WO2019174214A1 - 用于双向进出风管的热交换芯 - Google Patents
用于双向进出风管的热交换芯 Download PDFInfo
- Publication number
- WO2019174214A1 WO2019174214A1 PCT/CN2018/107301 CN2018107301W WO2019174214A1 WO 2019174214 A1 WO2019174214 A1 WO 2019174214A1 CN 2018107301 W CN2018107301 W CN 2018107301W WO 2019174214 A1 WO2019174214 A1 WO 2019174214A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- air
- heat exchange
- inlet
- exchange core
- outlet
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D21/0001—Recuperative heat exchangers
- F28D21/0003—Recuperative heat exchangers the heat being recuperated from exhaust gases
- F28D21/0005—Recuperative heat exchangers the heat being recuperated from exhaust gases for domestic or space-heating systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F12/00—Use of energy recovery systems in air conditioning, ventilation or screening
- F24F12/001—Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
- F24F12/006—Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an air-to-air heat exchanger
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D21/0001—Recuperative heat exchangers
- F28D21/0014—Recuperative heat exchangers the heat being recuperated from waste air or from vapors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/0035—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for domestic or space heating, e.g. heating radiators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D9/0012—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the apparatus having an annular form
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F7/00—Elements not covered by group F28F1/00, F28F3/00 or F28F5/00
- F28F7/02—Blocks traversed by passages for heat-exchange media
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/56—Heat recovery units
Definitions
- the invention relates to the field of air conditioning, and in particular to a heat exchange core for bidirectional inlet and outlet ducts.
- the fresh air system In order to solve the above problem of inability to open the window for ventilation, there are usually two solutions in the prior art, one is to purchase an air purifier to filter indoor air, and the other is to install a large fresh air system indoors, and to open a new outdoor air. Into every room in the room, filter and replace indoor air. Although the fresh air system has a better ventilation effect because it can introduce outdoor fresh air into the room compared to the air purifier, the fresh air system inevitably has the following problems.
- the main performance is that the heat exchange core commonly used in the existing fresh air system is prismatic (such as a hexagonal prism or a quadrangular prism), and the air inlet passage and the outlet passage of the heat exchange core need to be separately connected to the intake duct and the outlet duct.
- the inlet duct and the outlet duct not only occupy the space of the fresh air main engine (or the total heat exchanger), but also cause two duct holes to be opened on the wall or on the glass, which increases the wall penetration. Or the number of window wears reduces the aesthetics of the room and increases the installation cost of the fresh air system.
- the present invention provides a bidirectional inlet and outlet duct.
- a heat exchange core comprising an annular body, the annular body being formed with a first inner annular surface and a first outer annular surface along a first side in the axial direction, the annular body being second in the axial direction a second inner annular surface and a second outer annular surface are formed on the side, and a plurality of air inlet passages are formed between the second outer annular surface and the first inner annular surface, the first outer annular surface and the A plurality of air outlet channels are formed between the second inner annular surfaces, and the plurality of air inlet channels and the plurality of air outlet channels are arranged in a cross.
- the first inner annulus and the second inner annulus are not in communication with each other; and/or the first outer annulus is The outer annulus is not connected to each other.
- the annular body has a circular or elliptical ring in a radial cross section.
- the longitudinal section of the annular body in the axial direction is two polygons symmetrically disposed with respect to the axis of the annular body, the polygonal The number of sides is greater than or equal to four.
- the two polygons coincide close to each other's vertices or edges.
- the midpoints of the vertices or edges of the two polygons away from each other are in the same line with the midpoints of the vertices or edges of the two polygons close to each other. on.
- the polygon is a diamond shape.
- the air inlet flow passage and the air outlet flow passage are linear flow passages.
- the angle between the inlet air flow passage and the outlet air flow passage is 90°.
- the bidirectional inlet and outlet ducts include an outer tube and a first inner tube and a second inner tube disposed in the outer tube, the heat exchange a core disposed in the outer tube, the outer edge of the annular body separating the outer tube into a first portion and a second portion, the first inner tube and the second inner tube being respectively located in the first portion And the second portion, the inlet and the outlet of the plurality of inlet air passages are respectively in communication with the second portion and the first inner tube to form an inlet passage, and the inlet and outlet of the plurality of outlet passages And communicating with the first portion and the second inner tube respectively to form an air outlet passage.
- the heat exchange core for the bidirectional inlet and outlet ducts includes an annular body, and the first main annular surface of the annular body is formed along the first side in the axial direction. And a first outer annular surface, the second main body of the annular body is formed with a second inner annular surface and a second outer annular surface, and a plurality of inlet air flows are formed between the second outer annular surface and the first inner annular surface A plurality of air outlet passages are formed between the first outer annular surface and the second inner annular surface, and the plurality of air inlet passages and the plurality of air outlet passages are arranged in a cross arrangement.
- the heat exchange core of the present invention can be applied to the bidirectional inlet and outlet ducts by opening the cross-arranged intake air passages and the air outlet passages on the annular body, thereby reducing the occupation space of the heat exchange core and reducing the transformation cost.
- the bidirectional inlet and outlet duct includes an outer tube and a first inner tube and a second inner tube disposed in the outer tube, and the heat exchange core is disposed in the outer tube, and an outer edge of the annular body separates the outer tube into the outer tube a portion and a second portion, the first inner tube and the second inner tube are respectively located at the first portion and the second portion, and the inlet and the outlet of the plurality of inlet air passages respectively communicate with the second portion and the first inner tube to form an air inlet passage, The inlet and outlet of the plurality of outlet passages communicate with the first portion and the second inner tube, respectively, to form an outlet passage.
- the heat exchange core can be naturally combined with the bidirectional inlet and outlet ducts into a tubular heat exchanger having a unique annular structure so as not to affect the heat.
- the space occupation of the air inlet duct and the air outlet duct can be greatly reduced, and since the heat exchanger can be installed directly in the wall or in the window during installation, it does not occupy The indoor space thus reduces the number of punches during installation, improves the aesthetics of the room, and greatly reduces the cost of installation and retrofit.
- the heat exchange core in the prior art is generally prismatic and there has not been a technical solution using a ring-shaped heat exchange core
- the heat exchange core of the present invention has outstanding substantive features and significant progress due to its novel structure. It greatly enriches the product categories of heat exchange cores and increases the variety of heat exchange core products.
- FIG. 1 is a schematic structural view of a heat exchange core for bidirectional inlet and outlet ducts according to a first embodiment of the present invention
- Figure 2 is a front elevational view of a heat exchange core for bidirectional inlet and outlet ducts in a first embodiment of the present invention
- Figure 3 is a plan view of a heat exchange core for a bidirectional inlet and outlet duct in the first embodiment of the present invention
- Figure 4 is a cross-sectional view of Figure 3 taken along the line A-A;
- Figure 5 is a cross-sectional view taken along line B-B of Figure 3;
- Figure 6 is a schematic structural view of a heat exchanger according to a first embodiment of the present invention.
- Figure 7A is a schematic cross-sectional view of the annular body in the radial direction in the first embodiment of the present invention.
- FIGS. 7B-7F are schematic cross-sectional views showing several other different embodiments of the annular body in the first embodiment of the present invention.
- FIG. 8 is a schematic structural view of a heat exchange core for a bidirectional inlet and outlet duct in a second embodiment of the present invention.
- Figure 9 is a front elevational view of a heat exchange core for a bidirectional inlet and outlet duct in a second embodiment of the present invention.
- Figure 10 is a cross-sectional view of Figure 9 taken along the line C-C;
- Figure 11 is a cross-sectional view of Figure 9 taken along the line D-D;
- Figure 12 is a schematic structural view of a heat exchanger according to a second embodiment of the present invention.
- Figure 13 is a schematic view showing the structure of a dual-flow fresh air purification device of the present invention (without a draft tube);
- Figure 14 is a schematic view showing the working principle of the dual-flow fresh air purification device of the present invention (without a draft tube);
- Figure 15 is a schematic view showing the structure of a dual-flow fresh air purification device of the present invention (with a draft tube);
- Figure 16 is a schematic view showing the working principle of the dual-flow fresh air purification device of the present invention (with a draft tube);
- Figure 17 is a schematic structural view of a cabinet type air conditioner indoor unit of the present invention (1);
- Figure 18 is a schematic structural view (2) of the cabinet type air conditioner indoor unit of the present invention.
- the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed connections, for example, or It is a detachable connection, or an integral connection; it may be a mechanical connection or an electrical connection; it may be directly connected or indirectly connected through an intermediate medium, and may be internal communication between the two elements.
- the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
- FIG. 1 is a schematic structural view of a heat exchange core for bidirectional inlet and outlet ducts according to a first embodiment of the present invention
- FIG. 2 is a heat exchange core for bidirectional inlet and outlet ducts according to a first embodiment of the present invention
- Figure 3 is a plan view of the heat exchange core for the bidirectional inlet and outlet ducts in the first embodiment of the present invention
- Fig. 4 is a cross-sectional view taken along line AA of Fig. 3
- Fig. 5 is a cross-sectional view taken along line BB of Fig. 3.
- Fig. 6 is a schematic structural view of a heat exchanger according to a first embodiment of the present invention.
- the present invention first provides a heat exchange core 1 for bidirectional inlet and outlet ducts 2, the bidirectional inlet and outlet ducts 2 including an outer tube 21 and a first inner tube disposed in the outer tube 21. 22 and the second inner tube 23, the heat exchange core 1 includes an annular body 11 having a first inner annular surface 12 and a first outer annular surface 13 formed along the first side in the axial direction, the annular body 11 along The second inner side of the axial direction is formed with a second inner annular surface 14 and a second outer annular surface 15, and a plurality of air inlet passages 16 are formed between the second outer annular surface 15 and the first inner annular surface 12, and the first outer ring A plurality of air outlet passages 17 are formed between the surface 13 and the second inner annular surface 14, and the plurality of inlet air flow passages 16 and the plurality of air outlet passages 17 are arranged in a cross arrangement.
- the outer edge of the annular body 11 divides the outer tube 21 into a first portion and a second portion, and the first inner tube 22 and the second inner tube 23 are respectively located at the first portion and the second portion
- the inlet and outlet of the plurality of inlet passages 16 communicate with the second portion and the first inner tube 22, respectively, to form an inlet passage
- the inlet and outlet of the plurality of outlet passages 17 are respectively associated with the first portion and the second inner tube 23 Connected to form an air passage.
- the annular body 11 has a circular cross section (ie, a section perpendicular to the drawing surface in FIG. 4 or FIG. 5).
- the longitudinal section of the direction (referring to the section taken along the axial direction and passing through the center of the heat exchange core 1, i.e., the section shown in Figs.
- a plurality of linear air inlet passages 16 having a rectangular cross section, a first outer annular surface 13 and a second inner ring are disposed between the second outer annular surface 15 and the first inner annular surface 12.
- a plurality of straight-shaped air outlet passages 17 having a rectangular cross section are disposed between the faces 14, and it can be seen from the figure that the outlet air flow passages 17 and the intake air flow passages 16 are disposed at a vertical angle of 90°.
- the outer tube 21, the first inner tube 22 and the second inner tube 23 are circular tubes.
- the bidirectional inlet and outlet ducts 2 are disposed in the wall 7, and the heat exchange core 1 is disposed on the wall In the two-way inlet and outlet duct 2, the outer edge of the annular body 11 is matched with the inner wall of the outer tube 21, thereby dividing the outer tube 21 into a first portion on the left side of the heat exchange core 1 and a second portion on the right side of the heat exchange core 1. section.
- the first inner tube 22 is in sealing communication with the first inner annular surface 12 of the annular body 11
- the second inner tube 23 is in sealing communication with the second inner annular surface 14 of the annular body 11 such that the first portion of the outer tube 21 ,
- the air outlet passage 17 and the second inner tube 23 form an air passage through which the indoor air can flow out of the outdoor, and the second portion of the outer tube 21, the inlet air passage 16 and the first inner tube 22 form an air inlet passage, and the outdoor
- the fresh air can flow into the room through the air inlet passage, and exchange heat with the indoor air in the air outlet passage 17 during the passage through the intake air passage 16.
- the heat exchange core 1 of the present invention can be applied to the two-way inlet and outlet duct 2 by opening the air flow passage 16 and the air outlet passage 17 which are arranged in a crosswise manner on the annular main body 11, and a plurality of The inlet and outlet of the air flow passage 16 communicate with the second portion and the first inner tube 22, respectively, to form an air inlet passage, and the inlet and outlet of the plurality of air outlet passages 17 communicate with the first portion and the second inner tube 23, respectively, to form an air outlet.
- the passage whereby the heat exchange core 1 and the bidirectional inlet and outlet duct 2 are combined into a tubular heat exchanger.
- the unique annular structure of the heat exchange core 1 is disposed in the outer tube 21 through the first inner tube 22 and the second inner tube 23 without affecting the amount of air exchange of the heat exchanger, thereby greatly reducing the inlet duct and The space of the air outlet pipe is occupied, and since the tubular heat exchanger can directly install the outer tube 21 in the wall or the window during installation, the indoor space is not occupied, thereby reducing the number of punching holes during installation. It improves the aesthetics of the interior and greatly reduces the cost of installation and renovation.
- the outer edge of the annular body 11 is matched with the inner wall of the outer tube 21 and the two diamonds are arranged close to each other, so that the inlet passage and the outlet passage are completely insulated, and the ventilation effect of the heat exchanger is enhanced.
- the longitudinal section along the axial direction is two diamonds that are vertically symmetrical and the points close to each other and the points away from each other are arranged in the same vertical line, and at the same time, the air volume of the intake air and the air volume of the wind are matched to further enhance The heat exchange effect between indoor air and outdoor fresh air.
- the arrangement of the rectangular air inlet passage and the air outlet passage ensures that the number of the flow passages of the annular main body 11 is sufficient and the spacing between the different flow passages is uniform, and the utilization ratio and heat exchange effect of the annular main body 11 are improved.
- the heat exchange core 1 in the prior art is generally prismatic, and there has not been a technical solution using the annular heat exchange core 1 of the present invention, the heat exchange core 1 of the present invention is outstanding due to its novel structure. Substantial features and significant advancements have greatly enriched the product range of the heat exchange core 1 and increased the product diversity of the heat exchange core 1 and the heat exchanger.
- the above-described embodiments are merely intended to illustrate the principles of the present invention, and are not intended to limit the scope of the present invention. Those skilled in the art can modify the present invention in any form without departing from the principles of the invention.
- the invention can be applied to more specific application scenarios.
- the cross section of the annular body 11 in the radial direction may also be an elliptical ring or an annular ring of any form, as long as the ring matches the two-way inlet and outlet duct 2, so as to enrich the application scenario of the present invention.
- the baffles may be disposed to achieve mutual disconnection;
- the longitudinal section of the annular body 11 in the axial direction may also be an arbitrary polygon as long as the number of sides is greater than four, so that the inner ring surface and the outer ring surface can be formed on both sides; for example, the two polygons are away from each other.
- the midpoint of the point or edge and the midpoint of the point or edge of the two polygons close to each other may not be on the same vertical line; for example, the cross section of the inlet flow path 16 or the outlet flow path 17 may also be circular or other
- the shape and the flow path can also be curved flow paths, the number of flow channels, and can also be changed based on actual application scenarios.
- Figures 7A-7F illustrate several other possible aspects of the longitudinal section of the annular body 11 in the axial direction, wherein Figure 7A illustrates an embodiment in which the aforementioned cross-section is two diamonds; Figure 7B And FIG. 7C shows a case where two polygons are a regular pentagon, and the intake air flow path 16 and the air flow flow path 17 shown in FIG. 7B are curved; FIGS. 7D and 7E show that the two variability is a positive hexagonal In the case of the shape, and in FIG. 7D, the annular body 11 has two first outer annular faces 13 and two second outer annular faces 15, and the inlet air flow passage 16 and the outlet air flow passage 17 shown in FIG.
- FIG. 7E are also It may be a combination of a curve and a straight line;
- FIG. 7F shows a case where two polygons are a regular heptagon, and it also shows that the annular body 11 has two first inner annular faces 12 and two first outer annular faces. 13 and two second outer annulus 15 .
- FIG. 8 is a schematic structural view of a heat exchange core for bidirectional inlet and outlet ducts according to a second embodiment of the present invention
- FIG. 9 is a heat exchange core for bidirectional inlet and outlet ducts according to a second embodiment of the present invention
- Figure 10 is a cross-sectional view of Figure 9 in the direction of CC
- Figure 11 is a cross-sectional view of Figure 9 along the DD direction
- Figure 12 is a schematic view of the structure of the heat exchanger of the second embodiment of the present invention.
- the present invention also provides a heat exchange core 3 for bidirectional inlet and outlet ducts 4, the bidirectional inlet and outlet ducts 4 including an outer tube 41 and a first inner tube disposed in the outer tube 41 42 and a second inner tube (not shown), the heat exchange core 3 includes a prismatic body 31 having at least two formed on the first side of the X direction (the coordinate system as shown in FIG. 8) a first inner facet 32 and at least two first outer facets 33, the second side of the prismatic body 31 in the X direction is formed with at least two second inner facets 34 and at least two second outer facets 35 ( Referring to FIG.
- a plurality of air inlet passages 36 are formed between the second outer prism faces 35 and the corresponding first inner face faces 32, and a first outer face face 33 and a corresponding second inner face face 34 are formed between A plurality of air outlet channels 37, a plurality of air inlet channels 36 and a plurality of air outlet channels 37 are arranged in a cross. Referring to FIG.
- the prismatic body 31 divides the outer tube 41 into a first portion and a second portion, and the first inner tube 42 and the second inner tube are respectively located at the first portion and the second portion
- the inlet and outlet of the plurality of inlet passages 36 communicate with the second portion and the first inner tube 42, respectively, to form an inlet passage
- the inlet and outlet of the plurality of outlet passages 37 are respectively connected to the first portion and the second inner tube.
- the cross section of the prismatic body 31 along the XOY plane is two diamonds that are vertically symmetrical, and the two diamonds coincide with each other.
- the vertices of the two diamonds away from each other are on the same vertical line with the vertices coincident with each other, so that the two first inner facets 32 and the two second inner facets 34 are not connected to each other, and the two first outer edges are The face 33 and the two second outer facets 35 are not in communication with each other.
- a plurality of linear air inlet passages 36 each having a rectangular cross section are disposed between each of the second outer prism faces 35 and the first inner prism faces 32, and each of the first outer facets 33 is
- a plurality of linear air outlet passages 37 having a rectangular cross section are disposed between the second inner prism faces 34, and as can be seen from FIG. 10 and FIG. 11, the outlet air flow passages 37 are vertically disposed at 90 degrees to the intake air flow passages 36. .
- the two-way inlet and outlet ducts 4 which are rectangular tubes, of the outer tube 41, the first inner tube 42 and the second inner tube, can be disposed in the wall, and the heat exchange core 3 is disposed in two-way access.
- the outer edge of the prismatic body 31 is matched with the four inner walls of the outer tube 41, thereby dividing the outer tube 41 into a first portion on the front side of the heat exchange core 3 and a portion on the rear side of the heat exchange core 3. Two parts (not shown in the figure).
- the first inner tube 42 is in sealing communication with the two first inner facets 32 of the prismatic body 31, and the second inner tube is in sealing communication with the two second inner facets 34 of the prismatic body 31 such that the outer tube 41
- the first portion, the air outlet passage 37 and the second inner tube form an air passage through which the indoor air can flow out of the outdoor, and the second portion of the outer tube 41, the inlet air passage 36 and the first inner tube 42 form an air inlet passage.
- the outdoor fresh air can flow into the room through the air inlet passage, and exchange heat with the indoor air in the air outlet passage 37 during the passage through the intake air passage 36.
- the heat exchange core 3 of the present invention can be applied to the two-way inlet and outlet ducts 4 by opening the cross-arranged intake air passages 36 and the outlet air passages 37 on the prismatic main body 31, and
- the inlet and outlet of the air flow passage 36 communicate with the second portion and the first inner tube 42, respectively, to form an air inlet passage
- the inlet and the outlet of the plurality of air outlet passages 37 communicate with the first portion and the second inner tube, respectively, to form an air passage.
- the heat exchange core 3 and the bidirectional inlet and outlet duct 4 are combined into a tubular heat exchanger.
- the unique prismatic structure of the heat exchange core 3 allows the first inner tube 42 and the second inner tube to be disposed in the outer tube 41 without affecting the amount of air exchange of the heat exchanger, thereby greatly reducing the inlet duct and the outlet.
- the space of the air duct is occupied; and since the tubular heat exchanger can directly install the outer tube 41 in the wall or the window during installation, it does not occupy the indoor space, thereby reducing the number of punches during installation. Improves the aesthetics of the interior, greatly reducing the cost of installation and retrofit.
- the outer edge of the prismatic body 31 is matched with the inner wall of the outer tube 41 and the two diamonds are arranged close to each other, so that the air inlet passage and the air outlet passage are completely insulated, and the heat exchange effect of the heat exchanger is enhanced.
- the cross section along the XOY plane is two diamonds that are vertically symmetrical, and the points close to each other and the points away from each other are arranged in the same vertical line, which simultaneously ensures that the intake air volume and the air volume of the wind are matched, further enhancing Heat exchange effect between indoor air and outdoor fresh air.
- the arrangement of the rectangular air inlet passage and the air outlet passage ensures that the number of the flow passages of the prismatic main body 31 is sufficient and the spacing between the different flow passages is uniform, and the utilization ratio and heat exchange effect of the prismatic main body 31 are improved.
- the cross section of the body 31 along the XOY plane may also be an arbitrary polygon as long as the number of sides is greater than four, so that at least two inner facets and at least two outer facets can be formed on both sides; for example, two polygons
- the midpoint of the point or edge away from each other and the midpoint of the point or edge of the two polygons close to each other may not be on the same vertical line; for example, the two polygons formed by the section of the prismatic body 31 along the XOY plane may also Asymmetric setting, even the number of sides of the polygon may be different; for example, the cross section of the inlet flow passage 36 or the outlet flow passage 37 may also be a circular shape or other shape, and the flow passage may also be a curved flow passage or a flow passage.
- the quantity can also be changed based on the actual application scenario.
- the shape of the cross section of the prismatic body 31 along the XOY plane and the form of the flow path can still be set with reference to FIGS. 7A-7F, and details are not described herein again.
- FIG. 13 is a schematic structural view of a dual-flow fresh air purification device of the present invention (without a draft tube);
- FIG. 14 is a schematic view of the working principle of the dual-flow fresh air purification device of the present invention (without a draft tube); Schematic diagram of the structure of the dual-flow fresh air purification device (with a draft tube);
- Figure 16 is a schematic view of the working principle of the dual-flow fresh air purification device of the present invention (with a draft tube).
- the dual-flow fresh air purification device 5 (hereinafter referred to as the purification device 5) of the present invention mainly includes a two-way inlet and outlet duct, an air intake system, and an exhaust system.
- the two-way inlet and outlet ducts include an outer tube 511 and a first inner tube 512 and a second inner tube 513 disposed in the outer tube 511.
- the outer tube 511 is provided with a heat exchange core 52, which is in the above embodiment 1. Heat exchange core 1 or heat exchange core 3 in Example 2.
- the heat exchange core 52 divides the outer tube 511 into a first portion and a second portion, and the first inner tube 512 and the second inner tube 513 are located at the first portion and the second portion, respectively.
- the air inlet system includes, in order of air flow direction, a second wind fence 543, a second portion of the outer tube 511, a second filter assembly 532, an electrical auxiliary heat assembly 535, and an NCCO oxygen depolymerization assembly 533.
- the exhaust system includes, in order of air flow, a first wind grating 536, a first portion of the outer tube 511, a first filter assembly 542, The heat exchange core 52, the exhaust fan 541, and the second inner tube 513.
- the air inlet system is configured to be able to introduce the outdoor fresh air into the purification device 5 through the second wind grill 543 under the driving of the induced draft fan 531, and sequentially pass through the second portion of the outer tube 511, the second filter assembly 532, and the electric auxiliary heat.
- the assembly 535, the NCCO oxygen depolymerization assembly 533, the negative ion assembly 534, the heat exchange core 52, the induced draft fan 531, and the first inner tube 512 are introduced into the chamber;
- the exhaust system is configured to be capable of driving the indoor dirty air under the driving of the exhaust fan 541.
- the purification device 5 is introduced through the first wind grill 536 and sequentially passes through the first portion of the outer tube 511, the first filter assembly 542, the heat exchange core 52, the exhaust fan 541, and the second inner tube 513, and is discharged to the outside.
- the indoor dirty air and the outdoor fresh air can be sufficiently heat exchanged to reduce the energy loss of the indoor air, and the fresh air of the indoor air can be used for the initial heating/cooling as much as possible.
- the heat exchange core 52 is disposed in the outer tube 511 and divides the outer tube 511 into a first portion on the left side of the heat exchange core 52 and a second portion on the right side of the heat exchange core 52, the first wind.
- the first louver 536 is provided with a first through hole matching the first inner tube 512, and the left end of the first inner tube 512 is extended.
- the first louver 536 is screwed to the two ends of the outer tube 511.
- the first through hole communicates with the indoor, the right end is in communication with the left side of the heat exchange core 52, and the inside of the first inner tube 512 is provided with an induced draft fan 531, such as an axial flow fan, a cross flow fan or a centrifugal fan.
- the second wind grill 543 is provided with a second through hole matched with the second inner tube 513, the left end of the second inner tube 513 is in abutting communication with the right side of the heat exchange core 52, and the right end is extended to the second through hole and the outdoor end.
- an exhaust fan 541 such as an axial flow fan, a cross flow fan or a centrifugal fan.
- a first filter assembly 542, a heat exchange core 52, a negative ion assembly 534, an NCCO oxygen depolymerization assembly 533, an electrical auxiliary heat assembly 535, and a first portion are disposed between the first wind grating 536 and the second air grating 543.
- the first filter assembly 542 is preferably a device capable of removing formaldehyde and TVOC in the indoor air, such as an activated carbon filter, etc., and the second filter assembly 532 is provided for the purpose of absorbing harmful gases in the air when the indoor dirty air is discharged to the outside. Effectively protect the external environment and reduce the pollution of indoor air to the outdoor environment.
- the second filter assembly 532 is preferably a HEPA filter, and the HEPA filter generally includes three layers of filtration layers (primary filter layer, charged layer, electrostatic dust collecting layer), and the removal efficiency of particles having a diameter of 0.3 ⁇ m or less can reach 99.97%. the above.
- the purpose of the negative ion assembly 534 is that the negative ions can remove the ozone, ammonia and other gases in the fresh air, thereby achieving the effects of calming, analgesic, antitussive, antipruritic, diuretic, appetite, blood pressure lowering and the like.
- the NCCO oxygen depolymerization module 533 is set up to be different from most air purifier materials that use activated carbon as the inner core, and can only be adsorbed and cannot be decomposed, and the filter core costs a lot of time to be replaced.
- the NCCO oxygen polymerization reaction layer has the characteristics. : 1, the purification time is short.
- the oxygen polymerization reaction layer can capture air impurities and adsorb home pollution gas immediately when the fresh air passes, and release the active oxygen through the internal oxygen generator. Under the nano-environment of NCCO, the formaldehyde can be efficiently and completely decomposed through a few milliseconds of catalysis.
- Odor killing 99% of harmful bacteria in the air, the decomposition efficiency of harmful gases such as ammonia is as high as 92%. 2, the purification effect reaches the medical level. Since the harmful gas is decomposed into carbon dioxide and water during the purification process, and there is no harmful matter or ozone residue in the process, no secondary pollution is caused, and the filter element is not required to be replaced, so the oxygen depolymerization component can also restore the fresh essence of the air. , to the maximum extent of saving supplies.
- the electric auxiliary heat assembly 535 may be an electric heating wire or a PTC semiconductor heating ceramic capable of initial heating the fresh air passing through the second filter assembly 532 in the winter so that the outdoor fresh air is subjected to heat exchange through the heat exchange core 52 twice. Increase the temperature of the fresh air, maintain the balance of room temperature, and improve the comfort of the room.
- the inner wall of the first inner tube 512 is further coated with a super-structured photomineralized coating (not shown) for removing organic contaminants in the indoor air.
- the working principle of superstructured photomineralization technology is to adopt a new method to make micro-nano structural materials, improve their adsorption capacity, improve the responsiveness to light, activate energy from ultraviolet light to visible light, promote carrier separation, and reduce compounding.
- the probability of degrading pollutants has increased by two orders of magnitude, and the mineralization rate has been greatly improved.
- the super-structured photomineralization material combines a novel photosensitizing material, an ultra-structural metal compound and a nano-oxide to make the photocatalytic efficiency 10 to 100 times that of the conventional photocatalyst technology, and promote photo-generated carrier separation and reduce the recombination probability.
- the time to decompose pollutants has been shortened from a few hours to a subversive few minutes, and the mineralization rate has also increased to 98.72%.
- Superstructured photomineralization technology has achieved great results in the time and reduction rate of mineralized pollutants, harmful gases and bacteria, especially the organic pollutants such as formaldehyde and benzene in waste water and waste gas have been rapidly mineralized into carbon dioxide and water.
- the first inner tube 512 coated with the super-structured photomineralization technology eliminates the low reusability of the conventional photocatalyst, and the cleaning is very convenient, and can be used for a long time simply by rinsing with pure water, and the first inner tube 512 is added. Service life.
- the first inner tube 512 and the second inner tube 513 are respectively provided with a first positioning structure 5121 and a second positioning structure 5131 (such as welding/bonding).
- a positioning ring or a positioning protrusion there is a positioning ring or a positioning protrusion), and the first inner tube 512 and the second inner tube 513 are respectively positioned by the first positioning structure 5121 and the second positioning structure 5131.
- the first filter component 542 is provided with a slot structure matched with the first positioning structure 5121. After the first positioning structure 5121 is embedded in the slot structure, the first wind grill 536 and the left end of the outer tube 511 are screwed together during the screwing process.
- the positioning of the first inner tube 512 is achieved by locating the structure 5121.
- the second filter assembly 532 is provided with a slot structure matching the second positioning structure 5131. After the second positioning structure 5131 is embedded in the slot structure, the second wind grill 543 is pressed against the right end of the outer tube 511. The positioning of the second inner tube 513 is achieved by the manner of the second positioning structure 5131.
- the groove structure can also be opened inside the first wind grating 5121 or the second wind grating 5131.
- a detection assembly (not shown) may be provided on the purification device 5.
- a carbon dioxide sensor is disposed at the outer side of the first inner tube 512 or at the first portion of the outer tube 511 for detecting the concentration of carbon dioxide in the chamber.
- the purifying device 5 can be automatically turned on to the indoor air. Purify and change the fresh air.
- a bacteria content detector is disposed in the first portion of the outer tube 511 or the second inner tube 513 for detecting the bacterial content in the fresh air in the room. When the content exceeds a certain threshold, the purifying device 5 is automatically turned on for a fresh air. The indoor air is replaced.
- a temperature sensor is disposed at the nozzle of the first inner tube 512 to detect the temperature of the outdoor fresh air after the heat exchange.
- the electric auxiliary heat assembly 535 is automatically turned on to heat the fresh air. To increase the fresh air temperature, reduce the impact of fresh air on the indoor temperature, and improve indoor comfort.
- the dual-flow fresh air purifying device 5 of the present invention solves the problem that the prior art adopts the fresh air system to improve the indoor air quality by using the arrangement of the heat exchange core 52, and has a large occupied space and high transformation cost. problem.
- the unique structure of the heat exchange core 52 makes it possible to subtly arrange the first inner tube 512 and the second inner tube 513 in the outer tube 511 without affecting the purification effect of the purification device 5, thereby greatly reducing the inlet duct and the outlet.
- the space of the air duct is occupied; and since the tubular purifying device 5 can directly install the outer tube 511 in the wall or the window during installation, it does not occupy the indoor space, thereby reducing the number of punching holes during installation.
- the setting of the first filter component 542 can effectively remove formaldehyde and TVOC in the indoor exhaust air, thereby protecting the outdoor environment, making a due contribution to environmental protection, and embodying the sense of responsibility of the enterprise.
- the HEPA filter layer is designed to allow fresh air to be filtered step by step and to breathe more freely.
- the setting of the negative ion component 534 can remove the ozone, ammonia and other gases in the fresh air, thereby achieving the effects of calming, analgesic, antitussive, antipruritic, diuretic, appetite, blood pressure lowering and the like.
- the setting of the NCCO oxygen depolymerization module 533 can greatly shorten the purification time, improve the purification efficiency, and save consumables.
- the provision of the super-structured photomineralized coating in the first inner tube 512 can improve the removal effect of the indoor organic contaminants and increase the service life of the first inner tube 512.
- the setting of the detecting component enables the purifying device 5 to realize automatic detection of each functional component and realize automatic control, and the high integration of the above multifunctional component in the purifying device 5 also reduces the cost of purchasing a single functional module, realizing one machine More use.
- a first draft tube 537 and a second draft tube 544 are disposed at an inner end of the first inner tube 512 and an outer end of the second inner tube 513.
- the first draft tube 537 / the second flow guide 544 are screwed.
- the first inner tube 512 / the second inner tube 513 are connected by welding or bonding.
- the nozzle areas of the first draft tube 537 and the second draft tube 544 are gradually increased in a direction away from the first inner tube 512 and the second inner tube 513, that is, a direction in which fresh air flows into the room and indoor air.
- the direction of discharge is a trumpet shape with a circular or rectangular cross section.
- the superstructured photomineralized coating may be coated in the first draft tube 537 to increase the contact area with the indoor air.
- the advantage of this arrangement is that, on the one hand, the air inlet system and the exhaust air system each constitute a venturi tube, and the venturi effect realizes the accelerated circulation of the outdoor fresh air and the indoor airflow, thereby improving the purification efficiency and the fresh air efficiency; on the other hand, preventing The mutual interference between the outdoor fresh air and the indoor turbid air effectively avoids the phenomenon that the outdoor fresh air is sucked out of the exhaust system when it enters the room, and the indoor dirty air is discharged to the outside and then sucked back into the room.
- the unique structural design of the heat exchange core 52 subtly realizes the smooth combination and separation of the airflow, and also creates conditions for the formation of the Venturi effect.
- FIG. 17 is a schematic structural view (1) of the cabinet type air conditioner indoor unit of the present invention
- FIG. 18 is a schematic structural view (2) of the cabinet type air conditioner indoor unit of the present invention.
- the cabinet type air conditioner indoor unit 6 of the present invention mainly comprises a casing 61, a return air outlet 62, an air outlet 63, and the dual-flow fresh air purification device 5 described in the above embodiment 3, and a dual-flow fresh air purification system.
- the apparatus 5 includes an air intake system and an air exhaust system, and the first inner tube 512 of the air intake system communicates with the air return port 62 or the air outlet 63 of the cabinet air conditioner indoor unit 6.
- the air inlet system is configured to be introduced into the dual-flow fresh air purification device through the second portion of the outer tube and through the heat exchange core, and then introduced into the cabinet air conditioner indoor unit 6 through the first inner tube 512, driven by the induced draft fan.
- the air exhaust system is arranged to introduce the indoor air into the dual-flow fresh air purifying device 5 through the first part of the outer tube under the driving of the exhaust fan. After heat exchange with the fresh air introduced by the air inlet system through the heat exchange core, it is discharged to the outside through the second inner tube.
- the dual-flow fresh air purification device 5 is installed in the wall 7 on the right side of the air conditioner indoor unit, and the first inner tube 512 communicates with the casing on the back side of the cabinet air conditioner indoor unit 6 through the connection pipe 8, and further with the air return port. 62 connected.
- the first inner tube 512 can also directly communicate with the housing on the back of the cabinet air conditioner indoor unit 6, and the dual flow fresh air purification device can also be disposed on the left side of the air conditioner indoor unit, the upper left side, and the nearby window.
- the effect of purifying the indoor air and changing the fresh air can be achieved without affecting the aesthetic appearance of the room, and the modification cost and the input cost in this way are greatly reduced compared with the purchase of the air purifier or the installation of the fresh air system.
- the purification device 5 can be separately controlled.
- the purification device 5 is internally provided with an electronic control component (not shown), the remote control device is configured for the purification device 5, or the internal power of the purification device 5 is used by using the mobile phone APP or the like.
- the control component is controlled, and the purifying device 5 can also be combined with the air conditioner, for example, a button for controlling the purifying device 5 is reserved in advance on the air conditioner remote controller, and the main control component is directly connected to the air conditioner through the air conditioner remote controller.
- the integrated interface control of the purification device 5 is achieved by means of an interface.
- the heat exchange core, the dual-flow fresh air purification device and the cabinet air conditioner indoor unit of the present invention have the following effects: (1) innovative heat exchange core structure It enriches the product types of heat exchange cores and increases the diversity of products; (2) It can realize the effect of ventilation and ventilation without opening the window, and easily add fresh air to the room after purification, thereby increasing indoor oxygen content. Improve the degree of air purification to meet the needs of most customer groups, greatly enhancing the practicality; (3) The dual-flow fresh air purification device adopts two-way inlet and outlet ducts to realize two-way air exchange while reducing the number of wall penetrations or window wear and space occupation.
- the dual-flow fresh air purification device has a simple structure and low cost, and covers a plurality of currently advanced functional components, which can be perfectly combined with an air conditioner, and intelligently realizes multi-purpose use of the machine; Negative ions have been praised by the medical community as "vitamins in the air”. The setting of negative ion components can promote the metabolism of the human body and improve immunity.
- the present embodiment is described as a cabinet type air conditioner indoor unit, this is not intended to limit the scope of protection of the present invention, and those skilled in the art can understand that the dual flow type fresh air purifying apparatus of the present invention can be understood. It can also be applied to other air conditioner indoor units, such as a hanging air conditioner indoor unit, a window type air conditioner, or a central air conditioner.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
一种用于双向进出风管(2)的热交换芯(1),包括环状主体(11),环状主体(11)沿轴向的第一侧形成有第一内环面(12)和第一外环面(13),环状主体(11)沿轴向的第二侧形成有第二内环面(14)和第二外环面(15),第二外环面(15)和第一内环面(12)之间形成有多个进风流道(16),第一外环面(13)和第二内环面(14)之间形成有多个出风流道(17),多个进风流道(16)和多个出风流道(17)交叉排列。
Description
本发明涉及空气调节领域,具体涉及一种用于双向进出风管的热交换芯。
国际能源署发布的空气污染报告中明确提到:多达97%的中国人都暴露在超过世界卫生组织标准的PM2.5的危害下,严重的空气污染已导致中国人均寿命缩短25月,生活在重雾霾区的人群心肺免疫力下降了10%。近些年,由于空气污染加剧,雾霾频发,人们无法经常开窗通风换气,导致室内空气中的PM2.5等细菌颗粒极易侵入肺部及呼吸道,引起咳嗽、哮喘、肺炎甚至肺癌等疾病的同时,也引起人群间的交叉感染,被视为呼吸道流行病的根本原因。再加上人们长期处于室内的密闭环境中,甲醛、TVOC等装修污染物和人们呼出的二氧化碳不能及时排出室外而导致上述参数的浓度超标,还极易导致头晕、耳鸣,恶心,四肢乏力等症状。
为解决上述无法开窗通风换气的问题,现有技术中通常有两种解决方案,其一是购买空气净化器对室内空气进行过滤,其二是在室内安装大型新风系统,将室外新风通入室内每一个房间,对室内空气进行过滤和更换。虽然相比于空气净化器,新风系统由于可以将室外新风引入室内而具有更好的换气效果,但是新风系统也不可避免地具有以下问题。其主要表现在,现有新风系统中通常使用的热交换芯为棱柱状(如六棱柱或四棱柱),该热交换芯的进风通道和出风通道需要单独连接进风管道和出风管道,这样一来,进风管道和出风管道不仅占用了新风主机(或称为全热交换器)的空间,而且还导致在墙体上或玻璃上需要开设两个管道孔,增加了穿墙或穿窗的次数,降低了室内的美观性,增大了新风系统的安装成本。
相应地,本领域需要一种新的用于双向进出风管的热交换芯来解决上述问题。
发明内容
为了解决现有技术中的上述问题,即为了解决现有的采用棱柱状热交换芯的新风系统存在的占用空间大、改造成本高的问题,本发明提供了一种用于双向进出风管的热交换芯,该热交换芯包括环状主体,所述环状主体沿轴向的第一侧形成有第一内环面和第一外环面,所述环状主体沿轴向的第二侧形成有第二内环面和第二外环面,所述第二外环面和所述第一内环面之间形成有多个进风流道,所述第一外环面和所述第二内环面之间形成有多个出风流道,所述多个进风流道和所述多个出风流道交叉排列。
在上述用于双向进出风管的热交换芯的优选技术方案中,所述第一内环面与所述第二内环面互不连通;并且/或者所述第一外环面与所述第外环面互不连通。
在上述用于双向进出风管的热交换芯的优选技术方案中,所述环状主体沿径向的横截面为圆环或椭圆环。
在上述用于双向进出风管的热交换芯的优选技术方案中,所述环状主体沿轴向的纵截面为两个相对于所述环状主体的轴线对称设置的多边形,所述多边形的边数大于等于四。
在上述用于双向进出风管的热交换芯的优选技术方案中,所述两个多边形靠近彼此的顶点或边线重合。
在上述用于双向进出风管的热交换芯的优选技术方案中,所述两个多边形远离彼此的顶点或边线的中点与所述两个多边形靠近彼此的顶点或边线的中点处于同一直线上。
在上述用于双向进出风管的热交换芯的优选技术方案中,所述多边形为菱形。
在上述用于双向进出风管的热交换芯的优选技术方案中,所述进风流道和所述出风流道为直线型流道。
在上述用于双向进出风管的热交换芯的优选技术方案中,所述进风流道与所述出风流道之间的夹角为90°。
在上述用于双向进出风管的热交换芯的优选技术方案中,所述双向进出风管包括外管和设置于所述外管中的第一内管和第二内管, 所述热交换芯设置于所述外管中,所述环状主体的外缘将所述外管分隔为第一部分和第二部分,所述第一内管和所述第二内管分别位于所述第一部分与所述第二部分,所述多个进风流道的进口和出口分别与所述第二部分和所述第一内管连通从而形成进风通道,所述多个出风流道的进口和出口分别与所述第一部分和所述第二内管连通从而形成出风通道。
本领域技术人员能够理解的是,在本发明的优选技术方案中,用于双向进出风管的热交换芯包括环状主体,环状主体沿轴向的第一侧形成有第一内环面和第一外环面,环状主体沿轴向的第二侧形成有第二内环面和第二外环面,第二外环面和第一内环面之间形成有多个进风流道,第一外环面和第二内环面之间形成有多个出风流道,多个进风流道和多个出风流道交叉排列。
通过在环状主体上开设交叉排列的进风流道和出风流道,本发明的热交换芯能够应用于双向进出风管中,从而减小热交换芯的占用空间,降低改造成本。具体而言,双向进出风管包括外管和设置于外管中的第一内管和第二内管,热交换芯设置于外管中,其环状主体的外缘将外管分隔为第一部分和第二部分,第一内管和第二内管分别位于第一部分与第二部分,多个进风流道的进口和出口分别与第二部分和第一内管连通从而形成进风通道,多个出风流道的进口和出口分别与第一部分和第二内管连通从而形成出风通道。可以看出,通过将热交换芯置于双向进出风管中,热交换芯能够与双向进出风管自然的结合成管状的热交换器,该热交换芯的独特环状结构使得在不影响热交换器的换风量的前提下,能够大大减小进风管道和出风管道的空间占用,并且由于热交换器在安装时可以直接将外管安装在墙体中或窗体中,并不占用室内空间,因而还减小了安装时的打孔数量,提高了室内的美观性,极大地降低了安装和改造的成本。
此外,由于现有技术中热交换芯通常为棱柱状,还未曾有使用环状的热交换芯的技术方案,因此本发明的热交换芯由于其结构新颖而具有突出的实质性特点和显著的进步,极大地丰富了热交换芯的产品种类,增加了热交换芯产品的多样性。
下面参照附图来描述本发明的用于双向进出风管的热交换芯。附图中:
图1为本发明的第一种实施方式中用于双向进出风管的热交换芯的结构示意图;
图2为本发明的第一种实施方式中用于双向进出风管的热交换芯的主视图;
图3为本发明的第一种实施方式中用于双向进出风管的热交换芯的俯视图;
图4为图3沿A-A方向的剖视图;
图5为图3沿B-B方向的剖视图;
图6为本发明的第一种实施方式中热交换器的结构示意图;
图7A为本发明的第一种实施方式中环状主体沿径向的截面示意图;
图7B-7F为本发明的第一种实施方式中环状主体的几种其他不同实施方式的截面示意图;
图8为本发明的第二种实施方式中用于双向进出风管的热交换芯的结构示意图;
图9为本发明的第二种实施方式中用于双向进出风管的热交换芯的主视图;
图10为图9沿C-C方向的剖视图;
图11为图9沿D-D方向的剖视图;
图12为本发明的第二种实施方式中热交换器的结构示意图;
图13为本发明的双流式新风净化装置的结构示意图(无导流管);
图14为本发明的双流式新风净化装置的工作原理示意图(无导流管);
图15为本发明的双流式新风净化装置的结构示意图(有导流管);
图16为本发明的双流式新风净化装置的工作原理示意图(有导流管);
图17为本发明的柜式空调室内机的结构示意图(一);
图18为本发明的柜式空调室内机的结构示意图(二)。
附图标记列表
1、热交换芯;11、环状主体;12、第一内环面;13、第一外环面;14、第二内环面;15、第二外环面;16、进风流道;17、出风流道;2、双向进出风管;21、外管;22、第一内管;23、第二内管;3、热交换芯;31、棱状主体;32、第一内棱面;33、第一外棱面;34、第二内棱面;35、第二外棱面;36、进风流道;37、出风流道;4、双向进出风管;41、外管;42、第一内管;5、双流式新风净化装置;511、外管;512、第一内管;5121、第一定位结构;513、第二内管;5131、第二定位结构;52、热交换芯;531、引风机;532、第二过滤组件;533、NCCO氧解聚组件;534、负离子组件;535、电辅热组件;536、第一风栅;537、第一导流管;541、排风机;542、第一过滤组件;543、第二风栅;544、第二导流管;6、柜式空调室内机;61、外壳;62、回风口;63、出风口;7、墙体;8、连接管。
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。例如,虽然附图中的进风流道和出风流道的横截面为矩形,但是这种设置形式非一成不变,本领域技术人员可以根据需要对其作出调整,以便适应具体的应用场合。例如,进风流道和出风流道的横截面还可以设置为圆形或其他任何形状。
需要说明的是,在本发明的描述中,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以 是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
实施例1
首先参照图1至图6,对本发明的用于双向进出风管的热交换芯的第一种实施方式进行描述。其中,图1为本发明的第一种实施方式中用于双向进出风管的热交换芯的结构示意图;图2为本发明的第一种实施方式中用于双向进出风管的热交换芯的主视图;图3为本发明的第一种实施方式中用于双向进出风管的热交换芯的俯视图;图4为图3沿A-A方向的剖视图;图5为图3沿B-B方向的剖视图;图6为本发明的第一种实施方式中热交换器的结构示意图。
如图1至图6所示,本发明首先提供了一种用于双向进出风管2的热交换芯1,双向进出风管2包括外管21和设置于外管21中的第一内管22和第二内管23,热交换芯1包括环状主体11,环状主体11沿轴向的第一侧形成有第一内环面12和第一外环面13,环状主体11沿轴向的第二侧形成有第二内环面14和第二外环面15,第二外环面15和第一内环面12之间形成有多个进风流道16,第一外环面13和第二内环面14之间形成有多个出风流道17,多个进风流道16和多个出风流道17交叉排列。热交换芯1设置于外管21中时,环状主体11的外缘将外管21分隔为第一部分和第二部分,第一内管22和第二内管23分别位于第一部分与第二部分,多个进风流道16的进口和出口分别与第二部分和第一内管22连通从而形成进风通道,多个出风流道17的进口和出口分别与第一部分和第二内管23连通从而形成出风通道。
进一步参照图4和图5,在一种可能的实施方式中,环状主体11沿径向的横截面(即图4或图5中垂直于附图面的截面)为圆环形,沿轴向的纵截面(指沿轴向且穿过热交换芯1中心的截取面,即图4和图5所示出的截面)为相对于环状主体11的轴线上下对称的两个菱形,两个菱形靠近彼此的顶点重合,两个菱形远离彼此的顶点与彼此重合的顶点处在同一条竖直线上,从而第一内环面12和第二内环面14互不连通,第一外环面13与第二外环面15互不连通。继续参照图4和图5,第 二外环面15与第一内环面12之间设置有多个横截面为矩形的直线型进风流道16,第一外环面13与第二内环面14之间设置有多个横截面为矩形的直线型出风流道17,并且由图可以看出,出风流道17与进风流道16呈90°垂直设置。
参照图6并结合图4和图5,外管21、第一内管22和第二内管23均为圆形管的双向进出风管2设置于墙体7内,热交换芯1设置于双向进出风管2中,环状主体11的外缘与外管21的内壁匹配,从而将外管21分为位于热交换芯1左侧的第一部分和位于热交换芯1右侧的第二部分。第一内管22与环状主体11的第一内环面12密封地连通,第二内管23与环状主体11的第二内环面14密封地连通,从而外管21的第一部分、出风流道17和第二内管23形成出风通道,室内空气能够通过该出风通道流出室外,外管21的第二部分、进风流道16和第一内管22形成进风通道,室外新风能够通过该进风通道流入室内,并且在穿过进风流道16的过程中与出风流道17中的室内空气进行热交换。
从上述描述可以看出,通过在环状主体11上开设交叉排列的进风流道16和出风流道17,使得本发明的热交换芯1能够应用于双向进出风管2中,并且多个进风流道16的进口和出口分别与第二部分和第一内管22连通从而形成进风通道,多个出风流道17的进口和出口分别与第一部分和第二内管23连通从而形成出风通道,从而热交换芯1与双向进出风管2结合成管状的热交换器。该热交换芯1独特的环状结构使得在不影响热交换器的换风量的前提下,通过第一内管22和第二内管23设置于外管21内,大大减小进风管道和出风管道的空间占用,并且由于管状的热交换器在安装时可以直接将外管21安装在墙体中或窗体中,并不占用室内空间,因而还减小了安装时的打孔数量,提高了室内的美观性,极大地降低了安装和改造的成本。
进一步地,环状主体11的外缘与外管21的内壁匹配和两个菱形靠近彼此的顶点重合的设置方式,使得进风通道与出风通道完全隔绝,加强了热交换器的换气效果。沿轴向的纵截面为上下对称的两个菱形且菱形靠近彼此的点和远离彼此的点处于同一竖直线的设置方式,则同时保证了进风风量和出风的风量相匹配,进一步增强了室内空气和室外新风的热交换效果。矩形的进风通道和出风通道的设置,保证了环状 主体11开设流道的数量充足以及不同流道间的间距的一致性,提高了环状主体11的利用率和热交换效果。
此外,由于现有技术中热交换芯1通常为棱柱状,还未曾有使用如本发明的环状的热交换芯1的技术方案,因此本发明的热交换芯1由于其结构新颖而具有突出的实质性特点和显著的进步,极大地丰富了热交换芯1的产品种类,增加了热交换芯1和热交换器的产品多样性。
当然,上述设置方式仅仅用来阐述本发明的原理,并非旨在于限制本发明的保护范围,在不偏离本发明原理的条件下,本领域技术人员有能力对本发明进行任何形式的修改,以便本发明能够应用于更加具体的应用场景。例如,除了圆环外,环状主体11沿径向的横截面还可以为椭圆环或任意形式的环状,只要该环形与双向进出风管2相匹配即可,以便丰富本发明的应用场景;再如,第一内环面12与第二内环面14之间、第一外环面13与第二外环面15之间还可以通过设置挡板的方式实现互不连通;再如,环状主体11沿轴向的纵截面还可以为任意多边形,只要该边数大于四,以便在两侧都能形成内环面和外环面即可;再如,两个多边形远离彼此的点或边线的中点与两个多边形靠近彼此的点或边线的中点可以不在同一条竖直线上;再如,进风流道16或出风流道17的横截面还可以是圆形或其他形状、流道还可以为曲线型流道、流道的数量还可以基于实际应用场景进行更改等。
参照图7A-7F,图7A-7F示出了环状主体11沿轴向的纵截面其他几种可能的情形,其中,图7A示意出了前述的截面为两个菱形的实施方式;图7B和图7C示出了两个多边形是正五边形的情形,并且图7B中示出的进风流道16和出风流道17为曲线;图7D和图7E示出了两个多变性是正六边形的情形,并且图7D中示出了环状主体11具有两个第一外环面13和两个第二外环面15,图7E中示出的进风流道16和出风流道17还可以为曲线与直线的结合;图7F示出了两个多边形是正七边形的情形,并且其还示出了环状主体11具有两个第一内环面12、两个第一外环面13和两个第二外环面15。
实施例2
下面参照图8至图12,对本发明的用于双向进出风管的热交换芯的第二种实施方式进行描述。其中,图8为本发明的第二种实施 方式中用于双向进出风管的热交换芯的结构示意图;图9为本发明的第二种实施方式中用于双向进出风管的热交换芯的主视图;图10为图9沿C-C方向的剖视图;图11为图9沿D-D方向的剖视图;图12为本发明的第二种实施方式中热交换器的结构示意图。
如图8至图12所示,本发明还提供了一种用于双向进出风管4的热交换芯3,双向进出风管4包括外管41和设置于外管41中的第一内管42和第二内管(图中未示出),热交换芯3包括棱状主体31,棱状主体31沿X方向(如图8所示的坐标系)的第一侧形成有至少两个第一内棱面32和至少两个第一外棱面33,棱状主体31沿X方向的第二侧形成有至少两个第二内棱面34和至少两个第二外棱面35(参照图10),第二外棱面35和对应的第一内棱面32之间形成有多个进风流道36,第一外棱面33和对应的第二内棱面34之间形成有多个出风流道37,多个进风流道36和多个出风流道37交叉排列。参照图12,热交换芯3设置于外管41中时,棱状主体31将外管41分隔为第一部分和第二部分,第一内管42和第二内管分别位于第一部分与第二部分,多个进风流道36的进口和出口分别与第二部分和第一内管42连通从而形成进风通道,多个出风流道37的进口和出口分别与第一部分和第二内管连通从而形成出风通道。
进一步参照图10和图11,在一种可能的实施方式中,棱状主体31沿XOY面(参照图8的坐标系)的截面为上下对称的两个菱形,两个菱形靠近彼此的顶点重合,两个菱形远离彼此的顶点与彼此重合的顶点处在同一条竖直线上,从而两个第一内棱面32和两个第二内棱面34互不连通,两个第一外棱面33与两个第二外棱面35互不连通。继续参照图10和图11,每个第二外棱面35与第一内棱面32之间设置有多个横截面为矩形的直线型进风流道36,每个第一外棱面33与第二内棱面34之间设置有多个横截面为矩形的直线型出风流道37,并且由图10和图11可以联合看出,出风流道37与进风流道36呈90°垂直设置。
参照图12并结合图10和图11,外管41、第一内管42和第二内管均为矩形管的双向进出风管4能够设置于墙体内,热交换芯3设置于双向进出风管4中,棱状主体31的外缘与外管41的四个内壁相匹配,从而将外管41分为位于热交换芯3前侧的第一部分和位于热交换芯 3后侧的第二部分(图中未示出)。第一内管42与棱状主体31的两个第一内棱面32密封地连通,第二内管与棱状主体31的两个第二内棱面34密封地连通,从而外管41的第一部分、出风流道37和第二内管形成出风通道,室内空气能够通过该出风通道流出室外,外管41的第二部分、进风流道36和第一内管42形成进风通道,室外新风能够通过该进风通道流入室内,并且在穿过进风流道36的过程中与出风流道37中的室内空气进行热交换。
从上述描述可以看出,通过在棱状主体31上开设交叉排列的进风流道36和出风流道37,使得本发明的热交换芯3能够应用于双向进出风管4中,并且多个进风流道36的进口和出口分别与第二部分和第一内管42连通从而形成进风通道,多个出风流道37的进口和出口分别与第一部分和第二内管连通从而形成出风通道,从而热交换芯3与双向进出风管4结合成管状的热交换器。该热交换芯3独特的棱状结构使得在不影响热交换器的换风量的前提下,通过第一内管42和第二内管设置于外管41内,大大减小进风管道和出风管道的空间占用;并且由于管状的热交换器在安装时可以直接将外管41安装在墙体中或窗体中,并不占用室内空间,因而还减小了安装时的打孔数量,提高了室内的美观性,极大地降低了安装和改造的成本。
进一步地,棱状主体31的外缘与外管41的内壁匹配和两个菱形靠近彼此的顶点重合的设置方式,使得进风通道与出风通道完全隔绝,加强了热交换器的换气效果。沿XOY面的截面为上下对称的两个菱形且菱形靠近彼此的点和远离彼此的点处于同一竖直线的设置方式,则同时保证了进风风量和出风的风量相匹配,进一步增强了室内空气和室外新风的热交换效果。矩形的进风通道和出风通道的设置,保证了棱状主体31开设流道的数量充足以及不同流道间的间距的一致性,提高了棱状主体31的利用率和热交换效果。
当然,上述设置方式仅仅用来阐述本发明的原理,并非旨在于限制本发明的保护范围,在不偏离本发明原理的条件下,本领域技术人员有能力对本发明进行任何形式的修改,以便本发明能够应用于更加具体的应用场景。例如,第一内棱面32与第二内棱面34之间、第一外棱面33与第二外棱面35之间还可以通过设置挡板的方式实现互不连通; 再如,棱状主体31沿XOY面的截面还可以为任意多边形,只要该边数大于四,以便在两侧都能形成至少两个内棱面和至少两个外棱面即可;再如,两个多边形远离彼此的点或边线的中点与两个多边形靠近彼此的点或边线的中点可以不在同一条竖直线上;再如,棱状主体31沿XOY面的截面形成的两个多边形还可以不对称设置,甚至多边形的边数也可以不同;再如,进风流道36或出风流道37的横截面还可以是圆形或其他形状、流道还可以为曲线型流道、流道的数量还可以基于实际应用场景进行更改等。特别地,棱状主体31沿XOY面的截面的形状和流道的形式仍然可以参照图7A-7F进行设置,此处不再赘述。
实施例3
下面参照图13至图16,对本发明的双流式新风净化装置进行描述。其中,图13为本发明的双流式新风净化装置的结构示意图(无导流管);图14为本发明的双流式新风净化装置的工作原理示意图(无导流管);图15为本发明的双流式新风净化装置的结构示意图(有导流管);图16为本发明的双流式新风净化装置的工作原理示意图(有导流管)。
如图13和图14所示,本发明的双流式新风净化装置5(以下简称净化装置5)主要包括双向进出风管、进风系统和排风系统。双向进出风管包括外管511和设置于外管511中的第一内管512和第二内管513,外管511中设置有热交换芯52,该热交换芯52为上述实施例1中的热交换芯1或实施例2中的热交换芯3。热交换芯52将外管511分隔为第一部分和第二部分,第一内管512和第二内管513分别位于第一部分与第二部分。参照图14并结合图13,进风系统按照空气流动方向依次包括:第二风栅543、外管511的第二部分、第二过滤组件532、电辅热组件535、NCCO氧解聚组件533、负离子组件534、热交换芯52、引风机531和第一内管512;排风系统按照空气流动的方向依次包括:第一风栅536、外管511的第一部分、第一过滤组件542、热交换芯52、排风机541和第二内管513。其中,进风系统设置成能够在引风机531的带动下,将室外新风通过第二风栅543引入净化装置5,并依次通过外管511的第二部分、第二过滤组件532、电辅热组件535、NCCO氧解聚组件533、负离子组件534、热交换芯52、引风机531和第一内管512后引入室内; 排风系统设置成能够在排风机541的带动下,将室内污浊空气通过第一风栅536引入净化装置5并依次通过外管511的第一部分、第一过滤组件542、热交换芯52、排风机541和第二内管513后排放至室外。在通过热交换芯52时,室内污浊空气与室外新风能够进行充分的热交换,以减少室内空气的能量流失,尽可能利用室内空气的热量对新风进行初次升温/降温。
按照图13所示方位,热交换芯52设置于外管511内并将外管511分为位于热交换芯52左侧的第一部分和位于热交换芯52右侧的第二部分,第一风栅536和第二风栅543分别通过螺钉螺接于外管511的两端,第一风栅536开设有与第一内管512匹配的第一通孔,第一内管512的左端伸出第一通孔与室内连通,右端与热交换芯52的左侧对接连通,且第一内管512的内部设置有引风机531,如轴流风机、贯流风机或离心风机等。相似地,第二风栅543开设有与第二内管513匹配的第二通孔,第二内管513的左端与热交换芯52的右侧对接连通,右端伸出第二通孔与室外连通,且第二内管513的内部设置有排风机541,如仍可以为轴流风机、贯流风机或离心风机等。继续参照图13,第一风栅536和第二风栅543之间依次设置有第一过滤组件542、热交换芯52、负离子组件534、NCCO氧解聚组件533、电辅热组件535、第二过滤组件532。
第一过滤组件542优选地为能够去除室内空气中的甲醛和TVOC的装置,如活性炭滤网等,设置第二过滤组件532的目的在于将室内污浊空气排至室外时吸附空气中的有害气体,有效保护外界环境,减少室内空气对室外环境的污染。
第二过滤组件532优选地为HEPA过滤器,HEPA过滤器通常包括三层过滤层(初级过滤层、荷电层、静电集尘层),对直径为0.3微米以下的微粒去除效率可达到99.97%以上。
负离子组件534的设置目的在于,负离子能够将新风中的臭氧、氨气等气体去除,进而达到镇静、镇痛、镇咳、止痒、利尿、增食欲、降血压等功效。
NCCO氧解聚组件533的设置目的在于,不同于以活性炭为内芯的大多数空气净化器材料只能吸附不能分解,且滤芯花费大量成本需定时更换,NCCO氧聚解反应层具有的特点有:1、净化时间短。氧聚 解反应层能够在新风通过时即刻捕获空气杂质与吸附家装污染气体,通过机内活氧发生器释放活氧,在NCCO的纳米环境下,通过几毫秒的催化便可高效彻底分解甲醛和异味,杀灭99%空气中的有害细菌,对氨气等有害气体的分解效率高达92%。2、净化效果达医疗级。由于在净化过程中有害气体被分解为二氧化碳和水,并且处理过程中无有害物、无臭氧残留,绝不造成二次污染,也无需更换滤芯,因此氧解聚组件还能还原空气的清新本质,最大限度的做到了节约耗材。
电辅热组件535可以为电加热丝或PTC半导体发热陶瓷,其能够在冬天对穿过第二过滤组件532后的新风进行初次加热,以便室外新风在经过热交换芯52进行热交换时二次提高新风的温度,维持室温的平衡,提高室内的舒适度。
进一步地,第一内管512的内壁上还涂覆有超结构光矿化涂层(图中未示出),超结构光矿化涂层用于去除室内空气中的有机污染物。超结构光矿化技术的工作原理系采取全新的方法制成微纳结构材料,改进其吸附能力,提高对光的响应能力,激活能量从紫外光突破到可见光,促进载流子分离,减少复合机率,将降解污染物的效率提升了两个量级,矿化率得到大幅提高。超结构光矿化材料将新型光敏化材料、超微结构金属化合物和纳米氧化物有机结合,使光催化效率是传统光触媒技术的10至100倍,同时促进光生载流子分离,减少复合几率,分解污染物时间从几小时缩短为颠覆性的几分钟,矿化率也提高到98.72%。超结构光矿化技术同时在矿化污染物、有害气体、细菌的时间及消减率方面取得很大成效,尤其是废水废气中的甲醛、苯等有机污染物得到快速矿化,变成二氧化碳和水。涂覆有超结构光矿化技术的第一内管512摈弃了传统光触媒重复使用率低的特点,清洗十分方便,只需用清水简单冲洗后便可长久使用,增加了第一内管512的使用寿命。
在第一内管512和第二内管513的定位方式上,第一内管512和第二内管513上还分别设置有第一定位结构5121和第二定位结构5131(如焊接/粘接有定位环或定位凸起),第一内管512和第二内管513分别通过第一定位结构5121和第二定位结构5131实现定位。如第一过滤组件542上开设有与第一定位结构5121相匹配的槽结构,通过第一定位结构5121嵌入槽结构后第一风栅536与外管511的左端螺接过程中压 紧第一定位结构5121的方式,实现第一内管512的定位。同样地,第二过滤组件532开设有与第二定位结构5131相匹配的槽结构,通过第二定位结构5131嵌入槽结构后第二风栅543与外管511的右端螺接过程中压紧第二定位结构5131的方式,实现第二内管513的定位。显然,槽结构还可以开设在第一风栅5121或第二风栅5131的内侧等。
此外,为了实现净化装置5的自动控制,还可以在净化装置5上设置检测组件(图中未示出)。例如,在第一内管512的外侧或外管511的第一部分处设置二氧化碳传感器,用以检测室内的二氧化碳浓度,在室内的二氧化碳浓度超过一定阈值时,净化装置5可以自动开启以对室内空气进行净化和换新风。再如,在外管511的第一部分或者第二内管513中设置细菌含量检测器,用以检测室内新风中的细菌含量,在该含量超过一定阈值时,自动开启净化装置5换新风,以对室内空气进行更换。再如,在第一内管512的管口处设置温度传感器,用以检测经过热交换后的室外新风的温度,当检测到温度过低时,电辅热组件535自动开启,对新风进行加热,以提高新风温度,减小新风对室内温度的影响,提高室内舒适度。
从上述描述可以看出,通过热交换芯52的设置,本发明的双流式新风净化装置5解决了现有技术中采用新风系统改善室内空气质量的技术方案存在的占用空间大、改造成本高的问题。热交换芯52独特的结构使得在不影响净化装置5的净化效果的前提下,巧妙地将第一内管512和第二内管513设置于外管511内,大大减小进风管道和出风管道的空间占用;并且由于管状的净化装置5在安装时可以直接将外管511安装在墙体中或窗体中,并不占用室内空间,因而还减小了安装时的打孔数量,提高了室内的美观性,极大地降低了安装和改造的成本。
进一步地,第一过滤组件542的设置,能够有效去除室内排放空气中的甲醛和TVOC,从而保护室外环境,为环保做出应有的贡献,体现企业的责任感。HEPA过滤层的设置,可以使新风逐级过滤,呼吸更自由。负离子组件534的设置,能够去除新风中的臭氧、氨气等气体,进而达到镇静、镇痛、镇咳、止痒、利尿、增食欲、降血压等功效。NCCO氧解聚组件533的设置,能够大大缩短净化时间,提高净化效率,节约耗材。第一内管512中超结构光矿化涂层的设置,能够提高室内有机污 染物的去除效果,增加第一内管512的使用寿命。检测组件的设置,使净化装置5可以实现各功能组件的自动检测进而实现自动控制,并且,以上多功能组件在净化装置5内的高度集成还减少了购买单个功能模块的费用,真正实现一机多用。
当然,上述设置方式并非一成不变,本领域技术人员能够对其进行调整,如更改第一风栅536和第二风栅543的连接方式,采用粘接或卡扣连接等;如对上述各组件进行添加、删减或其他形式的组合、对热交换芯52进行如实施例1或2中的其他形式的更换等。
下面参照图15和图16,在另一种可能的实施方式中,为增强出风效果,提高净化效率、减少室外新风和室内浑浊空气之间在通过双向进出风管时相互干涉,还可以分别在第一内管512的室内端和第二内管513的室外端设置第一导流管537和第二导流管544,如第一导流管537/第二导流544管采用螺接、焊接或粘接的方式与第一内管512/第二内管513连接。优选地,第一导流管537和第二导流管544的管口面积分别沿远离第一内管512和第二内管513的方向逐渐增大,即沿新风流入室内的方向和室内空气排出的方向呈截面为圆形或矩形的喇叭状。此时,超结构光矿化涂层可以涂覆在第一导流管537中,以增大与室内空气的接触面积。这样设置的优点在于:一方面,进风系统和排风系统各自组成了文丘里管,通过文丘里效应实现室外新风和室内气流的加速流通,提高净化效率和换新风效率;另一方面,防止了室外新风和室内浑浊空气之间的相互干涉,有效避免了室外新风刚入室内就被排气系统吸走排出室外的现象以及室内污浊空气排至室外后又被吸回室内的现象出现。而热交换芯52的独特结构设计,则巧妙地实现了气流的平滑的合并与分离的同时,也为文丘里效应的形成创造了条件。
实施例4
下面参照图17和图18并结合图13至图16,对本发明的柜式空调室内机进行描述。其中,图17为本发明的柜式空调室内机的结构示意图(一);图18为本发明的柜式空调室内机的结构示意图(二)。
如图17和图18所示,本发明的柜式空调室内机6主要包括外壳61、回风口62、出风口63以及上述实施例3中所描述的双流式新风净化装置5,双流式新风净化装置5包括进风系统和排风系统,进风系 统的第一内管512与柜式空调室内机6的回风口62或出风口63连通。进风系统设置成能够在引风机的带动下,将室外新风通过外管的第二部分引入双流式新风净化装置并穿过热交换芯后,通过第一内管512引入柜式空调室内机6,然后借助柜式空调室内机6的出风口63排出,参与室内的空气循环;排风系统设置成能够在排风机的带动下,将室内空气通过外管的第一部分引入双流式新风净化装置5并穿过热交换芯与进风系统引入的新风进行热交换后,通过第二内管排放至室外。
参照图18,双流式新风净化装置5安装在空调室内机右侧的墙体7内,其第一内管512通过连接管8与柜式空调室内机6背面的壳体连通,进而与回风口62连通。当然,第一内管512还可以直接与柜式空调室内机6背面的壳体连通,双流式新风净化装置还可以设置在空调室内机的左侧、左侧上方、附近的窗体上等。通过上述设置方式,可以在不影响室内美观的情形下,达到净化室内空气和换新风的效果,并且这种方式改造成本和投入成本相较于购买空气净化器或安装新风系统来说大大降低。
在控制方式上,净化装置5可以单独控制,例如净化装置5内部配置有电控组件(图中未示出),为净化装置5配置遥控器或使用手机APP等方式对净化装置5内部的电控组件进行控制,也可以将净化装置5与空调器结合控制,例如在空调遥控器上事先预留用于控制净化装置5的按键,通过空调遥控器直接、或将主控组件连接至空调器预留接口的方式实现对净化装置5的一体化控制。
综上所述,本发明的用于双向进出风管的热交换芯、双流式新风净化装置以及柜式空调室内机的设置方式,带来的效果有:(1)创新性的热交换芯结构,丰富了热交换芯的产品种类,增加了产品的多样性;(2)无需开窗即可实现通风换气的效果,轻松地将净化后室外新鲜空气因入室内,增加室内含氧量,提高空气净化程度,满足大部分客户群体需求,大大增强了实用性;(3)双流式新风净化装置采用双向进出风管实现了双向换风的同时,减少了穿墙或穿窗次数和占用空间,增加室内美观性;(4)双流式新风净化装置的结构简单,成本低,涵盖多个目前先进的的功能组件,能够与空调器的完美结合,智能化的实现了一机多用;(5)负离子被医学界誉为“空气中的维生素″,负离子组件的设 置,可促进人体的新陈代谢,提高免疫力;(6)NCCO氧解聚组件的设置,大大缩短了净化装置的净化时间,提高了净化效率,节约了耗材;(7)结构光矿化涂层的设置,提高了室内有机污染物的去除效果,增加了第一内管的使用寿命;(8)各功能模块设有检测组件,通过遥控器的智能按键可实现对室内空气的自动调节;(9)冬季和夏季新风交换实现冷热平和交互,使室内空气始终平衡。
最后需要说明的是,虽然本实施方式中是以柜式空调室内机进行描述的,但是这并非在限制本发明的保护范围,本领域技术人员能够理解的是,本发明的双流式新风净化装置还能够应用于其他空调室内机,如挂式空调室内机、窗式空调器、或者中央空调器等。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。
Claims (10)
- 一种用于双向进出风管的热交换芯,其特征在于,所述热交换芯包括环状主体,所述环状主体沿轴向的第一侧形成有第一内环面和第一外环面,所述环状主体沿轴向的第二侧形成有第二内环面和第二外环面,所述第二外环面和所述第一内环面之间形成有多个进风流道,所述第一外环面和所述第二内环面之间形成有多个出风流道,所述多个进风流道和所述多个出风流道交叉排列。
- 根据权利要求1所述的用于双向进出风管的热交换芯,其特征在于,所述第一内环面与所述第二内环面互不连通;并且/或者所述第一外环面与所述第二外环面互不连通。
- 根据权利要求2所述的用于双向进出风管的热交换芯,其特征在于,所述环状主体沿径向的横截面为圆环或椭圆环。
- 根据权利要求1-3中任一项所述的用于双向进出风管的热交换芯,其特征在于,所述环状主体沿轴向的纵截面为两个相对于所述环状主体的轴线对称设置的多边形,所述多边形的边数大于等于四。
- 根据权利要求4所述的用于双向进出风管的热交换芯,其特征在于,所述两个多边形靠近彼此的顶点或边线重合。
- 根据权利要求4所述的用于双向进出风管的热交换芯,其特征在于,所述两个多边形远离彼此的顶点或边线的中点与所述两个多边形靠近彼此的顶点或边线的中点处于同一直线上。
- 根据权利要求4所述的用于双向进出风管的热交换芯,其特征在于,所述多边形为菱形。
- 根据权利要求2所述的用于双向进出风管的热交换芯,其特征在于, 所述进风流道和所述出风流道为直线型流道。
- 根据权利要求8所述的用于双向进出风管的热交换芯,其特征在于,所述进风流道与所述出风流道之间的夹角为90°。
- 根据权利要求1所述的用于双向进出风管的热交换芯,其特征在于,所述双向进出风管包括外管和设置于所述外管中的第一内管和第二内管,所述热交换芯设置于所述外管中,所述环状主体的外缘将所述外管分隔为第一部分和第二部分,所述第一内管和所述第二内管分别位于所述第一部分与所述第二部分,所述多个进风流道的进口和出口分别与所述第二部分和所述第一内管连通从而形成进风通道,所述多个出风流道的进口和出口分别与所述第一部分和所述第二内管连通从而形成出风通道。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810220306.6A CN108469197A (zh) | 2018-03-16 | 2018-03-16 | 用于双向进出风管的热交换芯 |
CN201810220306.6 | 2018-03-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019174214A1 true WO2019174214A1 (zh) | 2019-09-19 |
Family
ID=63264445
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/107301 WO2019174214A1 (zh) | 2018-03-16 | 2018-09-25 | 用于双向进出风管的热交换芯 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108469197A (zh) |
WO (1) | WO2019174214A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108469197A (zh) * | 2018-03-16 | 2018-08-31 | 青岛海尔空调器有限总公司 | 用于双向进出风管的热交换芯 |
CN118224686A (zh) * | 2021-04-18 | 2024-06-21 | 大金工业株式会社 | 空气处理设备 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008052493A1 (de) * | 2006-10-31 | 2008-05-08 | Josef Bachmaier | Kompaktlüfter, bestehend aus wärmetauscher mit integrierten oder angedockten ventilatoren |
DE102008058817A1 (de) * | 2008-11-25 | 2010-05-27 | Horst Hinterneder | Luft-Luft-Wärmetauscher |
CN101813361A (zh) * | 2009-02-24 | 2010-08-25 | 胡光南 | 一种节能换气机 |
WO2013041066A2 (en) * | 2011-09-20 | 2013-03-28 | 2Vv S.R.O. | Counterflow cylindrical recuperative heat exchanger with multi-thread screw-like coiled heat exchanger surfaces, designed for ventilating devices |
CN203024635U (zh) * | 2012-11-14 | 2013-06-26 | 许俊俊 | 一种空气热回收装置 |
CA2825904A1 (en) * | 2012-09-20 | 2014-03-20 | Airia Leasing Inc. | Planar plate core and method of assembly |
DE102013111290B3 (de) * | 2013-10-14 | 2014-08-21 | ROOS GmbH | Luft-Luft-Wärmetauscher |
DE102014019173A1 (de) * | 2014-12-18 | 2016-06-23 | Maico Elektroapparate-Fabrik Gmbh | Wärmeübertrager |
CN108469197A (zh) * | 2018-03-16 | 2018-08-31 | 青岛海尔空调器有限总公司 | 用于双向进出风管的热交换芯 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH652480A5 (de) * | 1979-11-30 | 1985-11-15 | Gebhardt Gmbh Wilhelm | Dachluefterartige vorrichtung zum belueften unter waermezufuhr und zum entlueften von raeumen, insbesondere von hallenartigen raeumen. |
JPS5915739A (ja) * | 1982-07-16 | 1984-01-26 | Matsushita Electric Ind Co Ltd | 熱交換換気装置 |
JPH08219519A (ja) * | 1995-02-16 | 1996-08-30 | Mitsubishi Electric Corp | 送風装置 |
CN107143963A (zh) * | 2017-05-31 | 2017-09-08 | 珠海格力电器股份有限公司 | 热交换新风机 |
-
2018
- 2018-03-16 CN CN201810220306.6A patent/CN108469197A/zh active Pending
- 2018-09-25 WO PCT/CN2018/107301 patent/WO2019174214A1/zh active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008052493A1 (de) * | 2006-10-31 | 2008-05-08 | Josef Bachmaier | Kompaktlüfter, bestehend aus wärmetauscher mit integrierten oder angedockten ventilatoren |
DE102008058817A1 (de) * | 2008-11-25 | 2010-05-27 | Horst Hinterneder | Luft-Luft-Wärmetauscher |
CN101813361A (zh) * | 2009-02-24 | 2010-08-25 | 胡光南 | 一种节能换气机 |
WO2013041066A2 (en) * | 2011-09-20 | 2013-03-28 | 2Vv S.R.O. | Counterflow cylindrical recuperative heat exchanger with multi-thread screw-like coiled heat exchanger surfaces, designed for ventilating devices |
CA2825904A1 (en) * | 2012-09-20 | 2014-03-20 | Airia Leasing Inc. | Planar plate core and method of assembly |
CN203024635U (zh) * | 2012-11-14 | 2013-06-26 | 许俊俊 | 一种空气热回收装置 |
DE102013111290B3 (de) * | 2013-10-14 | 2014-08-21 | ROOS GmbH | Luft-Luft-Wärmetauscher |
DE102014019173A1 (de) * | 2014-12-18 | 2016-06-23 | Maico Elektroapparate-Fabrik Gmbh | Wärmeübertrager |
CN108469197A (zh) * | 2018-03-16 | 2018-08-31 | 青岛海尔空调器有限总公司 | 用于双向进出风管的热交换芯 |
Also Published As
Publication number | Publication date |
---|---|
CN108469197A (zh) | 2018-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019174217A1 (zh) | 空调室内机 | |
WO2019137528A1 (zh) | 挂式空调室内机 | |
WO2018209943A1 (zh) | 一种具有自动控制功能的新风机 | |
WO2019137529A1 (zh) | 用于窗式空调器的净化模块和窗式空调器 | |
WO2019174215A1 (zh) | 双流式新风净化装置 | |
WO2018018989A1 (zh) | 一种双循环式新风系统和新风机 | |
CN102748817A (zh) | 一种高效多功能模块化室内空气净化装置 | |
CN104196428B (zh) | 智能空气净化窗 | |
CN107084456B (zh) | 双模式新风净化机及室内空气净化循环系统 | |
WO2019174218A1 (zh) | 用于双向进出风管的热交换芯 | |
CN204665501U (zh) | 杀菌空气净化器 | |
WO2019174216A1 (zh) | 双流式新风净化装置 | |
WO2019037492A1 (zh) | 两用式循环净化机 | |
CN101991992A (zh) | 室内空气净化装置 | |
WO2019174214A1 (zh) | 用于双向进出风管的热交换芯 | |
CN104456777B (zh) | 一种建筑门窗的空气净化和新风系统 | |
CN206944405U (zh) | 一种高效吊顶式热回收净化新风机 | |
CN106016525A (zh) | 多功能新风净化一体机 | |
CN205860213U (zh) | 一种室内空气净化装置 | |
CN205208797U (zh) | 新风净化机 | |
CN205448159U (zh) | 一种新风系统 | |
CN208042862U (zh) | 用于双向进出风管的热交换芯 | |
CN208765081U (zh) | 空调室内机 | |
CN208765121U (zh) | 双流式新风净化装置 | |
CN213713393U (zh) | 一种空气新风净化系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18909818 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18909818 Country of ref document: EP Kind code of ref document: A1 |