WO2019214271A1 - 坩埚盖、坩埚盖组件、蒸发源、蒸镀方法 - Google Patents

坩埚盖、坩埚盖组件、蒸发源、蒸镀方法 Download PDF

Info

Publication number
WO2019214271A1
WO2019214271A1 PCT/CN2019/070447 CN2019070447W WO2019214271A1 WO 2019214271 A1 WO2019214271 A1 WO 2019214271A1 CN 2019070447 W CN2019070447 W CN 2019070447W WO 2019214271 A1 WO2019214271 A1 WO 2019214271A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
flip cover
cover
cover according
salt
Prior art date
Application number
PCT/CN2019/070447
Other languages
English (en)
French (fr)
Inventor
宫诚致
许如意
薛建成
关立伟
Original Assignee
京东方科技集团股份有限公司
鄂尔多斯市源盛光电有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 鄂尔多斯市源盛光电有限责任公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2019214271A1 publication Critical patent/WO2019214271A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material

Definitions

  • the present disclosure relates to, but is not limited to, the field of vapor deposition technology, and in particular to a flip cover, a lid assembly, an evaporation source, and an evaporation method.
  • a structure such as a cathode, a light emitting layer, or the like in an organic light emitting diode display device can be prepared by an evaporation process using a fine metal mask (FFM).
  • FAM fine metal mask
  • existing vapor deposition equipment that implements this vapor deposition process is generally inferior and affects product performance.
  • the present disclosure provides a lid, a lid assembly, an evaporation source, and an evaporation method.
  • a flip cover including a cover configured to cover an opening of the vapor deposition crucible, the cover having a through hole configured to be coupled to the nozzle;
  • the inside of the cover body has a closed cavity in which a heating device and a heat transfer medium are disposed, and the heating temperature of the heating device enables the heat transfer medium to be melted.
  • the heat transfer medium is a solid salt.
  • the salt has an operating temperature of from 150 ° C to 1300 ° C at which the salt can be completely melted without evaporation or decomposition.
  • the operating temperature of the salt is between 150 °C and 550 °C.
  • the salt consists of potassium nitrate and sodium nitrite, and the weight ratio of the potassium nitrate to the sodium nitrite is 1:1.
  • the cover body is provided with a groove on one side surface of the nozzle
  • the through hole is provided at a bottom of the groove, and in a case where the nozzle is connected to the through hole, at least a portion of the nozzle is located in the groove.
  • the shape of the cross section of the groove perpendicular to its depth direction is circular.
  • the cover is constructed of a metallic material.
  • the metallic material is titanium
  • the number of the cavities is one, the cavity surrounding the through hole
  • the heating device is evenly distributed in the cavity.
  • the number of the cavities is plural, and the plurality of the cavities are evenly distributed with respect to the through holes;
  • the heating device is evenly distributed in each of the cavities.
  • the flip cover further includes: a heat conducting portion on a side surface of the cover body where the nozzle is disposed.
  • the thermally conductive portion is in contact with an outer surface of the nozzle and the one side surface of the cover.
  • the flip cover further includes a heat conducting portion located in the recess of the cover.
  • the thermally conductive portion fills a space of the groove other than the at least a portion of the nozzle.
  • the sidewall of the through hole is provided with an internal thread that mates with an external thread on the nozzle.
  • the cover is strip-shaped, and a plurality of the through holes are evenly distributed along a length direction of the cover.
  • a flip cover assembly comprising:
  • a nozzle connected to the through hole of the lid of the lid, the nozzle having a gas passage configured to pass steam of the vapor deposition material.
  • an evaporation source comprising:
  • An evaporating crucible configured to contain and evaporate the vapor-deposited material and having an opening
  • an evaporation method which is carried out using the above evaporation source, the evaporation method comprising:
  • the vapor deposition material is evaporated by vapor deposition, and the heating device is heated to melt the heat transfer medium.
  • FIG. 1 is a schematic cross-sectional view showing an evaporation source according to an exemplary embodiment of the present disclosure
  • FIG. 2 is a top plan view showing a flip cover according to an exemplary embodiment of the present disclosure
  • Figure 3 is a cross-sectional structural view taken along line AA' in Figure 2;
  • FIG. 4 is a top plan view showing a flip cover assembly according to an exemplary embodiment of the present disclosure
  • Figure 5 is a cross-sectional structural view taken along line BB' in Figure 4;
  • FIG. 6 is a cross-sectional structural view showing a flip cover assembly according to an exemplary embodiment of the present disclosure
  • FIG. 7 is a schematic cross-sectional view showing another evaporation source according to an exemplary embodiment of the present disclosure.
  • FIG. 8 is a schematic cross-sectional view showing still another evaporation source according to an exemplary embodiment of the present disclosure.
  • the present disclosure provides an evaporation source, the evaporation source including: an evaporation crucible 9 configured to accommodate and evaporate the evaporation material 3, and having an opening; and a flip cover assembly It has a Cap and a nozzle 2, wherein the lid 1 of the lid covers the opening of the vapor deposition crucible 9.
  • the substrate to be evaporated is placed in a vacuum evaporation chamber, and an evaporation material 3 such as aluminum is added to the vapor deposition crucible 9, and the opening of the vapor deposition crucible 9 is covered by the cover 1, and
  • the through hole 19 of the lid body 1 is connected to the nozzle 2; the vapor deposition crucible 9 heats the vapor deposition material 3 to above its evaporation temperature, so that the vapor deposition material 3 is evaporated, and the vapor is ejected through the gas passage 29 in the nozzle 2, and then passes through
  • the fine metal mask forms a desired pattern on the substrate (if a fine metal mask is not used, a complete layer can be formed).
  • the cover body 1 of the evaporation source provided by the exemplary embodiment has no heating function itself, and in the case where the thermal conductivity of the nozzle is poor, the nozzle top temperature is usually lower than the bottom temperature, which may cause vapor of the evaporation material to condense in the nozzle. Accumulation occurs, clogging the nozzle, affecting product performance and evaporation capacity.
  • the present disclosure provides an improved flip cover that includes a configuration
  • the cover 1 In order to cover the cover 1 of the opening 99 of the vapor deposition crucible 9, the cover 1 has a through hole 19 configured to be connected to the nozzle 2; and, as shown in Figs. 2 and 3, the cover 1 has a closed cavity inside. 11.
  • the cavity 11 is provided with a heating device 5 for heating and a heat transfer medium, and the heating temperature of the heating device 5 enables the heat transfer medium to be melted.
  • the heat transfer medium may be a solid salt 6, and for a description of the salt 6, please refer to the following. It should be understood that the heat transfer medium is not limited to the solid salt 6, but may be any other suitable medium such as nitride or the like.
  • the cover 1 of the flip cover of the present exemplary embodiment is configured to cover the opening 99 of the vapor deposition crucible 9, and the cover 1 has a through hole 19 configured to connect the nozzle 2.
  • the cover body 1 of the clamshell cover of the exemplary embodiment is provided with a cavity 11 filled with a salt 6 which is solid at normal temperature, and is also provided with a heating device 5 (which can be attached to the wall of the cavity 11 or Located in the cavity 11), and the heating temperature of the heating means 5 should at least melt the solid salt 6.
  • the heating device 5 in the clamshell of the present exemplary embodiment can heat-melt the salt 6 (this corresponds to the entire crucible in the salt bath), the flow through the molten salt 6, heat transfer, and heat radiation.
  • a large amount of heat can be transferred to the nozzle 2, thereby ensuring that the temperature of the nozzle 2 and its periphery is high and uniform, preventing the nozzle 2 from being clogged or re-igniting the plug after clogging, so as to ensure that the vapor of the vapor deposition material 3 can be uniform.
  • the above cavity 11 corresponds to an empty interlayer sandwiched between different wall faces (such as the wall surface and the lower wall surface) of the cover body 1.
  • the cover body 1 can be divided into two parts, and the grooves are respectively dug in the two parts, the heating device 5 is placed in the groove and the salt 6 is filled, and then the two parts are butted to obtain the cover body 1, wherein The slots also engage each other to form a cavity 11.
  • the cover 1 is divided into two parts: one part is a flat plate and the other part is a grooved part. In this way, the salt 6 filled in the tank can be prevented from being spilled.
  • the lid body By forming the groove for accommodating the salt 6 in the lid body 1, the lid body can be individually heated to uniformly transfer a large amount of heat to the nozzle 2 while ensuring the strength of the lid body and reducing the weight of the lid body.
  • the above heating device 5 may be in the form of a resistance wire, a heating sheet, or the like as long as it can heat and melt the salt 6.
  • the heating device 5 should also be connected to an electrode joint or the like, and will not be described in detail herein.
  • the salt 6 in a molten state may fill the cavity 11 to ensure the best heat transfer effect.
  • the salt 6 has an operating temperature of from 150 ° C to 1300 ° C, and further, from 150 ° C to 550 ° C, at which the salt 6 can be completely melted without evaporation or decomposition.
  • the above salt 6 should be able to melt during the evaporation process, but at the same time it will not evaporate or decompose and decompose, so the salt 6 should have an operating temperature range above its melting temperature but below its boiling point.
  • the conventional use temperature of the lid during the evaporation process ranges from 300 ° C to 400 ° C, and the operating temperature of the salt 6 can generally slightly exceed the temperature range of use, so the operating temperature of the salt 6 can be from 150 ° C to 550 ° C.
  • the nozzle 2 may still be clogged (such as when it is used on other lids), in which case the nozzle 2 needs to be heated to a higher temperature to sublimate the plug.
  • the salt 6 is also It has a higher operating temperature limit and typically has a maximum operating temperature of 1300 °C.
  • the salt 6 is composed of an equal weight of potassium nitrate and sodium nitrite, that is, a weight ratio of potassium nitrate to sodium nitrite of 1:1.
  • a mixture of KNO 3 + 50% NaNO 2 having a weight ratio of 50% can be used as the above salt 6, the melting temperature is 140 ° C, and the corresponding working temperature can be 150 ° C to 550 ° C.
  • the cover 1 is provided with a groove 18 on one side surface of the nozzle 2; the through hole 19 is provided at the bottom of the groove 18, and when the nozzle 2 is connected to the through hole 19, the nozzle 2 At least a portion is located within the recess 18.
  • the thickness of the cover 1 may not be equal to the portion inserted at the lower end of the nozzle 2 as shown in FIG. 1 and FIG. 3, but is equivalent to the overall height of the nozzle 2; meanwhile, as shown in FIGS. 4 and 5.
  • the cover body 1 is further provided with a groove 18, and the above-mentioned through hole 19 is provided at the bottom of the groove 18.
  • the side walls of the recess 18 can transfer heat from the side to the nozzle 2 (e.g., in the form of heat radiation) to improve the heat transfer effect.
  • the shape of the cross section of the groove 18 perpendicular to the depth direction thereof is a circle.
  • the groove 18 may be cylindrical.
  • the distance between the side wall of the groove 18 and each part of the nozzle 2 is small and relatively uniform (for example, the distance between the hexagonal cylinder surface rotated by the hexagonal wrench at the bottom of the nozzle 2 is 5 mm, and the upper cylindrical portion of the nozzle 2)
  • the distance between 7mm and 8mm can improve the heat transfer effect.
  • the cover 1 is composed of a metal material.
  • the metal material is titanium (Ti).
  • the cover body 1 (such as its inner wall and outer wall) itself can be composed of a metal material, and since the metal has high strength and high thermal conductivity, the heat transfer effect can be improved under the premise of ensuring the strength of the cover.
  • the metal material is titanium, since titanium has good thermal conductivity, relatively low density, and sufficient strength at a relatively high temperature, it is preferable that the metal material is titanium.
  • the cavities 11 are evenly distributed in the cover 1; the heating means 5 is evenly distributed in the cavity 11.
  • uniform means that the volume of the cavity 11 in each portion of the cover 1 and the length or area of the heating means 5 in each portion of the cavity 11 should be substantially different from a macroscopic angle. That is to say, the cavity 11 and the heating means 5 should be distributed as uniformly as possible rather than being concentrated together to ensure that the temperature of each position of the lid is substantially uniform after heating, in particular to ensure that the temperatures of the nozzles are substantially the same.
  • the number of the cavities 11 is one, the cavity 11 surrounds the through holes 19, and the heating device 5 is evenly distributed in the cavity 11.
  • the cavity 11 extends substantially over the entire length of the cover 1, and a plurality of through holes 19 are evenly distributed over the entire length of the cover 1, and the cavity 11 surrounds the respective through holes 19, and as shown in FIGS. 2 and 3.
  • the cavity 11 is separated from the through hole 19 by the unribbed intermediate rectangular portion of the cover 1, and the heating means 5 is evenly distributed in the cavity 11. Since the cavity 11 surrounds the respective through holes 19, the cover body 1 thus constructed can perform sufficient and uniform heat transfer or heat radiation to the through hole 19 for arranging the nozzle 2 and its surroundings through the through cavity 11. The top and bottom temperatures of the nozzle 2 are then made uniform.
  • the number of the cavities 11 is plural, the plurality of cavities 11 are evenly distributed with respect to the through holes 19, and the heating device 5 is evenly distributed in each of the cavities 11. .
  • a plurality of cavities 11 and a plurality of through holes 19 are spaced apart over the entire length of the cover body 1, and two cavities 11 are disposed around one through hole 19, and as shown in FIGS. 4 and 5, The cavity 11 is separated from the through hole 19 by the ungrooved portion of the cover 1, and the heating means 5 is evenly distributed in the cavity 11.
  • the cover body 1 thus constructed can be used for arranging the nozzles 2 while increasing the structural strength of the cover body 1.
  • the through hole 19 and its surroundings are subjected to sufficient and uniform heat transfer or heat radiation, thereby making the temperature of the top and bottom of the nozzle 2 uniform.
  • the cavity 11 need not be evenly distributed in the cover 1, and the cavity 11 only needs to be evenly distributed with respect to the through hole 19.
  • the flip cover includes a heat transfer portion 4 in addition to the cover 1, and the heat transfer portion 4 is located in the recess 18 of the cover 1.
  • the heat conducting portion 4 fills the space of the recess 18 except for at least a portion of the nozzle 2 located within the recess 18.
  • the heat transfer portion 4 is composed of a material having extremely high thermal conductivity to efficiently and uniformly transfer heat to the nozzle 2 such that the temperature of the top and bottom of the nozzle 2 becomes uniform.
  • the heat guiding portion 4 may be a solid member or a liquid material.
  • the heat conducting portion 4 When the heat conducting portion 4 is a solid part, the heat conducting portion 4 may be detachably disposed on the cover body 1 or in the groove 18, and the shape of the outer wall of the heat conducting portion 4 is adapted to the shape of the inner wall of the groove 18, and the heat conducting portion 4 The shape of the inner wall is adapted to the shape of the outer wall of the at least one portion of the nozzle 2.
  • the heat transfer portion 4 when the heat transfer portion 4 is placed in the recess 18, the heat transfer portion 4 can be in close contact with the cover body 1 and the nozzle 2 to sufficiently perform heat transfer.
  • the heat transfer portion 4 When the heat transfer portion 4 is a liquid substance, the heat transfer portion 4 can be in full contact with the cover body 1 and the nozzle 2, so that efficient heat conduction can be achieved.
  • the heat transfer portion 4 when the heat transfer portion 4 is a solid member, the heat transfer portion 4 may not be disposed in the groove 18, for example, as shown in FIG. 7, the heat transfer portion 4 may be disposed on the side of the cover body 1 for setting the nozzle. On the surface, the heat transfer portion 4 is in contact with the outer surface of the nozzle 2 and the one side surface of the cover 1, and more specifically, the bottom surface of the heat transfer portion 4 is in contact with the cover 1 and the inner wall surface of the heat transfer portion 4 is in contact with the outer wall surface of the nozzle 2.
  • the heat transfer portion 4 can also transfer heat to the nozzle 2 efficiently and uniformly, so that the temperature of the top and bottom of the nozzle 2 becomes uniform.
  • thermally conductive portion 4 is shown in Figures 6 and 7, respectively, in fact, the thermally conductive portion 4 is disposed on each of the nozzles 2, and the shape of the thermally conductive portion 4 is not limited
  • the shapes shown in Figures 6 and 7 can be any other suitable shape, such as a taper or the like.
  • the side wall of the through hole 19 is provided with an internal thread 23 that matches the external thread 13 on the nozzle 2.
  • the nozzle 2 can be connected to the through hole 19 of the cover body 1 by screwing, so that the nozzle 2 can be easily attached and detached.
  • the nozzle 2 is attached to the cover 1 by other means such as snapping, plugging, bonding, or the like, or the nozzle 2 itself is integral with the cover 1.
  • the cover body 1 is strip-shaped, and the plurality of through holes 19 are evenly distributed along the length direction of the cover body 1.
  • the vapor deposition crucible 9 is strip-shaped. Therefore, as shown in FIG. 2 to FIG. 6, the corresponding cover body 1 should also be in the form of a strip, and in order to generate steam at each position of the strip shape, there should be a plurality of through holes distributed along the length direction. 19.
  • the present disclosure provides a flip cover assembly including:
  • a nozzle 2 connected to the through hole 19 of the lid 1 of the lid, the nozzle 2 having a gas passage 29 configured to pass steam of the vapor deposition material 3.
  • the nozzle 2 can be assembled on the upper cover to form a flip cover assembly. Since the nozzle 2 has a gas passage 29, the vapor of the vapor deposition material 3 can pass through the gas passage. 29 flows out from the inside of the vapor deposition crucible 9.
  • an evaporation source including:
  • the vapor deposition crucible 9 configured to contain and evaporate the vapor deposition material 3, and has an opening 99;
  • the above flip cover assembly can be placed over the opening 99 of the vapor deposition crucible 9 to constitute a complete structure (evaporation source) which can be used for vapor deposition.
  • evaporation source evaporation source
  • the evaporation source is correspondingly a linear evaporation source.
  • the present disclosure provides an evaporation method that is performed using the evaporation source described above, the evaporation method including:
  • the vapor deposition material 3 is heated and vaporized, and the heating device 5 is heated to melt the salt 6.
  • heating may be performed by vapor deposition ruthenium 9 (for example, heating with its internal resistance wire), thereby evaporating the vapor deposition material 3 therein and passing through the gas passage in the nozzle 2. 29 flows out; while heating the vapor deposition crucible 9, it is also heated by the heating means 5 in the lid, so that the salt 6 in the cavity 11 is melted and flows, releasing heat, preventing the nozzle 2 from being clogged or causing the blocked nozzle 2 Re-turn on.
  • vapor deposition ruthenium 9 for example, heating with its internal resistance wire
  • the evaporation method can be used for evaporating a known structure such as a light-emitting layer, a cathode, or the like in an organic light-emitting diode (OLED) array substrate, and an auxiliary structure such as a fine metal mask can also be used, which will not be described in detail herein. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本公开提供一种坩埚盖、坩埚盖组件、蒸发源、蒸镀方法。本公开的坩埚盖包括构造为盖住蒸镀坩埚的开口的盖体,所述盖体具有构造为与喷嘴连接的通孔。所述盖体内部具有封闭的空腔,所述空腔中设有加热器件和传热介质,所述加热器件的加热温度能使所述传热介质熔融。

Description

坩埚盖、坩埚盖组件、蒸发源、蒸镀方法
相关申请的交叉引用
本申请要求2018年5月11日在中国国家知识产权局提交的中国专利申请No.201810448815.4的优先权,该申请的全部内容以引用方式并入本文。
技术领域
本公开涉及但不限于蒸镀技术领域,并且具体涉及一种坩埚盖、坩埚盖组件、蒸发源、蒸镀方法。
背景技术
在有机发光二极管显示领域中,有机发光二极管显示装置中的阴极、发光层等结构都可通过使用精细金属掩膜板(FFM)的蒸镀工艺制备。但实现此蒸镀工艺的现有蒸镀设备通常效果较差,从而影响产品性能。
发明内容
本公开提供一种坩埚盖、坩埚盖组件、蒸发源、蒸镀方法。
根据本公开的一个方面,提供了一种坩埚盖,所述坩埚盖包括构造为盖住蒸镀坩埚的开口的盖体,所述盖体具有构造为与喷嘴连接的通孔;
所述盖体内部具有封闭的空腔,所述空腔中设有加热器件和传热介质,所述加热器件的加热温度能使所述传热介质熔融。
在一些实施例中,所述传热介质是固态的盐。
在一些实施例中,所述盐的工作温度在150℃~1300℃,在所述工作温度下,所述盐能完全熔融且不发生蒸发或分解。
在一些实施例中,所述盐的所述工作温度在150℃~550℃。
在一些实施例中,所述盐由硝酸钾和亚硝酸钠组成,并且所述硝酸钾和所述亚硝酸钠的重量比为1∶1。
在一些实施例中,所述盖体设置所述喷嘴的一侧表面设有凹槽;并且
所述通孔设于所述凹槽的底部,在所述喷嘴与所述通孔连接的情况下,所述喷嘴的至少一部分位于所述凹槽内。
在一些实施例中,所述凹槽的垂直于其深度方向的截面的形状为圆形。
在一些实施例中,所述盖体由金属材料构成。
在一些实施例中,所述金属材料为钛。
在一些实施例中,所述空腔的数量是一个,所述空腔围绕所述通孔;并且
所述加热器件在所述空腔中均匀分布。
在一些实施例中,所述空腔的数量是多个,多个所述空腔相对于所述通孔均匀分布;并且
所述加热器件在每个所述空腔中均匀分布。
在一些实施例中,所述坩埚盖,还包括:导热部,其位于所述盖体设置所述喷嘴的一侧表面上。
在一些实施例中,所述导热部与所述喷嘴的外表面和所述盖体的所述一侧表面接触。
在一些实施例中,所述坩埚盖还包括:导热部,其位于所述盖体的所述凹槽中。
在一些实施例中,所述导热部填充所述凹槽的除所述喷嘴的所述至少一部分之外的其它空间。
在一些实施例中,所述通孔的侧壁设有与所述喷嘴上的外螺纹匹配的内螺纹。
在一些实施例中,所述通孔有多个,所述盖体为条状,且多个所述通孔沿所述盖体的长度方向均匀分布。
根据本公开的另一个方面,提供了一种坩埚盖组件,包括:
上述坩埚盖;以及
与所述坩埚盖的盖体的通孔连接的喷嘴,所述喷嘴中具有构造为供蒸镀材料的蒸汽通过的气体通道。
根据本公开的又一个方面,提供了一种蒸发源,包括:
蒸镀坩埚,其构造为容纳并蒸发蒸镀材料,且具有开口;以及
上述坩埚盖组件,其中所述坩埚盖的所述盖体盖住所述开口。
根据本公开的又一个方面,提供了一种蒸镀方法,其采用上述蒸发源进行,所述蒸镀方法包括:
加热蒸镀坩埚而使其中的蒸镀材料蒸发,同时,使所述加热器件升温,将所述传热介质熔融。
附图说明
图1为示出根据本公开的示例性实施例的一种蒸发源的剖面结构示意图;
图2为示出根据本公开的示例性实施例的一种坩埚盖的俯视结构示意图;
图3为沿图2中的线AA’截取的剖面结构示意图;
图4为示出根据本公开的示例性实施例的一种坩埚盖组件的俯视结构示意图;
图5为沿图4中的线BB’截取的剖面结构示意图;
图6为示出根据本公开的示例性实施例的一种坩埚盖组件的剖面结构示意图;
图7为示出根据本公开的示例性实施例的另一种蒸发源的剖面结构示意图;以及
图8为示出根据本公开的示例性实施例的又一种蒸发源的剖面结构示意图。
具体实施方式
为使本领域技术人员更好地理解本公开的技术方案,下面结合附图和具体实施方式对本公开作进一步详细描述。
根据本公开的一个方面,如图1所示,本公开提供一种蒸发源,该蒸发源包括:蒸镀坩埚9,其构造为容纳并蒸发蒸镀材料3,且具有开口;以及坩埚盖组件,其具有坩埚盖(Cap)和喷嘴2,其中坩埚盖的盖体1盖住蒸镀坩埚9的开口。在使用时,将待蒸镀的基底至于真空的蒸镀腔室中,并且将蒸镀材料3(如铝)加入蒸镀坩埚9中,蒸镀坩埚9的开口被盖体1盖住,且盖体1的通孔19连接喷嘴2;蒸镀坩埚9将蒸镀材料3加热至其蒸发温度以上,从而蒸镀材料3被蒸发,其蒸汽通过喷嘴2中的气体通道29喷出,再经过精细金属掩膜板后在基底上形成所需图案(若不使用精细金属掩膜板则可形成完整的层)。本示例性实施例提供的蒸发源的盖体1本身没有加热功能,在喷嘴的导热能力较差的情况下,喷嘴顶部温度通常低于底部温度,这可能导致蒸镀材料的蒸汽在喷嘴中凝结并发生聚集,堵塞喷嘴,影响产品性能与蒸镀产能。
根据本公开的另一个方面,针对图1所示的蒸发源的喷嘴顶部和底部温度不均的事实,如图2至图8所示,本公开提供了一种改进的坩埚盖,其包括构造为盖住蒸镀坩埚9的开口99的盖体1,盖体1具有构造为与喷嘴2连接的通孔19;而且,如图2、图3所示,盖体1内部具有封闭的空腔11,空腔11中设有用于进行加热的加热器件5和传热介质,加热器件5的加热温度能使传热介质熔融。
在本公开的示例性实施例中,传热介质可以是固态的盐6,关于盐6的描述请参考下文。应当理解的是,传热介质不限于固态的盐6,也可以是其它任何合适的介质,例如氮化物等。
本示例性实施例的坩埚盖的盖体1构造为盖在蒸镀坩埚9的开口99上,并且盖体1具有构造为连接喷嘴2的通孔19。由此,如图8所示,当把蒸镀材料3放入蒸镀坩埚9并加热后,蒸发的蒸镀材料3可经喷嘴2的气体通道29中喷出,进行蒸镀。
本示例性实施例的坩埚盖的盖体1内设有空腔11,空腔11中填充有常温下为固态的盐6,同时还设有加热器件5(可贴在空腔11壁面上或位于空腔11中),且加热器件5的加热温度应至少 能使固态的盐6熔融。
在蒸镀过程中,本示例性实施例的坩埚盖中的加热器件5可将盐6加热熔融(这相当于整个坩埚盖处于盐浴中),通过熔融盐6的流动、传热、热辐射等,可将大量的热传递到喷嘴2上,从而保证喷嘴2及其周边温度较高且均匀,防止喷嘴2堵塞或在堵塞后重新将堵塞物升华,以保证蒸镀材料3的蒸汽可均匀流出,使成膜均匀,提高产品质量和蒸镀产能。
在本公开的示例性实施例中,以上空腔11相当于夹在盖体1的不同壁面(如上壁面和下壁面)间的空夹层。为得到这样的结构,可将盖体1分为两部分,并在两部分中分别挖出槽,在槽中设置加热器件5并填入盐6,之后将两部分对接得到盖体1,其中的槽也相互接合以形成空腔11。或者为了便于盐6的装填,盖体1分为这样的两部分:一个部分为平板,另一个部分为带槽的部分。如此,可以使得填入槽中的盐6不会洒出。通过在盖体1形成用于容纳盐6的槽,可以在保证盖体强度、减轻盖体重量的同时,使盖体被单独加热而将大量的热均匀地传递到喷嘴2。
在本公开的示例性实施例中,以上加热器件5可以是电阻丝、加热片等形式,只要其能将盐6加热熔融即可。当然,该加热器件5还应与电极接头等相连,在此不再详细描述。
在本公开的示例性实施例中,熔融状态下的盐6可填充满空腔11,以保证最好的传热效果。
当然,应当理解,坩埚盖中的空腔11、加热器件5实际是位于其内部的,在表面看不到,故它们在图2和图4等俯视图中实际并不可见,但为清楚的表明它们结构,故在图2和图4中将它们的位置用虚线表示。
在本公开的示例性实施例中,盐6的工作温度在150℃~1300℃,进一步地,在150℃~550℃,在该工作温度下,盐6能完全熔融且不发生蒸发或分解。
为实现传热作用,故在蒸镀过程中,以上盐6应当能熔融,但同时又不会蒸发或分解变性,因此盐6应具有高于其熔融温度 但低于其沸点的工作温度范围。蒸镀过程中坩埚盖的常规使用温度范围在300℃~400℃,而盐6的工作温度通常可略微超出该使用温度范围,故盐6的工作温度可以在150℃~550℃。但在部分情况下,喷嘴2仍然可能发生堵塞(如在其它坩埚盖上使用时发生堵塞),此时需要将喷嘴2加热到更高的温度以重新将堵塞物升华,为此,盐6也可具有更高的工作温度上限,通常其最高工作温度可达1300℃。
在本公开的示例性实施例中,盐6由等重量的硝酸钾和亚硝酸钠组成,即硝酸钾和亚硝酸钠的重量比为1∶1。
也就是说,可采用重量配比为:50%的KNO 3+50%的NaNO 2的混合物作为以上的盐6,其熔融温度在140℃,相应的工作温度可在150℃~550℃。
当然,根据具体所需达到的温度范围,可根据下表选用其它配方的盐6,例如选用下表中列出的配方。
表1、可选盐的配方
Figure PCTCN2019070447-appb-000001
在本公开的示例性实施例中,盖体1用于设置喷嘴2的一侧表面设有凹槽18;通孔19设于凹槽18底部,当喷嘴2连接通孔19时,喷嘴2的至少一部分位于凹槽18内。
盖体1中除设有空腔11外,其整体的形式也可进行改变。如图5所示、盖体1的厚度可以不是如图1、图3所示仅与喷嘴2下端插入的部分相等,而是与喷嘴2的整体高度相当;同时,如图4和图5所示,盖体1中还设有凹槽18,以上通孔19设于凹槽18底部。从而如图5所示,当喷嘴2连接通孔19时,其下端插入的部分进入通孔19中,而其它部分则基本位于凹槽18中。这样,当进行加热时,凹槽18的侧壁可从侧面向喷嘴2传热(如以热辐射形式),提高传热效果。
在本公开的示例性实施例中,凹槽18的垂直于其深度方向的截面的形状为圆形。
也就是说,如图4所示,凹槽18可以是圆柱形的。由此,凹槽18侧壁与喷嘴2各部分间的距离都较小且较均匀(例如与喷嘴2底部供六角扳手旋转的六棱柱面间的距离在5mm,而与喷嘴2上部圆柱形部分间的距离在7mm~8mm),这样可改善传热效果。
当然,应当理解,如果如图2、图3所示,盖体1中没有凹槽18,也是可行的。
在本公开的示例性实施例中,盖体1由金属材料构成。进一步地,金属材料为钛(Ti)。
也就是说,盖体1(如其内壁和外壁)本身可由金属材料构成,由于金属具有较高的强度、较高的导热性,故可在保证坩埚盖强度的前提下改善传热效果。金属材料为钛时,因为钛的导热性较好,密度相对较低,且在较高温度下也具有足够的强度,因此金属材料为钛是比较理想的。
在本公开的示例性实施例中,空腔11在盖体1中均匀分布;加热器件5在空腔11中均匀分布。
其中,“均匀”是指在宏观角度上,盖体1各部分中空腔11的体积,以及空腔11各部分中加热器件5的长度或面积应当相差 不大。也就是说,空腔11和加热器件5应尽量均匀的分布而不是集中在一起,以保证加热后坩埚盖各位置的温度大致均匀,尤其是保证各喷嘴的温度大致相同。
在本公开的示例性实施例中,如图2所示,空腔11的数量是一个,空腔11围绕通孔19,加热器件5在空腔11中均匀分布。具体而言,空腔11大致在盖体1的整个长度上延伸,多个通孔19在盖体1的整个长度上均匀分布,空腔11围绕各个通孔19,并且如图2和图3所示,空腔11通过盖体1的未被挖槽的中间矩形部分与通孔19隔开,并且加热器件5在空腔11中均匀分布。由于空腔11在四周围绕各个通孔19,因此如此构造的盖体1可以通过贯通的空腔11对用于设置喷嘴2的通孔19及其周围进行充分且均匀的热传递或热辐射,进而使得喷嘴2的顶部和底部温度变得均一。
在本公开的示例性实施例中,如图5所示,空腔11的数量是多个,多个空腔11相对于通孔19均匀分布,加热器件5在每个空腔11中均匀分布。具体而言,多个空腔11和多个通孔19在盖体1的整个长度上间隔布置,并且一个通孔19周围设置有两个空腔11,并且如图4和图5所示,空腔11通过盖体1的未被挖槽的部分与通孔19隔开,并且加热器件5在空腔11中均匀分布。由于多个空腔11相对于多个通孔19均匀分布,并且各个空腔11彼此隔开,因此如此构造的盖体1可以在提高盖体1的结构强度的同时对用于设置喷嘴2的通孔19及其周围进行充分且均匀的热传递或热辐射,进而使得喷嘴2的顶部和底部温度变得均一。应当理解的是,在本公开的示例性实施例中,空腔11无需在盖体1中均匀分布,空腔11仅需要相对于通孔19均匀分布即可。
在本公开的示例性实施例中,如图6所示,坩埚盖除了盖体1之外还包括导热部4,导热部4位于盖体1的凹槽18中。导热部4填充凹槽18的除喷嘴2的位于凹槽18内至少一部分之外的其它空间。导热部4由热导率极高的材料构成,以将热量高效且均匀地传递给喷嘴2,使得喷嘴2的顶部和底部温度变得均一。导 热部4可以是固体部件,也可以是液态物质。当导热部4为固体部件时,导热部4可以可拆卸地设置在盖体1上或凹槽18中,导热部4的外壁的形状与凹槽18的内壁的形状相适配,导热部4的内壁的形状与喷嘴2的所述至少一部分的外壁的形状相适配。换言之,在将导热部4放置在凹槽18中时,导热部4可以与盖体1和喷嘴2紧密接触,以充分进行热传递。当导热部4为液态物质时,导热部4可以与盖体1和喷嘴2完全接触,从而可以实现高效的导热。应当理解的是,当导热部4为固体部件时,导热部4可以不设置在凹槽18中,例如如图7所示,导热部4可以设置在盖体1的用于设置喷嘴的一侧表面上,导热部4与喷嘴2的外表面和盖体1的该一侧表面接触,更具体地,导热部4的底面与盖体1接触并且导热部4的内壁表面与喷嘴2外壁表面接触,这样导热部4也能够将热量高效且均匀地传递给喷嘴2,使得喷嘴2的顶部和底部温度变得均一。还应当理解的是,出于说明的目的,在图6和图7中分别仅示出一个导热部4,事实上,导热部4设置在每一个喷嘴2上,并且导热部4的形状不限于图6和图7示出的形状,而是可以为任何其它合适的形状,例如锥形等。
在本公开的示例性实施例中,通孔19的侧壁设有与喷嘴2上的外螺纹13匹配的内螺纹23。
也就是说,喷嘴2可以是通过螺纹连接的方式连接到盖体1的通孔19上的,这样可以方便地安装和拆卸喷嘴2。当然,应当理解,如果喷嘴2通过卡接、插接、粘结等其它方式连接到盖体1上,或者喷嘴2本身就与盖体1是一体结构,也是可行的。
在本公开的示例性实施例中,通孔19有多个,盖体1为条状,且多个通孔19沿盖体1的长度方向均匀分布。
为了提高成膜面积和速率,在实现量产的蒸镀工艺中主要使用线性蒸发源,即蒸镀坩埚9是条状的。因此,如图2至图6所示所示,相应的盖体1也应为条状,而为使条状的各位置均能产生蒸汽,故其中应有多个沿长度方向分布的通孔19。
根据本公开的又一个方面,本公开提供一种坩埚盖组件,其 包括:
上述坩埚盖;
与坩埚盖的盖体1的通孔19连接的喷嘴2,喷嘴2中具有构造为供蒸镀材料3的蒸汽通过的气体通道29。
也就是说,如图4至图8所示,可将喷嘴2组装在以上坩埚盖上,形成坩埚盖组件,由于喷嘴2中有气体通道29,故蒸镀材料3的蒸汽可经该气体通道29从蒸镀坩埚9的内部流出。
根据本公开的又一个方面,如图2至图8所示,本公开提供一种蒸发源,其包括:
蒸镀坩埚9,其构造为容纳并蒸发蒸镀材料3,且具有开口99;
上述坩埚盖组件,其中坩埚盖的盖体1盖住开口99。
也就是说,可将以上的坩埚盖组件盖在蒸镀坩埚9的开口99上,从而组成完整的可用于蒸镀的结构(蒸发源)。当然,应当理解,若蒸镀坩埚9和盖体1为条状,则蒸发源也相应的是线性蒸发源。
根据本公开的又一个方面,本公开提供一种蒸镀方法,其采用上述蒸发源进行,该蒸镀方法包括:
加热蒸镀坩埚9而使其中的蒸镀材料3蒸发,同时,使加热器件5升温,将盐6熔融。
也就是说,当使用以上蒸发源进行蒸镀时,可用蒸镀坩埚9进行加热(如用其内部的电阻丝进行加热),从而使其中的蒸镀材料3蒸发并通过喷嘴2中的气体通道29流出;而在加热蒸镀坩埚9的同时,还用坩埚盖中的加热器件5进行加热,从而使空腔11中的盐6熔融并流动,释放热量,避免喷嘴2堵塞或使堵塞的喷嘴2重新导通。
具体的,该蒸镀方法可用于在有机发光二极管(OLED)阵列基板中蒸镀发光层、阴极等已知结构,且其中还可使用精细金属掩膜板等辅助结构,在此不再详细描述。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领 域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (20)

  1. 一种坩埚盖,包括构造为盖住蒸镀坩埚的开口的盖体,所述盖体具有构造为与喷嘴连接的通孔;其中,
    所述盖体内部具有封闭的空腔,所述空腔中设有加热器件和传热介质,所述加热器件的加热温度能使所述传热介质熔融。
  2. 根据权利要求1所述的坩埚盖,其中,
    所述传热介质是固态的盐。
  3. 根据权利要求2所述的坩埚盖,其中,
    所述盐的工作温度在150℃~1300℃,在所述工作温度下,所述盐能完全熔融且不发生蒸发或分解。
  4. 根据权利要求3所述的坩埚盖,其中,
    所述盐的所述工作温度在150℃~550℃。
  5. 根据权利要求4所述的坩埚盖,其中,
    所述盐由硝酸钾和亚硝酸钠组成,并且所述硝酸钾和所述亚硝酸钠的重量比为1∶1。
  6. 根据权利要求1所述的坩埚盖,其中,
    所述盖体设置所述喷嘴的一侧表面设有凹槽;并且
    所述通孔设于所述凹槽的底部,在所述喷嘴与所述通孔连接的情况下,所述喷嘴的至少一部分位于所述凹槽内。
  7. 根据权利要求6所述的坩埚盖,其中,
    所述凹槽的垂直于其深度方向的截面的形状为圆形。
  8. 根据权利要求1所述的坩埚盖,其中,
    所述盖体由金属材料构成。
  9. 根据权利要求8所述的坩埚盖,其中,
    所述金属材料为钛。
  10. 根据权利要求1所述的坩埚盖,其中,
    所述空腔的数量是一个,所述空腔围绕所述通孔;并且
    所述加热器件在所述空腔中均匀分布。
  11. 根据权利要求1所述的坩埚盖,其中,
    所述空腔的数量是多个,多个所述空腔相对于所述通孔均匀分布;并且
    所述加热器件在每个所述空腔中均匀分布。
  12. 根据权利要求1所述的坩埚盖,还包括:
    导热部,其位于所述盖体设置所述喷嘴的一侧表面上。
  13. 根据权利要求12所述的坩埚盖,其中,
    所述导热部与所述喷嘴的外表面接触;并且
    所述导热部与所述盖体的所述一侧表面接触。
  14. 根据权利要求6或7所述的坩埚盖,还包括:
    导热部,其位于所述盖体的所述凹槽中。
  15. 根据权利要求14所述的坩埚盖,其中,
    所述导热部填充所述凹槽的除所述喷嘴之外的其它空间。
  16. 根据权利要求1所述的坩埚盖,其中,
    所述通孔的侧壁设有与所述喷嘴上的外螺纹匹配的内螺纹。
  17. 根据权利要求1所述的坩埚盖,其中,
    所述通孔有多个,所述盖体为条状,且多个所述通孔沿所述盖体的长度方向均匀分布。
  18. 一种坩埚盖组件,包括:
    根据权利要求1至17中任意一项所述的坩埚盖;以及
    与所述坩埚盖的盖体的通孔连接的喷嘴,所述喷嘴中具有构造为供蒸镀材料的蒸汽通过的气体通道。
  19. 一种蒸发源,包括:
    蒸镀坩埚,其构造为容纳并蒸发蒸镀材料,且具有开口;以及
    根据权利要求18所述的坩埚盖组件,其中所述坩埚盖的所述盖体盖住所述开口。
  20. 一种蒸镀方法,其采用根据权利要求19所述的蒸发源进行,所述蒸镀方法包括:
    加热蒸镀坩埚而使其中的蒸镀材料蒸发,同时,使所述加热器件升温,将所述传热介质熔融。
PCT/CN2019/070447 2018-05-11 2019-01-04 坩埚盖、坩埚盖组件、蒸发源、蒸镀方法 WO2019214271A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810448815.4A CN108359941B (zh) 2018-05-11 2018-05-11 坩埚盖、坩埚盖组件、蒸发源、蒸镀方法
CN201810448815.4 2018-05-11

Publications (1)

Publication Number Publication Date
WO2019214271A1 true WO2019214271A1 (zh) 2019-11-14

Family

ID=63011843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070447 WO2019214271A1 (zh) 2018-05-11 2019-01-04 坩埚盖、坩埚盖组件、蒸发源、蒸镀方法

Country Status (2)

Country Link
CN (1) CN108359941B (zh)
WO (1) WO2019214271A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108359941B (zh) * 2018-05-11 2019-08-23 京东方科技集团股份有限公司 坩埚盖、坩埚盖组件、蒸发源、蒸镀方法
CN109161854A (zh) * 2018-10-11 2019-01-08 北京铂阳顶荣光伏科技有限公司 蒸镀装置及装置保护层的制备方法
CN113927037A (zh) * 2021-10-14 2022-01-14 深圳市翌衡智能科技有限公司 一种芯片封装高精度焊锡球制球自动给料系统及方法
CN115522167B (zh) * 2022-09-22 2024-07-26 京东方科技集团股份有限公司 一种蒸镀源设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110024223A (ko) * 2009-09-01 2011-03-09 주식회사 선익시스템 증발 장치 및 이를 포함하는 진공 증착 장치
CN104278239A (zh) * 2014-10-31 2015-01-14 京东方科技集团股份有限公司 蒸镀坩埚装置
TW201506177A (zh) * 2013-03-12 2015-02-16 Canon Tokki Corp 蒸發源裝置
CN104762601A (zh) * 2015-04-30 2015-07-08 京东方科技集团股份有限公司 一种蒸发源、蒸镀装置、蒸镀方法
CN104928628A (zh) * 2015-05-15 2015-09-23 京东方科技集团股份有限公司 一种蒸镀坩埚
CN106662362A (zh) * 2014-07-01 2017-05-10 巴斯夫欧洲公司 用于传热的装置
CN108359941A (zh) * 2018-05-11 2018-08-03 京东方科技集团股份有限公司 坩埚盖、坩埚盖组件、蒸发源、蒸镀方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104947042B (zh) * 2015-05-25 2017-09-29 京东方科技集团股份有限公司 一种蒸发装置
CN105132866B (zh) * 2015-09-08 2018-02-16 京东方科技集团股份有限公司 一种蒸镀机的加热源装置及蒸镀机
CN105296934B (zh) * 2015-11-09 2018-06-19 合肥欣奕华智能机器有限公司 一种线形蒸发源及蒸镀设备
CN106756804A (zh) * 2016-12-20 2017-05-31 武汉华星光电技术有限公司 蒸镀坩埚及其蒸镀方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110024223A (ko) * 2009-09-01 2011-03-09 주식회사 선익시스템 증발 장치 및 이를 포함하는 진공 증착 장치
TW201506177A (zh) * 2013-03-12 2015-02-16 Canon Tokki Corp 蒸發源裝置
CN106662362A (zh) * 2014-07-01 2017-05-10 巴斯夫欧洲公司 用于传热的装置
CN104278239A (zh) * 2014-10-31 2015-01-14 京东方科技集团股份有限公司 蒸镀坩埚装置
CN104762601A (zh) * 2015-04-30 2015-07-08 京东方科技集团股份有限公司 一种蒸发源、蒸镀装置、蒸镀方法
CN104928628A (zh) * 2015-05-15 2015-09-23 京东方科技集团股份有限公司 一种蒸镀坩埚
CN108359941A (zh) * 2018-05-11 2018-08-03 京东方科技集团股份有限公司 坩埚盖、坩埚盖组件、蒸发源、蒸镀方法

Also Published As

Publication number Publication date
CN108359941B (zh) 2019-08-23
CN108359941A (zh) 2018-08-03

Similar Documents

Publication Publication Date Title
WO2019214271A1 (zh) 坩埚盖、坩埚盖组件、蒸发源、蒸镀方法
TWI420721B (zh) 氣相沈積源及方法
EP1927674B1 (en) Evaporation source and vacuum evaporator using the same
KR100823508B1 (ko) 증발원 및 이를 구비한 증착 장치
CN104593729B (zh) 防止蒸镀材料喷溅及塞孔的坩埚
TWI493062B (zh) 用於形成薄膜之沉積設備
JP2015067847A (ja) 真空蒸着装置
CN207845760U (zh) 一种具有网栅导热件的热蒸发坩埚组件
JP2003293120A (ja) 蒸発源及びこれを用いた薄膜形成装置
KR101362585B1 (ko) 금속성 박막 증착용 선형 하향식 고온 증발원
KR20070066232A (ko) 증착장치
JP6576009B2 (ja) 蒸発源容器及び蒸発源装置
JP6291696B2 (ja) 蒸着装置および蒸発源
CN106148899B (zh) 一种蒸镀坩埚及蒸发源装置
JP5732531B2 (ja) 側面放出型線状蒸発源、その製造方法及び線状蒸発器
KR100962967B1 (ko) 증발원
KR101599505B1 (ko) 증착장치용 증발원
KR20070064736A (ko) 유기박막증착장비
KR100829736B1 (ko) 진공 증착장치의 가열용기
WO2016101398A1 (zh) 防止oled材料裂解的坩埚
CN111118452A (zh) 蒸发装置及蒸镀设备
CN214694344U (zh) 一种用于蒸镀的坩埚结构及蒸镀设备
KR101632303B1 (ko) 하향식 증발 증착 장치
JP2003222472A (ja) ルツボ
KR20120078055A (ko) 유기전계 발광소자 제조용 증착원 도가니

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19800140

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19800140

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19800140

Country of ref document: EP

Kind code of ref document: A1