WO2019194550A1 - 구속 방지 필터를 구비하는 로봇 청소기 - Google Patents

구속 방지 필터를 구비하는 로봇 청소기 Download PDF

Info

Publication number
WO2019194550A1
WO2019194550A1 PCT/KR2019/003900 KR2019003900W WO2019194550A1 WO 2019194550 A1 WO2019194550 A1 WO 2019194550A1 KR 2019003900 W KR2019003900 W KR 2019003900W WO 2019194550 A1 WO2019194550 A1 WO 2019194550A1
Authority
WO
WIPO (PCT)
Prior art keywords
obstacle
light
unit
filter
sensor
Prior art date
Application number
PCT/KR2019/003900
Other languages
English (en)
French (fr)
Inventor
최혁두
홍지혜
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180038376A external-priority patent/KR102549434B1/ko
Priority claimed from KR1020180038375A external-priority patent/KR102500540B1/ko
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US17/044,358 priority Critical patent/US20210100416A1/en
Priority to EP19781408.0A priority patent/EP3779354A4/en
Publication of WO2019194550A1 publication Critical patent/WO2019194550A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2836Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means characterised by the parts which are controlled
    • A47L9/2852Elements for displacement of the vacuum cleaner or the accessories therefor, e.g. wheels, casters or nozzles
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/009Carrying-vehicles; Arrangements of trollies or wheels; Means for avoiding mechanical obstacles
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/10Filters; Dust separators; Dust removal; Automatic exchange of filters
    • A47L9/106Dust removal
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/10Filters; Dust separators; Dust removal; Automatic exchange of filters
    • A47L9/19Means for monitoring filtering operation
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2805Parameters or conditions being sensed
    • A47L9/2826Parameters or conditions being sensed the condition of the floor
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2805Parameters or conditions being sensed
    • A47L9/2831Motor parameters, e.g. motor load or speed
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2857User input or output elements for control, e.g. buttons, switches or displays
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/30Arrangement of illuminating devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/36Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4918Controlling received signal intensity, gain or exposure of sensor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • G05D1/0251Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means extracting 3D information from a plurality of images taken from different locations, e.g. stereo vision
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/04Automatic control of the travelling movement; Automatic obstacle detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/026Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles

Definitions

  • the present invention relates to a robot cleaner having a filter for preventing the cleaner from being bound by an obstacle.
  • the present invention also relates to a depth sensor control system capable of automatically measuring the depth of an object by automatically adjusting the amount of light received by the sensor.
  • a vacuum cleaner is a device that cleans a room by removing foreign substances, and a vacuum cleaner that sucks foreign substances using suction power is generally used.
  • the robot cleaner detects the cleaning area and obstacles using a sensor installed in the cleaner, runs the cleaning area, and performs cleaning automatically.
  • the robot cleaner moves to a charging station separately provided at a predetermined position to charge the battery, and then returns to the original position where the robot cleaner is cleaned.
  • edge cleaner (Agitator) is installed in the lower portion of the robot cleaner, the edge data is rotated during driving to sweep the dust or dirt on the floor to facilitate the suction.
  • FIGS. 1 to 3 is a view showing a conventional robot cleaner. Reference numerals shown in the drawings apply here only to the description of FIGS. 1 to 3.
  • the conventional robot cleaner disclosed in the Korean registered patent (KR 10-1292537) is provided with a main body 10 forming an external appearance and dust and the like installed inside the main body 10.
  • the dust collecting apparatus 20 and the blower 30 which communicates with the dust collecting apparatus 20 and generate
  • the inlet 11 for sucking dust and the like from the bottom is formed in the lower portion of the main body 10 forming the appearance.
  • An outlet 13 is formed for discharging the dust collected in the apparatus 20 to the docking station.
  • the lower portion of the main body 10 is provided with a rotary brush 14 (that is, edge data) for sweeping or scattering dust or dirt on the bottom to increase suction efficiency of dust or the like.
  • a rotary brush 14 that is, edge data
  • the conventional robot cleaner has a problem that the robot is bound to the obstacle by sucking a large obstacle as the suction force is enhanced.
  • the conventional robot cleaner disclosed in the Korean registered patent includes an edge taper 300 and an edge taper 300 disposed inside the suction head and rotated by the motor 200.
  • Speed detection means 400 for detecting the speed using the number of revolutions ().
  • the robot cleaner further includes a control means 100 for comparing the speed detection signal output from the speed detection means 400 with a speed command value preset by the user, and outputting a driving control signal based on the comparison result.
  • the conventional robot cleaner does not distinguish between the obstacle to be avoided and the obstacle to go over, there is a problem that the cleaning area is reduced when avoiding the obstacle.
  • FIGS. 1 to 3 For reference, reference numerals used in FIGS. 1 to 3 are limited to FIGS. 1 to 3.
  • automatic exposure control used in an image sensor is designed to maintain a target brightness for a continuous input image, and such exposure control is performed by controlling sensor gain and exposure time of the image sensor.
  • the automatic exposure control receives image data from the image sensor, processes it, and sends the accumulated time and gain to the sensor as it sees fit.
  • the exposure includes the concept of charge integration time and gain.
  • the charge accumulation time refers to the time taken until one pixel is reset and starts receiving light again to read out the accumulated charge amount.
  • the gain represents the degree to which the charge generated in proportion to the accumulation time is amplified by an analog or digital method. In general, when there is sufficient lighting, exposure control usually only adjusts the charge accumulation time, leaving the gain at one.
  • a bright image can be obtained by applying a gain greater than 1.
  • 4 and 5 are diagrams illustrating a conventional image sensor.
  • a brightness estimating apparatus 1 of a conventional image sensor according to a Korean registered patent KR 10-1694621 includes an image sensor 11, an automatic exposure control apparatus 12, and a brightness detecting unit. 13, the LUT generating unit 14, and the histogram generating unit 15.
  • the image sensor 11 includes a photographing sensor that outputs an RGB signal according to the intensity of light.
  • the brightness detector 13 maps the sensor gain and exposure time output from the automatic exposure control device 12 with the sensor gain and exposure time stored in the LUT generator 14 to correspond to the corresponding brightness and the color gamut in an arbitrary color gamut. Calculate brightness information per pixel at.
  • this method has a limitation that is difficult to apply directly to the 3D sensor that can obtain the distance information with the object that is being studied recently.
  • the laser device 2 according to the Korean Laid-open Patent Application KR 10-2015-0037693 adjusts the light output by applying a laser light sensor.
  • the laser device 2 measures the infrared rays emitted from the irradiation point of the laser light A formed on the processing material B using the sensor unit 32, or measures the temperature of the irradiation point,
  • the control module 33 may correspondingly adjust the output in real time.
  • control module 33 measures the temperature or the amount of light at the laser irradiation point using the sensor unit 32 in order to maintain the appropriate amount of light incident on the sensor unit 32, based on the laser module 31 Control the driving signal applied.
  • the laser light A output from the laser module 31 is output through the light guide part 22 and the irradiation part 23.
  • FIGS. 4 to 5 For reference, reference numerals used in FIGS. 4 to 5 are limited to FIGS. 4 to 5.
  • An object of the present invention is to provide a robot cleaner having a restraint prevention filter that can prevent the obstacle from being caught by the cleaning nozzle.
  • an object of the present invention is to provide a robot cleaner for controlling the restraint filter to avoid the obstacle or to climb the obstacle according to the type of the obstacle.
  • an object of the present invention is to provide a robot cleaner that stores the type and location of obstacles and runs by avoiding obstacles based on the stored data.
  • an object of the present invention is to provide a depth sensor control system that can reduce the cost required to control the amount of light by adjusting the amount of incident light by using the infrared intensity measurement function built into the depth sensor.
  • an object of the present invention is to provide a depth sensor control system capable of ensuring a fast response time for light quantity adjustment for accurately measuring depth information of an object.
  • the robot cleaner according to the present invention may include an anti-confinement filter disposed to face forward based on the edge data, thereby preventing the robot cleaner from being constrained by being caught by an obstacle in the cleaning nozzle.
  • the robot cleaner according to the present invention includes a controller for classifying an obstacle detected in the front into an avoiding obstacle or a climbing obstacle and controlling the position of the anti-blocking filter, so that an appropriate operation method may be selected according to the obstacle.
  • the robot cleaner according to the present invention includes a controller for storing the detected type and position of the obstacle in a memory and determining a driving method based on the data stored in the next driving, whereby the robot cleaner continues to restrain the same obstacle. Can be prevented.
  • the depth sensor control system by including a sensor controller for controlling the exposure time of the light receiving unit and the output of the light emitting unit, it is possible to automatically adjust the appropriate amount of light for measuring the depth of the target object.
  • the depth sensor control system by measuring the intensity and frequency of the infrared (IR intensity) reflected from the object in the light receiving unit, and adjusts the amount of light based on the histogram created based on this, it is accurate without additional equipment The depth information of the object can be measured.
  • IR intensity infrared
  • the robot cleaner according to the present invention includes a restraint preventing filter that can prevent an obstacle from being caught by a cleaning nozzle. Through this, it is possible to prevent the robot cleaner from being caught by an obstacle during cleaning or stopping foreign matters from being adsorbed by the cleaning nozzle and contaminating another cleaning area.
  • the robot cleaner according to the present invention by controlling to avoid or climb the obstacle according to the type of obstacle, it is possible to select the optimal driving method according to the obstacle. Through this, the cleaning range of the robot cleaner can be extended, and the cleaning efficiency can be improved by preventing obstacles from being caught by the cleaning nozzle.
  • the robot cleaner according to the present invention can prevent the robot cleaner from being continuously constrained to the same obstacle by storing the type and position of the obstacle and avoiding the obstacle based on the stored data. Through this, the reliability of the operation of the robot cleaner can be increased, and the user's satisfaction can be improved.
  • the depth sensor control system by automatically adjusting the amount of light for accurate depth measurement of the object, it is possible to prevent the phenomenon that the depth is not measured for some areas by the reflectance of the external light source or the target object. . Through this, the depth of the target object can be accurately measured by the depth sensor, and the reliability of the depth sensor can be improved.
  • the depth sensor control system by adjusting the amount of incident light using the measurement function of the infrared intensity built into the depth sensor, to measure the exact depth of the object of interest without adding a component for the amount of light control can do. Through this, the manufacturing cost of the depth sensor can be reduced, thereby improving the profit of the manufacturer.
  • the depth sensor control system by controlling the exposure time of the light receiving unit and the output of the light emitting unit by using a histogram created based on the intensity of the infrared ray measured by the light receiving unit, the amount of light for accurately measuring the depth information of the object Fast response time can be secured. Through this, the overall reaction speed of the system using the depth sensor can be improved, and the user's satisfaction using the device can be improved.
  • 1 to 3 is a view showing a conventional robot cleaner.
  • 4 and 5 are diagrams illustrating a conventional image sensor.
  • FIG. 6 is a perspective view showing a robot cleaner according to an embodiment of the present invention.
  • FIG. 7 is a plan view illustrating the robot cleaner of FIG. 6.
  • FIG. 8 is a cross-sectional view for describing an operation of the robot cleaner of FIG. 6.
  • FIG. 9 is a view for explaining the configuration of the anti-confinement filter of FIG. 6.
  • FIG. 10 is a block diagram illustrating components of the robot cleaner of FIG. 6.
  • FIG. 11 is a flowchart illustrating an operation of the robot cleaner of FIG. 6.
  • 12 to 14 are views for explaining the operation of the robot cleaner according to an embodiment of the present invention.
  • 15 is a block diagram illustrating a depth sensor control system according to an exemplary embodiment of the present invention.
  • FIG. 16 is a diagram for describing a driving method of the depth sensor control system of FIG. 15.
  • FIG. 17 is a graph for explaining a histogram used by the sensor controller of FIG. 15.
  • FIG. 18 is a flowchart for describing an operation of the depth sensor control system of FIG. 15.
  • FIG. 6 is a perspective view showing a robot cleaner according to an embodiment of the present invention.
  • FIG. 7 is a plan view illustrating the robot cleaner of FIG. 6.
  • 8 is a cross-sectional view for describing an operation of the robot cleaner of FIG. 6.
  • 9 is a view for explaining the configuration of the anti-confinement filter of FIG. 6.
  • FIG. 10 is a block diagram illustrating components of the robot cleaner of FIG. 6.
  • the robot cleaner 100 includes the housings 112 and 114, the controller 110, the sensor unit 120, the driver 130, and the edge data 132. , Anti-constraining filter unit 140, memory 150, display unit 160, and interface unit 170.
  • the housings 112 and 114 form the exterior of the robot cleaner 100.
  • the housings 112 and 114 include a main body 112 having a suction motor generating a suction force therein, and a nozzle unit 114 which sweeps dust or foreign substances from the bottom to facilitate suction.
  • the main body 112 has a control unit 110 and a driving unit 130 inside, a sensor unit 120 is disposed on one side, the display unit 160 and the interface unit 170 is disposed on the upper surface.
  • the main body 112 has an inlet (117 in FIG. 8) through which air sucked in from the nozzle unit 114 is introduced, a suction motor (not shown) for generating a suction force, and A dust container (not shown) for separating and storing foreign substances of air, and a discharge port 113 for discharging the sucked air to the outside may be provided.
  • the suction port 117 may be disposed between the nozzle unit 114 and the main body 112, and the discharge port 113 may be disposed on the upper surface of the main body 112.
  • the nozzle unit 114 corresponds to a part of the robot cleaner 100 sucking foreign substances.
  • the nozzle unit 114 has a shape protruding to one side of the main body unit 112. In this case, the direction in which the nozzle part 114 protrudes may be defined as the front direction of the main body part 112.
  • the upper surface of the nozzle unit 114 is formed lower than the upper surface of the main body 112.
  • some of the components included in the main body 112 may be disposed in the nozzle unit 114.
  • the edge unit 132 and the restriction prevention filter unit 140 are disposed inside the nozzle unit 114.
  • the edge data 132 sweeps or scatters dust or dirt on the bottom of the robot cleaner 100.
  • the restraint filter 140 will be described in detail later.
  • the controller 110 controls the operation of all components included in the robot cleaner 100.
  • the controller 110 receives the data sensed from the sensor unit 120 and controls the operation of the driving unit 130, the edge data 132, or the restraining filter unit 140 based on the received data.
  • the controller 110 determines the type of obstacle based on the data sensed by the sensor unit 120, and changes the driving method according to the determination result. For example, the controller 110 may classify the obstacle into an avoiding obstacle or a climbing obstacle.
  • the avoiding obstacle means an obstacle that may interfere with the course of the robot cleaner 100 when the robot cleaner 100 moves in the progress direction. For example, when the robot cleaner 100 is unable to climb because the height of the obstacle is high, or when the robot cleaner 100 proceeds as it is, the obstacle obstructs the moving direction of the robot cleaner 100. Or an obstacle that may be rolled into the robot cleaner 100.
  • the climbing obstacle means an obstacle that the robot cleaner 100 can ride over.
  • the climbing obstacle may include a door frame made of a hard material or a wide and heavy carpet.
  • the controller 110 may determine the type of obstacle based on the pre-stored data.
  • control unit 110 is a deep learning algorithm, logistic regression algorithm, self-learning based on the collected data for obstacle classification, SVM (Support Vector Machine) algorithm that extends the concept of perceptron, randomly initialized
  • SVM Small Vector Machine
  • CNN convolutional neural network
  • the CNN algorithm outputs a probability corresponding to each class (here, two classes of climbing / avoiding) when an image is input by learning parameters of a neural network randomly initialized with learning data. For example, when the robot cleaner 100 encounters an obstacle, the CNN algorithm calculates a probability of being a climbing obstacle or an avoiding obstacle, and selects the higher one of the obstacles in the image.
  • the sensor unit 120 is disposed at one side of the main body 112 to detect an obstacle located in front of the robot cleaner 100.
  • the sensor unit 120 transmits the measured data to the control unit 110.
  • the controller 110 determines an obstacle based on the data received from the sensor unit 120.
  • the sensor unit 120 may include an RGB sensor for measuring an image of an obstacle, an ultrasonic sensor, an infrared sensor, a depth sensor for measuring the depth of an obstacle, an RGB-D sensor, and the like.
  • the sensor unit 120 Since the sensor unit 120 has a constant measurement range, the sensor unit 120 may be tilted back, front, left, and right on the main body 112 to cover a wide area.
  • a plurality of sensors may be disposed on the body unit 112 or the nozzle unit 114 so as to detect the front, rear, and side sides of the main body 112. Can be.
  • the edge data 132 is composed of a rotating brush to sweep or scatter dust or dirt on the bottom of the robot cleaner 100.
  • the edge data 132 is disposed below the main body 112 or the nozzle unit 114, and is disposed so that a part of the rotating brush is in contact with the bottom.
  • the edge data 132 may rotate to move the robot cleaner 100 forward, and the rotation speed may be controlled by the controller 110.
  • the driving unit 130 generates a driving force for moving the robot cleaner 100.
  • the driving unit 130 includes a pair of wheels 135 disposed below the main body 112 and a driving motor (not shown) for generating a driving force for rotating the wheels 135. Include.
  • the driving unit 130 is controlled by the control unit 110.
  • the controller 110 rotates the pair of wheels 135 in the same direction to advance the main body 112 or rotates the pair of wheels 135 in different directions to rotate the main body 112. Can be.
  • the anti-constraining filter unit 140 may block the obstacle so that the obstacle located in the traveling direction of the robot cleaner 100 does not enter the edge data 132.
  • the anti-confinement filter unit 140 may include an anti-confinement filter 142, a rotation shaft 143 to which the anti-confinement filter 142 is fixed, and a filter driver 144 that controls the position of the rotation shaft 143.
  • the restraint prevention filter 142 has a shred shape composed of a plurality of thin and long strings, and may prevent the obstacles having a predetermined size or more from entering the inside of the main body 112.
  • the restraint preventing filter 142 may be disposed on the rotation shaft 143 at predetermined intervals.
  • the anti-constraint filter 142 may be formed in a shape of concave inwardly so as to filter out obstacles and having one end facing outward as shown in FIG. 9. This shape corresponds to a shape in which the anti-confinement filter 142 can pick up the obstacle while reducing the resistance when the tip of the pole touches the floor.
  • a part of the anti-confinement filter unit 140 may be disposed to protrude outward from the nozzle unit 114.
  • the restraint preventing filter 142 may be formed of a material having elasticity. Through this, the restraint preventing filter 142 moves by blocking the light obstacle when it is applied using its elasticity, and is bent inward when a heavy obstacle is applied.
  • the rotation shaft 143 to which the anti-confinement filter unit 140 is fixed may rotate by fixing a position inside the nozzle unit 114.
  • One side of the rotation shaft 143 is disposed a filter driver 144 for controlling the position of the rotation shaft 143.
  • the filter driver 144 may rotate the rotation shaft 143 to adjust the position of the anti-confinement filter 142.
  • the filter driver 144 may include a nozzle sensor unit (not shown) capable of measuring a magnitude of a resistance applied through the anti-confinement filter 142 inside.
  • the controller 110 may adjust the position of the anti-confinement filter 142 based on data measured by the nozzle sensor unit (not shown).
  • the filter driving unit 144 is a spring or the rotation axis 143 is rotated when a certain level or more resistance is applied to the anti-restriction filter 142, the position of the anti-restriction filter 142 is restored when the applied resistance disappears or It may include a drive motor.
  • the above description is only some examples of the filter driver 144, and the configuration of the filter driver 144 may be variously modified.
  • the memory 150 stores a control command code and control data for controlling the robot cleaner 100.
  • the memory 150 stores data measured by the sensor unit 120 during operation of the robot cleaner 100, types of obstacles determined by the controller 110, and data regarding position coordinates of the obstacles.
  • the memory 150 may include at least one of volatile memory and nonvolatile memory.
  • the memory 150 may be a nonvolatile medium such as a hard disk (HDD), a solid state disk (SSD), an embedded multi media card (eMMC), or a universal flash storage (UFS).
  • HDD hard disk
  • SSD solid state disk
  • eMMC embedded multi media card
  • UFS universal flash storage
  • the display unit 160 includes a display for displaying an operation state of the robot cleaner 100.
  • the display 160 may display information about the remaining battery capacity of the robot cleaner 100, the remaining storage capacity of the internal dust container, the operation mode, and the like.
  • the interface unit 170 may receive an operation method from a user.
  • the interface unit 170 configured as a button type interface is illustrated, but the present invention is not limited thereto.
  • the interface unit 170 may be replaced with a touch panel provided on the display unit 160, a microphone for receiving a user's voice command, a device for recognizing a user's gesture, and the like.
  • the robot cleaner 100 may further include a power supply unit that has a built-in battery or externally supplied power for internal power supply, and a communication unit that may exchange data with an external device.
  • FIG. 11 is a flowchart illustrating an operation of the robot cleaner of FIG. 6.
  • the controller 110 determines whether an obstacle is detected in the moving direction of the robot cleaner 100 based on the data measured by the sensor unit 120. Determine (S110).
  • the controller 110 determines whether the detected obstacle is a far obstacle farther away from the reference distance (S120).
  • the obstacle is not detected farther than the reference distance and is detected only in front of the anti-confinement filter 142, this corresponds to the case where the obstacle is caught by the anti-confinement filter 142 and the height is increased in front of the nozzle unit 114. . That is, this means that the robot cleaner 100 is restrained by an obstacle.
  • the anti-confinement filter 142 may prevent the fabric from entering the edge data 132, in which the fabric is pushed by the nozzle portion 114, increasing in height.
  • the controller 110 stores the position of the obstacle located in front of the nozzle unit 114 (S124), the obstacle Travel to avoid (S130).
  • the fabric is taken as an example, but even in the case of obstacles such as paper, rubber, and pallets that are creased, if the height is increased by being caught by the anti-confinement filter 142, the path of the robot cleaner 100 may be hindered.
  • the controller 110 may perform the cleaning operation by storing the location of the obstacle and avoiding it.
  • the controller 110 determines the type of the obstacle (S140).
  • the controller 110 determines whether the recognized obstacle is an avoiding obstacle (S150).
  • the avoiding obstacle means an obstacle that may interfere with the course of the robot cleaner 100 when the robot cleaner 100 moves in the progress direction.
  • the robot cleaner 100 cannot climb because the height of the obstacle is high, or when the robot cleaner 100 proceeds as it is, the obstacle obstructs the direction of the robot cleaner 100, or the robot cleaner ( 100) may include an obstacle that can be rolled into.
  • the controller 110 stores the position of the obstacle (S124).
  • the controller 110 controls the robot cleaner 100 to avoid the obstacle to drive (S130).
  • the controller 110 determines whether the recognized obstacle is a climbing obstacle (S155).
  • the climbing obstacle means an obstacle that the robot cleaner 100 can ride over.
  • the climbing obstacle may include a door frame made of a hard material or a wide and heavy carpet.
  • the controller 110 controls the filter driving unit 144 so that the anti-seizure filter 142 is not caught by the climbing obstacle to store the anti-confinement filter 142 into the nozzle unit 114. Let's do it.
  • control unit 110 may measure the resistance applied to the anti-confinement filter 142.
  • the control unit 110 may include the anti-confinement filter 142 in the nozzle. The position may be controlled to be received inside the unit 114.
  • the controller 110 may move the robot cleaner 100 in the advancing direction without adjusting the position of the anti-confinement filter 142.
  • the restraint preventing filter 142 is made of a material having elasticity, the restraint preventing filter 142 naturally has a nozzle unit 114 when a resistance greater than or equal to a predetermined size is applied by a climbing obstacle without separate control of the filter driving unit 144. ) Can be stored inside.
  • the controller 110 controls the driving unit 130 so that the robot cleaner 100 crosses the climbing obstacle (S160).
  • the controller 110 may control the driving unit 130 so that the height of the main body 112 increases so that the robot cleaner 100 easily crosses the obstacle.
  • the controller 110 drives the robot cleaner 100 to normal operation (S170).
  • the robot cleaner 100 since the robot cleaner 100 according to the present invention is controlled to avoid or climb an obstacle according to the type of obstacle, the robot cleaner 100 may select an optimal driving method according to the obstacle.
  • the cleaning range of the robot cleaner can be extended, and the cleaning efficiency can be improved by preventing obstacles from being caught by the cleaning nozzle.
  • 12 to 14 are views for explaining the operation of the robot cleaner according to an embodiment of the present invention.
  • the edge data 132 may be constrained by the obstacle E1 to stop the operation.
  • the robot cleaner 100 may be loaded, thereby increasing the probability of causing a failure.
  • the sensor unit 120 detects an obstacle located on the moving direction of the robot cleaner 100, but low obstacles E1 that the sensor unit 120 does not detect may exist in the cleaning area.
  • the anti-restriction filter 142 is disposed to face the front lower side of the nozzle unit 114, so that the obstacle E1 that the sensor unit 120 does not detect is the edge data 132. ) Can be prevented.
  • the robot cleaner 100 may be stopped by an obstacle during cleaning or foreign matter may be adsorbed by the edge data 132 to contaminate another cleaning area.
  • the restraint preventing filter 142 may have a strong resistance. I can receive it.
  • the restraint preventing filter 142 is made of a material having elasticity, the restraint filter 142 may be bent and received inside the nozzle unit 114 by the resistance of the heavy obstacle E2.
  • the anti-restriction filter unit 140 measures the resistance applied to the anti-restriction filter 142, and when the measured resistance is higher than the reference value, the anti-restriction filter unit 144 controls the filter driving unit 144 to move the anti-restriction filter 142 to the nozzle unit. It can be stored inside 114.
  • the obstacle E3 having an increased height may have a high resistance. Will have a load on the robot cleaner (100).
  • the sensor unit 120 may detect the presence of the obstacle E3.
  • the controller 110 recognizes that the obstacle E3 is not detected above the reference distance but suddenly detected below the reference distance.
  • the controller 110 stores the position of the obstacle E3 located in front of the nozzle unit 114 and controls the driving unit 130 to avoid the obstacle E3. Through this, the robot cleaner 100 may travel in advance by a certain distance even when the obstacle E3 meets the next driving.
  • the robot cleaner 100 of the present invention stores the position of the obstacle E3 and runs by avoiding the obstacle E3 based on the stored data, so that the robot cleaner 100 is continuously constrained to the same obstacle E3. Can be prevented.
  • FIGS. 6 to 14 For reference, the symbols used in FIGS. 6 to 14 are limited to FIGS. 6 to 14.
  • an apparatus for sensing distance information with a target object includes a 3D camera, a depth sensor, a motion capture sensor, a laser radar, and the like.
  • the depth sensor uses a time of flight (TOF) method.
  • TOF time of flight
  • the TOF method is a method of measuring the optical flight time until the light reflected from the target object is received by the sensor after irradiating the light to the target object.
  • the depth sensor measures the distance to the object by measuring the time when the light emitted from the light source is reflected back to the object.
  • FIG. 15 is a block diagram illustrating a depth sensor control system according to an exemplary embodiment of the present invention.
  • FIG. 16 is a diagram for describing a driving method of the depth sensor control system of FIG. 15.
  • the depth sensor control system 1000 includes a light emitter 100, a light receiver 200, and a controller 300.
  • the light emitter 100 emits light onto the object TG.
  • the light emitter 100 may irradiate the object TG with light in an infrared ray (IR) or near infrared ray (Near Infrared Ray) region.
  • IR infrared ray
  • Near Infrared Ray Near Infrared Ray
  • the light emitting unit 100 may emit light of different wavelengths (for example, a laser, an ultra-high frequency, a radio frequency (RF) signal, and an ultraviolet ray).
  • a laser for example, a laser, an ultra-high frequency, a radio frequency (RF) signal, and an ultraviolet ray.
  • RF radio frequency
  • ultraviolet ray the light emitting unit 100 that emits infrared (IR) light will be described as an example.
  • Intensity and wavelength of the irradiated light may be adjusted according to a driving voltage or a magnitude of power applied to the light emitting unit 100.
  • the output Ps of the light emitting unit 100 is controlled by the sensor controller 310.
  • Light emitted from the light emitter 100 may be reflected by the surface of the object TG, for example, skin or clothes. Depending on the distance between the light emitter 100 and the object TG, a phase difference between light emitted from the light emitter 100 and light reflected from the object TG may occur.
  • the light receiver 200 senses light (eg, infrared light) that is emitted from the light emitter 100 and reflected from the object TG.
  • light eg, infrared light
  • the light receiver 200 includes a lens 210, an optical shutter 220, and an image sensor 230.
  • the lens 210 collects infrared rays reflected from the object TG.
  • the light shutter 220 may be positioned on a path through which the light reflected from the object TG travels, and may change the IR intensity of the infrared light by changing the exposure time Texp of the reflected light.
  • the optical shutter 220 may modulate the waveform of the light reflected from the object TG by varying the degree of transmission of the light reflected from the object TG.
  • the light emitted from the light emitter 100 may be modulated by applying a specific frequency, and the optical shutter 220 may be driven at the same frequency as the specific frequency.
  • the shape in which the reflected light is modulated by the optical shutter 220 may vary according to the phase of the light incident on the optical shutter 220.
  • FIG. 16 illustrates changes in intensity of light irradiated from the light emitter 100 over time (ILIR), and reflecting IR profile reflected from the object TG:
  • ILIR light emitter 100 over time
  • IR profile reflected from the object TG a graph of the intensity change over time of the RFIR is shown.
  • changes in the transmittance of the optical shutter 220 with time are also shown.
  • the light emitter 100 may sequentially emit light ILIR to the object TG.
  • the plurality of lights ILIR output from the light emitter 100 may be irradiated to the object TG with an idle time, and may be irradiated with different phases.
  • phases of the irradiated lights ILIR may be 0 degrees, 90 degrees, 180 degrees, and 270 degrees, respectively. have.
  • the reflected light RFIRs reflected from the object TG may be incident to the image sensor 230 through the lens 210 and the optical shutter 220 independently.
  • the transmittance of the optical shutter 220 may change with time.
  • the transmittance of the optical shutter 220 may vary according to the level of the bias voltage applied to the optical shutter 220 in a specific wavelength region.
  • the waveform may be modulated while the reflected light RFIR passes through the optical shutter 220.
  • the waveform of the modulated reflected light RFIR may be changed according to the phase of the reflected light RFIR and the change in transmittance with time of the optical shutter 220.
  • the image sensor 230 may extract a phase difference between the reflected lights RFIR and the irradiated lights ILIR by photographing the reflected lights RFIR modulated by the optical shutter 220.
  • the image sensor 230 senses the intensity and phase of the light collected by the lens 210 and passed through the optical shutter 220.
  • the image sensor 230 may include a complementary metal oxide semiconductor (CMOS) sensor or a charge coupled device (CCD).
  • CMOS complementary metal oxide semiconductor
  • CCD charge coupled device
  • the controller 300 may calculate depth information of the object TG based on the intensity and phase of the light sensed by the image sensor 230.
  • the controller 300 includes a sensor controller 310 and a depth calculator 320.
  • the sensor controller 310 may determine the exposure time Texp of the light receiver 200 or the light emitter 100 based on the light intensity (ie, the light quantity) of the light reflected from the object TG. Adjust the output (Ps).
  • the sensor controller 310 reduces the exposure time Texp of the light receiver 200 or the output Ps of the light emitter 100 when the amount of light received is excessive.
  • the sensor controller 310 increases the exposure time Texp of the light receiver 200 or the output Ps of the light emitter 100.
  • the depth calculator 320 calculates the phase difference of the light reflected from the object TG and calculates depth information of each pixel of the object TG based on the calculated difference.
  • the controller 300 may adjust the intensity of light so that accurate depth information may be measured. It can be adjusted automatically.
  • the depth sensor control system 1000 of the present invention may include a display unit 400 that can visually display the depth information of the object TG to the user.
  • a display unit 400 that can visually display the depth information of the object TG to the user.
  • this is only one example, and the present invention is not limited thereto.
  • the depth sensor control system 1000 may transmit an operation command to the controller 300 using an interface unit (not shown).
  • the interface unit may include a touch panel provided on the display unit 400, a microphone for receiving a user's voice command, a device for recognizing a user's gesture, and the like.
  • FIG. 17 is a graph for explaining a histogram used by the sensor controller of FIG. 15.
  • the sensor controller 310 adjusts an exposure time Texp of the light receiver 200 or an output Ps of the light emitter 100 to generate a histogram generated based on the intensity of light received. I use it.
  • the sensor controller 310 generates a histogram with respect to the intensity of the infrared light incident on the light receiver 200.
  • the X axis of the histogram represents the IR intensity
  • the Y axis represents the number of pixels.
  • the categories of the X axis and the Y axis for the histogram may be implemented in various modifications.
  • a range R (hereinafter, appropriate range R) for a proper intensity of infrared rays for accurate depth measurement is set.
  • the appropriate range R of the histogram is designated as an area where the depth can be most stably obtained through experiments, and may be stored in advance in the memory of the controller 300 and used.
  • the appropriate range R of the histogram may be set to a range of 75 to 180 degrees of infrared intensity, but the present invention is not limited thereto.
  • a ratio of the intensity of light belonging to the appropriate range R in the histogram should be positioned within a predetermined reference ratio range.
  • the reference ratio range may be set based on a look-up table that is experimentally generated and stored in advance.
  • the look-up table may be previously stored in the memory of the controller 300 and used by the sensor controller 310.
  • the sensor controller 310 adjusts the exposure time Texp of the light receiver 200.
  • the exposure time (Texp) of the light receiving unit 200 is reduced, and if the ratio is less than the lower limit of the reference ratio range, the exposure time of the light receiving unit 200 Increase Texp.
  • the sensor controller 310 may expose the exposure time Texp of the light receiver 200. Increase On the contrary, when the ratio of the light intensity within the appropriate range R is 90 percent, the sensor controller 310 reduces the exposure time Texp of the light receiver 200.
  • the sensor controller 310 adjusts the exposure time Texp of the light receiver 200 when the ratio of the intensity of light belonging to the appropriate range R and the intensity of the total light is equal to or less than the reference ratio range. .
  • the sensor controller 310 increases the exposure time Texp of the light receiver 200.
  • the sensor controller 310 may adjust the exposure time Texp of the light receiver 200 only within a range of an appropriate exposure time.
  • the appropriate exposure time range means a range of exposure time that can ensure a proper response speed and depth accuracy in the depth sensor control system 1000.
  • the exposure time Texp of the light receiver 200 may be adjusted only between the upper limit threshold value T1 and the lower limit threshold value T2 of the appropriate exposure time range.
  • the sensor controller 310 may replace the exposure time Texp. Adjust the output Ps of 100).
  • FIG. 18 is a flowchart for describing an operation of the depth sensor control system of FIG. 15.
  • the light emitter 100 emits infrared rays to the object TG (S110).
  • the emitted infrared rays are reflected from the object TG and received by the light receiving unit 200.
  • the light receiver 200 detects infrared rays reflected from the object TG (S120).
  • the IR intensity received by the light receiver 200 may vary depending on the reflectance of the external light source or the object TG.
  • the sensor controller 310 generates an infrared histogram based on the IR intensity received by the light receiver 200 (S130).
  • the histogram is set to the appropriate range (R) of infrared rays for accurate depth measurement.
  • the appropriate range (R) of the histogram is designated as the area where the depth can be most stably through the experiment in advance, it may be stored and used in advance in the memory of the controller 300.
  • the sensor controller 310 calculates a ratio between the intensity of the infrared rays belonging to the appropriate range R and the intensity of the entire infrared rays (S140).
  • the sensor controller 310 derives a reference ratio range for securing reliability of the depth measurement based on a look-up table that has been experimentally generated and stored in advance.
  • the sensor controller 310 determines whether the calculated ratio is within a reference ratio range.
  • the depth calculator 320 calculates a depth for each pixel based on the data sensed by the light receiver 200 (S190).
  • the sensor controller 310 adjusts the exposure time Texp of the light receiver 200 (S160).
  • the sensor controller 310 decreases the exposure time Texp of the light receiving unit 200 when the ratio of the intensity of infrared rays belonging to the appropriate range R is greater than the upper limit of the reference ratio range, and lower limit of the reference ratio range. If smaller, the exposure time Texp of the light receiver 200 is increased.
  • the sensor controller 310 increases the exposure time Texp of the light receiver 200 when the ratio of the intensity of light belonging to the appropriate range R to the intensity of the total light is equal to or less than the reference ratio range. .
  • the sensor controller 310 may adjust the exposure time Texp of the light receiver 200 only within a range of an appropriate exposure time.
  • the sensor controller 310 determines whether the adjusted exposure time Texp is included in the appropriate exposure time range (S170).
  • the appropriate exposure time range means a range of exposure time that can ensure a proper response speed and depth accuracy in the depth sensor control system 1000.
  • the exposure time Texp of the light receiver 200 may be adjusted only between the upper limit threshold value T1 and the lower limit threshold value T2 of the appropriate exposure time range.
  • the sensor controller 310 adjusts the output Ps of the light emitting unit 100 (S180).
  • the sensor controller 310 increases the output of the light emitter 100.
  • the sensor controller 310 reduces the output of the light emitter 100.
  • the sensor controller 310 repeatedly performs steps S110 to S170 described above.
  • the sensor controller 310 repeatedly performs steps S110 to S150 described above.
  • the sensor controller 310 may adjust the exposure time Texp of the light receiver 200 and the output Ps of the light emitter 100 until the appropriate infrared intensity incident on the light receiver 200 is obtained.
  • the accuracy of the depth for the object TG calculated by the depth calculator 320 may be improved.
  • the depth sensor control system 1000 uses the histogram generated based on the intensity of the infrared rays measured by the light receiver 200, and the exposure time Texp of the light receiver 200 and the light emitter ( By controlling the output Ps of 100), it is possible to secure a fast response time with respect to the amount of light for accurately measuring depth information of the object.
  • the overall reaction speed of the depth sensor control system 1000 using the depth sensor may be improved, and the satisfaction of the user using the corresponding device may be improved.
  • the depth sensor control system 1000 adjusts the amount of incident light by using an infrared intensity measurement function built in the depth sensor, thereby accurately adjusting the target object without adding a component to control the amount of light. Depth can be measured. Through this, the manufacturing cost of the depth sensor can be reduced, and the profit of the manufacturer can be increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

본 발명은 장애물에 의해 청소기가 구속되는 것을 방지하기 위한 필터를 구비한 로봇 청소기에 관한 것이다. 본 발명에 따른 로봇 청소기는, 에지테이터를 기준으로 전방을 향하도록 배치되는 구속 방지 필터를 포함함으로써, 청소 노즐에 장애물이 걸려 로봇 청소기가 구속되는 것을 방지할 수 있다. 또한, 본 발명은 센서가 받는 빛의 양을 조절하여 대상의 깊이를 정확히 측정할 수 있는 깊이 센서 제어 시스템에 관한 것이다. 본 발명에 따른 깊이 센서 제어 시스템은, 대상체에서 반사된 적외선의 세기(IR intensity) 및 주파수를 수광부에서 측정하고, 이를 기초로 작성된 히스토그램을 기초로 광량으로 조절함으로써, 별도의 추가 장비 없이 정확한 사물의 깊이 정보를 측정할 수 있다.

Description

구속 방지 필터를 구비하는 로봇 청소기
본 발명은 장애물에 의해 청소기가 구속되는 것을 방지하기 위한 필터를 구비한 로봇 청소기에 관한 것이다.
또한, 본 발명은 센서가 받는 광량을 자동으로 조절하여 대상의 깊이를 정확히 측정할 수 있는 깊이 센서 제어 시스템에 관한 것이다.
청소기는 이물질을 제거하여 실내를 청결하게 하는 기구로서, 흡입력을 이용하여 이물질을 빨아들이는 진공청소기가 일반적으로 사용된다.
근래에는 사용자의 노동력 없이 자동 주행 기능을 통해 스스로 이동하면서 실내 바닥의 이물질을 제거하는 로봇 청소기(robot cleaner)가 개발되고 있다.
로봇 청소기는 청소기에 설치된 센서를 이용하여 청소영역과 장애물들을 감지하고, 청소영역을 주행하며 자동으로 청소를 수행한다. 로봇 청소기는 기기의 내부에 구비된 배터리의 전원이 소진되는 경우 소정 위치에 별도로 마련되어 있는 충전대로 이동하여 충전을 한 후, 다시 청소를 하던 본래의 위치로 복귀하여 청소를 수행한다.
또한, 로봇 청소기의 하부에는 에지테이터(Agitator)가 설치되며, 주행 시 에지테이터가 회전하여 바닥의 먼지나 오물들을 흡입이 용이하도록 쓸어내게 된다.
이하에서는, 국내 등록 특허(KR 10-1292537)와 국내 등록 특허(KR 10-0677275)를 참조하여, 종래의 로봇 청소기에 대해 살펴보도록 한다.
도 1 내지 도 3은 종래의 로봇 청소기를 나타내는 도면이다. 여기에서 도면에 도시된 도면부호는 도 1 내지 도 3의 설명에만 적용된다.
우선, 도 1 및 도 2를 참조하면, 국내 등록 특허(KR 10-1292537)에 개시된 종래의 로봇 청소기는 외관을 형성하는 본체(10)와, 본체(10) 내부에 설치되어 먼지 등이 집진되는 집진장치(20)와, 집진장치(20)와 연통하여 먼지 등을 흡입하기 위한 흡입력을 발생시키는 송풍장치(30)를 포함한다.
이때, 외관을 형성하는 본체(10)의 하부에는 바닥으로부터 먼지 등을 흡입하는 흡입구(11)가 형성된다. 본체(10)의 상부에는 송풍장치(30)에 의해 흡입된 공기를 본체(10) 외부로 토출시키기 위한 토출구(12)와, 로봇청소기(1)가 도킹스테이션(미도시)에 도킹되었을 때 집진장치(20)에 집진된 먼지를 도킹스테이션으로 배출하기 위한 배출구(13)가 형성된다.
본체(10)의 하부에는 먼지 등의 흡입효율을 높이기 위해 바닥의 먼지나 오물 등을 쓸거나 비산시키는 회전브러쉬(14)(즉, 에지테이터)가 구비된다.
다만, 이러한 종래의 로봇 청소기는 흡입력이 강화됨에 따라 큰 장애물을 빨아들여 로봇이 장애물에 구속되는 문제점이 있었다.
한편, 도 3을 참조하면, 국내 등록 특허(KR 10-0677275)에 개시된 종래의 로봇 청소기는, 흡입헤드 내측에 배치되며 모터(200)에 의해 회전되는 에지테이터(300)와, 에지테이터(300)의 회전수를 이용하여 속도를 검출하는 속도검출수단(400)을 포함한다. 이때, 로봇 청소기는 속도검출수단(400)에서 출력되는 속도검출신호와 사용자에 의해 기설정된 속도지령치를 비교하고, 그 비교결과에 근거한 구동제어신호를 출력하는 제어수단(100)을 더 포함한다.
다만, 도 3에 개시된 로봇 청소기의 경우, 에지테이터(300)에 이물질이 걸려 회전이 멈추게 되는 경우 대응이 어려운 문제점이 있었다.
또한, 종래의 로봇 청소기는 회피해야 할 장애물과 타고 넘어가야 할 장애물을 구분하지 못하여, 장애물을 피하다 보면 청소영역이 감소되는 문제점이 있었다.
또한, 종래의 로봇 청소기가 인식하지 못하는 장애물의 경우, 동일한 장애물에 계속해서 구속되는 동작을 반복함에 따라 청소를 제대로 수행하지 못하는 문제점이 있었다.
참고로, 도 1 내지 도 3에서 사용된 부호는 도 1 내지 도 3에만 한정하여 적용하는 것으로 한다.
한편, 일반적으로 이미지 센서에서 이용되는 자동 노출 제어는 지속적인 입력 영상에 대하여 목표하는 밝기를 유지하도록 설계되며, 이러한 노출 제어는 이미지 센서의 센서 이득(gain)과 노출 시간의 제어를 통해 이루어진다.
자동 노출 조절장치는 이미지 센서로부터 영상 데이터를 입력받아 처리한 다음 적절하다고 판단한 축적 시간과 이득을 센서로 보낸다.
여기에서, 노출(exposure)은 전하 축적 시간(charge Integration time)과 이득(gain)의 개념이 함께 포함된다. 전하 축적 시간이란 한 픽셀(pixel)이 리셋(reset)되고, 다시 빛을 받기 시작하여 축적된 전하량을 읽어낼 때까지 걸린 시간을 의미한다. 또한, 이득은 축적 시간에 비례하여 발생한 전하를 아날로그 또는 디지털적인 방식에 의하여 증폭하는 정도를 나타낸다. 일반적으로 조명이 충분할 경우 노출조절은 대체로 이득은 1로 두고, 전하 축적 시간만을 조절한다.
그러나 조명이 불충분한 환경에서는 노출 시간을 최대로 하여도 충분히 밝은 영상을 얻을 수 없기 때문에, 추가로 1보다 큰 이득을 적용하여 밝은 영상을 얻을 수 있다.
이하에서는, 국내 등록 특허(KR 10-1694621)와 국내 공개 특허(KR 10-2015-0037693)를 참조하여, 종래의 자동 노출 조절을 수행하는 이미지 센서에 대해 살펴보도록 한다.
도 4 및 도 5은 종래의 이미지 센서를 나타내는 도면이다.
우선, 도 4를 참조하면, 국내 등록 특허(KR 10-1694621)에 따른 종래의 이미지 센서의 밝기 추정장치(1)는, 이미지 센서(11)와, 자동 노출 조절장치(12)와, 밝기 검출부(13)와, LUT 생성부(14)와, 히스토그램 생성부(15)를 포함한다.
여기에서, 이미지 센서(11)는 빛의 세기에 따라 RGB 신호를 출력하는 촬영센서를 포함한다. 밝기 검출부(13)는 자동노출 조절장치(12)에서 출력되는 센서이득 및 노출시간을 LUT 생성부(14)에 저장된 센서이득 및 노출시간과 매핑하여 임의의 색상영역에서 대응하는 밝기와 상기 색상영역에서의 1 픽셀당 밝기 정보를 산출한다.
다만, 이러한 방식은 최근에 연구되고 있는 대상체(object)와의 거리 정보를 획득할 수 있는 3D 센서에는 직접적으로 적용하기 어려운 한계점이 있었다.
한편, 도 5를 참조하면, 국내 공개 특허(KR 10-2015-0037693)에 따른 레이저 장치(2)는 레이저 광센서를 적용하여 광 출력을 조절한다.
구체적으로, 레이저 장치(2)는 센서부(32)를 이용하여 가공재료(B) 상에 형성되는 레이저광(A)의 조사지점으로부터 방출되는 적외선을 측정하거나, 조사지점의 온도를 측정하고, 제어모듈(33)은 이에 대응하여 출력을 실시간으로 조절할 수 있다.
이때, 제어모듈(33)은 센서부(32)에 입사되는 적절한 광량을 유지하기 위해 센서부(32)를 이용하여 레이저 조사지점의 온도나 광량을 측정하고, 이를 기초로 레이저모듈(31)에 인가되는 구동신호를 제어한다. 레이저모듈(31)에서 출력된 레이저광(A)은 광가이드부(22)와 조사부(23)를 통해 출력된다.
다만, 이러한 광출력을 조절하기 위한 장치의 경우, 조사지점의 온도와 광량을 측정하는 별도의 센서가 필요하므로 측정 장치에 대한 제조 비용이 증가하는 문제점이 있었다.
또한, 종래의 광출력을 조절하기 위한 장치의 경우, 조사지점의 온도를 측정하는 데 상대적으로 긴 시간이 소요되므로, 광량을 조절하는 시간이 증가되는 문제점이 있었다.
참고로, 도 4 내지 도 5에서 사용된 부호는 도 4 내지 도 5에만 한정하여 적용하는 것으로 한다.
본 발명의 목적은, 장애물이 청소 노즐에 걸려서 청소기가 구속되는 것을 방지할 수 있는 구속 방지 필터를 구비하는 로봇 청소기를 제공함에 있다.
또한, 본 발명의 목적은, 장애물의 종류에 따라 장애물을 회피하거나 장애물을 등반할 수 있도록 구속 방지 필터를 제어하는 로봇 청소기를 제공함에 있다.
또한, 본 발명의 목적은, 장애물의 종류와 위치를 저장하고, 저장된 데이터를 기초로 장애물을 회피하여 주행하는 로봇 청소기를 제공함에 있다.
또한, 본 발명의 목적은, 사물의 정확한 깊이 측정을 위해 광량을 자동으로 조절하는 깊이 센서 제어 시스템을 제공함에 있다.
또한, 본 발명의 목적은, 깊이 센서에 내장된 적외선 세기의 측정 기능을 이용하여 입사되는 광량을 조절함으로써, 광량 제어에 필요한 비용을 감소시킬 수 있는 깊이 센서 제어 시스템을 제공함에 있다.
또한, 본 발명의 목적은, 사물의 깊이 정보를 정확히 측정하기 위한 광량 조절에 대하여 빠른 응답시간을 확보할 수 있는 깊이 센서 제어 시스템을 제공함에 있다.
본 발명의 목적들은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있고, 본 발명의 실시예에 의해 보다 분명하게 이해될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
본 발명에 따른 로봇 청소기는, 에지테이터를 기준으로 전방을 향하도록 배치되는 구속 방지 필터를 포함함으로써, 청소 노즐에 장애물이 걸려 로봇 청소기가 구속되는 것을 방지할 수 있다.
또한, 본 발명에 따른 로봇 청소기는, 전방에서 감지된 장애물을 회피 장애물 또는 등반 장애물로 분류하고 구속 방지 필터의 위치를 제어하는 제어부를 포함함으로써, 장애물에 따라 적절한 동작 방식을 선택할 수 있다.
또한, 본 발명에 따른 로봇 청소기는, 감지된 장애물의 종류와 위치를 메모리에 저장하고, 다음 주행에서 저장된 데이터를 기초로 주행 방법을 결정하는 제어부를 포함함으로써, 로봇 청소기가 동일한 장애물에 계속해서 구속되는 것을 방지할 수 있다.
또한, 본 발명에 따른 깊이 센서 제어 시스템은, 수광부의 노출시간과 발광부의 출력을 제어하는 센서 제어부를 포함함으로써, 대상 물체의 깊이 측정을 위한 적절한 광량을 자동으로 조절할 수 있다.
또한, 본 발명에 따른 깊이 센서 제어 시스템은, 대상체에서 반사된 적외선의 세기(IR intensity) 및 주파수를 수광부에서 측정하고, 이를 기초로 작성된 히스토그램을 기초로 광량으로 조절함으로써, 별도의 추가 장비 없이 정확한 사물의 깊이 정보를 측정할 수 있다.
본 발명에 따른 로봇 청소기는, 장애물이 청소 노즐에 걸려서 구속되는 것을 방지할 수 있는 구속 방지 필터를 구비한다. 이를 통해, 청소 도중 로봇 청소기가 장애물에 걸려 동작을 멈추거나, 이물질이 청소 노즐에 흡착되어 다른 청소영역을 오염시키는 것을 방지할 수 있다.
또한, 본 발명에 따른 로봇 청소기는, 장애물의 종류에 따라 장애물을 회피하거나 등반할 수 있도록 제어함으로써, 장애물에 따른 최적의 주행 방식을 선택할 수 있다. 이를 통해, 로봇 청소기의 청소 범위가 확장될 수 있으며, 장애물이 청소 노즐에 걸리는 것을 방지함으로써 청소 효율도 향상될 수 있다.
또한, 본 발명에 따른 로봇 청소기는, 장애물의 종류와 위치를 저장하고 저장된 데이터를 기초로 장애물을 회피하여 주행함으로써, 로봇 청소기가 동일한 장애물에 계속해서 구속되는 것을 방지할 수 있다. 이를 통해, 로봇 청소기의 동작에 대한 신뢰성이 증대되고, 사용자의 만족도는 향상될 수 있다.
또한, 본 발명에 따른 깊이 센서 제어 시스템은, 사물의 정확한 깊이 측정을 위한 광량을 자동으로 조절함으로써, 외부 광원이나 대상 사물의 반사율에 의해 일부 영역에 대한 깊이가 측정되지 않는 현상을 방지할 수 있다. 이를 통해, 깊이 센서에서 정확한 대상 사물의 깊이를 측정할 수 있으며, 깊이 센서에 대한 신뢰도가 향상될 수 있다.
또한, 본 발명에 따른 깊이 센서 제어 시스템은, 깊이 센서에 내장된 적외선 세기의 측정 기능을 이용하여 입사되는 광량을 조절함으로써, 광량 제어를 위해 구성요소를 추가하지 않고도 대상 사물에 대한 정확한 깊이를 측정할 수 있다. 이를 통해, 깊이 센서의 제조비용은 감소될 수 있어, 제조사의 이익을 향상시킬 수 있다.
또한, 본 발명에 따른 깊이 센서 제어 시스템은, 수광부에서 측정한 적외선의 세기를 기초로 작성된 히스토그램을 이용하여 수광부의 노출시간과 발광부의 출력을 제어함으로써, 사물의 깊이 정보를 정확히 측정하기 위한 광량 조절에 대하여 빠른 응답시간을 확보할 수 있다. 이를 통해, 깊이 센서를 이용하는 시스템의 전체적인 반응속도도 향상될 수 있으며, 해당 기기를 이용하는 사용자의 만족도도 향상될 수 있다.
상술한 효과와 더불어 본 발명의 구체적인 효과는 이하 발명을 실시하기 위한 구체적인 사항을 설명하면서 함께 기술한다.
도 1 내지 도 3은 종래의 로봇 청소기를 나타내는 도면이다.
도 4 및 도 5는 종래의 이미지 센서를 나타내는 도면이다.
도 6은 본 발명의 실시예에 따른 로봇 청소기를 나타내는 사시도이다.
도 7은 도 6의 로봇 청소기를 나타내는 평면도이다.
도 8은 도 6의 로봇 청소기의 동작을 설명하기 위한 단면도이다.
도 9는 도 6의 구속 방지 필터의 구성을 설명하기 위한 도면이다.
도 10은 도 6의 로봇 청소기의 구성요소를 나타내는 블럭도이다.
도 11은 도 6의 로봇 청소기의 동작을 나타내는 순서도이다.
도 12 내지 도 14는 본 발명의 실시예에 따른 로봇 청소기의 동작을 설명하기 위한 도면이다.
도 15는 본 발명의 실시예에 따른 깊이 센서 제어 시스템을 나타내는 블럭도이다.
도 16은 도 15의 깊이 센서 제어 시스템의 구동 방식을 설명하기 위한 도면이다.
도 17은 도 15의 센서 제어부에서 이용하는 히스토그램을 설명하기 위한 그래프이다.
도 18은 도 15의 깊이 센서 제어 시스템의 동작을 설명하기 위한 순서도이다.
본 명세서 및 특허청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합되는 의미와 개념으로 해석되어야만 한다. 또한, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 하나의 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
이하, 본 발명의 실시예에 따른 로봇 청소기에 관하여 도 6 내지 도 14를 참조하여 상세하게 설명하도록 한다.
도 6은 본 발명의 실시예에 따른 로봇 청소기를 나타내는 사시도이다. 도 7은 도 6의 로봇 청소기를 나타내는 평면도이다. 도 8은 도 6의 로봇 청소기의 동작을 설명하기 위한 단면도이다. 도 9는 도 6의 구속 방지 필터의 구성을 설명하기 위한 도면이다. 도 10은 도 6의 로봇 청소기의 구성요소를 나타내는 블럭도이다.
도 6 내지 도 10을 참조하면, 본 발명의 실시예에 따른 로봇 청소기(100)는 하우징(112, 114), 제어부(110), 센서부(120), 구동부(130), 에지테이터(132), 구속 방지 필터부(140), 메모리(150), 디스플레이부(160), 및 인터페이스부(170)를 포함한다.
하우징(112, 114)은 로봇 청소기(100)의 외관을 형성한다.
구체적으로, 하우징(112, 114)은 내부에 흡입력을 발생시키는 흡입 모터가 구비된 본체부(112)와, 바닥의 먼지나 이물질들을 흡입이 용이하도록 쓸어내는 노즐부(114)를 포함한다.
본체부(112)는 내측에 제어부(110) 및 구동부(130)가 구비되고, 일측에 센서부(120)가 배치되며, 상면에 디스플레이부(160) 및 인터페이스부(170)가 배치된다.
도면에 명확하게 도시되지는 않았으나, 본체부(112)에는 노즐부(114)에서 흡입된 공기가 인입되는 흡입구(도 8의 117)와, 흡입력을 발생시키는 흡입 모터(미도시)와, 흡입된 공기의 이물질들을 분리해 보관하는 먼지통(미도시)과, 흡입된 공기를 외부로 배출시키는 토출구(113)가 구비될 수 있다.
이때, 흡입구(117)는 노즐부(114)와 본체부(112) 사이에 배치되며, 토출구(113)는 본체부(112)의 상면에 배치될 수 있다.
노즐부(114)는 로봇 청소기(100)가 이물질을 빨아들이는 부분에 해당한다. 노즐부(114)는 본체부(112)의 일측으로 돌출된 형상을 지닌다. 이때, 노즐부(114)가 돌출된 방향은 본체부(112)의 정면 방향으로 정의될 수 있다. 노즐부(114)의 상면은 본체부(112)의 상면보다 낮게 형성된다.
참고로, 본체부(112)에 포함된 구성 중 일부는 노즐부(114)에 배치될 수 있다.
노즐부(114)는 내측에 에지테이터(132)와 구속 방지 필터부(140)가 배치된다. 에지테이터(132)는 로봇 청소기(100) 하부 바닥의 먼지나 오물 등을 쓸거나 비산시킨다. 구속 방지 필터부(140)에 대한 자세한 설명은 이하에서 후술하도록 한다.
제어부(110)는 로봇 청소기(100)에 포함된 모든 구성요소의 동작을 제어한다.
제어부(110)는 센서부(120)로부터 센싱된 데이터를 수신하고, 이를 기초로 구동부(130), 에지테이터(132) 또는 구속 방지 필터부(140)의 동작을 제어한다.
구체적으로, 제어부(110)는 센서부(120)에서 센싱한 데이터를 기초로 장애물의 종류를 판단하고, 판단 결과에 따라 주행 방식을 변경한다. 예를 들어, 제어부(110)는 장애물을 회피 장애물 또는 등반 장애물로 분류할 수 있다.
여기에서 회피 장애물은 로봇 청소기(100)가 진행 방향으로 그대로 이동하는 경우 로봇 청소기(100)의 진로를 방해할 수 있는 장애물을 의미한다. 예를 들어, 회피 장애물에는 장애물의 높이가 높아서 로봇 청소기(100)가 등반할 수 없거나, 얇은 직조물로 되어 있어 로봇 청소기(100)가 그대로 진행하는 경우 장애물이 로봇 청소기(100)의 진행 방향을 방해하거나, 로봇 청소기(100) 내로 말려 들어갈 수 있는 장애물 등이 포함될 수 있다.
반면, 등반 장애물은 로봇 청소기(100)가 타고 넘어갈 수 있는 장애물을 의미한다. 예를 들어, 등반 장애물에는 단단한 재질의 문틀이나, 넓고 무거운 카페트 등이 포함될 수 있다.
제어부(110)는 미리 저장된 데이터를 기초로 장애물의 종류를 판단할 수 있다.
또한, 제어부(110)는 장애물 분류를 위해, 수집된 데이터를 기초로 스스로 학습하는 딥 러닝(deep learning) 알고리즘, 로지스틱 회귀 알고리즘, 퍼셉트론 개념을 확장 적용한 SVM(Support Vector Machine) 알고리즘, 랜덤하게 초기화된 파라미터들을 이용하여 학습하는 CNN(Convolutional Neural Network) 알고리즘 등을 이용할 수 있다.
여기에서, CNN 알고리즘은 랜덤하게 초기화된 신경망의 파라미터들을 학습데이터로 학습시켜 영상이 입력되는 경우, 각 클래스(class; 여기서는 등반/회피 두 가지 클래스 있음)에 해당할 확률을 출력한다. 예를 들어, 로봇 청소기(100)가 장애물을 만나는 경우, CNN 알고리즘은 영상에서 장애물이 감지된 부분에 대하여 등반 장애물일 확률과 회피 장애물일 확률을 계산하고, 둘 중 높은 쪽을 선택한다.
참고로, 이러한 알고리즘은 제어부(110)에서 이용 가능한 몇몇의 예시에 불과하고, 본 발명이 이에 한정되는 것은 아니다.
센서부(120)는 본체부(112)의 일측에 배치되어, 로봇 청소기(100)의 전방에 위치하는 장애물을 감지한다. 센서부(120)는 측정된 데이터를 제어부(110)에 전달한다. 제어부(110)는 센서부(120)에서 수신된 데이터를 기초로 장애물를 판별한다.
센서부(120)는 장애물의 영상을 측정하는 RGB 센서, 초음파 센서, 적외선 센서, 장애물의 깊이를 측정하는 깊이 센서, RGB-D 센서 등을 포함할 수 있다.
센서부(120)는 일정한 측정범위를 가지므로 넓은 영역을 커버하기 위해 센서부(120)는 본체부(112) 상에서 전후-좌우로 틸트(tilt)될 수 있다.
참고로, 도면 상에 센서부(120)는 하나만이 도시되었으나, 본체부(112)의 전후방 및 측방을 감지할 수 있도록 복수 개의 센서가 본체부(112) 또는 노즐부(114) 상에 배치될 수 있다.
에지테이터(132)는 로봇 청소기(100) 하부 바닥의 먼지나 오물 등을 쓸거나 비산시키는 회전브러쉬로 구성된다.
에지테이터(132)는 본체부(112) 또는 노즐부(114)의 하부에 배치되며, 바닥에 회전브러쉬의 일부가 접하도록 배치된다. 에지테이터(132)는 로봇 청소기(100)가 전방으로 이동하도록 회전할 수 있으며, 제어부(110)에 의해 회전 속도가 제어될 수 있다.
구동부(130)는 로봇 청소기(100)를 이동시키는 구동력을 발생시킨다. 도면에 명확하게 도시하지는 않았으나, 구동부(130)는 본체부(112)의 하측에 배치되는 한 쌍의 바퀴(135)와, 바퀴(135)를 회전시키는 구동력을 발생시키는 구동 모터(미도시)를 포함한다.
구동부(130)는 제어부(110)에 의해 동작이 제어된다. 제어부(110)는 한 쌍의 바퀴(135)를 동일 방향으로 회전시켜 본체부(112)를 전진시키거나, 한 쌍의 바퀴(135)를 서로 다른 방향으로 회전시켜 본체부(112)를 회전시킬 수 있다.
구속 방지 필터부(140)는 로봇 청소기(100)의 진행방향에 위치한 장애물이 에지테이터(132)로 인입되지 않도록 장애물을 막아주는 기능을 수행한다.
구속 방지 필터부(140)는 구속 방지 필터(142)와, 구속 방지 필터(142)가 고정되는 회전축(143), 회전축(143)의 위치를 제어하는 필터 구동부(144)를 포함한다.
구속 방지 필터(142)는 얇고 긴 복수의 끈(string)으로 구성된 채(Shred) 형상으로 구성되며, 일정 크기 이상의 장애물이 본체부(112)의 내측으로 들어가지 않도록 일차적으로 막을 수 있다.
이를 위해, 구속 방지 필터(142)는 회전축(143) 상에 일정 간격으로 배치될 수 있다. 구속 방지 필터(142)는 도 9에 도시된 바와 같이 일정한 크기의 저항을 가짐과 동시에 장애물을 걸러낼 수 있도록 내측으로 오목하고, 일단이 외측으로 향하는 형상으로 형성될 수 있다. 이러한 형상은 구속 방지 필터(142)가 장애물을 받아낼 수 있으면서도 채의 끝이 바닥에 닿을 때 저항을 감소시키는 형상에 해당한다.
이때, 구속 방지 필터부(140)의 일부는 노즐부(114)의 외측으로 돌출되도록 배치될 수 있다.
구속 방지 필터(142)는 탄성을 가진 재질로 형성될 수 있다. 이를 통해, 구속 방지 필터(142)는 자체의 탄성을 이용하여 가벼운 장애물이 인가되는 경우 막으면서 이동하고, 무거운 장애물이 인가되는 경우 내측으로 휘어지게 된다.
구속 방지 필터부(140)이 고정된 회전축(143)은 노즐부(114)의 내측에 위치가 고정되어 회전할 수 있다. 회전축(143)의 일측에는 회전축(143)의 위치를 제어하는 필터 구동부(144)가 배치된다.
필터 구동부(144)는 회전축(143)을 회전시켜 구속 방지 필터(142)의 위치를 조절할 수 있다.
도면에 명확하게 도시하지는 않았으나, 필터 구동부(144)는 내측에 구속 방지 필터(142)를 통해 인가되는 저항의 크기를 측정할 수 있는 노즐 센서부(미도시)를 포함할 수 있다. 제어부(110)는 노즐 센서부(미도시)에서 측정한 데이터를 기초로 구속 방지 필터(142)의 위치를 조절할 수 있다.
또한, 필터 구동부(144)는 구속 방지 필터(142)에 일정 수준 이상의 저항이 가해지는 경우 회전축(143)이 회전되고, 인가되는 저항이 사라지는 경우 구속 방지 필터(142)의 위치가 원복되는 스프링 또는 구동 모터를 포함할 수 있다.
참고로, 앞에서 설명한 내용은 필터 구동부(144)의 몇몇 예시에 불과하며, 필터 구동부(144)의 구성은 다양하게 변형되어 실시될 수 있다.
메모리(150)는 로봇 청소기(100)를 제어하는 제어명령어코드, 제어데이터를 저장한다. 또한, 메모리(150)는 로봇 청소기(100)의 운행 도중 센서부(120)에서 측정한 데이터, 제어부(110)에서 판단한 장애물의 종류, 장애물의 위치좌표에 관한 데이터를 저장한다.
메모리(150)는 휘발성 메모리(volatile memory) 또는 불휘발성 메모리(nonvolatile memory) 중 적어도 하나를 포함할 수 있다. 또한, 메모리(150)는 하드디스크(HDD), 솔리드 스테이트 디스크(SSD, Solid State Disk), eMMC(embedded Multi Media Card), UFS(Universal Flash Storage)와 같은 불휘발성 매체일 수 있다.
디스플레이부(160)는 로봇 청소기(100)의 동작 상태를 표시하기 위한 디스플레이를 포함한다. 예를 들어, 디스플레이부(160)는 로봇 청소기(100)의 배터리의 잔량, 내부 먼지통의 잔여 수용 용량, 동작 모드 등에 대한 정보를 표시할 수 있다.
인터페이스부(170)는 사용자로부터 동작 방식을 입력 받을 수 있다. 도면에서는 버튼식 인터페이스로 구성된 인터페이스부(170)를 도시하였으나, 본 발명이 이에 한정되는 것은 아니다. 예를 들어, 인터페이스부(170)는 디스플레이부(160) 상에 구비된 터치 패널, 사용자의 음성 명령을 수신하는 마이크, 사용자의 제스쳐를 인식하는 장치 등으로 대체될 수 있다.
추가적으로, 로봇 청소기(100)는 내부 전력 공급을 위하여 배터리를 내장하거나 외부에서 전력을 공급받는 전원 공급부와, 외부 장치와 데이터를 교환할 수 있는 통신부를 더 포함할 수 있다.
도 11은 도 6의 로봇 청소기의 동작을 나타내는 순서도이다.
도 11을 참조하면, 본 발명의 실시예에 따른 로봇 청소기(100)에서 제어부(110)는 센서부(120)에서 측정한 데이터를 기초로 로봇 청소기(100)의 진행 방향에 장애물이 감지되는지 여부를 판단한다(S110).
이어서, 로봇 청소기(100)의 진행 방향에 장애물이 존재하는 경우, 제어부(110)는 감지된 장애물이 기준 거리보다 멀리 떨어진 원거리 장애물인지 여부를 판단한다(S120).
이어서, 인식된 장애물이 기준 거리보다 가까이에 위치한 경우, 해당 장애물이 구속 방지 필터(142)의 바로 앞에서만 감지되는지 여부를 판단한다(S122).
만약, 장애물이 기준 거리보다 멀리에서는 감지되지 않다가 구속 방지 필터(142)의 바로 앞에서만 감지되었다면, 이는 장애물이 구속 방지 필터(142)에 걸려 노즐부(114) 앞에서 높이가 상승한 경우에 해당한다. 즉, 이는 장애물에 의해 로봇 청소기(100)가 구속된 상태를 의미한다.
예를 들어, 직물의 경우, 구속 방지 필터(142)는 직물이 에지테이터(132)로 인입되지 않도록 막을 수 있으며, 이 과정에서 직물은 노즐부(114)에 의해 밀리게 되어 높이가 증가된다.
이때, 높이가 증가된 직물은 높은 저항을 가지게 되어 로봇 청소기(100)에 부하를 줄 수 있으므로, 제어부(110)는 이때 노즐부(114) 앞에 위치한 장애물의 위치를 저장하고(S124), 해당 장애물을 회피하도록 주행한다(S130).
참고로, 앞에서는 직물을 예로 들었으나, 구겨지기 쉬운 종이, 고무, 깔판과 같은 장애물의 경우에도 구속 방지 필터(142)에 걸려 높이가 상승하는 경우 로봇 청소기(100)의 진로를 방해할 수 있으므로, 제어부(110)는 해당 장애물의 위치를 저장하고 이를 회피하여 청소 동작을 수행할 수 있다.
한편, 인식된 장애물이 기준 거리보다 멀리에 위치한 경우, 제어부(110)는 장애물의 종류를 판단한다(S140).
이어서, 제어부(110)는 인식된 장애물이 회피 장애물인지 여부를 판단한다(S150).
여기에서 회피 장애물은 로봇 청소기(100)가 진행 방향으로 그대로 이동하는 경우 로봇 청소기(100)의 진로를 방해할 수 있는 장애물을 의미한다.
예를 들어, 회피 장애물에는 장애물의 높이가 높아서 로봇 청소기(100)가 등반할 수 없거나, 로봇 청소기(100)가 그대로 진행하는 경우 장애물이 로봇 청소기(100)의 진행 방향을 방해하거나, 로봇 청소기(100) 내로 말려 들어갈 수 있는 장애물 등이 포함될 수 있다.
이어서, 장애물이 회피 장애물로 인식되는 경우, 제어부(110)는 해당 장애물의 위치를 저장한다(S124).
이어서, 제어부(110)는 로봇 청소기(100)가 회피 장애물을 피해서 운전하도록 제어한다(S130).
반면, 제어부(110)는 인식된 장애물이 등반 장애물인지 여부를 판단한다(S155). 여기에서, 등반 장애물은 로봇 청소기(100)가 타고 넘어갈 수 있는 장애물을 의미한다. 예를 들어, 등반 장애물에는 단단한 재질의 문틀이나, 넓고 무거운 카페트 등이 포함될 수 있다.
이어서, 장애물이 등반 장애물로 인식되는 경우, 제어부(110)는 구속 방지 필터(142)가 등반 장애물에 걸리지 않도록 필터 구동부(144)를 제어하여 구속 방지 필터(142)를 노즐부(114) 내로 수납시킨다.
참고로, 제어부(110)는 구속 방지 필터(142)에 인가되는 저항을 측정할 수 있으며, 구속 방지 필터(142)에 기준치 이상의 저항이 걸리는 경우 제어부(110)는 구속 방지 필터(142)가 노즐부(114)의 내측으로 수납되도록 위치를 제어할 수 있다. 반면, 구속 방지 필터(142)에 기준치 이하의 저항이 걸리는 경우 제어부(110)는 구속 방지 필터(142)의 위치 조정 없이 로봇 청소기(100)를 진행 방향으로 이동시킬 수 있다.
또한, 구속 방지 필터(142)는 탄성을 가지는 물질로 구성되므로, 필터 구동부(144)의 별도의 제어 없이 등반 장애물에 의해 일정 크기 이상의 저항이 걸리는 경우 구속 방지 필터(142)는 자연스럽게 노즐부(114)의 내측으로 수납될 수 있다.
이어서, 제어부(110)는 로봇 청소기(100)가 등반 장애물을 넘어가도록 구동부(130)를 제어한다(S160). 예를 들어, 제어부(110)는 본체부(112)의 높이가 높아져서 장애물을 로봇 청소기(100)가 쉽게 넘을 수 있도록 구동부(130)를 제어할 수 있다.
이어서, 장애물이 감지되지 않는 경우, 제어부(110)는 로봇 청소기(100)를 정상 주행시킨다(S170).
즉, 본 발명에 따른 로봇 청소기(100)는, 장애물의 종류에 따라 장애물을 회피하거나 등반할 수 있도록 제어되므로 장애물에 따른 최적의 주행 방식을 선택할 수 있다.
이를 통해, 로봇 청소기의 청소 범위가 확장될 수 있으며, 장애물이 청소 노즐에 걸리는 것을 방지함으로써 청소 효율도 향상될 수 있다.
도 12 내지 도 14는 본 발명의 실시예에 따른 로봇 청소기의 동작을 설명하기 위한 도면이다.
도 12를 참조하면, 장애물(E1)이 로봇 청소기(100) 내부로 인입되는 경우, 에지테이터(132)가 장애물(E1)에 의해 구속되어 동작을 멈출 수 있다. 또한, 에지테이터(132)가 장애물(E1)에 구속된 채로 동작을 계속 수행하는 경우, 로봇 청소기(100)에 부하가 걸리게 되어 고장을 일으킬 확률이 높아진다.
이를 방지하기 위해, 센서부(120)는 로봇 청소기(100)의 진행 방향 상에 위치한 장애물을 감지하나, 센서부(120)가 감지하지 못하는 낮은 장애물(E1)들이 청소영역 내에 존재할 수 있다.
이때, 본 발명의 로봇 청소기(100)에서 구속 방지 필터(142)는 노즐부(114)의 하측 전방을 향하도록 배치되어, 센서부(120)가 감지하지 못한 장애물(E1)이 에지테이터(132)에 인입되는 것을 방지할 수 있다.
이를 통해, 청소 도중 로봇 청소기(100)가 장애물에 걸려 동작을 멈추거나, 이물질이 에지테이터(132)에 흡착되어 다른 청소영역을 오염시키는 것을 방지할 수 있다.
도 13을 참조하면, 센서부(120)가 감지하지 못한 장애물 중에서 상대적으로 무겁거나 바닥에 부착된 장애물(E2)(예를 들어, 카펫 등)의 경우, 구속 방지 필터(142)는 강한 저항을 받을 수 있다.
이때, 구속 방지 필터(142)는 탄성을 가지는 물질로 구성되므로 무거운 장애물(E2)의 저항에 의해 노즐부(114)의 내부로 휘어져 수납될 수 있다.
한편, 구속 방지 필터부(140)는 구속 방지 필터(142)에 인가되는 저항을 측정하고, 측정된 저항이 기준치보다 높아지는 경우, 필터 구동부(144)를 제어하여 구속 방지 필터(142)를 노즐부(114)의 내측으로 수납할 수 있다.
도 14를 참조하면, 센서부(120)에서 감지하지 못한 장애물(E3)이 구속 방지 필터(142)에 걸려서 노즐부(114)의 앞에 쌓이게 되는 경우, 높이가 증가된 장애물(E3)은 높은 저항을 가지게 되어 로봇 청소기(100)에 부하를 줄 수 있다.
이때, 장애물(E3)의 높이가 증가하게 되면 센서부(120)는 장애물(E3)의 존재를 감지할 수 있다. 제어부(110)는 장애물(E3)이 기준 거리 이상에서는 감지되지 않다가, 기준 거리 이하에서 갑자기 감지된 것으로 인식하게 된다.
이 경우, 제어부(110)는 노즐부(114) 앞에 위치한 장애물(E3)의 위치를 저장하고, 해당 장애물(E3)을 회피하도록 구동부(130)를 제어한다. 이를 통해, 로봇 청소기(100)는 해당 장애물(E3)을 다음 주행 때 만나더라도 일정 거리 앞에서 미리 회피하여 주행할 수 있다.
즉, 본 발명의 로봇 청소기(100)는 장애물(E3)의 위치를 저장하고 저장된 데이터를 기초로 장애물(E3)을 회피하여 주행함으로써, 로봇 청소기(100)가 동일한 장애물(E3)에 계속해서 구속되는 것을 방지할 수 있다.
이를 통해, 로봇 청소기의 동작에 대한 신뢰성이 증대되고, 사용자의 만족도는 향상될 수 있다.
참고로, 도 6 내지 도 14에서 사용된 부호는 도 6 내지 도 14에만 한정하여 적용하는 것으로 한다.
한편, 일반적으로 대상 물체(Target Object)와의 거리 정보를 센싱하기 위한 장치에는 3차원 카메라, 깊이 센서, 모션 캡처 센서(Motion Capture Sensor), 레이저 레이더(Laser Radar) 등이 있다.
여기에서, 깊이 센서(depth sensor)는 TOF(Time of Flight: 광시간비행법) 방식을 이용한다.
TOF 방식은 광을 대상 물체에 조사한 후, 대상 물체로부터 반사되는 광이 센서에 수광될 때까지의 광 비행시간을 측정하는 방법이다. 이러한 방식에 의해 깊이 센서는 광원으로부터 방출된 광이 물체에 반사되어 돌아오는 시간을 측정하여 물체와의 거리를 측정한다.
이하에서는, 이러한 깊이 센서에 입사되는 광량을 조절하는 깊이 센서 제어 시스템에 관하여 도 15 내지 도 18을 참조하여 상세하게 설명하도록 한다.
도 15는 본 발명의 실시예에 따른 깊이 센서 제어 시스템을 나타내는 블럭도이다. 도 16은 도 15의 깊이 센서 제어 시스템의 구동 방식을 설명하기 위한 도면이다.
도 15 및 도 16을 참조하면, 본 발명의 실시예에 따른 깊이 센서 제어 시스템(1000)은, 발광부(100), 수광부(200), 제어부(300)를 포함한다.
구체적으로, 발광부(100)는 대상체(TG)에 빛을 조사한다.
이때, 발광부(100)는 적외선(Infrared Ray; IR) 또는 근적외선(Near Infrared Ray) 영역의 광을 대상체(TG)에 조사할 수 있다.
참고로, 이는 하나의 예시에 불과하고 발광부(100)는 다른 파장의 빛(예를 들어, 레이저, 초고주파, RF(radio frequency) 신호, 자외선)을 조사할 수 있다. 이하에서는, 적외선(IR)을 조사하는 발광부(100)를 예로 들어 설명하도록 한다.
발광부(100)에 인가되는 구동 전압 또는 전력의 크기에 따라 조사되는 광의 세기(intensity) 및 파장(wavelength)이 조절될 수 있다. 이러한 발광부(100)의 출력(Ps)은 센서 제어부(310)에 의해 제어된다.
발광부(100)에서 조사된 광은 대상체(TG)의 표면, 예를 들어 피부나 의복에 의해 반사될 수 있다. 발광부(100)과 대상체(TG) 사이의 거리에 따라 발광부(100)에서 조사되는 광과 대상체(TG)로부터 반사되는 광의 위상차가 발생할 수 있다.
수광부(200)는 발광부(100)에서 조사되어 대상체(TG)로부터 반사된 광(예를 들어, 적외선)을 센싱한다.
수광부(200)는 렌즈(210), 광 셔터(220), 이미지 센서(230)로 구성된다. 다만, 이는 하나의 예시에 불과하고 수광부(200)는 상기 구성요소의 일부가 생략되거나 부가적인 구성요소가 추가되어 실시될 수 있다.
구체적으로, 렌즈(210)는 대상체(TG)에서 반사된 적외선을 집광한다.
광 셔터(220)는 대상체(TG)에서 반사된 광이 진행하는 경로 상에 위치하며, 반사광의 노출시간(Texp)을 변화시켜 적외선의 세기(IR intensity)를 변화시킬 수 있다.
또한, 광 셔터(220)는 대상체(TG)로부터 반사된 광의 투과 정도를 달리하여 대상체(TG)로부터 반사된 광의 파형을 변조시킬 수 있다.
발광부(100)에서 방출된 광은 특정 주파수를 인가하여 변조될 수 있고, 광 셔터(220)는 상기 특정 주파수와 동일한 주파수로 구동될 수 있다. 이때, 광 셔터(220)에 의해 반사광이 변조되는 모양은 광 셔터(220)에 입사하는 광의 위상에 따라 달라질 수 있다.
도 16을 참조하면, 도 16에는 발광부(100)에서 조사된 광(Illuminating IR profile; 이하 ILIR)의 시간에 따른 강도(intensity) 변화와, 대상체(TG)로부터 반사된 광(reflecting IR profile: 이하, RFIR)의 시간에 따른 강도 변화를 그래프가 도시되어 있다. 또한, 광 셔터(220)의 투과율의 시간에 따른 변화를 함께 나타내었다.
발광부(100)에서는 대상체(TG)에 순차적으로 광(ILIR)을 조사할 수 있다. 이때, 발광부(100)에서 출력되는 다수의 광(ILIR)은 유휴시간(idle time)을 두고 대상체(TG)에 조사될 수 있으며, 각각 서로 다른 위상으로 조사될 수 있다.
예를 들어, 발광부(100)으로부터 대상체(TG)에 대해 4개의 광(ILIR)을 조사하는 경우, 조사되는 광들(ILIR)의 위상은 각각 0도, 90도, 180도, 270도 일 수 있다.
이어서, 대상체(TG)에서 반사된 반사광들(RFIR)은 독립적으로 렌즈(210) 및 광 셔터(220)를 통과하여 이미지 센서(230)에 입사될 수 있다.
이때, 광 셔터(220)의 투과율은 시간에 따라 변할 수 있다. 그리고, 특정 파장 영역에서 광 셔터(220)에 인가하는 바이어스(bias) 전압의 레벨에 따라 광 셔터(220)의 투과율이 변화할 수 있다. 이를 통해, 반사광들(RFIR)이 광 셔터(220)를 투과하면서 파형이 변조될 수 있다.
변조된 반사광들(RFIR)의 파형은 반사광들(RFIR)의 위상 및 광 셔터(220)의 시간에 따른 투과율 변화에 따라 변경될 수 있다.
이어서, 이미지 센서(230)는 광 셔터(220)에 의해 변조된 반사광들(RFIR)을 촬영함으로써 반사광들(RFIR)과 조사광들(ILIR) 사이의 위상 차이를 추출할 수 있다.
이때, 이미지 센서(230)는 렌즈(210)에서 집광되어 광 셔터(220)를 통과한 빛의 세기 및 위상을 센싱한다. 이미지 센서(230)는 CMOS(Complementary Metal Oxide Semiconductor) 센서 또는 CCD(charge coupled device)를 포함할 수 있다.
이어서, 제어부(300)는 이미지 센서(230)에서 센싱한 빛의 세기 및 위상을 기초로 대상체(TG)의 깊이 정보를 산출할 수 있다.
제어부(300)는 센서 제어부(310)와 깊이 계산부(320)를 포함한다.
구체적으로, 센서 제어부(310)는 대상체(TG)로부터 반사되어 측정된 광의 세기(Light intensity)(즉, 광량)를 기초로, 수광부(200)의 노출시간(Texp) 또는 발광부(100)의 출력(Ps)을 조절한다.
수광부(200)에 수광되는 빛의 세기가 적정범위 내에 있지 않는 경우, 대상체(TG)의 깊이 정보가 제대로 측정되지 않을 수 있다.
이를 보정하기 위하여, 센서 제어부(310)는 수신된 광량이 과다한 경우, 수광부(200)의 노출시간(Texp) 또는 발광부(100)의 출력(Ps)을 감소시킨다.
반대로, 센서 제어부(310)는 수신된 광량이 부족한 경우, 수광부(200)의 노출시간(Texp) 또는 발광부(100)의 출력(Ps)을 증가시킨다.
이에 대한 자세한 설명은 이하에서 후술하도록 한다.
한편, 깊이 계산부(320)는 대상체(TG)로부터 반사되어 측정된 광의 위상차를 계산하고, 이를 기초로 대상체(TG)에 대한 각 픽셀의 깊이 정보를 산출한다.
즉, 제어부(300)는 외부 광원이나 대상체(TG)의 반사율에 의해 적절한 광량이 확보되지 않아 대상체(TG)의 일부 영역의 깊이가 측정되지 않는 경우, 정확한 깊이 정보가 측정될 수 있도록 광의 세기를 자동으로 조절할 수 있다.
참고로, 본 발명의 깊이 센서 제어 시스템(1000)은 대상체(TG)의 깊이 정보를 사용자에게 시각적으로 나타낼 수 있는 디스플레이부(400)를 포함할 수 있다. 다만, 이는 하나의 예시에 불과하고, 본 발명이 이에 한정되는 것은 아니다
또한, 도면에 명확히 도시되지는 않았으나, 깊이 센서 제어 시스템(1000)은 인터페이스부(미도시)를 이용하여 제어부(300)에 동작 명령을 전달할 수 있다.
예를 들어, 인터페이스부(미도시)에는 디스플레이부(400) 상에 구비된 터치 패널, 사용자의 음성 명령을 수신하는 마이크, 사용자의 제스쳐를 인식하는 장치 등이 포함될 수 있다.
도 17은 도 15의 센서 제어부에서 이용하는 히스토그램을 설명하기 위한 그래프이다.
도 17을 참조하면, 센서 제어부(310)는 수광부(200)의 노출시간(Texp) 또는 발광부(100)의 출력(Ps)을 조절하는데 수광된 광의 세기를 기초로 생성된 히스토그램(Histogram)을 이용한다.
구체적으로, 센서 제어부(310)는 수광부(200)에 입사되는 적외선의 세기에 대하여 히스토그램(Histogram)을 생성한다.
여기에서, 히스토그램(Histogram)의 X 축은 적외선의 세기(IR intensity)를 나타내고, Y축은 픽셀의 숫자(Number of pixel)을 나타낸다. 참고로, 히스토그램(Histogram)에 대한 X 축 및 Y축의 범주는 다양하게 변형되어 실시될 수 있다.
히스토그램(Histogram)에는 정확한 깊이 측정을 위한 적외선의 적정 세기에 대한 범위(R)(이하, 적정범위(R))가 설정된다.
히스토그램(Histogram)의 적정범위(R)는 사전에 실험을 통해 깊이가 가장 안정적으로 나올 수 있는 영역으로 지정되고, 제어부(300)의 메모리에 미리 저장되어 이용될 수 있다.
예를 들어, 히스토그램(Histogram)의 적정범위(R)는 적외선의 세기가 75 이상 180 이하의 범위로 설정될 수 있으나, 본 발명이 이에 한정되는 것은 아니다.
깊이 계산부(320)가 대상체(TG)에 대한 깊이 측정을 정확히 하기 위해서는 히스토그램(Histogram)에서 적정범위(R)에 속한 광의 세기에 대한 비율이 미리 정해진 기준비율범위 내에 위치해야 한다.
이때, 기준비율범위는 사전에 실험적으로 생성되어 저장된 룩업테이블(Look-up table)을 기초로 설정될 수 있다. 룩업테이블(Look-up table)은 제어부(300)의 메모리부에 미리 저장되어 센서 제어부(310)에서 이용될 수 있다.
적정범위(R)에 속한 광의 세기와 전체 광의 세기의 비율이 기준비율범위 내에 위치하지 않은 경우, 센서 제어부(310)는 수광부(200)의 노출시간(Texp)을 조절한다.
적정범위(R)에 속한 광의 세기에 대한 비율이 기준비율범위의 상한보다 큰 경우 수광부(200)의 노출시간(Texp)을 감소시키고, 기준비율범위의 하한보다 작은 경우 수광부(200)의 노출시간(Texp)을 증가시킨다.
예를 들어, 기준비율범위가 70 퍼센트에서 80 퍼센트인 것을 전제로, 적정범위(R)에 속한 광의 세기에 대한 비율이 60퍼센트인 경우 센서 제어부(310)는 수광부(200)의 노출시간(Texp)을 증가시킨다. 반대로, 적정범위(R)에 속한 광의 세기에 대한 비율이 90퍼센트인 경우 센서 제어부(310)는 수광부(200)의 노출시간(Texp)을 감소시킨다.
참고로, 본 발명의 다른 실시예에서, 기준비율범위에는 특정 기준값 만이 존재할 수 있다.
이 경우, 센서 제어부(310)는 적정범위(R)에 속한 광의 세기와 전체 광의 세기의 비율이 기준비율범위 이하인 경우, 센서 제어부(310)는 수광부(200)의 노출시간(Texp)을 조절한다.
예를 들어, 기준비율범위가 75 퍼센트이고 적정범위(R)에 속한 광의 세기에 대한 비율이 70퍼센트인 경우, 센서 제어부(310)는 수광부(200)의 노출시간(Texp)을 증가시킨다.
한편, 센서 제어부(310)는 수광부(200)의 노출시간(Texp)을 적정 노출시간의 범위에서만 조절할 수 있다.
여기에서, 적정 노출시간범위는 깊이 센서 제어 시스템(1000)에서 적절한 응답속도와 깊이 정확도를 확보할 수 있는 노출시간의 범위를 의미한다.
즉, 수광부(200)의 노출시간(Texp)은 적정 노출시간범위의 상한 경계값(T1)과 하한 경계값(T2) 사이에서만 조절될 수 있다.
만약, 수광부(200)의 노출시간(Texp)이 상한 경계값(T1) 또는 하한 경계값(T2)에 위치하도록 조정되는 경우, 센서 제어부(310)는 노출시간(Texp)을 대신하여 발광부(100)의 출력(Ps)을 조정한다.
이하에서는, 센서 제어부(310)에서 적정한 광량을 확보하기 위하여 노출시간(Texp)을 대신하여 발광부(100)의 출력(Ps)을 조정하는 방법에 대해 자세히 설명하도록 한다.
도 18은 도 15의 깊이 센서 제어 시스템의 동작을 설명하기 위한 순서도이다.
도 18을 참조하면, 본 발명의 실시예에 따른 깊이 센서 제어 시스템의 동작은 우선, 발광부(100)는 대상체(TG)에 적외선을 방출한다(S110). 방출된 적외선은 대상체(TG)로부터 반사되어 수광부(200)에 수광된다.
이어서, 수광부(200)는 대상체(TG)로부터 반사되는 적외선을 감지한다(S120). 이때, 수광부(200)에 수광되는 적외선의 세기(IR intensity)는 외부 광원 또는 대상체(TG)의 반사율에 따라 달라질 수 있다.
이어서, 센서 제어부(310)는 수광부(200)에 수광된 적외선의 세기(IR intensity)를 기초로 적외선 히스토그램(Histogram)을 생성한다(S130). 이때, 히스토그램(Histogram)에는 정확한 깊이 측정을 위한 적외선의 적정범위(R)가 설정된다. 여기에서, 히스토그램(Histogram)의 적정범위(R)는 사전에 실험을 통해 깊이가 가장 안정적으로 나올 수 있는 영역으로 지정되며, 제어부(300)의 메모리에 미리 저장되어 이용될 수 있다.
이어서, 센서 제어부(310)는 적정범위(R)에 속한 적외선의 세기와 전체 적외선의 세기에 대한 비율을 계산한다(S140).
이어서, 센서 제어부(310)는 사전에 실험적으로 생성되어 저장된 룩업테이블(Look-up table)을 기초로 깊이 측정의 신뢰성을 확보하기 위한 기준비율범위를 도출한다.
이어서, 센서 제어부(310)는 상기 계산된 비율이 기준비율범위 내에 있는지 여부를 판단한다.
이어서, 계산된 비율이 기준비율범위 내에 포함되는 경우, 깊이 계산부(320)는 수광부(200)에서 센싱된 데이터를 기초로 각 픽셀에 대한 깊이를 산출한다(S190).
반면, 계산된 비율이 기준비율범위 내에 포함되지 않는 경우, 센서 제어부(310)는 수광부(200)의 노출시간(Texp)을 조절한다(S160).
구체적으로, 센서 제어부(310)는 적정범위(R)에 속한 적외선의 세기에 대한 비율이 기준비율범위의 상한보다 큰 경우 수광부(200)의 노출시간(Texp)을 감소시키고, 기준비율범위의 하한보다 작은 경우 수광부(200)의 노출시간(Texp)을 증가시킨다.
참고로, 본 발명의 다른 실시예에서, 기준비율범위에는 특정 기준값 만이 존재할 수 있다. 이 경우, 센서 제어부(310)는 적정범위(R)에 속한 광의 세기와 전체 광의 세기의 비율이 기준비율범위 이하인 경우, 센서 제어부(310)는 수광부(200)의 노출시간(Texp)을 증가시킨다.
한편, 센서 제어부(310)는 수광부(200)의 노출시간(Texp)을 적정 노출시간의 범위에서만 조절할 수 있다.
이어서, 센서 제어부(310)는 조정된 노출시간(Texp)이 적정 노출시간범위에 포함되는지 여부를 판단한다(S170). 여기에서, 적정 노출시간범위는 깊이 센서 제어 시스템(1000)에서 적절한 응답속도와 깊이 정확도를 확보할 수 있는 노출시간의 범위를 의미한다.
즉, 수광부(200)의 노출시간(Texp)은 적정 노출시간범위의 상한 경계값(T1)과 하한 경계값(T2) 사이에서만 조절될 수 있다.
만약, 조정된 노출시간(Texp)이 적정 노출시간범위에 포함되지 않는 경우, 센서 제어부(310)는 발광부(100)의 출력(Ps)을 조정한다(S180).
구체적으로, 조정된 노출시간(Texp)이 적정 노출시간범위의 상한 경계값에 해당하는 경우, 센서 제어부(310)는 발광부(100)의 출력을 증가시킨다. 반대로, 조정된 노출시간(Texp)이 적정 노출시간범위의 하한 경계값에 해당하는 경우, 센서 제어부(310)는 발광부(100)의 출력을 감소시킨다.
이어서, 센서 제어부(310)는 앞에서 설명한 S110 단계 내지 S170 단계를 반복해서 수행한다.
한편, 조정된 노출시간(Texp)이 적정 노출시간범위에 포함되는 경우에도, 센서 제어부(310)는 앞에서 설명한 S110 단계 내지 S150 단계를 반복해서 수행한다.
이를 통해, 센서 제어부(310)는 수광부(200)에 입사되는 적정한 적외선의 세기를 얻을 때까지, 수광부(200)의 노출시간(Texp)과 발광부(100)의 출력(Ps)을 조정할 수 있고, 깊이 계산부(320)에서 산출하는 대상체(TG)에 대한 깊이의 정확도는 향상될 수 있다.
또한, 본 발명에 따른 깊이 센서 제어 시스템(1000)은, 수광부(200)에서 측정한 적외선의 세기를 기초로 작성된 히스토그램(Histogram)을 이용하여 수광부(200)의 노출시간(Texp)과 발광부(100)의 출력(Ps)을 제어함으로써, 사물의 깊이 정보를 정확히 측정하기 위한 광량 조절에 대하여 빠른 응답시간을 확보할 수 있다.
이를 통해, 깊이 센서를 이용하는 깊이 센서 제어 시스템(1000)의 전체적인 반응속도는 향상될 수 있으며, 해당 기기를 이용하는 사용자의 만족도도 향상될 수 있다.
또한, 본 발명에 따른 깊이 센서 제어 시스템(1000)은, 깊이 센서에 내장된 적외선 세기의 측정 기능을 이용하여 입사되는 광량을 조절함으로써, 광량 제어를 위해 구성요소를 추가하지 않고도 대상 사물에 대한 정확한 깊이를 측정할 수 있다. 이를 통해, 깊이 센서의 제조비용은 감소될 수 있으며, 제조사의 이익은 증가될 수 있다.
한편, 도 15 내지 도 18에서 사용된 부호는 도 15 내지 도 18에만 한정하여 적용하는 것으로 한다.
전술된 실시예는 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해되어야 하며, 본 발명의 범위는 전술된 상세한 설명보다는 후술될 특허청구범위에 의해 나타내어질 것이다. 그리고 후술될 특허청구범위의 의미 및 범위는 물론, 그 등가개념으로부터 도출되는 모든 변경 및 변형 가능한 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (19)

  1. 이물질을 흡입하기 위한 흡입구와, 흡입력을 발생시키는 흡입 모터와, 흡입된 공기를 외부로 배출시키기 위한 토출구가 구비되는 하우징;
    상기 하우징을 이동시키는 구동부;
    상기 하우징의 하측에 배치되며, 회전을 통해 바닥에 위치한 이물질을 상기 흡입구로 이동시키는 에지테이터;
    상기 에지테이터를 기준으로 상기 흡입구의 반대측인 제1 방향을 향하도록 배치되는 구속 방지 필터;
    상기 구속 방지 필터의 위치를 제어하는 필터 구동부;
    상기 하우징 상에 배치되고, 상기 제1 방향에 위치한 장애물을 감지하는 센서부; 및
    상기 센서부에서 측정된 장애물의 종류에 따라, 상기 구동부 및 상기 필터 구동부의 동작을 제어하는 제어부를 포함하는
    로봇 청소기.
  2. 제1 항에 있어서,
    상기 제어부는,
    상기 센서부에서 측정한 데이터와 미리 저장된 데이터를 비교하여, 감지된 장애물을 회피 장애물 또는 등반 장애물로 분류하고,
    상기 장애물이 회피 장애물로 분류되는 경우, 상기 장애물을 회피하여 주행하도록 상기 구동부를 제어하고,
    상기 장애물이 등반 장애물로 분류되는 경우, 상기 구속 방지 필터가 상기 하우징 내부로 수납되도록 상기 필터 구동부를 제어하는
    로봇 청소기.
  3. 제2 항에 있어서,
    상기 제어부는, 상기 감지된 장애물의 종류와 위치를 메모리에 저장하고, 다음 주행에서 저장된 데이터를 이용하여 주행 방법을 결정하는
    로봇 청소기.
  4. 제1 항에 있어서,
    상기 제어부는, 상기 센서부에서 측정한 데이터를 기초로, 원거리에 위치한 장애물의 높이보다 근거리에 위치한 장애물의 높이가 높아지는 경우, 상기 근거리에 위치한 장애물을 회피하도록 상기 구동부를 제어하는
    로봇 청소기.
  5. 제4 항에 있어서,
    상기 제어부는, 회피 대상으로 인식한 장애물의 위치를 메모리에 저장하고, 저장된 장애물을 회피하도록 상기 구동부를 제어하는
    로봇 청소기.
  6. 제1 항에 있어서,
    상기 구속 방지 필터는, 채(shred) 형상의 탄성물질로 구성되고, 상기 필터 구동부에 의해 회전하는 회전축 상에 일정 간격으로 배치되는
    로봇 청소기.
  7. 제6 항에 있어서,
    상기 제어부는, 상기 구속 방지 필터에 기준치 이상의 저항이 걸리는 경우, 상기 구속 방지 필터가 상기 하우징의 내측으로 이동하도록 상기 필터 구동부를 제어하는
    로봇 청소기.
  8. 제6 항에 있어서,
    상기 제어부는, 상기 구속 방지 필터에 기준치 미만의 저항이 걸리는 경우, 상기 구속 방지 필터의 위치 변동 없이 진행 방향으로 이동하도록 상기 구동부를 제어하는
    로봇 청소기.
  9. 제1 항에 있어서,
    상기 하우징은,
    상기 흡입구, 상기 흡입 모터 및 상기 토출구가 배치되는 본체부과,
    상기 본체부의 일측으로 돌출 형성되고, 상기 구속 방지 필터와 상기 필터 구동부가 구비되는 노즐부를 포함하는
    로봇 청소기.
  10. 제9 항에 있어서,
    상기 본체부의 높이는 상기 노즐부의 높이보다 높게 형성되고,
    상기 센서부는 상기 본체부의 상단에 배치되며,
    상기 구속 방지 필터의 일단은, 상기 노즐부의 외측으로 돌출되도록 배치되는
    로봇 청소기.
  11. 대상체에 광을 조사하는 발광부;
    상기 대상체로부터 반사된 광을 센싱하는 수광부;
    상기 수광부에서 센싱한 데이터를 기초로 픽셀의 깊이를 산출하는 깊이 계산부; 및
    상기 수광부에서 센싱한 데이터를 기초로 상기 수광부 또는 상기 발광부의 동작을 제어하는 센서 제어부를 포함하되,
    상기 센서 제어부는,
    상기 수광부에서 센싱한 광의 세기(intensity)에 대한 적정범위의 비율이 미리 정해진 기준비율범위를 벗어나는 경우, 상기 수광부의 노출시간과 상기 발광부의 출력을 제어하는
    깊이 센서 제어 시스템.
  12. 제11 항에 있어서,
    상기 센서 제어부는,
    상기 수광부에서 센싱한 광의 세기를 기초로 히스토그램을 생성하고,
    상기 생성된 히스토그램에서 미리 정해진 적정범위에 해당하는 상기 광의 세기의 비율을 기초로 상기 수광부의 노출시간을 조절하는
    깊이 센서 제어 시스템.
  13. 제12 항에 있어서,
    상기 센서 제어부는,
    상기 비율이 상기 기준비율범위의 상한보다 큰 경우, 상기 수광부의 노출시간을 감소시키고,
    상기 비율이 상기 기준비율범위의 하한보다 작은 경우, 상기 수광부의 노출시간을 증가시키는
    깊이 센서 제어 시스템.
  14. 제12 항에 있어서,
    상기 센서 제어부는,
    상기 조절된 노출시간이 적정 노출시간범위를 벗어나는 경우, 상기 발광부의 출력을 조절하는
    깊이 센서 제어 시스템.
  15. 제14 항에 있어서,
    상기 센서 제어부는,
    상기 조절된 노출시간이 상기 적정 노출시간범위의 상한 경계값에 해당하는 경우, 상기 발광부의 출력을 증가시키고,
    상기 조절된 노출시간이 상기 적정 노출시간범위의 하한 경계값에 해당하는 경우, 상기 발광부의 출력을 감소시키는
    깊이 센서 제어 시스템.
  16. 제14 항에 있어서,
    상기 센서 제어부는,
    상기 히스토그램에서 상기 적정범위에 해당하는 상기 광의 세기의 비율이 상기 기준비율범위에 포함될 때까지 상기 제12항 내지 제14항의 동작을 반복 수행하는
    깊이 센서 제어 시스템.
  17. 제11 항에 있어서,
    상기 발광부는, 상기 대상체에 적외선을 조사하고,
    상기 수광부는, 상기 대상체에서 반사된 적외선의 세기(IR intensity) 및 주파수를 측정하는
    깊이 센서 제어 시스템.
  18. 제17 항에 있어서,
    상기 센서 제어부는,
    상기 적외선의 세기 및 주파수를 기초로, 미리 저장된 룩업테이블(look-up table)을 이용하여 상기 기준비율범위를 결정하는
    깊이 센서 제어 시스템.
  19. 제11 항에 있어서,
    상기 수광부는,
    상기 대상체로부터 반사된 광을 수광하는 렌즈와,
    상기 광을 인식하는 이미지 센서와,
    상기 렌즈와 상기 이미지 센서의 사이에 배치되며, 입사되는 광의 양을 조절하는 광 셔터를 포함하는
    깊이 센서 제어 시스템.
PCT/KR2019/003900 2018-04-02 2019-04-02 구속 방지 필터를 구비하는 로봇 청소기 WO2019194550A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/044,358 US20210100416A1 (en) 2018-04-02 2019-04-02 Robot cleaner having constraint prevention filter
EP19781408.0A EP3779354A4 (en) 2018-04-02 2019-04-02 ROBOT CLEANER HAVING A OPERATION LIMITATION PREVENTION FILTER

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0038375 2018-04-02
KR1020180038376A KR102549434B1 (ko) 2018-04-02 2018-04-02 깊이 센서 제어 시스템
KR1020180038375A KR102500540B1 (ko) 2018-04-02 2018-04-02 구속 방지 필터를 구비하는 로봇 청소기
KR10-2018-0038376 2018-04-02

Publications (1)

Publication Number Publication Date
WO2019194550A1 true WO2019194550A1 (ko) 2019-10-10

Family

ID=68100965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/003900 WO2019194550A1 (ko) 2018-04-02 2019-04-02 구속 방지 필터를 구비하는 로봇 청소기

Country Status (3)

Country Link
US (1) US20210100416A1 (ko)
EP (1) EP3779354A4 (ko)
WO (1) WO2019194550A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11471016B2 (en) * 2018-05-11 2022-10-18 Samsung Electronics Co., Ltd. Method and apparatus for executing cleaning operation
JP7290632B2 (ja) * 2018-05-24 2023-06-13 ソニーセミコンダクタソリューションズ株式会社 時間計測装置
US11399678B2 (en) * 2019-03-11 2022-08-02 Sharkninja Operating Llc Dust cup shutter for robotic cleaner
US11960282B2 (en) * 2021-01-05 2024-04-16 Abb Schweiz Ag Systems and methods for servicing a data center using autonomous vehicle

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100677275B1 (ko) 2005-04-25 2007-02-02 엘지전자 주식회사 로봇 청소기의 에지테이터 구동제어장치 및 방법
KR101292537B1 (ko) 2012-01-19 2013-08-01 삼성전자주식회사 로봇청소기
JP2014166207A (ja) * 2013-02-28 2014-09-11 Mitsubishi Electric Corp 掃除機
KR20150037693A (ko) 2013-09-30 2015-04-08 김상준 레이저 광센서를 적용하여 광 출력을 조절하는 레이저장치
KR20150063218A (ko) * 2013-11-29 2015-06-09 삼성전자주식회사 로봇청소기
KR20150082262A (ko) * 2012-11-14 2015-07-15 퀄컴 인코포레이티드 구조화된 광 능동 심도 센싱 시스템들에서의 광원 전력의 동적 조절
KR20160039378A (ko) * 2014-10-01 2016-04-11 한국원자력연구원 저시정 환경에 강한 영상 획득 장치
KR20160142508A (ko) * 2015-06-03 2016-12-13 삼성전자주식회사 로봇 청소기
KR101694621B1 (ko) 2015-05-22 2017-01-09 한국광기술원 이미지 센서의 자동 노출 조절정보를 이용한 밝기 추정장치 및 방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1055771A (en) * 1904-12-30 1913-03-11 American Air Cleaning Company Carpet-cleaner.
KR102280210B1 (ko) * 2013-12-04 2021-07-22 삼성전자주식회사 청소 로봇 및 그 제어 방법
US9480380B2 (en) * 2013-12-04 2016-11-01 Samsung Electronics Co., Ltd. Cleaning robot and control method thereof
TWI726937B (zh) * 2015-11-11 2021-05-11 新加坡商海特根微光學公司 增強型距離資料獲取
DE102017200879B4 (de) * 2016-02-02 2022-05-05 pmdtechnologies ag Lichtlaufzeitkamera und Verfahren zum Betreiben einer solchen
US20200245837A1 (en) * 2017-10-13 2020-08-06 Chiba Institute Of Technology Self-propelled vacuum cleaner

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100677275B1 (ko) 2005-04-25 2007-02-02 엘지전자 주식회사 로봇 청소기의 에지테이터 구동제어장치 및 방법
KR101292537B1 (ko) 2012-01-19 2013-08-01 삼성전자주식회사 로봇청소기
KR20150082262A (ko) * 2012-11-14 2015-07-15 퀄컴 인코포레이티드 구조화된 광 능동 심도 센싱 시스템들에서의 광원 전력의 동적 조절
JP2014166207A (ja) * 2013-02-28 2014-09-11 Mitsubishi Electric Corp 掃除機
KR20150037693A (ko) 2013-09-30 2015-04-08 김상준 레이저 광센서를 적용하여 광 출력을 조절하는 레이저장치
KR20150063218A (ko) * 2013-11-29 2015-06-09 삼성전자주식회사 로봇청소기
KR20160039378A (ko) * 2014-10-01 2016-04-11 한국원자력연구원 저시정 환경에 강한 영상 획득 장치
KR101694621B1 (ko) 2015-05-22 2017-01-09 한국광기술원 이미지 센서의 자동 노출 조절정보를 이용한 밝기 추정장치 및 방법
KR20160142508A (ko) * 2015-06-03 2016-12-13 삼성전자주식회사 로봇 청소기

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3779354A4

Also Published As

Publication number Publication date
US20210100416A1 (en) 2021-04-08
EP3779354A1 (en) 2021-02-17
EP3779354A4 (en) 2022-06-08

Similar Documents

Publication Publication Date Title
WO2019194550A1 (ko) 구속 방지 필터를 구비하는 로봇 청소기
WO2017200304A2 (ko) 이동 로봇 및 그 제어방법
WO2018026124A1 (ko) 이동 로봇 및 그 제어방법
WO2017048046A1 (ko) 청소 로봇 및 그 제어 방법
WO2019221524A1 (ko) 청소기 및 그 제어방법
WO2022045808A1 (ko) 청소 로봇 및 그 제어 방법
WO2017200302A2 (ko) 이동 로봇 및 그 제어방법
WO2016064093A1 (en) Robot cleaner and method for controlling the same
WO2016200035A1 (en) Moving robot and method for controlling the same
WO2019221523A1 (ko) 청소기 및 그 제어방법
WO2021172936A1 (en) Moving robot and control method thereof
WO2019017521A1 (ko) 청소기 및 그 제어방법
EP3687745A1 (en) Moving robot and controlling method
WO2022035150A1 (ko) 청소 로봇 및 그 제어 방법
WO2020197135A1 (en) Moving robot and controlling method for the same
WO2020004824A1 (en) Plurality of autonomous cleaner and controlling method for the same
AU2018216517B2 (en) Cleaner
AU2020231781B2 (en) Moving robot and controlling method for the moving robot
WO2019088695A1 (ko) 초음파 센서 및 그를 구비하는 로봇 청소기
WO2020122541A1 (ko) 로봇 청소기 및 그 제어방법
WO2018117616A1 (ko) 이동 로봇
WO2021006674A2 (ko) 이동 로봇 및 그 제어방법
WO2019177418A1 (en) Mobile robot and controlling method thereof
WO2020256370A1 (en) Moving robot and method of controlling the same
WO2020017943A1 (ko) 복수의 로봇 청소기 및 그 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19781408

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019781408

Country of ref document: EP

Effective date: 20201102