WO2019174085A1 - 电池模组以及电池包 - Google Patents

电池模组以及电池包 Download PDF

Info

Publication number
WO2019174085A1
WO2019174085A1 PCT/CN2018/082241 CN2018082241W WO2019174085A1 WO 2019174085 A1 WO2019174085 A1 WO 2019174085A1 CN 2018082241 W CN2018082241 W CN 2018082241W WO 2019174085 A1 WO2019174085 A1 WO 2019174085A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate member
battery module
plate
disposed
explosion
Prior art date
Application number
PCT/CN2018/082241
Other languages
English (en)
French (fr)
Inventor
王志
何润泳
秦峰
马林
王晓帆
章华
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2019174085A1 publication Critical patent/WO2019174085A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/296Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by terminals of battery packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the utility model relates to the technical field of power batteries, in particular to a battery module and a battery pack.
  • the battery module includes a plurality of power batteries, a sealing plate, and a cylindrical casing. A plurality of battery modules are packaged in the casing to form a battery pack.
  • the battery module is usually a sealed structure. After the battery module is sealed, in order to enhance the safety of the battery module, an explosion-proof valve is provided on the sealing plate of the battery module.
  • the battery modules included in the battery packs currently used generate high-temperature and high-pressure gases, even flames.
  • the direction in which the gas or flame is ejected from the explosion-proof valve is in a random direction.
  • the erupted gas or flame is directly and randomly sprayed onto the casing included in the battery pack, so that the casing can be melted through, which seriously affects the safety of the battery module during use.
  • the embodiment of the present invention provides a battery module and a battery pack.
  • the sealing assembly of the battery module includes an explosion-proof valve and a flow guiding passage corresponding to the explosion-proof valve, and the guiding channel is used for guiding the fluid sprayed from the explosion-proof valve to spray the fluid in a predetermined direction, thereby improving the safety of the battery module. Sex.
  • an embodiment of the present invention provides a battery module, including:
  • a cylindrical casing a single battery disposed in the cylindrical casing, and a sealing plate assembly that closes the opening of the cylindrical casing;
  • the sealing plate assembly comprises a first plate member and a second plate member which are laminated on each other, the sealing plate assembly is sealingly connected to the cylindrical casing through the first plate member, the first plate member comprises an explosion-proof valve, and the second plate member is disposed on the The first plate member faces away from the surface of the cylindrical casing, and a flow guiding passage having an outlet is formed between the first plate member and the second plate member, and the explosion-proof valve is disposed corresponding to the flow guiding channel, and the guiding channel can be opposite to the explosion-proof valve The discharged fluid conducts a flow.
  • the second plate is provided with a groove toward the surface of the first plate, the groove is disposed opposite to the explosion-proof valve, and the surface of the second plate forming the groove and the surface of the first plate Constructed as a flow guiding channel.
  • the second plate member includes a top surface and a bottom surface opposite to each other in the height direction, and the groove is a groove body penetrating the top surface and/or the bottom surface.
  • the second plate member is bonded or welded to the surface of the first plate member facing away from the cylindrical casing.
  • the second panel is sealingly coupled to the surface of the first panel that is in contact.
  • a sealing plate assembly further includes an output terminal disposed on a surface of the first plate member facing away from the cylindrical casing, the second plate member further comprising a receiving recess, and the output terminal is inserted into the receiving recess
  • the output terminal is insulated from the second plate; the flow guiding channel is spaced apart from the receiving recess.
  • the output terminal is pressed against the surface of the second plate that forms the receiving recess.
  • the output terminal in the width direction of the second plate member, includes a positive electrode terminal and a negative electrode terminal disposed at intervals, and the explosion-proof valve is disposed between the positive electrode terminal and the negative electrode terminal, correspondingly, the second Two accommodating recesses are provided on the plate, and the groove is disposed between the two accommodating recesses.
  • the second panel further includes a connection hole.
  • the plurality of battery modules according to the embodiments of the present invention provided in the embodiments of the present invention may form a battery pack in groups with the cabinet. Since the battery module of the embodiment has a flow guiding passage of a specific outlet, the area corresponding to the opening of the flow guiding passage on the tank can be thickened or a special protective structure can be provided. Thus, when the explosion-proof valve is blasted to eject high-temperature high-pressure gas or flame, the high-temperature high-pressure gas or flame can only be ejected from the opening of the flow guiding channel under the guidance of the flow guiding channel.
  • the rate at which the high temperature, high pressure gas or flame is ejected from the opening of the flow passage is lower than the speed at which it is ejected from the explosion-proof valve. Since the area of the box corresponding to the opening of the flow guiding channel is thick or a special protective structure (such as a mica board or a fireproof cloth) is provided, the area corresponding to the opening of the guiding channel can be prevented from being subjected to high temperature and high pressure. Gas or flame penetration, effectively improve the safety of the battery module.
  • an embodiment of the present invention provides a battery pack including a case and a battery module as described above disposed in the case.
  • FIG. 1 is a schematic structural view of a battery module according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of a sealing plate assembly according to an embodiment of the present invention.
  • FIG. 3 is a schematic view showing a connection structure of a first plate member and an output terminal according to an embodiment of the present invention
  • FIG. 4 is a schematic structural view of a second plate member according to an embodiment of the present invention.
  • Figure 5 is a schematic structural view of a second plate member according to another embodiment of the present invention.
  • FIG. 6 is a schematic structural view of a second plate member according to still another embodiment of the present invention.
  • sealing plate assembly 2a, flow guiding channel; 21, first plate; 211, explosion-proof valve; 22, second plate; 22a, top surface; 22b, bottom surface; 221, groove; 222, receiving recess; 223, connecting holes;
  • X thickness direction
  • Y height direction
  • Z width direction
  • installation should be understood broadly, unless otherwise explicitly defined and limited. For example, it may be a fixed connection or Removable connection, or integral connection; can be directly connected or indirectly connected through an intermediate medium.
  • connection should be understood broadly, unless otherwise explicitly defined and limited. For example, it may be a fixed connection or Removable connection, or integral connection; can be directly connected or indirectly connected through an intermediate medium.
  • specific meanings of the above terms in the present invention can be understood as the case may be.
  • FIG. 1 schematically shows the structure of a battery module according to an embodiment of the present invention.
  • Fig. 2 schematically shows the structure of a sealing assembly 2 according to an embodiment of the present invention.
  • the battery module of the embodiment of the present invention includes a cylindrical casing 1 , a single battery (not shown) disposed in the cylindrical casing 1 , and an opening of the closed cylindrical casing 1 .
  • Sealing plate assembly 2 As shown in FIG. 2, the sealing plate assembly 2 of the present embodiment includes a first plate member 21 and a second plate member 22 which are stacked one on another. In one example, the first plate member 21 and the second plate member 22 are stacked in the thickness direction X.
  • the sealing plate assembly 2 of the present embodiment is sealingly connected to the cylindrical casing 1 by the first plate member 21 to encapsulate the unit cells provided in the cylindrical casing 1.
  • Fig. 3 schematically shows a first plate member 21 and an output terminal connection structure according to an embodiment of the present invention.
  • the first plate member 21 includes an explosion-proof valve 211.
  • the explosion-proof valve 211 has a predetermined burst pressure value. When the predetermined burst pressure value is reached inside the battery module, the explosion-proof valve 211 will be blasted to relieve the internal pressure of the battery module.
  • the second plate member 22 is disposed on a surface of the first plate member 21 facing away from the cylindrical casing 1. The second plate member 22 is disposed outside the cylindrical casing 1.
  • a flow guiding passage 2a having an outlet is formed between the first plate member 21 and the second plate member 22.
  • An explosion-proof valve 211 disposed on the first plate member 21 is disposed corresponding to the flow guiding passage 2a.
  • the flow guiding passage 2a formed between the first plate member 21 and the second plate member 22 is capable of guiding the fluid discharged from the explosion-proof valve 211 so that the fluid discharged from the explosion-proof valve 211 flows in a predetermined direction.
  • the plurality of battery modules of the embodiments of the present invention may form a battery pack in groups with the cabinet. Since the battery module of the present embodiment has the flow guiding passage 2a of the specific outlet, the area corresponding to the opening of the flow guiding passage 2a on the casing can be thickened or a special protective structure can be provided. Thus, when the explosion-proof valve 211 is blasted to eject high-temperature high-pressure gas or flame, the high-temperature high-pressure gas or flame can be ejected only from the opening of the flow guiding passage 2a under the guidance of the flow guiding passage 2a.
  • the speed at which the high-temperature high-pressure gas or flame is ejected from the opening of the flow guiding passage 2a is lower than the speed at which the explosion is made from the explosion-proof valve 211. Since the area of the box corresponding to the opening of the flow guiding passage 2a is thick or a special protective structure (for example, a mica board or a fireproof cloth, etc.) is provided, the area of the box corresponding to the opening of the flow guiding passage 2a can be prevented from being High temperature and high pressure gas or flame penetration, effectively improve the safety of the battery module.
  • Figure 4 is a schematic illustration of the construction of a second panel 22 in accordance with an embodiment of the present invention.
  • Fig. 5 schematically shows the structure of a second panel 22 of another embodiment of the present invention.
  • Fig. 6 schematically shows the structure of a second panel 22 of still another embodiment of the present invention.
  • the second plate member 22 of the present embodiment is provided with a recess 221 toward the surface of the first plate member 21.
  • the groove 221 on the second plate member 22 is disposed opposite to the explosion-proof valve 211.
  • the surface of the second plate member 22 on which the recess 221 is formed and the surface of the first plate member 21 constitute a flow guiding passage 2a.
  • the second plate member 22 of the present embodiment includes a top surface 22a and a bottom surface 22b which are opposed in the height direction Y.
  • the recess 221 is a trough through the top surface 22a and the bottom surface 22b.
  • the flow guiding passage 2a formed by connecting the second plate member 22 to the first plate member 21 has two openings, and the high-temperature high-pressure gas or flame ejected from the explosion-proof valve 211 can be simultaneously ejected through the two openings.
  • the groove 221 is a groove body penetrating the top surface 22a or the bottom surface 22b.
  • the flow guiding passage 2a formed by connecting the second plate member 22 to the first plate member 21 has an opening through which the high-temperature high-pressure gas or flame ejected from the explosion-proof valve 211 can be simultaneously ejected in the height direction Y.
  • the second plate member 22 of the present embodiment is bonded or welded to the surface of the first plate member 21 facing away from the cylindrical casing 1.
  • the first plate member 21 and the second plate member 22 are each separately manufactured and then assembled to reduce the difficulty in manufacturing.
  • the first plate member 21 and the second plate member 22 are bonded or welded, and no additional components are required, and assembly efficiency and joint strength can be improved.
  • the second plate member 22 of the present embodiment is sealingly connected to a region where the first plate member 21 is in contact with each other.
  • the high temperature and high pressure gas or flame can only be ejected from the outlet of the flow guiding passage 2a formed by the first plate member 21 and the second plate member 22, and does not come into contact with the first plate member 21 from the second plate member 22. Leakage between the surfaces.
  • the sealing assembly 2 of the present embodiment further includes an output terminal.
  • the output terminal is disposed on the surface of the first plate member 21 facing away from the cylindrical casing 1.
  • the second plate member 22 further includes a receiving recess 222.
  • the output terminal is inserted into the accommodating recess 222.
  • the output terminal is insulated from the second plate member 22.
  • the flow guiding passage 2a is spaced apart from the accommodating recess 222.
  • the second plate member 22 can form a limit on the output terminal, can stabilize the position of the output terminal, and prevent the output terminal from being separated from the first plate member 21 by the force.
  • the output terminal is pressed against the surface of the second plate member 22 that forms the receiving recess 222, further improving the positional stability of the output terminal.
  • the output terminal includes the positive terminal 3 and the negative terminal 4 which are disposed at intervals.
  • the explosion-proof valve 211 is disposed between the positive electrode terminal 3 and the negative electrode terminal 4.
  • two receiving recesses 222 are provided on the second plate member 22.
  • the groove 221 is disposed between the two receiving recesses 222.
  • the second plate member 22 of the present embodiment further includes a connecting hole 223.
  • the battery module of the present embodiment and the cabinet form a battery pack
  • the battery module and the casing are connected and fixed by bolts passing through the connecting holes 223 of the second plate member 22.
  • the embodiment of the present invention also provides a battery pack.
  • the battery pack of this embodiment includes a case and a battery module disposed in the case.
  • the area corresponding to the outlet of the flow guiding channel 2a formed by the first plate member 21 and the second plate member 22 on the box body is thickened or a specific protective structure (for example, mica sheet or fireproof cloth, etc.) is provided, so that the box body
  • a specific protective structure for example, mica sheet or fireproof cloth, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Abstract

本实用新型涉及一种电池模组以及电池包。电池模组包括:筒状壳体、设置于筒状壳体内的单体电池以及封闭筒状壳体开口的封板组件;其中,封板组件包括相互层叠设置的第一板件和第二板件,封板组件通过第一板件与筒状壳体密封连接,第一板件包括防爆阀,第二板件设置于第一板件背向筒状壳体的表面,第一板件和第二板件之间形成具有出口的导流通道,防爆阀与导流通道相对应设置,导流通道能够对从防爆阀排出的流体进行导流。本实用新型的电池模组的封板组件包括防爆阀以及与防爆阀对应设置的导流通道,导流通道用于引导从防爆阀喷出的流体,以使流体沿预定方向喷射,提高了电池模组的安全性。

Description

电池模组以及电池包 技术领域
本实用新型涉及动力电池技术领域,特别是涉及一种电池模组以及电池包。
背景技术
随着科学技术的发展,对动力电池高能量密度的要求越来越高,动力电池轻量化得到越来越多企业的重视。动力电池同体积的情况下提高能量密度是目前的发展趋势。电池模组包括多个动力电池、封板和筒状壳体。多个电池模组封装于箱体内以形成电池包。电池模组通常为密封结构。电池模组实现密封后,为了增强电池模组的安全性,会在电池模组的封板上设置有防爆阀。当动力电池过充或其他原因导致大量产气使电池模组内部压力达到一定值时,设置于封板上的防爆阀会发生爆破并排出气体,可有效防止电池模组内部压力过大而发生爆炸。
然而,目前使用的电池包所包括的电池模组会产生高温高压的气体,甚至是火焰。气体或火焰从防爆阀喷出后的射出方向为随机方向。喷发的气体或火焰会直接且随机地喷射至电池包所包括的箱体上,从而可以将箱体融穿,严重影响电池模组使用过程安全性。
实用新型内容
本实用新型实施例提供一种电池模组以及电池包。电池模组的封板组件包括防爆阀以及与防爆阀对应设置的导流通道,导流通道用于引导从防爆阀喷出的流体,以使流体沿预定方向喷射,提高了电池模组的安全性。
一方面,本实用新型实施例提出了一种电池模组,其包括:
筒状壳体、设置于筒状壳体内的单体电池以及封闭筒状壳体开口的封板组件;
其中,封板组件包括相互层叠设置的第一板件和第二板件,封板组件通过第一板件与筒状壳体密封连接,第一板件包括防爆阀,第二板件设置于第一板件背向筒状壳体的表面,第一板件和第二板件之间形成具有出口的导流通道,防爆阀与导流通道相对应设置,导流通道能够对从防爆阀排出的流体进行导流。
根据本实用新型实施例的一个方面,第二板件朝向第一板件的表面设置凹槽,凹槽与防爆阀相对设置,第二板件上形成凹槽的表面与第一板件的表面构造成导流通道。
根据本实用新型实施例的一个方面,第二板件包括在高度方向上相对的顶面和底面,凹槽为贯穿顶面和/或底面的槽体。
根据本实用新型实施例的一个方面,第二板件粘接于或焊接于第一板件背向筒状壳体的表面。
根据本实用新型实施例的一个方面,第二板件与第一板件的相接触的表面之间密封连接。
根据本实用新型实施例的一个方面,封板组件还包括输出端子,输出端子设置于第一板件上背向筒状壳体的表面,第二板件还包括容纳凹部,输出端子插入容纳凹部设置,输出端子与第二板件绝缘设置;导流通道与容纳凹部间隔设置。
根据本实用新型实施例的一个方面,输出端子抵压于第二板件上形成容纳凹部的表面。
根据本实用新型实施例的一个方面,在第二板件的宽度方向上,输出端子包括间隔设置的正极端子和负极端子,防爆阀设置于正极端子和负极端子之间,相对应地,第二板件上设置两个容纳凹部,凹槽设置于两个容纳凹部之间。
根据本实用新型实施例的一个方面,第二板件还包括连接孔。
根据本实用新型实施例提供的本实用新型实施例的多个电池模组可以与箱体成组形成电池包。由于本实施例的电池模组具有特定出口的导流通道,因此可以对箱体上与导流通道的开口相对应的区域进行加厚处理或者设置特殊防护结构。这样,在防爆阀发生爆破而喷出高温高压气体或火焰 时,高温高压气体或火焰在导流通道的引导下只能从导流通道的开口定向喷出。同时,高温高压气体或火焰从导流通道开口喷出的速度相对于从防爆阀喷出时的速度低。由于箱体上与导流通道的开口相对应的区域厚度较大或者设置特殊防护结构(例如云母板或防火布等),因此箱体与导流通道的开口相对应的区域能够避免被高温高压气体或火焰熔穿,有效提升电池模组使用过程的安全性。
另一个方面,本实用新型实施例提供一种电池包,其包括箱体以及设置于箱体内的如上述的电池模组。
附图说明
下面将参考附图来描述本实用新型示例性实施例的特征、优点和技术效果。
图1是本实用新型一实施例的电池模组的结构示意图;
图2是本实用新型一实施例的封板组件的结构示意图;
图3是本实用新型一实施例的第一板件和输出端子连接结构示意图;
图4是本实用新型一实施例的第二板件的结构示意图;
图5是本实用新型另一实施例的第二板件的结构示意图;
图6是本实用新型又一实施例的第二板件的结构示意图。
在附图中,附图并未按照实际的比例绘制。
标记说明:
1、筒状壳体;
2、封板组件;2a、导流通道;21、第一板件;211、防爆阀;22、第二板件;22a、顶面;22b、底面;221、凹槽;222、容纳凹部;223、连接孔;
3、正极端子;
4、负极端子;
X、厚度方向;Y、高度方向;Z、宽度方向。
具体实施方式
下面结合附图和实施例对本实用新型的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本实用新型的原理,但不能用来限制本实用新型的范围,即本实用新型不限于所描述的实施例。
在本实用新型的描述中,需要说明的是,除非另有说明,“多个”的含义是两个或两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本实用新型和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本实用新型的限制。此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本实用新型的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本实用新型中的具体含义。
为了更好地理解本实用新型,下面结合图1至图6对本实用新型实施例的电池模组进行详细描述。
图1示意性地显示了本实用新型一实施例的电池模组的结构。图2示意性地显示了本实用新型一实施例的封板组件2的结构。如图1所示,本实用新型实施例的电池模组包括筒状壳体1、设置于筒状壳体1内的单体电池(图中未示出)以及封闭筒状壳体1开口的封板组件2。如图图2所示,本实施例的封板组件2包括相互层叠设置的第一板件21和第二板件22。在一个示例中,第一板件21和第二板件22在厚度方向X上层叠设置。
本实施例的封板组件2通过第一板件21与筒状壳体1密封连接,以封装设置于筒状壳体1内的单体电池。图3示意性地显示了本实用新型一实施例的第一板件21和输出端子连接结构。如图3所示,第一板件21包括 防爆阀211。该防爆阀211具有预定爆破压力值。在电池模组内部达到预定爆破压力值时,防爆阀211会发生爆破,以使电池模组内部泄压。第二板件22设置于第一板件21背向筒状壳体1的表面。第二板件22设置于筒状壳体1的外部。第一板件21和第二板件22之间形成具有出口的导流通道2a。设置于第一板件21上的防爆阀211与该导流通道2a相对应设置。第一板件21和第二板件22之间形成的导流通道2a能够对从防爆阀211排出的流体进行导流,以使从防爆阀211喷出的流体按照预定的方向流动。
本实用新型实施例的多个电池模组可以与箱体成组形成电池包。由于本实施例的电池模组具有特定出口的导流通道2a,因此可以对箱体上与导流通道2a的开口相对应的区域进行加厚处理或者设置特殊防护结构。这样,在防爆阀211发生爆破而喷出高温高压气体或火焰时,高温高压气体或火焰在导流通道2a的引导下只能从导流通道2a的开口定向喷出。同时,高温高压气体或火焰从导流通道2a开口喷出的速度相对于从防爆阀211喷出时的速度低。由于箱体上与导流通道2a的开口相对应的区域厚度较大或者设置特殊防护结构(例如云母板或防火布等),因此箱体与导流通道2a的开口相对应的区域能够避免被高温高压气体或火焰熔穿,有效提升电池模组使用过程的安全性。
图4示意性地显示了本实用新型一实施例的第二板件22的结构。图5示意性地显示了本实用新型另一实施例的第二板件22的结构。图6示意性地显示了本实用新型又一实施例的第二板件22的结构。
如图4至图6所示,本实施例的第二板件22朝向第一板件21的表面设置凹槽221。第二板件22上的凹槽221与防爆阀211相对设置。第二板件22上形成凹槽221的表面与第一板件21的表面构成导流通道2a。
本实施例的第二板件22包括在高度方向Y上相对的顶面22a和底面22b。在一个实施例中,如图4所示,凹槽221为贯穿顶面22a和底面22b的槽体。在第二板件22与第一板件21连接形成的导流通道2a具有两个开口,从防爆阀211喷出的高温高压气体或火焰可以同时通过两个开口喷出。在一个实施例中,如图5或图6所示,凹槽221为贯穿顶面22a或底面22b的槽体。在第二板件22与第一板件21连接形成的导流通道2a具有 一个开口,从防爆阀211喷出的高温高压气体或火焰可以同时通过该开口沿高度方向Y喷出。
本实施例的第二板件22粘接于或焊接于第一板件21背向筒状壳体1的表面。第一板件21和第二板件22各自单独加工制造,然后进行组装,降低加工制造难度。第一板件21和第二板件22采用粘接或焊接的方式,不需要增加额外的零部件,可以提高组装效率以及连接强度。
本实施例的第二板件22与第一板件21相接触的区域之间密封连接。这样,高温高压气体或火焰只能从第一板件21和第二板件22形成的导流通道2a的出口喷出,不会从第二板件22与第一板件21的相接触的表面之间泄露。
本实施例的封板组件2还包括输出端子。输出端子设置于第一板件21上背向筒状壳体1的表面。如图4至图6所示,第二板件22还包括容纳凹部222。如图2所示,输出端子插入容纳凹部222设置。输出端子与第二板件22绝缘设置。在宽度方向Z上,导流通道2a与容纳凹部222间隔设置。第二板件22可以对输出端子形成限位,可以使输出端子位置稳定,避免输出端子受力而与第一板件21发生分离。
在一个实施例中,输出端子抵压于第二板件22上形成容纳凹部222的表面,进一步地提高了输出端子的位置稳定性。
进一步地,在第二板件22的宽度方向Z上,如图2或图3所示,输出端子包括间隔设置的正极端子3和负极端子4。防爆阀211设置于正极端子3和负极端子4之间。相对应地,第二板件22上设置两个容纳凹部222。凹槽221设置于两个容纳凹部222之间。高温高压气体或火焰从第一板件21和第二板件22形成的导流通道2a的出口喷出时,高温高压气体或火焰可以远离正极端子3和负极端子4,不会对正极端子3和负极端子4造成破坏。
如图4至图6所示,本实施例的第二板件22还包括连接孔223。本实施例的电池模组与箱体成组构成电池包时,使用螺栓穿过第二板件22上的连接孔223而将电池模组和箱体连接固定。
本实用新型实施例还提供一种电池包。本实施例的电池包包括箱体以 及设置于箱体内的电池模组。箱体上与第一板件21和第二板件22共同形成的导流通道2a的出口相对应的区域进行加厚设计或设置特定防护结构(例如云母片或防火布等),从而箱体上与导流通道2a的出口相对应的区域可以抵御从导流通道2a的出口喷出的高温高压气体或火焰,不会发生熔穿情况,有效提高了电池包使用过程的安全性。另外,在设计箱体结构时,由于只需要对箱体的局部特定区域进行加厚或设置特殊防护结构,因此有利于减轻箱体重量,从而电池包实现轻量化,以利于提高电池包的能量密度。
虽然已经参考优选实施例对本实用新型进行了描述,但在不脱离本实用新型的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本实用新型并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (10)

  1. 一种电池模组,其特征在于,包括:
    筒状壳体、设置于所述筒状壳体内的单体电池以及封闭所述筒状壳体开口的封板组件;
    其中,所述封板组件包括相互层叠设置的第一板件和第二板件,所述封板组件通过所述第一板件与所述筒状壳体密封连接,所述第一板件包括防爆阀,所述第二板件设置于所述第一板件背向所述筒状壳体的表面,所述第一板件和所述第二板件之间形成具有出口的导流通道,所述防爆阀与所述导流通道相对应设置,所述导流通道能够对从所述防爆阀排出的流体进行导流。
  2. 根据权利要求1所述的电池模组,其特征在于,所述第二板件朝向所述第一板件的表面设置凹槽,所述凹槽与所述防爆阀相对设置,所述第二板件上形成所述凹槽的表面与所述第一板件构造成所述导流通道。
  3. 根据权利要求2所述的电池模组,其特征在于,所述第二板件包括在自身高度方向上相对的顶面和底面,所述凹槽为贯穿所述顶面和/或所述底面的槽体。
  4. 根据权利要求1所述的电池模组,其特征在于,所述第二板件粘接于或焊接于所述第一板件背向所述筒状壳体的表面。
  5. 根据权利要求1所述的电池模组,其特征在于,所述第二板件与所述第一板件的相接触的表面之间密封连接。
  6. 根据权利要求1所述的电池模组,其特征在于,所述封板组件还包括输出端子,所述输出端子设置于所述第一板件上背向所述筒状壳体的所述表面,所述第二板件还包括容纳凹部,所述输出端子插入所述容纳凹部设置,所述输出端子与所述第二板件绝缘设置;所述导流通道与所述容纳凹部间隔设置。
  7. 根据权利要求6所述的电池模组,其特征在于,所述输出端子抵 压于所述第二板件上形成所述容纳凹部的表面。
  8. 根据权利要求6所述的电池模组,其特征在于,在所述第二板件的宽度方向上,所述输出端子包括间隔设置的正极端子和负极端子,所述防爆阀设置于所述正极端子和所述负极端子之间,相对应地,所述第二板件上设置两个所述容纳凹部,所述凹槽设置于两个所述容纳凹部之间。
  9. 根据权利要求1所述的电池模组,其特征在于,所述第二板件还包括连接孔。
  10. 一种电池包,其特征在于,包括箱体以及设置于所述箱体内的如权利要求1至9任一项所述的电池模组。
PCT/CN2018/082241 2018-03-16 2018-04-09 电池模组以及电池包 WO2019174085A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201820368640.1 2018-03-16
CN201820368640.1U CN207967135U (zh) 2018-03-16 2018-03-16 电池模组以及电池包

Publications (1)

Publication Number Publication Date
WO2019174085A1 true WO2019174085A1 (zh) 2019-09-19

Family

ID=63743614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/082241 WO2019174085A1 (zh) 2018-03-16 2018-04-09 电池模组以及电池包

Country Status (2)

Country Link
CN (1) CN207967135U (zh)
WO (1) WO2019174085A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113232526A (zh) * 2021-05-24 2021-08-10 上海兰钧新能源科技有限公司 电池包和汽车
CN113346183A (zh) * 2021-05-12 2021-09-03 凯博能源科技有限公司 电池组、电池模组及电池包
CN113517514A (zh) * 2021-04-22 2021-10-19 远景动力技术(江苏)有限公司 一种定向排气电池模组

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113113707B (zh) 2018-12-29 2024-06-25 宁德时代新能源科技股份有限公司 电池包
CN111106278B (zh) * 2018-12-29 2021-02-12 宁德时代新能源科技股份有限公司 电池包
CN111384343A (zh) * 2018-12-30 2020-07-07 宁德时代新能源科技股份有限公司 一种电池包
PL3809487T3 (pl) * 2019-04-08 2022-12-19 Contemporary Amperex Technology Co., Limited Płyta ochronna, zespół ogniwa akumulatorowego, moduł akumulatorowy i pojazd
CN112151699B (zh) * 2019-06-28 2022-05-13 比亚迪股份有限公司 电池包及车辆
CN113422133B (zh) * 2021-05-11 2022-09-02 江苏正力新能电池技术有限公司 一种防止电池热失控的结构、电池壳体及电池
CN114843697B (zh) * 2022-07-04 2022-09-09 广东采日能源科技有限公司 一种电池模组

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001084981A (ja) * 1999-09-14 2001-03-30 Yuasa Corp 密閉形鉛蓄電池
CN1167149C (zh) * 1999-06-07 2004-09-15 松下电器产业株式会社 蓄电池
CN102163737A (zh) * 2010-02-18 2011-08-24 三星Sdi株式会社 可再充电电池
CN102456857A (zh) * 2010-10-19 2012-05-16 Sb锂摩托有限公司 电池模块

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1167149C (zh) * 1999-06-07 2004-09-15 松下电器产业株式会社 蓄电池
JP2001084981A (ja) * 1999-09-14 2001-03-30 Yuasa Corp 密閉形鉛蓄電池
CN102163737A (zh) * 2010-02-18 2011-08-24 三星Sdi株式会社 可再充电电池
CN102456857A (zh) * 2010-10-19 2012-05-16 Sb锂摩托有限公司 电池模块

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113517514A (zh) * 2021-04-22 2021-10-19 远景动力技术(江苏)有限公司 一种定向排气电池模组
CN113517514B (zh) * 2021-04-22 2023-06-20 远景动力技术(江苏)有限公司 一种定向排气电池模组
CN113346183A (zh) * 2021-05-12 2021-09-03 凯博能源科技有限公司 电池组、电池模组及电池包
CN113232526A (zh) * 2021-05-24 2021-08-10 上海兰钧新能源科技有限公司 电池包和汽车

Also Published As

Publication number Publication date
CN207967135U (zh) 2018-10-12

Similar Documents

Publication Publication Date Title
WO2019174085A1 (zh) 电池模组以及电池包
WO2020133660A1 (zh) 电池包
US11302972B2 (en) Battery pack including batteries
JP4810797B2 (ja) 電池モジュールと組電池
JP5000107B2 (ja) フィルム外装電気デバイス集合体
WO2022083022A1 (zh) 箱体、电池及装置
US12074338B2 (en) Battery pack
CN209104233U (zh) 一种电池包的喷淋管路组件及电池包
WO2013122005A1 (ja) 電池用防火装置
EP3726626B1 (en) Secondary battery and battery module
WO2022237068A1 (zh) 一种防止电池热失控的结构、电池壳体及电池
WO2021097644A1 (zh) 电池包及交通设备
WO2022047788A1 (zh) 端盖组件、壳体组件、电池单体、电池及用电装置
WO2023005462A1 (zh) 电池和用电装置
WO2020215443A1 (zh) 上盖组件和电池包
JP2022500810A (ja) バッテリーモジュール
JP2012104499A (ja) フィルム外装電気デバイス集合体
WO2022082393A1 (zh) 用于电池的箱体、电池、用电装置、制备电池的方法和设备
EP4009435B1 (en) Battery, power consuming apparatus and method and apparatus for producing battery
CN109686874A (zh) 动力电池的壳体以及动力电池
WO2016187819A1 (zh) 一种圆柱形锂离子电池
WO2023093432A1 (zh) 电池包
CN217768663U (zh) 防爆阀、电芯、锂电池和车辆
JP7457870B2 (ja) 電池用筐体、電池、電力消費装置、電池の製造方法及びその装置
WO2022082388A1 (zh) 电池的箱体、电池、用电装置、制备电池的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18909410

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18909410

Country of ref document: EP

Kind code of ref document: A1