WO2019214466A1 - 一种传输方法、装置和系统 - Google Patents

一种传输方法、装置和系统 Download PDF

Info

Publication number
WO2019214466A1
WO2019214466A1 PCT/CN2019/084624 CN2019084624W WO2019214466A1 WO 2019214466 A1 WO2019214466 A1 WO 2019214466A1 CN 2019084624 W CN2019084624 W CN 2019084624W WO 2019214466 A1 WO2019214466 A1 WO 2019214466A1
Authority
WO
WIPO (PCT)
Prior art keywords
code rate
beta value
predetermined
value
beta
Prior art date
Application number
PCT/CN2019/084624
Other languages
English (en)
French (fr)
Inventor
苟伟
郝鹏
左志松
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to JP2021512985A priority Critical patent/JP7277570B2/ja
Priority to EP19799920.4A priority patent/EP3817475A4/en
Priority to BR112020022979-2A priority patent/BR112020022979A2/pt
Priority to US17/054,363 priority patent/US11870577B2/en
Priority to KR1020207035705A priority patent/KR102571954B1/ko
Publication of WO2019214466A1 publication Critical patent/WO2019214466A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0067Rate matching
    • H04L1/0068Rate matching by puncturing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • H04L1/0004Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes applied to control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0466Wireless resource allocation based on the type of the allocated resource the resource being a scrambling code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • Embodiments of the present disclosure relate to the field of communications, and more particularly to a transmission method, apparatus, and system.
  • uplink control information can be performed through a physical uplink shared channel (PUSCH).
  • PUSCH physical uplink shared channel
  • the transmission and the UE are allowed to have no actual uplink data, that is, there is only UCI in the PUSCH, and there is no uplink shared channel (UL-SCH, Uplink Shared Channel).
  • UL-SCH Uplink Shared Channel
  • the PUSCH resource allocated by the base station to the UE is actually used to transmit the UCI.
  • UCI is allowed to be transmitted using all modulation schemes and code rates of the PUSCH.
  • UCI can be transmitted using a higher order modulation scheme (such as Quadrature Amplitude Modulation (QAM) 256) to improve data transmission efficiency.
  • QAM Quadrature Amplitude Modulation
  • a low-order modulation method such as Quadrature Phase Shift Key (QPSK) is generally used to transmit UCI.
  • QPSK Quadrature Phase Shift Key
  • the base station configures the UE to transmit UCI in the PUSCH, configuration
  • the higher order modulation mode and more time-frequency resources are used to meet the low bit rate requirements of UCI transmission, especially in the case of poor channel quality.
  • the number of UCI bits transmitted is small, a lot of UEs are allocated. Time-frequency resources and high-order modulation methods undoubtedly reduce transmission efficiency, increase the complexity of the UE, and waste time-frequency resources.
  • Embodiments of the present disclosure provide a transmission method, apparatus, and system, which can improve transmission efficiency and reduce implementation complexity.
  • An embodiment of the present disclosure provides a transmission method, including:
  • the uplink control information is configured to be transmitted in the physical uplink shared channel, and the uplink shared channel is not in the physical uplink shared channel, the uplink control information is determined according to the actual code rate of the uplink control information and a preset threshold.
  • the preset threshold is determined according to a predetermined code rate and a predetermined beta value.
  • the actual code rate of the uplink control information is obtained according to at least one of the following information:
  • the type of the uplink control information the number of bits of the uplink control information, the configured code rate, the modulation mode of the uplink control information, the resource of the physical uplink shared channel, and the configured beta value.
  • determining, according to the actual code rate of the uplink control information and the preset threshold, that the uplink control information is transmitted includes at least one of the following:
  • the uplink control information is transmitted in the physical uplink shared channel.
  • the determining the threshold according to the predetermined code rate and the predetermined beta value comprises:
  • the preset threshold is: or
  • r is the predetermined code rate
  • is the predetermined beta value
  • c is an adjustment factor
  • Qm is a modulation order corresponding to the modulation mode.
  • the predetermined code rate is a minimum value of a code rate corresponding to the physical uplink control channel
  • the predetermined beta value is a maximum value of a beta value corresponding to the uplink control information
  • the predetermined code rate is a minimum value of a code rate corresponding to the physical uplink control channel, and the predetermined beta value is a configured beta value;
  • the predetermined code rate is a configured code rate
  • the predetermined beta value is a maximum value of the beta value corresponding to the uplink control information.
  • At least one of the following is included:
  • the predetermined code rate is a code rate of the previous level of the configured code rate, and the predetermined beta value The beta value of the next level for the configured beta value;
  • the predetermined code rate is the code rate of the previous level of the configured code rate
  • the predetermined beta Value is the configured beta value
  • the predetermined code rate is the configured code rate
  • the predetermined beta value is the configured beta value.
  • the predetermined code rate is the configured code rate
  • the predetermined beta value is the configured beta value
  • At least one of the following is included:
  • the predetermined code rate is a code rate of a previous level of the configured code rate
  • the predetermined beta value is a configured beta value
  • the predetermined code rate is the configured code rate
  • the predetermined beta value is the configured beta value
  • At least one of the following is included:
  • the predetermined code rate is a configured code rate
  • the predetermined beta value is a beta value of a next level of the configured beta value
  • the predetermined code rate is a configured code rate
  • the predetermined beta value is a configured beta value
  • the determining the threshold according to the predetermined code rate and the predetermined beta value comprises:
  • the preset threshold is: or
  • r is the predetermined code rate
  • the predetermined code rate is a minimum value of a code rate corresponding to a modulation mode configured in a modulation and coding table
  • is the predetermined beta value
  • c is an adjustment factor
  • the predetermined beta value is from a beta value configuration table corresponding to the uplink control information.
  • the embodiment of the present disclosure provides a transmission method, including:
  • the configuration information is determined according to the actual code rate of the uplink control information and a preset threshold.
  • the preset threshold is based on a predetermined code rate and a predetermined beta value.
  • the embodiment of the present disclosure provides a transmission apparatus, including:
  • the first determining module is configured to: when the uplink control information is configured to be transmitted in the physical uplink shared channel, and the uplink shared channel is not in the physical uplink shared channel, determine according to the actual code rate of the uplink control information and a preset threshold Transmitting the uplink control information;
  • the preset threshold is determined according to a predetermined code rate and a predetermined beta value.
  • the embodiment of the present disclosure provides a transmission apparatus, including:
  • a second determining module configured to determine configuration information
  • a third determining module configured to: when the uplink control information is configured to be transmitted in the physical uplink shared channel, and the uplink shared channel is not in the physical uplink shared channel, determining according to the actual code rate of the uplink control information and a preset threshold Sending the configuration information;
  • the preset threshold is determined according to a predetermined code rate and a predetermined beta value.
  • Embodiments of the present disclosure provide a transmission apparatus including a processor and a computer readable storage medium having instructions stored therein, and when the instructions are executed by the processor, implementing any of the above Transmission method.
  • the embodiment of the present disclosure proposes a computer readable storage medium having stored thereon a computer program, characterized in that the computer program is executed by a processor to implement the steps of any of the above transmission methods.
  • the embodiment of the present disclosure includes: when the UCI is configured to be transmitted in the PUSCH, and there is no UL-SCH in the PUSCH, determining the transmission UCI according to the actual code rate of the UCI and the preset threshold; wherein the preset threshold is according to a predetermined code rate and The predetermined beta beta value is determined, which is an easy to implement process.
  • the transmission UCI when the UCI is transmitted based on a given modulation mode, the transmission UCI is determined according to the actual code rate of the UCI and the preset threshold, and the limitation is such that the UCI bit number is transmitted in a given modulation mode. In the determined case, the allocated time-frequency resources are relatively reasonable, that is, the code rate matching the modulation mode can be realized, thereby improving the transmission efficiency and reducing the implementation complexity.
  • the determining the threshold according to the predetermined code rate and the predetermined beta value comprises:
  • the preset threshold is: or Where r is the predetermined code rate, ⁇ is the predetermined beta value, c is an adjustment factor, and Qm is a modulation order corresponding to the modulation mode.
  • r is the predetermined code rate
  • is the predetermined beta value
  • c is an adjustment factor
  • Qm is a modulation order corresponding to the modulation mode.
  • each modulation method has its own optimal code rate. That is to say, for a modulation mode, if the excessively lower than the corresponding optimal code rate, the transmission efficiency is low, so by limiting the lower limit of the actual code rate, the above-mentioned optimal code corresponding to the modulation mode can be avoided. The rate occurs, thereby improving transmission efficiency.
  • FIG. 1 is a flowchart of a transmission method according to an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a transmission method according to another embodiment of the present disclosure.
  • FIG. 3 is a schematic structural diagram of a transmission device according to another embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a transmission device according to another embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a transmission system according to another embodiment of the present disclosure.
  • an embodiment of the present disclosure provides a transmission method, including:
  • Step 100 When the UCI is configured to be transmitted in the PUSCH, and there is no UL-SCH in the PUSCH, determine the transmission UCI according to the actual code rate of the UCI and the preset threshold; wherein the preset threshold is based on the predetermined code rate and the predetermined beta value. determine.
  • the transmission UCI is determined according to the actual code rate of the UCI and the preset threshold, and the limitation is such that the UCI bit number is transmitted in a given modulation mode.
  • the allocated time-frequency resources are relatively reasonable, that is, the code rate matching the modulation mode can be realized, thereby improving the transmission efficiency and reducing the implementation complexity.
  • the UCI includes at least one of the following:
  • SR Scheduling Request
  • CSI Channel State Information
  • CSI-1 CSI part 1
  • CSI-2 CSI part 2
  • the actual code rate is obtained according to at least one of the following information:
  • the type of UCI the number of bits of UCI, the configured code rate, the modulation scheme of UCI, the resources of PUSCH, and the beta value of the configuration.
  • the actual code rate is reduced to the ratio of the configured code rate to the configured beta value.
  • O UCI is the number of bits of UCI
  • L UCI is the number of bits of Cyclic Redundancy Check (CRC) of UCI
  • Q m is the modulation order corresponding to the modulation mode
  • Q' UCI is the UCI bit coding. The number of modulation symbols after.
  • O ACK is the number of bits of ACK
  • L ACK is the number of bits of CRC of ACK
  • Q′ ACK is the number of modulation symbols after ACK bit coding
  • SE r 0 Q m
  • r 0 is the configured code rate (may be Is the code rate of the PUSCH or the code rate of the PUCCH)
  • ⁇ 0 is the configured beta value.
  • the number of symbols carrying UCI in the PUSCH The number of resource units in the symbol l of the Orthogonal Frequency Division Multiplexing (OFDM) carrying the UCI in the PUSCH.
  • OFDM Orthogonal Frequency Division Multiplexing
  • O CSI-1 is the number of bits of CSI-1
  • L CSI-1 is the number of bits of CRC of CSI-1
  • Q' CSI-1 is the number of modulation symbols after CSI-1 bit coding.
  • O CSI-2 is the number of bits of CSI-2
  • L CSI-2 is the number of bits of CRC of CSI-2
  • Q' CSI-2 is the number of modulation symbols after CSI-2 bit coding.
  • determining, according to the actual code rate of the uplink control information and the preset threshold transmission, that the uplink control information is transmitted includes:
  • the uplink control information is transmitted in the physical uplink shared channel.
  • the method further includes: when the actual code rate is less than the preset threshold, not transmitting the uplink control information in the physical uplink shared channel.
  • not transmitting the UCI in the PUSCH may mean transmitting the UCI in a channel different from the PUSCH; or, not transmitting the UCI.
  • the preset threshold is determined according to the predetermined code rate and the predetermined beta value, including:
  • the preset threshold is: or
  • r is the predetermined code rate
  • is the predetermined beta value
  • c is an adjustment factor
  • Qm is a modulation order corresponding to the modulation mode (as shown in Table 3);
  • the default threshold is: or
  • r is the predetermined code rate
  • the predetermined code rate is a minimum value of a code rate corresponding to a modulation mode configured in a modulation and coding table
  • is the predetermined beta value
  • c is an adjustment factor
  • embodiments of the present disclosure can ensure that for a given modulation scheme, the data is always transmitted using the optimum code rate corresponding to the modulation scheme, thereby eliminating some inefficient code rates.
  • high-order modulation methods are generally used when the channel quality is good.
  • the corresponding actual transmission code rate is high, the time-frequency resources are used, and the receiver can be correctly decoded, so as to implement data. Efficient transmission.
  • the channel quality is not good and the high-order modulation mode is still used, in order to ensure the reliability of the transmission, more time-frequency resources are needed, and the code rate is repeatedly repeated to achieve a lower actual code rate.
  • the data transmitted in the high-order modulation mode is correctly decoded at the receiving end.
  • each modulation method has its own optimal code rate. That is to say, for a modulation mode, if the excessively lower than the corresponding optimal code rate, the transmission efficiency is low, so by limiting the lower limit of the actual code rate, the above-mentioned optimal code corresponding to the modulation mode can be avoided. The rate occurs, thereby improving transmission efficiency.
  • the predetermined code rate and the predetermined beta value may take the values of any one of the following (1) to (8).
  • the predetermined code rate is the minimum value of the code rate corresponding to the physical uplink control channel (PUCCH, Physical Uplink Control Channel) (as shown in Table 1-1), and the predetermined beta value is the maximum value of the beta value corresponding to the UCI. Value (as shown in the maximum value shown in Table 2).
  • the code rate allowed by the UCI includes any one of those shown in Table 1-1 to Table 1-4, and Table 1-1 is from 3GPP TS 38.213 V15.1.0 (2018-03).
  • the rate table used by the PUSCH is given in 6.1.4.1 of 3GPP TS 38.214 (the UCI uses the rate table of the PUSCH when the UCI is transmitted in the PUSCH), note that Tables 5.1.3.1-1 and 5.1. 3.1-2 is quoted in Section 6.1.4.1, using different code rate tables in different situations.
  • Table 9.2.5.2-1 from 3GPP TS 38.213 V15.1.0 (2018-03) is also considered to be the code rate allowed for UCI.
  • Table 1-1 is taken as an example. For other tables, the principles are the same in the embodiments of the present disclosure, and are not separately described.
  • Table 1-1 defines the code rate corresponding to the physical uplink control channel (PUCCH, Physical Uplink Control Channel) format (this code rate is a reference code rate), that is, the PUCCH transmission is basically greater than or equal to the following.
  • the code rate can be considered to meet the reliability requirements.
  • different code rates correspond to different channel qualities or the number of bits carried in the PUCCH.
  • a lower code rate is used, and conversely, a higher code rate is used.
  • is one of the parameters used to determine the number of CSI coded modulation symbols.
  • the value of ⁇ is shown in Table 2, and Table 2 is from 3GPP TS 38.213 V15.1.0 (2018-03) Table 9.3-2.
  • the preset threshold where r min is the minimum value in Table 1.
  • ⁇ max is the maximum value in Table 2.
  • the base station should configure the actual code rate of the UCI transmitted by the UE to be not less than T m , that is, when the modulation mode is BPSK, the UE UCI transmission undesired actual bitrate is smaller than the T m, the UE finds that the actual bit rate or UCI transmission is less than T m, UE that this is a mistake, no treatment, i.e., does not transmit UCI. That is to say, when the modulation mode is BPSK, the UE transmits the UCI only when the actual code rate of the UCI transmission is not less than T m .
  • the predetermined code rate is a minimum value of a code rate corresponding to the PUCCH, and the predetermined beta value is a configured beta value.
  • the modulation mode is BPSK
  • the preset threshold Where r min is the minimum value in Table 1
  • is the base station configured for the UE to transmit UCI this time, which is derived from the value of ⁇ in Table 2.
  • the base station configures a modulation scheme for transmitting UCI in the PUSCH (UE without UL-SCH) for the UE, and the corresponding ⁇ value, and the UE calculates the ⁇ value of the configuration.
  • the base station should configure the actual code rate of the UCI transmitted by the UE to be not less than T m , that is, when the modulation mode is BPSK, the UE does not expect UCI transmission rate is less than the actual T m, or when the UE finds the actual bitrate is smaller than the UCI transmission T m, UE that this is a mistake, no treatment, i.e., does not transmit UCI. That is to say, when the modulation mode is BPSK, the UE transmits the UCI only when the actual code rate of the UCI transmission is not less than T m .
  • the predetermined code rate is a configured code rate
  • the predetermined beta value is a maximum value of a beta value corresponding to UCI.
  • the preset threshold Where r is the base station configured for the UE to transmit the UCI, and is derived from the r value in Table 1, and ⁇ max is the maximum value in Table 2.
  • the base station configures a modulation scheme for transmitting UCI in the PUSCH (UE without UL-SCH) for the UE, and a corresponding r value, and the UE calculates the r value of the configuration.
  • the base station should configure the actual code rate of the UCI transmitted by the UE to be not less than T m , that is, when the modulation mode is BPSK, the UE UCI transmission undesired actual bitrate is smaller than the T m, the UE finds that the actual bit rate or UCI transmission is less than T m, UE that this is a mistake, no treatment, i.e., does not transmit UCI. That is to say, when the modulation mode is BPSK, the UE transmits the UCI only when the actual code rate of the UCI transmission is not less than T m .
  • the predetermined code rate is a code rate of a previous level of the configured code rate, that is, a code rate corresponding to a maximum index value smaller than an index value corresponding to the configured code rate
  • the predetermined beta value is a configured beta.
  • the beta value of the next level of the value that is, the beta value corresponding to the smallest index value larger than the index value corresponding to the configured beta value.
  • the predetermined code rate is a code rate of a previous level of the configured code rate, that is, a code rate corresponding to a maximum index value smaller than an index value corresponding to the configured code rate, and the predetermined beta value is a configured beta. value.
  • the predetermined code rate is a configured code rate
  • the predetermined beta value is a beta value of a next level of the configured beta value, that is, a beta value corresponding to a minimum index value larger than an index value corresponding to the configured beta value. value.
  • the predetermined code rate is a configured code rate
  • the predetermined beta value is a configured beta value
  • the predetermined code rate is a code rate of the previous level of the configured code rate, and the predetermined beta value The beta value of the next level for the configured beta value;
  • the predetermined code rate is the code rate of the previous level of the configured code rate
  • the predetermined beta Value is the configured beta value
  • the predetermined code rate is the configured code rate
  • the predetermined beta value is the configured beta value.
  • the predetermined code rate is the configured code rate
  • the predetermined beta value is the configured beta value
  • the predetermined code rate is a code rate of a previous level of the configured code rate
  • the predetermined beta value is a configured beta value
  • the predetermined code rate is the configured code rate
  • the predetermined beta value is the configured beta value
  • the predetermined code rate is a configured code rate
  • the predetermined beta value is a beta value of a next level of the configured beta value
  • the predetermined code rate is a configured code rate
  • the predetermined beta value is a configured beta value
  • r is the minimum value of the code rate corresponding to the modulation scheme configured in the modulation and coding table, for example, the minimum value of the code rate corresponding to the modulation scheme configured in Table 1-2, Table 1-3, or Table 1-4 ;
  • can take any of the following values:
  • the beta value of the next level of the configured beta value that is, the beta value corresponding to the minimum index value larger than the index value corresponding to the configured beta value, is the beta value of the next level of the configured beta value.
  • the configured beta value may be directly taken; or the maximum value of the beta value corresponding to the UCI may be directly taken; or, when the configured beta value has a beta value of the next level, the next level of the configured beta value is taken.
  • Beta value the beta value of the zone configuration when the configured beta value does not have a downward level.
  • Tables 1-4 are used for UCI transmission in PUSCH (or Table 1-4 is used for transmission of PUSCH)
  • this time r is 378/1024 (that is, the code rate corresponding to 16QAM in Table 1-4 is ⁇ 378/1024, 434/1024, 490/1024, 553/1024, 616/1024, 658/1024 ⁇ , of which 378/1024 The smallest, selected, is the code rate r).
  • the UE when UCI (one or more of HARQ-ACK, SR, CSI-1, and CSI-2) is transmitted in the PUSCH, if there is no UL-SCH in the PUSCH (ie, there is no uplink data of the UE), and it is assumed
  • the modulation mode is configured to be 16QAM
  • the UE when the actual code rate of the UCI transmission is less than 378/1024/ ⁇ (here, ⁇ is configured), the UE considers it to be an incorrect configuration (no UCI transmission). That is to say, optimally, the base station prohibits configuring the relevant parameter that causes the UCI actual code rate to be less than 378/1024/ ⁇ when the modulation mode is 16QAM.
  • the base station prohibits configuring the relevant parameter that causes the UCI actual code rate to be less than 378/1024/ ⁇ when the modulation mode is 16QAM.
  • the UE performs UCI transmission according to the configured related information.
  • T m is defined as Where r is the minimum value of the code rate corresponding to the modulation scheme configured in the modulation and coding table, for example, the minimum value of the code rate corresponding to the modulation scheme configured in Table 1-2, Table 1-3, or Table 1-4 ;
  • can take any of the following values:
  • the beta value of the next level of the configured beta value that is, the beta value corresponding to the minimum index value larger than the index value corresponding to the configured beta value, is the beta value of the next level of the configured beta value.
  • a corresponding modulation and coding table can be configured for different transmission modes.
  • the uplink control information is a combination of one or more of HARQ-ACK, SR, CSI-1, and CSI-2. If the r or beta value in the mode needs to use the corresponding table, that is, each uplink control information uses its own corresponding table. For example, when the uplink control information is HARQ-ACK, the beta value configuration table corresponding to the HARQ-ACK is used; when the uplink control information is CSI-1, the beta value configuration table corresponding to the CSI-1 is used; when the uplink control information is CSI-2, the corresponding use is used.
  • CSI-2 beta configuration table when the uplink control information is HARQ-ACK, the beta value configuration table corresponding to the HARQ-ACK is used; when the uplink control information is CSI-1, the beta value configuration table corresponding to the CSI-1 is used; when the uplink control information is CSI-2, the corresponding use is used.
  • CSI-2 beta configuration table when the uplink control information is HARQ-ACK, the beta value configuration table corresponding to the
  • the predetermined beta value is derived from the beta value configuration table corresponding to the UCI;
  • the predetermined beta value is a predetermined constant, for example, 20, 25, 30, 35, 40.
  • the modulation mode of the UCI includes at least one of the following:
  • another embodiment of the present disclosure provides a transmission method, including:
  • Step 200 Determine configuration information.
  • the configuration information includes: a modulation mode, a code rate of the foregoing configuration, a beta value of the foregoing configuration, and a resource of the PUSCH.
  • Step 201 When the uplink control information is configured to be transmitted in the physical uplink shared channel, and the uplink shared channel is not in the physical uplink shared channel, the configuration is determined according to the actual code rate of the uplink control information and a preset threshold. Information; wherein the preset threshold is determined according to a predetermined code rate and a predetermined beta value.
  • determining, according to the actual code rate of the uplink control information and the preset threshold transmission, that the sending configuration information includes:
  • the configuration information is sent.
  • the method further includes:
  • the configuration information is not sent.
  • a transmission apparatus such as a UE
  • a transmission apparatus including:
  • a first determining module configured to: when uplink control information is configured to be transmitted in a physical uplink shared channel, and when there is no uplink shared channel in the physical uplink shared channel, determine according to an actual code rate of the uplink control information and a preset threshold Transmitting the uplink control information;
  • the preset threshold is determined according to a predetermined code rate and a predetermined beta value.
  • the first determining module is further configured to calculate an actual code rate of the UCI according to at least one of the following information:
  • the type of uplink control information the number of bits of the uplink control information, the configured code rate, the modulation method of the uplink control information, the resource of the physical uplink shared channel, and the configured beta value.
  • the first determining module is specifically configured to determine, according to the actual code rate of the uplink control information and the preset threshold transmission, transmit uplink control information by using at least one of the following manners:
  • the uplink control information is transmitted in the physical uplink shared channel.
  • the first determining module is further configured to:
  • the uplink control information is not transmitted in the physical uplink shared channel.
  • the first determining module is specifically configured to determine a preset threshold in the following manner:
  • the preset threshold is: or
  • r is the predetermined code rate
  • is the predetermined beta value
  • c is an adjustment factor
  • Qm is a modulation order corresponding to the modulation mode.
  • the predetermined code rate is a minimum value of a code rate corresponding to the physical uplink control information
  • the predetermined beta value is a maximum value of a beta value corresponding to the uplink control information
  • the predetermined code rate is a minimum value of a code rate corresponding to the physical uplink control information
  • the predetermined beta value is a configured beta value
  • the predetermined code rate is a configured code rate
  • the predetermined beta value is a maximum value of the beta value corresponding to the uplink control information
  • the predetermined code rate is a code rate of a previous level of the configured code rate
  • the predetermined beta value is a beta value of a next level of the configured beta value
  • the predetermined code rate is a code rate of a previous level of the configured code rate
  • the predetermined beta value is a configured beta value
  • the predetermined code rate is a configured code rate
  • the predetermined beta value is a beta value of a next level of the configured beta value
  • the predetermined code rate is a configured code rate
  • the predetermined beta value is a configured beta value
  • the actual code rate is a ratio of a configured code rate to a configured beta value.
  • At least one of the following is included:
  • the predetermined code rate is a code rate of the previous level of the configured code rate, and the predetermined beta value The beta value of the next level for the configured beta value;
  • the predetermined code rate is the code rate of the previous level of the configured code rate
  • the predetermined beta Value is the configured beta value
  • the predetermined code rate is the configured code rate
  • the predetermined beta value is the configured beta value.
  • the predetermined code rate is the configured code rate
  • the predetermined beta value is the configured beta value
  • At least one of the following is included:
  • the predetermined code rate is a code rate of a previous level of the configured code rate
  • the predetermined beta value is a configured beta value
  • the predetermined code rate is the configured code rate
  • the predetermined beta value is the configured beta value
  • At least one of the following is included:
  • the predetermined code rate is a configured code rate
  • the predetermined beta value is a beta value of a next level of the configured beta value
  • the predetermined code rate is a configured code rate
  • the predetermined beta value is a configured beta value
  • the first determining module is specifically configured to determine a preset threshold in the following manner:
  • the preset threshold is: or
  • r is the predetermined code rate
  • the predetermined code rate is a minimum value of a code rate corresponding to a modulation mode configured in a modulation and coding table
  • is the predetermined beta value
  • c is an adjustment factor
  • the predetermined beta value is derived from a beta value configuration table corresponding to the uplink control information.
  • a transmission apparatus such as a base station
  • a base station including:
  • a second determining module configured to determine configuration information
  • a third determining module configured to: when uplink control information is configured to be transmitted in a physical uplink shared channel, and when there is no uplink shared channel in the physical uplink shared channel, determine according to an actual code rate of the uplink control information and a preset threshold Sending the configuration information;
  • the preset threshold is determined according to a predetermined code rate and a predetermined beta value.
  • Another embodiment of the present disclosure provides a transmission apparatus including a processor and a computer readable storage medium having instructions stored therein, when the instructions are executed by the processor, implementing the above A transmission method.
  • Another embodiment of the present disclosure is directed to a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements the steps of any of the above described transmission methods.
  • FIG. 5 another embodiment of the present disclosure provides a transmission system, including:
  • a base station configured to determine and send configuration information
  • the UE is configured to receive the configuration information.
  • the uplink control information is configured to be transmitted in the physical uplink shared channel, and the uplink shared channel is not in the physical uplink shared channel, the actual code rate and the preset threshold are determined according to the uplink control information. Determining to transmit the uplink control information;
  • the preset threshold is determined according to a predetermined code rate and a predetermined beta value.
  • the base station is specifically configured to:
  • the preset threshold is determined according to a predetermined code rate and a predetermined beta value.
  • the UCI is configured to transmit in the PUSCH, and there is no UL-SCH in the PUSCH, and the base station and the UE agree each of the UCI configured for the base station (including one or more of HARQ-ACK, SR, CSI-1, and CSI-2) Modulation mode, if the actual code rate of the UCI bit is less than the threshold Tm, then the UE will not process this configuration of the base station (it is considered a wrong configuration). That is to say, the base station does not allow the UCI transmission code rate to be configured for the UE to be less than Tm.
  • the modulation method here includes the modulation method in Table 3. Then, the determination of Tm is performed in one of the following ways.
  • Tm can be derived by the parameter r and the beta factor. Or when r and beta are fixed values, a corresponding constant value is obtained for each modulation mode.
  • r and beta are fixed values, a corresponding constant value is obtained for each modulation mode.
  • CSI-1 Similar to other UCIs (in the following way, UCI is specifically stated to refer to CSI-1 because it is CSI- 1 for example).
  • Tm r min /beta max , where r min is the minimum value in Table 1.
  • the beta max is the maximum value of CSI-1 in Table 2.
  • the base station and the UE agree that if the UCI is transmitted in the PUSCH and there is no UL-SCH, if the BPSK modulation is configured, the base station should configure the actual code rate of the UE to transmit the UCI to be not less than Tm. That is, in the case of BPSK, when the UE does not expect or the UE finds that the actual code rate of the UCI transmission is less than Tm, the UE considers this to be an error and does not process it. That is to say, for BPSK, the UE only processes the case where the actual code rate of the UCI transmission is not less than Tm.
  • Tm r min /beta, where r min is the minimum value in Table 1.
  • the beta is configured by the base station for the UE to transmit the UCI. It is derived from the beta value in Table 2. For example, the base station configures a modulation scheme for transmitting UCI in a PUSCH (UE without UL-SCH) for the UE, and a corresponding beta value. At this point, the UE uses the beta value of the configuration to perform the calculation as required.
  • the base station and the UE agree that if the UCI is transmitted in the PUSCH and there is no UL-SCH, if the BPSK modulation is configured, the base station should configure the actual code rate of the UE to transmit the UCI to be not less than Tm. That is, in the case of BPSK, when the UE does not expect or the UE finds that the actual code rate of the UCI transmission is less than Tm, the UE considers this to be an error and does not process it. That is to say, for BPSK, the UE only processes the case where the actual code rate of the UCI transmission is not less than Tm.
  • Tm Qm*r min /beta
  • Qm Qm*r min /beta
  • Tm r/beta max , where r is the base station configured for the UE to transmit UCI, which is derived from the value of r in Table 1.
  • the base station configures, for the UE, a modulation scheme for transmitting UCI in the PUSCH (the UE does not have a UL-SCH), and a corresponding r value.
  • the UE uses the r value of the configuration to perform related calculations as required.
  • the beta max is the maximum in Table 2.
  • the base station and the UE agree that if the UCI is transmitted in the PUSCH and there is no UL-SCH, if the BPSK modulation is configured, the base station should configure the actual code rate of the UE to transmit the UCI to be not less than Tm. That is, in the case of BPSK, when the UE does not expect or the UE finds that the actual code rate of the UCI transmission is less than Tm, the UE considers this to be an error and does not process it. That is to say, for BPSK, the UE only processes the case where the actual code rate of the UCI transmission is not less than Tm.
  • Tm Qm*r/beta max
  • Qm Qm*r/beta max
  • r min is replaced with r of the upward level of r configured by the base station (direction in which the code rate value decreases).
  • the beta max is replaced with a beta of the downward level of the beta configured by the base station (in the direction of increasing value). If there is no corresponding level up or down, the configured r or beta value is used.
  • the base station is configured with r of 0.35 (refer to Table 1)
  • the calculation of r min uses the previous level of 0.35 of 0.25
  • beta max uses the beta of the base configured by the base station (in the direction of increasing value) instead of beta.
  • the base station is configured with a beta of 1.625 (see Table 2)
  • the next level of 1.650 using 1.625 is calculated in beta min . If there is no corresponding level up or down, the configured r or beta value is used.
  • the corresponding Tm is Qm*r min /beta max (see Table 3 for the value of Qm), and now according to the processing of Mode 4, then for the configured modulation mode, The corresponding Tm is Qm*r new /beta new (see Table 3 for the value of Qm), where r new is the r value of the configured r-up level; beta new is the beta value of the configured beta-down level. If there is no corresponding level up or down, the configured r or beta value is used.
  • the corresponding Tm is Qm*r min /beta (see Table 3 for the value of Qm), and now according to the processing of mode 4, then for the configured modulation mode, corresponding The Tm is Qm*r new /beta (see Table 3 for the value of Qm), where r new is the r value of the configured r-up level. If there is no corresponding level up or down, the configured r or beta value is used.
  • the corresponding Tm is Qm*r/beta max (see the value of Qm in Table 3).
  • the modulation mode of the configuration is corresponding.
  • the Tm is Qm*r/beta new (see Table 3 for the value of Qm), where beta new is the beta value of the configured beta down level. If there is no corresponding level up or down, the configured r or beta value is used.
  • the specific code rate calculation may be: according to (O CSI-1 + L CSI-1 ) / (Q m * Q' CSI - 1 ), the code rate calculated at this time
  • the number of PRBs actually transmitting UCI is an integer number (that is, the partial PRB is not included in the frequency domain, or the number of PRBs in the frequency domain is rounded up).
  • the base station and the UE When the PUSCH is being executed, if there are multiple PUSCHs in one slot (there may be no UL-SCH in the PUSCH), the base station and the UE agree to select the nth (temporal direction) PUSCH channel in the slot. UCI transmission (n is preferably 1); or, the base station and the UE agree to select the PUSCH with the most time-frequency resources of the PUSCH in the slot for UCI transmission (if there are multiple PUSCHs with the most time-frequency resources, select the first time-frequency resource) The most PUSCH).
  • the user equipment UE is configured to transmit the uplink control information UCI in the physical uplink shared channel PUSCH, and when there are multiple PUSCHs of the UE in the slot in which the PUSCH is located, select the nth in the slot.
  • the (n is preferably 1) PUSCH channel for UCI transmission; or, the PUSCH with the most time-frequency resources among the plurality of PUSCHs in the slot is selected for UCI transmission; or the base station is notified by signaling (for example, directly in the DCI) The signaling or implicit indication by other parameters) in which PUSCH the UE performs UCI transmission.
  • the base station can derive the PUSCH used by the UE in the slot by using the Control Channel Element (CCE) index where the DCI is located.
  • CCE Control Channel Element
  • the first CCE index value is reserved for the number of PUSCHs, and the remainder indicates that the first PUSCH in the slot is used to transmit the UCI.
  • the remainder is 0 for the first PUSCH, the remainder is 1 for the second PUSCH, ..., and so on.
  • the UCI transmission is performed by selecting the PUSCH with the most time-frequency resources among the plurality of PUSCHs in the slot, which is advantageous for minimizing the impact on the performance of the PUSCH, such that the punctured PUSCH data is smaller than the original overall PUSCH data.
  • the notification method is used to facilitate the transmission of UCI in the PUSCH of some services requiring high reliability (for example, Ultra Reliable & Low Latency Communication (URLLC)), so as not to affect the reliability of the URLLC.
  • URLLC Ultra Reliable & Low Latency Communication
  • the UE does not know whether the scheduled service is URLLC, but the base station is clear.
  • computer storage medium includes volatile and nonvolatile, implemented in any method or technology for storing information, such as computer readable instructions, data structures, program modules or other data. Sex, removable and non-removable media.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disc (DVD) or other optical disc storage, magnetic cartridge, magnetic tape, magnetic disk storage or other magnetic storage device, or may Any other medium used to store the desired information and that can be accessed by the computer.
  • communication media typically includes computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as a carrier wave or other transport mechanism, and can include any information delivery media. .
  • the present disclosure is applicable to the field of wireless communication, and by limiting the lower limit of the actual code rate, avoiding excessive occurrence of an optimum code rate corresponding to the modulation mode, thereby improving transmission efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本公开实施例公开了一种传输方法、装置和系统,所述传输方法包括:当UCI被配置在PUSCH中传输,且PUSCH中没有UL-SCH时,依据UCI的实际码率以及预设门限确定传输UCI;其中,所述预设门限根据预定码率和预定贝塔β值确定。本公开实施例中,当基于一种给定的调制方式来传输UCI时,依据UCI的实际码率以及预设门限确定传输UCI,这种限制将使得在给定的调制方式、传输UCI比特数确定的情况下,分配的时频资源是相对合理,即能够实现与调制方式匹配的码率,从而提升了传输效率,降低了实现复杂度。

Description

一种传输方法、装置和系统 技术领域
本公开实施例涉及通信领域,尤指一种传输方法、装置和系统。
背景技术
在新一代移动通信系统(NR,New Radio)中,对于一个用户设备(UE,User Equipment),上行控制信息(UCI,Uplink Control Information)能够通过物理上行共享信道(PUSCH,Physical Uplink Shared Channel)进行传输,且允许UE没有实际的上行数据,即PUSCH中只有UCI,没有上行共享信道(UL-SCH,Uplink Shared Channel)。这种情况下,基站为UE分配的PUSCH资源实际被用于传输UCI。
目前在NR中,允许使用PUSCH的所有调制方式和码率来传输UCI。例如,允许使用较高阶的调制方式(如正交幅度调制(QAM,Quadrature Amplitude Modulation)256)传输UCI,以提升数据的传输效率。但是,为了保证UCI的可靠性传输,一般使用低阶调制方式(如正交相移键控(QPSK,Quadrature Phase Shift Key)来传输UCI。这样,如果基站配置UE在PUSCH中传输UCI时,配置了较高阶的调制方式和较多的时频资源来满足UCI传输的低码率要求,尤其是信道质量较差的情况,那么,当传输的UCI比特数较少时,为UE分配很多的时频资源和高阶的调制方式无疑降低了传输效率,并且增加了UE的复杂度,浪费了时频资源。
进一步的,由于目前NR系统中,支持PUSCH时分复用传输在一个时隙中,所以当UCI在PUSCH中传输时,面临一个新问题,即UCI被确定在一个时隙中传输时,但是该时隙中有多个PUSCH时,那么UE在哪个PUSCH中传输呢?
发明内容
本公开实施例提供了一种传输方法、装置和系统,能够提升传输效率,降低实现复杂度。
本公开实施例提供了一种传输方法,包括:
当上行控制信息被配置在物理上行共享信道中传输,且所述物理上行共享信道中没有上行共享信道时,依据所述上行控制信息的实际码率以及预设门限确定传输所述上行控制信息;
其中,所述预设门限根据预定码率和预定贝塔值确定。
在本公开实施例中,所述上行控制信息的实际码率根据以下至少之一信息得到:
所述上行控制信息的类型、所述上行控制信息的比特数、配置的码率、所述上行控制信息的调制方式、所述物理上行共享信道的资源、配置的贝塔值。
在本公开实施例中,依据所述上行控制信息的实际码率以及预设门限确定传输上行控制信息包括以下至少之一:
当所述实际码率大于或等于所述预设门限时,在所述物理上行共享信道中传输所述上行 控制信息。
在本公开实施例中,所述预设门限根据预定码率和预定贝塔值确定包括:
所述预设门限为:
Figure PCTCN2019084624-appb-000001
或者
Figure PCTCN2019084624-appb-000002
其中,r为所述预定码率,β为所述预定贝塔值,c为调整因子,Qm为所述调制方式对应的调制阶数。
在本公开实施例中,
所述预定码率为物理上行控制信道对应的码率的最小值,所述预定贝塔值为所述上行控制信息对应的贝塔值的最大值;
或者,所述预定码率为物理上行控制信道对应的码率的最小值,所述预定贝塔值为配置的贝塔值;
或者,预定码率为配置的码率,所述预定贝塔值为所述上行控制信息对应的贝塔值的最大值。
在本公开实施例中,包括以下至少之一:
当配置的码率存在上一个等级的码率,且配置的贝塔值存在下一个等级的贝塔值时,所述预定码率为配置的码率的上一个等级的码率,所述预定贝塔值为配置的贝塔值的下一个等级的贝塔值;
当配置的码率存在上一个等级的码率,且配置的贝塔值不存在下一个等级的贝塔值时,所述预定码率为配置的码率的上一个等级的码率,所述预定贝塔值为配置的贝塔值;
当配置的码率不存在上一个等级的码率,且配置的贝塔值存在下一个等级的贝塔值时,所述预定码率为配置的码率,所述预定贝塔值为配置的贝塔值的下一个等级的贝塔值;
当配置的码率不存在上一个等级的码率,且配置的贝塔值不存在下一个等级的贝塔值时,所述预定码率为配置的码率,所述预定贝塔值为配置的贝塔值。
在本公开实施例中,包括以下至少之一:
当配置的码率存在上一个等级的码率时,所述预定码率为配置的码率的上一个等级的码率,所述预定贝塔值为配置的贝塔值;
当配置的码率不存在上一个等级的码率时,所述预定码率为配置的码率,所述预定贝塔值为配置的贝塔值。
在本公开实施例中,包括以下至少之一:
当配置的贝塔值存在下一个等级的贝塔值时,所述预定码率为配置的码率,所述预定贝塔值为配置的贝塔值的下一个等级的贝塔值;
当配置的贝塔值不存在下一个等级的贝塔值时,所述预定码率为配置的码率,所述预定贝塔值为配置的贝塔值。
在本公开实施例中,所述预设门限根据预定码率和预定贝塔值确定包括:
所述预设门限为:
Figure PCTCN2019084624-appb-000003
或者
Figure PCTCN2019084624-appb-000004
其中,r为所述预定码率,且所述预定码率为在调制编码表中配置的调制方式对应的码率的最小值,β为所述预定贝塔值,c为调整因子。
在本公开实施例中,所述预定贝塔值来自所述上行控制信息对应的贝塔值配置表。
本公开实施例提出了一种传输方法,包括:
确定配置信息;
当上行控制信息被配置在物理上行共享信道中传输,且所述物理上行共享信道中没有上行共享信道时,依据所述上行控制信息的实际码率以及预设门限确定发送所述配置信息;
其中,所述预设门限根据预定码率和预定贝塔值。
本公开实施例提出了一种传输装置,包括:
第一确定模块,设置为当上行控制信息被配置在物理上行共享信道中传输,且所述物理上行共享信道中没有上行共享信道时,依据所述上行控制信息的实际码率以及预设门限确定传输所述上行控制信息;
其中,所述预设门限根据预定码率和预定贝塔值确定。
本公开实施例提出了一种传输装置,包括:
第二确定模块,设置为确定配置信息;
第三确定模块,设置为当上行控制信息被配置在物理上行共享信道中传输,且所述物理上行共享信道中没有上行共享信道时,依据所述上行控制信息的实际码率以及预设门限确定发送所述配置信息;
其中,所述预设门限根据预定码率和预定贝塔值确定。
本公开实施例提出了一种传输装置,包括处理器和计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令被所述处理器执行时,实现上述任一种传输方法。
本公开实施例提出了一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现上述任一种传输方法的步骤。
本公开实施例包括:当UCI被配置在PUSCH中传输,且PUSCH中没有UL-SCH时,依据UCI的实际码率以及预设门限确定传输UCI;其中,所述预设门限根据预定码率和预定贝塔β值确定,这是一种易于实现的处理。本公开实施例中,当基于一种给定的调制方式来传输UCI时,依据UCI的实际码率以及预设门限确定传输UCI,这种限制将使得在给定的调制方式、传输UCI比特数确定的情况下,分配的时频资源是相对合理,即能够实现与调制方式匹配的码率,从而提升了传输效率,降低了实现复杂度。
在另一个实施例中,所述预设门限根据预定码率和预定贝塔值确定包括:
所述预设门限为:
Figure PCTCN2019084624-appb-000005
或者
Figure PCTCN2019084624-appb-000006
其中,r为所述预定码率,β为所述预定贝塔值,c为调整因子,Qm为所述调制方式对应的调制阶数。本公开实施例采用这种方式可以确保,对于给定的调制方式,总是使用调制方式对应的最佳码率来传输数据,从而将一些低效的码率排除掉。例如,众所周知的,高阶调制方式一般被使用在信道质量很好的情况下,此时对应的实际传输码率很高,使用时频资源少,且能够被接收端正确解码,这样以实现数据的高 效传输。但是,当信道质量不好,仍然使用高阶调制方式时,那么为了保证传输的可靠性,需要使用更多的时频资源,通过不断的重复编码以实现更低的实际码率,这样,才能使得高阶调制方式传输的数据在接收端正确解码。显然,后者是一种低效的方式,应该被禁止。所以,每种调制方式,都存在自己最佳的码率。也就是说,对于一种调制方式,如果过分低于对应的最佳码率,将导致传输效率低下,所以通过限制实际码率的下限,可以避免上述的过分低于调制方式对应的最佳码率发生,从而提高传输效率。
本公开实施例的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本公开实施例而了解。本公开实施例的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本公开实施例技术方案的进一步理解,并且构成说明书的一部分,与本公开实施例的实施例一起用于解释本公开实施例的技术方案,并不构成对本公开实施例技术方案的限制。
图1为本公开一个实施例提出的传输方法的流程图;
图2为本公开另一个实施例提出的传输方法的流程图;
图3为本公开另一个实施例提出的传输装置的结构组成示意图;
图4为本公开另一个实施例提出的传输装置的结构组成示意图;
图5为本公开另一个实施例提出的传输系统的结构组成示意图。
具体实施方式
下文中将结合附图对本公开实施例进行详细说明。需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
参见图1,本公开一个实施例提出了一种传输方法,包括:
步骤100、当UCI被配置在PUSCH中传输,且PUSCH中没有UL-SCH时,依据UCI的实际码率以及预设门限确定传输UCI;其中,所述预设门限根据预定码率和预定贝塔值确定。
本公开实施例中,当基于一种给定的调制方式来传输UCI时,依据UCI的实际码率以及预设门限确定传输UCI,这种限制将使得在给定的调制方式、传输UCI比特数确定的情况下,分配的时频资源是相对合理,即能够实现与调制方式匹配的码率,从而提升了传输效率,降低了实现复杂度。
在本公开实施例中,UCI包括以下至少之一:
混合自动重传请求—确认信息(HARQ-ACK,Hybrid Automatic Repeat request Acknowledgement)、上行调度请求(SR,Scheduling Request)、信道状态信息(CSI,Channel State Information)、CSI-1(CSI part 1)、CSI-2(CSI part 2)。
在本公开实施例中,实际码率根据以下至少之一信息得到:
UCI的类型、UCI的比特数、配置的码率、UCI的调制方式、PUSCH的资源、配置的贝塔值。
或者,实际码率简化为配置的码率和配置的贝塔值的比值。
具体推导过程如下:
传输UIC的实际码率按照公式(1)近似计算得到;
Figure PCTCN2019084624-appb-000007
其中,O UCI为UCI的比特数,L UCI为UCI的循环冗余校验(CRC,Cyclic Redundancy Check)的比特数,Q m为与调制方式对应的调制阶数,Q' UCI为UCI比特编码后的调制符号的数量。
当UCI为ACK时,
Figure PCTCN2019084624-appb-000008
其中,O ACK为ACK的比特数,L ACK为ACK的CRC的比特数,Q' ACK为ACK比特编码后的调制符号的数量,SE=r 0Q m,r 0为配置的码率(可以是PUSCH的码率或PUCCH的码率),β 0为配置的贝塔值,
Figure PCTCN2019084624-appb-000009
为PUSCH中承载UCI的符号数,
Figure PCTCN2019084624-appb-000010
为PUSCH中承载UCI的正交频分复用技术(OFDM,Orthogonal Frequency Division Multiplexing)符号l中的资源单位数。
当按照概率大小,选择大括号前面的等式作为Q' ACK的近似值时,将公式(2)代入公式(1)中得到ACK的实际码率为
Figure PCTCN2019084624-appb-000011
当UCI为CSI-1时,
Figure PCTCN2019084624-appb-000012
其中,O CSI-1为CSI-1的比特数,L CSI-1为CSI-1的CRC的比特数,Q' CSI-1为CSI-1比特编码后的调制符号的数量。
当按照概率大小,选择大括号前面的等式作为Q' CSI-1的近似值时,将公式(3)代入公式(1)中得到CSI-1的实际码率为
Figure PCTCN2019084624-appb-000013
当UCI为CSI-2时,
Figure PCTCN2019084624-appb-000014
其中,O CSI-2为CSI-2的比特数,L CSI-2为CSI-2的CRC的比特数,Q' CSI-2为CSI-2比特编码后的调制符号的数量。
上述推导中使用了CSI-1的进行的,但是这个推导的结论被使用为其他类型的上行控制信息。
在本公开实施例中,依据所述上行控制信息的实际码率以及预设门限传确定传输上行控制信息包括:
当所述实际码率大于或等于所述预设门限时,在所述物理上行共享信道中传输所述上行控制信息。
在本公开另一个实施例中,该方法还包括:当所述实际码率小于所述预设门限时,不在所述物理上行共享信道中传输所述上行控制信息。
其中,不在PUSCH中传输UCI可以是指在不同于PUSCH的信道中传输UCI;或者,不传输UCI。
在本公开实施例中,预设门限根据预定码率和预定贝塔值确定包括:
所述预设门限为:
Figure PCTCN2019084624-appb-000015
或者
Figure PCTCN2019084624-appb-000016
其中,r为所述预定码率,β为所述预定贝塔值,c为调整因子,Qm为所述调制方式对应的调制阶数(如表3所示);
或者,预设门限为:
Figure PCTCN2019084624-appb-000017
或者
Figure PCTCN2019084624-appb-000018
其中,r为所述预定码率,且所述预定码率为在调制编码表中配置的调制方式对应的码率的最小值,β为所述预定贝塔值,c为调整因子。
其中,c为大于0的整数。
本公开实施例采用这种方式可以确保,对于给定的调制方式,总是使用调制方式对应的最佳码率来传输数据,从而将一些低效的码率排除掉。例如,众所周知的,高阶调制方式一般被使用在信道质量很好的情况下,此时对应的实际传输码率很高,使用时频资源少,且能够被接收端正确解码,这样以实现数据的高效传输。但是,当信道质量不好,仍然使用高阶调制方式时,那么为了保证传输的可靠性,需要使用更多的时频资源,通过不断的重复编码以实现更低的实际码率,这样,才能使得高阶调制方式传输的数据在接收端正确解码。显然,后者是一种低效的方式,应该被禁止。所以,每种调制方式,都存在自己最佳的码率。也就是说,对于一种调制方式,如果过分低于对应的最佳码率,将导致传输效率低下,所以通过限制实际码率的下限,可以避免上述的过分低于调制方式对应的最佳码率发生,从而提高传输效率。
在本公开实施例中,预定码率和预定贝塔值可以采用以下(1)~(8)中的任一种取值。
(1)预定码率为物理上行控制信道(PUCCH,Physical Uplink Control Channel)对应的码率(如表1-1所示)的最小值,所述预定贝塔值为UCI对应的贝塔β值的最大值(如表2所示的最大值)。
其中,UCI在PUSCH中传输时,UCI允许使用的码率包括如表1-1到表1-4所示中的任意一个,表1-1来自3GPP TS 38.213 V15.1.0(2018-03)的表格9.2.5.2-1,表1-2来自3GPP TS 38.214中的表格6.1.4.1-1,表1-3来自3GPP TS 38.214中的表格5.1.3.1-1,表1-4来自3GPP TS 38.214中的表格5.1.3.1-2。
其中,在3GPP TS 38.214中6.1.4.1节给出了PUSCH使用的码率表(当UCI在PUSCH中传输时,UCI使用PUSCH的码率表格),注意,其中表5.1.3.1-1和5.1.3.1-2是在6.1.4.1节引述的,在不同情况下,使用不同的码率表格。
在本公开实施例中,来自3GPP TS 38.213 V15.1.0(2018-03)的表格9.2.5.2-1也被认为是UCI允许使用的码率。
下面以表1-1为例,对于其他表格,在本公开实施例中使用原理相同,不分别赘述)。表1-1中定义了不同物理上行控制信道(PUCCH,Physical Uplink Control Channel)格式对应的码率(这个码率是一个参考的码率),也就是说PUCCH传输是基本要大于或等于下述的码率才能被认为是满足可靠性要求的。当然,不同的码率对应着不同的信道质量或PUCCH中承载的比特数等。但是,一般的,PUCCH对应的业务的可靠性要求比较高时,或者信道质量较差时,会使用较低的码率,相反的,会使用较高的码率。
Figure PCTCN2019084624-appb-000019
表1-1
Figure PCTCN2019084624-appb-000020
表1-2
表1-2中,对于调制与编码策略(MCS,Modulation and Coding Scheme)索引为0,1和28时,如果UE支持pi/2BPSK调制则q=1,其他调制则q=2。
Figure PCTCN2019084624-appb-000021
表1-3
Figure PCTCN2019084624-appb-000022
表1-4
当UCI为CSI时,CSI在PUSCH中传输时,β是用来确定CSI编码调制符号数量的参数之一,β的取值见表2,表2来自3GPP TS 38.213 V15.1.0(2018-03)的表格9.3-2。
Figure PCTCN2019084624-appb-000023
Figure PCTCN2019084624-appb-000024
表2
例如,当调制方式为BPSK时,预设门限
Figure PCTCN2019084624-appb-000025
其中,r min为表1中最小值。β max为表2中的最大值。
这样,当UCI在PUSCH中传输,且PUSCH中没有UL-SCH时,如果BPSK调制方式被配置,那么基站应该配置UE传输UCI的实际码率不小于T m,即当调制方式为BPSK时,UE不期望UCI传输的实际码率小于T m,或UE发现UCI传输的实际码率小于T m时,UE认为这是一个错误,不作处理,即不传输UCI。也就是说,当调制方式为BPSK时,UE只在UCI传输的实际码率不小于T m时传输UCI。
对于其他的调制方式(也可以包括BPSK),对应的
Figure PCTCN2019084624-appb-000026
Q m的取值见表3。
(2)所述预定码率为PUCCH对应的码率的最小值,所述预定贝塔值为配置的贝塔值。
例如,当调制方式为BPSK时,预设门限
Figure PCTCN2019084624-appb-000027
其中,r min为表1中最小值,β为基站为UE此次传输UCI配置的,它来自表2中的β取值。
基站为UE配置了在PUSCH(UE没有UL-SCH)中传输UCI的调制方式,以及对应的β取值,此时UE就使用该配置的β值进行计算。
这样,当UCI在PUSCH中传输,且没有UL-SCH时,如果BPSK调制方式被配置,那么基站应该配置UE传输UCI的实际码率不小于T m,即当调制方式为BPSK时,UE不期望UCI传输的实际码率小于T m,或UE发现UCI传输的实际码率小于T m时,UE认为这是一个错误,不作处理,即不传输UCI。也就是说,当调制方式为BPSK时,UE只在UCI传输的实际码率不小于T m时传输UCI。
对于其他的调制方式(也可以包括BPSK),对应的
Figure PCTCN2019084624-appb-000028
Q m的取值见表3。
(3)预定码率为配置的码率,所述预定贝塔值为UCI对应的贝塔值的最大值。
例如,当调制方式为BPSK时,预设门限
Figure PCTCN2019084624-appb-000029
其中,r为基站为UE此次传输UCI配置的,来自于表1中的r值,β max为表2中的最大值。
基站为UE配置了在PUSCH(UE没有UL-SCH)中传输UCI的调制方式,以及对应的r值,此时UE就使用该配置的r值进行计算。
这样,当UCI在PUSCH中传输,且PUSCH中没有UL-SCH时,如果BPSK调制方式被配置,那么基站应该配置UE传输UCI的实际码率不小于T m,即当调制方式为BPSK时, UE不期望UCI传输的实际码率小于T m,或UE发现UCI传输的实际码率小于T m时,UE认为这是一个错误,不作处理,即不传输UCI。也就是说,当调制方式为BPSK时,UE只在UCI传输的实际码率不小于T m时传输UCI。
对于其他的调制方式(也可以包括BPSK),对应的
Figure PCTCN2019084624-appb-000030
Q m的取值见表3。
(4)所述预定码率为配置的码率的上一个等级的码率,即比配置的码率对应的索引值小的最大索引值对应的码率,所述预定贝塔值为配置的贝塔值的下一个等级的贝塔值,即比配置的贝塔值对应的索引值大的最小索引值对应的贝塔值。
例如,基站配置了r为0.35(参考表1),配置了beta为1.625(参考表2),那么在计算T m时r min使用0.35的上一个等级的r=0.25(即比0.35对应的索引值小的最大索引值对应的码率)代替;β max使用1.625的下一个等级β=1.750代替。
(5)所述预定码率为配置的码率的上一个等级的码率,即比配置的码率对应的索引值小的最大索引值对应的码率,所述预定贝塔值为配置的贝塔值。
(6)所述预定码率为配置的码率,所述预定贝塔值为配置的贝塔值的下一个等级的贝塔值,即比配置的贝塔值对应的索引值大的最小索引值对应的贝塔值。
(7)所述预定码率为配置的码率,所述预定贝塔值为配置的贝塔值。
例如,在第(1)种取值中,对于配置的调制方式,
Figure PCTCN2019084624-appb-000031
(Q m的取值见表3),现在按照第(4)~(7)种取值,对于配置的调制方式,
Figure PCTCN2019084624-appb-000032
(Q m的取值见表3),其中r new为配置的r的上一个等级的r值;β new为配置的β的下一个等级的beta值。如果配置的码率向上没有对应的等级,则使用配置的r,如第(6)和(7)种取值;如果配置的β值向下没有对应的等级,则使用配置的β值,如第(5)和(7)种取值。
也就是说,包括以下至少之一:
当配置的码率存在上一个等级的码率,且配置的贝塔值存在下一个等级的贝塔值时,所述预定码率为配置的码率的上一个等级的码率,所述预定贝塔值为配置的贝塔值的下一个等级的贝塔值;
当配置的码率存在上一个等级的码率,且配置的贝塔值不存在下一个等级的贝塔值时,所述预定码率为配置的码率的上一个等级的码率,所述预定贝塔值为配置的贝塔值;
当配置的码率不存在上一个等级的码率,且配置的贝塔值存在下一个等级的贝塔值时,所述预定码率为配置的码率,所述预定贝塔值为配置的贝塔值的下一个等级的贝塔值;
当配置的码率不存在上一个等级的码率,且配置的贝塔值不存在下一个等级的贝塔值时,所述预定码率为配置的码率,所述预定贝塔值为配置的贝塔值。
又如,在第(2)种取值中,对于配置的调制方式,
Figure PCTCN2019084624-appb-000033
(Q m的取值见表3), 现在按照第(4)~(7)种取值,对于配置的调制方式,
Figure PCTCN2019084624-appb-000034
(Q m的取值见表3),其中r new为配置的r的上一个等级的r值。如果配置的码率向上没有对应的等级,则使用配置的r,如第(7)种取值。
也就是说,在本公开实施例中,包括以下至少之一:
当配置的码率存在上一个等级的码率时,所述预定码率为配置的码率的上一个等级的码率,所述预定贝塔值为配置的贝塔值;
当配置的码率不存在上一个等级的码率时,所述预定码率为配置的码率,所述预定贝塔值为配置的贝塔值。
又如,在第(3)种取值中,对于配置的调制方式,
Figure PCTCN2019084624-appb-000035
(Q m的取值见表3),现在按照第(4)~(7)种取值,对于配置的调制方式,
Figure PCTCN2019084624-appb-000036
(Q m的取值见表3),其中β new为配置的β的下一个等级的β值。如果配置的β值向下没有对应的等级,则使用配置的β值,如第(7)种取值。
也就是说,在本公开实施例中,包括以下至少之一:
当配置的贝塔值存在下一个等级的贝塔值时,所述预定码率为配置的码率,所述预定贝塔值为配置的贝塔值的下一个等级的贝塔值;
当配置的贝塔值不存在下一个等级的贝塔值时,所述预定码率为配置的码率,所述预定贝塔值为配置的贝塔值。
(8)当UCI使用PUSCH的码率表格时,例如使用表1-2、表1-3和表1-4中任意一个时,还包括下面的确定预设门限T m的方式。
对于给定的调制方式(即Q m的值被给定,它是基站配置的PUSCH的调制方式,用来传输UCI的),对应的
Figure PCTCN2019084624-appb-000037
其中,r为在调制编码表中配置的调制方式对应的码率的最小值,例如,在表1-2、表1-3或表1-4中配置的调制方式对应的码率的最小值;
β可以采用以下任一种取值:
(1)配置的贝塔值;
(2)UCI对应的贝塔β值的最大值(如表2所示的最大值);
(3)配置的贝塔值的下一个等级的贝塔值,即比配置的贝塔值对应的索引值大的最小索引值对应的贝塔值时为配置的贝塔值的下一个等级的贝塔值。
具体的,可以直接取配置的贝塔值;或者直接取UCI对应的贝塔β值的最大值;或者,当配置的贝塔值存在下一个等级的贝塔值时,取配置的贝塔值的下一个等级的贝塔值,当配 置的贝塔值不存在向下的等级时,区配置的贝塔值。
例如,当表1-4被使用为UCI在PUSCH中传输(或者表1-4被使用为PUSCH的传输时),如果配置调制方式为16QAM,即Q m=4,此时
Figure PCTCN2019084624-appb-000038
中的r为378/1024(即表1-4中16QAM对应的码率有{378/1024,434/1024,490/1024,553/1024,616/1024,658/1024},其中378/1024最小,被选中,即为码率r)。那么,当UCI(HARQ-ACK、SR、CSI-1和CSI-2中的一个或多个)在PUSCH中传输时,如果PUSCH中没有UL-SCH(即没有UE的上行数据)时,且假设被配置调制方式为16QAM时,当经计算后,UCI传输的实际码率小于378/1024/β(这里假设β采用配置的)时,UE认为是一个错误的配置(不进行UCI的传输),也就是说,最佳的,基站禁止在调制方式为16QAM时配置这种导致UCI实际码率小于378/1024/β的相关参数。当经计算后,UCI传输实际码率大于或等于378/1024/β时,UE按照配置的相关信息进行UCI的传输。
这种方式能被归纳为:如果UCI被配置在PUSCH中传输,且没有UL-SCH时,为传输UCI配置调制方式、码率等参数时,应使得UCI传输的实际码率大于或等于T m;如果UCI传输的实际码率小于T m,则将导致低效的传输,UE不期望这种配置,认为这是一个错误的配置,不进行UCI传输。这里T m被定义为
Figure PCTCN2019084624-appb-000039
其中,r为在调制编码表中配置的调制方式对应的码率的最小值,例如,在表1-2、表1-3或表1-4中配置的调制方式对应的码率的最小值;
β可以采用以下任一种取值:
(1)配置的贝塔值;
(2)UCI对应的贝塔β值的最大值(如表2所示的最大值);
(3)配置的贝塔值的下一个等级的贝塔值,即比配置的贝塔值对应的索引值大的最小索引值对应的贝塔值时为配置的贝塔值的下一个等级的贝塔值。
PUSCH在传输时,可以为不同传输模式配置对应的调制编码表。
上述的方式,可以应用于不同类型的上行控制信息,例如上行控制信息为HARQ-ACK、SR、CSI-1和CSI-2中的一个或多个的组合。如果方式中的r或贝塔值需要使用对应的表格时,即每种上行控制信息使用自己对应的表格。例如,上行控制信息为HARQ-ACK时对应使用HARQ-ACK的贝塔值配置表;上行控制信息为CSI-1时对应使用CSI-1的贝塔值配置表;上行控制信息为CSI-2时对应使用CSI-2的贝塔值配置表。
也就是说,上述预定贝塔值来自UCI对应的贝塔值配置表;
或者,上述预定贝塔值为预先设置的常数,例如,为20、25、30、35、40。
在本公开实施例中,UCI的调制方式包括以下至少之一:
π/2-BPSK、正交相移键控(QPSK,Quadrature Phase Shift Key)、16QAM、64QAM、256QAM。
在本公开实施例中,不同调制方式对应的Q m的取值如表3所示。
Figure PCTCN2019084624-appb-000040
表3
参见图2,本公开另一个实施例提出了一种传输方法,包括:
步骤200、确定配置信息。
在本公开实施例中,配置信息包括:调制方式、上述配置的码率、上述配置的贝塔值、PUSCH的资源。
步骤201、当上行控制信息被配置在物理上行共享信道中传输,且所述物理上行共享信道中没有上行共享信道时,依据所述上行控制信息的实际码率以及预设门限确定发送所述配置信息;其中,所述预设门限根据预定码率和预定贝塔值确定。
在本公开实施例中,依据所述上行控制信息的实际码率以及预设门限传确定发送配置信息包括:
当所述实际码率大于或等于所述预设门限时,发送配置信息。
在本公开另一个实施例中,该方法还包括:
当所述实际码率小于所述预设门限时,不发送配置信息。
上述步骤的具体实现方式可以参考前述实施例的具体实现方式,这里不再赘述。
参见图3,本公开另一个实施例提出了一种传输装置(如UE),包括:
第一确定模块,用于当上行控制信息被配置在物理上行共享信道中传输,且所述物理上行共享信道中没有上行共享信道时,依据所述上行控制信息的实际码率以及预设门限确定传输所述上行控制信息;
其中,所述预设门限根据预定码率和预定贝塔值确定。
在本公开实施例中,第一确定模块还用于根据以下至少之一信息计算UCI的实际码率:
上行控制信息的类型、所述上行控制信息的比特数、配置的码率、所述上行控制信息的调制方式、所述物理上行共享信道的资源、配置的贝塔值。
在本公开实施例中,第一确定模块具体用于采用以下至少之一方式依据所述上行控制信息的实际码率以及预设门限传确定传输上行控制信息:
当所述实际码率大于或等于所述预设门限时,在所述物理上行共享信道中传输所述上行 控制信息。
在本公开实施例中,第一确定模块还用于:
当所述实际码率小于所述预设门限时,不在所述物理上行共享信道中传输所述上行控制信息。
在本公开实施例中,第一确定模块具体用于采用以下方式确定预设门限:
所述预设门限为:
Figure PCTCN2019084624-appb-000041
或者
Figure PCTCN2019084624-appb-000042
其中,r为所述预定码率,β为所述预定贝塔值,c为调整因子,Qm为所述调制方式对应的调制阶数。
在本公开实施例中,
所述预定码率为物理上行链路控制信息对应的码率的最小值,所述预定贝塔值为所述上行控制信息对应的贝塔值的最大值;
或者,所述预定码率为物理上行链路控制信息对应的码率的最小值,所述预定贝塔值为配置的贝塔值;
或者,预定码率为配置的码率,所述预定贝塔值为所述上行控制信息对应的贝塔值的最大值;
或者,所述预定码率为配置的码率的上一个等级的码率,所述预定贝塔值为配置的贝塔值的下一个等级的贝塔值;
或者,所述预定码率为配置的码率的上一个等级的码率,所述预定贝塔值为配置的贝塔值;
或者,所述预定码率为配置的码率,所述预定贝塔值为配置的贝塔值的下一个等级的贝塔值;
或者,所述预定码率为配置的码率,所述预定贝塔值为配置的贝塔值。
在本公开实施例中,所述实际码率为配置的码率和配置的贝塔值的比值。
在本公开实施例中,包括以下至少之一:
当配置的码率存在上一个等级的码率,且配置的贝塔值存在下一个等级的贝塔值时,所述预定码率为配置的码率的上一个等级的码率,所述预定贝塔值为配置的贝塔值的下一个等级的贝塔值;
当配置的码率存在上一个等级的码率,且配置的贝塔值不存在下一个等级的贝塔值时,所述预定码率为配置的码率的上一个等级的码率,所述预定贝塔值为配置的贝塔值;
当配置的码率不存在上一个等级的码率,且配置的贝塔值存在下一个等级的贝塔值时,所述预定码率为配置的码率,所述预定贝塔值为配置的贝塔值的下一个等级的贝塔值;
当配置的码率不存在上一个等级的码率,且配置的贝塔值不存在下一个等级的贝塔值时,所述预定码率为配置的码率,所述预定贝塔值为配置的贝塔值。
在本公开实施例中,包括以下至少之一:
当配置的码率存在上一个等级的码率时,所述预定码率为配置的码率的上一个等级的码 率,所述预定贝塔值为配置的贝塔值;
当配置的码率不存在上一个等级的码率时,所述预定码率为配置的码率,所述预定贝塔值为配置的贝塔值。
在本公开实施例中,包括以下至少之一:
当配置的贝塔值存在下一个等级的贝塔值时,所述预定码率为配置的码率,所述预定贝塔值为配置的贝塔值的下一个等级的贝塔值;
当配置的贝塔值不存在下一个等级的贝塔值时,所述预定码率为配置的码率,所述预定贝塔值为配置的贝塔值。
在本公开实施例中,第一确定模块具体用于采用以下方式确定预设门限:
所述预设门限为:
Figure PCTCN2019084624-appb-000043
或者
Figure PCTCN2019084624-appb-000044
其中,r为所述预定码率,且所述预定码率为在调制编码表中配置的调制方式对应的码率的最小值,β为所述预定贝塔值,c为调整因子。
在本公开实施例中,预定贝塔值来自所述上行控制信息对应的贝塔值配置表。
参见图4,本公开另一个实施例提出了一种传输装置(如基站),包括:
第二确定模块,用于确定配置信息;
第三确定模块,用于当上行控制信息被配置在物理上行共享信道中传输,且所述物理上行共享信道中没有上行共享信道时,依据所述上行控制信息的实际码率以及预设门限确定发送所述配置信息;
其中,所述预设门限根据预定码率和预定贝塔值确定。
本公开另一个实施例提出了一种传输装置,包括处理器和计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令被所述处理器执行时,实现上述任一种传输方法。
本公开另一个实施例提出了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述任一种传输方法的步骤。
参见图5,本公开另一个实施例提出了一种传输系统,包括:
基站,用于确定并发送配置信息;
UE,用于接收配置信息;当上行控制信息被配置在物理上行共享信道中传输,且所述物理上行共享信道中没有上行共享信道时,依据所述上行控制信息的实际码率以及预设门限确定传输所述上行控制信息;
其中,所述预设门限根据预定码率和预定贝塔值确定。
在本公开另一个实施例中,基站具体用于:
确定配置信息;当上行控制信息被配置在物理上行共享信道中传输,且所述物理上行共享信道中没有上行共享信道时,依据所述上行控制信息的实际码率以及预设门限确定发送所述配置信息;
其中,所述预设门限根据预定码率和预定贝塔值确定。
实施例
UCI被配置在PUSCH中传输,且PUSCH中没有UL-SCH,基站和UE约定对于基站配置的UCI(包括HARQ-ACK、SR、CSI-1和CSI-2中的一个或多个)的每种调制方式,如果UCI比特的实际码率小于门限Tm,那么UE对于基站的这种配置将不做处理(认为这是一种错误的配置)。也即是说,基站不允许为UE配置UCI传输码率小于Tm。这里的调制方式包括表3中调制方式。然后,对于Tm的确定按照下面的方式之一进行。
基站和UE约定,Tm的取值能通过参数r和beta因子来推导得出。或者当r和beta作为固定值时,为每种调制方式得出一个对应的常值。下面给出多种推导Tm的方式(使用其中一个即可)且以CSI-1为例,对于其他UCI采用类似的(下面方式中,UCI为特别说明应该是指CSI-1因为是以CSI-1为例的)。
方式1
对于采用BPSK调制时,Tm=r min/beta max,其中,r min为表1中最小值。beta max为表2中为CSI-1的最大值。
这样,基站和UE约定,如果UCI在PUSCH中传输,且没有UL-SCH时,如果BPSK调制被配置,那么基站应该配置UE传输UCI的实际码率不小于Tm。即在BPSK时,UE不期望或UE发现UCI传输的实际码率小于Tm时,UE认为这是一个错误,不作处理。也就是说,对于BPSK时,UE只对于UCI传输的实际码率不小于Tm的情况进行处理。
对于其他的(也可以包括BPSK)调制方式时,对应的Tm为Qm*r min/beta max,Qm的取值见表3。
下面是具体的推导过程。对于UCI传输时的实际码率,按照下面的方式近似计算得到(以CSI-1为例):(O CSI-1+L CSI-1)/(Q m*Q′ CSI-1),Q′ CSI-1是CSI-1比特编码后的调制符号数量,O CSI-1是CSI-1比特数,L CSI-1是CSI-1的CRC比特(L CSI-1也能作为可选项)。进一步的,对于Q′ CSI-1的取值进行近似取值,即将
Figure PCTCN2019084624-appb-000045
按照概率大小,选择大括号中前面的等式作为Q′ CSI-1的近似取值,并带入上述的CSI-1的实际码率表达式中。最终,CSI-1的实际码率为r/beta(beta即为
Figure PCTCN2019084624-appb-000046
)。
方式2
对于采用BPSK调制时,Tm=r min/beta,其中,r min为表1中最小值。beta为基站为UE此次传输UCI配置的,它来自表2中的beta取值。例如,基站为UE配置了在PUSCH(UE没有UL-SCH)中传输UCI的调制方式,以及对应的beta取值。此时UE就使用该配置的beta取值按照要求进行计算。
这样,基站和UE约定,如果UCI在PUSCH中传输,且没有UL-SCH时,如果BPSK 调制被配置,那么基站应该配置UE传输UCI的实际码率不小于Tm。即在BPSK时,UE不期望或UE发现UCI传输的实际码率小于Tm时,UE认为这是一个错误,不作处理。也就是说,对于BPSK时,UE只对于UCI传输的实际码率不小于Tm的情况进行处理。
对于其他的(也可以包括BPSK)调制方式时,对应的Tm为Qm*r min/beta,Qm的取值见表3。
方式3
对于采用BPSK调制时,Tm=r/beta max,其中,r为基站为UE此次传输UCI配置的,它来自表1中的r取值。例如,基站为UE配置了在PUSCH(UE没有UL-SCH)中传输UCI的调制方式,以及对应的r取值。此时UE就使用该配置的r取值按照要求进行相关的计算。beta max为表2中最大值。
这样,基站和UE约定,如果UCI在PUSCH中传输,且没有UL-SCH时,如果BPSK调制被配置,那么基站应该配置UE传输UCI的实际码率不小于Tm。即在BPSK时,UE不期望或UE发现UCI传输的实际码率小于Tm时,UE认为这是一个错误,不作处理。也就是说,对于BPSK时,UE只对于UCI传输的实际码率不小于Tm的情况进行处理。
对于其他的(也可以包括BPSK)调制方式时,对应的Tm为Qm*r/beta max,Qm的取值见表3。
方式4
对于方式1~3中,如果有r min和/或beta max,在按照下面的方式取值:r min使用基站配置的r的向上的等级(向码率数值减小的方向)的r代替。beta max使用基站配置的beta的向下的等级(向数值增大的方向)的beta代替。如果向上或向下没有对应的等级时,即使用配置的r或beta值。
例如,基站配置了r为0.35(参考表1),那么在计算r min使用0.35的上一个等级0.25;beta max使用基站配置的beta的向下的等级(向数值增大的方向)的beta代替。例如,基站配置了beta为1.625(参考表2),那么在计算beta min使用1.625的下一个等级1.750。如果向上或向下没有对应的等级时,即使用配置的r或beta值。
例如,在方式1中,对于配置的调制方式,对应的Tm为Qm*r min/beta max(Qm的取值见表3),现在按照方式4的处理,那么此时对于配置的调制方式,对应的Tm为Qm*r new/beta new(Qm的取值见表3),其中r new为配置的r向上的等级的r值;beta new为配置的beta向下的等级的beta值。如果向上或向下没有对应的等级时,即使用配置的r或beta值。
例如,在方式2中,对于配置的调制方式,对应的Tm为Qm*r min/beta(Qm的取值见表3),现在按照方式4的处理,那么此时对于配置的调制方式,对应的Tm为Qm*r new/beta(Qm的取值见表3),其中r new为配置的r向上的等级的r值。如果向上或向下没有对应的等级时,即使用配置的r或beta值。
例如,在方式3中,对于配置的调制方式,对应的Tm为Qm*r/beta max(Qm的取值见表3),现在按照方式4的处理,那么此时对于配置的调制方式,对应的Tm为Qm*r/beta new(Qm的取值见表3),其中beta new为配置的beta向下的等级的beta值。如果向上或向下没 有对应的等级时,即使用配置的r或beta值。
在方式1~4中,可选的,关于具体的码率计算可以为:按照(O CSI-1+L CSI-1)/(Q m*Q′ CSI-1),此时计算的码率下,实际传输UCI的PRB数为整数个(即在频域不包含部分PRB,或者频域的PRB数向上取整)。
UCI在PUSCH传输在执行时,如果一个时隙(slot)中有多个PUSCH(PUSCH中可以没有UL-SCH),那么,基站和UE约定,选择slot中第n个(时间方向)PUSCH信道进行UCI传输(n优选为1);或者,基站和UE约定,选择slot中PUSCH的时频资源最多的PUSCH进行UCI传输(如果时频资源最多的PUSCH有多个,则选择第一个时频资源最多的PUSCH)。也就是说:用户设备UE被配置将上行控制信息UCI在物理上行共享信道PUSCH中传输,当所述PUSCH所在的时隙slot中有所述UE的多个PUSCH时,选择所述slot中第n个(n优选为1)PUSCH信道进行UCI传输;或者,选择所述slot中所述多个PUSCH中时频资源最多的PUSCH进行UCI传输;或者,基站通过信令通知(例如在DCI中直接通过信令通知或通过其他参数暗含通知)UE在哪个PUSCH中进行UCI传输。对于暗含通知的方式,基站可以通过DCI所在的控制信道单元(CCE,Control Channel Element)索引来推导确定UE在slot中使用的PUSCH为那个。例如,第一个CCE索引值对PUSCH的个数求余,余数表示slot中的第几个PUSCH被使用传输UCI。余数为0表示第一个PUSCH,余数为1表示第二个PUSCH,...,依次类推。
采用选择所述slot中所述多个PUSCH中时频资源最多的PUSCH进行UCI传输的方式,有利于对于PUSCH的性能影响最小化,这样,被打孔的PUSCH数据相对原本整体PUSCH数据较小。采用通知的方式,有利于规避UCI在一些要求可靠性高的业务(例如超可靠低延迟通信(URLLC,Ultra Reliable&Low Latency Communication)业务)的PUSCH中传输,从而不影响URLLC的可靠性。目前UE并不清楚被调度的业务是否为URLLC,但是基站是清楚的。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模 块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
虽然本公开实施例所揭露的实施方式如上,但所述的内容仅为便于理解本公开实施例而采用的实施方式,并非用以限定本公开实施例。任何本公开实施例所属领域内的技术人员,在不脱离本公开实施例所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本公开实施例的专利保护范围,仍须以所附的权利要求书所界定的范围为准。
工业实用性
本公开适用于无线通信领域,通过限制实际码率的下限,避免过分低于调制方式对应的最佳码率发生,从而提高传输效率。

Claims (15)

  1. 一种传输方法,包括:
    当上行控制信息被配置在物理上行共享信道中传输,且所述物理上行共享信道中没有上行共享信道时,依据所述上行控制信息的实际码率以及预设门限确定传输所述上行控制信息;
    其中,所述预设门限根据预定码率和预定贝塔值确定。
  2. 根据权利要求1所述的传输方法,其中,所述上行控制信息的实际码率根据以下至少之一信息得到:
    所述上行控制信息的类型、所述上行控制信息的比特数、配置的码率、所述上行控制信息的调制方式、所述物理上行共享信道的资源、配置的贝塔值。
  3. 根据权利要求1所述的传输方法,其中,依据所述上行控制信息的实际码率以及预设门限确定传输上行控制信息包括以下至少之一:
    当所述实际码率大于或等于所述预设门限时,在所述物理上行共享信道中传输所述上行控制信息。
  4. 根据权利要求1~3任一项所述的传输方法,其中,所述预设门限根据预定码率和预定贝塔值确定包括:
    所述预设门限为:
    Figure PCTCN2019084624-appb-100001
    或者
    Figure PCTCN2019084624-appb-100002
    其中,r为所述预定码率,β为所述预定贝塔值,c为调整因子,Qm为所述调制方式对应的调制阶数。
  5. 根据权利要求4任一项所述的传输方法,其中,
    所述预定码率为物理上行控制信道对应的码率的最小值,所述预定贝塔值为所述上行控制信息对应的贝塔值的最大值;
    或者,所述预定码率为物理上行控制信道对应的码率的最小值,所述预定贝塔值为配置的贝塔值;
    或者,预定码率为配置的码率,所述预定贝塔值为所述上行控制信息对应的贝塔值的最大值。
  6. 根据权利要求4任一项所述的传输方法,其中,包括以下至少之一:
    当配置的码率存在上一个等级的码率,且配置的贝塔值存在下一个等级的贝塔值时,所述预定码率为配置的码率的上一个等级的码率,所述预定贝塔值为配置的贝塔值的下一个等级的贝塔值;
    当配置的码率存在上一个等级的码率,且配置的贝塔值不存在下一个等级的贝塔值时,所述预定码率为配置的码率的上一个等级的码率,所述预定贝塔值为配置的贝塔值;
    当配置的码率不存在上一个等级的码率,且配置的贝塔值存在下一个等级的贝塔值时,所述预定码率为配置的码率,所述预定贝塔值为配置的贝塔值的下一个等级的贝塔值;
    当配置的码率不存在上一个等级的码率,且配置的贝塔值不存在下一个等级的贝塔值时,所述预定码率为配置的码率,所述预定贝塔值为配置的贝塔值。
  7. 根据权利要求4任一项所述的传输方法,其中,包括以下至少之一:
    当配置的码率存在上一个等级的码率时,所述预定码率为配置的码率的上一个等级的码率,所述预定贝塔值为配置的贝塔值;
    当配置的码率不存在上一个等级的码率时,所述预定码率为配置的码率,所述预定贝塔值为配置的贝塔值。
  8. 根据权利要求4任一项所述的传输方法,其中,包括以下至少之一:
    当配置的贝塔值存在下一个等级的贝塔值时,所述预定码率为配置的码率,所述预定贝塔值为配置的贝塔值的下一个等级的贝塔值;
    当配置的贝塔值不存在下一个等级的贝塔值时,所述预定码率为配置的码率,所述预定贝塔值为配置的贝塔值。
  9. 根据权利要求1所述的传输方法,其中,所述预设门限根据预定码率和预定贝塔值确定包括:
    所述预设门限为:
    Figure PCTCN2019084624-appb-100003
    或者
    Figure PCTCN2019084624-appb-100004
    其中,r为所述预定码率,且所述预定码率为在调制编码表中配置的调制方式对应的码率的最小值,β为所述预定贝塔值,c为调整因子。
  10. 根据权利要求4或9所述的传输方法,其中,所述预定贝塔值来自所述上行控制信息对应的贝塔值配置表。
  11. 一种传输方法,包括:
    确定配置信息;
    当上行控制信息被配置在物理上行共享信道中传输,且所述物理上行共享信道中没有上行共享信道时,依据所述上行控制信息的实际码率以及预设门限确定发送所述配置信息;
    其中,所述预设门限根据预定码率和预定贝塔值。
  12. 一种传输装置,包括:
    第一确定模块,设置为当上行控制信息被配置在物理上行共享信道中传输,且所述物理上行共享信道中没有上行共享信道时,依据所述上行控制信息的实际码率以及预设门限确定传输所述上行控制信息;
    其中,所述预设门限根据预定码率和预定贝塔值确定。
  13. 一种传输装置,包括:
    第二确定模块,设置为确定配置信息;
    第三确定模块,设置为当上行控制信息被配置在物理上行共享信道中传输,且所述物理上行共享信道中没有上行共享信道时,依据所述上行控制信息的实际码率以及预设门限确定发送所述配置信息;
    其中,所述预设门限根据预定码率和预定贝塔值确定。
  14. 一种传输装置,包括处理器和计算机可读存储介质,所述计算机可读存储介质中存储有指令,其中,当所述指令被所述处理器执行时,实现如权利要求1~11任一项所述的传输方法。
  15. 一种计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1~11任一项所述的传输方法的步骤。
PCT/CN2019/084624 2018-05-11 2019-04-26 一种传输方法、装置和系统 WO2019214466A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021512985A JP7277570B2 (ja) 2018-05-11 2019-04-26 伝送方法、装置及びシステム
EP19799920.4A EP3817475A4 (en) 2018-05-11 2019-04-26 METHOD, APPARATUS AND TRANSMISSION SYSTEM
BR112020022979-2A BR112020022979A2 (pt) 2018-05-11 2019-04-26 método, aparelho e sistema de transmissão
US17/054,363 US11870577B2 (en) 2018-05-11 2019-04-26 Method and apparatus for transmitting uplink control information in a physical uplink shared channel, and storage medium
KR1020207035705A KR102571954B1 (ko) 2018-05-11 2019-04-26 전송 방법, 장치 및 시스템

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810450605.9 2018-05-11
CN201810450605.9A CN110474707B (zh) 2018-05-11 2018-05-11 一种传输方法、装置和系统

Publications (1)

Publication Number Publication Date
WO2019214466A1 true WO2019214466A1 (zh) 2019-11-14

Family

ID=68467104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084624 WO2019214466A1 (zh) 2018-05-11 2019-04-26 一种传输方法、装置和系统

Country Status (7)

Country Link
US (1) US11870577B2 (zh)
EP (1) EP3817475A4 (zh)
JP (1) JP7277570B2 (zh)
KR (1) KR102571954B1 (zh)
CN (1) CN110474707B (zh)
BR (1) BR112020022979A2 (zh)
WO (1) WO2019214466A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021225404A1 (en) * 2020-05-08 2021-11-11 Samsung Electronics Co., Ltd. Method and system for improving uplink channel information (uci) decoding in communication network

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023283958A1 (zh) * 2021-07-16 2023-01-19 Oppo广东移动通信有限公司 信息处理方法、装置、设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130016687A1 (en) * 2010-03-22 2013-01-17 Suck Chel Yang Method and device for transmitting control information
CN102934381A (zh) * 2010-06-02 2013-02-13 三星电子株式会社 无线通信系统中用于发送信道状态信息的方法和系统
US20180070369A1 (en) * 2016-09-06 2018-03-08 Samsung Electronics Co., Ltd. Coexistence of different radio access technologies or services on a same carrier

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102710376B (zh) * 2009-12-07 2015-03-18 华为技术有限公司 传输上行控制信息的方法和装置
US9100155B2 (en) * 2010-05-03 2015-08-04 Qualcomm Incorporated Method and apparatus for control and data multiplexing in wireless communication
CN102960039B (zh) * 2010-07-09 2015-08-26 日本电气株式会社 通信设备和资源导出方法
CN105379156B (zh) * 2013-03-28 2018-11-02 三星电子株式会社 Fdd小区和tdd小区的聚合
EP3840264A1 (en) * 2014-09-08 2021-06-23 Interdigital Patent Holdings, Inc. Controlling the operation of dci based reception
WO2017099860A1 (en) * 2015-12-07 2017-06-15 Intel IP Corporation Device for non-scheduled uplink transmission in the unlicensed spectrum
US10756868B2 (en) * 2016-07-01 2020-08-25 Qualcomm Incorporated Techniques for transmitting a physical uplink shared channel in an uplink pilot time slot
US10813118B2 (en) * 2017-07-10 2020-10-20 Lg Electronics Inc. Method for transmitting and receiving uplink control information and devices supporting the same
US20190059013A1 (en) * 2017-08-21 2019-02-21 Samsung Electronics Co., Ltd. Method and apparatus for multiplexing higher-resolution channel state information (csi)
US10701724B2 (en) * 2018-01-12 2020-06-30 Apple Inc. Time density and frequency density determination of phase tracking reference signals (PT-RS) in new radio (NR) systems
US10680774B2 (en) * 2018-01-12 2020-06-09 Apple Inc. Size determination for channel state information (CSI) part one and part two transmission of CSI report
WO2019140662A1 (zh) * 2018-01-19 2019-07-25 Oppo广东移动通信有限公司 无线通信方法、终端设备和网络设备
EP3751928A4 (en) * 2018-02-09 2021-10-06 Ntt Docomo, Inc. USER DEVICE AND RADIO COMMUNICATION PROCEDURE
JP2020025217A (ja) * 2018-08-08 2020-02-13 シャープ株式会社 端末装置、基地局装置、および、通信方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130016687A1 (en) * 2010-03-22 2013-01-17 Suck Chel Yang Method and device for transmitting control information
CN102934381A (zh) * 2010-06-02 2013-02-13 三星电子株式会社 无线通信系统中用于发送信道状态信息的方法和系统
US20180070369A1 (en) * 2016-09-06 2018-03-08 Samsung Electronics Co., Ltd. Coexistence of different radio access technologies or services on a same carrier

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
3GPP TS 38.213, March 2018 (2018-03-01)
HUAWEI ET AL.: "Remaining Issues on UCI Multiplexing", 3GPP TSG RAN WGI MEETING #92, R1-1801341, vol. RAN WG1, 17 February 2018 (2018-02-17), pages 1 - 8, XP051397505 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021225404A1 (en) * 2020-05-08 2021-11-11 Samsung Electronics Co., Ltd. Method and system for improving uplink channel information (uci) decoding in communication network

Also Published As

Publication number Publication date
EP3817475A4 (en) 2022-04-20
KR20210010886A (ko) 2021-01-28
US11870577B2 (en) 2024-01-09
CN110474707A (zh) 2019-11-19
BR112020022979A2 (pt) 2021-02-02
CN110474707B (zh) 2022-05-20
US20210194628A1 (en) 2021-06-24
JP7277570B2 (ja) 2023-05-19
JP2021521758A (ja) 2021-08-26
KR102571954B1 (ko) 2023-08-29
EP3817475A1 (en) 2021-05-05

Similar Documents

Publication Publication Date Title
US20210204257A1 (en) Method, device and system for determining coding modulation parameter
US11483804B2 (en) Method, user equipment and base station for transmitting uplink control information
CN107409014B (zh) 用于操作大量载波的上行链路反馈方法
CN107113096B (zh) 在无线通信系统中发送ack/nack的方法和使用该方法的设备
US8971271B2 (en) Methods and network nodes for scheduling transmission
JP5184651B2 (ja) 無線通信システムにおけるcqi送信方法
CN107113097B (zh) 在无线通信系统中发送ack/nack的方法和设备
JP6526231B2 (ja) 制御情報を送信するための方法、ユーザ機器、及び基地局
JP2020501456A (ja) 物理アップリンクデータチャンネルで制御情報多重化
US20170070979A1 (en) Adaptive outer loop for physical downlink channel link adaptation
KR102032167B1 (ko) 무선통신 시스템에서 적응적 복합자동재전송을 고려한 변조 방법 및 장치
US11191075B2 (en) Data transmission method, device, and communications system
JP7197280B2 (ja) 端末装置、基地局装置、および、通信方法
WO2012083530A1 (zh) 资源分配方法、信道状态信息的传输方法、基站和用户设备
WO2019203246A1 (ja) 端末装置、基地局装置、および、通信方法
WO2012034536A1 (zh) 一种应答信息的传输方法、基站及用户终端
WO2019214466A1 (zh) 一种传输方法、装置和系统
WO2017028058A1 (zh) 一种传输上行控制信息的方法及装置
CN104753631A (zh) 一种256qam的调度方法、基站及用户设备
WO2020013030A1 (ja) 端末装置、基地局装置、および、通信方法
WO2020135403A1 (zh) 一种动态调节pusch资源的方法、装置和设备
EP3797483A1 (en) Devices, methods and computer programs for adaptively selective retransmission in wireless communications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19799920

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021512985

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020022979

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20207035705

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2019799920

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112020022979

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20201111