WO2019194210A1 - (meth)acrylic resin composition, film, and method for production thereof - Google Patents

(meth)acrylic resin composition, film, and method for production thereof Download PDF

Info

Publication number
WO2019194210A1
WO2019194210A1 PCT/JP2019/014729 JP2019014729W WO2019194210A1 WO 2019194210 A1 WO2019194210 A1 WO 2019194210A1 JP 2019014729 W JP2019014729 W JP 2019014729W WO 2019194210 A1 WO2019194210 A1 WO 2019194210A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylic resin
film
mass
resin composition
Prior art date
Application number
PCT/JP2019/014729
Other languages
French (fr)
Japanese (ja)
Inventor
香織 前田
東田 昇
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2020512277A priority Critical patent/JP7322002B2/en
Publication of WO2019194210A1 publication Critical patent/WO2019194210A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a (meth) acrylic resin composition capable of stably and simply forming a film having excellent optical properties, surface hardness, flex resistance and impact resistance by long-term continuous operation, a film using the same, and production thereof Regarding the method.
  • the (meth) acrylic resin composition has characteristics such as high transparency, high surface hardness, excellent weather resistance, and easy molding, so it can be used for display materials such as signboards and flat panel displays, and decorative films. It is used in various applications such as interior and exterior materials for vehicles, interior materials and exterior materials for building materials, interior members, and the like. In particular, it is used as a skin material for various members because of its excellent surface properties such as high pencil hardness. Further, since it has excellent transparency and low birefringence, it is used as various optical members such as a polarizer protective film, a retardation film, and an anti-scattering film.
  • the present invention is not limited to acrylic resins, and when a thermoplastic resin is formed by a melt extrusion method, there is a problem that a gel-like deteriorated product is generated by a staying portion, which becomes a fish eye defect, and there is little fish eye. There are still problems to be solved in the long-term continuous operation for stable production of films for a long time.
  • An aliphatic alcohol is known as a lubricant for (meth) acrylic resin.
  • an acrylic sheet obtained by adding 0.01 to 5 parts by mass of aliphatic alcohol to 100 parts by mass of (meth) acrylic resin It is known that even if it is cut, fusion to the tool can be suppressed, and addition of a lubricant is unnecessary, so that productivity is improved (Patent Document 2).
  • JP 2017-170620 A International Publication No. 2014/156032
  • Patent Document 2 has room for further improvement in order to enable stable production of the film itself by long-term continuous operation. Further, as described above, further improvement is required for long-term continuous operation, and in the case of a (meth) acrylic resin film excellent in impact resistance to which a rubber component is added, fish eyes are likely to occur. Long-term continuous operation was more difficult. That is, a film excellent in impact resistance to which a rubber component is added, having a low haze, good optical properties, high surface hardness, and excellent flex resistance in a stable and simple manner by long-term continuous operation. However, there was still room for examination from the viewpoint of cost reduction.
  • the present invention has been made in view of the above background, and a film having low haze, good optical properties, high surface hardness, excellent bending resistance, and excellent impact resistance can be stably and simply by long-term continuous operation. It aims at providing the (meth) acrylic resin composition which can be formed into a film, the film using the same, and its manufacturing method.
  • the present inventors have used (meth) acrylic resin (A) and core-shell type graft copolymer (B) in combination, and further identified aliphatic alcohol (C).
  • (meth) acrylic resin composition obtained by blending in an amount, a film having low haze, good optical properties, high surface hardness, excellent bending resistance, and excellent impact resistance can be provided.
  • the (meth) acrylic resin composition is excellent in long-term stability at the time of melting, and when the film is formed, the formation of the film is stable and simple by long-term continuous operation with little generation of fish eyes.
  • the present invention has been completed through further investigation based on the findings.
  • the present invention relates to the following.
  • the method for producing a film wherein the temperature is controlled at 230 to 290 ° C.
  • a film having low haze, good optical properties, high surface hardness, excellent flex resistance, and excellent impact resistance can be stably and easily formed by a long-term continuous operation (meta).
  • An acrylic resin composition, a film using the same, and a method for producing the same are provided.
  • the (meth) acrylic resin composition of the present invention has a total of 100 parts by mass of the (meth) acrylic resin (A) and the core-shell type graft copolymer (B), and 0.03-0. Including 3 parts by mass.
  • the (meth) acrylic resin (A) used in the present invention for example, a resin mainly composed of a structural unit derived from methyl methacrylate can be used.
  • the content of the structural unit derived from methyl methacrylate (methyl methacrylate unit) in the (meth) acrylic resin (A) is preferably 50% by mass or less, and 80% by mass or less. More preferably, it is more preferably 90% by mass or more, particularly preferably 95% by mass or more, and all the structural units may be methyl methacrylate units.
  • (Meth) acrylic resin (A) may contain a structural unit derived from another monomer other than methyl methacrylate.
  • Such other monomers are not particularly limited as long as they can be copolymerized with methyl methacrylate.
  • the stereoregularity of the (meth) acrylic resin (A) is not particularly limited, and for example, a (meth) acrylic resin (A) having stereoregularity such as isotactic, heterotactic, syndiotactic and the like can be used.
  • the (meth) acrylic resin composition of the present invention may contain only one kind of (meth) acrylic resin as the (meth) acrylic resin (A), but the effect of the present invention is more remarkably exhibited. From the above, it is preferable that at least two (meth) acrylic resins are included, and at least two (meth) acrylic resins (A-1 and A-2) having different weight average molecular weights are particularly preferable.
  • the (meth) acrylic resin (A-1) is preferably a resin having a high methyl methacrylate unit content and a high weight average molecular weight (Mw) in order to enhance heat resistance.
  • the content of the preferred methyl methacrylate unit in the (meth) acrylic resin (A-1) is 95% by mass or more, more preferably 97% by mass or more, and further preferably 99% by mass or more.
  • the (meth) acrylic resin (A-1) preferably has a weight average molecular weight of 80,000 to 150,000, more preferably 85,000 to 120,000, still more preferably 90,000 to 100,000. 000.
  • the weight average molecular weight of the (meth) acrylic resin (A-1) is 80,000 or more, the mechanical properties are good, and the weight average molecular weight of the (meth) acrylic resin (A-1) is 150,000 or less. It can suppress that melt viscosity becomes high too much, and workability becomes favorable.
  • the (meth) acrylic resin (A-2) is mainly used as a compatibilizer for enhancing the dispersibility of the core-shell type graft copolymer (B) in the (meth) acrylic resin composition of the present invention.
  • the content of the methyl methacrylate unit in the (meth) acrylic resin (A-2) is the same as the above (meth) acrylic.
  • the content of the methyl methacrylate unit in the resin (A-1) and the content of the methyl methacrylate unit in the thermoplastic polymer (II) constituting the outermost layer of the core-shell type graft copolymer (B) described later It is preferable that it is between (including the same case).
  • the weight average molecular weight of the (meth) acrylic resin (A-2) is preferably lower than the weight average molecular weight of the (meth) acrylic resin (A-1).
  • the weight average molecular weight of the (meth) acrylic resin (A-2) is preferably 30,000 to 80,000, more preferably 40,000 to 75,000, still more preferably 50,000 to 70,000.
  • the weight molecular weight of the (meth) acrylic resin (A-2) is 30,000 or more, the mechanical properties are good, and when the weight average molecular weight of the (meth) acrylic resin (A-2) is 80,000 or less. A role like a container can be fully demonstrated.
  • the molecular weight distribution of the (meth) acrylic resin (A) is represented by the ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) as measured by GPC, and is 1.05 to 3. It is preferably 1.3 to 2.5.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • the method for producing the (meth) acrylic resin (A) is not particularly limited, and can be obtained, for example, by polymerizing a monomer mainly composed of methyl methacrylate.
  • the polymerization degree of (meth) acrylic resin (A) can be adjusted with the quantity of a polymerization initiator and a chain transfer agent.
  • the (meth) acrylic resin (A) a commercially available product may be used.
  • the methacrylic resin examples include “Parapet H1000B” (MFR: 22 g / 10 min (230 ° C., 37.3 N)), “Parapet GF” (MFR: 15 g / 10 min (230 ° C., 37.3 N)), “ “Parapet EH” (MFR: 1.3 g / 10 min (230 ° C., 37.3 N)), “Parapet HRL” (MFR: 2.0 g / 10 min (230 ° C., 37.3 N)), “Parapet HRS” ( MFR: 2.4 g / 10 min (230 ° C., 37.3 N)) and “Parapet G” (MFR: 8.0 g / 10 min (230 ° C., 37.3 N)) [all trade names, manufactured by Kuraray Co., Ltd. ] Etc. are mentioned.
  • the glass transition temperature (Tg) of the (meth) acrylic resin (A) is preferably 80 to 140 ° C., more preferably 95 to 130 ° C., and still more preferably 110 to 120 ° C.
  • the glass transition temperature can be adjusted by changing the stereoregularity depending on the kind and amount of the monomer copolymerized with methyl methacrylate and the polymerization temperature.
  • the glass transition temperature is a value measured in accordance with JIS K7121: 2012. That is, the differential scanning calorific value is obtained under the condition that the (meth) acrylic resin (A) is once heated to 200 ° C., then cooled to room temperature (25 ° C.), and then heated from room temperature to 200 ° C. at 10 ° C./min.
  • the DSC curve is measured by a measurement method, and the midpoint glass transition temperature obtained from the DSC curve measured at the second temperature rise can be set as the glass transition temperature of the (meth) acrylic resin (A).
  • crosslinked rubber particles having an outermost layer and an inner layer can be used as the core-shell type graft copolymer (B) used in the (meth) acrylic resin composition of the present invention.
  • the type of the crosslinked rubber particles is not particularly limited as long as it has an outermost layer and an inner layer.
  • the core (inner layer) is a crosslinked rubber polymer (I) -the outer shell (outermost layer) is a thermoplastic polymer.
  • core (inner layer) is polymer (III)-inner shell (inner layer) is crosslinked rubber polymer (I)-outer shell (outermost layer) is thermoplastic polymer (II) Three-layer polymer particles; core (inner layer) is crosslinked rubber polymer (I) -first inner shell (inner layer) is polymer (III) -second inner shell (inner layer) is crosslinked rubber polymer (I) -outer Various laminated structures such as four-layer polymer particles whose shell (outermost layer) is thermoplastic polymer (II) are possible, but three-layer polymer particles are preferred.
  • the crosslinked rubber polymer (I) has 70 to 98 structural units derived from an alkyl acrylate ester monomer having 1 to 8 carbon atoms in the alkyl group with respect to the mass of the crosslinked rubber polymer (I). It is preferably contained by mass%, more preferably by 75 to 90 mass%, further preferably by 80 to 85 mass%. When the content is the above, it becomes a flexible rubber material and can impart impact resistance.
  • the crosslinked rubber polymer (I) preferably contains 2 to 30% by mass of structural units derived from the aromatic vinyl monomer with respect to the mass of the crosslinked rubber polymer (I). More preferably, it is more preferably 15 to 20% by mass.
  • the refractive index of the crosslinked rubber polymer (I) can be adjusted to match that of the (meth) acrylic resin (A), and a (meth) acrylic resin composition having high transparency can be obtained. it can.
  • the crosslinked rubber polymer (I) preferably contains 1 to 5% by mass of a structural unit derived from a crosslinkable monomer with respect to the mass of the crosslinked rubber polymer (I). More preferably.
  • the thermoplastic polymer (II) preferably contains 80 to 100% by mass of methyl methacrylate units, more preferably 85 to 97% by mass, more preferably 90 to 90% by mass relative to the mass of the thermoplastic polymer (II). More preferably, the content is 96% by mass. By being said content, compatibility with a (meth) acrylic resin (A) improves.
  • the thermoplastic polymer (II) has 0 structural units derived from an acrylic acid alkyl ester monomer having 1 to 8 carbon atoms in the alkyl group with respect to the mass of the thermoplastic polymer (II). It is preferably contained in an amount of ⁇ 20% by mass, more preferably 3-15% by mass, and still more preferably 4-10% by mass. By being said content, compatibility with a (meth) acrylic resin (A) improves.
  • the polymer (III) preferably contains 80 to 99.95% by mass of methyl methacrylate units, more preferably 85 to 98% by mass, and more preferably 90 to 96% by mass with respect to the mass of the polymer (III). % Is more preferable. The above content is preferable because the hardness is good.
  • the polymer (III) contains 0 to 19.95% by mass of a structural unit derived from an acrylic acid alkyl ester monomer having an alkyl group having 1 to 8 carbon atoms based on the mass of the polymer (III).
  • a crosslinkable monomer and 2 to 15% by mass of a structural unit derived from an acrylic acid alkyl ester monomer having an alkyl group having 1 to 8 carbon atoms. More preferably, it contains 0.05 to 1.5% by mass of a structural unit derived from a crosslinkable monomer, and is derived from an acrylic acid alkyl ester monomer having an alkyl group having 1 to 8 carbon atoms. More preferably, the structural unit contains 4 to 10% by mass of the structural unit and 0.1 to 1% by mass of the structural unit derived from the crosslinkable monomer. The above content is preferable because the hardness is good.
  • each monomer is calculated for each layer.
  • the content of the structural unit derived from each monomer is The core (inner layer) and the second inner shell (inner layer) are calculated separately.
  • the difference in refractive index between adjacent layers is preferably less than 0.005, more preferably less than 0.004, and even more preferably less than 0.003. It is preferable to select a polymer contained in each layer so that
  • the outermost layer of the core-shell type graft copolymer (B) refers to the outermost layer of the particles
  • the inner layer refers to all the layers inside the outermost layer.
  • the proportion of the layer containing the crosslinked rubber polymer (I) is preferably 20 to 70% by mass, more preferably 30 to 50% by mass.
  • the average particle size of the core-shell type graft copolymer (B) in the present invention is preferably 0.05 to 1 ⁇ m, more preferably 0.07 to 0.5 ⁇ m, still more preferably 0.1 to 0.00. It is 4 ⁇ m, particularly preferably 0.15 to 0.3 ⁇ m.
  • the core-shell type graft copolymer (B) having an average particle diameter in such a range is used, toughness can be expressed with a small amount of blending, and the possibility of impairing rigidity and surface hardness can be suppressed.
  • the average particle diameter in this specification is an arithmetic average value in the volume-based particle size distribution measured by the light scattering method, and can be specifically obtained by the method described in the examples.
  • the production method of the core-shell type graft copolymer (B) is not particularly limited and can be performed by a known method, but an emulsion polymerization method is preferable. Specifically, emulsion polymerization of monomers constituting the core (inner layer) is performed to obtain seed particles, and in the presence of the seed particles, the monomers constituting each layer are sequentially added to the outermost layer sequentially. It can be obtained by carrying out polymerization.
  • Examples of the emulsifier used in the emulsion polymerization method include dialkyl sulfosuccinates such as sodium dioctyl sulfosuccinate and sodium dilauryl sulfosuccinate which are anionic emulsifiers, alkylbenzene sulfonates such as sodium dodecylbenzene sulfonate, sodium dodecyl sulfate and the like.
  • the average number of repeating units of ethylene oxide units in the exemplified compounds of the nonionic emulsifier and the nonionic anionic emulsifier is preferably 30 or less, more preferably in order to prevent the foaming property of the emulsifier from becoming extremely large. It is 20 or less, more preferably 10 or less.
  • the polymerization initiator used in the emulsion polymerization is not particularly limited, and examples thereof include persulfate-based initiators such as potassium persulfate and ammonium persulfate; redox such as persulfoxylate / organic peroxide, persulfate / sulfite.
  • persulfate-based initiators such as potassium persulfate and ammonium persulfate
  • redox such as persulfoxylate / organic peroxide, persulfate / sulfite.
  • a system initiator or the like can be used.
  • Separation and acquisition of the core-shell type graft copolymer from the polymer latex obtained by emulsion polymerization can be performed by a known method such as a salting out coagulation method, a freeze coagulation method, or a spray drying method.
  • a salting out coagulation method and the freeze coagulation method are preferable, and the freeze coagulation method is more preferable from the viewpoint that impurities contained in the crosslinked rubber particle component can be easily removed by washing with water. Since the freeze coagulation method does not use a flocculant, it is easy to obtain a film excellent in water resistance.
  • the core-shell type graft copolymer (B) is preferably taken out as aggregated particles of 1,000 ⁇ m or less, and the aggregated particles of 500 ⁇ m or less It is more preferable to take out as The form of the aggregated particles is not particularly limited.
  • the aggregated particles may be in the form of pellets fused to each other at the outermost layer portion, or may be powder or granulated powder.
  • the content of the core-shell type graft copolymer (B) in the (meth) acrylic resin composition of the present invention is not particularly limited, but the mass ratio of the (meth) acrylic resin (A) and the core-shell type graft copolymer (B)
  • the former / the latter is preferably 70/30 to 90/10, more preferably 75/25 to 85/15, and still more preferably 77/23 to 83/17.
  • the mass ratio is in this range, a (meth) acrylic resin composition having an excellent balance between hardness and impact resistance can be obtained.
  • ⁇ Fatty alcohol (C)> In the (meth) acrylic resin composition of the present invention, 0.03 of the aliphatic alcohol (C) is added to 100 parts by mass of the total amount of the (meth) acrylic resin (A) and the core-shell type graft copolymer (B). Including 0.3 parts by mass.
  • the content of the aliphatic alcohol (C) is preferably 0.03 to 0.2 parts by mass with respect to 100 parts by mass of the total amount of the (meth) acrylic resin (A) and the core-shell type graft copolymer (B). More preferably, it is 0.04 to 0.09 parts by mass.
  • the type of the aliphatic alcohol (C) is not particularly limited, but an aliphatic alcohol having 12 to 18 carbon atoms such as lauryl alcohol, palmityl alcohol, stearyl alcohol, and oleyl alcohol is preferable. Lauryl alcohol, palmityl alcohol, stearyl alcohol More preferred are saturated aliphatic alcohols having 12 to 18 carbon atoms, such as saturated aliphatic alcohols having 16 to 18 carbon atoms such as palmityl alcohol and stearyl alcohol, and particularly preferred is stearyl alcohol.
  • An aliphatic alcohol (C) may be used individually by 1 type, or may use 2 or more types together.
  • various additives such as a polymer processing aid (D), an ultraviolet absorber (E), and the like, as long as the effects of the present invention are not impaired.
  • (meth) acrylic resin (A), core-shell type graft copolymer (B) and aliphatic alcohol (C) You may add other additives other than.
  • a foaming agent it is preferable not to add a foaming agent, a filler, a matting agent, a light diffusing agent, a softening agent, and a plasticizer in a large amount from the viewpoint of mechanical properties and surface hardness of the film of the present invention.
  • the (meth) acrylic resin composition of the present invention preferably further contains a polymer processing aid (D) as the other additive described above.
  • the polymer processing aid (D) is a compound that exhibits an effect in thickness accuracy, film formation stability, fisheye reduction, and the like when the resin composition of the present invention is molded.
  • As the polymer processing aid (D) an ultra high molecular weight (weight average molecular weight of 500,000 or more) mainly comprising methyl methacrylate units (including 50% by mass or more), which can be usually produced by an emulsion polymerization method.
  • Methacrylic resin can be used, and polymer particles having a particle diameter of 0.05 to 0.5 ⁇ m are preferable.
  • polymer processing aid (D) Commercially available products can be used for the polymer processing aid (D). Specifically, “Kane Ace” PA series (manufactured by Kaneka), “Metablene” P series (manufactured by Mitsubishi Rayon), “Paralloid” K Series (made by Dow) is listed. Among these, “paraloid” K125P is preferable from the viewpoint of compatibility with the resin.
  • the content of the polymer processing aid (D) in the (meth) acrylic resin composition of the present invention is preferably 0.1 to 3% by mass.
  • the content of the polymer processing aid (D) varies depending on the use, but from the viewpoint of further reducing fish eyes, it is more preferably 1.0% by mass or more, and 1.3% by mass or more. More preferably.
  • it is more preferably 2.5% by mass or less, and further preferably 2.0% by mass or less.
  • the (meth) acrylic resin composition of the present invention preferably further contains an ultraviolet absorber (E) as the other additive described above.
  • the ultraviolet absorber (E) is a compound having an ability to absorb ultraviolet rays, and mainly has a function of converting light energy into heat energy.
  • Examples of the ultraviolet absorber (E) include benzophenones, benzotriazoles, triazines, benzoates, salicylates, cyanoacrylates, oxalic anilides, malonic esters, formamidines, and the like. These may be used alone or in combination of two or more. Among these, benzotriazoles and triazines are preferable because they have a high ability to suppress resin deterioration when irradiated with ultraviolet rays and have high compatibility with the resin.
  • UV absorbers for benzotriazoles 2- (2H-benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol (“TINUVIN” 329 manufactured by BASF), 2 -(2H-benzotriazol-2-yl) -4,6-bis (1-methyl-1-phenylethyl) phenol (“TINUVIN” 234 manufactured by BASF) and 2,2′-methylenebis [6- ( 2H-benzotriazol-2-yl) -4-tert-octylphenol] (“ADEKA STAB” LA-31 manufactured by ADEKA) and the like.
  • UV absorbers for triazines include UV absorbers for hydroxyphenyl triazines. More specifically, 2,4-bis (2-hydroxy-4-butyroxyphenyl) -6- ( 2,4-Butyloxyphenyl) -1,3,5-triazine (“TINUVIN” 460 manufactured by BASF), 2- (4- (2-hydroxy-3- (2-ethylhexyloxy) propyloxy) -2- Hydroxyphenyl) -4,6-bis (2,4-dimethylphenyl) -1,3,5-triazine (“TINUVIN” 405 manufactured by BASF), 2- (2-hydroxy-4- [1-octyloxycarbonyl) Ethoxy] phenyl) -4,6-bis (4-phenylphenyl) -1,3,5-triazine (“TINUVIN” 479 manufactured by BASF), Bottle “1477, 400, 477, 1600; 2- (4,6-diphenyl-1,3,5-triazin-2-yl)
  • the content of the ultraviolet absorber (E) in the (meth) acrylic resin composition of the present invention is preferably 0.1 to 3% by mass.
  • content of the said ultraviolet absorber (E) changes with kinds and use of an ultraviolet absorber (E)
  • the (meth) acrylic resin composition of the present invention is a polymer processing aid that can be a (meth) acrylic resin (A), a core-shell type graft copolymer (B), and a polymer as long as the effects of the present invention are not impaired.
  • a polymer other than the agent (D) can further be contained.
  • Such other polymers include polyolefin resins such as polyethylene, polypropylene, polybutene-1, poly-4-methylpentene-1, polynorbornene, etc .; ethylene ionomers; polystyrene, styrene-maleic anhydride copolymer, high impact polystyrene , AS resins, ABS resins, AES resins, AAS resins, ACS resins, MBS resins and other styrene resins; methyl methacrylate-styrene copolymers; polyethylene resins such as polyethylene terephthalate and polybutylene terephthalates; nylon 6, nylon 66, polyamide Polyamides such as elastomers: polycarbonate, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyacetal, polyvinylidene fluoride, polyurea Emissions, modified polyphenylene ether
  • the (meth) acrylic resin composition of the present invention preferably has a melt viscosity of 2,000 Pa ⁇ s or less at a 270 ° C. shear rate of 12.2 / sec.
  • the melt viscosity at 270 ° C. shear rate 12.2 / sec is more preferably 1,800 Pa ⁇ s or less, still more preferably 1,500 Pa ⁇ s or less, particularly Preferably, it is 1,200 Pa ⁇ s or less.
  • the melt viscosity is 2,000 Pa ⁇ s or less, the film forming temperature does not become too high, and a stable long-term continuous operation becomes possible.
  • the lower limit of the melt viscosity is preferably 300 Pa ⁇ s, more preferably 500 Pa ⁇ s from the viewpoint of mechanical properties.
  • the melt viscosity depends on the weight average molecular weight of the (meth) acrylic resin (A), the mass ratio of the (meth) acrylic resin (A) and the core-shell type graft copolymer (B), the content of other additives, and the like. Can be adjusted.
  • the said melt viscosity can be measured by the method as described in an Example.
  • the method for preparing the (meth) acrylic resin composition of the present invention is not particularly limited, but a method of melt kneading and mixing is preferable. Specifically, the (meth) acrylic resin (A), the core-shell type graft copolymer (B) and the aliphatic alcohol (C), and if necessary, a polymer processing aid (D), an ultraviolet absorber (A method of dry blending and melt-kneading other additives such as E) and other polymers in advance is generally used.
  • the mixing operation can be performed using a known mixing or kneading apparatus such as a kneader ruder, an extruder, a mixing roll, or a Banbury mixer.
  • the shear rate at the time of melt kneading is preferably 10 to 1,000 / second.
  • the temperature during mixing and kneading is usually from 150 to 320 ° C., preferably from 200 to 300 ° C.
  • melt kneading using a twin screw extruder it is preferable to use a vent and perform melt kneading under reduced pressure or melt kneading under a nitrogen stream from the viewpoint of suppressing coloration.
  • the (meth) acrylic resin composition of the present invention can be obtained, for example, in the form of pellets.
  • the lower limit of the total content of the (meth) acrylic resin (A) and the core-shell type graft copolymer (B) in the (meth) acrylic resin composition of the present invention is usually 50% by mass, preferably 70% by mass. %, More preferably 80% by mass, still more preferably 85% by mass.
  • the upper limit is preferably 99.97% by mass, more preferably 99.96% by mass, and still more preferably 99.95% by mass.
  • the (meth) acrylic resin composition of the present invention can be molded into a film.
  • the film can be produced using a known method such as a T-die method, an inflation method, a melt casting method, or a calendar method.
  • the (meth) acrylic resin composition of the present invention is melt-kneaded and extruded in a molten state from a T die, and both surfaces thereof are applied to a mirror roll surface or a mirror belt surface. It is preferable to include the process of making it contact and shape
  • the roll or belt used at this time is preferably made of metal.
  • the melt-kneaded product (which may be a film)
  • a mirror roll or a mirror belt it is preferable to press and sandwich the melt-kneaded product (which may be a film) with a mirror roll or a mirror belt.
  • the pinching pressure by the mirror roll or the mirror belt is preferably high, and the linear pressure is preferably 10 N / mm or more, and more preferably 20 N / mm or more.
  • the surface temperature of the mirror roll or mirror belt to be sandwiched is preferably 60 ° C. or higher, more preferably 70 ° C. or higher.
  • the resulting film has good surface smoothness and haze, and when the surface temperature is 130 ° C. or lower, the film and mirror roll or mirror surface When the film is peeled off from the mirror roll or the mirror belt, surface roughness and recumbency are hardly generated, and the appearance of the film can be improved.
  • an extruder type melt extrusion apparatus with a single screw or a twin screw extrusion screw can be used.
  • the melt extrusion temperature for producing the film of the present invention is preferably 230 ° C or higher, more preferably 240 ° C or higher.
  • the melt extrusion temperature is preferably 290 ° C. or lower, and more preferably 280 ° C. or lower.
  • a melt pump is used under reduced pressure using a vent to attach a gear pump from the viewpoint of producing a film with a uniform film thickness, in order to further reduce fish eye defects. It is preferable to melt-extrusion with a polymer filter. Furthermore, it is preferable to perform melt extrusion under a nitrogen stream from the viewpoint of suppressing oxidative degradation.
  • the film comprising the (meth) acrylic resin composition of the present invention is produced by an extrusion apparatus equipped with a vent, a gear pump, a polymer filter and a T die in this order, from the vent to the T die including the gear pump and the polymer filter. It is preferable to control the temperature in the range of 230 to 290 ° C. By producing in such a temperature range, a film having little deterioration, little fish eye, and excellent mechanical properties and optical characteristics can be obtained.
  • the haze of the film comprising the (meth) acrylic resin composition of the present invention is preferably 1.5% or less, more preferably 1.2% or less, and 1.0% or less at a thickness of 75 ⁇ m. More preferably it is.
  • the surface gloss and the sharpness of the picture layer printed on the film of the present invention become more excellent.
  • the utilization efficiency of the light source is increased, which is preferable.
  • the haze can be obtained by the method described in Examples.
  • the pencil hardness of the film made of the (meth) acrylic resin composition of the present invention is preferably HB or higher, more preferably F or higher, still more preferably H or higher.
  • High pencil hardness makes it difficult to damage the surface of the film, so it is preferable as a decorative and surface protective film on the surface of molded products that require design properties. It is preferable because the generation of scratches generated therein can be suppressed.
  • the pencil hardness can be determined by the method described in the examples.
  • the folding endurance of the film made of the (meth) acrylic resin composition of the present invention is 30 times or more, more preferably 40 times or more, and still more preferably 50 times or more.
  • the lower one of these is in the above range.
  • the folding endurance number can be measured as the number of reciprocal bending until the test piece breaks in accordance with JIS P8115: 2001, and can be specifically measured by the method described later in Examples.
  • the film made of the (meth) acrylic resin composition of the present invention may be subjected to a stretching treatment.
  • the stretching treatment By the stretching treatment, a film that has high mechanical strength and is difficult to crack can be obtained.
  • the stretching method is not particularly limited, and examples thereof include a simultaneous biaxial stretching method, a sequential biaxial stretching method, a tuber stretching method, and a rolling method.
  • the temperature during stretching can be uniformly stretched, and from the viewpoint of obtaining a high-strength film, the lower limit is preferably 5 ° C. higher than the glass transition temperature of the (meth) acrylic resin (A), and the upper limit is ( The temperature is preferably 40 ° C. higher than the glass transition temperature of the (meth) acrylic resin (A).
  • the stretching temperature is not less than the above lower limit value
  • the film is hardly broken during stretching, and when the stretching temperature is not more than the above upper limit value, the effect of the stretching treatment is sufficiently exerted and the strength of the film can be increased.
  • Stretching is usually performed at a stretching rate of 100 to 5,000% / min.
  • the stretching speed is 100% / min or more
  • the strength of the film can be increased and the productivity is also improved.
  • the stretching speed is 5,000% / min or less
  • the film can be stretched uniformly. Further, it is more preferable to perform heat setting after stretching. A film with little heat shrinkage can be obtained by heat setting.
  • the thickness of the film made of the (meth) acrylic resin composition of the present invention is preferably less than 500 ⁇ m in an unstretched state (before stretching treatment). When it is less than 500 ⁇ m, secondary processability such as laminating property, handling property, cutting property, punching property and the like can be improved, and the unit price per unit area can be suppressed, which is excellent in economic efficiency.
  • the non-stretched (before stretching treatment) thickness of the film made of the (meth) acrylic resin composition of the present invention is preferably 30 ⁇ m or more, and more preferably 50 ⁇ m or more.
  • the thickness of the film made of the (meth) acrylic resin composition of the present invention after stretching is preferably 10 to 200 ⁇ m, more preferably 30 to 60 ⁇ m.
  • the film made of the (meth) acrylic resin composition of the present invention may be colored.
  • a coloring method a method of coloring a (meth) acrylic resin composition itself before film formation by containing a pigment or a dye; a film made of a (meth) acrylic resin composition is immersed in a liquid in which a dye is dispersed.
  • a coloring method it is not particularly limited thereto.
  • the film made of the (meth) acrylic resin composition of the present invention may be printed on at least one surface. Patterns and colors such as pictures, characters and figures can be given by printing. The pattern may be chromatic or achromatic.
  • the film made of the (meth) acrylic resin composition of the present invention has, on at least one surface, (i) a layer made of a metal and / or a metal oxide, (ii) a thermoplastic resin layer, and (iii) a base material layer.
  • a laminated film in which at least one layer is laminated as another layer may be used.
  • the method for laminating other layers is not particularly limited, and the layers can be joined directly or via an adhesive layer.
  • the base material layer for example, a wooden base material, a non-wood fiber such as kenaf or the like may be used. Other layers may be laminated, or a plurality of layers may be laminated.
  • thermoplastic resins suitable for lamination polycarbonate resin, polyethylene terephthalate resin, polyamide resin, polyethylene resin, polypropylene resin, polystyrene resin, polyvinyl chloride resin, (meth) acrylic resin other than (meth) acrylic resin (A),
  • acrylic resins include ABS resin, ethylene-vinyl alcohol resin, polyvinyl butyral resin, polyvinyl acetal resin, styrene-based thermoplastic elastomer, olefin-based thermoplastic elastomer, and acrylic-based thermoplastic elastomer.
  • the thickness of the above laminated film may vary depending on the use and is not particularly limited, but is preferably 500 ⁇ m or less from the viewpoint of secondary workability.
  • the film made of the (meth) acrylic resin composition of the present invention may be used alone, as an inner layer or a part of the laminate, or as an outermost layer of the laminate.
  • the other resin used for the lamination is preferably a transparent resin such as a methacrylic resin from the viewpoint of the design of the film.
  • the film forming the outermost layer preferably has a high surface hardness and weather resistance, and is a film made of the (meth) acrylic resin composition of the present invention. It is preferable.
  • the film made of the (meth) acrylic resin composition of the present invention has low haze, good optical properties, high surface hardness, excellent bending resistance and impact resistance, and less fish eye defects. Taking advantage of these excellent features, the (meth) acrylic resin film of the present invention is suitably used as a decorative film or an optical film.
  • the optical film include a polarizer protective film.
  • the polarizer protective film can be used for a polarizing plate including the polarizing plate, a liquid crystal display device including at least one polarizing plate, an organic EL display device, an image display device such as a PDP, and the like.
  • the film made of the (meth) acrylic resin composition of the present invention includes a light guide film, a moth-eye film, a Fresnel lens, a lenticular lens, a front film for various displays, a diffusion film, a glass scattering prevention film, a liquid crystal ASF film, and a transparent conductive film. It can be suitably used as an optical substrate film such as a heat shielding film and various barrier films.
  • a film made of the (meth) acrylic resin composition of the present invention has low haze, good optical properties, high surface hardness, excellent bending resistance and impact resistance, and fish eyes.
  • billboard parts such as advertising towers, stand signs, sleeve signs, bamber signs, and roof signs ;
  • Display parts such as showcases, partition plates, store displays; fluorescent lamp covers, mood lighting covers, lamp shades, lighting ceilings, light walls, chandeliers, etc .; interior parts such as furniture, pendants, mirrors; doors, domes Building parts such as safety window glass, partitions, staircases, balcony stools, roofs of leisure buildings; aircraft windshields, pilot visors, o Toby, motorboat windshield, bus shading plate, automotive side visor, rear visor, head wing, headlight cover, automotive interior parts, automotive exterior parts such as bumpers, etc .; sound image nameplate, stereo cover, TV Electronic equipment parts such
  • the measurement was performed using a laser diffraction / scattering particle size distribution measuring apparatus LA-910 manufactured by Horiba.
  • Glass transition temperature (Tg) The glass transition temperature of the (meth) acrylic resin (A) was measured according to JIS K7121: 2012. That is, the DSC curve was measured by differential scanning calorimetry under the condition that the sample was heated once to 200 ° C., then cooled to 30 ° C. or lower, and then heated from 30 ° C. to 200 ° C. at 10 ° C./min. The intermediate glass transition temperature obtained from the DSC curve measured at the time of the second temperature rise was defined as the glass transition temperature in the present invention.
  • Each example or comparative online defect inspection device a film of 300m wound prepared in Example (Nagase & manufactured, Scantec8000C1 System3) to through, to measure the number of fish eyes drawback of 0.03 mm 2 or more in size, per 1 m 2 The number of fish eye defects was calculated.
  • ⁇ Pencil hardness ⁇ The film produced in each example or comparative example was cut into 10 cm ⁇ 10 cm to obtain a test piece, and the pencil hardness was measured in accordance with JIS K5600-5-4: 1999.
  • a pressure-resistant polymerization tank 420 parts by mass of the mixed solution and 210 parts by mass of the raw material liquid were charged, and the polymerization reaction was started at a temperature of 70 ° C. while stirring in a nitrogen atmosphere. After 3 hours from the start of the polymerization reaction, the temperature was raised to 90 ° C. and stirring was continued for 1 hour to obtain a liquid in which the bead copolymer was dispersed. Although some polymer adhered to the wall of the polymerization tank or the stirring blade, there was no foaming and the polymerization reaction proceeded smoothly.
  • the obtained copolymer dispersion is washed with an appropriate amount of ion-exchanged water, the bead-like copolymer is taken out with a bucket-type centrifuge, and dried with a hot air dryer at 80 ° C. for 12 hours.
  • Acrylic resin (A-1-1) was obtained.
  • the obtained (meth) acrylic resin (A-1-1) had a methyl methacrylate unit content of 99% by mass, a methyl acrylate unit content of 1% by mass, and a weight average molecular weight (Mw ) Was 95,000 and the glass transition temperature was 120 ° C.
  • (meth) acrylic resin (A-2-1) The monomer used was changed to 90 parts by weight of methyl methacrylate and 10 parts by weight of methyl acrylate, and the amount of chain transfer agent was changed to 0.39 parts by weight. Except for the above, a (meth) acrylic resin (A-2-1) was obtained in the same manner as in Reference Example 1. The obtained (meth) acrylic resin (A-2-1) has a methyl methacrylate unit content of 90% by mass, a methyl acrylate unit content of 10% by mass, and a weight average molecular weight of 60%. The glass transition temperature was 111 ° C.
  • the latex containing the core-shell type graft copolymer (B-1) was frozen and coagulated. Subsequently, it was washed with water and dried to obtain a particulate core-shell type graft copolymer (B-1).
  • the average particle diameter of the particles was 0.23 ⁇ m.
  • Example 1 70 parts by weight of (meth) acrylic resin (A-1-1), 10 parts by weight of (meth) acrylic resin (A-2-1), 20 parts by weight of core-shell type graft copolymer (B-1), aliphatic alcohol (C) A 41 mm ⁇ twin-screw kneading extruder (Toshiba Machine TEM41-SS, with a polymer filter with a filtration accuracy of 10 ⁇ m) while controlling 0.05 parts by mass and 2.0 parts by mass of an ultraviolet-ray inhibitor (E) with a weight feeder
  • the temperature under the hopper is set to 150 ° C.
  • the barrel temperature, and the polymer filter temperature are set to 230 ° C.
  • the (meth) acrylic resin composition is extruded into a strand shape and cut with a pelletizer ( A pellet of a (meth) acrylic resin composition was produced.
  • the obtained pellets were melt-extruded using an extruder equipped with a gear pump and a polymer filter with a filtration accuracy of 10 ⁇ m in this order in a 65 mm ⁇ single screw extruder with a vent, and a T-die with a width of 900 mm at the tip.
  • (Film forming temperature including temperature from vent to T-die) Extruded at 270 ° C., discharge rate 40 kg / h, and formed by sandwiching between 80 ° C. metal mirror elastic roll and 80 ° C. metal mirror rigid roll, The film was taken up at 10 m / min to form a film having a thickness of 75 ⁇ m.
  • the evaluation results of the obtained film are shown in Table 1. Fisheye defects were inspected online during film formation.
  • Examples 2 to 5 A film was obtained in the same manner as in Example 1 except that the formulation shown in Table 1 was used. The evaluation results are shown in Table 1.
  • Example 6 A film was obtained in the same manner as in Example 5 except that the melt extrusion temperature shown in Table 1 (film forming temperature including the temperature from the vent to the T die) was used. The evaluation results are shown in Table 1.
  • Example 3 A film was obtained in the same manner as in Example 1 except that an aliphatic ester (“Excel” T95 manufactured by Kao, stearyl monoglyceride) was used instead of the aliphatic alcohol (C).
  • Example 1 An aliphatic ester (“Excel” T95 manufactured by Kao, stearyl monoglyceride) was used instead of the aliphatic alcohol (C).
  • the evaluation results are shown in Table 1. When aliphatic ester was used, it was suggested that long-term stability at the time of melting is insufficient, and long-term continuous operation becomes difficult.

Abstract

A (meth)acrylic resin composition comprising total 100 mass parts of a (meth)acrylic resin (A) and a core/shell graft copolymer (B), and 0.03 to 0.3 mass parts of an aliphatic alcohol (C).

Description

(メタ)アクリル樹脂組成物、フィルムおよびその製造方法(Meth) acrylic resin composition, film and method for producing the same
 本発明は、光学特性、表面硬度、耐屈曲性、耐衝撃性に優れるフィルムを長期連続運転により安定的且つ簡便に製膜可能な(メタ)アクリル樹脂組成物、それを用いたフィルムおよびその製造方法に関する。 The present invention relates to a (meth) acrylic resin composition capable of stably and simply forming a film having excellent optical properties, surface hardness, flex resistance and impact resistance by long-term continuous operation, a film using the same, and production thereof Regarding the method.
 (メタ)アクリル樹脂組成物は、透明性が高い、表面硬度が高い、耐候性に優れる、成形加工が容易などの特徴を持っているため、看板、フラットパネルディスプレイ等の表示材料、加飾フィルムに分類される車両用内装材および外装材、建材用の内装材および外装材、インテリア部材等の様々な用途で使用されている。特に、鉛筆硬度が高いなど表面特性が優れるために、各種部材の表皮材料として使用されている。また、透明性に優れ、複屈折が少ないなどの特徴もあるため、偏光子保護フィルム、位相差フィルム、飛散防止フィルムなどの各種光学部材として使用されている。しかしながら、アクリル樹脂に限定されず、熱可塑性樹脂を溶融押出法で製膜する場合には、滞留部によってゲル状劣化物が発生しそれがフィッシュアイ欠点となるという問題があり、フィッシュアイの少ないフィルムを長期安定生産する長期連続運転には、現在でも解決すべき課題がある。 The (meth) acrylic resin composition has characteristics such as high transparency, high surface hardness, excellent weather resistance, and easy molding, so it can be used for display materials such as signboards and flat panel displays, and decorative films. It is used in various applications such as interior and exterior materials for vehicles, interior materials and exterior materials for building materials, interior members, and the like. In particular, it is used as a skin material for various members because of its excellent surface properties such as high pencil hardness. Further, since it has excellent transparency and low birefringence, it is used as various optical members such as a polarizer protective film, a retardation film, and an anti-scattering film. However, the present invention is not limited to acrylic resins, and when a thermoplastic resin is formed by a melt extrusion method, there is a problem that a gel-like deteriorated product is generated by a staying portion, which becomes a fish eye defect, and there is little fish eye. There are still problems to be solved in the long-term continuous operation for stable production of films for a long time.
 長期連続運転する方法として、低温で製膜する方法などがあるが表面平滑性が良好なフィルムを得ることができない等の問題が生じる。滞留箇所を削減する方法が一般的に用いられるが、滞留箇所は残ってしまうのが現状である(特許文献1)。なお、(メタ)アクリル樹脂の滑剤として脂肪族アルコールが知られており、例えば(メタ)アクリル樹脂100質量部に脂肪族アルコールを0.01~5質量部含有させることにより、得られるアクリルシートを切削加工しても工具への融着を抑制することができ、また潤滑剤の添加も不要なので生産性が改善されることが知られている(特許文献2)。 As a method for long-term continuous operation, there is a method of forming a film at a low temperature, but there arises a problem that a film having good surface smoothness cannot be obtained. Although the method of reducing a stay location is generally used, the stay location remains at present (patent document 1). An aliphatic alcohol is known as a lubricant for (meth) acrylic resin. For example, an acrylic sheet obtained by adding 0.01 to 5 parts by mass of aliphatic alcohol to 100 parts by mass of (meth) acrylic resin It is known that even if it is cut, fusion to the tool can be suppressed, and addition of a lubricant is unnecessary, so that productivity is improved (Patent Document 2).
特開2017-170620号公報JP 2017-170620 A 国際公開第2014/156032号International Publication No. 2014/156032
 しかしながら、上記特許文献2に記載の方法では、フィルム自体の長期連続運転による安定的な製造を可能とするためにはさらなる改良の余地があった。
 また、上記のとおり、長期連続運転にはそのさらなる向上が求められており、特にゴム成分が添加された耐衝撃性に優れる(メタ)アクリル樹脂製のフィルムの場合にはフィッシュアイが発生しやすく長期連続運転がより困難であった。すなわち、ゴム成分が添加された耐衝撃性に優れるフィルムであって、低ヘーズで光学特性が良く、表面硬度が高く、耐屈曲性に優れるフィルムを、長期連続運転により安定的且つ簡便に得るには、コスト低減の観点からもなお検討の余地があった。
However, the method described in Patent Document 2 has room for further improvement in order to enable stable production of the film itself by long-term continuous operation.
Further, as described above, further improvement is required for long-term continuous operation, and in the case of a (meth) acrylic resin film excellent in impact resistance to which a rubber component is added, fish eyes are likely to occur. Long-term continuous operation was more difficult. That is, a film excellent in impact resistance to which a rubber component is added, having a low haze, good optical properties, high surface hardness, and excellent flex resistance in a stable and simple manner by long-term continuous operation. However, there was still room for examination from the viewpoint of cost reduction.
 本発明は上記背景に鑑みなされたものであり、低ヘーズで光学特性が良く、表面硬度が高く、耐屈曲性に優れる、耐衝撃性に優れたフィルムを、長期連続運転により安定的且つ簡便に製膜可能な(メタ)アクリル樹脂組成物、それを用いたフィルムおよびその製造方法を提供することを目的とする。 The present invention has been made in view of the above background, and a film having low haze, good optical properties, high surface hardness, excellent bending resistance, and excellent impact resistance can be stably and simply by long-term continuous operation. It aims at providing the (meth) acrylic resin composition which can be formed into a film, the film using the same, and its manufacturing method.
 本発明者らは上記目的を達成すべく鋭意検討を重ねた結果、(メタ)アクリル樹脂(A)とコアシェル型グラフト共重合体(B)とを併用し、さらに脂肪族アルコール(C)を特定量配合して得られる(メタ)アクリル樹脂組成物によれば、低ヘーズで光学特性が良く、表面硬度が高く、耐屈曲性に優れる、耐衝撃性に優れたフィルムを与えることができ、しかも当該(メタ)アクリル樹脂組成物は、溶融時の長期安定性に優れていて、フィルムに製膜した際にフィッシュアイの発生も少なくて長期連続運転により安定的且つ簡便に上記フィルムを製膜することができることを見出し、当該知見に基づいてさらに検討を重ねて本発明を完成させた。 As a result of intensive studies to achieve the above object, the present inventors have used (meth) acrylic resin (A) and core-shell type graft copolymer (B) in combination, and further identified aliphatic alcohol (C). According to the (meth) acrylic resin composition obtained by blending in an amount, a film having low haze, good optical properties, high surface hardness, excellent bending resistance, and excellent impact resistance can be provided. The (meth) acrylic resin composition is excellent in long-term stability at the time of melting, and when the film is formed, the formation of the film is stable and simple by long-term continuous operation with little generation of fish eyes. The present invention has been completed through further investigation based on the findings.
 すなわち本発明は、以下に関する。
[1](メタ)アクリル樹脂(A)とコアシェル型グラフト共重合体(B)を合計100質量部と、脂肪族アルコール(C)を0.03~0.3質量部含む、(メタ)アクリル樹脂組成物。
[2]270℃ せん断速度12.2/秒における溶融粘度が2,000Pa・s以下である、[1]に記載の(メタ)アクリル樹脂組成物。
[3]前記(メタ)アクリル樹脂(A)が、重量平均分子量の異なる2種類の(メタ)アクリル樹脂を少なくとも含む、[1]または[2]に記載の(メタ)アクリル樹脂組成物。
[4]前記(メタ)アクリル樹脂(A)とコアシェル型グラフト共重合体(B)の質量比が、前者/後者=70/30~90/10である、[1]~[3]のいずれか1つに記載の(メタ)アクリル樹脂組成物。
[5]前記脂肪族アルコール(C)がステアリルアルコールである、[1]~[4]のいずれか1つに記載の(メタ)アクリル樹脂組成物。
[6]さらに、高分子加工助剤(D)を0.1~3質量%含む、[1]~[5]のいずれか1つに記載の(メタ)アクリル樹脂組成物。
[7][1]~[6]のいずれか1つに記載の(メタ)アクリル樹脂組成物からなるフィルム。
[8]鉛筆硬度がHBまたはそれよりも高い、[7]に記載のフィルム。
[9]耐折回数が30回以上である、[7]または[8]に記載のフィルム。
[10][7]~[9]のいずれか1つに記載のフィルムからなる加飾フィルム。
[11][7]~[9]のいずれか1つに記載のフィルムからなる光学用フィルム。
[12][7]~[9]のいずれか1つに記載のフィルムからなる偏光子保護フィルム。
[13][12]に記載の偏光子保護フィルムを含む偏光板。
[14][7]~[9]のいずれか1つに記載のフィルムの製造方法であって、ベント、ギアポンプ、ポリマーフィルターおよびTダイをこの順に備えた押出装置を用い、ベントからTダイまでの温度を230~290℃で制御する、フィルムの製造方法。
That is, the present invention relates to the following.
[1] (Meth) acrylic containing (meth) acrylic resin (A) and core-shell type graft copolymer (B) in total of 100 parts by mass and aliphatic alcohol (C) in an amount of 0.03 to 0.3 parts by mass Resin composition.
[2] The (meth) acrylic resin composition according to [1], wherein the melt viscosity at 270 ° C. shear rate of 12.2 / sec is 2,000 Pa · s or less.
[3] The (meth) acrylic resin composition according to [1] or [2], wherein the (meth) acrylic resin (A) includes at least two types of (meth) acrylic resins having different weight average molecular weights.
[4] Any of [1] to [3], wherein the mass ratio of the (meth) acrylic resin (A) and the core-shell type graft copolymer (B) is the former / the latter = 70/30 to 90/10 The (meth) acrylic resin composition as described in any one.
[5] The (meth) acrylic resin composition according to any one of [1] to [4], wherein the aliphatic alcohol (C) is stearyl alcohol.
[6] The (meth) acrylic resin composition according to any one of [1] to [5], further comprising 0.1 to 3% by mass of the polymer processing aid (D).
[7] A film comprising the (meth) acrylic resin composition according to any one of [1] to [6].
[8] The film according to [7], wherein the pencil hardness is HB or higher.
[9] The film according to [7] or [8], wherein the folding endurance is 30 or more.
[10] A decorative film comprising the film according to any one of [7] to [9].
[11] An optical film comprising the film according to any one of [7] to [9].
[12] A polarizer protective film comprising the film according to any one of [7] to [9].
[13] A polarizing plate comprising the polarizer protective film according to [12].
[14] A method for producing a film as described in any one of [7] to [9], wherein an extrusion apparatus including a vent, a gear pump, a polymer filter, and a T die in this order is used, from the vent to the T die. The method for producing a film, wherein the temperature is controlled at 230 to 290 ° C.
 本発明によれば、低ヘーズで光学特性が良く、表面硬度が高く、耐屈曲性に優れる、耐衝撃性に優れたフィルムを、長期連続運転により安定的且つ簡便に製膜可能な(メタ)アクリル樹脂組成物、それを用いたフィルムおよびその製造方法が提供される。 According to the present invention, a film having low haze, good optical properties, high surface hardness, excellent flex resistance, and excellent impact resistance can be stably and easily formed by a long-term continuous operation (meta). An acrylic resin composition, a film using the same, and a method for producing the same are provided.
 本発明の(メタ)アクリル樹脂組成物は、(メタ)アクリル樹脂(A)とコアシェル型グラフト共重合体(B)を合計100質量部と、脂肪族アルコール(C)を0.03~0.3質量部含む。 The (meth) acrylic resin composition of the present invention has a total of 100 parts by mass of the (meth) acrylic resin (A) and the core-shell type graft copolymer (B), and 0.03-0. Including 3 parts by mass.
<(メタ)アクリル樹脂(A)>
 本発明に用いられる(メタ)アクリル樹脂(A)としては、例えばメタクリル酸メチルに由来する構造単位から主としてなるものを用いることができる。当該(メタ)アクリル樹脂(A)におけるメタクリル酸メチルに由来する構造単位(メタクリル酸メチル単位)の含有量は、耐熱性の観点から、50質量%以上であることが好ましく、80質量%以であることがより好ましく、90質量%以上であることがさらに好ましく、95質量%以上であることが特に好ましく、全ての構造単位がメタクリル酸メチル単位であってもよい。
<(Meth) acrylic resin (A)>
As the (meth) acrylic resin (A) used in the present invention, for example, a resin mainly composed of a structural unit derived from methyl methacrylate can be used. From the viewpoint of heat resistance, the content of the structural unit derived from methyl methacrylate (methyl methacrylate unit) in the (meth) acrylic resin (A) is preferably 50% by mass or less, and 80% by mass or less. More preferably, it is more preferably 90% by mass or more, particularly preferably 95% by mass or more, and all the structural units may be methyl methacrylate units.
 (メタ)アクリル樹脂(A)は、メタクリル酸メチル以外の他の単量体に由来する構造単位を含んでいてもよい。このような他の単量体としては、メタクリル酸メチルと共重合可能であれば特に制限なく、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸sec-ブチル、アクリル酸tert-ブチル、アクリル酸アミル、アクリル酸イソアミル、アクリル酸n-へキシル、アクリル酸2-エチルへキシル、アクリル酸ペンタデシル、アクリル酸ドデシル、アクリル酸フェニル、アクリル酸ベンジル、アクリル酸フェノキシエチル、アクリル酸2-ヒドロキシエチル、アクリル酸2-エトキシエチル、アクリル酸グリシジル、アクリル酸アリル、アクリル酸シクロへキシル、アクリル酸ノルボルニル、アクリル酸イソボルニル等のアクリル酸エステル;メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸sec-ブチル、メタクリル酸tert-ブチル、メタクリル酸アミル、メタクリル酸イソアミル、メタクリル酸n-へキシル、メタクリル酸2-エチルへキシル、メタクリル酸ペンタデシル、メタクリル酸ドデシル、メタクリル酸フェニル、メタクリル酸ベンジル、メタクリル酸フェノキシエチル、メタクリル酸2-ヒドロキシエチル、メタクリル酸2-エトキシエチル、メタクリル酸グリシジル、メタクリル酸アリル、メタクリル酸シクロへキシル、メタクリル酸ノルボルニル、メタクリル酸イソボルニル等のメタクリル酸メチル以外のメタクリル酸エステル;アクリル酸、メタクリル酸、無水マレイン酸、マレイン酸、イタコン酸等の不飽和カルボン酸またはその酸無水物;エチレン、プロピレン、1-ブテン、イソブチレン、1-オクテン等のオレフィン;ブタジエン、イソプレン、ミルセン等の共役ジエン;スチレン、α-メチルスチレン、p-メチルスチレン、m-メチルスチレン等の芳香族ビニル化合物;アクリルアミド、メタクリルアミド、アクリロニトリル、メタクリロニトリル、酢酸ビニル、ビニルピリジン、ビニルケトン、塩化ビニル、塩化ビニリデン、フッ化ビニリデンなどが挙げられる。 (Meth) acrylic resin (A) may contain a structural unit derived from another monomer other than methyl methacrylate. Such other monomers are not particularly limited as long as they can be copolymerized with methyl methacrylate. For example, methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate , Isobutyl acrylate, sec-butyl acrylate, tert-butyl acrylate, amyl acrylate, isoamyl acrylate, n-hexyl acrylate, 2-ethylhexyl acrylate, pentadecyl acrylate, dodecyl acrylate, acrylic acid Acrylic acid such as phenyl, benzyl acrylate, phenoxyethyl acrylate, 2-hydroxyethyl acrylate, 2-ethoxyethyl acrylate, glycidyl acrylate, allyl acrylate, cyclohexyl acrylate, norbornyl acrylate, isobornyl acrylate Steal; ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, sec-butyl methacrylate, tert-butyl methacrylate, amyl methacrylate, isoamyl methacrylate, n-methacrylate Hexyl, 2-ethylhexyl methacrylate, pentadecyl methacrylate, dodecyl methacrylate, phenyl methacrylate, benzyl methacrylate, phenoxyethyl methacrylate, 2-hydroxyethyl methacrylate, 2-ethoxyethyl methacrylate, glycidyl methacrylate, Methacrylic acid esters other than methyl methacrylate, such as allyl methacrylate, cyclohexyl methacrylate, norbornyl methacrylate, isobornyl methacrylate; acrylic acid, meta Unsaturated carboxylic acids such as lauric acid, maleic anhydride, maleic acid and itaconic acid or their anhydrides; olefins such as ethylene, propylene, 1-butene, isobutylene and 1-octene; conjugated dienes such as butadiene, isoprene and myrcene Aromatic vinyl compounds such as styrene, α-methylstyrene, p-methylstyrene, m-methylstyrene; acrylamide, methacrylamide, acrylonitrile, methacrylonitrile, vinyl acetate, vinyl pyridine, vinyl ketone, vinyl chloride, vinylidene chloride, fluorine And vinylidene chloride.
 (メタ)アクリル樹脂(A)の立体規則性に特に制限はなく、例えば、イソタクチック、ヘテロタクチック、シンジオタクチックなどの立体規則性を有する(メタ)アクリル樹脂(A)を用いることができる。 The stereoregularity of the (meth) acrylic resin (A) is not particularly limited, and for example, a (meth) acrylic resin (A) having stereoregularity such as isotactic, heterotactic, syndiotactic and the like can be used.
 本発明の(メタ)アクリル樹脂組成物は(メタ)アクリル樹脂(A)として、1種の(メタ)アクリル樹脂のみを含んでいてもよいが、本発明の効果がより顕著に奏されることなどから、2種以上の(メタ)アクリル樹脂を含んでいることが好ましく、特に重量平均分子量の異なる2種類の(メタ)アクリル樹脂(A-1およびA-2)を少なくとも含むことが好ましい。 The (meth) acrylic resin composition of the present invention may contain only one kind of (meth) acrylic resin as the (meth) acrylic resin (A), but the effect of the present invention is more remarkably exhibited. From the above, it is preferable that at least two (meth) acrylic resins are included, and at least two (meth) acrylic resins (A-1 and A-2) having different weight average molecular weights are particularly preferable.
 (メタ)アクリル樹脂(A-1)は、耐熱性を高めるためにメタクリル酸メチル単位の含有量が高く、重量平均分子量(Mw)も高い樹脂であることが好ましい。(メタ)アクリル樹脂(A-1)における好ましいメタアクリル酸メチル単位の含有量は95質量%以上であり、より好ましくは97質量%以上であり、更に好ましくは99質量%以上である。また、(メタ)アクリル樹脂(A-1)の好ましい重量平均分子量は80,000~150,000であり、より好ましくは85,000~120,000であり、更に好ましくは90,000~100,000である。(メタ)アクリル樹脂(A-1)の重量平均分子量が80,000以上であると機械物性が良好となり、(メタ)アクリル樹脂(A-1)の重量平均分子量が150,000以下であると溶融粘度が高くなり過ぎるのを抑制することができ、加工性が良好となる。 The (meth) acrylic resin (A-1) is preferably a resin having a high methyl methacrylate unit content and a high weight average molecular weight (Mw) in order to enhance heat resistance. The content of the preferred methyl methacrylate unit in the (meth) acrylic resin (A-1) is 95% by mass or more, more preferably 97% by mass or more, and further preferably 99% by mass or more. The (meth) acrylic resin (A-1) preferably has a weight average molecular weight of 80,000 to 150,000, more preferably 85,000 to 120,000, still more preferably 90,000 to 100,000. 000. When the weight average molecular weight of the (meth) acrylic resin (A-1) is 80,000 or more, the mechanical properties are good, and the weight average molecular weight of the (meth) acrylic resin (A-1) is 150,000 or less. It can suppress that melt viscosity becomes high too much, and workability becomes favorable.
 (メタ)アクリル樹脂(A-2)は、主として、本発明の(メタ)アクリル樹脂組成物中でのコアシェル型グラフト共重合体(B)の分散性を高めるための相容化剤のような役割を果たすなどの目的のために添加されるものであり、例えば上記目的の場合には、(メタ)アクリル樹脂(A-2)におけるメタクリル酸メチル単位の含有量は、上記した(メタ)アクリル樹脂(A-1)におけるメタクリル酸メチル単位の含有量と、後述するコアシェル型グラフト共重合体(B)の最外層を構成する熱可塑性重合体(II)におけるメタクリル酸メチル単位の含有量との間(同じ場合を含む)であることが好ましい。また、(メタ)アクリル樹脂(A-2)の重量平均分子量は上記した(メタ)アクリル樹脂(A-1)の重量平均分子量よりも低い方が好ましい。(メタ)アクリル樹脂(A-2)の好ましい重量平均分子量は30,000~80,000であり、より好ましくは40,000~75,000、更に好ましくは50,000~70,000である。(メタ)アクリル樹脂(A-2)の重量分子量が30,000以上であると機械物性が良好となり、(メタ)アクリル樹脂(A-2)の重量平均分子量が80,000以下であると相容化剤のような役割を十分に発揮することができる。 The (meth) acrylic resin (A-2) is mainly used as a compatibilizer for enhancing the dispersibility of the core-shell type graft copolymer (B) in the (meth) acrylic resin composition of the present invention. For example, in the case of the above purpose, the content of the methyl methacrylate unit in the (meth) acrylic resin (A-2) is the same as the above (meth) acrylic. The content of the methyl methacrylate unit in the resin (A-1) and the content of the methyl methacrylate unit in the thermoplastic polymer (II) constituting the outermost layer of the core-shell type graft copolymer (B) described later It is preferable that it is between (including the same case). The weight average molecular weight of the (meth) acrylic resin (A-2) is preferably lower than the weight average molecular weight of the (meth) acrylic resin (A-1). The weight average molecular weight of the (meth) acrylic resin (A-2) is preferably 30,000 to 80,000, more preferably 40,000 to 75,000, still more preferably 50,000 to 70,000. When the weight molecular weight of the (meth) acrylic resin (A-2) is 30,000 or more, the mechanical properties are good, and when the weight average molecular weight of the (meth) acrylic resin (A-2) is 80,000 or less. A role like a container can be fully demonstrated.
 (メタ)アクリル樹脂(A)の分子量分布は、GPCで測定した際の重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)で表され、1.05~3であることが好ましく、1.3~2.5であることがより好ましい。分子量分布が1.05以上であると成形加工がしやすくなり、分子量分布が3以下であるとクリープ特性などの物性が良好になる。
 なお、重量平均分子量(Mw)は実施例の欄において後述する方法で測定することができ、数平均分子量(Mn)もこれと同様にして測定することができる。
The molecular weight distribution of the (meth) acrylic resin (A) is represented by the ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) as measured by GPC, and is 1.05 to 3. It is preferably 1.3 to 2.5. When the molecular weight distribution is 1.05 or more, molding is facilitated, and when the molecular weight distribution is 3 or less, physical properties such as creep properties are improved.
In addition, a weight average molecular weight (Mw) can be measured by the method mentioned later in the column of an Example, and a number average molecular weight (Mn) can also be measured similarly to this.
 (メタ)アクリル樹脂(A)の製造方法に特に制限はなく、例えば、メタクリル酸メチルを主体とする単量体を重合することによって得ることができる。なお、(メタ)アクリル樹脂(A)の重合度は、重合開始剤および連鎖移動剤の量によって調整することができる。 The method for producing the (meth) acrylic resin (A) is not particularly limited, and can be obtained, for example, by polymerizing a monomer mainly composed of methyl methacrylate. In addition, the polymerization degree of (meth) acrylic resin (A) can be adjusted with the quantity of a polymerization initiator and a chain transfer agent.
 また(メタ)アクリル樹脂(A)としては、市販品を用いてもよい。かかるメタクリル樹脂としては、例えば「パラペットH1000B」(MFR:22g/10分(230℃、37.3N))、「パラペットGF」(MFR:15g/10分(230℃、37.3N))、「パラペットEH」(MFR:1.3g/10分(230℃、37.3N))、「パラペットHRL」(MFR:2.0g/10分(230℃、37.3N))、「パラペットHRS」(MFR:2.4g/10分(230℃、37.3N))および「パラペットG」(MFR:8.0g/10分(230℃、37.3N))[いずれも商品名、株式会社クラレ製]などが挙げられる。 Further, as the (meth) acrylic resin (A), a commercially available product may be used. Examples of the methacrylic resin include “Parapet H1000B” (MFR: 22 g / 10 min (230 ° C., 37.3 N)), “Parapet GF” (MFR: 15 g / 10 min (230 ° C., 37.3 N)), “ “Parapet EH” (MFR: 1.3 g / 10 min (230 ° C., 37.3 N)), “Parapet HRL” (MFR: 2.0 g / 10 min (230 ° C., 37.3 N)), “Parapet HRS” ( MFR: 2.4 g / 10 min (230 ° C., 37.3 N)) and “Parapet G” (MFR: 8.0 g / 10 min (230 ° C., 37.3 N)) [all trade names, manufactured by Kuraray Co., Ltd. ] Etc. are mentioned.
 (メタ)アクリル樹脂(A)のガラス転移温度(Tg)は80~140℃であることが好ましく、より好ましくは95~130℃であり、更に好ましくは110~120℃である。ガラス転移温度はメタクリル酸メチルと共重合する単量体の種類と量、および重合温度などにより立体規則性を変更することなどによって調整することができる。なおガラス転移温度はJIS K7121:2012に準拠して測定した値である。すなわち、(メタ)アクリル樹脂(A)を200℃まで一度昇温し、次いで室温(25℃)まで冷却し、その後室温から200℃までを10℃/分で昇温させる条件にて示差走査熱量測定法にてDSC曲線を測定し、2回目の昇温時に測定されるDSC曲線から求められる中間点ガラス転移温度を(メタ)アクリル樹脂(A)のガラス転移温度とすることができる。 The glass transition temperature (Tg) of the (meth) acrylic resin (A) is preferably 80 to 140 ° C., more preferably 95 to 130 ° C., and still more preferably 110 to 120 ° C. The glass transition temperature can be adjusted by changing the stereoregularity depending on the kind and amount of the monomer copolymerized with methyl methacrylate and the polymerization temperature. The glass transition temperature is a value measured in accordance with JIS K7121: 2012. That is, the differential scanning calorific value is obtained under the condition that the (meth) acrylic resin (A) is once heated to 200 ° C., then cooled to room temperature (25 ° C.), and then heated from room temperature to 200 ° C. at 10 ° C./min. The DSC curve is measured by a measurement method, and the midpoint glass transition temperature obtained from the DSC curve measured at the second temperature rise can be set as the glass transition temperature of the (meth) acrylic resin (A).
<コアシェル型グラフト共重合体(B)>
 本発明の(メタ)アクリル樹脂組成物に用いられるコアシェル型グラフト共重合体(B)としては、最外層と内層とを有する架橋ゴム粒子を用いることができる。このような架橋ゴム粒子の種類としては、最外層と内層を有すれば特に限定されず、例えば、芯(内層)が架橋ゴム重合体(I)-外殻(最外層)が熱可塑性重合体(II)の2層重合体粒子;芯(内層)が重合体(III)-内殻(内層)が架橋ゴム重合体(I)-外殻(最外層)が熱可塑性重合体(II)の3層重合体粒子;芯(内層)が架橋ゴム重合体(I)-第一内殻(内層)が重合体(III)-第二内殻(内層)が架橋ゴム重合体(I)-外殻(最外層)が熱可塑性重合体(II)の4層重合体粒子などのさまざまな積層構造が可能であるが、3層重合体粒子が好ましい。
<Core-shell type graft copolymer (B)>
As the core-shell type graft copolymer (B) used in the (meth) acrylic resin composition of the present invention, crosslinked rubber particles having an outermost layer and an inner layer can be used. The type of the crosslinked rubber particles is not particularly limited as long as it has an outermost layer and an inner layer. For example, the core (inner layer) is a crosslinked rubber polymer (I) -the outer shell (outermost layer) is a thermoplastic polymer. (II) two-layer polymer particles; core (inner layer) is polymer (III)-inner shell (inner layer) is crosslinked rubber polymer (I)-outer shell (outermost layer) is thermoplastic polymer (II) Three-layer polymer particles; core (inner layer) is crosslinked rubber polymer (I) -first inner shell (inner layer) is polymer (III) -second inner shell (inner layer) is crosslinked rubber polymer (I) -outer Various laminated structures such as four-layer polymer particles whose shell (outermost layer) is thermoplastic polymer (II) are possible, but three-layer polymer particles are preferred.
 架橋ゴム重合体(I)は、架橋ゴム重合体(I)の質量に対して、アルキル基の炭素原子数が1~8であるアクリル酸アルキルエステル単量体に由来する構造単位を70~98質量%含むことが好ましく、75~90質量%含むことがより好ましく、80~85質量%含むことが更に好ましい。上記含有量であることによって、柔軟なゴム材料となり耐衝撃性を付与できる。また架橋ゴム重合体(I)は、架橋ゴム重合体(I)の質量に対して、芳香族ビニル単量体に由来する構造単位を2~30質量%含むことが好ましく、10~25質量%含むことがより好ましく、15~20質量%含むことが更に好ましい。上記含有量であることによって、架橋ゴム重合体(I)の屈折率を(メタ)アクリル樹脂(A)と合わせるように調整でき、高い透明性を持つ(メタ)アクリル樹脂組成物を得ることができる。
 また、架橋ゴム重合体(I)は、架橋ゴム重合体(I)の質量に対して、架橋性単量体に由来する構造単位を1~5質量%含むことが好ましく、1~3質量%含むことがより好ましい。上記含有量であることによって、適度な架橋密度となり、ゴム材料としての振る舞いが良好となる。
The crosslinked rubber polymer (I) has 70 to 98 structural units derived from an alkyl acrylate ester monomer having 1 to 8 carbon atoms in the alkyl group with respect to the mass of the crosslinked rubber polymer (I). It is preferably contained by mass%, more preferably by 75 to 90 mass%, further preferably by 80 to 85 mass%. When the content is the above, it becomes a flexible rubber material and can impart impact resistance. The crosslinked rubber polymer (I) preferably contains 2 to 30% by mass of structural units derived from the aromatic vinyl monomer with respect to the mass of the crosslinked rubber polymer (I). More preferably, it is more preferably 15 to 20% by mass. By having the above content, the refractive index of the crosslinked rubber polymer (I) can be adjusted to match that of the (meth) acrylic resin (A), and a (meth) acrylic resin composition having high transparency can be obtained. it can.
The crosslinked rubber polymer (I) preferably contains 1 to 5% by mass of a structural unit derived from a crosslinkable monomer with respect to the mass of the crosslinked rubber polymer (I). More preferably. By having the above content, an appropriate crosslinking density is obtained, and the behavior as a rubber material is improved.
 熱可塑性重合体(II)は、熱可塑性重合体(II)の質量に対して、メタクリル酸メチル単位を80~100質量%含むことが好ましく、85~97質量%含むことがより好ましく、90~96質量%含むことが更に好ましい。上記含有量であることによって、(メタ)アクリル樹脂(A)との相容性が良くなる。
 また、熱可塑性重合体(II)は、熱可塑性重合体(II)の質量に対して、アルキル基の炭素原子数が1~8であるアクリル酸アルキルエステル単量体に由来する構造単位を0~20質量%含むことが好ましく、3~15質量%含むことがより好ましく、4~10質量%含むことが更に好ましい。上記含有量であることによって、(メタ)アクリル樹脂(A)との相容性が良くなる。
The thermoplastic polymer (II) preferably contains 80 to 100% by mass of methyl methacrylate units, more preferably 85 to 97% by mass, more preferably 90 to 90% by mass relative to the mass of the thermoplastic polymer (II). More preferably, the content is 96% by mass. By being said content, compatibility with a (meth) acrylic resin (A) improves.
The thermoplastic polymer (II) has 0 structural units derived from an acrylic acid alkyl ester monomer having 1 to 8 carbon atoms in the alkyl group with respect to the mass of the thermoplastic polymer (II). It is preferably contained in an amount of ˜20% by mass, more preferably 3-15% by mass, and still more preferably 4-10% by mass. By being said content, compatibility with a (meth) acrylic resin (A) improves.
 重合体(III)は、重合体(III)の質量に対して、メタクリル酸メチル単位を80~99.95質量%含むことが好ましく、85~98質量%含むことがより好ましく、90~96質量%含むことが更に好ましい。上記含有量であることによって、硬度が良好となり好ましい。
 重合体(III)は、重合体(III)の質量に対して、アルキル基の炭素原子数が1~8であるアクリル酸アルキルエステル単量体に由来する構造単位を0~19.95質量%、および架橋性単量体を0.05~2質量%含むことが好ましく、アルキル基の炭素原子数が1~8であるアクリル酸アルキルエステル単量体に由来する構造単位を2~15質量%、および、架橋性単量体に由来する構造単位を0.05~1.5質量%含むことがより好ましく、アルキル基の炭素原子数が1~8であるアクリル酸アルキルエステル単量体に由来する構造単位を4~10質量%、および、架橋性単量体に由来する構造単位を0.1~1質量%含むことが更に好ましい。上記含有量であることによって、硬度が良好となり好ましい。
The polymer (III) preferably contains 80 to 99.95% by mass of methyl methacrylate units, more preferably 85 to 98% by mass, and more preferably 90 to 96% by mass with respect to the mass of the polymer (III). % Is more preferable. The above content is preferable because the hardness is good.
The polymer (III) contains 0 to 19.95% by mass of a structural unit derived from an acrylic acid alkyl ester monomer having an alkyl group having 1 to 8 carbon atoms based on the mass of the polymer (III). , And 0.05 to 2% by mass of a crosslinkable monomer, and 2 to 15% by mass of a structural unit derived from an acrylic acid alkyl ester monomer having an alkyl group having 1 to 8 carbon atoms. More preferably, it contains 0.05 to 1.5% by mass of a structural unit derived from a crosslinkable monomer, and is derived from an acrylic acid alkyl ester monomer having an alkyl group having 1 to 8 carbon atoms. More preferably, the structural unit contains 4 to 10% by mass of the structural unit and 0.1 to 1% by mass of the structural unit derived from the crosslinkable monomer. The above content is preferable because the hardness is good.
 上記各単量体の含有量は、層ごとに計算される。例えば、4層重合体粒子において、芯(内層)と第二内殻(内層)がともに架橋ゴム重合体(I)で構成される場合、各単量体に由来する構造単位の含有量は、芯(内層)と第二内殻(内層)、別々に計算される。 The content of each monomer is calculated for each layer. For example, in a four-layer polymer particle, when both the core (inner layer) and the second inner shell (inner layer) are composed of the crosslinked rubber polymer (I), the content of the structural unit derived from each monomer is The core (inner layer) and the second inner shell (inner layer) are calculated separately.
 コアシェル型グラフト共重合体(B)の透明性の観点から、隣り合う層の屈折率の差が、好ましくは0.005未満であり、より好ましくは0.004未満、更に好ましくは0.003未満になるように各層に含有される重合体を選択することが好ましい。 From the viewpoint of transparency of the core-shell type graft copolymer (B), the difference in refractive index between adjacent layers is preferably less than 0.005, more preferably less than 0.004, and even more preferably less than 0.003. It is preferable to select a polymer contained in each layer so that
 コアシェル型グラフト共重合体(B)における内層と最外層との質量比は、好ましくは前者/後者=30/70~95/5であり、より好ましくは70/30~90/10である。本明細書では、コアシェル型グラフト共重合体(B)の最外層は粒子の最も外側にある層を、内層は最外層より内側にある全ての層を、それぞれ指すこととする。内層において、架橋ゴム重合体(I)を含有する層が占める割合は、好ましくは20~70質量%であり、より好ましくは30~50質量%である。 The mass ratio of the inner layer to the outermost layer in the core-shell type graft copolymer (B) is preferably the former / the latter = 30/70 to 95/5, more preferably 70/30 to 90/10. In the present specification, the outermost layer of the core-shell type graft copolymer (B) refers to the outermost layer of the particles, and the inner layer refers to all the layers inside the outermost layer. In the inner layer, the proportion of the layer containing the crosslinked rubber polymer (I) is preferably 20 to 70% by mass, more preferably 30 to 50% by mass.
 本発明におけるコアシェル型グラフト共重合体(B)の平均粒子径は、好ましくは0.05~1μmであり、より好ましくは0.07~0.5μmであり、更に好ましくは0.1~0.4μmであり、特に好ましくは0.15~0.3μmである。このような範囲内の平均粒子径を有するコアシェル型グラフト共重合体(B)を用いると、少量の配合で、靭性を発現することができ、剛性や表面硬度を損なう可能性を抑えることができる。なお、本明細書における平均粒子径は、光散乱法によって測定される体積基準の粒径分布における算術平均値であり、具体的には実施例に記載の方法で求めることができる。 The average particle size of the core-shell type graft copolymer (B) in the present invention is preferably 0.05 to 1 μm, more preferably 0.07 to 0.5 μm, still more preferably 0.1 to 0.00. It is 4 μm, particularly preferably 0.15 to 0.3 μm. When the core-shell type graft copolymer (B) having an average particle diameter in such a range is used, toughness can be expressed with a small amount of blending, and the possibility of impairing rigidity and surface hardness can be suppressed. . In addition, the average particle diameter in this specification is an arithmetic average value in the volume-based particle size distribution measured by the light scattering method, and can be specifically obtained by the method described in the examples.
 コアシェル型グラフト共重合体(B)の製造方法は特に制限されず、公知の方法で行うことができるが、乳化重合法が好適である。具体的には、芯(内層)を構成する単量体の乳化重合を行ってシード粒子を得、このシード粒子の存在下に各層を構成する単量体を逐次添加して順次最外層までの重合を行うことによって得ることができる。 The production method of the core-shell type graft copolymer (B) is not particularly limited and can be performed by a known method, but an emulsion polymerization method is preferable. Specifically, emulsion polymerization of monomers constituting the core (inner layer) is performed to obtain seed particles, and in the presence of the seed particles, the monomers constituting each layer are sequentially added to the outermost layer sequentially. It can be obtained by carrying out polymerization.
 乳化重合法に用いられる乳化剤としては、例えば、アニオン系乳化剤であるジオクチルスルホコハク酸ナトリウム、ジラウリルスルホコハク酸ナトリウム等のジアルキルスルホコハク酸塩、ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩、ドデシル硫酸ナトリウム等のアルキル硫酸塩;ノニオン系乳化剤であるポリオキシエチレンアルキルエーテル、ポリオキシエチレンノニルフェニルエーテルなど;ノニオン・アニオン系乳化剤であるポリオキシエチレンノニルフェニルエーテル硫酸ナトリウム等のポリオキシエチレンノニルフェニルエーテル硫酸塩、ポリオキシエチレンアルキルエーテル硫酸ナトリウム等のポリオキシエチレンアルキルエーテル硫酸塩、ポリオキシエチレントリデシルエーテル酢酸ナトリウム等のアルキルエーテルカルボン酸塩;などが挙げられる。これらは1種を単独でまたは2種以上を組み合わせて用いてもよい。なお、ノニオン系乳化剤およびノニオン・アニオン系乳化剤の例示化合物におけるエチレンオキシド単位の平均繰り返し単位数は、乳化剤の発泡性が極端に大きくならないようにするために、30以下であることが好ましく、より好ましくは20以下であり、更に好ましくは10以下である。 Examples of the emulsifier used in the emulsion polymerization method include dialkyl sulfosuccinates such as sodium dioctyl sulfosuccinate and sodium dilauryl sulfosuccinate which are anionic emulsifiers, alkylbenzene sulfonates such as sodium dodecylbenzene sulfonate, sodium dodecyl sulfate and the like. Nonionic emulsifier polyoxyethylene alkyl ether, polyoxyethylene nonyl phenyl ether, etc .; Nonionic anionic emulsifier polyoxyethylene nonyl phenyl ether sodium sulfate polyoxyethylene nonyl phenyl ether sulfate, Polyoxyethylene alkyl ether sulfate such as sodium polyoxyethylene alkyl ether sulfate, sodium polyoxyethylene tridecyl ether acetate Alkyl ether carboxylates, such as beam; and the like. These may be used alone or in combination of two or more. In addition, the average number of repeating units of ethylene oxide units in the exemplified compounds of the nonionic emulsifier and the nonionic anionic emulsifier is preferably 30 or less, more preferably in order to prevent the foaming property of the emulsifier from becoming extremely large. It is 20 or less, more preferably 10 or less.
 乳化重合に用いられる重合開始剤は特に限定されず、例えば、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩系開始剤;パースルホキシレート/有機過酸化物、過硫酸塩/亜硫酸塩等のレドックス系開始剤などを用いることができる。 The polymerization initiator used in the emulsion polymerization is not particularly limited, and examples thereof include persulfate-based initiators such as potassium persulfate and ammonium persulfate; redox such as persulfoxylate / organic peroxide, persulfate / sulfite. A system initiator or the like can be used.
 乳化重合で得られるポリマーラテックスからのコアシェル型グラフト共重合体の分離取得は、塩析凝固法、凍結凝固法、噴霧乾燥法などの公知の方法によって行うことができる。これらの中でも、架橋ゴム粒子成分に含まれる不純物を水洗により容易に除去できる点から、塩析凝固法および凍結凝固法が好ましく、凍結凝固法がより好ましい。凍結凝固法は凝集剤を用いないので、耐水性に優れたフィルムが得られやすい。凝固工程前にポリマーラテックスに混入した異物を除去するため、目開き50μm以下の金網などでポリマーラテックスを濾過することが好ましい。(メタ)アクリル樹脂(A)との溶融混練において均一に分散させ易いという観点から、コアシェル型グラフト共重合体(B)を1,000μm以下の凝集粒子として取り出すことが好ましく、500μm以下の凝集粒子として取り出すことがより好ましい。なお、凝集粒子の形態は特に限定されず、例えば、最外層部分で相互に融着した状態のペレット状でもよいし、パウダー状やグラニュー状の粉体でもよい。 Separation and acquisition of the core-shell type graft copolymer from the polymer latex obtained by emulsion polymerization can be performed by a known method such as a salting out coagulation method, a freeze coagulation method, or a spray drying method. Among these, the salting out coagulation method and the freeze coagulation method are preferable, and the freeze coagulation method is more preferable from the viewpoint that impurities contained in the crosslinked rubber particle component can be easily removed by washing with water. Since the freeze coagulation method does not use a flocculant, it is easy to obtain a film excellent in water resistance. In order to remove foreign matters mixed in the polymer latex before the coagulation step, it is preferable to filter the polymer latex with a wire mesh having an opening of 50 μm or less. From the viewpoint of being easily dispersed uniformly in the melt-kneading with the (meth) acrylic resin (A), the core-shell type graft copolymer (B) is preferably taken out as aggregated particles of 1,000 μm or less, and the aggregated particles of 500 μm or less It is more preferable to take out as The form of the aggregated particles is not particularly limited. For example, the aggregated particles may be in the form of pellets fused to each other at the outermost layer portion, or may be powder or granulated powder.
 本発明の(メタ)アクリル樹脂組成物におけるコアシェル型グラフト共重合体(B)の含有量は特に限定されないが、(メタ)アクリル樹脂(A)とコアシェル型グラフト共重合体(B)の質量比が、前者/後者=70/30~90/10であることが好ましく、より好ましくは75/25~85/15であり、更に好ましくは77/23~83/17である。上記質量比がこの範囲にあることにより、硬度と耐衝撃性のバランスに優れた(メタ)アクリル樹脂組成物が得られる。 The content of the core-shell type graft copolymer (B) in the (meth) acrylic resin composition of the present invention is not particularly limited, but the mass ratio of the (meth) acrylic resin (A) and the core-shell type graft copolymer (B) However, the former / the latter is preferably 70/30 to 90/10, more preferably 75/25 to 85/15, and still more preferably 77/23 to 83/17. When the mass ratio is in this range, a (meth) acrylic resin composition having an excellent balance between hardness and impact resistance can be obtained.
<脂肪族アルコール(C)>
 本発明の(メタ)アクリル樹脂組成物は、(メタ)アクリル樹脂(A)とコアシェル型グラフト共重合体(B)の合計量100質量部に対して、脂肪族アルコール(C)を0.03~0.3質量部含む。脂肪族アルコール(C)の含有量は、(メタ)アクリル樹脂(A)およびコアシェル型グラフト共重合体(B)の合計量100質量部に対して、好ましくは0.03~0.2質量部であり、より好ましくは0.04~0.09質量部である。脂肪族アルコール(C)の含有量が0.03質量部未満であると、溶融時の長期安定性が不十分となり、脂肪族アルコール(C)の含有量が0.3質量部を超えると、長期安定性が悪化する。
<Fatty alcohol (C)>
In the (meth) acrylic resin composition of the present invention, 0.03 of the aliphatic alcohol (C) is added to 100 parts by mass of the total amount of the (meth) acrylic resin (A) and the core-shell type graft copolymer (B). Including 0.3 parts by mass. The content of the aliphatic alcohol (C) is preferably 0.03 to 0.2 parts by mass with respect to 100 parts by mass of the total amount of the (meth) acrylic resin (A) and the core-shell type graft copolymer (B). More preferably, it is 0.04 to 0.09 parts by mass. When the content of the aliphatic alcohol (C) is less than 0.03 parts by mass, the long-term stability at the time of melting becomes insufficient, and when the content of the aliphatic alcohol (C) exceeds 0.3 parts by mass, Long-term stability deteriorates.
 脂肪族アルコール(C)の種類に特に制限はないが、ラウリルアルコール、パルミチルアルコール、ステアリルアルコール、オレイルアルコールなどの炭素数12~18の脂肪族アルコールが好ましく、ラウリルアルコール、パルミチルアルコール、ステアリルアルコールなどの炭素数12~18の飽和脂肪族アルコールがより好ましく、パルミチルアルコール、ステアリルアルコールなどの炭素数16~18の飽和脂肪族アルコールが更に好ましく、ステアリルアルコールが特に好ましい。脂肪族アルコール(C)は、1種を単独で用いても、2種以上を併用してもよい。 The type of the aliphatic alcohol (C) is not particularly limited, but an aliphatic alcohol having 12 to 18 carbon atoms such as lauryl alcohol, palmityl alcohol, stearyl alcohol, and oleyl alcohol is preferable. Lauryl alcohol, palmityl alcohol, stearyl alcohol More preferred are saturated aliphatic alcohols having 12 to 18 carbon atoms, such as saturated aliphatic alcohols having 16 to 18 carbon atoms such as palmityl alcohol and stearyl alcohol, and particularly preferred is stearyl alcohol. An aliphatic alcohol (C) may be used individually by 1 type, or may use 2 or more types together.
<その他の添加剤>
 本発明の(メタ)アクリル樹脂組成物には、本発明の効果を損なわない範囲で、必要に応じて各種の添加剤、例えば、高分子加工助剤(D)、紫外線吸収剤(E)、酸化防止剤、熱安定剤、滑剤、帯電防止剤、着色剤、耐衝撃助剤など、上記した(メタ)アクリル樹脂(A)、コアシェル型グラフト共重合体(B)および脂肪族アルコール(C)以外の他の添加剤を添加してもよい。なお、本発明のフィルムの力学物性および表面硬度の観点から発泡剤、充填剤、艶消し剤、光拡散剤、軟化剤、可塑剤は多量に添加しないことが好ましい。
<Other additives>
In the (meth) acrylic resin composition of the present invention, various additives such as a polymer processing aid (D), an ultraviolet absorber (E), and the like, as long as the effects of the present invention are not impaired. Antioxidants, heat stabilizers, lubricants, antistatic agents, colorants, impact resistance aids, etc. (meth) acrylic resin (A), core-shell type graft copolymer (B) and aliphatic alcohol (C) You may add other additives other than. In addition, it is preferable not to add a foaming agent, a filler, a matting agent, a light diffusing agent, a softening agent, and a plasticizer in a large amount from the viewpoint of mechanical properties and surface hardness of the film of the present invention.
<高分子加工助剤(D)>
 本発明の(メタ)アクリル樹脂組成物は、上記したその他の添加剤として、高分子加工助剤(D)をさらに含むことが好ましい。高分子加工助剤(D)は、本発明の樹脂組成物を成形する際、厚さ精度、製膜安定性およびフィッシュアイの低減などに効果を発揮する化合物である。高分子加工助剤(D)としては、通常、乳化重合法によって製造することができる、メタクリル酸メチル単位を主体とする(例えば50質量%以上含む)超高分子量(重量平均分子量 50万以上)のメタクリル樹脂を用いることができ、0.05~0.5μmの粒子径を有する重合体粒子であることが好ましい。
<Polymer processing aid (D)>
The (meth) acrylic resin composition of the present invention preferably further contains a polymer processing aid (D) as the other additive described above. The polymer processing aid (D) is a compound that exhibits an effect in thickness accuracy, film formation stability, fisheye reduction, and the like when the resin composition of the present invention is molded. As the polymer processing aid (D), an ultra high molecular weight (weight average molecular weight of 500,000 or more) mainly comprising methyl methacrylate units (including 50% by mass or more), which can be usually produced by an emulsion polymerization method. Methacrylic resin can be used, and polymer particles having a particle diameter of 0.05 to 0.5 μm are preferable.
 高分子加工助剤(D)には市販品を用いることができ、具体的には、「カネエース」PAシリーズ(カネカ社製)、「メタブレン」Pシリーズ(三菱レイヨン社製)、「パラロイド」Kシリーズ(ダウ社製)などが挙げられる。中でも、樹脂との相性の観点から、「パラロイド」K125Pが好ましい。 Commercially available products can be used for the polymer processing aid (D). Specifically, “Kane Ace” PA series (manufactured by Kaneka), “Metablene” P series (manufactured by Mitsubishi Rayon), “Paralloid” K Series (made by Dow) is listed. Among these, “paraloid” K125P is preferable from the viewpoint of compatibility with the resin.
 本発明の(メタ)アクリル樹脂組成物における高分子加工助剤(D)の含有量は、0.1~3質量%であることが好ましい。高分子加工助剤(D)の含有量は、用途に応じて異なるが、フィッシュアイを更に低減する観点から、1.0質量%以上であることがより好ましく、1.3質量%以上であることが更に好ましい。また、コストを抑制する、溶融粘度を抑制するなどの観点から、2.5質量%以下であることがより好ましく、2.0質量%以下であることが更に好ましい。 The content of the polymer processing aid (D) in the (meth) acrylic resin composition of the present invention is preferably 0.1 to 3% by mass. The content of the polymer processing aid (D) varies depending on the use, but from the viewpoint of further reducing fish eyes, it is more preferably 1.0% by mass or more, and 1.3% by mass or more. More preferably. Moreover, from a viewpoint of suppressing cost and suppressing melt viscosity, it is more preferably 2.5% by mass or less, and further preferably 2.0% by mass or less.
<紫外線吸収剤(E)>
 本発明の(メタ)アクリル樹脂組成物は、上記したその他の添加剤として、紫外線吸収剤(E)をさらに含むことが好ましい。紫外線吸収剤(E)は、紫外線を吸収する能力を有する化合物であり、主に光エネルギーを熱エネルギーに変換する機能を有する。
<Ultraviolet absorber (E)>
The (meth) acrylic resin composition of the present invention preferably further contains an ultraviolet absorber (E) as the other additive described above. The ultraviolet absorber (E) is a compound having an ability to absorb ultraviolet rays, and mainly has a function of converting light energy into heat energy.
 紫外線吸収剤(E)としては、ベンゾフェノン類、ベンゾトリアゾール類、トリアジン類、ベンゾエート類、サリシレート類、シアノアクリレート類、蓚酸アニリド類、マロン酸エステル類、ホルムアミジン類などが挙げられる。これらは1種を単独で用いても、2種以上を併用してもよい。これらの中でも、紫外線が照射された場合の樹脂劣化の抑制力が高く、樹脂との相溶性が高いことから、ベンゾトリアゾール類、トリアジン類が好ましい。 Examples of the ultraviolet absorber (E) include benzophenones, benzotriazoles, triazines, benzoates, salicylates, cyanoacrylates, oxalic anilides, malonic esters, formamidines, and the like. These may be used alone or in combination of two or more. Among these, benzotriazoles and triazines are preferable because they have a high ability to suppress resin deterioration when irradiated with ultraviolet rays and have high compatibility with the resin.
 ベンゾトリアゾール類の紫外線吸収剤は、紫外線照射による着色等の光学特性低下を抑制する効果が高い。ベンゾトリアゾール類の紫外線吸収剤としては、2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール(BASF社製「チヌビン」329)、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール(BASF社製「チヌビン」234)、および、2,2’-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-tert-オクチルフェノール](ADEKA社製「アデカスタブ」LA-31)等が挙げられ、本発明の(メタ)アクリル樹脂組成物との相性の観点から、2,2’-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-tert-オクチルフェノール](ADEKA社製「アデカスタブ」LA-31)が好ましい。 Benzotriazole ultraviolet absorbers have a high effect of suppressing deterioration of optical properties such as coloring due to ultraviolet irradiation. As UV absorbers for benzotriazoles, 2- (2H-benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol (“TINUVIN” 329 manufactured by BASF), 2 -(2H-benzotriazol-2-yl) -4,6-bis (1-methyl-1-phenylethyl) phenol (“TINUVIN” 234 manufactured by BASF) and 2,2′-methylenebis [6- ( 2H-benzotriazol-2-yl) -4-tert-octylphenol] (“ADEKA STAB” LA-31 manufactured by ADEKA) and the like. From the viewpoint of compatibility with the (meth) acrylic resin composition of the present invention, 2 , 2′-methylenebis [6- (2H-benzotriazol-2-yl) -4-tert-octylphenol] (“ADEKA STAB” manufactured by ADEKA) LA-31) are preferred.
 トリアジン類の紫外線吸収剤としては、例えば、ヒドロキシフェニルトリアジン類の紫外線吸収剤などが挙げられ、より具体的には、2,4-ビス(2-ヒドロキシ-4-ブチロキシフェニル)-6-(2,4-ブチロキシフェニル)-1,3,5-トリアジン(BASF社製「チヌビン」460)、2-(4-(2-ヒドロキシ-3-(2-エチルヘキシルオキシ)プロピルオキシ)-2-ヒドロキシフェニル)-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン(BASF社製「チヌビン」405)、2-(2-ヒドロキシ-4-[1-オクチルオキシカルボニルエトキシ]フェニル)-4,6-ビス(4-フェニルフェニル)-1,3,5-トリアジン(BASF社製「チヌビン」479)、BASF社製「チヌビン」1477、400、477、1600;2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-(2-(2-エチルヘキサノイルオキシ)エトキシ)フェノール(ADEKA社製「アデカスタブ」LA-46)、2,4,6-トリス(2-ヒドロキシ-4-ヘキシルオキシ-3-メチルフェノキシ)-1,3,5-トリアジン(ADEKA社製「アデカスタブ」LA-F70);2-[4-[(2-ヒドロキシ-3-ドデシルオキシプロピル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-[4-[(2-ヒドロキシ-3-トリデシルオキシプロピル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジンなどが挙げられる。 Examples of UV absorbers for triazines include UV absorbers for hydroxyphenyl triazines. More specifically, 2,4-bis (2-hydroxy-4-butyroxyphenyl) -6- ( 2,4-Butyloxyphenyl) -1,3,5-triazine (“TINUVIN” 460 manufactured by BASF), 2- (4- (2-hydroxy-3- (2-ethylhexyloxy) propyloxy) -2- Hydroxyphenyl) -4,6-bis (2,4-dimethylphenyl) -1,3,5-triazine (“TINUVIN” 405 manufactured by BASF), 2- (2-hydroxy-4- [1-octyloxycarbonyl) Ethoxy] phenyl) -4,6-bis (4-phenylphenyl) -1,3,5-triazine (“TINUVIN” 479 manufactured by BASF), Bottle "1477, 400, 477, 1600; 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5- (2- (2-ethylhexanoyloxy) ethoxy) phenol (ADEKA) “ADK STAB” LA-46), 2,4,6-tris (2-hydroxy-4-hexyloxy-3-methylphenoxy) -1,3,5-triazine (“ADEKA STAB” LA-F70 manufactured by ADEKA) 2- [4-[(2-hydroxy-3-dodecyloxypropyl) oxy] -2-hydroxyphenyl] -4,6-bis (2,4-dimethylphenyl) -1,3,5-triazine, 2- [4-[(2-hydroxy-3-tridecyloxypropyl) oxy] -2-hydroxyphenyl] -4,6-bis (2,4-dimethylphenyl) -1, , Such as 5-triazine, and the like.
 本発明の(メタ)アクリル樹脂組成物における紫外線吸収剤(E)の含有量は、0.1~3質量%であることが好ましい。前記紫外線吸収剤(E)の含有量は、紫外線吸収剤(E)の種類、用途に応じて異なるが、0.2質量%以上であることがより好ましく、0.4質量%以上であることが更に好ましい。また、コストを抑制する観点から、2.8質量%以下であることがより好ましく、2.5質量%以下であることが更に好ましい。 The content of the ultraviolet absorber (E) in the (meth) acrylic resin composition of the present invention is preferably 0.1 to 3% by mass. Although content of the said ultraviolet absorber (E) changes with kinds and use of an ultraviolet absorber (E), it is more preferable that it is 0.2 mass% or more, and it is 0.4 mass% or more. Is more preferable. Moreover, from a viewpoint of suppressing cost, it is more preferably 2.8% by mass or less, and further preferably 2.5% by mass or less.
<他の重合体>
 本発明の(メタ)アクリル樹脂組成物は、本発明の効果を損なわない範囲で、(メタ)アクリル樹脂(A)、コアシェル型グラフト共重合体(B)および重合体であり得る高分子加工助剤(D)以外の他の重合体をさらに含むことができる。当該他の重合体としては、ポリエチレン、ポリプロピレン、ポリブテン-1、ポリ-4-メチルペンテン-1、ポリノルボルネン等のポリオレフィン樹脂;エチレン系アイオノマー;ポリスチレン、スチレン-無水マレイン酸共重合体、ハイインパクトポリスチレン、AS樹脂、ABS樹脂、AES樹脂、AAS樹脂、ACS樹脂、MBS樹脂等のスチレン系樹脂;メチルメタクリレート-スチレン共重合体;ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル樹脂;ナイロン6、ナイロン66、ポリアミドエラストマー等のポリアミド;ポリカーボネート、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、ポリアセタール、ポリフッ化ビニリデン、ポリウレタン、変性ポリフェニレンエーテル、ポリフェニレンスルフィド、シリコーン変性樹脂;アクリルゴム、シリコーンゴム;SEPS、SEBS、SIS等のスチレン系熱可塑性エラストマー;IR、EPR、EPDM等のオレフィン系ゴムなどが挙げられる。
<Other polymers>
The (meth) acrylic resin composition of the present invention is a polymer processing aid that can be a (meth) acrylic resin (A), a core-shell type graft copolymer (B), and a polymer as long as the effects of the present invention are not impaired. A polymer other than the agent (D) can further be contained. Such other polymers include polyolefin resins such as polyethylene, polypropylene, polybutene-1, poly-4-methylpentene-1, polynorbornene, etc .; ethylene ionomers; polystyrene, styrene-maleic anhydride copolymer, high impact polystyrene , AS resins, ABS resins, AES resins, AAS resins, ACS resins, MBS resins and other styrene resins; methyl methacrylate-styrene copolymers; polyethylene resins such as polyethylene terephthalate and polybutylene terephthalates; nylon 6, nylon 66, polyamide Polyamides such as elastomers: polycarbonate, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyacetal, polyvinylidene fluoride, polyurea Emissions, modified polyphenylene ether, polyphenylene sulfide, silicone-modified resins; acrylic rubber, silicone rubber; SEPS, SEBS, styrene-based thermoplastic elastomer SIS like; IR, EPR, and olefin-based rubber EPDM and the like.
<(メタ)アクリル樹脂組成物>
 本発明の(メタ)アクリル樹脂組成物の270℃ せん断速度12.2/秒における溶融粘度は2,000Pa・s以下であることが好ましい。製膜が低温で行いやすいという観点から、270℃ せん断速度12.2/秒における溶融粘度は、より好ましくは1,800Pa・s以下であり、更に好ましくは1,500Pa・s以下であり、特に好ましくは1,200Pa・s以下である。当該溶融粘度が2,000Pa・s以下であると、製膜温度が高くなり過ぎず、安定的な長期連続運転が可能となる。溶融粘度の下限は、機械物性の観点から好ましくは300Pa・sであり、より好ましくは500Pa・sである。上記溶融粘度は、(メタ)アクリル樹脂(A)の重量平均分子量、(メタ)アクリル樹脂(A)とコアシェル型グラフト共重合体(B)との質量比、その他の添加剤の含有量などによって調節することができる。上記溶融粘度は、実施例に記載の方法で測定することができる。
<(Meth) acrylic resin composition>
The (meth) acrylic resin composition of the present invention preferably has a melt viscosity of 2,000 Pa · s or less at a 270 ° C. shear rate of 12.2 / sec. From the viewpoint of easy film formation at a low temperature, the melt viscosity at 270 ° C. shear rate 12.2 / sec is more preferably 1,800 Pa · s or less, still more preferably 1,500 Pa · s or less, particularly Preferably, it is 1,200 Pa · s or less. When the melt viscosity is 2,000 Pa · s or less, the film forming temperature does not become too high, and a stable long-term continuous operation becomes possible. The lower limit of the melt viscosity is preferably 300 Pa · s, more preferably 500 Pa · s from the viewpoint of mechanical properties. The melt viscosity depends on the weight average molecular weight of the (meth) acrylic resin (A), the mass ratio of the (meth) acrylic resin (A) and the core-shell type graft copolymer (B), the content of other additives, and the like. Can be adjusted. The said melt viscosity can be measured by the method as described in an Example.
 本発明の(メタ)アクリル樹脂組成物を調製する方法は特に制限されないが、溶融混練して混合する方法が好ましい。具体的には、(メタ)アクリル樹脂(A)、コアシェル型グラフト共重合体(B)および脂肪族アルコール(C)、並びに必要に応じてさらに高分子加工助剤(D)、紫外線吸収剤(E)などのその他の添加剤や他の重合体を事前にドライブレンドし、溶融混練する方法が一般的に用いられる。混合操作は、例えば、ニーダールーダー、押出機、ミキシングロール、バンバリーミキサーなどの既知の混合または混練装置を使用して行うことができる。特に、混練性、生産性の観点から、二軸押出機を使用することが好ましい。溶融混練する際のせん断速度は10~1,000/秒であることが好ましい。混合・混練時の温度は、通常150~320℃であると良く、好ましくは200~300℃である。二軸押出機を使用し溶融混練する場合、着色抑制の観点から、ベントを使用し、減圧下での溶融混練または窒素気流下での溶融混練を行うことが好ましい。このようにして本発明の(メタ)アクリル樹脂組成物を例えばペレット状の形態で得ることができる。 The method for preparing the (meth) acrylic resin composition of the present invention is not particularly limited, but a method of melt kneading and mixing is preferable. Specifically, the (meth) acrylic resin (A), the core-shell type graft copolymer (B) and the aliphatic alcohol (C), and if necessary, a polymer processing aid (D), an ultraviolet absorber ( A method of dry blending and melt-kneading other additives such as E) and other polymers in advance is generally used. The mixing operation can be performed using a known mixing or kneading apparatus such as a kneader ruder, an extruder, a mixing roll, or a Banbury mixer. In particular, it is preferable to use a twin screw extruder from the viewpoints of kneadability and productivity. The shear rate at the time of melt kneading is preferably 10 to 1,000 / second. The temperature during mixing and kneading is usually from 150 to 320 ° C., preferably from 200 to 300 ° C. When melt kneading using a twin screw extruder, it is preferable to use a vent and perform melt kneading under reduced pressure or melt kneading under a nitrogen stream from the viewpoint of suppressing coloration. Thus, the (meth) acrylic resin composition of the present invention can be obtained, for example, in the form of pellets.
 本発明の(メタ)アクリル樹脂組成物における(メタ)アクリル樹脂(A)およびコアシェル型グラフト共重合体(B)の合計の含有量の下限値は、通常50質量%であり、好ましくは70質量%であり、より好ましくは80質量%であり、更に好ましくは85質量%である。また、上限値は、好ましくは99.97質量%であり、より好ましくは99.96質量%であり、更に好ましくは99.95質量%である。 The lower limit of the total content of the (meth) acrylic resin (A) and the core-shell type graft copolymer (B) in the (meth) acrylic resin composition of the present invention is usually 50% by mass, preferably 70% by mass. %, More preferably 80% by mass, still more preferably 85% by mass. The upper limit is preferably 99.97% by mass, more preferably 99.96% by mass, and still more preferably 99.95% by mass.
<フィルム>
 本発明の(メタ)アクリル樹脂組成物は成形してフィルムとすることができる。前記フィルムの製造は、Tダイ法、インフレーション法、溶融流延法、カレンダー法等の公知の方法を用いて行うことができる。良好な表面平滑性、低ヘーズのフィルムが得られる観点から、本発明の(メタ)アクリル樹脂組成物を溶融混練してTダイから溶融状態で押し出し、その両面を鏡面ロール表面または鏡面ベルト表面に接触させて成形する工程を含むことが好ましい。この際に用いるロールまたはベルトは、いずれも金属製であることが好ましい。このように押し出された溶融混練物の両面を鏡面に接触させて製膜する場合には、溶融混練物(フィルムになっていてもよい)を鏡面ロールまたは鏡面ベルトで加圧し挟むことが好ましい。鏡面ロールまたは鏡面ベルトによる挟み込み圧力は、高いほうが好ましく、線圧として10N/mm以上であることが好ましく、20N/mm以上であることがより好ましい。また、挟み込む鏡面ロールまたは鏡面ベルトの表面温度は、60℃以上であることが好ましく、70℃以上であることがより好ましい。また、130℃以下であることが好ましく、100℃以下であることがより好ましい。溶融混練物を挟み込む鏡面ロールまたは鏡面ベルトの表面温度が60℃以上であると、得られるフィルムの表面平滑性、ヘーズが良好となり、表面温度が130℃以下であると、フィルムと鏡面ロールまたは鏡面ベルトが密着しすぎるのを抑制することができ、鏡面ロールまたは鏡面ベルトからフィルムを引き剥がす際に表面荒れや横皺が生じにくく、フィルムの外観を良好にすることができる。
<Film>
The (meth) acrylic resin composition of the present invention can be molded into a film. The film can be produced using a known method such as a T-die method, an inflation method, a melt casting method, or a calendar method. From the viewpoint of obtaining a film having good surface smoothness and low haze, the (meth) acrylic resin composition of the present invention is melt-kneaded and extruded in a molten state from a T die, and both surfaces thereof are applied to a mirror roll surface or a mirror belt surface. It is preferable to include the process of making it contact and shape | mold. The roll or belt used at this time is preferably made of metal. In the case of forming a film by bringing both sides of the melt-kneaded product thus extruded into contact with a mirror surface, it is preferable to press and sandwich the melt-kneaded product (which may be a film) with a mirror roll or a mirror belt. The pinching pressure by the mirror roll or the mirror belt is preferably high, and the linear pressure is preferably 10 N / mm or more, and more preferably 20 N / mm or more. Further, the surface temperature of the mirror roll or mirror belt to be sandwiched is preferably 60 ° C. or higher, more preferably 70 ° C. or higher. Moreover, it is preferable that it is 130 degrees C or less, and it is more preferable that it is 100 degrees C or less. When the surface temperature of the mirror roll or mirror belt sandwiching the melt-kneaded product is 60 ° C. or higher, the resulting film has good surface smoothness and haze, and when the surface temperature is 130 ° C. or lower, the film and mirror roll or mirror surface When the film is peeled off from the mirror roll or the mirror belt, surface roughness and recumbency are hardly generated, and the appearance of the film can be improved.
 Tダイ法による製造方法の場合、単軸あるいは二軸押出スクリューのついたエクストルーダ型溶融押出装置等が使用できる。本発明のフィルムを製造するための溶融押出温度は好ましくは230℃以上であり、より好ましくは240℃以上である。また、溶融押出温度は290℃以下とすることが好ましく、280℃以下とすることがより好ましい。また、溶融押出装置を使用する場合、着色抑制の観点から、ベントを使用して減圧下で溶融押出し、均一膜厚のフィルムを製造する観点からギアポンプを付け、更にフィッシュアイ欠点を低減させるためにポリマーフィルターを付けて溶融押出することが好ましい。更に、酸化劣化を抑制する観点から窒素気流下での溶融押出を行うことが好ましい。 In the case of the production method by the T-die method, an extruder type melt extrusion apparatus with a single screw or a twin screw extrusion screw can be used. The melt extrusion temperature for producing the film of the present invention is preferably 230 ° C or higher, more preferably 240 ° C or higher. The melt extrusion temperature is preferably 290 ° C. or lower, and more preferably 280 ° C. or lower. In addition, when using a melt extrusion device, from the viewpoint of suppressing coloration, a melt pump is used under reduced pressure using a vent to attach a gear pump from the viewpoint of producing a film with a uniform film thickness, in order to further reduce fish eye defects. It is preferable to melt-extrusion with a polymer filter. Furthermore, it is preferable to perform melt extrusion under a nitrogen stream from the viewpoint of suppressing oxidative degradation.
 本発明の(メタ)アクリル樹脂組成物からなるフィルムを、ベント、ギアポンプ、ポリマーフィルターおよびTダイをこの順に備えた押出装置で製造する場合、ベントから、ギアポンプ、ポリマーフィルターを含め、Tダイまでの温度を230~290℃の範囲で制御することが好ましい。このような温度範囲で製造することにより、劣化が少なく、フィッシュアイが少なく、機械的物性、光学特性に優れたフィルムが得られる。 When the film comprising the (meth) acrylic resin composition of the present invention is produced by an extrusion apparatus equipped with a vent, a gear pump, a polymer filter and a T die in this order, from the vent to the T die including the gear pump and the polymer filter. It is preferable to control the temperature in the range of 230 to 290 ° C. By producing in such a temperature range, a film having little deterioration, little fish eye, and excellent mechanical properties and optical characteristics can be obtained.
 本発明の(メタ)アクリル樹脂組成物からなるフィルムのヘーズは、厚さ75μmにおいて1.5%以下であることが好ましく、1.2%以下であることがより好ましく、1.0%以下であることがさらに好ましい。上記範囲にあることで、意匠性を要求される用途に用いられる場合に、表面光沢や本発明のフィルムに印刷された絵柄層の鮮明さがより優れたものとなる。また、偏光子保護フィルムや導光フィルムなどの光学用途においては、光源の利用効率が高まるため好ましい。更に、表面賦形を行う際の賦形精度に優れるため好ましい。当該ヘーズは実施例に記載の方法で求めることができる。 The haze of the film comprising the (meth) acrylic resin composition of the present invention is preferably 1.5% or less, more preferably 1.2% or less, and 1.0% or less at a thickness of 75 μm. More preferably it is. By being in the above-mentioned range, when used for applications requiring design properties, the surface gloss and the sharpness of the picture layer printed on the film of the present invention become more excellent. Moreover, in optical uses, such as a polarizer protective film and a light guide film, the utilization efficiency of the light source is increased, which is preferable. Furthermore, it is preferable because it is excellent in shaping accuracy when performing surface shaping. The haze can be obtained by the method described in Examples.
 本発明の(メタ)アクリル樹脂組成物からなるフィルムの鉛筆硬度は、HBまたはそれよりも高いことが好ましく、より好ましくはFまたはそれよりも高く、更に好ましくはHまたはそれよりも高い。鉛筆硬度が高いとフィルムの表面が傷つきにくいので、意匠性の要求される成形品の表面の加飾兼表面保護フィルムとして好ましく、また偏光子保護フィルム用途においても、ラミネート加工などの製品づくりの工程中に発生する擦り傷の発生を抑制でき好ましい。当該鉛筆硬度は実施例に記載の方法で求めることができる。 The pencil hardness of the film made of the (meth) acrylic resin composition of the present invention is preferably HB or higher, more preferably F or higher, still more preferably H or higher. High pencil hardness makes it difficult to damage the surface of the film, so it is preferable as a decorative and surface protective film on the surface of molded products that require design properties. It is preferable because the generation of scratches generated therein can be suppressed. The pencil hardness can be determined by the method described in the examples.
 本発明の(メタ)アクリル樹脂組成物からなるフィルムの耐屈曲性を示す耐折回数は30回以上であることが好ましく、より好ましくは40回以上であり、更に好ましくは50回以上である。耐折回数を、フィルムのMD方向およびTD方向の両方で測定する場合、これらのうちのいずれか低い方で上記範囲にあることが好ましい。これにより、加飾フィルム、偏光子保護フィルムなどとして使用する際にも、衝撃を受けた時や加工、最終製品の取り扱い時に割れを抑制でき好ましい。当該耐折回数はJIS P8115:2001に準拠して試験片が破断するまでの往復折曲げ回数として測定することができ、具体的には実施例において後述する方法により測定することができる。 It is preferable that the folding endurance of the film made of the (meth) acrylic resin composition of the present invention is 30 times or more, more preferably 40 times or more, and still more preferably 50 times or more. When measuring the folding endurance in both the MD direction and the TD direction of the film, it is preferable that the lower one of these is in the above range. Thereby, also when using as a decorative film, a polarizer protective film, etc., it can suppress a crack at the time of receiving an impact, a process, and handling of a final product, and is preferable. The folding endurance number can be measured as the number of reciprocal bending until the test piece breaks in accordance with JIS P8115: 2001, and can be specifically measured by the method described later in Examples.
 本発明の(メタ)アクリル樹脂組成物からなるフィルムは、延伸処理が施されたものであってもよい。延伸処理によって、機械的強度が高まり、ひび割れし難いフィルムを得ることができる。延伸方法は特に限定されず、同時二軸延伸法、逐次二軸延伸法、チュブラー延伸法、圧延法などが挙げられる。延伸時の温度は、均一に延伸でき、高い強度のフィルムが得られる観点から、下限は(メタ)アクリル樹脂(A)のガラス転移温度よりも5℃高い温度であることが好ましく、上限は(メタ)アクリル樹脂(A)のガラス転移温度よりも40℃高い温度であることが好ましい。延伸温度が上記下限値以上であると、延伸中にフィルムが破断しにくくなり、延伸温度が上記上限値以下であると、延伸処理の効果が十分に発揮されフィルムの強度を高めることができる。延伸は、通常、100~5,000%/分の延伸速度で行われる。延伸速度が100%/分以上であると、フィルムの強度を高めることができ、また生産性も向上する。また延伸速度が5,000%/分以下であると、フィルムを均一に延伸することができる。また、延伸の後、熱固定を行うことが更に好ましい。熱固定によって、熱収縮の少ないフィルムを得ることができる。 The film made of the (meth) acrylic resin composition of the present invention may be subjected to a stretching treatment. By the stretching treatment, a film that has high mechanical strength and is difficult to crack can be obtained. The stretching method is not particularly limited, and examples thereof include a simultaneous biaxial stretching method, a sequential biaxial stretching method, a tuber stretching method, and a rolling method. The temperature during stretching can be uniformly stretched, and from the viewpoint of obtaining a high-strength film, the lower limit is preferably 5 ° C. higher than the glass transition temperature of the (meth) acrylic resin (A), and the upper limit is ( The temperature is preferably 40 ° C. higher than the glass transition temperature of the (meth) acrylic resin (A). When the stretching temperature is not less than the above lower limit value, the film is hardly broken during stretching, and when the stretching temperature is not more than the above upper limit value, the effect of the stretching treatment is sufficiently exerted and the strength of the film can be increased. Stretching is usually performed at a stretching rate of 100 to 5,000% / min. When the stretching speed is 100% / min or more, the strength of the film can be increased and the productivity is also improved. When the stretching speed is 5,000% / min or less, the film can be stretched uniformly. Further, it is more preferable to perform heat setting after stretching. A film with little heat shrinkage can be obtained by heat setting.
 本発明の(メタ)アクリル樹脂組成物からなるフィルムの厚さは、無延伸(延伸処理前)の状態で500μm未満であることが好ましい。500μm未満であると、ラミネート性、ハンドリング性、切断性、打抜き性などの二次加工性が向上し、また単位面積あたりの単価を抑えることができ、経済性に優れる。本発明の(メタ)アクリル樹脂組成物からなるフィルムの無延伸(延伸処理前)の厚さは30μm以上であることが好ましく、50μm以上であることがより好ましい。また、300μm以下であることがより好ましく、200μm以下であることが更に好ましく、100μm以下であることが特に好ましい。
 本発明の(メタ)アクリル樹脂組成物からなるフィルムの延伸後の厚さは、10~200μmであることが好ましく、より好ましくは30~60μmである。
The thickness of the film made of the (meth) acrylic resin composition of the present invention is preferably less than 500 μm in an unstretched state (before stretching treatment). When it is less than 500 μm, secondary processability such as laminating property, handling property, cutting property, punching property and the like can be improved, and the unit price per unit area can be suppressed, which is excellent in economic efficiency. The non-stretched (before stretching treatment) thickness of the film made of the (meth) acrylic resin composition of the present invention is preferably 30 μm or more, and more preferably 50 μm or more. Moreover, it is more preferable that it is 300 micrometers or less, It is still more preferable that it is 200 micrometers or less, It is especially preferable that it is 100 micrometers or less.
The thickness of the film made of the (meth) acrylic resin composition of the present invention after stretching is preferably 10 to 200 μm, more preferably 30 to 60 μm.
 本発明の(メタ)アクリル樹脂組成物からなるフィルムは着色されていてもよい。着色法としては、顔料又は染料を含有させて、フィルム化前の(メタ)アクリル樹脂組成物自体を着色する方法;染料が分散した液中に(メタ)アクリル樹脂組成物からなるフィルムを浸漬して着色させる染色法などが挙げられるが、特にこれらに限定されるものではない。 The film made of the (meth) acrylic resin composition of the present invention may be colored. As a coloring method, a method of coloring a (meth) acrylic resin composition itself before film formation by containing a pigment or a dye; a film made of a (meth) acrylic resin composition is immersed in a liquid in which a dye is dispersed. However, it is not particularly limited thereto.
 本発明の(メタ)アクリル樹脂組成物からなるフィルムは、少なくとも一方の面に印刷が施されていてもよい。印刷によって絵柄、文字、図形などの模様、色彩を付与することができる。模様は有彩色のものであってもよいし、無彩色のものであってもよい。 The film made of the (meth) acrylic resin composition of the present invention may be printed on at least one surface. Patterns and colors such as pictures, characters and figures can be given by printing. The pattern may be chromatic or achromatic.
 本発明の(メタ)アクリル樹脂組成物からなるフィルムは、少なくとも一方の面に、(i)金属および/または金属酸化物よりなる層、(ii)熱可塑性樹脂層および(iii)基材層のうち少なくとも1層が他の層として積層された積層フィルムであってもよい。他の層を積層する方法は特に限定されず、直接または接着層を介して接合することができる。基材層としては、例えば、木製基材、ケナフ等の非木質繊維などを用いてもよい。他の層は、1層のみ積層してもよいし、複数の層を積層してもよい。 The film made of the (meth) acrylic resin composition of the present invention has, on at least one surface, (i) a layer made of a metal and / or a metal oxide, (ii) a thermoplastic resin layer, and (iii) a base material layer. A laminated film in which at least one layer is laminated as another layer may be used. The method for laminating other layers is not particularly limited, and the layers can be joined directly or via an adhesive layer. As the base material layer, for example, a wooden base material, a non-wood fiber such as kenaf or the like may be used. Other layers may be laminated, or a plurality of layers may be laminated.
 積層に適した熱可塑性樹脂としては、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂、ポリアミド樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリ塩化ビニル樹脂、(メタ)アクリル樹脂(A)以外の(メタ)アクリル樹脂、ABS樹脂、エチレン-ビニルアルコール樹脂、ポリビニルブチラール樹脂、ポリビニルアセタール樹脂、スチレン系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、アクリル系熱可塑性エラストマーなどが挙げられる。 As thermoplastic resins suitable for lamination, polycarbonate resin, polyethylene terephthalate resin, polyamide resin, polyethylene resin, polypropylene resin, polystyrene resin, polyvinyl chloride resin, (meth) acrylic resin other than (meth) acrylic resin (A), Examples thereof include ABS resin, ethylene-vinyl alcohol resin, polyvinyl butyral resin, polyvinyl acetal resin, styrene-based thermoplastic elastomer, olefin-based thermoplastic elastomer, and acrylic-based thermoplastic elastomer.
 上記の積層フィルムの厚さは、用途により変動し得るもので特に限定されないが、二次加工性の観点からは500μm以下であることが好ましい。 The thickness of the above laminated film may vary depending on the use and is not particularly limited, but is preferably 500 μm or less from the viewpoint of secondary workability.
 本発明の(メタ)アクリル樹脂組成物からなるフィルムは、単独で用いてもよいし、積層体の内層またはその一部として用いてもよいし、積層体の最外層として用いてもよい。積層に用いられる他の樹脂は、フィルムの意匠性の観点から、メタクリル系樹脂などの透明な樹脂であることが好ましい。フィルムに傷がつきにくく、意匠性が長く持続する観点から、最外層を形成するフィルムは、表面硬度および耐候性が高いものが好ましく、本発明の(メタ)アクリル樹脂組成物からなるフィルムであることが好ましい。 The film made of the (meth) acrylic resin composition of the present invention may be used alone, as an inner layer or a part of the laminate, or as an outermost layer of the laminate. The other resin used for the lamination is preferably a transparent resin such as a methacrylic resin from the viewpoint of the design of the film. From the viewpoint that the film is not easily scratched and the design properties last for a long time, the film forming the outermost layer preferably has a high surface hardness and weather resistance, and is a film made of the (meth) acrylic resin composition of the present invention. It is preferable.
 本発明の(メタ)アクリル樹脂組成物からなるフィルムは、低ヘーズで光学特性が良く、表面硬度が高く、また耐屈曲性および耐衝撃性にも優れ、更にフィッシュアイ欠点が少ない。これらの優れた特徴を活かして、本発明の(メタ)アクリル樹脂フィルムは、加飾フィルムや光学用フィルムなどとして好適に用いられる。光学用フィルムの具体例としては、例えば、偏光子保護フィルムが挙げられる。当該偏光子保護フィルムは、それを含む偏光板、さらにはその偏光板を少なくとも1枚含む液晶表示装置、有機EL表示装置、PDP等の画像表示装置などに用いることができる。また本発明の(メタ)アクリル樹脂組成物からなるフィルムは、導光フィルム、モスアイフィルム、フレネルレンズ、レンチキュラーレンズ、各種ディスプレイの前面フィルム、拡散フィルム、ガラス飛散防止フィルム、液晶ASFフィルム、透明導電フィルム、遮熱フィルム、各種バリアーフィルム等の光学関係の基材フィルムなどとして好適に用いることができる。 The film made of the (meth) acrylic resin composition of the present invention has low haze, good optical properties, high surface hardness, excellent bending resistance and impact resistance, and less fish eye defects. Taking advantage of these excellent features, the (meth) acrylic resin film of the present invention is suitably used as a decorative film or an optical film. Specific examples of the optical film include a polarizer protective film. The polarizer protective film can be used for a polarizing plate including the polarizing plate, a liquid crystal display device including at least one polarizing plate, an organic EL display device, an image display device such as a PDP, and the like. The film made of the (meth) acrylic resin composition of the present invention includes a light guide film, a moth-eye film, a Fresnel lens, a lenticular lens, a front film for various displays, a diffusion film, a glass scattering prevention film, a liquid crystal ASF film, and a transparent conductive film. It can be suitably used as an optical substrate film such as a heat shielding film and various barrier films.
 より具体的な例として、本発明の(メタ)アクリル樹脂組成物からなるフィルムは、低ヘーズで光学特性が良く、表面硬度が高く、また耐屈曲性および耐衝撃性にも優れ、更にフィッシュアイ欠点が少ないなどの特性を活かして、意匠性の要求される成形品や高度な光学特性が要求される成形品、即ち、広告塔、スタンド看板、袖看板、欄間看板、屋上看板等の看板部品;ショーケース、仕切板、店舗ディスプレイ等のディスプレイ部品;蛍光灯カバー、ムード照明カバー、ランプシェード、光天井、光壁、シャンデリア等の照明部品;家具、ペンダント、ミラー等のインテリア部品;ドア、ドーム、安全窓ガラス、間仕切り、階段腰板、バルコニー腰板、レジャー用建築物の屋根等の建築用部品;航空機風防、パイロット用バイザー、オートバイ、モーターボート風防、バス用遮光板、自動車用サイドバイザー、リアバイザー、ヘッドウィング、ヘッドライトカバー、自動車内装部材、バンパーなどの自動車外装部材等の輸送機関係部品;音響映像用銘板、ステレオカバー、テレビ保護マスク、自動販売機、携帯電話、パソコン等の電子機器部品;保育器、レントゲン部品等の医療機器部品;機械カバー、計器カバー、実験装置、定規、文字盤、観察窓等の機器関係部品;道路標識、案内板、カーブミラー、防音壁等の交通関係部品;その他、温室、大型水槽、箱水槽、浴室部材、時計パネル、バスタブ、サニタリー、デスクマット、遊技部品、玩具、熔接時の顔面保護用マスク等の表面の加飾フィルム兼保護フィルム、壁紙、マーキングフィルムなどに好適に用いることができる。 As a more specific example, a film made of the (meth) acrylic resin composition of the present invention has low haze, good optical properties, high surface hardness, excellent bending resistance and impact resistance, and fish eyes. Taking advantage of characteristics such as few defects, molded products that require design and molded products that require advanced optical properties, that is, billboard parts such as advertising towers, stand signs, sleeve signs, bamber signs, and roof signs ; Display parts such as showcases, partition plates, store displays; fluorescent lamp covers, mood lighting covers, lamp shades, lighting ceilings, light walls, chandeliers, etc .; interior parts such as furniture, pendants, mirrors; doors, domes Building parts such as safety window glass, partitions, staircases, balcony stools, roofs of leisure buildings; aircraft windshields, pilot visors, o Toby, motorboat windshield, bus shading plate, automotive side visor, rear visor, head wing, headlight cover, automotive interior parts, automotive exterior parts such as bumpers, etc .; sound image nameplate, stereo cover, TV Electronic equipment parts such as protective masks, vending machines, mobile phones and personal computers; medical equipment parts such as incubators and X-ray parts; equipment-related parts such as machine covers, instrument covers, experimental devices, rulers, dials, observation windows; Traffic-related parts such as road signs, guide boards, curved mirrors, noise barriers, etc .; greenhouses, large tanks, box tanks, bathroom components, clock panels, bathtubs, sanitary, desk mats, game parts, toys, face protection during welding It can be suitably used for decorative and protective films on the surface of masks, etc., wallpaper, marking films, etc. That.
 以下に実施例および比較例を示して本発明をより具体的に説明する。なお、本発明は以下の実施例によって制限されるものではない。また、本発明は、上記特性値、形態、製法、用途などの技術的特徴を表す事項を、任意に組み合わせてなる全ての態様を包含する。なお、実施例および比較例における物性値の測定等は以下の方法によって実施した。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. In addition, this invention is not restrict | limited by a following example. Moreover, this invention includes all the aspects formed by arbitrarily combining matters representing the technical characteristics such as the characteristic values, forms, manufacturing methods, and uses. In addition, the measurement of the physical-property value in an Example and a comparative example was implemented with the following method.
〔重量平均分子量(Mw)〕
 ゲルパーミエーションクロマトグラフィ(GPC)にて下記の条件でクロマトグラムを測定し、標準ポリスチレンの分子量に換算した値を算出した。ベースラインはGPCチャートの高分子量側のピークの傾きが保持時間の早い方から見てゼロからプラスに変化する点と、低分子量側のピークの傾きが保持時間の早い方から見てマイナスからゼロに変化する点とを結んだ線とした。
 GPC装置:東ソー株式会社製、HLC-8320
 検出器:示差屈折率検出器
 カラム:東ソー株式会社製のTSKgel SuperMultipore HZMMの2本とSuperHZ4000とを直列に繋いだものを用いた。
 溶離剤:テトラヒドロフラン
 溶離剤流量:0.35mL/分
 カラム温度:40℃
 検量線:標準ポリスチレン10点のデータを用いて作成
[Weight average molecular weight (Mw)]
The chromatogram was measured under the following conditions by gel permeation chromatography (GPC), and the value converted into the molecular weight of standard polystyrene was calculated. The baseline is that the slope of the peak on the high molecular weight side of the GPC chart changes from zero to positive when viewed from the earlier retention time, and the slope of the peak on the low molecular weight side is from negative to zero when viewed from the earlier retention time. A line connecting points that change to.
GPC device: manufactured by Tosoh Corporation, HLC-8320
Detector: Differential refractive index detector Column: TSKgel SuperMultipore HZMM manufactured by Tosoh Corporation and Super HZ4000 connected in series were used.
Eluent: Tetrahydrofuran Eluent flow rate: 0.35 mL / min Column temperature: 40 ° C
Calibration curve: Created using 10 standard polystyrene data
〔平均粒子径〕
 堀場製作所社製レーザー回折/散乱式粒子径分布測定装置LA-910を用いて測定した。
[Average particle size]
The measurement was performed using a laser diffraction / scattering particle size distribution measuring apparatus LA-910 manufactured by Horiba.
〔ガラス転移温度(Tg)〕
 (メタ)アクリル樹脂(A)のガラス転移温度は、JIS K7121:2012に準拠して測定した。すなわち、試料を200℃まで一度昇温し、次いで30℃以下まで冷却し、その後30℃から200℃までを10℃/分で昇温させる条件にて、示差走査熱量測定法にてDSC曲線を測定し、2回目の昇温時に測定されるDSC曲線から求められる中間点ガラス転移温度を本発明におけるガラス転移温度とした。
[Glass transition temperature (Tg)]
The glass transition temperature of the (meth) acrylic resin (A) was measured according to JIS K7121: 2012. That is, the DSC curve was measured by differential scanning calorimetry under the condition that the sample was heated once to 200 ° C., then cooled to 30 ° C. or lower, and then heated from 30 ° C. to 200 ° C. at 10 ° C./min. The intermediate glass transition temperature obtained from the DSC curve measured at the time of the second temperature rise was defined as the glass transition temperature in the present invention.
〔溶融粘度〕
 キャピログラフ(東洋精機製作所社製 型式1D、キャピラリー 直径1mmφ、長さ40mm)を用いて、表1に記載した所定の温度およびせん断速度条件で測定した。
[Melt viscosity]
Using a capillograph (Model 1D manufactured by Toyo Seiki Seisakusho Co., Ltd., capillary diameter 1 mmφ, length 40 mm), the measurement was performed under the predetermined temperature and shear rate conditions shown in Table 1.
〔溶融時の長期安定性〕
 各実施例または比較例で得られた(メタ)アクリル樹脂組成物を、ポリテトラフルオロエチレンシートを内包した金属製スクリュー管に5g加え、270℃の熱風乾燥器内で24時間放置した。その加熱前後のサンプルの中央部から1片を採取し、ミクロトームで切片を切り出しグリッド上に載せ、オスニウム酸で染色した後に透過型電子顕微鏡で観察した。その際のコアシェル型グラフト共重合体の粒子凝集状態から、以下の基準により溶融時の長期安定性を評価した。
 A:凝集している部分が少なく、変化が見られない
 B:全体的に凝集が進んでいる
 C:凝集が激しく発生している
[Long-term stability during melting]
5 g of the (meth) acrylic resin composition obtained in each Example or Comparative Example was added to a metal screw tube containing a polytetrafluoroethylene sheet, and left in a hot air dryer at 270 ° C. for 24 hours. One piece was collected from the central part of the sample before and after the heating, a section was cut out with a microtome, placed on a grid, stained with osmium acid, and observed with a transmission electron microscope. From the particle aggregation state of the core-shell type graft copolymer at that time, the long-term stability during melting was evaluated according to the following criteria.
A: There are few agglomerated parts and no change is observed. B: Aggregation is progressing as a whole. C: Aggregation is intensely occurring.
〔厚さ〕
 各実施例または比較例で製造したフィルムの、中央部、両端部から100mmの厚さ合計3点をマイクロメーターで測定し、その平均値をフィルムの厚さとした。
〔thickness〕
The film manufactured in each Example or Comparative Example was measured with a micrometer at a total of three points with a thickness of 100 mm from the center and both ends, and the average value was taken as the thickness of the film.
〔フィッシュアイ欠点〕
 各実施例または比較例で製造した300m巻のフィルムをオンライン欠点検査器(長瀬産業製、Scantec8000C1 System3)に通し、0.03mm以上の大きさのフィッシュアイ欠点の個数を測定し、1mあたりのフィッシュアイ欠点の個数を算出した。
[Fisheye defects]
Each example or comparative online defect inspection device a film of 300m wound prepared in Example (Nagase & manufactured, Scantec8000C1 System3) to through, to measure the number of fish eyes drawback of 0.03 mm 2 or more in size, per 1 m 2 The number of fish eye defects was calculated.
〔ヘーズ〕
 各実施例または比較例で製造したフィルムを50mm×50mmに切り出して試験片とし、JIS K7136:2000に準拠して23℃にてヘーズを測定した。
[Haze]
The film manufactured in each Example or Comparative Example was cut into 50 mm × 50 mm to obtain a test piece, and haze was measured at 23 ° C. in accordance with JIS K7136: 2000.
〔鉛筆硬度〕
 各実施例または比較例で製造したフィルムを10cm×10cmに切り出して試験片とし、JIS K5600-5-4:1999に準拠して鉛筆硬度を測定した。
〔Pencil hardness〕
The film produced in each example or comparative example was cut into 10 cm × 10 cm to obtain a test piece, and the pencil hardness was measured in accordance with JIS K5600-5-4: 1999.
〔耐屈曲性〕
 各実施例または比較例で製造したフィルムを15mm×110mmに切り出して試験片とし、JIS P8115:2001に準拠して耐折回数を測定した。
[Flexibility]
The film manufactured in each Example or Comparative Example was cut out to 15 mm × 110 mm to obtain a test piece, and the number of folding times was measured according to JIS P8115: 2001.
[参考例1]
(メタ)アクリル樹脂(A-1-1)の製造
 メタクリル酸メチル99質量部およびアクリル酸メチル1質量部に重合開始剤(2,2’-アゾビス(2-メチルプロピオニトリル)、水素引抜能:1%、1時間半減期温度:83℃)0.1質量部および連鎖移動剤(n-オクチルメルカプタン)0.24質量部を加え、溶解させて原料液を得た。
 イオン交換水100質量部、硫酸ナトリウム0.03質量部および懸濁分散剤0.45質量部を混ぜ合わせて混合液を得た。耐圧重合槽に、当該混合液420質量部と前記原料液210質量部を仕込み、窒素雰囲気下で撹拌しながら、温度を70℃にして重合反応を開始させた。重合反応開始後、3時間経過時に、温度を90℃に上げ、撹拌を引き続き1時間行って、ビーズ状共重合体が分散した液を得た。なお、重合槽壁面あるいは撹拌翼にポリマーが若干付着したが、泡立ちもなく、円滑に重合反応が進んだ。
 得られた共重合体分散液を適量のイオン交換水で洗浄し、バケット式遠心分離機により、ビーズ状共重合体を取り出し、80℃の熱風乾燥機で12時間乾燥し、ビーズ状の(メタ)アクリル樹脂(A-1-1)を得た。
 得られた(メタ)アクリル樹脂(A-1-1)は、メタクリル酸メチル単位の含有量が99質量%であり、アクリル酸メチル単位の含有量が1質量%であり、重量平均分子量(Mw)が95,000、ガラス転移温度が120℃であった。
[Reference Example 1]
Production of (meth) acrylic resin (A-1-1) 99 parts by weight of methyl methacrylate and 1 part by weight of methyl acrylate were subjected to polymerization initiator (2,2′-azobis (2-methylpropionitrile), hydrogen abstraction ability 1%, 1 hour half-life temperature: 83 ° C.) 0.1 part by mass and chain transfer agent (n-octyl mercaptan) 0.24 part by mass were added and dissolved to obtain a raw material liquid.
100 parts by mass of ion-exchanged water, 0.03 parts by mass of sodium sulfate and 0.45 parts by mass of the suspension / dispersant were mixed to obtain a mixed solution. In a pressure-resistant polymerization tank, 420 parts by mass of the mixed solution and 210 parts by mass of the raw material liquid were charged, and the polymerization reaction was started at a temperature of 70 ° C. while stirring in a nitrogen atmosphere. After 3 hours from the start of the polymerization reaction, the temperature was raised to 90 ° C. and stirring was continued for 1 hour to obtain a liquid in which the bead copolymer was dispersed. Although some polymer adhered to the wall of the polymerization tank or the stirring blade, there was no foaming and the polymerization reaction proceeded smoothly.
The obtained copolymer dispersion is washed with an appropriate amount of ion-exchanged water, the bead-like copolymer is taken out with a bucket-type centrifuge, and dried with a hot air dryer at 80 ° C. for 12 hours. Acrylic resin (A-1-1) was obtained.
The obtained (meth) acrylic resin (A-1-1) had a methyl methacrylate unit content of 99% by mass, a methyl acrylate unit content of 1% by mass, and a weight average molecular weight (Mw ) Was 95,000 and the glass transition temperature was 120 ° C.
[参考例2]
(メタ)アクリル樹脂(A-1-2)の製造
 使用した単量体をメタクリル酸メチル100質量部に変更し、連鎖移動剤の量を0.21質量部に変更したこと以外は、参考例1と同様にして(メタ)アクリル樹脂(A-1-2)を得た。
 得られた(メタ)アクリル樹脂(A-1-2)は、メタクリル酸メチル単位の含有量が100質量%であり、重量平均分子量(Mw)が113,000、ガラス転移温度が121℃であった。
[Reference Example 2]
Production of (meth) acrylic resin (A-1-2) Reference Example, except that the monomer used was changed to 100 parts by weight of methyl methacrylate and the amount of chain transfer agent was changed to 0.21 parts by weight (Meth) acrylic resin (A-1-2) was obtained in the same manner as in Example 1.
The obtained (meth) acrylic resin (A-1-2) had a methyl methacrylate unit content of 100 mass%, a weight average molecular weight (Mw) of 113,000, and a glass transition temperature of 121 ° C. It was.
[参考例3]
(メタ)アクリル樹脂(A-2-1)の製造
 使用した単量体をメタクリル酸メチル90質量部およびアクリル酸メチル10質量部に変更し、連鎖移動剤の量を0.39質量部に変更したこと以外は、参考例1と同様にして(メタ)アクリル樹脂(A-2-1)を得た。
 得られた(メタ)アクリル樹脂(A-2-1)は、メタクリル酸メチル単位の含有量が90質量%であり、アクリル酸メチル単位の含有量が10質量%であり、重量平均分子量が60,000、ガラス転移温度が111℃であった。
[Reference Example 3]
Production of (meth) acrylic resin (A-2-1) The monomer used was changed to 90 parts by weight of methyl methacrylate and 10 parts by weight of methyl acrylate, and the amount of chain transfer agent was changed to 0.39 parts by weight. Except for the above, a (meth) acrylic resin (A-2-1) was obtained in the same manner as in Reference Example 1.
The obtained (meth) acrylic resin (A-2-1) has a methyl methacrylate unit content of 90% by mass, a methyl acrylate unit content of 10% by mass, and a weight average molecular weight of 60%. The glass transition temperature was 111 ° C.
[参考例4]
コアシェル型グラフト共重合体(B-1)の製造
 (1)撹拌機、温度計、窒素ガス導入管、単量体導入管および還流冷却器を備えた反応器内に、イオン交換水1050質量部、ポリオキシエチレントリデシルエーテル酢酸ナトリウム0.3質量部および炭酸ナトリウム0.7質量部を仕込み、反応器内を窒素ガスで十分に置換した。次いで内温を80℃にした。そこに、過硫酸カリウム0.25質量部を投入し、5分間撹拌した。これに、メタクリル酸メチル95.4質量%、アクリル酸メチル4.4質量%およびメタクリル酸アリル0.2質量%からなる単量体混合物245質量部を60分間かけて連続的に滴下した。滴下終了後、重合転化率が98%以上になるようにさらに30分間重合反応を行った。
 (2)次いで、同反応器内に、過硫酸カリウム0.32質量部を投入して5分間撹拌した。その後、アクリル酸ブチル80.5質量%、スチレン17.5質量%およびメタクリル酸アリル2質量%からなる単量体混合物315質量部を60分間かけて連続的に滴下した。滴下終了後、重合転化率が98%以上になるようにさらに30分間重合反応を行った。
 (3)次に、同反応器内に、過硫酸カリウム0.14質量部を投入して5分間撹拌した。その後、メタクリル酸メチル95.2質量%、アクリル酸メチル4.4質量%およびn-オクチルメルカプタン0.4質量%からなる単量体混合物140質量部を30分間かけて連続的に滴下した。滴下終了後、重合転化率が98%以上になるようにさらに60分間重合反応を行った。
 以上の操作によって、コアシェル型グラフト共重合体(B-1)を含むラテックスを得た。コアシェル型グラフト共重合体(B-1)を含むラテックスを凍結して凝固させた。次いで水洗・乾燥して粒子状のコアシェル型グラフト共重合体(B-1)を得た。当該粒子の平均粒子径は0.23μmであった。
[Reference Example 4]
Production of core-shell type graft copolymer (B-1) (1) 1050 parts by mass of ion-exchanged water in a reactor equipped with a stirrer, thermometer, nitrogen gas introduction tube, monomer introduction tube and reflux condenser Then, 0.3 parts by mass of sodium polyoxyethylene tridecyl ether acetate and 0.7 parts by mass of sodium carbonate were charged, and the inside of the reactor was sufficiently replaced with nitrogen gas. The internal temperature was then 80 ° C. Thereto, 0.25 part by mass of potassium persulfate was added and stirred for 5 minutes. To this, 245 parts by mass of a monomer mixture consisting of 95.4% by mass of methyl methacrylate, 4.4% by mass of methyl acrylate and 0.2% by mass of allyl methacrylate was continuously added dropwise over 60 minutes. After completion of the dropping, a polymerization reaction was further performed for 30 minutes so that the polymerization conversion rate was 98% or more.
(2) Next, 0.32 parts by mass of potassium persulfate was charged into the reactor and stirred for 5 minutes. Thereafter, 315 parts by mass of a monomer mixture consisting of 80.5% by mass of butyl acrylate, 17.5% by mass of styrene and 2% by mass of allyl methacrylate was continuously added dropwise over 60 minutes. After completion of the dropping, a polymerization reaction was further performed for 30 minutes so that the polymerization conversion rate was 98% or more.
(3) Next, 0.14 parts by mass of potassium persulfate was added to the reactor and stirred for 5 minutes. Thereafter, 140 parts by mass of a monomer mixture consisting of 95.2% by mass of methyl methacrylate, 4.4% by mass of methyl acrylate and 0.4% by mass of n-octyl mercaptan was continuously added dropwise over 30 minutes. After completion of the dropping, the polymerization reaction was further performed for 60 minutes so that the polymerization conversion rate was 98% or more.
Through the above operation, a latex containing the core-shell type graft copolymer (B-1) was obtained. The latex containing the core-shell type graft copolymer (B-1) was frozen and coagulated. Subsequently, it was washed with water and dried to obtain a particulate core-shell type graft copolymer (B-1). The average particle diameter of the particles was 0.23 μm.
 その他の材料として以下を使用した。
<脂肪族アルコール(C)>
 花王製「カルコール8098」、ステアリルアルコール
<高分子加工助剤(D)>
 ダウ・ケミカル社製「パラロイド」K125P
<紫外線防止剤(E)>
 ADEKA社製「アデカスタブ」LA31RG
The following were used as other materials.
<Fatty alcohol (C)>
“CALCOAL 8098” manufactured by Kao, stearyl alcohol <polymer processing aid (D)>
Dow Chemical's “Paraloid” K125P
<UV protection agent (E)>
"ADEKA STAB" LA31RG made by ADEKA
[実施例1]
 (メタ)アクリル樹脂(A-1-1)70質量部、(メタ)アクリル樹脂(A-2-1)10質量部、コアシェル型グラフト共重合体(B-1)20質量部、脂肪族アルコール(C)0.05質量部および紫外線防止剤(E)2.0質量部を重量フィーダーでコントロールしながら41mmφの二軸混練押出機(東芝機械製TEM41-SS、濾過精度10μmのポリマーフィルター付き)のホッパーに投入し、ホッパー下の温度を150℃、バレル温度、ポリマーフィルター温度を230℃にそれぞれ設定して、(メタ)アクリル樹脂組成物をストランド状に押出し、ペレタイザーでカットすることで、(メタ)アクリル樹脂組成物のペレットを製造した。
 得られたペレットを、ベント付の65mmφの一軸押出機にギアポンプ、濾過精度10μmのポリマーフィルターがこの順に設置され、さらにその先端に幅900mmのTダイがついた押出装置を用いて、溶融押出温度(ベントからTダイまでの温度を含めた製膜温度)270℃、吐出量40kg/hにて押出し、80℃の金属鏡面弾性ロールと80℃の金属鏡面剛体ロール間で挟み込んで製膜し、10m/分で引き取り、厚さ75μmのフィルムを製膜した。得られたフィルムの評価結果を表1に示した。なおフィシュアイ欠点は製膜時にオンラインで検査した。
[Example 1]
70 parts by weight of (meth) acrylic resin (A-1-1), 10 parts by weight of (meth) acrylic resin (A-2-1), 20 parts by weight of core-shell type graft copolymer (B-1), aliphatic alcohol (C) A 41 mmφ twin-screw kneading extruder (Toshiba Machine TEM41-SS, with a polymer filter with a filtration accuracy of 10 μm) while controlling 0.05 parts by mass and 2.0 parts by mass of an ultraviolet-ray inhibitor (E) with a weight feeder The temperature under the hopper is set to 150 ° C., the barrel temperature, and the polymer filter temperature are set to 230 ° C., and the (meth) acrylic resin composition is extruded into a strand shape and cut with a pelletizer ( A pellet of a (meth) acrylic resin composition was produced.
The obtained pellets were melt-extruded using an extruder equipped with a gear pump and a polymer filter with a filtration accuracy of 10 μm in this order in a 65 mmφ single screw extruder with a vent, and a T-die with a width of 900 mm at the tip. (Film forming temperature including temperature from vent to T-die) Extruded at 270 ° C., discharge rate 40 kg / h, and formed by sandwiching between 80 ° C. metal mirror elastic roll and 80 ° C. metal mirror rigid roll, The film was taken up at 10 m / min to form a film having a thickness of 75 μm. The evaluation results of the obtained film are shown in Table 1. Fisheye defects were inspected online during film formation.
[実施例2~5]
 表1に示す配合処方としたこと以外は、実施例1と同じ方法でフィルムを得た。評価結果を表1に示した。
[Examples 2 to 5]
A film was obtained in the same manner as in Example 1 except that the formulation shown in Table 1 was used. The evaluation results are shown in Table 1.
[実施例6]
 表1に示す溶融押出温度(ベントからTダイまでの温度を含めた製膜温度)としたこと以外は、実施例5と同じ方法でフィルムを得た。評価結果を表1に示した。
[Example 6]
A film was obtained in the same manner as in Example 5 except that the melt extrusion temperature shown in Table 1 (film forming temperature including the temperature from the vent to the T die) was used. The evaluation results are shown in Table 1.
[比較例1および2]
 表1に示す脂肪族アルコール(C)の添加量としたこと以外は、実施例1と同じ方法でフィルムを得た。評価結果を表1に示した。脂肪族アルコール(C)を添加しなかった場合および0.5質量部と多く添加した場合ともに、溶融時の長期安定性が不十分であり、長期連続運転が困難となることが示唆された。
[Comparative Examples 1 and 2]
A film was obtained in the same manner as in Example 1 except that the addition amount of the aliphatic alcohol (C) shown in Table 1 was used. The evaluation results are shown in Table 1. Both when the aliphatic alcohol (C) was not added and when it was added as much as 0.5 parts by mass, the long-term stability at the time of melting was insufficient, suggesting that long-term continuous operation becomes difficult.
[比較例3]
 脂肪族アルコール(C)の代わりに脂肪族エステル(花王製「エキセル」T95、ステアリルモノグリセライド)を用いたこと以外は、実施例1と同じ方法でフィルムを得た。評価結果を表1に示した。脂肪族エステルを用いた場合には、溶融時の長期安定性が不十分であり、長期連続運転が困難となることが示唆された。
[Comparative Example 3]
A film was obtained in the same manner as in Example 1 except that an aliphatic ester (“Excel” T95 manufactured by Kao, stearyl monoglyceride) was used instead of the aliphatic alcohol (C). The evaluation results are shown in Table 1. When aliphatic ester was used, it was suggested that long-term stability at the time of melting is insufficient, and long-term continuous operation becomes difficult.
[比較例4~6]
 表1に示す配合処方としたこと以外は、実施例1と同じ方法でフィルムを得た。評価結果を表1に示した。コアシェル型グラフト共重合体(B)を添加しない場合、フィッシュアイ欠点は少なかったが、耐折回数の値が低くて耐屈曲性に劣る結果となった。
[Comparative Examples 4 to 6]
A film was obtained in the same manner as in Example 1 except that the formulation shown in Table 1 was used. The evaluation results are shown in Table 1. When the core-shell type graft copolymer (B) was not added, the fisheye defect was small, but the folding resistance was low and the bending resistance was poor.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Claims (14)

  1.  (メタ)アクリル樹脂(A)とコアシェル型グラフト共重合体(B)を合計100質量部と、
     脂肪族アルコール(C)を0.03~0.3質量部含む、
    (メタ)アクリル樹脂組成物。
    A total of 100 parts by weight of the (meth) acrylic resin (A) and the core-shell type graft copolymer (B),
    Containing 0.03-0.3 parts by mass of an aliphatic alcohol (C),
    (Meth) acrylic resin composition.
  2.  270℃ せん断速度12.2/秒における溶融粘度が2,000Pa・s以下である、請求項1に記載の(メタ)アクリル樹脂組成物。 The (meth) acrylic resin composition according to claim 1, wherein the melt viscosity at 270 ° C and a shear rate of 12.2 / sec is 2,000 Pa · s or less.
  3.  前記(メタ)アクリル樹脂(A)が、重量平均分子量の異なる2種類の(メタ)アクリル樹脂を少なくとも含む、請求項1または2に記載の(メタ)アクリル樹脂組成物。 The (meth) acrylic resin composition according to claim 1 or 2, wherein the (meth) acrylic resin (A) includes at least two types of (meth) acrylic resins having different weight average molecular weights.
  4.  前記(メタ)アクリル樹脂(A)とコアシェル型グラフト共重合体(B)との質量比が、前者/後者=70/30~90/10である、請求項1~3のいずれか1項に記載の(メタ)アクリル樹脂組成物。 The mass ratio of the (meth) acrylic resin (A) to the core-shell type graft copolymer (B) is the former / the latter = 70/30 to 90/10, according to any one of claims 1 to 3. The (meth) acrylic resin composition as described.
  5.  前記脂肪族アルコール(C)がステアリルアルコールである、請求項1~4のいずれか1項に記載の(メタ)アクリル樹脂組成物。 The (meth) acrylic resin composition according to any one of claims 1 to 4, wherein the aliphatic alcohol (C) is stearyl alcohol.
  6.  さらに、高分子加工助剤(D)を0.1~3質量%含む、請求項1~5のいずれか1項に記載の(メタ)アクリル樹脂組成物。 The (meth) acrylic resin composition according to any one of claims 1 to 5, further comprising 0.1 to 3% by mass of a polymer processing aid (D).
  7.  請求項1~6のいずれか1項に記載の(メタ)アクリル樹脂組成物からなるフィルム。 A film comprising the (meth) acrylic resin composition according to any one of claims 1 to 6.
  8.  鉛筆硬度がHBまたはそれよりも高い、請求項7に記載のフィルム。 The film according to claim 7, wherein the pencil hardness is HB or higher.
  9.  耐折回数が30回以上である、請求項7または8に記載のフィルム。 The film according to claim 7 or 8, wherein the folding endurance number is 30 times or more.
  10.  請求項7~9のいずれか1項に記載のフィルムからなる加飾フィルム。 A decorative film comprising the film according to any one of claims 7 to 9.
  11.  請求項7~9のいずれか1項に記載のフィルムからなる光学用フィルム。 An optical film comprising the film according to any one of claims 7 to 9.
  12.  請求項7~9のいずれか1項に記載のフィルムからなる偏光子保護フィルム。 A polarizer protective film comprising the film according to any one of claims 7 to 9.
  13.  請求項12に記載の偏光子保護フィルムを含む偏光板。 A polarizing plate comprising the polarizer protective film according to claim 12.
  14.  請求項7~9のいずれか1項に記載のフィルムの製造方法であって、ベント、ギアポンプ、ポリマーフィルターおよびTダイをこの順に備えた押出装置を用い、ベントからTダイまでの温度を230~290℃で制御する、フィルムの製造方法。 The method for producing a film according to any one of claims 7 to 9, wherein an extrusion apparatus including a vent, a gear pump, a polymer filter, and a T die in this order is used, and a temperature from the vent to the T die is set to 230 to A method for producing a film, which is controlled at 290 ° C.
PCT/JP2019/014729 2018-04-03 2019-04-03 (meth)acrylic resin composition, film, and method for production thereof WO2019194210A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020512277A JP7322002B2 (en) 2018-04-03 2019-04-03 (Meth)acrylic resin composition, film and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-071915 2018-04-03
JP2018071915 2018-04-03

Publications (1)

Publication Number Publication Date
WO2019194210A1 true WO2019194210A1 (en) 2019-10-10

Family

ID=68100548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014729 WO2019194210A1 (en) 2018-04-03 2019-04-03 (meth)acrylic resin composition, film, and method for production thereof

Country Status (2)

Country Link
JP (1) JP7322002B2 (en)
WO (1) WO2019194210A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023120305A1 (en) * 2021-12-20 2023-06-29 三菱ケミカル株式会社 Methacrylic resin composition for injection molding or extrusion molding, resin molded body and method for producing same
JP7460464B2 (en) 2020-06-24 2024-04-02 株式会社クラレ METHACRYLIC RESIN COMPOSITION AND METHOD FOR PRODUCING SAME

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11292940A (en) * 1998-04-10 1999-10-26 Kuraray Co Ltd Polymer particle of multilayerd structure, its production and use thereof
JP2001122932A (en) * 1999-10-25 2001-05-08 Kuraray Co Ltd Polymer particle of multilayered structure and use thereof
JP2007510008A (en) * 2003-10-17 2007-04-19 レーム ゲゼルシャフト ミット ベシュレンクテル ハフツング Polymer blends for matte injection molded parts
JP2013133362A (en) * 2011-12-26 2013-07-08 Mitsubishi Engineering Plastics Corp Aromatic polycarbonate resin composition and molded article
WO2017204243A1 (en) * 2016-05-27 2017-11-30 株式会社クラレ Thermoplastic resin composition, molded body, film, and laminate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4187883B2 (en) * 1999-09-17 2008-11-26 株式会社クラレ Acrylic film with excellent roll peelability

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11292940A (en) * 1998-04-10 1999-10-26 Kuraray Co Ltd Polymer particle of multilayerd structure, its production and use thereof
JP2001122932A (en) * 1999-10-25 2001-05-08 Kuraray Co Ltd Polymer particle of multilayered structure and use thereof
JP2007510008A (en) * 2003-10-17 2007-04-19 レーム ゲゼルシャフト ミット ベシュレンクテル ハフツング Polymer blends for matte injection molded parts
JP2013133362A (en) * 2011-12-26 2013-07-08 Mitsubishi Engineering Plastics Corp Aromatic polycarbonate resin composition and molded article
WO2017204243A1 (en) * 2016-05-27 2017-11-30 株式会社クラレ Thermoplastic resin composition, molded body, film, and laminate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7460464B2 (en) 2020-06-24 2024-04-02 株式会社クラレ METHACRYLIC RESIN COMPOSITION AND METHOD FOR PRODUCING SAME
WO2023120305A1 (en) * 2021-12-20 2023-06-29 三菱ケミカル株式会社 Methacrylic resin composition for injection molding or extrusion molding, resin molded body and method for producing same

Also Published As

Publication number Publication date
JP7322002B2 (en) 2023-08-07
JPWO2019194210A1 (en) 2021-05-13

Similar Documents

Publication Publication Date Title
JP6324406B2 (en) Acrylic resin film
TWI715722B (en) Thermoplastic resin film and its manufacturing method, and laminated body
EP2918636B1 (en) Methacrylic resin composition
JP6846337B2 (en) Resin composition and its manufacturing method, molded article, film and article
JP6594404B2 (en) RESIN COMPOSITION, FILM AND METHOD FOR PRODUCING THEM, MOLDED ARTICLE, AND ARTICLE
WO2021193922A1 (en) Acrylic composition and molded article
JP7328989B2 (en) (Meth) acrylic resin composition and (meth) acrylic resin film
JP7322002B2 (en) (Meth)acrylic resin composition, film and method for producing the same
JP6742158B2 (en) Acrylic resin film, laminated film and laminated body using the same
JP6783112B2 (en) Acrylic resin film and its manufacturing method
JP6571111B2 (en) Multi-layer sheet for decoration and three-dimensional molded body
JP7096842B2 (en) Acrylic resin film and its manufacturing method
JP7278810B2 (en) Acrylic resin film and its manufacturing method
JP7184793B2 (en) Methacrylic resin, methacrylic resin composition and molded article
JP2019001883A (en) Acrylic multilayer polymer
JP7187482B2 (en) METHACRYLIC RESIN COMPOSITION, MOLDED PRODUCT AND FILM
JP2021059665A (en) (meth) acrylic resin composition and (meth) acrylic resin film including the same
JP2022053846A (en) (meth)acrylic resin film and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19781266

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020512277

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19781266

Country of ref document: EP

Kind code of ref document: A1