WO2019208375A1 - 光偏向器 - Google Patents

光偏向器 Download PDF

Info

Publication number
WO2019208375A1
WO2019208375A1 PCT/JP2019/016589 JP2019016589W WO2019208375A1 WO 2019208375 A1 WO2019208375 A1 WO 2019208375A1 JP 2019016589 W JP2019016589 W JP 2019016589W WO 2019208375 A1 WO2019208375 A1 WO 2019208375A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
magnetic
magnetic element
pair
optical deflector
Prior art date
Application number
PCT/JP2019/016589
Other languages
English (en)
French (fr)
Inventor
北澤 正吾
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Publication of WO2019208375A1 publication Critical patent/WO2019208375A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems

Definitions

  • the present invention relates to an optical deflector.
  • Patent Document 1 a two-axis drive type optical deflector that scans light two-dimensionally has been proposed (for example, see Patent Document 1).
  • a mirror (reflector) is rotatably supported by a gimbal frame
  • a gimbal frame is rotatably supported by an outer peripheral frame
  • an air core coil is disposed on the gimbal frame.
  • the magnetic circuit is disposed so as to surround the outer peripheral frame.
  • the signal for driving the reflector is superimposed on the signal for driving the gimbal frame, and the drive signal is input to the air-core coil to scan light two-dimensionally.
  • an object of the present invention is to provide a multi-axis drive type optical deflector capable of obtaining a large driving force as an example.
  • an optical deflector includes a reflector, a first shaft portion that defines a first rotation axis of the reflector, and the first A second shaft portion extending in a direction intersecting with the one shaft portion and defining a second rotation axis of the reflecting plate; a first frame supporting the reflecting plate by the second shaft portion; and the first shaft A second frame supporting the first frame by a portion; a first magnetic element provided on the first frame; a second magnetic element provided on the reflector; and acting on the first magnetic element, A first magnetic actuator that rotates the first frame about a first rotation axis, and a second magnetic actuator that acts on the second magnetic element and rotates the reflection plate about the second rotation axis It is characterized by providing these.
  • the optical deflector according to the embodiment of the present invention extends in a direction intersecting the first shaft portion, the first shaft portion defining the first rotation axis of the reflector plate, and the second plate of the reflector plate.
  • a second shaft portion that defines a rotation axis; a first frame that supports the reflector by the second shaft portion; a second frame that supports the first frame by the first shaft portion; and a first frame provided on the first frame.
  • the magnetic element for rotating the first frame and the magnetic element for rotating the reflecting plate And are arranged separately. Therefore, the magnetic field generated by the first magnetic actuator acting on the first magnetic element and the magnetic field generated by the second magnetic actuator acting on the second magnetic element are unlikely to interfere with each other, and the first rotating shaft and the second rotating shaft. In an optical deflector having a large driving force, a large driving force can be obtained. In other words, even if the magnetic field generated by the first magnetic actuator and the second magnetic actuator is increased in order to cause the optical deflector having the first rotation axis and the second rotation axis to exert a large driving force, the interference of the magnetic field Can be suppressed.
  • the first magnetic actuator has a yoke having a pair of terminal portions that form a magnetic gap, and the yoke has a terminal portion that overlaps the first magnetic element when viewed from a direction orthogonal to the first frame. Is preferred. Thereby, a 1st magnetic actuator and a 1st magnetic element can be arrange
  • the pair of terminal portions overlaps the first magnetic element when viewed from the direction orthogonal to the first frame.
  • one terminal part terminal part overlapping the first magnetic element
  • the other terminal part terminal part not overlapping the first magnetic element
  • the first magnetic element can be suppressed, and the swing angle of the first frame can be increased.
  • the yoke may have a terminal portion that does not overlap the first magnetic element when viewed from the direction orthogonal to the first frame. Thereby, the swing angle of the first frame can be increased while suppressing interference between the first magnetic actuator and the first magnetic element.
  • the yoke preferably has a pair of terminal portions that sandwich at least a part of the first magnetic element in the magnetic gap.
  • the pair of terminal portions may be arranged on both sides in the out-of-plane direction with respect to the first frame or the virtual extension surface thereof, or may be arranged on one side in the out-of-plane direction. If the pair of terminal portions are arranged on both sides in the out-of-plane direction, the entire optical deflector can be easily thinned. Further, if the pair of terminal portions are arranged on one side in the out-of-plane direction, the entire optical deflector can be easily miniaturized in the surface direction.
  • At least one of the pair of extending portions where the coils are disposed extends linearly to the end portion of the yoke.
  • the pair of extension portions may be arranged so as to sandwich the second frame from the out-of-plane direction into the magnetic gap. Thereby, the whole optical deflector can be reduced in thickness.
  • the optical deflector 1 ⁇ / b> A includes a reflector 2, a pair of first torsion bars 3 as a first shaft portion, and a pair of second torsion as a second shaft portion.
  • a bar 4 a first frame 5, a second frame 6, two first magnetic elements 7, a second magnetic element 8, two first magnetic actuators 9, and a second magnetic actuator 10 are provided.
  • the optical deflector 1A is mounted on a vehicle, for example, and is used in a detection device that detects a distance from another vehicle or an installation object by transmitting and receiving light such as infrared rays.
  • the extending direction of the first torsion bar 3 (the axial direction of the first rotating shaft) is the X direction
  • the extending direction of the second torsion bar 4 (the axial direction of the second rotating shaft) is Y.
  • the direction of thickness and the thickness direction of the reflection plate 2 are defined as the Z direction. That is, an arbitrary direction along the XY plane is a surface direction, and a Z direction is an out-of-plane direction.
  • the reflection plate 2 is formed in a disc shape extending along the XY plane, the first surface 2A is mirror-finished to become a reflection surface, and the second magnetic element 8 is disposed at the center of the second surface 2B.
  • the shape of the reflecting plate 2 is not limited to a disc shape, and may be a quadrangular plate shape or the like.
  • the first frame 5 is formed in a rectangular frame shape extending along the XY plane, and is arranged so as to surround the reflector 2. Further, two first magnetic elements 7 are arranged on the same side of the first frame 5 as the second surface 2B of the reflector 2. The two first magnetic elements 7 are respectively disposed in portions of the first frame 5 that extend along the X direction.
  • the first frame 5 only needs to be formed in a frame shape, and is not limited to a square shape, and may be a circular shape or the like.
  • the second frame 6 is formed in a rectangular frame shape extending along the XY plane, and is arranged so as to surround the first frame 5.
  • the second frame 6 only needs to be formed in a frame shape, and is not limited to a square shape, and may be a circular shape or the like.
  • the pair of first torsion bars 3 extends from the outer edge of the first frame 5 to the inner edge of the second frame 6. That is, the second frame 6 supports the first frame 5 by the pair of first torsion bars 3.
  • the pair of first torsion bars 3 define the first rotation axis O1 of the reflecting plate 2.
  • the pair of second torsion bars 4 extends from the outer edge of the reflector 2 to the inner edge of the first frame 5. That is, the first frame 5 supports the reflector 2 by the pair of second torsion bars 4.
  • the pair of second torsion bars 4 define a second rotation axis O2 of the reflecting plate 2.
  • the reflecting plate 2, the first torsion bar 3, the second torsion bar 4, the first frame 5 and the second frame 6 are integrally formed by, for example, a single silicon substrate to constitute the substrate body 100. is doing.
  • the reflecting plate 2 side with respect to the second frame 6 is defined as the inside, and the second frame 6 side with respect to the reflecting plate 2 is defined as the outside.
  • substrate body 100 may be comprised by connecting suitably after each site
  • the two first magnetic elements 7 are permanent magnets that are formed in a rectangular plate shape that extends along the XY plane and has the X direction as a long side direction, and magnetic poles (N pole and S pole) are arranged in the Z direction. It is out. Further, the first magnetic element 7 is arranged along one side of the frame of the first frame 5.
  • the shape of the first magnetic element 7 is not limited to the rectangular plate shape, but may be other shapes such as a circular shape and an elliptical shape.
  • the second magnetic element 8 is a permanent magnet formed in a substantially square plate shape, and magnetic poles (N pole and S pole) are arranged in the Z direction.
  • the shape of the second magnetic element 8 is not limited to a substantially square shape, but may be other shapes such as a rectangular shape, a circular shape, or an elliptical shape.
  • Each of the pair of first magnetic actuators 9 includes a yoke 91 and a coil 92 inserted through the yoke 91.
  • the yoke 91 is connected to the first terminal element 911 disposed so as to face the first magnetic element 7 in the Z direction, is continuous to the first terminal element 911, and is away from the first magnetic element 7 along the Z direction.
  • the first extension portion 912 that extends, the second end portion 913 disposed so as to face the second frame 6 in the Z direction, and the second frame 6 that continues to the second end portion 913 and extends in the Z direction.
  • a second extension portion 914 extending away from the first extension portion 914, and a connection portion 915 connecting the first extension portion 912 and the second extension portion 914.
  • the distal end of the second terminal portion 913 is disposed near the substrate body 100 in the Z direction with respect to the distal end of the first terminal portion 911 and is disposed outside in the Y direction.
  • a magnetic gap is formed between the first termination portion 911 and the second termination portion 913.
  • the second terminal portion 913 extends from the tip toward the second extension portion 914 so as to incline toward the outside in the Y direction while moving away from the substrate body 100 in the Z direction.
  • the first extension part 912 extends linearly to the first terminal part 911.
  • the first magnetic actuator 9 is arranged on one side in the Z direction with respect to the substrate body 100.
  • substrate body 100 is extended so that the 1st flame
  • the coil 92 is disposed on the first extension portion 912 of the yoke 91. As described above, the first extension portion 912 extends linearly to the first end portion 911, and the yoke 91 is inserted into the coil 92 from the first end portion 911 side.
  • the generated magnetic flux passes through the yoke 91.
  • the pair of terminal portions 911 and 913 are arranged so as to have the above positional relationship, the flow of magnetic flux is directed from the second terminal portion 913 toward the first terminal portion 911 in the Z direction. In the direction toward the inner side in the Y direction while moving away from the substrate body 100 or toward the outer side in the Y direction while approaching the substrate body 100 in the Z direction from the first terminal portion 911 toward the second terminal portion 913. It becomes a flow like this.
  • the first magnetic element 7 Since the first magnetic element 7 has a pair of magnetic poles arranged in the Z direction, the first magnetic element 7 is moved around the rotation axis along the X direction by the magnetic interaction with the first magnetic actuator 9. A driving force that causes the rotation is generated. As described above, the first magnetic actuator 9 acts on the first magnetic element 7 to rotate the first frame 5 around the first rotation axis O1.
  • the second magnetic actuator 10 has a yoke 101 and a coil 102 inserted through the yoke 101.
  • the yoke 101 has a pair of terminal portions 101A and 101B that are spaced apart from each other while facing the X direction.
  • a magnetic gap is formed between the pair of terminal portions 101A and 101B, and the magnetic gap extends along the X direction. Magnetic flux flows. Since the second magnetic element 8 has the pair of magnetic poles arranged in the Z direction as described above, the second magnetic element 8 has the second axis around the rotation axis along the Y direction due to the magnetic interaction with the second magnetic actuator 10. A driving force that rotates the magnetic element 8 is generated. As described above, the second magnetic actuator 10 acts on the second magnetic element 8 to rotate the reflecting plate 2 around the second rotation axis O2.
  • the magnetic element 7 for rotating the first frame 5 and the magnetic element 8 for rotating the reflecting plate 2 are arranged separately from each other.
  • the magnetic field generated by the first magnetic actuator 9 acting on the magnetic field and the magnetic field generated by the second magnetic actuator 10 acting on the second magnetic element 8 are unlikely to interfere with each other, and the first rotation axis O1 and the second rotation axis O2 are A large driving force can be obtained in the optical deflector 1A.
  • the first magnetic actuator 9 can be easily downsized.
  • the first magnetic actuator 9 is disposed in the vicinity of both end portions in the Y direction with respect to the substrate body 100, and the second magnetic actuator 10 is disposed in the center portion. It is difficult to concentrate, and the design freedom of the structure can be improved.
  • first terminal portion 911 of the yoke 91 overlaps with the first magnetic element 7 when viewed from the Z direction, and the second terminal portion 913 does not overlap with the first magnetic element 7 when viewed from the Z direction. While obtaining, interference with the first magnetic element 7 can be suppressed and the swing angle of the first frame 5 can be increased.
  • the entire optical deflector 1A can be easily downsized in the XY plane.
  • first extension portion 912 of the yoke 91 extends linearly to the first end portion 911, the first extension portion 912 can be easily inserted into the coil 92, and the assemblability can be improved.
  • the optical deflector 1 ⁇ / b> B of the present embodiment includes a reflector 2, a pair of first torsion bars 3 as a first shaft portion, and a pair of second torsion as a second shaft portion.
  • the bar 4, the first frame 5, the second frame 6, the two first magnetic elements 7, the second magnetic element 8, the two first magnetic actuators 9 ⁇ / b> B, and the second magnetic actuator 10 are provided.
  • the two first magnetic elements 7 have magnetic poles (N pole and S pole) arranged in the Y direction.
  • Each of the pair of first magnetic actuators 9 ⁇ / b> B has a yoke 93 and a coil 94 inserted through the yoke 93.
  • the yoke 93 includes a pair of terminal portions 931 that form a magnetic gap, a pair of extension portions 932 that are continuous with the pair of terminal portions 931, and a connection portion 933 that connects the pair of extension portions 932 to each other.
  • the pair of terminal portions 931 are arranged so as to sandwich the second frame 6 in the magnetic gap from the Z direction.
  • the second frame 6 is located on the virtual extension surface of the first frame 5, and the pair of terminal portions 931 are disposed on both sides in the Z direction with respect to the virtual extension surface of the first frame 5. Further, none of the pair of terminal portions 931 overlaps the first magnetic element 7 when viewed from the Z direction.
  • the pair of extension portions 932 extend along the Y direction and are disposed so as to sandwich the second frame 6 from the Z direction.
  • the connection portion 933 extends along the Z direction and is disposed on the outer side in the Y direction with respect to the second frame 6.
  • the coil 94 is disposed at the connection portion 933.
  • the generated magnetic flux passes through the yoke 93.
  • the magnetic flux flows along the Z direction within the magnetic gap formed by the pair of terminal portions 931. Since the first magnetic element 7 has a pair of magnetic poles arranged in the Y direction, the first magnetic element 7 is moved around the rotation axis along the X direction by the magnetic interaction with the first magnetic actuator 9B. A driving force that causes the rotation is generated. In this way, the first magnetic actuator 9B acts on the first magnetic element 7 to rotate the first frame 5 around the first rotation axis O1.
  • the magnetic element 7 for rotating the first frame 5 and the magnetic element 8 for rotating the reflecting plate 2 are arranged separately. Therefore, the magnetic field generated by the first magnetic actuator 9B acting on the first magnetic element 7 and the magnetic field generated by the second magnetic actuator 10 acting on the second magnetic element 8 are unlikely to interfere with each other, and the first rotation axis O1. In the optical deflector 1B having the second rotation axis O2, a large driving force can be obtained.
  • the first magnetic element 7 is not positioned on the first rotation axis O1 and is arranged away from the first rotation axis O1 in the Y direction, it is large when the first frame 5 is rotated. Torque can be obtained. Therefore, it is easy to reduce the size of the first magnetic actuator 9B. Further, the first magnetic actuator 9B is disposed in the vicinity of both end portions in the Y direction with respect to the substrate body 100, and the second magnetic actuator 10 is disposed in the central portion, so that the structure body is located in the central portion of the substrate body 100. It is difficult to concentrate, and the design freedom of the structure can be improved.
  • the pair of terminal portions 931 of the yoke 93 do not overlap the first magnetic element 7 when viewed from the Z direction, interference between the yoke 93 and the first magnetic element 7 is suppressed, and the swing angle of the first frame 5 is increased. Can be bigger.
  • the entire optical deflector 1B can be easily downsized (that is, thinned) in the Z direction.
  • the pair of extension portions 932 of the yoke 93 are disposed so as to sandwich the second frame 6 from the Z direction, the entire optical deflector 1B can be thinned.
  • the optical deflector includes two first magnetic elements and two first magnetic actuators, but the optical deflector 1C shown in FIGS.
  • the optical deflector 1C may be used, for example, so that the Y direction which is the surface direction substantially coincides with the vertical direction.
  • the optical deflector 1C may be arranged such that the first rotation axis O1 extends along the horizontal direction.
  • the relationship between the pair of terminal portions in the yoke of the first magnetic actuator and the first magnetic element is not limited to the relationship in the first embodiment and the second embodiment. Another example of this relationship is shown in FIG. A configuration in which the entire first magnetic element 7 is sandwiched from the Y direction when viewed from the Z direction, like the pair of terminal portions 95, may be employed. Further, like the pair of end portions 96, one (right end portion) as viewed from the Z direction overlaps the first magnetic element 7 so that a part of the first magnetic element 7 is sandwiched from the Y direction. Good.
  • the other (left end portion) as viewed from the Z direction overlaps the first magnetic element 7 so that a part of the first magnetic element 7 is sandwiched from the Y direction.
  • a part of the first magnetic element 7 may be sandwiched from the Y direction by overlapping both of the first magnetic elements 7 when viewed from the Z direction.

Abstract

大きな駆動力を得ることができる複数軸駆動式の光偏向器を提供する。第1フレーム(5)を回動させるための磁気素子(7)と、反射板(2)を回動させるための磁気素子(8)と、が分離して配置されていることから、第1磁気素子(7)に働きかける第1磁気アクチュエータ(9)が発生する磁界と、第2磁気素子(8)に働きかける第2磁気アクチュエータ(10)が発生する磁界と、が干渉しにくく、第1回動軸(O1)及び第2回動軸(O2)を有する光偏向器(1A)において、大きな駆動力を得ることができる。

Description

光偏向器
 本発明は、光偏向器に関する。
 従来、光を二次元的に走査する2軸駆動式の光偏向器が提案されている(例えば、特許文献1参照)。特許文献1に記載された光偏向器では、ミラー(反射板)をジンバルフレームによって回動可能に支持し、ジンバルフレームを外周フレームによって回動可能に支持するとともに、ジンバルフレームに空芯コイルを配置し、外周フレームを囲むように磁気回路を配置している。さらに、ジンバルフレームを駆動するための信号に、反射板を駆動するための信号を重畳し、この駆動信号を空芯コイルに入力することで光を二次元的に走査している。
特開2013-246362号公報
 特許文献1に記載されたような光偏向器では、重畳信号によってミラー及びジンバルフレームを駆動することから、制御が困難であるとともに、各軸まわりの回動について大きな駆動力を得ることが困難であった。また、反射板に磁石を配置するとともに、その外側に2つの磁気アクチュエータ(コイル及びヨーク)を配置し、一方の磁気アクチュエータによって反射板を回動させ、他方の磁気アクチュエータによってフレームを回動させる構成も考えられる。しかしながら、このような構成では、2つの磁気アクチュエータのそれぞれが発生する磁界同士が干渉しやすく、大きな駆動力を得ることが困難である。
 したがって、本発明の課題は、大きな駆動力を得ることができる複数軸駆動式の光偏向器を提供することが一例として挙げられる。
 前述した課題を解決し目的を達成するために、請求項1に記載の本発明の光偏向器は、反射板と、前記反射板の第1回動軸を定める第1軸部と、前記第1軸部と交差する方向に延在し、前記反射板の第2回動軸を定める第2軸部と、前記第2軸部によって前記反射板を支持する第1フレームと、前記第1軸部によって前記第1フレームを支持する第2フレームと、前記第1フレームに設けられた第1磁気素子と、前記反射板に設けられた第2磁気素子と、前記第1磁気素子に働きかけ、前記第1回動軸を中心に前記第1フレームを回動させる第1磁気アクチュエータと、前記第2磁気素子に働きかけ、前記第2回動軸を中心に前記反射板を回動させる第2磁気アクチュエータと、を備えることを特徴としている。
本発明の第1実施例に係る光偏向器を示す斜視図である。 前記光偏向器を示す側面図である。 本発明の第2実施例に係る光偏向器を示す斜視図である。 前記光偏向器を示す側面図である。 本発明の変形例に係る光偏向器を示す斜視図である。 前記光偏向器を示す側面図である。 本発明の他の変形例に係る光偏向器におけるヨークの終端部と第1磁気素子との関係を示す平面図である。
 以下、本発明の実施形態を説明する。本発明の実施形態に係る光偏向器は、反射板と、反射板の第1回動軸を定める第1軸部と、第1軸部と交差する方向に延在し、反射板の第2回動軸を定める第2軸部と、第2軸部によって反射板を支持する第1フレームと、第1軸部によって第1フレームを支持する第2フレームと、第1フレームに設けられた第1磁気素子と、反射板に設けられた第2磁気素子と、第1磁気素子に働きかけ、第1回動軸を中心に第1フレームを回動させる第1磁気アクチュエータと、第2磁気素子に働きかけ、第2回動軸を中心に反射板を回動させる第2磁気アクチュエータと、を備える。
 第1フレームに第1磁気素子が設けられるとともに反射板に第2磁気素子が設けられていることから、第1フレームを回動させるための磁気素子と、反射板を回動させるための磁気素子と、が分離して配置されている。従って、第1磁気素子に働きかける第1磁気アクチュエータが発生する磁界と、第2磁気素子に働きかける第2磁気アクチュエータが発生する磁界と、が干渉しにくく、第1回動軸及び第2回動軸を有する光偏向器において、大きな駆動力を得ることができる。言い換えれば、第1回動軸及び第2回動軸を有する光偏向器に大きな駆動力を発揮させるため、第1磁気アクチュエータおよび第2磁気アクチュエータが発生する磁界を大きくしたとしても、磁界の干渉を抑制することができる。
 第1磁気アクチュエータは、磁気ギャップを形成する一対の終端部を備えたヨークを有し、ヨークは、終端部として、第1フレームに直交する方向から見て第1磁気素子に重なるものを有することが好ましい。これにより、第1磁気アクチュエータと第1磁気素子とを近接して配置し、大きな駆動力を得ることができる。
 さらに、一対の終端部のうち一方のみが、第1フレームに直交する方向から見て第1磁気素子に重なることが好ましい。これにより、一方の終端部(第1磁気素子に重なる終端部)を第1磁気素子に近接して配置して大きな駆動力を得つつ、他方の終端部(第1磁気素子に重ならない終端部)と第1磁気素子との干渉を抑制し、第1フレームの振角を大きくすることができる。
 ヨークは、終端部として、第1フレームに直交する方向から見て第1磁気素子に重ならないものを有していてもよい。これにより、第1磁気アクチュエータと第1磁気素子との干渉を抑制しつつ、第1フレームの振角を大きくすることができる。
 ヨークは、第1磁気素子の少なくとも一部を磁気ギャップ内に挟み込む一対の終端部を有することが好ましい。これにより、第1磁気アクチュエータの発生磁界と第1磁気素子の発生磁界とを相互作用させやすくし、大きな駆動力を得ることができる。
 一対の終端部は、第1フレーム又はその仮想延長面に対し、面外方向の両側に配置されていてもよいし、面外方向の一方側に配置されていてもよい。一対の終端部を面外方向の両側に配置すれば、光偏向器全体を薄型化しやすい。また、一対の終端部を面外方向の一方側に配置すれば、光偏向器全体を面方向において小型化しやすい。
 ヨークは、コイルが配置される一対の延長部のうち少なくとも一方が、終端部まで直線状に延びていることが好ましい。これにより、終端部まで直線状に延びた延長部をコイルに挿通しやすく、組立性を向上させることができる。
 一対の延長部は、第2フレームを面外方向から磁気ギャップ内に挟み込むように配置されていてもよい。これにより、光偏向器全体を薄型化することができる。
 以下、本発明の各実施例について具体的に説明する。尚、第2実施例においては、第1実施例で説明する構成部材と同じ構成部材及び同様な機能を有する構成部材には、第1実施例と同じ符号を付すとともに説明を省略する。
[第1実施例]
 本実施例の光偏向器1Aは、図1、2に示すように、反射板2と、第1軸部としての一対の第1トーションバー3と、第2軸部としての一対の第2トーションバー4と、第1フレーム5と、第2フレーム6と、2つの第1磁気素子7と、第2磁気素子8と、2つの第1磁気アクチュエータ9と、第2磁気アクチュエータ10と、を備える。光偏向器1Aは、例えば車両に搭載されて赤外線等の光を送受信することで他車両や設置物等との距離を検出する検出装置に用いられる。
 本実施例では、第1トーションバー3の延在方向(第1回動軸の軸方向)をX方向とし、第2トーションバー4の延在方向(第2回動軸の軸方向)をY方向とし、反射板2の板厚方向(両面に対して略直交する方向)をZ方向とする。即ち、XY平面に沿った任意の方向が面方向となり、Z方向が面外方向となる。
 反射板2は、XY平面に沿って延びる円板状に形成され、第1面2Aが鏡面加工されて反射面となり、第2面2Bの中央部に第2磁気素子8が配置される。尚、反射板2の形状は円板状に限定されず、四角形板状等であってもよい。
 第1フレーム5は、XY平面に沿って延びる四角形枠状に形成され、反射板2を囲むように配置される。また、第1フレーム5のうち、反射板2の第2面2Bと同じ側の面に、2つの第1磁気素子7が配置される。2つの第1磁気素子7は、それぞれ、第1フレーム5のうちX方向に沿って延在する部分に配置されている。尚、第1フレーム5は、枠状に形成されていればよく、四角形状に限定されず、円形状等であってもよい。
 第2フレーム6は、XY平面に沿って延びる四角形枠状に形成され、第1フレーム5を囲むように配置される。尚、第2フレーム6は、枠状に形成されていればよく、四角形状に限定されず、円形状等であってもよい。
 一対の第1トーションバー3は、第1フレーム5の外縁から第2フレーム6の内縁に亘って延在している。即ち、第2フレーム6は、一対の第1トーションバー3によって第1フレーム5を支持する。また、一対の第1トーションバー3によって、反射板2の第1回動軸O1が定められる。
 一対の第2トーションバー4は、反射板2の外縁から第1フレーム5の内縁に亘って延在している。即ち、第1フレーム5は、一対の第2トーションバー4によって反射板2を支持する。また、一対の第2トーションバー4によって、反射板2の第2回動軸O2が定められる。
 本実施例では、反射板2と第1トーションバー3と第2トーションバー4と第1フレーム5と第2フレーム6とが、例えば1枚のシリコン基板によって一体に形成され、基板体100を構成している。以下では、XY平面内において、第2フレーム6に対する反射板2側を内側とし、反射板2に対する第2フレーム6側を外側とする。尚、基板体100は、各部位が別体に形成された後に適宜に接続されることで構成されてもよい。
 2つの第1磁気素子7は、XY平面に沿って延びるとともにX方向を長辺方向とする長方形板状に形成された永久磁石であって、磁極(N極及びS極)がZ方向に並んでいる。また、第1磁気素子7は、第1フレーム5の枠の一辺に沿うように配置されている。尚、第1磁気素子7の形状は、長方形板状に限らず、円形状や楕円形など他の形状であってもよい。
 第2磁気素子8は、略正方形板状に形成された永久磁石であって、磁極(N極及びS極)がZ方向に並んでいる。尚、第2磁気素子8の形状は、略正方形状に限らず、長方形状、円形状や楕円形など他の形状であってもよい。
 一対の第1磁気アクチュエータ9は、それぞれ、ヨーク91と、ヨーク91に挿通されたコイル92と、を有する。ヨーク91は、第1磁気素子7とZ方向に対向するように配置された第1終端部911と、第1終端部911に連続するとともにZ方向に沿って第1磁気素子7から遠ざかるように延在する第1延長部912と、第2フレーム6とZ方向に対向するように配置された第2終端部913と、第2終端部913に連続するとともにZ方向に沿って第2フレーム6から遠ざかるように延在する第2延長部914と、第1延長部912と第2延長部914とを接続する接続部915と、を有する。
 第2終端部913の先端は、第1終端部911の先端に対し、Z方向において基板体100の近くに配置され、且つ、Y方向において外側に配置されている。ここで、第1終端部911と第2終端部913との間に磁気ギャップが形成される。また、第2終端部913は、その先端から第2延長部914に向かって、Z方向において基板体100から遠ざかりつつY方向外側に向かうように傾斜して延在している。一方、第1延長部912は、第1終端部911まで直線状に延びている。
 第1磁気アクチュエータ9は、基板体100に対してZ方向の一方側に配置されている。尚、基板体100は、第1フレーム5及びその仮想延長面を含むように延在している。即ち、一対の終端部911、913は、第1フレーム5又はその仮想延長面に対し、Z方向の一方側に配置されている。また、第1終端部911がZ方向から見て第1磁気素子7に重なり、第2終端部913はZ方向から見て第1磁気素子7に重ならない。
 コイル92は、ヨーク91のうち第1延長部912に配置されている。上記のように第1延長部912は第1終端部911まで直線状に延びており、ヨーク91は、第1終端部911側からコイル92に挿通される。
 以上のような第1磁気アクチュエータ9においてコイル92に通電すると、発生した磁束はヨーク91内を通過する。このとき、一対の終端部911、913が上記のような位置関係を有して配置されていることで、磁束の流れは、第2終端部913から第1終端部911に向かって、Z方向において基板体100から遠ざかりつつY方向内側に向かうような流れとなるか、又は、第1終端部911から第2終端部913に向かって、Z方向において基板体100に近づきつつY方向外側に向かうような流れとなる。
 第1磁気素子7は一対の磁極がZ方向に並んでいることから、第1磁気アクチュエータ9との磁気的な相互作用によって、X方向に沿った回動軸を中心として第1磁気素子7を回動させるような駆動力が発生する。このように、第1磁気アクチュエータ9は、第1磁気素子7に働きかけ、第1回動軸O1を中心に第1フレーム5を回動させる。
 第2磁気アクチュエータ10は、ヨーク101と、ヨーク101に挿通されたコイル102と、を有する。ヨーク101は、X方向に対向しつつ離隔した一対の終端部101A、101Bを有しており、一対の終端部101A、101Bの間において磁気ギャップを形成し、磁気ギャップ内ではX方向に沿って磁束が流れる。上記のように第2磁気素子8は一対の磁極がZ方向に並んでいることから、第2磁気アクチュエータ10との磁気的な相互作用によって、Y方向に沿った回動軸を中心として第2磁気素子8を回動させるような駆動力が発生する。このように、第2磁気アクチュエータ10は、第2磁気素子8に働きかけ、第2回動軸O2を中心に反射板2を回動させる。
 上記の構成により、第1フレーム5を回動させるための磁気素子7と、反射板2を回動させるための磁気素子8と、が分離して配置されていることから、第1磁気素子7に働きかける第1磁気アクチュエータ9が発生する磁界と、第2磁気素子8に働きかける第2磁気アクチュエータ10が発生する磁界と、が干渉しにくく、第1回動軸O1及び第2回動軸O2を有する光偏向器1Aにおいて、大きな駆動力を得ることができる。
 また、第1磁気素子7が第1回動軸O1上に位置せず、Y方向において第1回動軸O1から離れて配置されていることから、第1フレーム5を回動させる際に大きなトルクを得ることができる。従って、第1磁気アクチュエータ9を小型化しやすい。また、第1磁気アクチュエータ9が基板体100に対してY方向の両端部近傍に配置され、第2磁気アクチュエータ10が中央部に配置されていることで、基板体100の中央部に構造体が集中しにくく、構造の設計自由度を向上させることができる。
 また、ヨーク91の第1終端部911がZ方向から見て第1磁気素子7に重なり、第2終端部913がZ方向から見て第1磁気素子7に重ならないことで、大きな駆動力を得つつ、第1磁気素子7との干渉を抑制して第1フレーム5の振角を大きくすることができる。
 また、一対の終端部911、913が基板体100に対してZ方向の一方側に配置されていることで、光偏向器1A全体をXY平面内において小型化しやすい。
 また、ヨーク91の第1延長部912が第1終端部911まで直線状に延びていることで、第1延長部912をコイル92に挿通しやすく、組立性を向上させることができる。
[第2実施例]
 本実施例の光偏向器1Bは、図3、4に示すように、反射板2と、第1軸部としての一対の第1トーションバー3と、第2軸部としての一対の第2トーションバー4と、第1フレーム5と、第2フレーム6と、2つの第1磁気素子7と、第2磁気素子8と、2つの第1磁気アクチュエータ9Bと、第2磁気アクチュエータ10と、を備える。2つの第1磁気素子7は、磁極(N極及びS極)がY方向に並んでいる。
 一対の第1磁気アクチュエータ9Bは、それぞれ、ヨーク93と、ヨーク93に挿通されたコイル94と、を有する。ヨーク93は、磁気ギャップを形成する一対の終端部931と、一対の終端部931のそれぞれに連続した一対の延長部932と、一対の延長部932同士を接続する接続部933と、を有する。
 一対の終端部931は、第2フレーム6をZ方向から磁気ギャップ内に挟み込むように配置されている。第2フレーム6は第1フレーム5の仮想延長面上に位置し、一対の終端部931は、第1フレーム5の仮想延長面に対してZ方向の両側に配置されている。また、一対の終端部931は、いずれも、Z方向から見て第1磁気素子7に重ならない。
 一対の延長部932は、Y方向に沿って延在し、第2フレーム6をZ方向から挟み込むように配置されている。接続部933は、Z方向に沿って延在し、第2フレーム6に対してY方向外側に配置されている。コイル94は接続部933に配置されている。
 以上のような第1磁気アクチュエータ9Bにおいてコイル94に通電すると、発生した磁束はヨーク93内を通過する。このとき、磁束の流れは、一対の終端部931が形成する磁気ギャップ内においてZ方向に沿った流れとなる。第1磁気素子7は一対の磁極がY方向に並んでいることから、第1磁気アクチュエータ9Bとの磁気的な相互作用によって、X方向に沿った回動軸を中心として第1磁気素子7を回動させるような駆動力が発生する。このように、第1磁気アクチュエータ9Bは、第1磁気素子7に働きかけ、第1回動軸O1を中心に第1フレーム5を回動させる。
 上記の構成により、第1実施例と同様に、第1フレーム5を回動させるための磁気素子7と、反射板2を回動させるための磁気素子8と、が分離して配置されていることから、第1磁気素子7に働きかける第1磁気アクチュエータ9Bが発生する磁界と、第2磁気素子8に働きかける第2磁気アクチュエータ10が発生する磁界と、が干渉しにくく、第1回動軸O1及び第2回動軸O2を有する光偏向器1Bにおいて、大きな駆動力を得ることができる。
 また、第1磁気素子7が第1回動軸O1上に位置せず、Y方向において第1回動軸O1から離れて配置されていることから、第1フレーム5を回動させる際に大きなトルクを得ることができる。従って、第1磁気アクチュエータ9Bを小型化しやすい。また、第1磁気アクチュエータ9Bが基板体100に対してY方向の両端部近傍に配置され、第2磁気アクチュエータ10が中央部に配置されていることで、基板体100の中央部に構造体が集中しにくく、構造の設計自由度を向上させることができる。
 また、ヨーク93の一対の終端部931がZ方向から見て第1磁気素子7に重ならないことで、ヨーク93と第1磁気素子7との干渉を抑制し、第1フレーム5の振角を大きくすることができる。
 また、一対の終端部911、913が基板体100に対してZ方向の両側に配置されていることで、光偏向器1B全体をZ方向において小型化(即ち薄型化)しやすい。また、ヨーク93の一対の延長部932が第2フレーム6をZ方向から挟み込むように配置されていることで、光偏向器1B全体を薄型化することができる。
 なお、本発明は、前記実施例に限定されるものではなく、本発明の目的が達成できる他の構成等を含み、以下に示すような変形等も本発明に含まれる。
 例えば、前記第1実施例及び前記第2実施例では、光偏向器が2つの第1磁気素子及び2つの第1磁気アクチュエータを備えるものとしたが、図5、6に示す光偏向器1Cのように、第1磁気素子7及び第1磁気アクチュエータ9Bを1つずつ備える構成としてもよい。光偏向器1Cは、例えば、面方向であるY方向が鉛直方向と略一致するように用いられればよい。即ち、光偏向器1Cは、第1回動軸O1が水平方向に沿って延びるように配置されればよい。
 また、第1磁気アクチュエータのヨークにおける一対の終端部と、第1磁気素子と、の関係は、前記第1実施例及び前記第2実施例における関係に限定されない。この関係の他の例を図7に示す。一対の終端部95のように、Z方向から見て第1磁気素子7全体をY方向から挟み込む構成としてもよい。また、一対の終端部96のように、Z方向から見て一方(右側の終端部)が第1磁気素子7に重なることにより、第1磁気素子7の一部をY方向から挟み込む構成としてもよい。また、一対の終端部97のように、Z方向から見て他方(左側の終端部)が第1磁気素子7に重なることにより、第1磁気素子7の一部をY方向から挟み込む構成としてもよい。また、一対の終端部98のように、Z方向から見て両方が第1磁気素子7に重なることにより、第1磁気素子7の一部をY方向から挟み込む構成としてもよい。
 その他、本発明を実施するための最良の構成、方法などは、以上の記載で開示されているが、本発明は、これに限定されるものではない。すなわち、本発明は、主に特定の実施例に関して特に図示され、且つ、説明されているが、本発明の技術的思想および目的の範囲から逸脱することなく、以上述べた実施例に対し、形状、材質、数量、その他の詳細な構成において、当業者が様々な変形を加えることができるものである。従って、上記に開示した形状、材質などを限定した記載は、本発明の理解を容易にするために例示的に記載したものであり、本発明を限定するものではないから、それらの形状、材質などの限定の一部、もしくは全部の限定を外した部材の名称での記載は、本発明に含まれるものである。
 1A               光偏向器
 2                 反射板
 3                 第1トーションバー(第1軸部)
 4                 第2トーションバー(第2軸部)
 5                 第1フレーム
 6                 第2フレーム
 7                 第1磁気素子
 8                 第2磁気素子
 9                 第1磁気アクチュエータ
 91               ヨーク
 911、913     終端部
 912,914     延長部
 10               第2磁気アクチュエータ
 O1               第1回動軸
 O2               第2回動軸

Claims (9)

  1.  反射板と、
     前記反射板の第1回動軸を定める第1軸部と、
     前記第1軸部と交差する方向に延在し、前記反射板の第2回動軸を定める第2軸部と、
     前記第2軸部によって前記反射板を支持する第1フレームと、
     前記第1軸部によって前記第1フレームを支持する第2フレームと、
     前記第1フレームに設けられた第1磁気素子と、
     前記反射板に設けられた第2磁気素子と、
     前記第1磁気素子に働きかけ、前記第1回動軸を中心に前記第1フレームを回動させる第1磁気アクチュエータと、
     前記第2磁気素子に働きかけ、前記第2回動軸を中心に前記反射板を回動させる第2磁気アクチュエータと、を備えることを特徴とする光偏向器。
  2.  前記第1磁気アクチュエータは、一対の終端部を備えたヨークを有し、
     前記ヨークは、前記終端部として、前記第1フレームに直交する方向から見て前記第1磁気素子に重なるものを有することを特徴とする請求項1に記載の光偏向器。
  3.  前記一対の終端部のうち一方のみが、前記第1フレームに直交する方向から見て前記第1磁気素子に重なることを特徴とする請求項2に記載の光偏向器。
  4.  前記第1磁気アクチュエータは、一対の終端部を備えたヨークを有し、
     前記ヨークは、前記終端部として、前記第1フレームに直交する方向から見て前記第1磁気素子に重ならないものを有することを特徴とする請求項1に記載の光偏向器。
  5.  前記第1磁気アクチュエータは、一対の終端部を備えたヨークを有し、
     前記ヨークは、前記第1磁気素子の少なくとも一部を挟み込む一対の終端部を有することを特徴とする請求項1に記載の光偏向器。
  6.  前記一対の終端部は、前記第1フレーム又はその仮想延長面に対し、面外方向の両側に配置されていることを特徴とする請求項2~5のいずれか1項に記載の光偏向器。
  7.  前記一対の終端部は、前記第1フレーム又はその仮想延長面に対し、面外方向の一方側に配置されていることを特徴とする請求項2~5のいずれか1項に記載の光偏向器。
  8.  前記ヨークは、コイルが配置される一対の延長部のうち少なくとも一方が、終端部まで
    直線状に延びていることを特徴とする請求項1に記載の光偏向器。
  9.  前記一対の延長部は、前記第2フレームを面外方向から挟み込むように配置されている
    ことを特徴とする請求項1に記載の光偏向器。
PCT/JP2019/016589 2018-04-27 2019-04-18 光偏向器 WO2019208375A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-086361 2018-04-27
JP2018086361 2018-04-27

Publications (1)

Publication Number Publication Date
WO2019208375A1 true WO2019208375A1 (ja) 2019-10-31

Family

ID=68294183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016589 WO2019208375A1 (ja) 2018-04-27 2019-04-18 光偏向器

Country Status (1)

Country Link
WO (1) WO2019208375A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020110746A1 (ja) * 2018-11-30 2020-06-04 パイオニア株式会社 駆動装置
WO2023053342A1 (ja) * 2021-09-30 2023-04-06 パイオニア株式会社 光走査装置及びセンサ装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005169553A (ja) * 2003-12-10 2005-06-30 Canon Inc マイクロアクチュエータ
JP2006126485A (ja) * 2004-10-28 2006-05-18 Seiko Instruments Inc 電磁アクチュエータおよびそれを用いた光デバイス
JP2010107666A (ja) * 2008-10-29 2010-05-13 Osaka Univ 光スキャナ
US20160103313A1 (en) * 2014-10-08 2016-04-14 Samsung Display Co., Ltd. Optical module for vibrating light beam

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005169553A (ja) * 2003-12-10 2005-06-30 Canon Inc マイクロアクチュエータ
JP2006126485A (ja) * 2004-10-28 2006-05-18 Seiko Instruments Inc 電磁アクチュエータおよびそれを用いた光デバイス
JP2010107666A (ja) * 2008-10-29 2010-05-13 Osaka Univ 光スキャナ
US20160103313A1 (en) * 2014-10-08 2016-04-14 Samsung Display Co., Ltd. Optical module for vibrating light beam

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020110746A1 (ja) * 2018-11-30 2020-06-04 パイオニア株式会社 駆動装置
EP3889100A4 (en) * 2018-11-30 2022-08-10 Pioneer Corporation DRIVE DEVICE
WO2023053342A1 (ja) * 2021-09-30 2023-04-06 パイオニア株式会社 光走査装置及びセンサ装置

Similar Documents

Publication Publication Date Title
US7697181B2 (en) Actuator, optical scanner and image forming apparatus
JP6056179B2 (ja) 光スキャナーおよび画像形成装置
JP5085476B2 (ja) 2軸駆動電磁気スキャナー
US20080231930A1 (en) Oscillator device, method of driving the same, optical deflector and image display device using the same
JP5206610B2 (ja) アクチュエータ、光スキャナおよび画像形成装置
JP7438946B2 (ja) 光学画像安定化のための調整可能なプリズム
WO2019208375A1 (ja) 光偏向器
JP2005173411A (ja) 光偏向器
US8988750B2 (en) Optical scanner, mirror chip, method of manufacturing optical scanner, and image forming apparatus
CN103399402A (zh) 一种电磁驱动微型二维扫描镜装置
US8553303B2 (en) Optical scanner and image forming apparatus
JP6233010B2 (ja) 光スキャナー、画像表示装置およびヘッドマウントディスプレイ
JP6330321B2 (ja) 光スキャナー、画像表示装置およびヘッドマウントディスプレイ
JP2009109778A (ja) ミラーデバイス
JP2015184596A (ja) 光スキャナー、画像表示装置およびヘッドマウントディスプレイ
JP2005169553A (ja) マイクロアクチュエータ
JP5488131B2 (ja) 電磁アクチュエータ
JP2005110358A (ja) 電磁アクチュエータ及びカメラ用羽根駆動装置
JP5923933B2 (ja) ミラーデバイス、光スキャナーおよび画像形成装置
WO2020110339A1 (ja) 光学ユニット
JP5803586B2 (ja) ミラーデバイス、光スキャナーおよび画像形成装置
JP5045611B2 (ja) アクチュエータ、光スキャナおよび画像形成装置
JP4448425B2 (ja) 小型撮像装置
JP2003149529A (ja) レンズ駆動装置
JP7340540B2 (ja) 駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19792621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19792621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP