WO2019180068A1 - Sensor and apparatus for determining at least one parameter of blood circulating in an extracorporeal blood circuit - Google Patents
Sensor and apparatus for determining at least one parameter of blood circulating in an extracorporeal blood circuit Download PDFInfo
- Publication number
- WO2019180068A1 WO2019180068A1 PCT/EP2019/056938 EP2019056938W WO2019180068A1 WO 2019180068 A1 WO2019180068 A1 WO 2019180068A1 EP 2019056938 W EP2019056938 W EP 2019056938W WO 2019180068 A1 WO2019180068 A1 WO 2019180068A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- blood
- conductivity
- previous
- sensor according
- extracorporeal
- Prior art date
Links
- 210000004369 blood Anatomy 0.000 title claims abstract description 447
- 239000008280 blood Substances 0.000 title claims abstract description 447
- 238000011282 treatment Methods 0.000 claims abstract description 183
- 239000011734 sodium Substances 0.000 claims abstract description 111
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims abstract description 56
- 229910052708 sodium Inorganic materials 0.000 claims abstract description 56
- 238000002360 preparation method Methods 0.000 claims abstract description 43
- 239000000385 dialysis solution Substances 0.000 claims description 63
- 239000007788 liquid Substances 0.000 claims description 55
- 239000000126 substance Substances 0.000 claims description 51
- 238000001914 filtration Methods 0.000 claims description 24
- 239000000835 fiber Substances 0.000 claims description 23
- 230000017531 blood circulation Effects 0.000 claims description 20
- 239000012528 membrane Substances 0.000 claims description 15
- 239000000203 mixture Substances 0.000 claims description 15
- 238000010168 coupling process Methods 0.000 claims description 13
- 238000005859 coupling reaction Methods 0.000 claims description 13
- 230000008878 coupling Effects 0.000 claims description 12
- 230000003321 amplification Effects 0.000 claims description 10
- 238000009792 diffusion process Methods 0.000 claims description 10
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 10
- 102000001554 Hemoglobins Human genes 0.000 claims description 8
- 108010054147 Hemoglobins Proteins 0.000 claims description 8
- 230000005670 electromagnetic radiation Effects 0.000 claims description 8
- 230000008859 change Effects 0.000 claims description 7
- 238000005303 weighing Methods 0.000 claims description 4
- 238000002604 ultrasonography Methods 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 83
- 230000008569 process Effects 0.000 abstract description 62
- 230000002730 additional effect Effects 0.000 abstract 1
- 239000012530 fluid Substances 0.000 description 43
- 210000002381 plasma Anatomy 0.000 description 34
- 238000005259 measurement Methods 0.000 description 31
- 238000000108 ultra-filtration Methods 0.000 description 27
- 239000003792 electrolyte Substances 0.000 description 22
- 238000001631 haemodialysis Methods 0.000 description 22
- 230000000322 hemodialysis Effects 0.000 description 22
- 230000036514 plasma sodium concentration Effects 0.000 description 21
- 230000003287 optical effect Effects 0.000 description 20
- 239000011159 matrix material Substances 0.000 description 17
- 238000000502 dialysis Methods 0.000 description 15
- 230000000694 effects Effects 0.000 description 15
- 230000006870 function Effects 0.000 description 15
- 239000003978 infusion fluid Substances 0.000 description 13
- 239000013598 vector Substances 0.000 description 12
- 238000001802 infusion Methods 0.000 description 11
- 239000000523 sample Substances 0.000 description 11
- 238000013459 approach Methods 0.000 description 10
- 230000004044 response Effects 0.000 description 9
- 238000010790 dilution Methods 0.000 description 8
- 239000012895 dilution Substances 0.000 description 8
- 238000005534 hematocrit Methods 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 210000004027 cell Anatomy 0.000 description 7
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 6
- 239000004202 carbamide Substances 0.000 description 6
- 238000012937 correction Methods 0.000 description 6
- 210000003743 erythrocyte Anatomy 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 238000002835 absorbance Methods 0.000 description 5
- 230000000875 corresponding effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 229920003023 plastic Polymers 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 230000004075 alteration Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 238000013528 artificial neural network Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000012141 concentrate Substances 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000002615 hemofiltration Methods 0.000 description 3
- 230000015654 memory Effects 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 230000002572 peristaltic effect Effects 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 241000283690 Bos taurus Species 0.000 description 2
- 206010018873 Haemoconcentration Diseases 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- DDRJAANPRJIHGJ-UHFFFAOYSA-N creatinine Chemical compound CN1CC(=O)NC1=N DDRJAANPRJIHGJ-UHFFFAOYSA-N 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000004868 gas analysis Methods 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000002792 vascular Effects 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 102100025674 Angiopoietin-related protein 4 Human genes 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 101000798882 Homo sapiens Actin-like protein 6A Proteins 0.000 description 1
- 101000693076 Homo sapiens Angiopoietin-related protein 4 Proteins 0.000 description 1
- 241001065350 Lundia Species 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 208000001647 Renal Insufficiency Diseases 0.000 description 1
- 206010061481 Renal injury Diseases 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 208000007502 anemia Diseases 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 210000000476 body water Anatomy 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 229940109239 creatinine Drugs 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 229940021013 electrolyte solution Drugs 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 230000003116 impacting effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 201000006370 kidney failure Diseases 0.000 description 1
- 208000037806 kidney injury Diseases 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012314 multivariate regression analysis Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 238000006213 oxygenation reaction Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000003094 perturbing effect Effects 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 238000002616 plasmapheresis Methods 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 239000002441 uremic toxin Substances 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 230000036642 wellbeing Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/14535—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring haematocrit
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/026—Measuring blood flow
- A61B5/0261—Measuring blood flow using optical means, e.g. infrared light
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0071—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by measuring fluorescence emission
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0075—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/1455—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6846—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
- A61B5/6847—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
- A61B5/6866—Extracorporeal blood circuits, e.g. dialysis circuits
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/14—Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
- A61M1/16—Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
- A61M1/1601—Control or regulation
- A61M1/1603—Regulation parameters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/14—Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
- A61M1/16—Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
- A61M1/1601—Control or regulation
- A61M1/1619—Sampled collection of used dialysate, i.e. obviating the need for recovery of whole dialysate quantity for post-dialysis analysis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/36—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
- A61M1/3601—Extra-corporeal circuits in which the blood fluid passes more than once through the treatment unit
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/36—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
- A61M1/3607—Regulation parameters
- A61M1/3609—Physical characteristics of the blood, e.g. haematocrit, urea
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/36—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
- A61M1/3607—Regulation parameters
- A61M1/3609—Physical characteristics of the blood, e.g. haematocrit, urea
- A61M1/3612—Physical characteristics of the blood, e.g. haematocrit, urea after treatment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/36—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
- A61M1/3621—Extra-corporeal blood circuits
- A61M1/3669—Electrical impedance measurement of body fluids; transducers specially adapted therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/04—Arrangements of multiple sensors of the same type
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/14—Coupling media or elements to improve sensor contact with skin or tissue
- A61B2562/146—Coupling media or elements to improve sensor contact with skin or tissue for optical coupling
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/16—Details of sensor housings or probes; Details of structural supports for sensors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/16—Details of sensor housings or probes; Details of structural supports for sensors
- A61B2562/164—Details of sensor housings or probes; Details of structural supports for sensors the sensor is mounted in or on a conformable substrate or carrier
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/16—Details of sensor housings or probes; Details of structural supports for sensors
- A61B2562/166—Details of sensor housings or probes; Details of structural supports for sensors the sensor is mounted on a specially adapted printed circuit board
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/22—Arrangements of medical sensors with cables or leads; Connectors or couplings specifically adapted for medical sensors
- A61B2562/225—Connectors or couplings
- A61B2562/228—Sensors with optical connectors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/14—Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
- A61M1/16—Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
- A61M1/1601—Control or regulation
- A61M1/1603—Regulation parameters
- A61M1/1605—Physical characteristics of the dialysate fluid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/14—Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
- A61M1/16—Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
- A61M1/1601—Control or regulation
- A61M1/1613—Profiling or modelling of patient or predicted treatment evolution or outcome
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/33—Controlling, regulating or measuring
- A61M2205/3306—Optical measuring means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/33—Controlling, regulating or measuring
- A61M2205/3331—Pressure; Flow
- A61M2205/3334—Measuring or controlling the flow rate
Definitions
- the invention relates to an apparatus, to a sensor and to a process for determining at least one parameter of blood circulating in an extracorporeal blood circuit.
- the apparatus, the sensor and process of the invention may serve for the non-invasive measure of the relative blood volume variation (ARBV) and in more detail the percentage relative blood volume variation (ARBV%) and/or the blood or plasma sodium concentration (Na pi ) and/or the conductivity of plasma or blood circulating in an extracorporeal circuit.
- the invention is directed the on-line measure of a blood parameter during an extracorporeal blood treatment or during extracorporeal plasma processing (e.g., hemodialysis, hemofiltration, hemodiafiltration, plasmapheresis etc.) .
- the invention also relates to an apparatus and to a method for determining - based on the measure of the parameter of blood or plasma - a parameter indicative of the progress of an extracorporeal blood treatment, in particular a purification treatment, whose purpose is to alleviate renal insufficiency, such as hemodialysis or hemodiafiltration .
- the apparatus, sensor and process of the invention may be applied to any extracorporeal blood or plasma processing, by way of example we will herein mainly refer to treatments such as hemodialysis or hemofiltration or hemodiafiltration .
- Hemodialysis is a therapy employed for treating patients with chronic kidney injury, usually performed 3-4 times a week and lasting 3-5 hours.
- the treatment has three main goals of which the first is to remove excess body water accumulated between sessions, achieved by ultrafiltration (UF) .
- the second goal is to remove uremic toxins, also accumulated between sessions.
- the third goal is to restore the proper balance of electrolytes in the blood.
- hemodialysis In an hemodialysis treatment a patient's blood and a treatment liquid approximately isotonic with blood flow are circulated in a respective compartment of hemodialyzer, so that, impurities and undesired substances present in the blood (urea, creatinine, etc.) may migrate by diffusive transfer from the blood into the treatment liquid.
- the ion concentration of the treatment liquid is chosen such as to correct the ion concentration of the patient's blood.
- hemodialysis is based on the two phenomena of diffusion and convection, with which mass transfer of water and solutes across the membrane of the hemodialysis filter (hemodialyzer ) is achieved.
- the hemodialyzer is a cylindrical bundle of hollow fibers designed to maximize the exchange surface area. Inside, blood and dialysis fluid (dialysate) flow in counter-current on opposite sides of the membrane .
- a convective transfer by ultrafiltration takes place across the semipermeable membrane of a hemofilter.
- a convective transfer by ultrafiltration resulting from a positive pressure difference created between the blood side and the treatment-liquid side of the semi-permeable membrane, is added to the diffusive transfer obtained by dialysis.
- the conductivity of the extracorporeal blood or plasma the blood volume variation, e.g. the relative blood volume loss, during a treatment session,
- the dialysis dose administered after a treatment time t which, according to the work of Sargent and Gotch, may be linked to the dimensionless ratio Kt/V, where K is the actual clearance in the case of urea, t the elapsed treatment time and V the volume of distribution of urea, i.e. the total volume of water in the patient (Gotch F. A. and Sargent S. A., "A mechanistic analysis of the National Cooperative Dialysis Study (NCDS)", Kidney Int. 1985, Vol . 28, pp . 526-34),
- the treatment may allow to follow progress of the treatment, and thus may help to assess the suitability of initially fixed treatment conditions or to establish whether the treatment unit is adequately performing or to assess presence of access recirculation.
- ARBV blood volume variation
- D dialysance
- OPI plasmatic electrical conductivity
- blood conductivity or blood electrolyte concentration may be measured by imposing periodic changes in the concentration of a given substance or in the conductivity of the dialysis liquid at the inlet of the blood treatment unit (filter or hemodialyzer) and by measuring the corresponding effect in term of concentration for the same substance or conductivity change in the spent dialysate.
- the following patent references disclose methods for the in vivo determination of blood conductivity, blood concentration for a given substance, dialysance and other parameters perturbing the fresh dialysis liquid and taking measures of concentration/conductivity on the dialysate side of the apparatus: EP 0547025, EP 0658352, EP 0920877, US 2001004523, EP 2687248, US 6187199, US 5100554.
- the problem with this second type of approach is that there is a need to perturb the composition of the fresh dialysis liquid, in order to then determine - with more or less complex calculations - the sought parameter, e.g., sodium concentration in blood and/or sodium dialysance.
- concentration/ conductivity in the liquid downstream the dialyzer may be difficult to be measured with high accuracy.
- the hydraulic delay, the damping effect caused by the dialyzer, and the noise introduced by the machine and its components may require to appropriately elaborate the signals detected by the sensors.
- all above methods require calculations which may be relatively complex to then arrive at the determination of blood sodium concentration or blood conductivity.
- US8525533 uses a conductivity sensor applied to the spent dialysate line and capable of determining conductivity of the used dialysis liquid.
- the conductivity sensor requires four electrodes, namely two ring-shaped excitation electrodes and two ring shaped pick-up electrodes. As the sensor is applied to the dialysate line, in order to determine a blood parameter it would be necessary to adopt one of the methods disclosed above with the drawbacks that have been just described.
- ARBV relative blood volume variation
- online measurement of this specific blood parameter generally uses an optical approach.
- Optical ARBV estimation is based on the absorbance of hemoglobin (Hgb) , which is almost completely contained inside the red blood cells.
- Hgb hemoglobin
- a LED and a photodiode are used to detect absorbance changes linked to variations in red blood cell concentration.
- the number of red blood cells is nearly constant during treatment, so hemoconcentration is mainly caused by a water removal due to UF that is larger than the plasma refilling rate .
- Other devices for measuring relative blood volume loss makes use of a reflectance sensor to measure light reflected by blood.
- the illuminating LED and the optical sensor are placed on the same side of the cuvette, at a certain distance.
- Ultrasound sensors are also used to measure RBV loss as a function of total protein concentration.
- an optical system with multiple LEDs for measurements at different wavelengths is also used for estimation of oxygen saturation and for calibration purposes.
- optical sensors for blood applications are diffused, but most implementation use just one measurement channel. When multiple channels are used, it is mostly to detect light at different wavelengths for purposes like estimation of oxygen saturation or additional calibration (for example, to compensate for the effect of temperature) .
- ARBV estimation by optical sensors is afflicted by a cross-sensitivity to changes in concentration of electrolytes. Drastic changes in dialysate sodium concentration can lead to under- or overestimation of ARBV. Such changes can be explained by considering the action of osmolarity on red blood cell volume. Sodium, being one of the highest-concentrated solutes in both dialysate and plasma, is a main driver of osmolarity.
- Dialysate sodium variations propagate to plasma due to diffusion across the hemodialyzer membrane. Consequently, a water shift takes place across the membrane of red blood cells to balance inner and outer osmolarity, thereby changing their volume. This volume variation alters local Hgb concentration and leads to a modification of the absorbance and scattering properties of blood.
- the influence of osmolarity on ARBV estimation is still an important issue to deal with because in certain treatments the physician may set a blood volume variation target to be reached at the end of the treatment and the ARBV estimate can be used as feedback to control the UF in order to reach the target.
- the measuring system is a modification of the device measuring only light transmitted through blood at 180° from the illuminating infrared LED by adding a sensor with a 90° additional channel.
- the additional channel has mainly calibrations and/or correction purposes.
- the prior art computing unit is arranged to calculate a ratio signal by dividing the scattered light signal provided by a scattered light diode and the transmitted light signal provided by a transmitted light diode to provide an optical ratio signal.
- the ratio between the perpendicular scattered signal and the transmitted signal is essentially proportional to the red cell concentration, i.e. there is a linear relationship between the ratio signal and the red cell concentration.
- the ratio signal has, moreover, merely a small dependency on oxygen saturation level, osmolarity and blood flow rate.
- an object of the present invention to provide an apparatus, a sensor and a process able to reliably determine at least one parameter, such as the blood volume variation (ARBV) and/or the blood or plasma sodium concentration (Na pi ) and/or the plasma or blood conductivity (OPI) , of blood or plasma circulating in the extracorporeal blood circuit.
- ARBV blood volume variation
- Na pi blood or plasma sodium concentration
- OPI plasma or blood conductivity
- Another aim is to develop an apparatus and a method for accurate estimation of blood concentration and osmolarity during, e.g. a hemodialysis treatment, particularly represented by ARBV and Na pi , which are considered to be a simple, yet highly descriptive set of physiological parameters .
- Another auxiliary object is an apparatus capable of operating in a safe manner.
- a further auxiliary object is an apparatus and process allowing - based on the determination of the one or more blood or plasma parameters - calculate a parameter indicative of the effectiveness of the treatment, such as dialysance and/or dialysis dose.
- At least one of the above objects is substantially reached by an apparatus and/or by a sensor and/or by a process according to one or more of the appended claims .
- a 1 st aspect concerns a non-invasive sensor (50) , in particular a blood volume sensor, for determining at least one property and/or one (auxiliary) parameter of blood flowing in an extracorporeal segment (61), e.g. a tube segment, of an extracorporeal blood treatment apparatus comprising:
- a plurality of detectors (57) for receiving the signal emitted by said source (53) after at least partially passing through the blood flowing in the segment (61) and emitting respective output signals related to the received signal
- controller (65) configured for receiving the respective output signals from the plurality of detectors (57) and for determining a value of said property of blood and/or parameter based on the output signals, in particular wherein said property of blood is blood volume variation or hemoglobin concentration or a parameter directly related to blood volume variation or hemoglobin concentration.
- the extracorporeal segment (61) is referred to as a tube segment, in a non-limiting way. Each time tube segment is mentioned it is intended that also extracorporeal segment is alternatively mentioned and may be substituted to the more limiting term .
- the controller (65) is further configured to determine a value of an (auxiliary) blood parameter, said auxiliary parameter being chosen in the group including plasma conductivity (o pi ) , a plasma conductivity-related parameter, concentration of at least one substance in the blood (Na pi ) , e.g. sodium, and a concentration-related parameter of at least one substance in the blood.
- auxiliary parameter being chosen in the group including plasma conductivity (o pi ) , a plasma conductivity-related parameter, concentration of at least one substance in the blood (Na pi ) , e.g. sodium, and a concentration-related parameter of at least one substance in the blood.
- the controller (65) is further configured to determine a value of the property of blood based on the output signals from the plurality of detectors (57) .
- the controller (65) is configured to determine a time variation of said auxiliary blood parameter based on the output signals.
- the controller (65) is configured to determine a time variation of said property of blood based on the output signals.
- the controller (65) is configured to receive values for a sodium concentration (Nai n ) of an inlet dialysis fluid flowing in a preparation line (19) of the extracorporeal blood treatment apparatus (1), the controller (65) being configured to determine the value of said auxiliary blood parameter based on the inlet dialysis fluid sodium concentration (Nai n ) ⁇
- the controller (65) is configured to receive values for a sodium concentration (Nain) of an inlet dialysis fluid flowing in a preparation line (19) of the extracorporeal blood treatment apparatus (1), the controller (65) being configured to determine the value of said property of blood based on the inlet dialysis fluid sodium concentration (Nai n ) .
- the controller (65) is configured to receive values for a conductivity (Oi n ) of an inlet dialysis fluid flowing in a preparation line (19) of the extracorporeal blood treatment apparatus (1), the controller (65) being configured to determine the value of said auxiliary blood parameter based on the inlet dialysis fluid conductivity (qi h ) .
- the controller (65) is configured to receive values for a conductivity (Oi n ) of an inlet dialysis fluid flowing in a preparation line (19) of the extracorporeal blood treatment apparatus (1), the controller (65) being configured to determine the value of said property of blood based on the inlet dialysis fluid conductivity (qi h ) .
- the controller (65) is configured to receive measured values for the inlet dialysis fluid conductivity (oi n ) .
- the controller (65) is configured to receive set values for the inlet dialysis fluid conductivity (oi n ) .
- the controller (65) is configured to receive measured values for the inlet dialysis fluid sodium concentration (Nain) ⁇
- the controller (65) is configured to receive set values for the inlet dialysis fluid sodium concentration (Nai n ) ⁇
- the controller (65) is configured to receive values for a conductivity ( O out ) of an outlet dialysis fluid flowing in a spent dialysate line (13) of the extracorporeal blood treatment apparatus (1), the controller (65) being configured to determine the value of said auxiliary blood parameter based on the outlet dialysis fluid conductivity (o out ) ⁇
- the controller (65) is configured to receive values for a conductivity ( O out ) of an outlet dialysis fluid flowing in a spent dialysate line (13) of the extracorporeal blood treatment apparatus (1), the controller (65) being configured to determine the value of said property of blood based on the outlet dialysis fluid conductivity
- the controller (65) is configured to receive measured values for the outlet dialysis fluid conductivity (o out ) .
- the controller (65) is configured for using a state-space mathematical modeling for determining said property of blood and/or said auxiliary blood parameter, wherein the state-space mathematical modeling includes the following equations:
- ARBV(t ) 0
- the diffusion time ( T Diff) is equal to: _ V B (t
- the diffusion time ( m/f) is approximate to a constant time, included between, e.g. 1000 and 1200 s.
- the controller (65) is configured to determine both said property of blood and an auxiliary blood parameter based on the output signals from the plurality of detectors (57) using a mathematical equation linearly combining values of the property of blood, of the auxiliary blood parameter and of the output signals.
- the controller (65) is configured to determine both said property of blood and an auxiliary blood parameter based on the output signals from the plurality of detectors (57) using the following mathematical equation :
- the controller (65) is configured for using a state-space mathematical modeling for determining said property of blood and/or said auxiliary blood parameter, wherein in a by-pass condition of the extracorporeal blood treatment apparatus where the inlet dialysis fluid is not routed into, and by-passes, a filtration unit, the state-space mathematical modeling includes the following equations:
- the controller (65) is configured for determining the auxiliary blood parameter also based on an outlet dialysis fluid conductivity (o out ) modeled as an average, in particular a weighted average, of an inlet dialysis fluid conductivity (oi n ) and of a plasma conductivity (o pi ) , wherein the outlet dialysis fluid conductivity (o ou t) is the conductivity of a dialysis fluid flowing in a spent dialysate line (13) of the extracorporeal blood treatment apparatus, the inlet dialysis fluid conductivity (oi n ) is the conductivity of a dialysis fluid flowing in a preparation line (19) of the extracorporeal blood treatment apparatus and the plasma conductivity (o pi ) being the conductivity of the blood flowing in the tube segment (61) .
- the outlet dialysis fluid conductivity (o ou t) is the conductivity of a dialysis fluid flowing in a spent dialysate line (13) of the extracorporeal blood treatment apparatus
- the controller (65) is configured for determining the auxiliary blood parameter also based on the following mathematical relationship:
- the weighing coefficient ⁇ G Mix is proportional, and in particular equal, to:
- the weighing coefficient (G M , c) is a constant, e.g. included between 0 , 4 and 0,6.
- the delay time (r Deiay) to account for the propagation time of changes in the inlet dialysate composition across the hydraulic circuit is a constant, e.g. included between 100 s and 200 s.
- the controller (65) is configured for determining the auxiliary blood parameter also based on a plasma conductivity (o pi) , being the conductivity of the blood flowing in the tube segment (61) .
- the controller (65) is configured for determining the auxiliary blood parameter also based on the following mathematical relationship:
- the controller (65) is configured for using a Kalman filter for determining said property of blood and/or said auxiliary blood parameter .
- the controller (65) is configured for using a Kalman filter for determining said property of blood and/or said auxiliary blood parameter, the Kalman filter including a prediction step based on the following equations:
- equations (14) and (15) are given as a function of the generic time step k, e.g. 1 s;
- X k being a [2x1] vector which includes inlet dialysate sodium concentration at time step k at the inlet of the filtration unit (Nai n fk]) and inlet dialysis fluid conductivity at time step k (oi n [k])
- X k and X k being [2x1] vectors containing respectively predicted and corrected values of the auxiliary blood parameter, in particular plasma sodium concentration (Na pi [k]), and the property of blood, namely relative blood volume variation at time step k (ARBV[k]), plasma sodium concentration and relative blood volume variation being the state variables;
- X being the predicted system state at step k, and being a function of Xk-i + and 3 ⁇ 4;
- A being a [2x2] Jacobian matrix linearization of function f( ⁇ , ⁇ ) with respect to relative blood volume variation (ARBV) and plasma sodium concentration (Na pi ) .
- P k and k are the predicted and corrected [2x2] estimation covariance matrices, respectively computed at each step k , according to equations (15) and (18) .
- function f( ⁇ , ⁇ ) is defined by a discretized versions of equations according to aspect 17 in treatment mode.
- function f ( ⁇ , ⁇ ) is defined by a discretized versions of equations according to aspect 22 in by-pass mode.
- ARBV[k] ARBV[k - 1]
- the Kalman filter includes a measurement-based correction step based on the following equations :
- E k being [2x5] error gain matrix computed according to equation (16) ;
- R being a [5x5] covariance diagonal matrix, in particular the diagonal values of R, associated with optical measurements, are set equal to a root-mean-square fitting residuals of equation (9) :
- the diagonal value of R associated with outlet dialysis conductivity is a deviation of dialysance ( D ) from an average value of e.g. 250 ml /min;
- Z k is a [5x1] observation column vector of measured output, composed of the signal outputs ( ARPi [k ] to ARP4 [k] ) and outlet conductivity ( aout [k] ) ;
- g(x k ⁇ , k ) is a [5x1] column vector of predicted output calculated according to state-output function g( ⁇ , ⁇ ).
- the function g (' ⁇ , / is determined by time-discrete equations (22), (23) and (24), given by:
- H is the [5x2] Jacobian linearization matrix of function g(,J in respect to relative blood volume variation ( ARBV) and plasma sodium concentration (Na pi ) .
- a non-invasive sensor (50), in particular a blood volume sensor, is provided for determining at least one property of blood and/or one auxiliary blood parameter flowing in an extracorporeal segment (61), e.g. a tube segment, of an extracorporeal blood treatment apparatus comprising:
- a plurality of detectors (57) for receiving the signal emitted by said source (53) after at least partially passing through the blood flowing in the segment (61) and emitting respective output signals related to the received signal .
- At least one detector includes a photodiode receiver.
- the source includes an electromagnetic radiation source or an ultrasound source .
- the source includes a light source, in particular a LED source.
- the source includes a multiple wavelength LED emitter including multiple LEDs, e.g. 5 LEDs, on a same chip with pick wavelengths in the red and infrared bands.
- an illuminating peak wavelength of the source is comprised between 790 and 820 nm, in particular between 800 and 810 nm.
- the source includes a fiber optic having one end coupled with the signal emitter and the other end placed to direct the emitted signal towards the blood along the emission axis.
- said detectors are placed at different angular degrees with respect to the emission axis.
- said detectors substantially contemporaneously receives the same signal emitted by the source after transmission and/or reflection and/or scattering through the blood flowing in the tube segment.
- said detectors collect reflected signal, scattered signal and/or transmitted signal depending on their respective position.
- said detectors collect reflected electromagnetic radiation, scattered electromagnetic radiation and/or transmitted electromagnetic radiation depending on their respective position.
- At least one detector is placed at about 180° with respect to the emission axis of the source and/or at least another detector is placed at about 45° with respect to the emission axis of the source.
- At least one detector is placed at about 90° with respect to the emission axis of the source and/or at least another detector is placed at about 0° with respect to the emission axis of the source.
- the senor includes four different detectors for receiving the electromagnetic radiation from the source, one first detector being placed at about 180° with respect to the emission axis of the source, one second detector being placed at about 90° with respect to the emission axis of the source, one third detector being placed at about 45° with respect to the emission axis of the source, one fourth detector being placed at about 0° with respect to the emission axis of the source.
- the detectors are configured to receive the signal emitted by the source radially along the normal section of the blood flow in the tube of the extracorporeal blood treatment apparatus .
- the senor further comprises a housing having one portion which is substantially counter-shaped to the tube of the extracorporeal blood treatment apparatus, each detector including a respective end placed at the counter-shaped portion facing the tube in a coupling condition of the hosing with the tube, in particular the signal emitter including an end placed at the counter-shaped portion facing the tube in a coupling condition of the hosing with the tube.
- the senor further comprises a housing made of two or more pieces defining a through passage, the housing being configured to be coupled to the tube of the extracorporeal blood treatment apparatus, in particular to completely house a segment of the tube inside the through passage.
- the through passage is counter-shaped to the outer shape of the tube segment of the extracorporeal blood treatment apparatus where blood is to flow.
- the housing is configured for tight coupling with the outer surface of the tube segment.
- the source includes a fiber optic having one end coupled with the signal emitter and the other end fixed to a housing having one portion which is substantially counter-shaped to the tube of the extracorporeal blood treatment apparatus, the other end of the fiber optic being placed at the counter-shaped portion and facing the tube in a coupling condition of the housing with the tube.
- At least one detector includes a fiber optic, one end being placed in correspondence of the tube, the other end being coupled to a receiver, in detail a photodiode receiver.
- the end of the fiber optic in correspondence of the tube is fixed to a housing having one portion which is substantially counter-shaped to the tube of the extracorporeal blood treatment apparatus, the end of the fiber optic being placed at the counter-shaped portion and facing the tube in a coupling condition of the housing with the tube segment.
- the senor includes a printed circuit board with circuitry for transimpedance amplification, wherein the detectors include respective photodiode receivers connected to the printed circuit board, the circuitry for transimpedance amplification being a current-to-voltage converter and amplifying a current output of the detectors .
- the printed circuit board include a lowpass filtering for filtering the signals exiting the circuitry for transimpedance amplification, in particular the cutoff frequency of the lowpass filter being about 30 Hz.
- the senor includes a shielding case to prevent electromagnetic interference, the shielding case enclosing at least the printed circuit board with circuitry for transimpedance amplification and the lowpass filtering.
- an apparatus for extracorporeal blood treatment comprising: a holder (71, 7, 73) of an extracorporeal blood circuit (60) of the type including a treatment unit (2), a withdrawal line 6) connected to an inlet of the treatment unit (2), and a return line (7) connected to an outlet of the same treatment unit (2), the extracorporeal blood circuit (60) comprising an extracorporeal segment (61), such as a tube segment; a control unit (10) for driving the extracorporeal blood treatment apparatus; and at least one non-invasive sensor (50) according to any one of the preceding aspects.
- the controller (65) of the non-invasive sensor (50) is part of the control unit (10) .
- the controller (65) of the non-invasive sensor (50) is separate from the control unit (10) .
- the apparatus comprises the extracorporeal blood circuit
- said tube segment (61) is a tubular segment (61) of the blood withdrawal line or of the blood return line and wherein - when the sensor (50) is in an operative condition is configured to be positioned about and in contact with an external surface of said segment (61) of the extracorporeal blood circuit .
- a housing (51) of the sensor (50) comprises: a first housing part (51a) carrying respective detector ends, and a second housing part (51b) ; wherein the first housing part (51a) and the second housing part (51b) are relatively movable the one relative to the other between a loading condition of said sensor (50), at which the housing (51) is open and said tube segment (61) may be inserted into the housing, and an operative condition of the sensor (50), at which the housing forms a longitudinal seat matching the shape of the outer surface of said tube segment (61), and wherein - in correspondence of said operative condition - the detector ends face, and in particular contact, the tube segment (61) being radially directed towards the tube segment development axis; optionally wherein the first housing part (51a) is pivotally coupled to the second housing part (51b) .
- the apparatus comprises: the extracorporeal circuit (60) with said treatment unit (2) being of the type having a semi-permeable membrane (5) separating a secondary chamber (4) from a primary chamber of the same treatment unit (2);
- a preparation line (19) having one end configured for being connected to an inlet of a secondary chamber (4) of said treatment unit (2);
- a spent dialysate line (13) having one end configured for being connected to an outlet of said secondary chamber (4);
- control unit (10) is configured for commanding execution of the following steps:
- the apparatus comprises:
- the extracorporeal circuit (60) with said treatment unit (2) being of the type having a semi-permeable membrane (5) separating a secondary chamber (4) from a primary chamber of the same treatment unit (2);
- a preparation line (19) having one end configured for being connected to an inlet of a secondary chamber (4) of said treatment unit (2);
- a spent dialysate line (13) having one end configured for being connected to an outlet of said secondary chamber (4);
- the apparatus comprises at least two of said non-invasive sensors (50) such that a first tube segment (61) of the blood withdrawal line is received by a housing (51) of a first of said two sensors (50) and a second tube segment (61) of the blood return line is received by a housing (51) of a second of said two sensors, and wherein the control unit is connected to each sensor (50) and configured for:
- the step of causing a fresh treatment liquid to flow in the preparation line (19) comprises the sub-step of maintaining - at least for a time interval (T) during which the measurements of conductivity or concentration used for the purpose of said computation of at least one value of a parameter (D, K-t) indicative of the effectiveness of the extracorporeal blood treatment take place - the concentration of the substance (Nai n) or the conductivity (oi n) in the fresh treatment liquid constant at a set value which is used for computing the at least one value of a parameter (D, K-t) indicative of the effectiveness of the extracorporeal blood treatment, and
- the control unit is configured to keep constant the flow rate (Qdi n) of fresh treatment liquid in the preparation line (19), the flow rate (Qb) of patient's blood in the extracorporeal blood circuit, and the flow rate (Q F ) of ultrafiltration flow through the semipermeable membrane.
- the parameter (D, K-t) indicative of the effectiveness of the extracorporeal blood treatment is dialysance (D) for said substance which is calculated using the one of the following formulas:
- the apparatus comprises an on line fluid preparation section (100) connectable to the extracorporeal blood circuit (60) and configured for preparing priming fluid.
- the apparatus comprises said treatment unit (2), wherein:
- the preparation line (19) has one end connected to an inlet of the secondary chamber (4) of the treatment unit (2),
- the spent dialysate line (13) has one end connected to the outlet of said secondary chamber (4),
- a blood withdrawal line (6) is connected at an inlet of the primary chamber (3) and
- a blood return line (7) is connected at an outlet of the primary chamber (3) .
- a process for determining at least one property of blood and/or an auxiliary parameter of blood flowing in an extracorporeal segment (61), e.g. a tube segment, of an extracorporeal blood treatment apparatus wherein a non- invasive sensor (50), in particular a blood volume sensor, comprises:
- a plurality of detectors (57) for receiving the signal emitted by said source (53) after at least partially passing through the blood flowing in the segment (61) and emitting respective output signals related to the received signal
- said property of blood includes blood volume variation or hemoglobin concentration or a parameter directly related to blood volume variation or hemoglobin concentration.
- the process comprises determining a value of an auxiliary blood parameter, said auxiliary parameter is plasma conductivity (o pi ) , a plasma conductivity-related parameter, concentration of at least one substance in the blood (Na pi ) , e.g. sodium, and a concentration- related parameter of at least one substance in the blood.
- auxiliary parameter is plasma conductivity (o pi ) , a plasma conductivity-related parameter, concentration of at least one substance in the blood (Na pi ) , e.g. sodium, and a concentration- related parameter of at least one substance in the blood.
- the process comprises determining a value of the property of blood based on the output signals from the plurality of detectors (57) .
- the process comprises determining a time variation of said auxiliary blood parameter based on the output signals.
- the process comprises determining a time variation of said property of blood based on the output signals.
- the process comprises receiving values for a sodium concentration (Nai n ) of an inlet dialysis fluid flowing in a preparation line (19) of the extracorporeal blood treatment apparatus (1), and determining the value of said auxiliary blood parameter based on the inlet dialysis fluid sodium concentration (Nai n ) ⁇
- the process comprises receiving values for a sodium concentration (Nai n ) of an inlet dialysis fluid flowing in a preparation line (19) of the extracorporeal blood treatment apparatus (1), and determining the value of said property of blood based on the inlet dialysis fluid sodium concentration (Nain) ⁇
- the process comprises receiving values for a conductivity (Oi n ) of an inlet dialysis fluid flowing in a preparation line (19) of the extracorporeal blood treatment apparatus (1), and determining the value of said auxiliary blood parameter based on the inlet dialysis fluid conductivity (oi n ) .
- the process comprises receiving values for a conductivity (Oi n ) of an inlet dialysis fluid flowing in a preparation line (19) of the extracorporeal blood treatment apparatus (1), and determining the value of said property of blood based on the inlet dialysis fluid conductivity (qi h ) .
- the process comprises receiving values for a conductivity ( O out ) of an outlet dialysis fluid flowing in a spent dialysate line (13) of the extracorporeal blood treatment apparatus (1), and determining the value of said auxiliary blood parameter based on the outlet dialysis fluid conductivity (o out ) .
- the process comprises receiving values for a conductivity ( O out ) of an outlet dialysis fluid flowing in a spent dialysate line (13) of the extracorporeal blood treatment apparatus (1), and determining the value of said property of blood based on the outlet dialysis fluid conductivity (o out ) .
- the process comprises using a state-space mathematical modeling for determining said property of blood and/or said auxiliary blood parameter, wherein the state-space mathematical modeling includes the following equations:
- ARBV (t) 0
- the process comprises determining both said property of blood and an auxiliary blood parameter based on the output signals from the plurality of detectors (57) using a mathematical equation linearly combining values of the property of blood, of the auxiliary blood parameter and of the output signals.
- the process comprises determining both said property of blood and an auxiliary blood parameter based on the output signals from the plurality of detectors (57) using the following mathematical equation :
- the process comprises using a state-space mathematical modeling for determining said property of blood and/or said auxiliary blood parameter, wherein in a by-pass condition of the extracorporeal blood treatment apparatus where the inlet dialysis fluid is not routed into, and by-passes, a filtration unit, the state-space mathematical modeling includes the following equations:
- ARBV(t ) 0
- the process comprises determining the auxiliary blood parameter also based on an outlet dialysis fluid conductivity (o out ) modeled as an average, in particular a weighted average, of an inlet dialysis fluid conductivity (oi n ) and of a plasma conductivity (o pi ) , wherein the outlet dialysis fluid conductivity (o out ) is the conductivity of a dialysis fluid flowing in a spent dialysate line (13) of the extracorporeal blood treatment apparatus, the inlet dialysis fluid conductivity (oi n ) is the conductivity of a dialysis fluid flowing in a preparation line (19) of the extracorporeal blood treatment apparatus and the plasma conductivity (o pi ) being the conductivity of the blood flowing in the tube segment (61) .
- the outlet dialysis fluid conductivity (o out ) is the conductivity of a dialysis fluid flowing in a spent dialysate line (13) of the extracorporeal blood treatment apparatus
- the process comprises determining the auxiliary blood parameter also based on the following mathematical relationship:
- the process comprises determining the auxiliary blood parameter also based on a plasma conductivity (o pi ) , being the conductivity of the blood flowing in the tube segment (61) .
- the process comprises determining the auxiliary blood parameter also based on the following mathematical relationship:
- the process comprises using a Kalman filter for determining said property of blood and/or said auxiliary blood parameter.
- Figure 1 shows a schematic diagram of a blood treatment apparatus according to one aspect of the invention
- Figure 2 shows a schematic diagram of an alternative embodiment of a blood treatment apparatus according to another aspect of the invention
- Figure 3 is a schematic view of the measurement system according to one embodiment of the present invention.
- Figure 3a shows a schematic perspective of a housing for receiving a tube segment having blood flowing therein
- Figure 3b is a further scheme of the measurement system to reveal some components of the circuit
- Figure 4 is a diagram of an experimental setup
- Figure 5 is the sodium step protocol for the inlet dialysis fluid Na m upstream the filtration unit; the dotted line showing the dual protocol with inverted steps and the large black dots indicating the times for blood gas sampling;
- Figure 6 is a diagram of the hemodialyzer with inlet/outlet ports for blood and dialysate, wherein conductivity cells measure the inlet (o m) and outlet (o 0ut) dialysate electrical conductivity; the dotted black line representing a bypass condition;
- Figure 7 is an illustration of the blood pool model used for the computation of reference signals
- Figure 8 illustrates the relationship between input signals, state variables and output signals, the dotted lines representing connections which are unreliable during bypass mode ;
- Figure 9 represents a transition between different filter versions for bypass condition management
- Figures 10a to lOf show examples of state estimation results, wherein Fig. 10a, 10b and 10c show ARBV estimation for three different experimental sessions and Fig. lOd, lOe and lOf show Na pi estimation for the corresponding experiments; the dotted black line displaying the reference data, the light grey solid line displays the Kalman-based state variable estimation, the dashed black lines display the estimation confidence interval and the dark grey solid lines display the intervals of the estimation performed in bypass mode;
- Figure 11 shows a schematic front view of a cabinet structure for the apparatus of figure 1 or 2;
- Figure 12 shows the light intensity measured at a plurality of angular degree, normalized to the value at treatment start;
- Fig. 13 shows the light intensity measured at the normalized 45° channel; the signal has been subjected to a de-trend procedure to remove slow drift due to the RBV effect; and
- Fig. 14 is a flow chart illustrating the main steps of the process for determining the property and the auxiliary parameter of the extracorporeal blood.
- Non-limiting embodiments of an apparatus 1 for extracorporeal treatment of blood - which may implement innovative aspects of the invention - are shown in figures 1 and 2.
- same components are identified by same reference numerals .
- the apparatus 1 includes at least one sensor 50 which may be configured to determine the value of one or more blood or plasma parameters
- Figure 1 shows an apparatus 1 configured to deliver any one of treatments like ultrafiltration, hemodialysis and hemodiafiltration
- figure 2 shows an apparatus configured to deliver hemodialysis or ultrafiltration treatments.
- the apparatus 1 comprises a treatment unit 2 (such as an hemofilter, an ultrafilter, an hemodiafilter, a dialyzer, a plasmafilter and the like) having a primary chamber 3 and a secondary chamber 4 separated by a semi-permeable membrane 5; depending upon the treatment, the membrane 5 of the treatment unit 2 may be selected to have different properties and performances.
- a treatment unit 2 such as an hemofilter, an ultrafilter, an hemodiafilter, a dialyzer, a plasmafilter and the like
- the membrane 5 of the treatment unit 2 may be selected to have different properties and performances.
- a blood withdrawal line 6 is connected to an inlet of the primary chamber 3, and a blood return line 7 is connected to an outlet of the primary chamber 3.
- the blood withdrawal line 6, the primary chamber 3, and the blood return line 7 are part of an extracorporeal blood circuit which is globally identified with reference number 60 in figures 1 and 2.
- the blood withdrawal line 6 and the blood return line 7 are connected to a needle or to a catheter or other access device (not shown) which is then placed in fluid communication with the patient vascular system, such that blood may be withdrawn through the blood withdrawal line, flown through the primary chamber and then returned to the patient' s vascular system through the blood return line.
- An air separator such as a bubble trap 8 may be present on the blood return line; the extracorporeal blood circuit is supported by one or more holders provided, in a conventional manner, by the support framework 70 of the apparatus 1.
- the extracorporeal blood circuit 60 may be supported by a holder 71 holding the bubble trap, by a holder 72 holding the treatment unit 2, and by a holder 73 located in correspondence of the blood pump.
- a safety clamp 9 controlled by a control unit 10 may be present on the blood return line downstream the bubble trap 8.
- a bubble sensor 8a for instance associated to the bubble trap 8 or coupled to a portion of the line 7 between bubble trap 8 and clamp 9 may be present: if present, the bubble sensor is connected to the control unit 10 and sends to the control unit signals for the control unit to cause closure of the clamp 9 in case one or more bubbles above certain safety thresholds are detected.
- the blood flow through the blood lines may be controlled by a blood pump 11, for instance a peristaltic blood pump, acting either on the blood withdrawal line (as shown in figure 1) or on the blood return line.
- An operator may enter a set value for the blood flow rate Qb: the control unit 10, during treatment, is configured to control the blood pump based on the set blood flow rate.
- the control unit 10 may also be connected to a user interface 12, for instance a graphic user interface, which receives operator's inputs (such as, inter alia, the set value for the blood flow rate) and displays the apparatus outputs.
- the graphic user interface 12 may include a touch screen for both displaying outputs and allowing user entries, or a display screen and hard keys for entering user's inputs, or a combination thereof.
- a spent dialysate line 13 configured for evacuating an effluent fluid coming from the secondary chamber 4 is connected, at one end, to an outlet of the secondary chamber 4 and, at its other end, to a waste which may be a discharge conduit or an effluent fluid container 14 (dashed lines in figures 1 and 2) collecting the fluid extracted from the secondary chamber.
- An effluent fluid pump 17 operates on the spent dialysate line 13 under the control of control unit 10 to regulate the flow rate Qd out of effluent fluid through the spent dialysate line.
- the net ultrafiltration i.e.
- the net fluid removed from the blood across the semipermeable membrane of the treatment unit 2 may be determined by the flow rate difference between a dialysis fluid pump 21 on the fresh dialysis fluid line 19 and the effluent fluid pump 17.
- the apparatus may also include an ultrafiltration line 25 branching off the spent dialysate line 13 and provided with a respective ultrafiltration pump 27 also controlled by control unit 10 to cause a flow rate Q F along the ultrafiltration line.
- the embodiment of figure 1 presents a pre-dilution fluid line 15 connected to the blood withdrawal line: this line 15 supplies replacement fluid from an infusion fluid container 16 connected at one end of the pre-dilution fluid line.
- FIG 1 shows a container 16 as source of infusion fluid, this should not be interpreted in a limitative manner: indeed, the infusion fluid may alternatively come from an on line preparation section.
- the apparatus of figure 1 may include a post dilution fluid line (not shown in figure 1) connecting an infusion fluid container or an on line preparation section of infusion solution to the blood return line.
- the apparatus of figure 1 may include both a pre-dilution and a post infusion fluid line: in this case each infusion fluid line may be connected to a respective infusion fluid container or may receive infusion fluid from a same source of infusion fluid such as a same infusion fluid container or an online preparation section.
- the source of infusion fluid may be an online preparation section part of the apparatus 1 (i.e. as the online preparation section 100 described herein below) or a distinct device analogous to section 100 and connected to the infusion line or lines and configured for supplying fluid to the post and/or pre dilution lines.
- an infusion pump 18 operates on the infusion line 15 to regulate the flow rate Qrepi through the infusion line 15. Note that in case of two infusion lines (pre-dilution and post-dilution) each infusion line may be provided with a respective infusion pump.
- the apparatus of figure 1 further includes a fluid preparation line 19 connected at one end with a water inlet and at its other end with the inlet of the secondary chamber 4 of the filtration unit for supplying fresh treatment liquid to the secondary chamber 4.
- a dialysis fluid pump 21 works on the fluid preparation line under the control of said control unit 10, to supply fluid from a source of fresh treatment liquid (such as a container or the section 100 for online preparing fresh dialysis liquid) to the secondary chamber at a flow rate Qdi n .
- the line 19 links the hemodialyzer or hemodiafilter 2 to online preparation section 100, which is configured for preparing the dialysis liquid: section 100 comprises a main line 101, the upstream end of which is designed to be connected to a supply of water.
- a first secondary line 102 and a second secondary line 103 are connected to the main line 101 and are configured to at least supply the necessary quantity of a buffer and the necessary quantity of electrolytes.
- the first secondary line 102 which may be looped back onto the main line 101, is configured for fitting a first container 104, such as a bag or cartridge or other container, containing a buffer.
- Line 102 is furthermore equipped with a first metering pump 105 for dosing the buffer into the fresh treatment liquid: as shown in figure 1 the pump may be located downstream of the first container 104.
- the operation of the pump 105 may be controlled by the control unit 10 based upon the comparison between: 1) a set point value for the buffer concentration of the solution forming at the junction of the main line 101 and the first secondary line 102, and 2) the value of the buffer concentration of this mixture measured by through a first probe 106 located either in the first secondary line downstream the first container 104 or in the main line 101 immediately downstream of the junction between the main line 101 and the first secondary line 102.
- the free end of the second secondary line 103 is intended to receive fluid from second container 107 containing a concentrated saline solution, e.g. electrolytes such as sodium chloride, calcium chloride, magnesium chloride and potassium chloride.
- a concentrated saline solution e.g. electrolytes such as sodium chloride, calcium chloride, magnesium chloride and potassium chloride.
- the second secondary line 103 may be looped back onto the main line 101.
- the second secondary line 103 is equipped with a second metering pump 108 for dosing electrolytes into the fresh treatment liquid; operation of the second metering pump depends on the comparison between 1) a conductivity setpoint value or an electrolyte concentration setpoint value for the solution forming at the junction of the main line 101 with the second secondary line 103, and 2) the value of the conductivity or electrolyte concentration of this solution measured by through a second probe 109 located either in the second secondary line downstream of second container 107 or in the main line 101 immediately downstream of the junction between the main line 101 and the secondary line 103.
- the specific nature of the concentrates contained in containers 104 and 107 may be varied depending upon the circumstances and of the type of fresh treatment fluid to be prepared.
- first and second probes may depend upon the type of buffer used, the type of electrolyte concentrate ( s ) adopted and upon the specific configuration of the circuit formed by the main line and the secondary lines.
- more than two secondary lines, with respective concentrate containers and respective metering pumps may be in case a plurality of different type of substances need to be added for the preparation of the fresh treatment fluid.
- the second probe is generally a conductivity meter configured for measuring the dialysis fluid conductivity Oi n upstream the filtration unit 2.
- dialysis fluid conductivity Oi n is set by the operator or set and controlled by the apparatus during treatment.
- the apparatus include a further conductivity meter 112 placed on the spent dialysate line 13 to sense conductivity o out of the dialysis fluid downstream the filtration unit 2. Both conductivity meters 109 and 112 provide the respective measuring signal to the apparatus control unit 10.
- the embodiment of figure 2 shows an alternative apparatus 1 designed for delivering any one of treatments like hemodialysis and ultrafiltration.
- the same components described for the embodiment of figure 1 are identified by same reference numerals and thus not described again.
- the apparatus of figure 2 does not present any infusion line.
- flow sensors 110, ill may be used to measure flow rate in each of the lines.
- Flow sensors are connected to the control unit 10.
- scales may be used to detect the amount of fluid delivered or collected.
- the apparatus of figure 1 includes a first scale 33 operative for providing weight information Wi relative to the amount of the fluid collected in the ultrafiltration container 23 and a second scale 34 operative for providing weight information W2 relative to the amount of the fluid supplied from infusion container 16.
- the apparatus includes a first scale 33 operative for providing weight information Wi relative to the amount of the fluid collected in the ultrafiltration container 23.
- the scales are all connected to the control unit 10 and provide said weight information Wi for the control unit to determine the actual quantity of fluid in each container as well as the actual flow rate of fluid supplied by or received in each container.
- the flow sensors 110, ill positioned on the fresh dialysate line and on the spent dialysate line 13 provide the control unit 10 with signals indicative of the flow of fluid through the respective lines and the scale or scales provide weight information which allow the control unit to derive the flow rate through the ultrafiltration line 25 and, if present, through the infusion line 15.
- the control unit is configured to control at least pumps 17, 21 and 27 (in case of figure 3 also pump 18) to make sure that a prefixed patient fluid removal is achieved in the course of a prescribed treatment time, as required by the prescription provided to the control unit, e.g. via user interface 12.
- fluid balance systems may be used: for instance in case the apparatus includes a container as source of fresh treatment fluid and a container to collect waste, then scales may be used to detect the amount of fluid delivered or collected by each container and then inform the control unit accordingly.
- systems based on volumetric control may be used where the preparation line 19 and the spent dialysate line 13 are connected to a balance chamber system assuring that - at each instant - the quantity of liquid flowing into line 19 is identical to the quantity of fluid exiting from line 13. From a structural point of view one or more, containers 104, 107,
- the blood lines 6, 7 lines and the filtration unit may also be plastic disposable components which may be mounted at the beginning of the treatment session and then disposed of at the end of the treatment session.
- Pumps e.g. peristaltic pumps or positive displacement pumps, have been described as means for regulating fluid flow through each of the lines; however, it should be noted that other flow regulating means may alternatively be adopted such as for example valves or combinations of valves and pumps.
- the scales may comprise piezoelectric sensors, or strain gauges, or spring sensors, or any other type of transducer able to sense forces applied thereon.
- the apparatus 1 includes at least one blood or plasma parameter sensor 50, which is configured to be positionable in correspondence of at least one segment 61 of the extracorporeal blood circuit 60.
- the sensor 50 is a non-invasive sensor, i.e. it does not enter into contact with the blood flowing inside the extracorporeal blood circuit 60 and in particular it is applied on the outside of a segment of an extracorporeal blood treatment apparatus.
- the segment of the extracorporeal blood treatment apparatus referred to will be, in a non-limiting approach, a tube segment.
- the sensor 50 includes a plastic housing 51 only schematically represented in the annexed drawings.
- the housing 51 is designed to tightly couple to the blood line segment 61 of the extracorporeal blood circuit 60 where the blood or plasma parameters need to be measured.
- the housing 51 may be a standalone body or may be attached to or be part of the support framework 70 of the apparatus 1.
- figure 11 schematically shows the housing 51 attached to the front panel of the support framework 70 and configured to receive at least one (in the examples of the drawings only one) segment 61 of the extracorporeal blood circuit.
- the housing 51 may be counter-shaped directly to a portion of a blood line tubing, namely to a circular cross section segment of flexible transparent plastic tubing of a blood withdrawal line 6 or blood return line 7.
- the housing may be an open-and-close housing defining an inside through passage 52 destined to receive the tube of the blood circuit.
- the housing 51 may be made of two or more parts 51a, 51b either separate or joined, e.g. hinged, together so to define an uncoupled configuration (see fig. 3a) and a coupled configuration (see fig. 3) .
- the through passage 52 is counter-shaped to the tube to be received so as to perfectly couple with it and receives the tube.
- the schematic drawings illustrate a situation where the flexible blood tube is coupled to the sensor 50.
- the housing 51 may be alternatively shaped to couple with a rigid cuvette (such as the cuvette for the Hemoscan ® sensor of Gambro Lundia) .
- the flexible tubing of the blood circuit has the rigid cuvette properly applied so that blood flowing in the extracorporeal blood circuit 60 passes through the cuvette itself; the through passage is in this latter case counter-shaped to the outer surface of the cuvette which is not necessarily rounded, but may alternatively have flat outer surfaces (polygonal section) .
- any position of the sensor along the blood withdrawal line 6 or blood return line 7 is suitable.
- the sensor 50 has a through passage counter shaped to a specific cuvette, the sensor is to be applied in correspondence of the cuvette itself for proper working.
- the housing 51 may be made of a high absorption material which prevents external ambient light from reaching the receivers.
- the sensor 50 comprises at least one signal source 53 for directing a signal towards the blood along an emission axis 54.
- the signal source 53 may include any suitable signal emitter, such as an optic or an acoustic emitter directing a proper emitted signal towards the inside of the tube where blood is flowing.
- the signal source 53 includes an electromagnetic radiation source, particularly a light source such as a LED source.
- the peak wavelength of the signal source is usually set to 800-810 nm, corresponding to that point of the Hgb absorption spectra where absorption is not dependent on oxygenation. Again, this is not to be considered a limiting aspect.
- the specific implementation of the signal source 53 includes a multiple wavelength LED emitter (namely, MTMD6788594SMT6, Marktech Optoelectronics, NY, USA) used for light emission.
- the emitter 55 in particular includes 5 LEDs on the same chip, with peak wavelengths in the red/infrared bands.
- the source 53 further comprises a fiber optic 56 having one end 56a coupled with the signal emitter 55 and the other end 56b fixed to the housing 51 and placed to direct the light signal towards the blood along the emission axis 54. As shown in figure 3, the second end 56b of the emitter fiber optic 56 is placed at the counter-shaped portion and faces the tube in a coupling condition of the housing with the tube segment 61.
- the sensor 50 comprises a plurality of detectors 57 for receiving the signal emitted by said source after at least partially passing through the blood, in particular the detectors 57 collect reflected signal, scattered signal and/or transmitted signal depending on their respective position. Since the emitter 55 is a LED emitter, the detectors 57 include a photodiode receivers 58.
- the light detectors 57 are placed at different angular degrees with respect to the emission axis 54.
- the sensor 50 of figure 3 includes four different detectors 57 for receiving the electromagnetic radiation from the signal source 53, one first photodiode receiver PD1 being placed at about 180° with respect to the emission axis 54 of the signal source, one second photodiode receiver PD2 being placed at about 90° with respect to the emission axis of the signal source, one third photodiode receiver PD3 being placed at about 45° with respect to the emission axis of the signal source, one fourth photodiode receiver PD4 being placed at about 0° with respect to the emission axis of the signal source.
- more (or less) than 4 receivers may be used depending on the specific need and more than one receiver may also be placed at the same angular degree with respect to the emission axis 54.
- Each detector 57 is configured to receive the signal emitted by the signal source (and duly reflected, scattered or transmitted) radially along the normal section of the blood flow in the tube of the extracorporeal blood treatment apparatus .
- the new measurement system extends the architecture of the traditional design to collect light at different geometrical angles with respect to the emitter, allowing for discrimination between reflected, scattered and transmitted light. A loss in transmitted light due to an increase in scattering is not falsely detected as an increase in absorbance, if, at the same time, the scattered light is picked up by a different receiver.
- each detector 57 includes a respective fiber optic 59, one end being placed in correspondence of the tube segment 61, the other end being coupled to a receiver, in detail a photodiode receiver.
- the end of the fiber optic 59 in correspondence of the tube is fixed to the housing 51 and is placed at the counter-shaped portion and faces the tube in a coupling condition of the housing with the tube segment.
- all channels for receiving the signals are placed radially along the normal section of the blood flow, except for the reflection channel (0°) which is slightly shifted along the flow direction to allow placement of the emission fibre 56. Both emitted and collected light is coupled to and from the bloodline using e.g. plastic fibre optics (ESKA GH4001, Mitsubishi Rayon) .
- Photodiode receivers 58 may have a specific fiber-coupling mechanics (e.g. IFD91, Industrial Fiber Optics, Tempe, USA) for light collection channels, corresponding to PD1-4 in Fig. 3.
- fiber-coupling mechanics e.g. IFD91, Industrial Fiber Optics, Tempe, USA
- the photodiode receivers 58 are housed on a printed circuit board 60 along with analog circuitry for transimpedance amplification 62; the circuitry for transimpedance amplification 62 includes a current-to- voltage converter (for example implemented using an operational amplifier) .
- the circuitry 62 can be used to amplify the current output of the photodiode receivers 58.
- Current-to-voltage converters are used with photodiodes that have a current response that is more linear than the voltage response (it is common for the current response to have better than 1% linearity over a wide range of light input) .
- the transimpedance amplifier presents a low impedance to the photodiode and isolates it from the output voltage of the operational amplifier. There are several different configurations of transimpedance amplifiers, the one factor they all have in common is the requirement to convert the low-level current of a sensor to a voltage .
- the printed circuit board 60 further includes lowpass filtering stage 63 and gain-stage amplification.
- the cutoff frequency of the lowpass filter 63 is set to e.g. 30 Hz.
- the gain is set to channel-specific values, based on preliminary testing and calibration.
- the analog signals are then converted into digital signals by a suitable converter 64.
- the analog outputs are sampled at a rate of 100 Hz with 12-bit resolution using an NI USB-6008 DAQ card (National Instruments Italy Sri, Milano, Italy) and recorded by a custom LabView Virtual Instrument.
- the multi-LED emitter, the signal conditioning board and the DAQ card were assembled together on a 3D-printed housing and placed inside a grounded metallic box (see fig. 3) for electro-magnetic shielding, provided with openings for fiber optics 56, 59, data connection and power supply.
- the digital signals are input to a controller 65 for being used in detecting one or more parameter of the blood flowing in the tube segment 61 of the extracorporeal blood treatment apparatus, as apparent from the following detailed description.
- Osmolarity is the measure of solute concentration, defined as the number of osmoles of solute per litre of solution.
- sodium is the highest concentrated solute in both dialysis fluid and blood plasma and therefore it is the main driver of osmolarity.
- a (e.g. light) response signal measured from a (e.g. light) detector in a procedure for blood volume variation estimation is affected by both red cell concentration and osmolarity (and therefore mainly by blood/plasma sodium content) .
- HCT hematocrit
- ARBV blood volume variation
- OSM osmolarity
- Na pi sodium content
- the basic principle is to use one or more mathematical formulations to de-couple the effect of HCT and Na pi based on data from a generic number N of channels from said N detectors. This approach allows determining a number of blood parameters of interest without the need of sampling blood or affecting the treatment during measurement; the relevant parameters may be selected to be relative blood volume variation (ARBV) and plasma sodium concentration according e.g. to the following relationship:
- ARBV (t) functioni (10 (t) , Il(t),l2(t), , I_N(t));
- Na pi (t) function 2 (10 (t) , II (t) , 12 (t) , .... , I_N (t) ) .
- a possible formula is the linear combination of channel values, possibly elevated to a power factor so that each channel affects to a greater or lesser extent the corresponding parameter depending on the effect that the specific blood property has on the signal captured at a specific angular position.
- ARBV (t) K0* (10 (t) ) "a0+Kl* (II (t) ) A al+, ...., +K_N*(I_N(t))"aN;
- Na pi (t) JO* (10 (t) ) "b0+Jl* (II (t) ) L M+ , ...., +J_N* ( I_N (t) ) A bN .
- a neural network may be trained so that it receives as input the signals from the various detectors plus (possibly) other input variables linked to blood volume variation and plasma sodium concentration, such as conductivities in the dialysate circuit (both upstream and downstream the filtration unit) and/or sodium concentration in the fresh dialysis fluid.
- the neural network provides the value of the desired blood parameters as an output, thereby succeeding in decoupling the optical effects of red cell concentration and shape change due to osmolarity.
- Figure 12 shows light intensity measured at different angular degrees, normalized to the value at treatment start. There is a short region in the middle where recording was interrupted to allow for modifications to setup. With respect to the previously described sensor implementation, the graph includes the signal from an additional photodetector placed at 135°; however, the general concept herein explained is not dependent on the number and position of the various detectors.
- Fig. 12 shows that the 0° channel (reflected light, red line) is mostly dependent on ultrafiltration and RBV variations.
- Fig. 13 shows the normalized 45° channel (scattered light, blue line) .
- This signal has been subjected to a de-trend procedure to remove slow drift due to the RBV effect.
- This procedure was not applied with a real-time algorithm, but the linear combination approach may be used to create a real-time de-trend.
- the de-trended 45° channel is able to detect osmolarity variations caused by dialysate sodium concentration changes.
- the first-order response is mainly due to the time needed for blood sodium concentration to adjust to the dialysate sodium value.
- the Glossary provides the variable definitions.
- Equation (1) defines the relationship between absolute blood volume V B (t) and flow rates.
- Equation (2) defines relative blood volume ARBV (t) on the basis of absolute blood volume V B (t).
- Equation (3) describes ARBV (t) in differential form.
- Ju F (t) is known and may be provided to the controller 65 of the sensor 50 by the extracorporeal blood treatment apparatus 1 (namely by the control unit 10) .
- Napi ( t ) is computed according to equation (4), where Nam (t ) and JREF ( t ) are experimentally determined, V B (t ) is computed from equation (2) and Km ff , the membrane diffusion coefficient for sodium, may be set to the typical value of 250 ml/min or set based on the used membrane. Computation of Napi (t ) requires an initial value. Preliminary attempts to compute Na Pi ( t ) revealed the presence of a session-specific offset associated with inter-session events, like instrument recalibration and sodium electrode replacement. Therefore, a baseline adjustment was applied when computing Napi (t ) to account for this offset.
- a state-space approach was chosen for estimation of ARBV (t ) and Napi ( t ) , treated as state variables that completely describe the system under observation.
- a set of modeling equations describe the evolution of the state variables and the input/output relationship.
- the estimation was accomplished using a Kalman filtering technique applied to the modelling equations as apparent from the following description.
- Classification of sensor data as being either input or output depends on whether the specific variable monitored by each sensor perturbs the system state or is determined by it.
- the inlet dialysate sodium concentration Nam (t ) and the inlet dialysis fluid conductivity am ( t ) constitute the input variables; these variables are known since the operator usually sets either the inlet dialysis fluid conductivity am (t ) or the electrolyte (e.g.
- the inlet dialysis fluid conductivity am ( t ) and the inlet dialysate sodium concentration Nam ( t ) may be measured.
- the second probe 109 of figures 1 and 2 may be a conductivity meter and thereby measure the inlet dialysis fluid conductivity am (t ) along time.
- the hemodialysis machine maintains the effective value of Nam (t ) within clinically acceptable boundaries of the value set by the operator. Due to the general properties of electrolyte solutions, and the fact that sodium is the most concentrated electrolyte in plasma and dialysate, a good correlation can be found between the two fluids' electrical conductivity and sodium concentration.
- the output sensor data consists of the (optical) outputs ARPi(t) to ARPi (t) and the outlet conductivity a 0ut (t). Notably, the outlet conductivity a 0ut (t) may be measured by the extracorporeal blood treatment apparatus using the auxiliary conductivity meter 112 placed in the spent dialysis fluid line 13.
- ARBV(t ) 0
- the ordinary differential equations (6) and (7) model the blood pool dynamics, and were developed by removing the terms with parameters unknown during clinical practice (V B, o, Je f , Na Ref ) from equations (3) and (4) .
- One critical part of the estimation procedure is the handling of non-modeled terms: thanks to the properties of the Kalman filter, the lack of some terms, vice versa included in equations (3) -(4) and not included in equations (6) -(7), can be accounted for as noise in process modeling. This way, although refilling properties and starting blood volume are not known exactly, their influence on the reliability of the estimation is taken into account.
- Equation (3) would be a better theoretical description, V B, o and J Ref (t) are not known in clinical routine.
- the Kalman filter technique includes a measurement-based correction step which is applied to the model prediction. This correction is applied to the static ARBV value at each time step, thus making ARBV a quasi-static variable.
- Equation (7) approximates equation (4) : the parameters of the refilling process are not clinically available during treatment, so only sodium diffusion is modeled by employing a diffusion time constant t D ⁇ ff to describe how plasmatic sodium is related to Nam(t) .
- Toi ff can be viewed as an estimate of V B (t)/K D ⁇ ff from equation (5) .
- an estimate of Toi ff —1000s was obtained. Therefore, an intermediate value of Toiff—1100s may be used in the filter model.
- ARPJt G 0p t,i,i ARBV(t) + G 0p t ,i,2 ' No-pi (0 + G 0p t,i,3
- the [4x3] matrix Go pt in (9) contains weighting coefficients for all channels of signal detectors, estimated by multivariate regression analysis.
- the last output element i.e., the outlet dialysate conductivity Oo ut (t)
- Oo ut is a weighted average based on the dialysance D and the dialysis flow rate J D .
- a delay term tdelay was included, to account for the propagation time of changes in the inlet dialysate composition across the hydraulic circuit.
- a value of deiay 140 s was estimated by measuring the step response delay of a 0ut ( t ) in the sessions where sodium concentration steps were applied.
- the plasmatic conductivity a pi (t) is modeled in equation (12) as a linear function of plasmatic sodium concentration Napi(t).
- the coefficients G Wa Gain and G Na , o ffset were estimated by linear regression starting from experimental data.
- Figure 8 illustrates the relationship between input signals, state variables and output signals.
- the hemodialysis machine periodically goes into bypass mode, either for safety reasons or for the purpose of internal recalibration.
- bypass ultrafiltration is suspended and the hydraulic connection of dialysate to the hemodialyzer is short-circuited, see Fig. 6 (dotted line) , meaning that data from the conductivity cells ( Om ( t ) , a 0ut ( t ) ) is not useful during by-pass condition since the inlet fresh dialysis fluid is directly routed towards the effluent line without entering the filtration unit.
- certain changes in the modeling equations are needed to reflect such temporary alterations of the physical system.
- Kalman filtering is basically an algorithm that uses a series of measurements observed over time, containing statistical noise and other inaccuracies (e.g. due to equation simplifications), and produces estimates of unknown variables that tend to be more accurate than those based on a single measurement alone, by estimating a joint probability distribution over the variables for each timeframe.
- the algorithm works in a two-step process. In the prediction step, the Kalman filter produces estimates of the current state variables, along with their uncertainties. Once the outcome of the next measurement (necessarily corrupted with some amount of error, including random noise) is observed, these estimates are updated using a weighted average, with more weight being given to estimates with higher certainty.
- the algorithm is recursive and may run in real time, using only the present input measurements and the previously calculated state and its uncertainty matrix; no additional information is required.
- Equations (14) and (15) represent the prediction step, where modeling knowledge of the system is employed, and equations 16 to 18 represent the measurement-based correction step.
- the input U k is a [2x1] vector which includes Nam [k] and Om [k] .
- the vectors X k and X k (both [2x1]) contain the predicted and corrected values of the state variables ARBV[k] and Na Pi [k] .
- X k is the predicted system state at step k , and is a function f ( ⁇ , ⁇ ) of k -i + and 3 ⁇ 4.
- the initial vector includes a null blood volume variation and a subject average plasma sodium concentration.
- ARBV[k ⁇ ARBV[k - 1]
- Equation 21 being used instead of equation 20 during the by-pass condition.
- the [2x2] matrix Q describes the process noise covariance.
- the matrix A is the [2x2] Jacobian linearization of f ( with respect to ARBV and Napi.
- a standard Q std matrix is used during standard filter operation, replaced by Q byPass during bypass mode. Both versions of Q are diagonal matrices whose elements are precomputed, on the basis of realistic maximum values for the non-modeled terms of the process equations.
- the error gain 3 ⁇ 4 is a [2x5] matrix computed according to equation (16) .
- the measurement noise is characterized by the [5x5] covariance matrix R, taken to be a pre-determined diagonal matrix.
- the diagonal values of R, associated with optical measurements, were set equal to the root-mean-square fitting residuals of equation (9) .
- the diagonal value of R associated with ao ut modeling was chosen on the basis of realistic deviations of D from the average value considered for equation ( 11 ) .
- the observation vector Z y is a [5x1] column vector of experimentally measured system output, composed of the optical output ARPi[k] to ARPi [k] and outlet conductivity o 0ut [k] .
- g (x k ⁇ ,U k ) is a [5x1] column vector of predicted output calculated according to state-output function g( ⁇ , ⁇ ).
- the function g ( , ⁇ ) is determined by the time-discrete versions of equations (9) and (11), given by
- Equation (23) k De ia y is the discrete version of T De ia y and a P i [k] is computed according to which is the discretized version of equation (12) .
- the matrix H from equations (16) and (18) is the [5x2] Jacobian linearization of g ( , J in respect to ARBV and Napi .
- the matrices PV and P k + are the predicted and corrected [2x2] estimation covariances, respectively. Both matrices are computed at each step k, according to equations (15) and (18), initiated by a diagonal matrix P + with the initial uncertainties of ARBV and Napi set to 0 and 4 mM, respectively. Zero uncertainty on starting ARBV is given by the fact that ARBV is a relative variation and its starting value is always known and equal to 0. The initial uncertainty for Napi is based on the assumption of a 136-144 mM physiological range for patients at treatment start.
- the controller 65 is configured for calculating the concentration of sodium present in the fluid flowing through said segment 61 of the extracorporeal blood circuit 60 based the output signal received by the detectors 57. For instance if the segment is part of the blood withdrawal line and the fluid is blood, the controller 65 may continuously determine the concentration of sodium present in the blood flowing through the blood withdrawal line, while if the segment is part of the blood return line and the fluid is blood, the control unit or the detection circuit may continuously calculate the concentration of sodium present in the blood flowing through the blood return line.
- Na pi of blood circulating in the extracorporeal circuit may be calculated and blood volume variation (independent form osmolarity) may be determined, e.g. by the controller 65.
- controller 65 (or correspondingly the apparatus control unit 10) may be configured to determine at least one value of a parameter (D, K-t) indicative of the effectiveness of the extracorporeal blood treatment based on the measure of plasma sodium concentration of the blood circulating in the tube segment (e.g., based on the determination of plasma sodium concentration during an extracorporeal blood treatment) .
- a parameter D, K-t
- controller 65 may be configured for commanding execution of the following steps:
- the substance may be one single element such as one electrolyte or a group of elements such as a set of electrolytes: for instance sensor 109 may provide the control unit 10 with an information relating to conductivity or to concentration of a given, e.g. sodium, substance; or the set values for conductivity or concentration of the substance may be used;
- a sensor 112 capable of detecting conductivity or concentration; for instance a conventional concentration or conductivity sensor ay provide the control unit 10 with an information relating to conductivity or to concentration of a given substance;
- the apparatus may comprise at least two of the described electric parameter sensors 50: each one of these two sensors 50 would have the features of sensor 50 described above with a first tubular segment 61 of the blood withdrawal line received in the housing body of a first of said two sensors 50 and a second tubular segment 61 of the blood return line received in the housing body of a second of said two sensors 50.
- the controller 65 (connected to each blood/plasma parameter sensor 50) may be configured for:
- the substance may be one single element such as one electrolyte or a group of elements such as a set of electrolytes: for instance sensor 109 may provide the control unit 10 with an information relating to conductivity or to concentration of a given substance; or the set values for conductivity or concentration of the substance may be used;
- the step of causing a fresh treatment liquid to flow in the preparation line 19 comprises the sub-step of maintaining, at least for a time interval T during which the measurements of conductivity or concentration take place, the concentration of the substance (Nai n ) or the conductivity (oi n ) in the fresh treatment liquid constant at a set value which is used for computing the at least one value of a parameter D, K-t indicative of the effectiveness of the extracorporeal blood treatment.
- control unit 10 is configured to keep constant the flow rate Qdi n of fresh treatment liquid in the preparation line 19, the flow rate Q b of patient's blood in the extracorporeal blood circuit, and the flow rate Q F of ultrafiltration flow through the semipermeable membrane.
- dialysance Once dialysance has been calculated then the instant values of dialysance may be integrated over time in order to arrive at the determination of the K-t value in a manner which is per se known and not herein further described.
- the invention also relates to a process of determining the blood or plasma parameters using the sensor 50 and/or the apparatus for extracorporeal treatment of blood as disclosed above or as claimed in any one of the appended claims.
- Figure 14 shows the main steps of the process including sending a signal towards the extracorporeal blood and receiving the reflected, transmitted and/or scattered signal by means of the receivers placed at different angular positions around the tube segment.
- the process includes determining (as above illustrated) the blood property (e.g. blood volume variation ABV) and/or the auxiliary blood parameter (e.g. Na pi ) .
- the flow process for determining the blood property and the auxiliary blood parameter is illustrated in figure 8 wherein the relationship between input signals, state variables and output signals are shown; the dotted lines represents connections which are unreliable during bypass mode.
- the aspects provide additional details in respect to process implementation.
- the apparatus makes use of a control unit 10 and the sensor of at least one controller 65.
- the controller 65 of the sensor 50 may be part (software and/or hardware part) of the control unit 10 of the extracorporeal blood treatment apparatus or may be a separate processing unit.
- Both control unit 10 and controller 65 may comprise a digital processor (CPU) with memory (or memories), an analogical type circuit, or a combination of one or more digital processing units with one or more analogical processing circuits.
- CPU digital processor
- memory or memories
- an analogical type circuit or a combination of one or more digital processing units with one or more analogical processing circuits.
- the control unit/controller is "configured” or "programmed” to execute certain steps: this may be achieved in practice by any means which allow configuring or programming the control unit/controller .
- the control unit/controller comprising one or more CPUs
- one or more programs are stored in an appropriate memory: the program or programs containing instructions which, when executed by the control unit/controller, cause the control unit to execute the steps described and/or claimed in connection with the control unit/controller .
- the circuitry of the control unit/controller is designed to include circuitry configured, in use, to process electric signals such as to execute the control unit/controller steps herein disclosed.
- Napi Changes in plasma sodium concentration Napi were implemented by applying steps to the inlet dialysate sodium concentration Nam . Changes in Nam propagate to Napi by diffusion across the membrane of the hemodialyzer in a manner that can be approximated as a first- order response. The concentration was initially set to 140 mM, and then two steps of ⁇ 7mM (with respect to the 140 mM baseline) were applied before returning to 140 mM. Each concentration value was maintained for 45 min. The order of the positive and negative steps is changed between sessions. The protocol is illustrated in Fig. 5. Each session was composed of a 1-h adjustment phase followed by a 3- h experimental phase.
- the adjustment phase was designed to achieve equilibrium between dialysate and blood to improve reproducibility of the experimental sessions, since each fresh volume of bovine blood may come with different plasmatic concentrations of electrolytes.
- Nam is maintained constant. In this way, the blood reaches standard initial conditions before the start of the actual experiment.
- the signal Ju E (t) underwent median filtering (5-sample window) for artefact removal, whereas a Pn (t) and a 0ut (t) were smoothed by moving average filtering (5-sample window) .
- the hemodialysis machine is temporarily switched to bypass mode, either for safety reasons or for the purpose of internal recalibration.
- bypass ultrafiltration is suspended and the hydraulic connection of dialysate to the hemodialyzer is short-circuited, see Fig. 6 (dotted line) , meaning that data from the conductivity cells ( a Pn (t), a 0ut (t)) is not useful during by-pass condition since the inlet fresh dialysis fluid is directly routed towards the effluent line without entering the filtration unit.
- a binary signal indicating whether conductivity data is available at any given time was built for each session.
- the parameters G 0p t in equation (9) and GNa,Ga ⁇ n and G N a, offset in equation (12) are not based on modeling assumptions, but fitted to experimental data. For this reason, the performance of the system was evaluated in two ways. To determine best performance, the estimation error was computed using a version of the Kalman filter with empirical parameters fitted to the whole dataset. Additionally, to assess the robustness of the estimator, a leave-one-out procedure was employed on the 12-sessions dataset: for each iteration, 11 sessions were employed for fitting and 1 for testing. The estimation error was calculated for both ARBV and Nan as the absolute difference between the reference data and the estimates. The mean and maximum errors were first computed for each session; then the inter-session mean ⁇ standard deviation was calculated for both quantities . The results are reported in below Table I .
- the Kalman filter tuned with data from the whole dataset, showed good performance when estimating ARBV and Napi .
- Figure 10 exemplifies state estimation results in the best case, when parameters of the estimator are computed using data from the complete dataset.
- the estimates of ARBV and Napi are presented for an experiment with both blood volume loss and sodium concentration steps (Fig. 10 (a) and 10 (d) respectively) , for an experiment with blood volume loss close to zero (Figs. 10(b) and 10(e)) and for an experiment in which a starting hypernatremic patient condition is simulated (Figs. 10(c) and 10(f)) .
- the switch from standard filter operation to bypass mode is represented by the temporary transition to dark grey solid lines.
- Figs. 10 (a) - (c) show results on the estimation of relative blood volume loss.
- the P + matrix being updated at each step, is bound to converge to a steady-state value due to the properties of the Kalman filter algorithm. It is clear from the dynamics of boundary intervals of the estimates shown in Fig. 10 that P + reaches steady-state very quickly, in the first few minutes of filter operation (—2 min) .
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Physics & Mathematics (AREA)
- Vascular Medicine (AREA)
- Hematology (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Anesthesiology (AREA)
- Cardiology (AREA)
- Urology & Nephrology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Emergency Medicine (AREA)
- Optics & Photonics (AREA)
- Physiology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- External Artificial Organs (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Description
Claims
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980034190.XA CN112203578B (en) | 2018-03-20 | 2019-03-20 | Sensor and device for determining at least one parameter of blood circulating in an extracorporeal blood circuit |
EP19712752.5A EP3768151A1 (en) | 2018-03-20 | 2019-03-20 | Sensor and apparatus for determining at least one parameter of blood circulating in an extracorporeal blood circuit |
CA3094271A CA3094271A1 (en) | 2018-03-20 | 2019-03-20 | Sensor and apparatus for determining at least one parameter of blood circulating in an extracorporeal blood circuit |
US16/982,317 US12029555B2 (en) | 2018-03-20 | 2019-03-20 | Sensor and apparatus for determining at least one parameter of blood circulating in an extracorporeal blood circuit |
AU2019238375A AU2019238375B2 (en) | 2018-03-20 | 2019-03-20 | Sensor and apparatus for determining at least one parameter of blood circulating in an extracorporeal blood circuit |
JP2020550599A JP7322055B6 (en) | 2018-03-20 | 2019-03-20 | Apparatus, sensors, and processes for determining at least one parameter of blood circulating in an extracorporeal blood circuit |
KR1020207029994A KR20200135821A (en) | 2018-03-20 | 2019-03-20 | Devices and sensors for determining at least one parameter of circulating blood in the extracorporeal blood circuit |
JP2023121864A JP7513811B2 (en) | 2018-03-20 | 2023-07-26 | DEVICE, SENSOR AND PROCESS FOR DETERMINING AT LEAST ONE PARAMETER OF BLOOD CIRCULATING IN AN EXTRACORPOREAL BLOOD CIRCUIT - Patent application |
AU2024203229A AU2024203229A1 (en) | 2018-03-20 | 2024-05-15 | Sensor and apparatus for determining at least one parameter of blood circulating in an extracorporeal blood circuit |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18162977.5 | 2018-03-20 | ||
EP18162977.5A EP3542707A1 (en) | 2018-03-20 | 2018-03-20 | Sensor and apparatus for determining at least one parameter of blood circulating in an extracorporeal blood circuit |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/982,317 A-371-Of-International US12029555B2 (en) | 2018-03-20 | 2019-03-20 | Sensor and apparatus for determining at least one parameter of blood circulating in an extracorporeal blood circuit |
US18/657,286 Continuation US20240350040A1 (en) | 2018-03-20 | 2024-05-07 | Apparatus, sensor and process for determining at least one parameter of blood circulating in an extracorporeal blood circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019180068A1 true WO2019180068A1 (en) | 2019-09-26 |
Family
ID=61731640
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2019/056938 WO2019180068A1 (en) | 2018-03-20 | 2019-03-20 | Sensor and apparatus for determining at least one parameter of blood circulating in an extracorporeal blood circuit |
Country Status (8)
Country | Link |
---|---|
US (1) | US12029555B2 (en) |
EP (2) | EP3542707A1 (en) |
JP (2) | JP7322055B6 (en) |
KR (1) | KR20200135821A (en) |
CN (1) | CN112203578B (en) |
AU (2) | AU2019238375B2 (en) |
CA (1) | CA3094271A1 (en) |
WO (1) | WO2019180068A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021138601A1 (en) * | 2019-12-31 | 2021-07-08 | Chf Solutions, Inc. | Blood filtration system and plasma volume monitoring |
IT202000006706A1 (en) * | 2020-03-31 | 2021-10-01 | Medica S P A | BLOOD FILTRATION MACHINE EQUIPPED WITH A MEASURING SYSTEM INCLUDING OPTICAL SENSORS |
WO2023058732A1 (en) * | 2021-10-08 | 2023-04-13 | 日機装株式会社 | Blood purification device |
WO2023110717A1 (en) * | 2021-12-13 | 2023-06-22 | Fresenius Medical Care Deutschland Gmbh | Blood treatment machine for extracorporeal blood treatment, and system for identifying blood or blood components in a hose line |
WO2024068588A1 (en) * | 2022-09-28 | 2024-04-04 | Fresenius Medical Care Deutschland Gmbh | Blood leakage detector system and blood treatment machine for extracorporeal blood treatment |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10925549B2 (en) | 2019-06-26 | 2021-02-23 | Gastroklenz Inc. | Systems, devices, and methods for fluid monitoring |
EP3842085B1 (en) * | 2019-12-24 | 2023-09-27 | Gambro Lundia AB | Apparatus for extracorporeal blood treatment |
FI129302B (en) * | 2020-09-21 | 2021-11-30 | Paree Group Oy | Apparatus and method for measuring blood in liquid |
CN113476674A (en) * | 2021-06-30 | 2021-10-08 | 江苏森宝生物科技有限公司 | Electromagnetic compatibility method for hemodialysis equipment |
CN113823409B (en) * | 2021-09-23 | 2023-12-29 | 重庆山外山血液净化技术股份有限公司 | Method and system for evaluating risk of hypotension event in dialysis |
WO2023235005A1 (en) * | 2022-05-31 | 2023-12-07 | Boundless Science Llc | Method and apparatus for enhanced transport |
JP7408868B1 (en) | 2023-04-12 | 2024-01-05 | 日機装株式会社 | blood purification device |
JP7408869B1 (en) | 2023-04-12 | 2024-01-05 | 日機装株式会社 | blood purification device |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5100554A (en) | 1989-11-21 | 1992-03-31 | Fresenius Ag | Method for the in-vivo determination of hemodialysis parameters |
EP0547025A1 (en) | 1988-03-03 | 1993-06-16 | Gambro Ab | Method for determining a concentration of a substance in blood or the dialysance of a dialyser |
US5331958A (en) | 1992-03-31 | 1994-07-26 | University Of Manitoba | Spectrophotometric blood analysis |
EP0658352A1 (en) | 1993-12-17 | 1995-06-21 | Hospal Ag | Procedure for determining a parameter indicating the progress of an extracorporeal blood treatment |
EP0920877A1 (en) | 1997-12-09 | 1999-06-09 | Hospal Industrie | Procedure for determining a parameter indicating the progress of an extracorporeal blood treatment |
WO2000033053A1 (en) | 1998-11-30 | 2000-06-08 | Gambro Ab | Method and device for measuring blood parameters |
US6187199B1 (en) | 1997-01-24 | 2001-02-13 | Fresenius Medical Care Deutschland Gmbh | Process and device for determining hemodialysis parameters |
US20010004523A1 (en) | 1999-12-02 | 2001-06-21 | Antonio Bosetto | Method for determining a parameter indicative of the progress of an extracorporeal blood treatment |
US20030023170A1 (en) * | 2001-04-11 | 2003-01-30 | Craig Gardner | Optically similar reference samples and related methods for multivariate calibration models used in optical spectroscopy |
US20110196215A1 (en) * | 2008-10-17 | 2011-08-11 | Toshiyuki Ozawa | Living body monitoring apparatus |
US20110269167A1 (en) * | 2010-05-03 | 2011-11-03 | Gambro Lundia Ab | Medical apparatus for extracorporeal blood treatment and method for determining a blood parameter value in a medical apparatus thereof |
US8525533B2 (en) | 2010-09-16 | 2013-09-03 | Fresenius Medical Care Holdings, Inc. | Conductivity detector for fluids |
EP2687248A1 (en) | 2012-07-18 | 2014-01-22 | Gambro Lundia AB | Apparatus and method for determining a parameter indicative of the progress of an extracorporeal blood treatment |
US20150305658A1 (en) * | 2012-12-31 | 2015-10-29 | Omni Medsci. Inc. | Near-infrared lasers for non-invasive monitoring of glucose, ketones, hba1c, and other blood constituents |
US20160038666A1 (en) * | 2011-08-02 | 2016-02-11 | Medtronic, Inc. | Hemodialysis system having a flow path with a controlled compliant volume |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1274841B (en) | 1994-07-18 | 1997-07-25 | Bellco Spa | PERFECTED TYPE EQUIPMENT FOR DIALYSIS TREATMENTS. |
DE19746367C2 (en) * | 1996-11-30 | 1999-08-26 | Fresenius Medical Care De Gmbh | Method for in-vivo determination of parameters of hemodialysis and device for carrying out the method |
ITMI20110442A1 (en) * | 2011-03-21 | 2012-09-22 | Gambro Lundia Ab | EQUIPMENT FOR EXTRACORPROUS TREATMENT OF BLOOD. |
ITMI20110441A1 (en) * | 2011-03-21 | 2012-09-22 | Gambro Lundia Ab | EQUIPMENT FOR EXTRACORPROUS TREATMENT OF BLOOD. |
US20170135633A1 (en) | 2013-05-23 | 2017-05-18 | Medibotics Llc | Integrated System for Managing Cardiac Rhythm Including Wearable and Implanted Devices |
EP2732834B1 (en) * | 2012-11-14 | 2015-07-29 | Gambro Lundia AB | Apparatus for determining a parameter indicative of the progress of an extracorporeal blood treatment |
EP2745863B9 (en) * | 2012-12-20 | 2017-08-30 | Gambro Lundia AB | An apparatus for extracorporeal blood treatment |
EP2823834B1 (en) * | 2013-07-10 | 2016-06-22 | Gambro Lundia | Apparatus for extracorporeal blood treatment |
US9986511B2 (en) | 2014-01-22 | 2018-05-29 | Lg Electronics Inc. | Method and device for transmitting uplink signal in wireless communication system |
EP3302605B1 (en) | 2015-05-25 | 2019-12-25 | Gambro Lundia AB | Apparatus for extracorporeal blood treatment i |
-
2018
- 2018-03-20 EP EP18162977.5A patent/EP3542707A1/en active Pending
-
2019
- 2019-03-20 JP JP2020550599A patent/JP7322055B6/en active Active
- 2019-03-20 WO PCT/EP2019/056938 patent/WO2019180068A1/en unknown
- 2019-03-20 CN CN201980034190.XA patent/CN112203578B/en active Active
- 2019-03-20 CA CA3094271A patent/CA3094271A1/en active Pending
- 2019-03-20 EP EP19712752.5A patent/EP3768151A1/en active Pending
- 2019-03-20 US US16/982,317 patent/US12029555B2/en active Active
- 2019-03-20 AU AU2019238375A patent/AU2019238375B2/en active Active
- 2019-03-20 KR KR1020207029994A patent/KR20200135821A/en active IP Right Grant
-
2023
- 2023-07-26 JP JP2023121864A patent/JP7513811B2/en active Active
-
2024
- 2024-05-15 AU AU2024203229A patent/AU2024203229A1/en active Pending
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0547025A1 (en) | 1988-03-03 | 1993-06-16 | Gambro Ab | Method for determining a concentration of a substance in blood or the dialysance of a dialyser |
US5100554A (en) | 1989-11-21 | 1992-03-31 | Fresenius Ag | Method for the in-vivo determination of hemodialysis parameters |
US5331958A (en) | 1992-03-31 | 1994-07-26 | University Of Manitoba | Spectrophotometric blood analysis |
EP0658352A1 (en) | 1993-12-17 | 1995-06-21 | Hospal Ag | Procedure for determining a parameter indicating the progress of an extracorporeal blood treatment |
US6187199B1 (en) | 1997-01-24 | 2001-02-13 | Fresenius Medical Care Deutschland Gmbh | Process and device for determining hemodialysis parameters |
EP0920877A1 (en) | 1997-12-09 | 1999-06-09 | Hospal Industrie | Procedure for determining a parameter indicating the progress of an extracorporeal blood treatment |
WO2000033053A1 (en) | 1998-11-30 | 2000-06-08 | Gambro Ab | Method and device for measuring blood parameters |
US20010004523A1 (en) | 1999-12-02 | 2001-06-21 | Antonio Bosetto | Method for determining a parameter indicative of the progress of an extracorporeal blood treatment |
US20030023170A1 (en) * | 2001-04-11 | 2003-01-30 | Craig Gardner | Optically similar reference samples and related methods for multivariate calibration models used in optical spectroscopy |
US20110196215A1 (en) * | 2008-10-17 | 2011-08-11 | Toshiyuki Ozawa | Living body monitoring apparatus |
US20110269167A1 (en) * | 2010-05-03 | 2011-11-03 | Gambro Lundia Ab | Medical apparatus for extracorporeal blood treatment and method for determining a blood parameter value in a medical apparatus thereof |
US8525533B2 (en) | 2010-09-16 | 2013-09-03 | Fresenius Medical Care Holdings, Inc. | Conductivity detector for fluids |
US20160038666A1 (en) * | 2011-08-02 | 2016-02-11 | Medtronic, Inc. | Hemodialysis system having a flow path with a controlled compliant volume |
EP2687248A1 (en) | 2012-07-18 | 2014-01-22 | Gambro Lundia AB | Apparatus and method for determining a parameter indicative of the progress of an extracorporeal blood treatment |
US20150305658A1 (en) * | 2012-12-31 | 2015-10-29 | Omni Medsci. Inc. | Near-infrared lasers for non-invasive monitoring of glucose, ketones, hba1c, and other blood constituents |
Non-Patent Citations (2)
Title |
---|
GOTCH F. A.; SARGENT S. A.: "A mechanistic analysis of the National Cooperative Dialysis Study (NCDS", KIDNEY INT., vol. 28, 1985, pages 526 - 34 |
GOUREAU Y ET AL: "EVALUATION OF PLASMA SODIUM CONCENTRATION DURING HEMODIALYSIS BY COMPUTERIZATION OF DIALYSATE CONDUCTIVITY", ASAIO TRANSACTIONS, HARPER AND ROW PUBLISHERS, HAGERSTOWN, MD, US, vol. 36, no. 3, 1 July 1990 (1990-07-01), pages 444 - 447, XP000204537 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021138601A1 (en) * | 2019-12-31 | 2021-07-08 | Chf Solutions, Inc. | Blood filtration system and plasma volume monitoring |
IT202000006706A1 (en) * | 2020-03-31 | 2021-10-01 | Medica S P A | BLOOD FILTRATION MACHINE EQUIPPED WITH A MEASURING SYSTEM INCLUDING OPTICAL SENSORS |
WO2021198945A1 (en) * | 2020-03-31 | 2021-10-07 | Medica S.P.A. | Blood filtering machine provided with a measuring system comprising optical sensors |
WO2023058732A1 (en) * | 2021-10-08 | 2023-04-13 | 日機装株式会社 | Blood purification device |
WO2023110717A1 (en) * | 2021-12-13 | 2023-06-22 | Fresenius Medical Care Deutschland Gmbh | Blood treatment machine for extracorporeal blood treatment, and system for identifying blood or blood components in a hose line |
WO2024068588A1 (en) * | 2022-09-28 | 2024-04-04 | Fresenius Medical Care Deutschland Gmbh | Blood leakage detector system and blood treatment machine for extracorporeal blood treatment |
Also Published As
Publication number | Publication date |
---|---|
KR20200135821A (en) | 2020-12-03 |
EP3768151A1 (en) | 2021-01-27 |
JP7322055B6 (en) | 2024-02-21 |
JP7513811B2 (en) | 2024-07-09 |
AU2019238375A1 (en) | 2020-10-15 |
JP2021528112A (en) | 2021-10-21 |
CN112203578B (en) | 2024-08-02 |
US20210015990A1 (en) | 2021-01-21 |
US12029555B2 (en) | 2024-07-09 |
AU2024203229A1 (en) | 2024-06-06 |
CN112203578A (en) | 2021-01-08 |
CA3094271A1 (en) | 2019-09-26 |
JP2023164791A (en) | 2023-11-14 |
EP3542707A1 (en) | 2019-09-25 |
AU2019238375B2 (en) | 2024-04-18 |
JP7322055B2 (en) | 2023-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2019238375B2 (en) | Sensor and apparatus for determining at least one parameter of blood circulating in an extracorporeal blood circuit | |
JP4077034B2 (en) | Automated method and apparatus for obtaining cross-compartment transfer coefficients for equilibrium samples and two-pool dynamics | |
EP2163272B1 (en) | Device to early predict the Kt/V parameter in kidney substitution treatments | |
US6666840B1 (en) | Method for determining waste products in the dialysis liquid in dialysis treatment | |
EP0986410B1 (en) | Device for calculating dialysis efficiency | |
CN101801433B (en) | Method for determining the reduction ratio or the kt/v value of a kidney substitution treatment and apparatus for the realisation of the method | |
EP1037681B1 (en) | Device for calculating dialysis efficiency | |
EP2292284B1 (en) | Kidney substitution treatment machine | |
EP2355690B1 (en) | Measuring hematocrit and estimating hemoglobin values with a non-invasive, optical blood monitoring system | |
JP3667333B2 (en) | Disposable blood cuvette | |
EP2163271B1 (en) | Method to determine the Kt/V parameter in kidney substitution treatments based on a non-linear fitting procedure | |
JPH03173569A (en) | Internal measurement of blood dialysis parameter | |
CN109260536B (en) | Apparatus and method for performing isosodium dialysis | |
CN104321088A (en) | Apparatus for determining a parameter indicative of the progress of an extracorporeal blood treatment | |
US10786613B2 (en) | Apparatus and method for determining a parameter indicative of the progress of an extracorporeal blood treatment | |
US20240350040A1 (en) | Apparatus, sensor and process for determining at least one parameter of blood circulating in an extracorporeal blood circuit | |
Visotti et al. | A differential optical sensor for non-invasive real-time monitoring of ultrafiltration rate in hemofiltration therapies | |
Ravagli et al. | A New Method for Continuous Relative Blood Volume and Plasma Sodium Concentration Estimation during Hemodialysis | |
CN118831214A (en) | Sensor and device for determining at least one parameter of blood circulating in an extracorporeal blood circuit | |
Stepanova et al. | Analysis of solute kinetics during hemodialysis treatment by measuring the UV absorption of effluent dialysate at different wavelengths | |
Ravagli | Sensor technologies for on-line monitoring of biological parameters during hemodialysis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19712752 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3094271 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2020550599 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019238375 Country of ref document: AU Date of ref document: 20190320 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20207029994 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2019712752 Country of ref document: EP Effective date: 20201020 |