3が放射角φ以上の値に設定されていることによる効果について説明する。 Next, with reference to FIG. 11 and FIG. 12, the effect of setting the main beam angles θ2 and θ3 to a value equal to or greater than the radiation angle φ will be described.
 いま、第2測距センサ2bにより送信された探索波が1台の駐車車両Vにより反射される場面を考える。図11は、メインビーム角度θ2が放射角φ以上の値に設定されている場合の例を示している。図12は、図11に対する比較対象として、仮にメインビーム角度θ2が放射角φ未満の値に設定されている場合の例を示している。 Now, consider a scene where the search wave transmitted by the second distance measuring sensor 2b is reflected by one parked vehicle V. FIG. 11 shows an example in which the main beam angle θ2 is set to a value equal to or larger than the radiation angle φ. FIG. 12 shows an example in which the main beam angle θ2 is set to a value smaller than the radiation angle φ as a comparison object with respect to FIG.
 メインビーム角度θ2が放射角φ未満の値に設定されている場合、車両1が前進するにつれて、まず、探索波が後面部S2及び右側面部S4により反射される状態となり(図12A参照)、次いで、探索波が右側面部S4のみにより反射される状態となる(図12B及び図12C参照)。ここで、図12Aに示す状態において、探索波は後面部S2及び右側面部S4のみならずコーナーエッジ部C4により反射される。後面部S2、右側面部S4及びコーナーエッジ部C4のうち、第2測距センサ2bに対する最近の部位はコーナーエッジ部C4である。このため、図12Aに示す状態においては、コーナーエッジ部C4に対応する反射点Pが最近反射点となり、コーナーエッジ部C4に対応する反射点Pに関する情報のみが測距情報に含まれる。この結果、図12A~図12Cのいずれに示す状態においても、後面部S2を検出することができない。 When the main beam angle θ2 is set to a value less than the radiation angle φ, as the vehicle 1 moves forward, the search wave is first reflected by the rear surface portion S2 and the right side surface portion S4 (see FIG. 12A), and then The search wave is reflected only by the right side surface portion S4 (see FIGS. 12B and 12C). Here, in the state shown in FIG. 12A, the search wave is reflected not only by the rear surface portion S2 and the right surface portion S4 but also by the corner edge portion C4. Of the rear surface portion S2, the right side surface portion S4, and the corner edge portion C4, the most recent portion with respect to the second distance measuring sensor 2b is the corner edge portion C4. For this reason, in the state shown in FIG. 12A, the reflection point P corresponding to the corner edge portion C4 becomes the most recent reflection point, and only information relating to the reflection point P corresponding to the corner edge portion C4 is included in the distance measurement information. As a result, the rear surface portion S2 cannot be detected in any of the states shown in FIGS. 12A to 12C.
 これに対して、メインビーム角度θ2が放射角φ以上の値に設定されている場合、車両1が前進するにつれて、まず、探索波が後面部S2のみにより反射される状態となり(図11A参照)、次いで、探索波が後面部S2及び右側面部S4により反射される状態となり(図11B参照)、次いで、探索波が右側面部S4のみにより反射される状態となる(図11C参照)。ここで、図11Bに示す状態においては、上記のとおりコーナーエッジ部C4に対応する反射点Pに関する情報のみが測距情報に含まれる。しかしながら、図11Aに示す状態において後面部S2を検出することができ、かつ、図11Cに示す状態において右側面部S4を検出することができる。 On the other hand, when the main beam angle θ2 is set to a value equal to or larger than the radiation angle φ, as the vehicle 1 moves forward, the search wave is first reflected only by the rear surface portion S2 (see FIG. 11A). Next, the search wave is reflected by the rear surface portion S2 and the right side surface portion S4 (see FIG. 11B), and then the search wave is reflected only by the right side surface portion S4 (see FIG. 11C). Here, in the state shown in FIG. 11B, as described above, only the information regarding the reflection point P corresponding to the corner edge portion C4 is included in the distance measurement information. However, the rear surface portion S2 can be detected in the state shown in FIG. 11A, and the right side surface portion S4 can be detected in the state shown in FIG. 11C.
 同様に、第3測距センサ2cについて、メインビーム角度θ3が放射角φ以上の値に設定されていることにより、前面部S1を検出することができ、かつ、右側面部S4を検出することができる。したがって、第2測距センサ2b及び第3測距センサ2cを用いることにより、後面部S2、右側面部S4及び前面部S1を検出することができる。 Similarly, for the third ranging sensor 2c, the main beam angle θ3 is set to a value equal to or larger than the radiation angle φ, so that the front surface portion S1 can be detected and the right side surface portion S4 can be detected. it can. Therefore, the rear surface portion S2, the right side surface portion S4, and the front surface portion S1 can be detected by using the second distance measuring sensor 2b and the third distance measuring sensor 2c.
 次に、第2測距センサ2b及び第3測距センサ2cに加えて第1測距センサ2aが設けられていることによる効果について説明する。 Next, an effect obtained by providing the first distance measuring sensor 2a in addition to the second distance measuring sensor 2b and the third distance measuring sensor 2c will be described.
 通常、放射角φを小さい値に設定することにより、測距情報に含まれるノイズを低減することができる。このため、当該ノイズを低減する観点からは放射角φを小さい値に設定するのが好適である。 Usually, noise included in the distance measurement information can be reduced by setting the radiation angle φ to a small value. Therefore, it is preferable to set the radiation angle φ to a small value from the viewpoint of reducing the noise.
 しかしながら、放射角φが小さい値に設定されている場合、車両1の走行速度が高いとき(例えば車両が所定速度以下の最高速度にて走行しているとき)、複数個の面部Sの各々に対応する反射点Pの個数が減少する。このため、側面判定部22による判定及びコーナーエッジ検出部24による検出などの精度が低下する可能性がある。 However, when the radiation angle φ is set to a small value, when the traveling speed of the vehicle 1 is high (for example, when the vehicle is traveling at a maximum speed below a predetermined speed), The number of corresponding reflection points P decreases. For this reason, the accuracy of the determination by the side surface determination unit 22 and the detection by the corner edge detection unit 24 may be reduced.
 これに対して、第1測距センサ2aが設けられていることにより、複数個の面部Sのうちの少なくとも1個の面部Sに対応する反射点Pの個数を増やすことができる。特に、図4に示す例においては右側面部S4、図5に示す例においては前面部S1、図6に示す例においては前面部S1及び左側面部S3、図7に示す例においては右側面部S4及び前面部S1に対応する反射点Pの個数を増やすことができる。この結果、側面判定部22による判定及びコーナーエッジ検出部24による検出などの精度の低下を抑制することができる。 On the other hand, by providing the first distance measuring sensor 2a, the number of reflection points P corresponding to at least one of the plurality of surface portions S can be increased. In particular, the right side S4 in the example shown in FIG. 4, the front side S1 in the example shown in FIG. 5, the front side S1 and the left side S3 in the example shown in FIG. 6, and the right side S4 in the example shown in FIG. The number of reflection points P corresponding to the front surface portion S1 can be increased. As a result, it is possible to suppress a decrease in accuracy such as determination by the side determination unit 22 and detection by the corner edge detection unit 24.
 なお、図13に示す如く、車両1の左側面部及び右側面部の各々に第1測距センサ2aが設けられているものであっても良い。また、車両1の左前端のコーナーエッジ部及び右前端のコーナーエッジ部の各々に第2測距センサ2bが設けられているものであっても良い。また、車両1の左後端のコーナーエッジ部及び右後端のコーナーエッジ部の各々に第3測距センサ2cが設けられているものであっても良い。 In addition, as shown in FIG. 13, the 1st ranging sensor 2a may be provided in each of the left side part and the right side part of the vehicle 1. Moreover, the 2nd ranging sensor 2b may be provided in each of the corner edge part of the left front end of the vehicle 1, and the corner edge part of the right front end. Further, the third distance measuring sensor 2c may be provided in each of the corner edge portion at the left rear end and the corner edge portion at the right rear end of the vehicle 1.
 また、図14に示す如く、車両1の左側面部に2個の第1測距センサ2aが設けられているものであっても良い。 Further, as shown in FIG. 14, two first distance measuring sensors 2 a may be provided on the left side surface portion of the vehicle 1.
 また、図15に示す如く、車両1の左側面部及び右側面部の各々に2個の第1測距センサ2aが設けられているものであっても良い。また、車両1の左前端のコーナーエッジ部及び右前端のコーナーエッジ部の各々に第2測距センサ2bが設けられているものであっても良い。また、車両1の左後端のコーナーエッジ部及び右後端のコーナーエッジ部の各々に第3測距センサ2cが設けられているものであっても良い。 Further, as shown in FIG. 15, two first ranging sensors 2 a may be provided on each of the left side surface portion and the right side surface portion of the vehicle 1. Moreover, the 2nd ranging sensor 2b may be provided in each of the corner edge part of the left front end of the vehicle 1, and the corner edge part of the right front end. Further, the third distance measuring sensor 2c may be provided in each of the corner edge portion at the left rear end and the corner edge portion at the right rear end of the vehicle 1.
 また、測距情報生成部11は、2円交点法、2円接線法又は開口合成法により反射点Pの位置を算出するものであっても良い。 Further, the distance measurement information generation unit 11 may calculate the position of the reflection point P by the two-circle intersection method, the two-circle tangent method, or the aperture synthesis method.
 また、位置情報生成部12は、自律航法に代えて又は加えて衛星航法により自車位置を算出するものであっても良い。この場合、第1ECU3は、車両1に設けられているGNSS(Global Navigation Satellite System)受信機からGNSS信号を取得するものであっても良い。 Further, the position information generation unit 12 may calculate the vehicle position by satellite navigation instead of or in addition to autonomous navigation. In this case, the first ECU 3 may acquire a GNSS signal from a GNSS (Global Navigation Satellite System) receiver provided in the vehicle 1.
 以上のように、実施の形態1の駐車支援装置100は、車両1に設けられており、かつ、所定の放射角φを有する複数個の測距センサ2のうち、車両1の側方に向けられている第1測距センサ2a、車両1の斜め前方に向けられている第2測距センサ2b及び車両1の斜め後方に向けられている第3測距センサ2cを用いる駐車支援装置100であって、第1測距センサ2a、第2測距センサ2b及び第3測距センサ2cによる測距情報を用いて、駐車車両Vの側面部を含む2個の面部Sを検出する面検出部23と、面検出部23による検出結果を用いて、駐車車両Vのコーナーエッジ部Cを検出するコーナーエッジ検出部24と、コーナーエッジ検出部24による検出結果を用いて、駐車スペースの有無を判定する駐車スペース判定部28とを備える。これにより、駐車車両Vのコーナーエッジ部Cを正確に検出することができる。また、放射角φを小さくすることによるノイズの低減と、高速走行時の判定精度の向上との両立を図ることができる。 As described above, the parking assist device 100 according to the first embodiment is provided in the vehicle 1 and is directed toward the side of the vehicle 1 among the plurality of distance measuring sensors 2 having the predetermined radiation angle φ. A parking assistance device 100 that uses a first distance sensor 2a that is directed, a second distance sensor 2b that is directed obliquely forward of the vehicle 1, and a third distance sensor 2c that is directed obliquely rearward of the vehicle 1. A surface detection unit that detects two surface portions S including the side surface portion of the parked vehicle V using distance measurement information obtained by the first distance measurement sensor 2a, the second distance measurement sensor 2b, and the third distance measurement sensor 2c. 23, using the detection result by the surface detection unit 23, the corner edge detection unit 24 for detecting the corner edge part C of the parked vehicle V, and the detection result by the corner edge detection unit 24 are used to determine whether there is a parking space. Parking space judgment part 2 Provided with a door. Thereby, the corner edge part C of the parked vehicle V can be detected correctly. In addition, it is possible to achieve both reduction in noise by reducing the radiation angle φ and improvement in determination accuracy during high-speed traveling.
 また、駐車スペース判定部28は、車両1の走行方向に対する駐車車両Vの側面部に沿う方向の傾き角度ψを算出して、傾き角度ψに基づき駐車車両Vの駐車形態を判定する。これにより、駐車形態に応じた駐車スペースの有無判定を実現することができる。 Further, the parking space determination unit 28 calculates the inclination angle ψ in the direction along the side surface of the parked vehicle V with respect to the traveling direction of the vehicle 1 and determines the parking mode of the parked vehicle V based on the inclination angle ψ. Thereby, the presence determination of the parking space according to a parking form is realizable.
 また、第2測距センサ2bのメインビーム角度θ2が放射角φ以上の値に設定されており、かつ、第3測距センサ2cのメインビーム角度θ3が放射角φ以上の値に設定されている。これにより、測距情報が最近反射点に関する情報のみを含むものである場合も、駐車車両Vの側面部を含む2個の面部Sを検出することができる。 Further, the main beam angle θ2 of the second distance measuring sensor 2b is set to a value equal to or larger than the radiation angle φ, and the main beam angle θ3 of the third distance measuring sensor 2c is set to a value equal to or larger than the radiation angle φ. Yes. Thereby, even when the distance measurement information includes only information related to the latest reflection point, the two surface portions S including the side surface portion of the parked vehicle V can be detected.
 なお、本願発明はその発明の範囲内において、実施の形態の任意の構成要素の変形、もしくは実施の形態の任意の構成要素の省略が可能である。 In the present invention, any component of the embodiment can be modified or any component of the embodiment can be omitted within the scope of the invention.
 本発明の駐車支援装置は、例えば、自動駐車に応用することができる。 The parking assist device of the present invention can be applied to automatic parking, for example.
 1 車両、2 測距センサ、2a 第1測距センサ、2b 第2測距センサ、2c 第3測距センサ、3 第1電子制御ユニット(第1ECU)、4 第2電子制御ユニット(第2ECU)、11 測距情報生成部、12 位置情報生成部、21 グループ化部、22 側面判定部、23 面検出部、24 コーナーエッジ検出部、25 コーナーエッジ間隔算出部、26 駐車形態判定部、27 駐車可否判定部、28 駐車スペース判定部、31 プロセッサ、32 メモリ、33 処理回路、100 駐車支援装置。 1 vehicle, 2 distance sensor, 2a first distance sensor, 2b second distance sensor, 2c third distance sensor, 3 first electronic control unit (first ECU), 4 second electronic control unit (second ECU) , 11 Ranging information generation unit, 12 Position information generation unit, 21 Grouping unit, 22 Side determination unit, 23 Surface detection unit, 24 Corner edge detection unit, 25 Corner edge interval calculation unit, 26 Parking type determination unit, 27 Parking Availability determination unit, 28 parking space determination unit, 31 processor, 32 memory, 33 processing circuit, 100 parking support device.

Claims (4)

  1.  車両に設けられており、かつ、所定の放射角を有する複数個の測距センサのうち、前記車両の側方に向けられている第1測距センサ、前記車両の斜め前方に向けられている第2測距センサ及び前記車両の斜め後方に向けられている第3測距センサを用いる駐車支援装置であって、
     前記第1測距センサ、前記第2測距センサ及び前記第3測距センサによる測距情報を用いて、駐車車両の側面部を含む2個の面部を検出する面検出部と、
     前記面検出部による検出結果を用いて、前記駐車車両のコーナーエッジ部を検出するコーナーエッジ検出部と、
     前記コーナーエッジ検出部による検出結果を用いて、駐車スペースの有無を判定する駐車スペース判定部と、
     を備えることを特徴とする駐車支援装置。
    Among a plurality of distance measuring sensors provided in the vehicle and having a predetermined radiation angle, a first distance measuring sensor directed to the side of the vehicle is directed obliquely forward of the vehicle. A parking assist device using a second distance sensor and a third distance sensor directed diagonally behind the vehicle,
    A surface detection unit that detects two surface parts including a side part of a parked vehicle using distance measurement information obtained by the first distance sensor, the second distance sensor, and the third distance sensor;
    A corner edge detection unit that detects a corner edge part of the parked vehicle using a detection result by the surface detection unit,
    Using the detection result by the corner edge detection unit, a parking space determination unit that determines the presence or absence of a parking space,
    A parking assistance device comprising:
  2.  前記駐車スペース判定部は、前記車両の走行方向に対する前記駐車車両の側面部に沿う方向の傾き角度を算出して、前記傾き角度に基づき前記駐車車両の駐車形態を判定することを特徴とする請求項1記載の駐車支援装置。 The said parking space determination part calculates the inclination angle of the direction in alignment with the side part of the said parked vehicle with respect to the running direction of the said vehicle, and determines the parking form of the said parked vehicle based on the said inclination angle. Item 10. The parking assistance device according to item 1.
  3.  前記第2測距センサのメインビーム角度が前記放射角以上の値に設定されており、かつ、前記第3測距センサのメインビーム角度が前記放射角以上の値に設定されていることを特徴とする請求項1記載の駐車支援装置。 The main beam angle of the second distance sensor is set to a value greater than or equal to the radiation angle, and the main beam angle of the third distance sensor is set to a value greater than or equal to the radiation angle. The parking support apparatus according to claim 1.
  4.  前記測距情報は、最近反射点以外の反射点に関する情報が除外されたものであることを特徴とする請求項3記載の駐車支援装置。 The parking support device according to claim 3, wherein the distance measurement information is information obtained by excluding information on reflection points other than the reflection point recently.
PCT/JP2018/017643 2018-05-07 2018-05-07 Parking support device WO2019215788A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020517637A JP7034271B2 (en) 2018-05-07 2018-05-07 Parking support device
PCT/JP2018/017643 WO2019215788A1 (en) 2018-05-07 2018-05-07 Parking support device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/017643 WO2019215788A1 (en) 2018-05-07 2018-05-07 Parking support device

Publications (1)

Publication Number Publication Date
WO2019215788A1 true WO2019215788A1 (en) 2019-11-14

Family

ID=68466729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017643 WO2019215788A1 (en) 2018-05-07 2018-05-07 Parking support device

Country Status (2)

Country Link
JP (1) JP7034271B2 (en)
WO (1) WO2019215788A1 (en)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06274796A (en) * 1993-03-24 1994-09-30 Toyota Motor Corp Parking space detecting device
JPH11255052A (en) * 1998-03-10 1999-09-21 Nissan Motor Co Ltd Parking space detecting device
JP2003270344A (en) * 2002-03-14 2003-09-25 Nissan Motor Co Ltd Parking direction setting device for vehicle
JP2007071536A (en) * 2005-09-02 2007-03-22 Toyota Motor Corp Object detection device and object detection method
JP2009151378A (en) * 2007-12-18 2009-07-09 Honda Motor Co Ltd Device for determining availability of parking for vehicle
JP2009276084A (en) * 2008-05-12 2009-11-26 Toyota Motor Corp Radar equipment
JP2009286355A (en) * 2008-05-30 2009-12-10 Aisin Aw Co Ltd Parking assisting apparatus, parking assisting method, and computer program
JP2010228591A (en) * 2009-03-27 2010-10-14 Bosch Corp Parking assist control device and method
WO2011024220A1 (en) * 2009-08-26 2011-03-03 三菱電機株式会社 Parking support device
JP2013220745A (en) * 2012-04-17 2013-10-28 Nippon Soken Inc Parking space detection device
JP2014094725A (en) * 2012-11-12 2014-05-22 Nippon Soken Inc Parking support device
US20160063861A1 (en) * 2014-08-27 2016-03-03 Hyundai Mobis Co., Ltd Device and method of detecting parking space
JP2016101770A (en) * 2014-11-27 2016-06-02 三菱電機株式会社 Parking support device, and parking support method
JP2016175620A (en) * 2015-03-23 2016-10-06 三菱電機株式会社 Parking assist device
JP2017007499A (en) * 2015-06-22 2017-01-12 クラリオン株式会社 Parking support device for vehicle
JP2017213943A (en) * 2016-05-30 2017-12-07 株式会社Soken Parking assisting device and parking assisting method

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06274796A (en) * 1993-03-24 1994-09-30 Toyota Motor Corp Parking space detecting device
JPH11255052A (en) * 1998-03-10 1999-09-21 Nissan Motor Co Ltd Parking space detecting device
JP2003270344A (en) * 2002-03-14 2003-09-25 Nissan Motor Co Ltd Parking direction setting device for vehicle
JP2007071536A (en) * 2005-09-02 2007-03-22 Toyota Motor Corp Object detection device and object detection method
JP2009151378A (en) * 2007-12-18 2009-07-09 Honda Motor Co Ltd Device for determining availability of parking for vehicle
JP2009276084A (en) * 2008-05-12 2009-11-26 Toyota Motor Corp Radar equipment
JP2009286355A (en) * 2008-05-30 2009-12-10 Aisin Aw Co Ltd Parking assisting apparatus, parking assisting method, and computer program
JP2010228591A (en) * 2009-03-27 2010-10-14 Bosch Corp Parking assist control device and method
WO2011024220A1 (en) * 2009-08-26 2011-03-03 三菱電機株式会社 Parking support device
JP2013220745A (en) * 2012-04-17 2013-10-28 Nippon Soken Inc Parking space detection device
JP2014094725A (en) * 2012-11-12 2014-05-22 Nippon Soken Inc Parking support device
US20160063861A1 (en) * 2014-08-27 2016-03-03 Hyundai Mobis Co., Ltd Device and method of detecting parking space
JP2016101770A (en) * 2014-11-27 2016-06-02 三菱電機株式会社 Parking support device, and parking support method
JP2016175620A (en) * 2015-03-23 2016-10-06 三菱電機株式会社 Parking assist device
JP2017007499A (en) * 2015-06-22 2017-01-12 クラリオン株式会社 Parking support device for vehicle
JP2017213943A (en) * 2016-05-30 2017-12-07 株式会社Soken Parking assisting device and parking assisting method

Also Published As

Publication number Publication date
JP7034271B2 (en) 2022-03-11
JPWO2019215788A1 (en) 2021-01-07

Similar Documents

Publication Publication Date Title
US9459347B2 (en) Environment monitoring system for a vehicle
JP6474228B2 (en) Object detection device
JP6430778B2 (en) Object detection device
JP6404679B2 (en) Object detection device
JP6484000B2 (en) Object detection device
US10451722B2 (en) In-vehicle object determining apparatus
JP6430777B2 (en) Object detection device
US11024174B2 (en) Parking space detection apparatus
JP6462308B2 (en) Object detection device
WO2016103464A1 (en) Obstacle detection device and obstacle detection method
US10884125B2 (en) Parking assistance device
JP5078944B2 (en) Vehicle travel control device
JP6930394B2 (en) Object recognition device
WO2017145845A1 (en) Collision prediction apparatus
JP6442225B2 (en) Object detection device
WO2019080946A1 (en) Method and apparatus for measuring vehicle speed
JP5075656B2 (en) Object detection device
US20170344022A1 (en) Moving object detection device, program, and recording medium
US11142187B2 (en) Parking assistance device
WO2019215788A1 (en) Parking support device
KR20220000073A (en) Obstacle detection system and method using distance sensor
US20040117115A1 (en) Method for identifying obstacles for a motor vehicle, using at least three distance sensors for identifying the laterla extension of an object
WO2016063533A1 (en) In-vehicle object determining apparatus
JP6890744B2 (en) Parking type judgment device
WO2019215789A1 (en) Parking assistance device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18917772

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020517637

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18917772

Country of ref document: EP

Kind code of ref document: A1