WO2019205631A1 - 一种晶硅选择性发射极产业化印刷对位方法 - Google Patents

一种晶硅选择性发射极产业化印刷对位方法 Download PDF

Info

Publication number
WO2019205631A1
WO2019205631A1 PCT/CN2018/118252 CN2018118252W WO2019205631A1 WO 2019205631 A1 WO2019205631 A1 WO 2019205631A1 CN 2018118252 W CN2018118252 W CN 2018118252W WO 2019205631 A1 WO2019205631 A1 WO 2019205631A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
mark point
printing
preparation
square
Prior art date
Application number
PCT/CN2018/118252
Other languages
English (en)
French (fr)
Inventor
杨蕾
张冠纶
吴俊旻
常青
洪布双
王岚
张鹏
Original Assignee
通威太阳能(合肥)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 通威太阳能(合肥)有限公司 filed Critical 通威太阳能(合肥)有限公司
Publication of WO2019205631A1 publication Critical patent/WO2019205631A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the field of screen printing technology, in particular to a crystalline silicon selective emitter industrial printing alignment method.
  • the front side has a higher junction depth and phosphorus concentration, while the high recombination of the reflectors results in lower open and short circuit currents, while the selective emitter electrode is in the area where it is illuminated.
  • Low concentration doping, high doping under the metal gate line, forming a lateral high and low junction structure increases the potential difference between the PN junctions, reduces the diffusion layer recombination and reduces the resistance of the metal contact region, thereby improving the overall performance of the battery, and the technology can be more
  • the back-effect technology is superimposed to facilitate further improvement of battery efficiency and compatibility with equipment and materials.
  • the commonly used techniques are secondary diffusion method, wet mask method, phosphor paste printing method and laser doping method.
  • the laser doping method is simplified due to its process route and high compatibility, and the equipment and the cost of adding main and auxiliary materials are low. Advantages gradually expand market share in industrial production.
  • the laser is used to print the alignment point for printing calibration, because the laser selective laser width is only 100-120 ⁇ m, and the printed gate line width is 40-50 ⁇ m or so, resulting in a print offset window of only about 30 ⁇ m, which requires very high precision for printing alignment, and the alignment of laser graphics and printed graphics is the key to the selective emission of crystalline silicon cells.
  • the MARK point is used to simultaneously print the alignment of the laser during laser doping.
  • the MARK point is a solid circle with a diameter of 0.5 mm.
  • the color difference and morphology and non-doping of the laser doped area There is almost no difference in the miscellaneous areas, and after the SE laser is doped, it has to go through 6 production processes to print, and the basic alignment and offset cannot be observed with the naked eye;
  • the present invention provides the following technical solutions:
  • a crystalline silicon selective emitter industrial printing alignment method includes the following steps:
  • Step 1 Silicon wafer pretreatment: pre-cleaning and suede preparation of the silicon wafer;
  • Step 2 Preparation of the PN junction: adjusting the amount of N 2 , the amount of oxygen, the amount of phosphorus, and the diffusion temperature, preparing a phosphorus diffusion layer by a thermal diffusion process, and controlling the square resistance of the diffusion layer to be 100-180 ⁇ ;
  • Step 3 SE laser doping: the laser is used to selectively dope the position of the front surface of the silicon wafer to be printed with the fine metal grid line, and the laser is locally melted to further diffuse the phosphorus at the laser scanning position to form a local high concentration phosphorus doping. , so that the square resistance of the region is reduced to 60-90 ⁇ ;
  • Step 4 Preparation of MARK point: adjust the laser parameters so that the laser marking energy of the MARK point in the laser preparation process is higher than that of the SE laser doping, and a square MARK point is formed at the position of the metal main grid;
  • Step 5 Wafer processing: preparing the silicon wafer by back etching to PSG, annealing, alumina passivation film and front-back SiNx layer process;
  • Step 6 Backside screen printing: laser grooving is performed on the back side of the silicon wafer, and back electrodes and back electric fields are printed on the back surface;
  • Step 7 Screen printing on the front side: After printing through the back electrode and the back electric field, flip the battery piece at 180°, and use the four square MARK points prepared by laser scanning as the printing alignment point to adjust the positive electrode printing machine to successfully capture the camera. Taking the positions of four square MARK points, so that the metal fine gate lines can be correspondingly printed on the high concentration phosphorus doped region formed in step three;
  • Step 8 Sintering test: drying and sintering the positive back metal slurry, testing the binning, and completing the SE battery preparation.
  • the square MARK point has a size of 0.5 mm, the preparation power of the MARK point is set to 20-30 W, and the engraving speed is reduced to 100-10000 mm/s.
  • the square MARK point is a solid square MARK point.
  • the square MARK point is a hollow square MARK point, and the fine grid line needs to pass through the main grid at a position of the hollow square MARK point during printing.
  • the invention performs two modification methods on the existing SE technology laser MARK point, wherein the laser marking energy of the new MARK point in the laser process is higher than the energy of the laser doping line, and multiple sizes are used.
  • the square superimposed marking pattern makes the chromaticity and shape of the laser area significantly different from the non-laser area; at the same time, the square MARK point is printed with a square laser spot to eliminate edge irregularities, and the marking laser energy of the two MARK points It is higher than the energy of the laser doping line.
  • the camera CCD it is convenient for the camera CCD to capture and recognize the MARK point to reduce the extra offset.
  • FIG. 1 is a schematic flow chart of a printing alignment method of the present invention
  • FIG. 2 is a schematic diagram of a selective emitter laser doping and a solid square MARK point of the present invention
  • Figure 3 is an enlarged schematic view showing the structure of the A area of the present invention.
  • FIG. 4 is a schematic view of a selective emitter laser doping and a hollow square MARK point of the present invention
  • Figure 5 is an enlarged schematic view showing the structure of the B area of the present invention.
  • Figure 6 is a schematic view showing the screen printing metal fine grid screen of the present invention.
  • FIG. 7 is a schematic view showing the connection of a hollow square MARK point and a fine gate according to the present invention.
  • the present invention provides a technical solution:
  • a crystalline silicon selective emitter industrial printing alignment method includes the following steps:
  • Step 1 Silicon wafer pretreatment: pre-cleaning and suede preparation of the silicon wafer.
  • Step 2 Preparation of PN junction: adjusting the amount of N 2 , the amount of oxygen, the amount of phosphorus source, and the diffusion temperature, preparing a phosphorus diffusion layer by a thermal diffusion process, and controlling the square resistance of the diffusion layer to be 160 ⁇ .
  • Step 3 SE laser doping: the laser is used to selectively dope the position of the front surface of the silicon wafer to be printed with the fine metal grid line, that is, the pre-set pattern, and the laser is locally melted, so that the phosphorus in the laser scanning position is further diffused, thereby forming a local portion.
  • the high concentration of phosphorus is doped, so that the square resistance of the region is reduced to 80 ⁇ , and the selective laser doping pattern is as shown in FIG. 2 of the specification and FIG. 4 of the specification, and all the line segments are laser scanning positions.
  • Step 4 Preparation of MARK point: At the laser MARK point, separate selection of laser parameters is required, and the laser parameters are adjusted.
  • the size of the square MARK point is 0.5 mm
  • the preparation power of the MARK point is set to 28 W
  • the engraving speed is lowered. Up to 1000mm/s, the laser marking energy of the MARK point in the laser preparation process is higher than that of the SE laser doping, and the square MARK point is formed at the position of the metal main grid, which is also required for the positive screen of the printing.
  • the position and position of the site are as shown in FIG. 2 of the specification and FIG. 4 of the specification.
  • the laser parameters of the MARK point and the parameters of the reserved fine grid line are different, and the parameters need to be modified separately to obtain Better alignment and easy identification.
  • the square MARK points are divided into two types, one is a solid square MARK point, as shown in Figure 3 of the specification, and there is no special requirement for the position of the solid square MARK point on the main grid; the other is a hollow square MARK point, such as the specification. As shown in Fig. 5, the use of the hollow square MARK point requires that the fine grid line cross the main grid at the position of the MARK, and the position of the MARK point is required.
  • the preparation of the SE laser doping and the MARK point can be performed by means of synchronous laser, which saves a lot of time.
  • the MARK point is directly prepared by the difference of the laser energy.
  • Step 5 Wafer reprocessing: The silicon wafer is back-etched to PSG, annealed, alumina passivation film and front-back SiNx layer process.
  • Step 6 Screen printing on the back side: laser grooving is performed on the back side of the silicon wafer, and back electrodes and back electric fields are printed on the back side.
  • Step 7 Screen printing on the front side: After printing through the back electrode and the back electric field, flip the battery piece at 180°, and use the four square MARK points prepared by laser scanning as the printing alignment point to adjust the positive electrode printing machine to successfully capture the camera. Taking the positions of four square MARK points, so that the metal fine gate lines can be correspondingly printed on the high concentration phosphorus doped region formed in step three;
  • the printing machine camera When the printing machine camera is not accurate enough and needs to adjust the printing position, four hollow squares are used as the alignment square MARK point, and the printing machine camera captures four square MARK points and then prints. After printing, the naked eye is observed and contrasted. The positional relationship between the printed grid line and the laser line in the middle of the square MARK point cutout.
  • the printing screen alignment point is in the direction in which the fine grid passes, as shown in FIG. 7 of the specification, it is easier to judge the printing offset. The direction is adjusted in time, and when the offset is adjusted to the center alignment, the printing of the batch SE battery is started.
  • Step 8 Sintering test: drying and sintering the positive back metal slurry, testing the binning, and completing the SE battery preparation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种晶硅选择性发射极产业化印刷对位方法,包括以下步骤:步骤一、硅片预处理;步骤二、P-N结的制备;步骤三、SE激光掺杂;步骤四、MARK点的制备:调整激光参数,使得MARK点在镭射制备过程中的激光打标能量均要高于SE激光掺杂的能量;步骤五、硅片再处理;步骤六、背面丝网印刷;步骤七、正面对位丝网印刷;步骤八、烧结测试。本发明对现有的SE技术激光MARK点进行了两种修改方式,其中新的MARK点在镭射过程中的激光打标能量均要高于镭射掺杂线的能量,使镭射区的色度和形貌与非镭射区产生显著差异;同时方形的MARK点以方形激光光斑打出消除了边缘不规则性,便于肉眼确认观察机器印刷后是否偏移量超标及偏移的方向,非常值得推广。

Description

一种晶硅选择性发射极产业化印刷对位方法 技术领域
本发明涉及丝网印刷技术领域,具体为一种晶硅选择性发射极产业化印刷对位方法。
背景技术
随着晶体硅技术的不断发展,太阳能电池生产规模的扩大以及电池价格的不断降低,降低生产成本、提高效率是电池技术发展的重点。对于现有的常规perc电池,其正面具有较高的结深和磷浓度,而反射极的高复合会导致较低的开压和短路电流,而选择性发射电极是因为其在接受光照的区域低浓度掺杂,在金属栅线下高掺杂,形成横向高低结结构增加P-N结间电势差,减少扩散层复合并降低金属接触区电阻,从而使电池性能整体得到提高,且该技术可以和多种背面提效技术叠加,便于电池效率进一步提升,和设备、材料的成本兼容使用。目前常用的技术为二次扩散法、湿法掩膜法、磷浆印刷法和激光掺杂法等,其中激光掺杂法因其工艺路线简化且兼容性高,设备、添加主辅料成本低廉等优势逐渐在产业化生产中扩大市场应用份额。在SE电池片印刷过程中,为了确保印刷细栅线在激光区域内,采用激光打出对位点的方式来进行印刷校准,因为激光选择性镭射宽度仅有100-120μm,而印刷栅线宽度在40-50μm左右,从而导致印刷偏移窗口仅30μm左右,这对印刷对位的精准性要求非常高,而激光图形和印刷图形的对准问题是选择性发射极晶硅电池提效的关键。
现有晶体硅选择性发射极太阳能电池在量产中存在一个显著的问题就是印刷栅线和SE镭射掺杂线的对准问题,印刷可调整的偏移窗口仅30μm左右,实际生产中需要激光掺杂线与印刷栅线中心精准的对位,在现有的技术中,对准问题引申出两个较为明显的缺陷:
1、均采用在激光掺杂时同时激光出印刷对位的MARK点,MARK点位是直径为0.5mm的实心圆,在实际量产中由于激光掺杂区的颜色差异和形貌与非掺杂区几乎无差异,且SE激光掺杂后还要经过6道生产工序才能进行印刷,无法用肉眼观察到基本对准情况和偏移量;
2、因为单个激光光斑形状为方形,对于激光出圆形对位点会造成对位点圆的边缘不规则性,从而导致印刷相机在对位MARK点时,由于CCD对MARK点的抓取识别偏差会产生额外的偏移量。
发明内容
本发明的目的在于提供一种晶硅选择性发射极产业化印刷对位方法,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:
一种晶硅选择性发射极产业化印刷对位方法,包括以下步骤:
步骤一、硅片预处理:对硅片进行预清洗和绒面制备;
步骤二、P-N结的制备:调整N 2量、通氧量、磷源量以及扩散温度,利用热扩散工艺制备出磷扩散层,且控制扩散层的方阻为100-180Ω;
步骤三、SE激光掺杂:采用激光对硅片正面预备印刷金属细栅线的位置进行选择性掺杂,通过激光局部熔融,使得激光扫描位置的磷进一步扩散,从而形成局部高浓度磷掺杂,使得该区域的方阻值降为60-90Ω;
步骤四、MARK点的制备:调整激光参数,使得MARK点在镭射制备过程中的激光打标能量均要高于SE激光掺杂的能量,在金属主栅的位置上形成方形MARK点;
步骤五、硅片再处理:对硅片进行背面刻蚀去PSG,退火,氧化铝钝化膜以及正背面SiNx层工艺制备;
步骤六、背面丝网印刷:在硅片背面进行激光开槽,对背面进行背电极 和背电场的印刷;
步骤七、正面对位丝网印刷:经过背电极和背电场印刷后,180°翻转电池片,以激光扫描制备的四个方形MARK点为印刷对位点,调节正电极印刷机台相机成功抓取四个方形MARK点的位置,使得金属细栅线能对应的印在步骤三所形成的高浓度磷掺杂区域上;
印刷后,通过肉眼观察对比印刷栅线和方形MARK点的位置关系,判断印刷偏移的方向,并及时进行调节,当偏移情况调节至中心对准后,开始批量性SE电池的印刷;
步骤八、烧结测试:烘干、烧结正背面金属浆料,测试分档,完成SE电池制备。
优选的,所述方形MARK点的尺寸为0.5mm,MARK点的制备功率设置为20-30W,且雕刻速度降低至100-10000mm/s。
优选的,所述方形MARK点为实心方形MARK点。
优选的,所述方形MARK点为镂空方形MARK点,且细栅线在印刷时需要在镂空方形MARK点的位置穿越主栅。
与现有技术相比,本发明的有益效果是:
1、提高印刷相机抓取对位MARK点的精准性;
2、方便晶硅选择性发射极电池量产中可以肉眼初步观察偏移量;
3、减少量产中因对位造成的耗时,降低对位耗时造成对产能的影响。
本发明对现有的SE技术激光MARK点进行了两种修改方式,其中新的MARK点在镭射过程中的激光打标能量均要高于镭射掺杂线的能量,采用多个大小不一的方形叠加的打标图形,使镭射区的色度和形貌与非镭射区产生显著差异;同时方形的MARK点以方形激光光斑打出消除了边缘不规则性,两种MARK点的打标激光能量均要高于镭射掺杂线的能量,在印刷过程中,一方面便于 相机CCD抓取识别MARK点以减少额外的偏移量,另一方面便于肉眼确认观察机器印刷后是否偏移量超标及偏移的方向,方便及时的进行印刷机台进行调整,非常值得推广。
附图说明
图1为本发明的印刷对位方法流程示意图;
图2为本发明的选择性发射极激光掺杂以及实心方形MARK点示意图;
图3为本发明的A区结构放大示意图;
图4为本发明的选择性发射极激光掺杂以及镂空方形MARK点示意图;
图5为本发明的B区结构放大示意图;
图6为本发明的丝网印刷金属细栅网版图形示意图;
图7为本发明的镂空方形MARK点与细栅连接示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1-7,本发明提供一种技术方案:
一种晶硅选择性发射极产业化印刷对位方法,包括以下步骤:
步骤一、硅片预处理:对硅片进行预清洗和绒面制备。
步骤二、P-N结的制备:调整N 2量、通氧量、磷源量以及扩散温度,利用热扩散工艺制备出磷扩散层,且控制扩散层的方阻为160Ω。
步骤三、SE激光掺杂:采用激光对硅片正面预备印刷金属细栅线的位置即预先设置的图形进行选择性掺杂,通过激光局部熔融,使得激光扫描位置的磷进一步扩散,从而形成局部高浓度磷掺杂,使得该区域的方阻值降为80 Ω,选择性激光掺杂图形如说明书附图2和说明书附图4所示,所有线段均为激光需扫面位置。
步骤四、MARK点的制备:在激光MARK点时需要对激光参数进行单独的选择,调整激光参数,所述方形MARK点的尺寸为0.5mm,MARK点的制备功率设置为28W,且雕刻速度降低至1000mm/s,使得MARK点在镭射制备过程中的激光打标能量均要高于SE激光掺杂的能量,在金属主栅的位置上形成方形MARK点,也是印刷所需正极网版上对位点的位置,位置如说明书附图2和说明书附图4所示,其中激光扫描对位MARK点的激光参数和扫描预留细栅线位置的参数不同,需要单独进行参数的修改,以得到更好的对位点形貌和方便识别。
方形MARK点分为两种,一种为实心方形MARK点,如说明书附图3所示,且实心方形MARK点在主栅上的位置没有特殊要求;另一种为镂空方形MARK点,如说明书附图5所示,镂空方形MARK点的使用,需要细栅线在MARK的位置穿越主栅,对MARK点位置有所要求。
对于步骤三和步骤四,SE激光掺杂和MARK点的制备可以采用同步镭射的方式进行,节约大量时间,在激光掺杂的同时,通过镭射能量的不同,直接制备出MARK点。
步骤五、硅片再处理:对硅片进行背面刻蚀去PSG,退火,氧化铝钝化膜以及正背面SiNx层工艺制备。
步骤六、背面丝网印刷:在硅片背面进行激光开槽,对背面进行背电极和背电场的印刷。
步骤七、正面对位丝网印刷:经过背电极和背电场印刷后,180°翻转电池片,以激光扫描制备的四个方形MARK点为印刷对位点,调节正电极印刷机台相机成功抓取四个方形MARK点的位置,使得金属细栅线能对应的印在步骤三所形成的高浓度磷掺杂区域上;
当印刷机台相机不够精确,需要调节印刷位置的情况下,采用四个镂空方形为对位方形MARK点,印刷机台相机抓取四个方形MARK点后进行印刷,印刷后,通过肉眼观察对比印刷栅线和方形MARK点镂空中间的激光线的位置关系,该种情况,印刷网版对位点处于细栅穿过的方向上,,如说明书附图7所示,更容易判断印刷偏移的方向,并及时进行调节,当偏移情况调节至中心对准后,开始批量性SE电池的印刷。
步骤八、烧结测试:烘干、烧结正背面金属浆料,测试分档,完成SE电池制备。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (4)

  1. 一种晶硅选择性发射极产业化印刷对位方法,其特征在于,包括以下步骤:
    步骤一、硅片预处理:对硅片进行预清洗和绒面制备;
    步骤二、P-N结的制备:调整N 2量、通氧量、磷源量以及扩散温度,利用热扩散工艺制备出磷扩散层,且控制扩散层的方阻为100-180Ω;
    步骤三、SE激光掺杂:采用激光对硅片正面预备印刷金属细栅线的位置进行选择性掺杂,通过激光局部熔融,使得激光扫描位置的磷进一步扩散,从而形成局部高浓度磷掺杂,使得该区域的方阻值降为60-90Ω;
    步骤四、MARK点的制备:调整激光参数,使得MARK点在镭射制备过程中的激光打标能量均要高于SE激光掺杂的能量,在金属主栅的位置上形成方形MARK点;
    步骤五、硅片再处理:对硅片进行背面刻蚀去PSG,退火,氧化铝钝化膜以及正背面SiNx层工艺制备;
    步骤六、背面丝网印刷:在硅片背面进行激光开槽,对背面进行背电极和背电场的印刷;
    步骤七、正面对位丝网印刷:经过背电极和背电场印刷后,180°翻转电池片,以激光扫描制备的四个方形MARK点为印刷对位点,调节正电极印刷机台相机成功抓取四个方形MARK点的位置,使得金属细栅线能对应的印在步骤三所形成的高浓度磷掺杂区域上;
    印刷后,通过肉眼观察对比印刷栅线和方形MARK点的位置关系,判断印刷偏移的方向,并及时进行调节,当偏移情况调节至中心对准后,开始批量性SE电池的印刷;
    步骤八、烧结测试:烘干、烧结正背面金属浆料,测试分档,完成SE电池制备。
  2. 根据权利要求1所述的一种晶硅选择性发射极产业化印刷对位方法,其特征在于:所述方形MARK点的尺寸为0.5mm,MARK点的制备功率设置为20-30W,且雕刻速度降低至100-10000mm/s。
  3. 根据权利要求1所述的一种晶硅选择性发射极产业化印刷对位方法,其特征在于:所述方形MARK点为实心方形MARK点。
  4. 根据权利要求1所述的一种晶硅选择性发射极产业化印刷对位方法,其特征在于:所述方形MARK点为镂空方形MARK点,且细栅线在印刷时需要在镂空方形MARK点的位置穿越主栅。
PCT/CN2018/118252 2018-04-24 2018-11-29 一种晶硅选择性发射极产业化印刷对位方法 WO2019205631A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810374324.XA CN108493267B (zh) 2018-04-24 2018-04-24 一种晶硅选择性发射极产业化印刷对位方法
CN201810374324.X 2018-04-24

Publications (1)

Publication Number Publication Date
WO2019205631A1 true WO2019205631A1 (zh) 2019-10-31

Family

ID=63314008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/118252 WO2019205631A1 (zh) 2018-04-24 2018-11-29 一种晶硅选择性发射极产业化印刷对位方法

Country Status (2)

Country Link
CN (1) CN108493267B (zh)
WO (1) WO2019205631A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111180530A (zh) * 2019-12-27 2020-05-19 天津爱旭太阳能科技有限公司 一种选择性发射极电池的制备方法
CN114361291A (zh) * 2021-12-24 2022-04-15 通威太阳能(安徽)有限公司 重掺杂硅片、晶硅太阳能电池及其制备方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108493267B (zh) * 2018-04-24 2019-06-07 通威太阳能(合肥)有限公司 一种晶硅选择性发射极产业化印刷对位方法
CN108550653A (zh) * 2018-04-24 2018-09-18 通威太阳能(合肥)有限公司 一种se电池印刷对位检测防偏移补偿方法
CN109742049A (zh) * 2018-11-23 2019-05-10 苏州迈为科技股份有限公司 一种电池片对位方法及激光装置
CN109713064B (zh) * 2018-12-26 2021-04-02 阜宁阿特斯阳光电力科技有限公司 一种选择性发射极、其制备方法和使用它的太阳能电池及其应用
CN110370830B (zh) * 2019-07-29 2020-11-10 百力达太阳能股份有限公司 一种目视检验印刷质量的方法
CN111490131B (zh) * 2020-04-26 2022-05-13 上饶捷泰新能源科技有限公司 一种se电池制备处理方法
CN111682090A (zh) * 2020-06-17 2020-09-18 广东爱旭科技有限公司 选择性发射极太阳能电池的制备方法及太阳能电池
CN112117352B (zh) * 2020-09-25 2022-07-29 通威太阳能(眉山)有限公司 一种用激光线追溯晶体硅电池生产信息的方法
CN112428714B (zh) * 2020-10-21 2022-09-09 浙江爱旭太阳能科技有限公司 一种se叠瓦电池电极印刷系统的对位方法
CN112477459B (zh) * 2020-10-21 2022-12-30 浙江爱旭太阳能科技有限公司 一种se叠瓦电池印刷系统的对位方法
CN112455108A (zh) * 2020-10-30 2021-03-09 江苏润阳悦达光伏科技有限公司 一种防止se电池生产过程印刷偏移的工艺方法
CN114267750A (zh) * 2021-12-13 2022-04-01 通威太阳能(安徽)有限公司 一种图形化激光掺杂方法和装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102145602A (zh) * 2010-11-19 2011-08-10 山东力诺太阳能电力股份有限公司 一种晶体硅选择性发射极电池的印刷对位方法
CN102779894A (zh) * 2011-05-12 2012-11-14 联景光电股份有限公司 太阳能电池的电极的制造方法与装置
US8759139B2 (en) * 2011-08-18 2014-06-24 International Business Machines Corporation Buried selective emitter formation for photovoltaic devices utilizing metal nanoparticle catalyzed etching
CN105326161A (zh) * 2014-07-17 2016-02-17 浙江伟星实业发展股份有限公司 一种渐变色树脂纽扣的生产工艺
CN107863419A (zh) * 2017-11-02 2018-03-30 国家电投集团西安太阳能电力有限公司 一种双面perc晶体硅太阳能电池的制备方法
CN108493267A (zh) * 2018-04-24 2018-09-04 通威太阳能(合肥)有限公司 一种晶硅选择性发射极产业化印刷对位方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102145602A (zh) * 2010-11-19 2011-08-10 山东力诺太阳能电力股份有限公司 一种晶体硅选择性发射极电池的印刷对位方法
CN102779894A (zh) * 2011-05-12 2012-11-14 联景光电股份有限公司 太阳能电池的电极的制造方法与装置
US8759139B2 (en) * 2011-08-18 2014-06-24 International Business Machines Corporation Buried selective emitter formation for photovoltaic devices utilizing metal nanoparticle catalyzed etching
CN105326161A (zh) * 2014-07-17 2016-02-17 浙江伟星实业发展股份有限公司 一种渐变色树脂纽扣的生产工艺
CN107863419A (zh) * 2017-11-02 2018-03-30 国家电投集团西安太阳能电力有限公司 一种双面perc晶体硅太阳能电池的制备方法
CN108493267A (zh) * 2018-04-24 2018-09-04 通威太阳能(合肥)有限公司 一种晶硅选择性发射极产业化印刷对位方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111180530A (zh) * 2019-12-27 2020-05-19 天津爱旭太阳能科技有限公司 一种选择性发射极电池的制备方法
CN114361291A (zh) * 2021-12-24 2022-04-15 通威太阳能(安徽)有限公司 重掺杂硅片、晶硅太阳能电池及其制备方法
CN114361291B (zh) * 2021-12-24 2023-12-01 通威太阳能(安徽)有限公司 重掺杂硅片、晶硅太阳能电池及其制备方法

Also Published As

Publication number Publication date
CN108493267B (zh) 2019-06-07
CN108493267A (zh) 2018-09-04

Similar Documents

Publication Publication Date Title
WO2019205631A1 (zh) 一种晶硅选择性发射极产业化印刷对位方法
CN106972065B (zh) 采用激光标记对位的p型perc双面太阳能电池及制备方法
CN102208493B (zh) 一种全背电极太阳能电池的制作方法
CN210617560U (zh) 一种太阳能电池印刷对准结构
CN109888053B (zh) P型perc双面太阳能电池对位印刷方法、制备方法及电池
WO2024032224A1 (zh) 激光硼掺杂电池发射极的制备方法、以及电池和制备系统
US20170278998A1 (en) Manufacturing method for solar cell and solar cell
CN111490131B (zh) 一种se电池制备处理方法
TW201709544A (zh) 太陽電池之製造方法
US10141466B2 (en) Substrate for solar cell, and solar cell
CN113851410A (zh) 一种电池片印刷对位方法
CN112117352B (zh) 一种用激光线追溯晶体硅电池生产信息的方法
CN108831961A (zh) 一种便于激光打标的Mark点图形结构及其制备方法
CN111682090A (zh) 选择性发射极太阳能电池的制备方法及太阳能电池
CN111370391A (zh) 一种新型的SE Mark点图形结构及其制备方法
CN102983214B (zh) 一种选择性发射极晶体硅太阳电池的制备方法
CN109713064B (zh) 一种选择性发射极、其制备方法和使用它的太阳能电池及其应用
CN110211890B (zh) 一种防止se电池生产过程印刷混片的检测方法
CN211404512U (zh) 一种可快速检测印刷偏移的双面电池背面激光开槽结构
WO2018218474A1 (zh) 一种提高电池板电极拉力的二次印刷工艺方法及网版
CN215771135U (zh) 一种太阳能电池的激光标记结构、激光标记与太阳能电池
CN116313867A (zh) 一种SE-TOPCon电池方块电阻测试方法
CN110957382A (zh) 太阳能电池片及其制备方法
JP2014007188A (ja) 太陽電池の製造方法
CN102856225B (zh) 一种选择性掺杂区域特性的检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18916590

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18916590

Country of ref document: EP

Kind code of ref document: A1