WO2019183957A1 - 远程控制效果的检测方法、装置、设备及存储介质 - Google Patents

远程控制效果的检测方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2019183957A1
WO2019183957A1 PCT/CN2018/081445 CN2018081445W WO2019183957A1 WO 2019183957 A1 WO2019183957 A1 WO 2019183957A1 CN 2018081445 W CN2018081445 W CN 2018081445W WO 2019183957 A1 WO2019183957 A1 WO 2019183957A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
target
delay
control
scenario
Prior art date
Application number
PCT/CN2018/081445
Other languages
English (en)
French (fr)
Inventor
贾伟杰
高国娟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2018/081445 priority Critical patent/WO2019183957A1/zh
Publication of WO2019183957A1 publication Critical patent/WO2019183957A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • H04L67/125Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks involving control of end-device applications over a network
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/75Indicating network or usage conditions on the user display

Definitions

  • the present application relates to a detection technology for remote control effects, and in particular, to a method, device, device and storage medium for detecting a remote control effect.
  • the subjective evaluation method is mainly used to evaluate the remote control effect, that is, the user who performs the remote control performs subjective evaluation on the remote control effect.
  • the subjectivity of this method is relatively strong, and the user's evaluation results are easily affected by factors that cannot be measured. The evaluation results are not accurate and reliable.
  • the embodiment of the present application provides a method, a device, a device, and a storage medium for detecting a remote control effect, so as to improve the accuracy of evaluating a remote control effect.
  • a first aspect of the present application provides a method for detecting a remote control effect, including: acquiring delay data of a target control scenario, inputting delay data into a preset evaluation model, and obtaining a control effect of the target control scenario by using the evaluation model. Evaluation results. Since the preset evaluation model is used to evaluate the control effect of the target control scene, instead of using the user's subjective evaluation method, the evaluation accuracy of the remote control effect can be improved.
  • the delay data includes network delay data of the target control scenario.
  • the obtaining delay data of the target control scenario includes:
  • the method further includes displaying an association relationship between a control effect of the target control scenario and a network delay.
  • the method before the obtaining the delay data of the target control scenario, the method further includes:
  • control sample data of the target control scenario including a score of the remote control operation by the user under different time delay conditions and physiological data when the user performs the remote control operation;
  • the evaluation model is obtained based on the target scoring and the delay condition corresponding to the target scoring.
  • the physiological data includes pupil size data.
  • the trend of the change in the target score is inversely related to the trend of the standard deviation of the pupil size data when the user performs the corresponding remote control operation.
  • the physiological data includes at least one of the following: ECG data, skin electrical data.
  • the change trend of the target score is in accordance with a preset correspondence relationship between the trend of the physiological data when the user performs the corresponding remote control operation.
  • a second aspect of the embodiments of the present application provides a remote control effect detecting apparatus, including:
  • a first acquiring module configured to acquire delay data of the target control scenario
  • an evaluation module configured to input the delay data into a preset evaluation model, and obtain a control effect evaluation result of the target control scenario.
  • the device adopts a preset evaluation model to evaluate the control effect of the target control scene, instead of using the user's subjective evaluation method, the evaluation accuracy of the remote control effect can be improved.
  • the delay data includes network delay data of the target control scenario.
  • the first acquiring module includes:
  • the first obtaining submodule is configured to obtain multiple different network delay data in the target control scenario
  • the evaluation module includes:
  • the first evaluation sub-module is configured to input the multiple different network delay data into a preset evaluation model to obtain an association relationship between the control effect of the target control scenario and the network delay.
  • the device further includes:
  • a display module configured to display an association relationship between the control effect of the target control scenario and the network delay.
  • the device further includes:
  • a second acquiring module configured to acquire control sample data of the target control scenario, where the control sample data includes scoring the remote control operation by the user under different delay conditions and physiological data of the user when performing the remote control operation ;
  • An extraction module configured to extract a target score from the control sample data and a delay condition corresponding to the target score, where the target score meets a preset relationship with physiological data when the user performs a corresponding remote control operation;
  • a model training module configured to obtain an evaluation model based on the target score and the delay condition corresponding to the target score.
  • the physiological data includes pupil size data.
  • the trend of the change in the target score is inversely related to the trend of the standard deviation of the pupil size data when the user performs the corresponding remote control operation.
  • the physiological data includes at least one of the following: ECG data, skin electrical data.
  • the change trend of the target score is in accordance with a preset correspondence relationship between the trend of the physiological data when the user performs the corresponding remote control operation.
  • a third aspect of the embodiments of the present application provides a detecting apparatus, including:
  • the processor may be a network device or a terminal device, or may be a chip.
  • the processor may be integrated on a same chip as the storage medium, or may be disposed on a different chip from the storage medium.
  • a fourth aspect of embodiments of the present application provides a computer readable storage medium storing a computer program, the computer program comprising at least one piece of code executable by a computer to control the computer to perform the above The method of the first aspect.
  • a fifth aspect of the embodiments of the present application provides a computer program for performing the method of the above first aspect when the computer program is executed by a computer.
  • the computer program may be stored in whole or in part on a storage medium that is packaged together by the processor, or may be stored partially or entirely on a storage medium that is not packaged with the processor.
  • a sixth aspect of the embodiments of the present application provides a processor, including:
  • At least one circuit configured to acquire delay data of the target control scenario through the interface
  • At least one circuit configured to input the delay data into a preset evaluation model to obtain a control effect evaluation result of the target control scene.
  • FIG. 1 is a schematic diagram of a remote control scenario according to an embodiment of the present application
  • FIG. 2 is a flowchart of a method for detecting a remote control effect according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of an evaluation result provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a scenario for acquiring an evaluation model according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a delay setting according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of physiological data processing according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a remote control effect detecting apparatus according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a remote control effect detecting apparatus according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a detecting device according to an embodiment of the present application.
  • the embodiment of the present application is applied to evaluate the control effect of remote control.
  • the remote control in the embodiment of the present application refers to that one terminal device controls one or more terminal devices located in the same network through a wired or wireless network, where the terminal device used for control may be referred to as a master control device.
  • the controlled device may be referred to as the controlled device.
  • the master device controls the controlled device
  • the controlled device returns the controlled image to the master device.
  • FIG. 1 is a schematic diagram of a remote control scenario provided by an embodiment of the present application, where the scenario includes a user 00, a master device 10, a controlled device 20, and a display device 30.
  • the user 00 controls the controlled device 20 through the main control device 10.
  • the main control device 10 can be specifically a somatosensory remote control device, such as a joystick, a robot, a control button, etc., but is not limited to a joystick, a robot, and a control button.
  • the controlled device 20 is connected to the main control device 10 through the network 40.
  • the network 40 can be a wired network or a wireless network.
  • the main control device 10 transmits control signals to the controlled device 20 through the network 40, and the controlled device 20
  • the controlled picture is transmitted back to the display device 30 via the network 50, and the display device 30 displays the picture to the user 00.
  • the network 40 and the network 50 may be the same network or different networks. In this embodiment, the same network is used as an example, that is, the network 40 and the network 50 are both wired networks and wireless networks.
  • control delay is the length of time elapsed by the user 00 controlling the action to be sent to the display device 30 to display the control screen, that is, Control delay.
  • the shorter the control delay the better the control effect.
  • the control delay is mainly composed of two parts: one part is the inherent delay of all the devices in FIG. 1, and the partial delay can be determined after the device in FIG. 1 is uniquely determined, and the other part is in FIG. Transmission delay of the network (network 40 and network 50). In the actual scenario, the inherent delay of the device is difficult to be changed.
  • control delay on the control effect can also be equated with evaluating the effect of network transmission delay on the control effect.
  • the control effect is usually subjectively scored by the user 00, and the scoring is easily affected by the uncertain factors, the scoring result is unreliable, and the accuracy is low.
  • the embodiments of the present application are directed to specific remote control scenarios (eg, remote handshake, remote driving, remote joystick manipulation, etc., but are not limited to these remote control scenarios), and establish corresponding evaluation models in a remote location.
  • the delay data of the scene is input into the corresponding evaluation model, and the evaluation result of the control effect of the scene is obtained by evaluating the model output, wherein the delay data can be specifically determined as all devices in the scene.
  • the sum of the inherent delay and the network transmission delay may also be specifically the network delay of the scenario, which is not specifically limited in this embodiment. Since the embodiment of the present application adopts an evaluation model to evaluate the control effect of the remote control scenario, instead of using the user's subjective evaluation, the evaluation accuracy of the remote control effect can be improved.
  • FIG. 2 is a flowchart of a remote control effect detecting method according to an embodiment of the present application, as shown in FIG.
  • the detection method includes S11-S12:
  • target control scenario is only to distinguish the remote control scenario to be detected from other remote control scenarios, and has no limitation.
  • the target control scenario may be any remote control scenario, such as remote handshake, remote joystick control, etc., but is not limited to remote handshake and remote joystick control.
  • the delay data in this embodiment may be specifically the sum of the inherent delay and the network transmission delay of all devices in the target control scenario, or may be specifically the network delay of the target control scenario.
  • This embodiment uses network delay as an example for description.
  • the delay data is stored in a pre-agreed storage area or storage device, and the detecting device acquires delay data of the target control scene from the storage area or the storage device.
  • an interaction interface is set between the user and the detection device, and the user configures the delay data of the target control scene through the interaction interface.
  • the detecting device collects the obtained delay data in the target control scenario.
  • the delay data is specifically the inherent delay of all devices in the target control scenario and the network transmission delay, and the detecting device detects The time elapsed from the time the user issues a control action to the picture that is received by the controlled device. If the delay data is specifically delayed by the network transmission of the target control scenario, the detecting device detects the time elapsed from the user issuing the control action to the picture received by the controlled device, and removes all the target control fields from the time. The inherent delay of the device to obtain the delay data of the target control scenario.
  • the delay data involved in the embodiment may be delay data of a control process in a target control scenario, or may be delay data of multiple manipulation processes in the target control scenario.
  • the detecting device can obtain the delay data of the remote brake control, and can also obtain the delay data of the multiple remote brake control.
  • the delay data obtained for multiple remote brake controls may differ from one another.
  • only the example of the remote braking scene is taken as an example, and is not a limitation on the present application.
  • an evaluation model can be used to detect and evaluate the control effects of one or more remote control scenarios.
  • This embodiment takes an evaluation model corresponding to a remote control scenario as an example.
  • multiple scores of the user's control effect on the target control scenario may be obtained through an experiment or a pre-agreed data platform, and the scores may include the target control scenario.
  • the scores may include the target control scenario.
  • one or more scores corresponding to the data are extended.
  • different scores correspond to different control effects. For example, the higher the score, the better the control effect, and the lower the score, the worse the control effect is. Not the only limit.
  • the evaluation model is trained. The evaluation model can be used to evaluate the control effects corresponding to different delay data in the target control scenario.
  • the delay data of one control process in the obtained target control scene may be input into the evaluation model to obtain a corresponding control effect evaluation result.
  • the delay data of the multiple control processes in the target control scene obtained above may also be input into the evaluation model to obtain the relationship between the control effect of the target control scenario and the delay data.
  • the evaluation result of the evaluation model output may be displayed in any form, for example, may be displayed by the graph shown in FIG. 3, where the curve a represents the relationship between the control effect of the remote joystick manipulation and the delay data. Relationship, curve b represents the relationship between the control effect and the delay data in the remote brake control, and of course, FIG. 3 is merely an example and is not a limitation on the present application.
  • the delay data of the target control scene is acquired, and the delay data is input into a preset evaluation model, and the evaluation result of the control effect of the target control scene is obtained by the evaluation model. Since the preset evaluation model is used to evaluate the control effect of the target control scene, instead of using the user's subjective evaluation method, the evaluation accuracy of the remote control effect can be improved.
  • FIG. 4 is a schematic diagram of a scenario for acquiring an evaluation model according to an embodiment of the present disclosure.
  • the scenario shown in FIG. 4 includes a user 40, a main control device 41, a network 42, a controlled device 43, a display device 44, and a monitoring device 45.
  • Detection device 46 is configured to configure the delay of the network 42. After the detecting device 46 completes the delay configuration, the user 40 controls the controlled device 43 through the master device 41, and the master device 41 converts the user's operation into control. The signal is sent to the controlled device 43 via the network 42.
  • the controlled device 43 performs a corresponding operation based on the control signal and transmits the controlled picture to the display device 44, and the display device 44 displays the received screen.
  • the user 40 After seeing the controlled screen of the controlled device 43, the user scores the control effect and inputs the score into the detecting device 46.
  • the monitoring device 45 monitors the physiological data of the user 40, and sends the physiological data obtained by the monitoring to the detecting device 46.
  • the physiological data involved in the embodiment includes at least but not limited to the following One or more: pupil size data, ECG data, and skin electrical data.
  • the detecting device reconfigures the delay of the network 42 and re-executes the above process, so as to obtain the score including the user's remote control operation under different delay conditions, and the user performing the corresponding remote control operation.
  • the physiological data that is, the above process can be exemplarily expressed as acquiring control sample data of a target control scenario, the control sample data including the user's scoring of the remote control operation under different time delay conditions and the user performing the remote control Physiological data during operation.
  • FIG. 5 is a schematic diagram of a delay setting provided by an embodiment of the present application.
  • the detecting apparatus 46 performs a delay setting of the network 42 for n times, respectively, a delay T 1 -T n , and a user. 40 performing a remote control operation under the delay condition of T 1 -T n , respectively, and inputting the score under each delay condition into the detecting device 46, in which the monitoring device 45 records the physiological data of the user, and The recorded physiological data is transmitted to the detecting device 46 such that the detecting device 46 generates control sample data based on the received scoring and physiological data.
  • the monitoring device 45 to record the physiological data of the user:
  • the monitoring device 45 records the physiological data of the user 40 from the start of the remote control to the controlled picture of the controlled device 43 only under each delay condition.
  • the monitoring device 45 starts recording the user data from a physiological condition T 1 until the delay until the end of the control process in the delay condition of T n.
  • the detecting device 46 needs to synchronize the physiological data with the time when the user performs the remote control operation, thereby obtaining the user 40 from the start of each delay condition.
  • the physiological data of the process of seeing the controlled picture of the controlled device 43 is remotely controlled. That is, the above two possible ways can be exemplarily expressed as obtaining physiological data when the user performs a remote control operation.
  • the embodiment may further preprocess the physiological data.
  • the data mutation point can be searched for in the physiological data corresponding to each delay condition, and the physiological data after the mutation point is regarded as the physiological data that the user can perceive the time delay. Therefore, the physiological data after the mutation point is retained, and the mutation is cleared.
  • the physiological data before the point is obtained, and the physiological data segment shown in FIG. 6 is obtained to improve the efficiency of subsequent data processing.
  • D1-Dn in FIG. 6 respectively represent the physiological acquired under the delay condition of T 1 -T n .
  • Data, in which the black portion of the rectangular area represents the cleared physiological data, and the blank portion of the rectangular area represents the physiological data after the mutation point.
  • the detecting device 26 extracts a target score and a delay condition corresponding to the target score from the control sample data, wherein the target score is between the user and the physiological data when the user performs the corresponding remote control operation. Meet the preset relationship.
  • the monitoring device 45 collects the obtained physiological data as the pupil size data of the user, the standard deviation of the corresponding pupil size data under each delay condition is respectively calculated, and combined with the preset pupil in the calm state.
  • the standard deviation of the size, the increase of the standard deviation of the pupil size of the user under each delay condition relative to the standard deviation of the pupil size when the user is calm, and the change trend of the standard deviation of the pupil size under the plurality of delay conditions and the user If there is an inverse relationship between the score change trends, the user scores under the multiple delay conditions are scored as the target.
  • the monitoring device 45 collects the obtained physiological data as the user's skin electrical data, if the user's score change trend under multiple delay conditions and the user's skin electric data change trend under the plurality of delay conditions
  • the relationship is inversely proportional
  • the score of the user under the plurality of delay conditions is scored as a target, or when the physiological data collected by the monitoring device 45 is the user's ECG data, if the user is under multiple delay conditions
  • the trend of the score change is proportional to the trend of the ECG data change of the user under the plurality of delay conditions
  • the score of the user under the plurality of delay conditions is scored as a target.
  • this is for illustrative purposes only and is not a limitation of the application.
  • the target scores and the delay conditions corresponding to the scores of the respective targets may be substituted into the preset model, and the obtained evaluation model involved in the embodiment of the present application is trained.
  • the target scoring and the delay condition corresponding to the target scoring can be substituted into the Degradation MOS (DMOS), and the following evaluation model is trained:
  • DMOS a*x 4 +b*x 3 +c*x 2 +d*x+e
  • DMOS represents the evaluation result
  • a, b, c, d, and e are constants
  • the variable x represents a delay
  • the remote control corresponding to the user is extracted from the control sample data.
  • the user who controls the physiological data in the operation is scored as a target, and the evaluation model is obtained according to the target score and the delay condition corresponding to the target score, so that the control effect of the remote control scene is detected and evaluated based on the evaluation model, Accurate assessment results can be obtained to avoid inaccurate user subjective assessments.
  • FIG. 7 is a schematic structural diagram of a device for detecting a remote control effect according to an embodiment of the present invention. As shown in FIG. 7, the detecting device device 70 includes:
  • the first obtaining module 71 is configured to acquire delay data of the target control scenario.
  • the evaluation module 72 is configured to input the delay data into a preset evaluation model to obtain a control effect evaluation result of the target control scene.
  • the delay data includes network delay data of the target control scenario.
  • the first obtaining module 71 includes:
  • the first obtaining submodule is configured to obtain multiple different network delay data in the target control scenario
  • the evaluation module includes:
  • the first evaluation sub-module is configured to input the multiple different network delay data into a preset evaluation model to obtain an association relationship between the control effect of the target control scenario and the network delay.
  • device 70 may also include:
  • a display module configured to display an association relationship between the control effect of the target control scenario and the network delay.
  • the detection device 70 provided in this embodiment can be used to perform the technical solution of the embodiment of FIG. 2, and its implementation manner and beneficial effects are similar to those in FIG.
  • FIG. 8 is a schematic structural diagram of a device for detecting a remote control effect according to an embodiment of the present invention. As shown in FIG. 8, on the basis of the embodiment of FIG. 7, the detecting device 70 may further include:
  • a second obtaining module 73 configured to acquire control sample data of the target control scenario, where the control sample data includes a score of the remote control operation by the user under different time delay conditions and a physiological condition of the user when performing the remote control operation data;
  • the extraction module 74 is configured to extract, from the control sample data, a target score and a delay condition corresponding to the target score, where the target score meets a preset relationship with physiological data when the user performs a corresponding remote control operation;
  • the model training module 75 is configured to train the obtained evaluation model based on the target scoring and the delay condition corresponding to the target scoring.
  • the physiological data includes pupil size data.
  • the trend of the change in the target score is inversely related to the trend of the standard deviation of the pupil size data when the user performs the corresponding remote control operation.
  • the physiological data includes at least one of the following: ECG data, skin electrical data.
  • the change trend of the target score is in accordance with a preset correspondence relationship between the trend of the physiological data when the user performs the corresponding remote control operation.
  • the detection device provided in this embodiment can be used to perform the technical solution of the embodiment of FIG. 4, and its implementation manner and beneficial effects are similar to those in FIG.
  • FIG. 9 is a schematic structural diagram of a detecting device according to an embodiment of the present disclosure.
  • the detecting device 90 includes an interface 91 and a processor 92.
  • the interface 91 is coupled to a processor 92.
  • the processor 92 is coupled to the processor 92. It can be used to perform the method of the embodiment of Fig. 2 or Fig. 4 above.
  • the processor 92 may be a network device or a terminal device, or may be a chip.
  • the processor may be integrated on a same chip as the storage medium, or may be disposed on a different chip from the storage medium.
  • the detection device provided in this embodiment can be used to perform the technical solution of the embodiment of FIG. 2 or FIG. 4, and its implementation manner and beneficial effects are similar to those in FIG.
  • the embodiment of the present application further provides a computer readable storage medium, where the computer readable storage medium stores a computer program, where the computer program includes at least one piece of code executable by a computer to control the computer to execute the above FIG. 2 Or the technical solution of the embodiment of FIG. 4.
  • the embodiment of the present application further provides a computer program for performing the above technical solution of the embodiment of FIG. 2 or FIG. 4 when the computer program is executed by a computer.
  • the computer program may be stored in whole or in part on a storage medium that is packaged together by the processor, or may be stored partially or entirely on a storage medium that is not packaged with the processor.
  • the embodiment of the present application further provides a processor, including:
  • At least one circuit configured to acquire delay data of the target control scenario through the interface
  • At least one circuit configured to input the delay data into a preset evaluation model to obtain a control effect evaluation result of the target control scene.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above software function parts can be stored in the storage unit.
  • the storage unit includes instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) or a processor to perform some of the steps of the methods described in various embodiments of the present application.
  • the storage unit includes: one or more memories, such as a read-only memory (ROM), a random access memory (RAM), and an electrically erasable programmable read only memory (EEPROM). and many more.
  • the storage unit may exist independently or may be integrated with the processor.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Public Health (AREA)
  • Data Mining & Analysis (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Computing Systems (AREA)
  • Pathology (AREA)
  • Databases & Information Systems (AREA)
  • Selective Calling Equipment (AREA)

Abstract

一种远程控制效果的检测方法、装置、设备及存储介质,通过获取目标控制场景的时延数据(S11),并将时延数据输入预设的评估模型,从而通过该评估模型获得目标控制场景的控制效果的评估结果(S12)。由于采用了预设的评估模型来对目标控制场景的控制效果进行评估,而非采用用户主观评价的方式进行评估,因而能够提高远程控制效果的评估准确性。

Description

远程控制效果的检测方法、装置、设备及存储介质 技术领域
本申请涉及远程控制效果的检测技术,尤其涉及一种远程控制效果的检测方法、装置、设备及存储介质。
背景技术
随着网络不断向高带宽、低时延的方向发展,各领域催生出了各式各样的远程控制业务,随之而来的是如何评价远程控制效果的问题。目前主要采用主观评价方法对远程控制效果进行评价,即通过执行远程控制的用户本身对远程控制效果进行主观评价。该方法的主观性比较强,用户的评价结果容易受到无法度量的因素影响,评价结果不够准确可靠。
发明内容
本申请实施例提供一种远程控制效果的检测方法、装置、设备及存储介质,以提高评估远程控制效果的准确性。
本申请实施例第一方面提供一种远程控制效果的检测方法,包括:获取目标控制场景的时延数据,将时延数据输入预设的评估模型,通过该评估模型获得目标控制场景的控制效果的评估结果。由于采用了预设的评估模型来对目标控制场景的控制效果进行评估,而非采用用户主观评价的方式进行评估,因而能够提高远程控制效果的评估准确性。
在一种可能的设计中,所述时延数据包括所述目标控制场景的网络时延数据。
在一种可能的设计中,所述获取目标控制场景的时延数据,包括:
获取目标控制场景下的多个不同的网络时延数据;
所述将所述时延数据输入预设的评估模型,获得所述目标控制场景的控制效果评估结果,包括:
将所述多个不同的网络时延数据输入预设的评估模型,获得所述目标控制场景的控制效果与网络时延之间的关联关系。
在一种可能的设计中,所述方法还包括显示所述目标控制场景的控制效果与网络时延之间的关联关系。
在一种可能的设计中,所述获取目标控制场景的时延数据之前,所述方法还包括:
获取目标控制场景的控制样本数据,所述控制样本数据包括用户在不同时延条件下对远程控制操作的打分以及所述用户执行所述远程控制操作时的生理数据;
从所述控制样本数据中提取目标打分以及所述目标打分对应的时延条件,所述目标打分与用户在执行相应远程控制操作时的生理数据之间满足预设关系;
基于所述目标打分以及所述目标打分对应的时延条件,训练获得评估模型。
在一种可能的设计中,所述生理数据包括瞳孔尺寸数据。
在一种可能的设计中,所述目标打分的变化趋势与用户执行相应远程控制操作时的瞳孔尺寸数据的标准差的变化趋势之间成反比关系。
在一种可能的设计中,所述生理数据包括如下的至少一种:心电数据、皮电数据。
在一种可能的设计中,所述目标打分的变化趋势与用户执行相应远程控制操作时的生理数据的变化趋势之间符合预设的对应关系。
本申请实施例第二方面提供一种远程控制效果的检测装置,包括:
第一获取模块,用于获取目标控制场景的时延数据;
评估模块,用于将所述时延数据输入预设的评估模型,获得所述目标控制场景的控制效果评估结果。
由于该装置采用了预设的评估模型来对目标控制场景的控制效果进行评估,而非采用用户主观评价的方式进行评估,因而能够提高远程控制效果的评估准确性。
在一种可能的设计中,所述时延数据包括所述目标控制场景的网络时延数据。
在一种可能的设计中,所述第一获取模块,包括:
第一获取子模块,用于获取目标控制场景下的多个不同的网络时延数据;
所述评估模块,包括:
第一评估子模块,用于将所述多个不同的网络时延数据输入预设的评估模型,获得所述目标控制场景的控制效果与网络时延之间的关联关系。
在一种可能的设计中,所述装置还包括:
显示模块,用于显示所述目标控制场景的控制效果与网络时延之间的关联关系。
在一种可能的设计中,所述装置还包括:
第二获取模块,用于获取目标控制场景的控制样本数据,所述控制样本数据包括用户在不同时延条件下对远程控制操作的打分以及所述用户在执行所述远程控制操作时的生理数据;
提取模块,用于从所述控制样本数据中提取目标打分以及所述目标打分对应的时延条件,所述目标打分与用户执行相应远程控制操作时的生理数据之间满足预设关系;
模型训练模块,用于基于所述目标打分以及所述目标打分对应的时延条件,训练获得评估模型。
在一种可能的设计中,所述生理数据包括瞳孔尺寸数据。
在一种可能的设计中,所述目标打分的变化趋势与用户执行相应远程控制操作时的瞳孔尺寸数据的标准差的变化趋势之间成反比关系。
在一种可能的设计中,所述生理数据包括如下的至少一种:心电数据、皮电数据。
在一种可能的设计中,所述目标打分的变化趋势与用户执行相应远程控制操作时的生理数据的变化趋势之间符合预设的对应关系。
本申请实施例第三方面提供一种检测设备,包括:
接口和处理器,所述接口和处理器耦合,所述处理器可以用于执行上述第一方面的方法。其中,处理器可以为网络设备或者终端设备,也可以为芯片,该处理器可以与存储介质集成在同一块芯片上,也可以与存储介质分设在不同的芯片上。
本申请实施例第四方面提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序包含至少一段代码,该至少一段代码可由计算机执行,以控制所述计算机执行上述第一方面的方法。
本申请实施例第五方面提供一种计算机程序,当所述计算机程序被计算机执行时,用于执行上述第一方面的方法。该计算机程序可以全部或者部分存储在于处理器封装在一起的存储介质上,也可以部分或者全部存储在不与处理器封装在一起的存储介质上。
本申请实施例第六方面提供一种处理器,包括:
至少一个电路,用于通过接口获取目标控制场景的时延数据;
至少一个电路,用于将所述时延数据输入预设的评估模型,获得所述目标控制场景的控制效果评估结果。
附图说明
图1为本申请实施例提供的一种远程控制场景的示意图;
图2为本申请实施例提供的一种远程控制效果的检测方法的流程图;
图3为本申请实施例提供的一种评估结果示意图;
图4为本申请实施例提供的一种获取评估模型的场景示意图;
图5为本申请实施例提供的一种时延设置示意图;
图6为本申请实施例提供的一种生理数据处理示意图;
图7为本申请实施例提供的一种远程控制效果的检测装置的结构示意图;
图8为本申请实施例提供的一种远程控制效果的检测装置的结构示意图;
图9为本申请实施例提供的一种检测设备的结构示意图。
具体实施方式
本申请实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请实施例应用于对远程控制的控制效果进行评估。本申请实施例中的远程控制是指一个终端设备通过有线或无线网络对位于同一网络中的另一个或多个终端设备进行控制,其中,用于控制的终端设备可以称为主控设备,被控制的设备可以称为被控设备,当主控设备对被控设备进行控制时,被控设备将其被控的画面回传给主控设备。
示例的,图1为本申请实施例提供的一种远程控制场景的示意图,该场景包括用 户00、主控设备10、被控设备20和显示设备30。用户00通过主控设备10控制被控设备20,主控设备10可以被具体为体感遥控设备,比如,摇杆、机械手、控制按键等,但不局限于摇杆、机械手和控制按键。被控设备20与主控设备10通过网络40连接,网络40可以是有线网络,也可以是无线网络,主控设备10通过网络40将控制信号传输给被控设备20,被控设备20将其被控的画面通过网络50回传给显示设备30,显示设备30将画面显示给用户00。其中,网络40和网络50可以是同种网络也可以是不同网络,本实施例以同种网络为例,即网络40和网络50均为有线网络或无线网络。
如图1所示,在图1所示的场景中,影响控制效果即用户体验的重要因素之一是由用户00控制动作发出到显示设备30显示控制画面这段过程所经历的时间长度,即控制时延。控制时延越短控制效果越好。而由图1可知控制时延主要由两部分组成:其中一部分是图1中所有设备的固有时延,该部分时延可以在图1中的设备被唯一确定后确定,另一部分是图1中网络(网络40和网络50)的传输时延。其中,在实际场景中,设备的固有时延很难被改变,通常设备被唯一确定后,设备的固有时延也就被唯一确定了,而网络传输时延属于可配置的参数,因此,评估控制时延对控制效果的影响,也可以被等同于评估网络传输时延对控制效果的影响。现有技术中,在评估远程控制的控制效果时,通常通过用户00对控制效果进行主观打分,打分容易受到不确定因素影响,打分结果不可靠,准确性较低。
针对上述问题,本申请实施例针对具体的远程控制场景(比如,远程握手,远程驾驶,远程摇杆操纵等,但不局限于这些远程控制场景),建立相应的评估模型,在对某一远程控制场景的控制效果检测评估时,将该场景的时延数据输入相应的评估模型,通过评估模型输出获得该场景的控制效果的评估结果,其中,上述时延数据可以被具体为场景中所有设备的固有时延和网络传输时延的总和,也可以被具体为场景的网络时延,本申请实施例不做具体限定。由于本申请实施例采用了评估模型来对远程控制场景的控制效果进行评估,而非采用用户主观评价的方式进行评估,因而能够提高远程控制效果的评估准确性。
针对上述解决方案,本申请实施例提供了一种远程控制效果的检测方法。该方法可以由一种远程控制效果检测装置(以下简称检测装置)来执行,参见图2,图2为本申请实施例提供的一种远程控制效果的检测方法的流程图,如图2所示,该检测方法包括S11-S12:
S11、获取目标控制场景的时延数据。
其中,“目标控制场景”的名称定义仅为了将待检测的远程控制场景与其他远程控制场景进行区别,而不具有限制意义。本实施例中,目标控制场景可以是任意的远程控制场景,比如,远程握手、远程摇杆控制等,但不局限于远程握手和远程摇杆控制。
本实施例中的时延数据可以被具体为目标控制场景中所有设备的固有时延和网络传输时延的总和,也可以被具体为目标控制场景的网络时延。本实施例以网络时延为例进行说明。
在一种可能的设计中,时延数据存储在预先约定的存储区域或存储设备中,检测 装置从该存储区域或存储设备中获取目标控制场景的时延数据。
在另一种可能的设计中,用户与检测装置之间设置有交互界面,用户通过交互界面配置目标控制场景的时延数据。
在又一种可能的设计中,检测装置在目标控制场景中采集获得时延数据,比如,当时延数据被具体为目标控制场景中所有设备的固有时延和网络传输时延时,检测设备检测用户从发出控制动作到接收到被控设备反馈的画面所经历的时间。若时延数据被具体为目标控制场景的网络传输时延时,检测设备检测用户从发出控制动作到接收到被控设备反馈的画面所经历的时间,并从该时间中剔除目标控制场中所有设备的固有时延,从而获得目标控制场景的时延数据。
实际场景中,本实施例涉及的时延数据可以是目标控制场景下,一次操控过程的时延数据,也可以是目标控制场景下多次操控过程的时延数据。以远程刹车控制场景为例,检测装置可以获取一次远程刹车控制的时延数据,也可以获取多次远程刹车控制的时延数据,当上述多次远程刹车控制中网络的时延配置不同时,获取到的多次远程刹车控制的时延数据之间可能不同。当然这里仅是以远程刹车场景为例进行的示例说明,而不是对本申请的唯一限定。
S12、将所述时延数据输入预设的评估模型,获得所述目标控制场景的控制效果评估结果。
本实施例中,一个评估模型可以用于对一个或多个远程控制场景的控制效果进行检测评估。本实施例以一个评估模型对应一个远程控制场景为例。
示例的,在建立目标控制场景对应的评估模型时,可以先通过实验或者预先约定的数据平台上获取用户对目标控制场景的控制效果的多个打分,该些打分中可能包括目标控制场景下不同时延数据对应的一个或多个打分,在本实施例中不同打分对应不同的控制效果,比如打分越高对应控制效果越好,打分越低对应控制效果越差,当然这里仅为示例说明并不是唯一限定。进一步的,再基于上述获得的打分,以及每个打分对应的时延数据,训练获得评估模型。该评估模型可以用于对目标控制场景下不同时延数据对应的控制效果进行评估。
在对目标控制场景的控制效果进行检测评估时,可以将上述获取到的目标控制场景中一次操控过程的时延数据输入评估模型,获得相应的控制效果评估结果。也可以将上述获取到的目标控制场景中多次操控过程的时延数据输入评估模型,获得目标控制场景的控制效果与时延数据之间的关联关系。
进一步的,在获得上述控制效果与时延数据之间的关联关系之后,还以对该关联关系进行显示,以使评估效果更佳直观。其中,评估模型输出的评估结果可以以任意形式进行显示,比如,可以通过图3所示的曲线图进行显示,图3中曲线a表示远程摇杆操控的控制效果与时延数据之间的关联关系,曲线b表示远程刹车控制中控制效果与时延数据之间的关联关系,当然图3仅为示例说明不是对本申请的唯一限定。
本实施例通过获取目标控制场景的时延数据,将时延数据输入预设的评估模型,通过该评估模型获得目标控制场景的控制效果的评估结果。由于采用了预设的评估模型来对目标控制场景的控制效果进行评估,而非采用用户主观评价的方式进行评估,因而能够提高远程控制效果的评估准确性。
图4为本申请实施例提供的一种获取评估模型的场景示意图,图4所示的场景中包括用户40、主控设备41、网络42、被控设备43、显示设备44、监测设备45和检测装置46。其中,检测装置46用于对网络42的时延进行配置,在检测装置46完成时延配置后,用户40通过主控设备41控制被控设备43,主控设备41将用户的操作转换成控制信号,并通过网络42将控制信号发送给被控设备43,被控设备43基于控制信号执行相应的操作,并将其被控的画面传输给显示设备44,显示设备44将接收到的画面显示给用户40,用户在看到被控设备43的被控画面后,对控制效果进行打分,并将该打分输入到检测装置46中,在用户40执行控制操作到看到显示设备44显示的被控画面的过程中,监测设备45对用户40的生理数据进行监测,并将监测获得的生理数据发送给检测设备46,其中,本实施例所涉及的生理数据至少包括但不局限于包括如下的一种或多种:瞳孔尺寸数据、心电数据、皮电数据。在此之后,检测设备重新对网络42的时延进行配置,并重新执行上述过程,如此反复,获得包括用户在不同时延条件下对远程控制操作的打分,以及用户在执行相应远程控制操作时的生理数据,即上述过程可示例性的表述为获取目标控制场景的控制样本数据,所述控制样本数据包括用户在不同时延条件下对远程控制操作的打分以及所述用户执行所述远程控制操作时的生理数据。
示例的,图5为本申请实施例提供的一种时延设置示意图,如图5所示,检测装置46对网络42进行n次的时延设置,分别为时延T 1-T n,用户40分别在T 1-T n的时延条件下执行远程控制操作,并将其在每个时延条件下进行的打分输入检测装置46,在此过程中监测设备45记录用户的生理数据,并将记录的生理数据发送给检测装置46,从而使得检测装置46根据接收到的打分和生理数据生成控制样本数据。其中,监测设备45记录用户生理数据的方式有多种:
在一种可能的方式中,监测设备45只在每个时延条件下记录用户40从开始执行远程控制到看到被控设备43的被控画面这一过程的生理数据。
在另一种可能的方式中,监测设备45从T 1的时延条件开始记录用户的生理数据直至到T n时延条件下的控制过程结束为止。在这种方式中检测装置46在接收到监测设备45发送的生理数据之后,需要将该些生理数据与用户执行远程控制操作的时间进行同步,从而获得每个时延条件下用户40从开始执行远程控制到看到被控设备43的被控画面这一过程的生理数据。即上述两种可能的方式可以示例性的表述为获取用户执行远程控制操作时的生理数据。
进一步的,在获取到用户在执行远程控制操作时的生理数据之后,本实施例还可以对该些生理数据进行预处理。比如,可以在各时延条件对应的生理数据中查找数据突变点,将突变点之后的生理数据认为是用户能够感知到时延时的生理数据,因此,保留突变点之后的生理数据,清除突变点之前的生理数据,获得如图6所示的生理数据段,以提升后续数据处理的效率,其中,图6中D1-Dn分别表示在T 1-T n的时延条件下采集获得的生理数据,其中矩形区域中黑色部分表示清除的生理数据,矩形区域中空白部分表示突变点之后的生理数据。
进一步的,在获得控制样本数据之后,检测装置26从控制样本数据中提取目标打 分以及目标打分对应的时延条件,其中,所述目标打分与用户在执行相应远程控制操作时的生理数据之间满足预设关系。
举例来说,假设监测设备45采集获得的生理数据为用户的瞳孔尺寸数据,则分别计算每个时延条件下对应的瞳孔尺寸数据的标准差,并结合预先设定的用户在平静时的瞳孔尺寸的标准差,计算每个时延条件下用户的瞳孔尺寸标准差相对于用户平静时瞳孔尺寸标准差的增幅,若所述多个时延条件下用户瞳孔尺寸标准差增幅的变化趋势与用户打分变化趋势之间成反比关系,则将该多个时延条件下的用户打分作为目标打分。
再假设,当监测设备45采集获得的生理数据为用户的皮电数据时,若用户在多个时延条件下的打分变化趋势与用户在所述多个时延条件下的皮电数据变化趋势成反比关系时,则将用户在该多个时延条件下的打分作为目标打分,或者当监测设备45采集获得的生理数据为用户的心电数据时,若用户在多个时延条件下的打分变化趋势与用户在所述多个时延条件下的心电数据变化趋势成正比关系时,则将用户在该多个时延条件下的打分作为目标打分。当然这里仅为示例说明而不是对本申请的唯一限定。
进一步的,在获得多个目标打分后,可以将该些目标打分以及各目标打分对应的时延条件代入预设模型中,训练获得的本申请实施例所涉及的评估模型。比如,在一种可能的设计中,可以将目标打分以及目标打分对应的时延条件代入体验衰减模型(Degradation MOS,简称DMOS)中,训练如下评估模型:
DMOS=a*x 4+b*x 3+c*x 2+d*x+e
其中,DMOS表示评估结果,a、b、c、d、e为常数,变量x表示时延。当然这里仅是以体验衰减模型为例进行的示例说明,而不是对本申请的唯一限定。
本实施例通过获取目标控制场景中用户在不同时延条件下对远程控制操作的打分以及用户在执行相应远程控制操作时的生理数据作为控制样本数据,从控制样本数据中提取与用户执行相应远程控制操作时的生理数据成预设关系的用户打分作为目标打分,根据目标打分以及目标打分对应的时延条件训练获得评估模型,从而基于该评估模型对远程控制场景的控制效果进行检测评估,就能得到准确的评估结果,避免用户主观评估不准确的问题。
图7为本申请实施例提供的一种远程控制效果的检测装置的结构示意图,如图7所示,检测装置装置70包括:
第一获取模块71,用于获取目标控制场景的时延数据;
评估模块72,用于将所述时延数据输入预设的评估模型,获得所述目标控制场景的控制效果评估结果。
在一种可能的设计中,所述时延数据包括所述目标控制场景的网络时延数据。
在一种可能的设计中,所述第一获取模块71,包括:
第一获取子模块,用于获取目标控制场景下的多个不同的网络时延数据;
所述评估模块,包括:
第一评估子模块,用于将所述多个不同的网络时延数据输入预设的评估模型,获得所述目标控制场景的控制效果与网络时延之间的关联关系。
在一种可能的设计中,装置70还可以包括:
显示模块,用于显示所述目标控制场景的控制效果与网络时延之间的关联关系。
本实施例提供的检测装置70能够用于执行图2实施例的技术方案其执行方式和有益效果类似在这里不再赘述。
图8为本申请实施例提供的一种远程控制效果的检测装置的结构示意图,如图8所示,在图7实施例的基础上,检测装置70还可以包括:
第二获取模块73,用于获取目标控制场景的控制样本数据,所述控制样本数据包括用户在不同时延条件下对远程控制操作的打分以及所述用户在执行所述远程控制操作时的生理数据;
提取模块74,用于从所述控制样本数据中提取目标打分以及所述目标打分对应的时延条件,所述目标打分与用户执行相应远程控制操作时的生理数据之间满足预设关系;
模型训练模块75,用于基于所述目标打分以及所述目标打分对应的时延条件,训练获得评估模型。
在一种可能的设计中,所述生理数据包括瞳孔尺寸数据。
在一种可能的设计中,所述目标打分的变化趋势与用户执行相应远程控制操作时的瞳孔尺寸数据的标准差的变化趋势之间成反比关系。
在一种可能的设计中,所述生理数据包括如下的至少一种:心电数据、皮电数据。
在一种可能的设计中,所述目标打分的变化趋势与用户执行相应远程控制操作时的生理数据的变化趋势之间符合预设的对应关系。
本实施例提供的检测装置能够用于执行图4实施例的技术方案其执行方式和有益效果类似在这里不再赘述。
图9为本申请实施例提供的一种检测设备的结构示意图,如图9所示,检测设备90包括:接口91和处理器92,所述接口91和处理器92耦合,所述处理器92可以用于执行上述图2或图4实施例的方法。其中,处理器92可以为网络设备或者终端设备,也可以为芯片,该处理器可以与存储介质集成在同一块芯片上,也可以与存储介质分设在不同的芯片上。
本实施例提供的检测设备能够用于执行图2或图4实施例的技术方案其执行方式和有益效果类似在这里不再赘述。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序包含至少一段代码,该至少一段代码可由计算机执行,以控制所述计算机执行上述图2或图4实施例的技术方案。
本申请实施例还提供一种计算机程序,当所述计算机程序被计算机执行时,用于执行上述图2或图4实施例的技术方案。该计算机程序可以全部或者部分存储在于处理器封装在一起的存储介质上,也可以部分或者全部存储在不与处理器封装在一起的 存储介质上。
本申请实施例还提供一种处理器,包括:
至少一个电路,用于通过接口获取目标控制场景的时延数据;
至少一个电路,用于将所述时延数据输入预设的评估模型,获得所述目标控制场景的控制效果评估结果。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述软件功能部分可以存储在存储单元中。所述存储单元包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的部分步骤。所述存储单元包括:一个或多个存储器,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM),电可擦写可编程只读存储器(EEPROM),等等。所述存储单元可以独立存在,也可以和处理器集成在一起。
本领域技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本领域普通技术人员可以理解:本文中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。
本领域普通技术人员可以理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用 计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种远程控制效果的检测方法,其特征在于,包括:
    获取目标控制场景的时延数据;
    将所述时延数据输入预设的评估模型,获得所述目标控制场景的控制效果评估结果。
  2. 根据权利要求1所述的方法,其特征在于,所述时延数据包括所述目标控制场景的网络时延数据。
  3. 根据权利要求2所述的方法,其特征在于,所述获取目标控制场景的时延数据,包括:
    获取目标控制场景下的多个不同的网络时延数据;
    所述将所述时延数据输入预设的评估模型,获得所述目标控制场景的控制效果评估结果,包括:
    将所述多个不同的网络时延数据输入预设的评估模型,获得所述目标控制场景的控制效果与网络时延之间的关联关系。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    显示所述目标控制场景的控制效果与网络时延之间的关联关系。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,所述获取目标控制场景的时延数据之前,所述方法还包括:
    获取目标控制场景的控制样本数据,所述控制样本数据包括用户在不同时延条件下对远程控制操作的打分以及所述用户执行所述远程控制操作时的生理数据;
    从所述控制样本数据中提取目标打分以及所述目标打分对应的时延条件,所述目标打分与用户在执行相应远程控制操作时的生理数据之间满足预设关系;
    基于所述目标打分以及所述目标打分对应的时延条件,训练获得评估模型。
  6. 根据权利要求5所述的方法,其特征在于,所述生理数据包括瞳孔尺寸数据。
  7. 根据权利要求6所述的方法,其特征在于,所述目标打分的变化趋势与用户执行相应远程控制操作时的瞳孔尺寸数据的标准差的变化趋势之间成反比关系。
  8. 根据权利要求5所述的方法,其特征在于,所述生理数据包括如下的至少一种:心电数据、皮电数据。
  9. 根据权利要求8所述的方法,其特征在于,所述目标打分的变化趋势与用户执行相应远程控制操作时的生理数据的变化趋势之间符合预设的对应关系。
  10. 一种远程控制效果的检测装置,其特征在于,包括:
    第一获取模块,用于获取目标控制场景的时延数据;
    评估模块,用于将所述时延数据输入预设的评估模型,获得所述目标控制场景的控制效果评估结果。
  11. 根据权利要求10所述的装置,其特征在于,所述时延数据包括所述目标控制场景的网络时延数据。
  12. 根据权利要求11所述的装置,其特征在于,所述第一获取模块,包括:
    第一获取子模块,用于获取目标控制场景下的多个不同的网络时延数据;
    所述评估模块,包括:
    第一评估子模块,用于将所述多个不同的网络时延数据输入预设的评估模型,获得所述目标控制场景的控制效果与网络时延之间的关联关系。
  13. 根据权利要求12所述的装置,其特征在于,所述装置还包括:
    显示模块,用于显示所述目标控制场景的控制效果与网络时延之间的关联关系。
  14. 根据权利要求10-13中任一项所述的装置,其特征在于,所述装置还包括:
    第二获取模块,用于获取目标控制场景的控制样本数据,所述控制样本数据包括用户在不同时延条件下对远程控制操作的打分以及所述用户在执行所述远程控制操作时的生理数据;
    提取模块,用于从所述控制样本数据中提取目标打分以及所述目标打分对应的时延条件,所述目标打分与用户执行相应远程控制操作时的生理数据之间满足预设关系;
    模型训练模块,用于基于所述目标打分以及所述目标打分对应的时延条件,训练获得评估模型。
  15. 根据权利要求14所述的装置,其特征在于,所述生理数据包括瞳孔尺寸数据。
  16. 根据权利要求15所述的装置,其特征在于,所述目标打分的变化趋势与用户执行相应远程控制操作时的瞳孔尺寸数据的标准差的变化趋势之间成反比关系。
  17. 根据权利要求14所述的装置,其特征在于,所述生理数据包括如下的至少一种:心电数据、皮电数据。
  18. 根据权利要求17所述的装置,其特征在于,所述目标打分的变化趋势与用户执行相应远程控制操作时的生理数据的变化趋势之间符合预设的对应关系。
  19. 一种检测设备,其特征在于,包括:
    接口和处理器,所述接口和处理器耦合,所述处理器用于执行权利要求1-9中任一项所述的方法。
  20. 一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序包含至少一段代码,该至少一段代码可由计算机执行,以控制所述计算机执行权利要求1-9中任一项所述的方法。
PCT/CN2018/081445 2018-03-30 2018-03-30 远程控制效果的检测方法、装置、设备及存储介质 WO2019183957A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/081445 WO2019183957A1 (zh) 2018-03-30 2018-03-30 远程控制效果的检测方法、装置、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/081445 WO2019183957A1 (zh) 2018-03-30 2018-03-30 远程控制效果的检测方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2019183957A1 true WO2019183957A1 (zh) 2019-10-03

Family

ID=68059156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/081445 WO2019183957A1 (zh) 2018-03-30 2018-03-30 远程控制效果的检测方法、装置、设备及存储介质

Country Status (1)

Country Link
WO (1) WO2019183957A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112270436A (zh) * 2020-10-26 2021-01-26 北京明略昭辉科技有限公司 一种资源投放效果评估方法、装置及系统
CN114838949A (zh) * 2022-03-04 2022-08-02 湖北国际物流机场有限公司 一种机场自动驾驶引导车远程遥控驾驶测试方法和系统
CN116016524A (zh) * 2023-03-24 2023-04-25 湖南智芯微科技有限公司 一种应用于机动式指挥平台的数据处理方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103795593A (zh) * 2014-01-24 2014-05-14 武汉大学 一种飞船高速通信处理器上行链路的测试系统及方法
CN104392102A (zh) * 2014-01-08 2015-03-04 国家电网公司 一种继电保护设备在线监测指标自动提取和计算方法
CN104503375A (zh) * 2014-01-08 2015-04-08 国家电网公司 一种与时间相关的继电保护设备在线检测指标体系分析方法
CN105978751A (zh) * 2016-05-10 2016-09-28 中国航空无线电电子研究所 一种无人机地面控制站时延特性测试评估系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104392102A (zh) * 2014-01-08 2015-03-04 国家电网公司 一种继电保护设备在线监测指标自动提取和计算方法
CN104503375A (zh) * 2014-01-08 2015-04-08 国家电网公司 一种与时间相关的继电保护设备在线检测指标体系分析方法
CN103795593A (zh) * 2014-01-24 2014-05-14 武汉大学 一种飞船高速通信处理器上行链路的测试系统及方法
CN105978751A (zh) * 2016-05-10 2016-09-28 中国航空无线电电子研究所 一种无人机地面控制站时延特性测试评估系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112270436A (zh) * 2020-10-26 2021-01-26 北京明略昭辉科技有限公司 一种资源投放效果评估方法、装置及系统
CN114838949A (zh) * 2022-03-04 2022-08-02 湖北国际物流机场有限公司 一种机场自动驾驶引导车远程遥控驾驶测试方法和系统
CN114838949B (zh) * 2022-03-04 2024-02-20 湖北国际物流机场有限公司 一种机场自动驾驶引导车远程遥控驾驶测试方法和系统
CN116016524A (zh) * 2023-03-24 2023-04-25 湖南智芯微科技有限公司 一种应用于机动式指挥平台的数据处理方法及装置
CN116016524B (zh) * 2023-03-24 2023-07-07 湖南智芯微科技有限公司 一种应用于机动式指挥平台的数据处理方法及装置

Similar Documents

Publication Publication Date Title
JP6898968B2 (ja) 応答時間を確定するための方法及び装置
US11323446B2 (en) Information processing device, information processing method, and mapping server
CN107680684B (zh) 用于获取信息的方法及装置
WO2019183957A1 (zh) 远程控制效果的检测方法、装置、设备及存储介质
US20180300037A1 (en) Information processing device, information processing method, and program
CN111292859A (zh) 一种智能音箱设备及其家庭健康监护方法和装置
WO2019192118A1 (zh) 基于边缘计算的健康监测方法、装置、设备及存储介质
EP2884889A2 (en) Real-time physiological characteristic detection based on reflected components of light
CN108898079A (zh) 一种监控方法及装置、存储介质、拍摄终端
CN103927452B (zh) 一种远程健康监护系统、方法和装置
CN109726808B (zh) 神经网络训练方法和装置、存储介质及电子装置
CN104013401B (zh) 一种人体脑电信号与动作行为信号同步采集系统及方法
US20190150756A1 (en) Signal synchronization device, as well as stethoscope, auscultation information output system and symptom diagnosis system capable of signal synchronization
US9685075B2 (en) Data communication systems and methods and devices for data communication between electronic device with serial data output and client device with audio port
CN106411889A (zh) 一种分组运动的方法、终端和系统
US20190041975A1 (en) Mechanisms for chemical sense response in mixed reality
CN112925409A (zh) 信息处理装置以及计算机可读介质
US9916418B2 (en) Uploading measurement data of non-connected medical measuring devices
CN207587393U (zh) 医疗数据记录系统和医疗数据记录仪
WO2023076456A1 (en) Monitoring system and method for remote monitoring of physiological health
CN115376198A (zh) 视线方向估计方法、装置、电子设备、介质及程序产品
CA3083639C (en) Method and system for analyzing risk associated with respiratory sounds
US20210052166A1 (en) Synchronization of physiological data
US10765298B2 (en) Processor, management apparatus, and medical system
JP7457496B2 (ja) データ管理装置、データ管理方法およびデータ管理プログラム

Legal Events

Date Code Title Description
122 Ep: pct application non-entry in european phase

Ref document number: 18912068

Country of ref document: EP

Kind code of ref document: A1