WO2019172009A1 - Communication device, position estimating method, position estimating program, and communication system - Google Patents

Communication device, position estimating method, position estimating program, and communication system Download PDF

Info

Publication number
WO2019172009A1
WO2019172009A1 PCT/JP2019/007176 JP2019007176W WO2019172009A1 WO 2019172009 A1 WO2019172009 A1 WO 2019172009A1 JP 2019007176 W JP2019007176 W JP 2019007176W WO 2019172009 A1 WO2019172009 A1 WO 2019172009A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
mobile station
area
radio
vehicle
Prior art date
Application number
PCT/JP2019/007176
Other languages
French (fr)
Japanese (ja)
Inventor
隆行 外山
利哲 具
幹博 大内
竜二 牟田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018230396A external-priority patent/JP7241296B2/en
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201980017269.1A priority Critical patent/CN111837049A/en
Priority to EP19764018.8A priority patent/EP3764122A4/en
Publication of WO2019172009A1 publication Critical patent/WO2019172009A1/en
Priority to US17/011,643 priority patent/US20200400776A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/12Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves by co-ordinating position lines of different shape, e.g. hyperbolic, circular, elliptical or radial
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07BTICKET-ISSUING APPARATUS; FARE-REGISTERING APPARATUS; FRANKING APPARATUS
    • G07B15/00Arrangements or apparatus for collecting fares, tolls or entrance fees at one or more control points
    • G07B15/06Arrangements for road pricing or congestion charging of vehicles or vehicle users, e.g. automatic toll systems

Definitions

  • the present disclosure relates to a communication device, a position estimation method, a position estimation program, and a communication system.
  • ETC Electronic Toll Collection
  • DSRC Dedicated Short Range Communications
  • Non-Patent Document 3 road pricing services using systems using the DSRC standard (Non-Patent Document 3) are being provided worldwide in Europe, South Korea, and the like.
  • 3GPP Three Generation Partnership Project
  • LTE Long Term Evolution
  • V2X Vehicle to Everything
  • Road-to-vehicle communication is also spreading to uses other than electronic toll collection systems that have already been put into practical use.
  • the non-limiting embodiment of the present disclosure contributes to the provision of an improved communication device, a position estimation method, a position estimation program, and a communication system that estimate the position of a mobile station.
  • a communication apparatus includes a reception circuit that receives a radio signal transmitted by a mobile station, and a signal including information on at least two of the arrival direction, arrival time, and reception power of the radio signal And a processing circuit that estimates a position of the mobile station based on a waveform profile.
  • a position estimation method receives a radio signal transmitted from a mobile station, and includes a signal waveform profile including information on at least two of the arrival direction, arrival time, and reception power of the radio signal Is used to estimate the position of the mobile station.
  • a position estimation program is a computer that receives information on at least two of a process of receiving a radio signal transmitted from a mobile station and an arrival direction, arrival time, and reception power of the radio signal. And a process of estimating the position of the mobile station based on a signal waveform profile including
  • the communication system employs a configuration including a mobile station and a communication device according to the present disclosure.
  • an improved communication device a position estimation method, a position estimation program, and a communication system that estimate the position of a mobile station.
  • the figure which shows an example of a structure of the communication system used with an electronic bill collection system The figure which shows another example of a structure of the communication system used with an electronic bill collection system
  • the figure explaining the communication system which concerns on Embodiment 1 The figure which shows an example of the sequence of communication between a roadside apparatus and vehicle-mounted communication apparatus
  • the figure which shows another example of the sequence of communication between a roadside apparatus and vehicle-mounted communication apparatus The figure which shows another example of the sequence of communication between a roadside apparatus and vehicle-mounted communication apparatus.
  • Transform) shown in FIG. The figure explaining operation
  • movement of the response waveform generator shown by FIG. The figure explaining operation
  • movement of the response waveform generator shown by FIG. The figure explaining the relationship between the phase difference in the received signal of the radio wave of each antenna element and the arrival direction of the radio wave
  • the figure explaining an example of the steering vector used for estimation of the arrival direction of an electric wave The figure explaining the waveform which the spatial correlator of FIG. 5 produces
  • FIG. 5 produces
  • An electronic toll collection system (Electronic Toll Collection (ETC) System) is an example of an on-board device installed in a vehicle that has a roadside machine in the lane or lane and passes directly under the roadside machine or through the lane corresponding to the roadside machine Communicate with roadside equipment and charge for passing vehicles.
  • ETC Electronic Toll Collection
  • the gate of the lane next to the lane in which the vehicle-mounted device is traveling opens. System operation may be disrupted.
  • communication is established between a roadside device and an in-vehicle device mounted on a vehicle passing through an adjacent general road that is not a vehicle traveling on a toll road to be charged, There is a possibility that the vehicle passing through may be charged by mistake.
  • Measures for suppressing the occurrence of the above problem include, for example, preventing the communication area from extending to a lane other than the lane that the roadside machine should originally cover as the communication area.
  • an antenna having a sharp directivity may be used in a roadside machine.
  • a radio wave absorber may be attached to a radio wave obstacle so that the radio wave is not reflected irregularly by roadside blocks, guard rails, tollgate gate facilities, and the like that are radio wave obstacles in or near the communication area.
  • FIG. 1 is a diagram illustrating an example of a configuration of a communication system used in an electronic fee collection system.
  • the communication areas 11 and 21 of the roadside devices 10 and 20 are set for each toll gate lane.
  • the in-vehicle communication device 30 of the traveling vehicle traveling in the communication area 11 of the roadside device 10 does not start communication with the roadside device 20.
  • the traveling vehicle carrying the vehicle-mounted communication device 31 that travels in the communication area 21 of the roadside device 20 does not start communication with the roadside device 10.
  • the traveling vehicles 32 and 33 traveling outside the communication areas 11 and 21 are not charged. Considering these, the antenna directivity of the roadside devices 10 and 20 is formed, and the communication areas 11 and 21 of the roadside devices 10 and 20 are set.
  • the time required for a vehicle traveling at a speed of 100 km / h to pass through the narrow area is about 1 second.
  • the electronic toll collection system performs communication establishment, authentication, and billing processing for the in-vehicle communication device of the vehicle.
  • the time that can be allocated to establishment of communication with each vehicle, authentication, and billing processing is 200 msec.
  • FIG. 2 is a diagram showing another example of the configuration of the communication system used in the electronic toll collection system.
  • Vehicles traveling on the side road 40 are not subject to billing processing.
  • another traveling vehicle for example, a vehicle on which the vehicle-mounted communication device 31 is mounted
  • serves as a radio wave reflector and is mounted on a vehicle traveling on the side road 40 through the radio wave path 42.
  • Communication may be established between the communicator 41 and the roadside apparatus 10 and charged.
  • a radio wave absorption band 50 is installed between the toll road 60 to be charged and the side road 40.
  • the radio wave absorption band 50 By installing the radio wave absorption band 50, communication between the vehicle-mounted communication device 41 of the vehicle traveling on the side road 40 and the road-side device 10 is established, and the road-side device 10 places the vehicle-mounted communication device 41 thereon. The possibility of erroneously charging the vehicle can be reduced.
  • the radio wave absorption band 50 since the radio wave absorption band 50 is installed, a construction cost is required.
  • This disclosure provides a communication device, a communication method, a communication program, and a communication system applicable to an electronic fee collection system.
  • the electronic fee collection system is an example of a service to which the communication device, the communication method, the communication program, and the communication system of the present disclosure can be applied, and the present disclosure is between the mobile body or the communication device mounted on the mobile body. It can be applied to various systems that communicate with each other.
  • Embodiments 1 to 6 according to the present disclosure will be described.
  • communication with a terminal and signal analysis such as a direction in which a radio signal transmitted from the terminal arrives are performed independently.
  • Each of Embodiments 1 to 6 may be implemented in combination with at least a part of other embodiments. Further, two or more embodiments of Embodiments 1 to 6 may be combined.
  • FIG. 3A is a diagram for explaining the communication system 1 according to the first embodiment.
  • the communication system 1 includes roadside devices 10 and 10a and vehicle-mounted communication devices (communication terminals) 30, 31, 32, 33, and 41.
  • vehicle-mounted communication devices communication terminals
  • FIG. 3A although the two roadside apparatuses 10 and 10a are shown, the number of roadside apparatuses may be arbitrary numbers.
  • the roadside devices 10 and 10a communicate with the in-vehicle communication devices 30, 31, 32, 33, and 41 of a plurality of vehicles that travel in the communication area 11 as shown in FIG. 3A, and the in-vehicle communication devices 30, 31, 32, and 33 Is determined to be traveling on a toll road (for example, a highway) 60, and the vehicle is charged.
  • a toll road for example, a highway
  • FIG. 3A the communication area 11 of the roadside device 10 is indicated by a broken line, and the communication between the roadside device 10 and the vehicle-mounted communication devices 30, 31, 32, 33, 41 is indicated by a thick arrow.
  • An alternate long and short dash line arrow indicates communication with the in-vehicle communication device 33 at the farthest point from the roadside device 10 in the communication area 11 of the roadside device 10.
  • vehicles equipped with the in-vehicle communication devices 30, 31, 32, 33, and 41 are hereinafter denoted by reference numerals attached to the in-vehicle communication devices such as the vehicles 30, 31, 32, 33, and 41.
  • the in-vehicle communication devices 30, 31, 32, 33, and 41 communicate with the roadside devices 10 and 10a.
  • the signals transmitted by the in-vehicle communication devices 30, 31, 32, 33, 41 may illustratively include a reference signal and identification information.
  • the in-vehicle communication devices 30, 31, 32, 33, and 41 may be terminals conforming to a communication standard of 3GPP (3rd generation generation partnership partnership project), for example.
  • Non-limiting examples of communication standards include LTE, LTE-A (LTE-Advanced), 4G (4th generation mobile mobile communication system), and 5G (5th generation mobile mobile communication system).
  • 5G is sometimes called NR (new radio).
  • the reference signal may include, for example, a demodulation reference signal (DMRS) and a sounding reference signal (SRS).
  • DMRS demodulation reference signal
  • SRS sounding reference signal
  • the identification information is information for uniquely identifying the in-vehicle communication devices 30, 31, 32, 33, and 41 in the communication area (for example, cell) 11, for example. In a random access procedure described later, a random access preamble may be used as identification information. Further, when the identification information is used for the charging process for the traveling vehicle, the identification information uniquely identifies the charging user who uses the in-vehicle communication devices 30, 31, 32, 33, and 41.
  • FIG. 3B shows an example of a communication sequence between the roadside apparatus 10 and the vehicle-mounted communication devices 30, 31, 32, 33, and 40.
  • eNB base station apparatus, gNB in 5G
  • UE terminal
  • communication in the direction from the roadside device to the vehicle-mounted communication device may be referred to as downlink (downlink; DL) communication, and vice versa
  • communication in the direction from the vehicle-mounted communication device to the roadside device is uplink (uplink; UL).
  • uplink uplink
  • UL uplink
  • the UE searches for a cell of the eNB to which the UE can connect (cell search).
  • the cell is, for example, the communication area 11 shown in FIG. 3A.
  • the UE finds a connectable cell (in other words, eNB) by receiving broadcast information (for example, system information block, SIB) transmitted by the eNB.
  • broadcast information for example, system information block, SIB
  • the UE transmits a connection request (for example, a random access preamble) to the connectable eNB discovered in the cell search in RACH (Random Access Channel, random access channel).
  • the UE establishes a connection with the eNB by receiving an RAR (Random Access Response) as a response to the connection request from the eNB, and completes the RACH procedure.
  • RAR Random Access Response
  • FIG. 3A shows the connection request which the vehicle-mounted communication apparatus 33 transmitted to the roadside apparatus 10 in the random access procedure, for example.
  • the UE executes an attach procedure for registering the UE in the core network with respect to the eNB that has established the connection.
  • the UE transmits an allocation request (scheduling request) for radio resources (for example, time and frequency) used by the UE for communication with the eNB to the eNB.
  • the eNB that has received the scheduling request transmits permission information (grant) indicating the radio resource allocation result to the UE when the radio resource can be allocated to the connection request source UE.
  • the UE transmits a data signal to the eNB using the radio resource indicated by the received grant.
  • a solid line arrow shown in FIG. 3A indicates, for example, a data signal transmitted from the in-vehicle communication device 30, 31, 32, 41 to the roadside device 10.
  • 3C and 3D show another example of a communication sequence between the roadside device 10 and the vehicle-mounted communication devices 30, 31, 32, 33, and 41.
  • eNB corresponds to the roadside device 10
  • UE corresponds to the in-vehicle communication devices 30, 31, 32, 33, and 41.
  • the sequence up to the attach procedure shown in FIG. 3C and FIG. 3D is the same as the sequence up to the attach procedure shown in FIG.
  • the UE transmits, for example, an SRS (Sounding Reference Signal) after the attach procedure.
  • SRS is used for quality measurement of UL transmission from UE in eNB, for example.
  • the eNB may preferentially allocate UL radio resources to UEs having relatively high UL transmission quality.
  • a periodic mode shown in FIG. 3C UE transmits SRS to eNB for every fixed period.
  • the UE transmits an SRS to the eNB in response to a transmission request from the eNB.
  • the roadside device 10 can establish a communication session with the vehicle-mounted communication devices 30, 31, 32, 33, 41 from an earlier time.
  • establishment of communication with the vehicle-mounted communication devices 30, 31, 32, and 33 of many vehicles traveling on the toll road 60 can be performed with more margin.
  • the roadside device 10 is a vehicle-mounted communication device 30, 31, 32, 32 for a traveling vehicle in which the vehicle-mounted communication devices 30, 31, 32, 33, 41 communicate with the roadside device 10 (hereinafter referred to as a traveling vehicle in communication).
  • 33 and 41 feature quantities relating to information on the direction, time and intensity of arrival of radio waves are extracted.
  • the roadside apparatus 10 determines whether or not the traveling vehicle in communication is traveling on the toll road 60 based on the feature amount.
  • the roadside device 10 is registered in advance with, for example, the charging user uniquely identified by the identification information with respect to the in-vehicle communication devices 30, 31, and 32 of the vehicle determined to be traveling on the toll road 60.
  • the in-vehicle communication devices 30, 31, 32 of the vehicle are charged.
  • FIG. 4 shows an example of the relationship between the communication device 401 according to Embodiment 1 and the uplink radio signal 400 received from the traveling vehicle.
  • the communication device 401 is, for example, a base station device (eNodeB).
  • the communication device 401 receives an uplink radio signal 400 from an in-vehicle communication device (for example, an LTE user terminal) mounted on a traveling vehicle.
  • the communication device 401 demodulates and decodes the received uplink radio signal 400 and outputs an IP (Internet Protocol) packet 402.
  • IP Internet Protocol
  • FIG. 5 shows an example of the configuration of the communication apparatus 401 according to the first embodiment.
  • the communication device 401 is, for example, a base station device (eNodeB) configured as one unit of an LTE system (3GPP TS 36) having high affinity for a multipath environment.
  • the communication device 401 uses the same uplink radio signal input from a plurality of antennas.
  • an explanation will be given taking as an example input from four antennas.
  • the communication apparatus 401 includes a down converter 501 (501-1, 501-2, 501-3), an AD (analog-to-digital) converter 502 (502-1, 502-2, 502-3), a channel filter 503 (503-1, 503-2, 503-3), FFT 504 (504-1, 504-2, 504-3), frame timing generator 505, and demapper 506 (506-1, 506-2, 506-3), a decoder 507, a response waveform generator 701 (701-1, 701-2, 701-3), a spatial correlator 702, and a user terminal area determination unit 703.
  • a processing circuit configured using, for example, a semiconductor element.
  • the processing circuit may include a memory and execute a program stored in the memory. Further, the processing circuit may execute a program read from the connected external storage device.
  • Down converter 501 (501-1, 501-2, 501-3) converts a radio signal to a baseband frequency.
  • the AD converter 502 (502-1, 502-2, 502-3) converts the frequency-converted signal into a digital signal, and generates a discretized data signal.
  • the channel filter 503 (503-1, 503-2, 503-3) limits the discretized data signal to the frequency band of the desired signal.
  • the FFT 504 (504-1, 504-2, 504-3) converts the band-limited discretized data signal into a frequency domain signal. Details of the processing of the FFT 504 (504-1, 504-2, 504-3) will be described later with reference to FIG.
  • the frame timing generator 505 generates the frame timing of the downlink radio signal transmitted by the communication apparatus 401 that is a base station apparatus, for example. In one example, the conversion timing of the FFT 504 follows the frame timing generated by the frame timing generator 505.
  • the demapper 506 (506-1, 506-2, 506-3) extracts data to be demodulated from the frequency domain signal.
  • the decoder 507 performs a decoding process on the target data and extracts an IP packet.
  • the IP packet includes, for example, in-vehicle communication device identification information.
  • Down converter 501 (501-1, 501-2, 501-3), AD converter 502 (502-1, 502-2, 502-3), and channel filter 503 (503-1, 503-2, 503-3) 3), FFT 504 (504-1, 504-2, 504-3), frame timing generator 505, demapper 506 (506-1, 506-2, 506-3), and decoder 507 Among these, the contents described above are the same as those in the normal LTE uplink reception process. If necessary, processing specific to SC-FDMA (Single Channel-Frequency-Division Multiple Access) such as 1/2 subcarrier shift processing may be executed.
  • SC-FDMA Single Channel-Frequency-Division Multiple Access
  • the demapper 506 (506-1, 506-2, 506-3) takes out the reference signal 605 (see FIG. 6) mapped to the resource (block) used by the traveling vehicle in communication for communication. Next, the demapper 506 (506-1, 506-2, 506-3) outputs the extracted reference signals 605 to the response waveform generators 701 (701-1, 701-2, 701-3), respectively.
  • the response waveform generator 701 (701-1, 701-2, 701-3) performs Fourier transform (or discrete Fourier transform) on the product of a known reference signal and the reference signal received through each antenna, and generates an impulse response waveform. Generate.
  • the processing contents of the response waveform generator 701 (701-1, 701-2, 701-3) will be described later with reference to FIG.
  • Spatial correlator 702 correlates the impulse response waveform generated by response waveform generator 701 (701-1, 701-2, 701-3) and the steering vector for each time sample, and generates a spatiotemporal profile. .
  • the user terminal area determiner 703 estimates the position of the user terminal based on the spatiotemporal profile generated by the spatial correlator 702. Furthermore, the user terminal area determination unit 703 determines whether the traveling vehicle in communication is traveling on the toll road 60 based on the estimated position. Next, when the user terminal area determination unit 703 determines that the traveling vehicle in communication is traveling on the toll road 60, the user terminal area determination unit 703 charges the traveling vehicle; otherwise, the user terminal area determination unit 703 allocates to the in-vehicle communication device of the traveling vehicle. Free up resources.
  • FIG. 6 is a diagram showing an example of baseband data frequency-domained by the FFT 504 (504-1, 504-2, 504-3) shown in FIG.
  • the X axis is a time axis
  • the Y axis is a frequency axis.
  • the time width of one radio frame 600 is, for example, 10 milliseconds.
  • One radio frame 600 has ten subframes 602 for each band.
  • One radio frame 600 has a plurality of resource blocks 601 along the frequency axis direction.
  • the plurality of resource blocks 601 are 6, 15, 25, 50, 75, and 100 resources for 6 bands of 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz, respectively.
  • One resource block 603 has 14 symbols 604.
  • Symbol 604 has 12 subcarriers. Each subcarrier is modulated by QPSK (Quadrature Phase Keying), 16QAM (Quadrature Amplitude Modulation), 64QAM, or the like.
  • QPSK Quadrature Phase Keying
  • 16QAM Quadrature Amplitude Modulation
  • 64QAM 64QAM, or the like.
  • the user terminal that is an in-vehicle communication device transmits data using one resource block 603 assigned by the base station device.
  • the resource block 603 includes a reference signal 605 used for data demodulation.
  • the base station apparatus equalizes and demodulates the signal in units of subcarriers using the reference signal 605.
  • FIG. 7A to 7C are diagrams for explaining the operation of the response waveform generator 701 (701-1, 701-2, 701-3) shown in FIG.
  • the received waveform 801 of the reference signal 605 received from each antenna and taken out by the demapper 506 is not a direct wave in the radio wave propagation environment between the in-vehicle communication device mounted on the traveling vehicle in communication and the base station device.
  • Subject to frequency selective fading is caused by a reflected wave reflected by a radio wave obstacle present in the propagation environment.
  • Equation (1) the Fourier transform (or discrete Fourier transform) is performed on the product of the reception waveform 801 of the reference signal 605 (FIG. 7A) and the frequency waveform 802 (FIG. 7B) of the reference signal 605 itself. ), A time correlation waveform 803 (FIG. 7C) can be obtained.
  • Hrx (k) is a function representing the received waveform of the reference signal 605, and the received waveform 801 represents the power waveform.
  • Hrep (k) is a function representing the reference signal, and the frequency waveform 802 represents the power waveform.
  • h (l) is a function representing the impulse response waveform, and the time correlation waveform 803 represents the power waveform.
  • the time correlation waveform 803 is generally called a delay profile.
  • NSC is the number of points for performing (discrete) Fourier transform, and is 300, for example, in the LTE system bandwidth: 5 MHz.
  • f SC represents a subcarrier interval
  • T S represents the symbol duration. For example, if the LTE, employed subcarrier interval f SC is 15 kHz, the symbol period T S is approximately 66 microseconds.
  • FIG. 8A is a diagram for explaining the relationship between the phase difference in the received signal of the radio wave 910 of the antenna elements 901 to 904 and the arrival direction of the radio wave 910.
  • An array antenna 900 shown in FIG. 9 includes four antenna elements 901 to 904 as an example.
  • the antenna elements 901 to 904 are evenly arranged on the straight line at intervals of the distance L, and constitute the array antenna 900.
  • the radio wave 910 arriving at the array antenna 900 is sufficiently away from the transmission source of the radio wave 910, it can be regarded as a plane wave.
  • the phase difference between the antenna elements 901 to 904 is an integral multiple of ⁇ ⁇ sin ⁇ radians with the leftmost antenna element 901 as a reference.
  • FIG. 8B is a diagram for explaining an example of the steering vector AP ( ⁇ , k) used for estimating the direction of arrival of the radio wave 910.
  • the steering vector AP ( ⁇ , k) is a k-th (antenna element number k) counted from the left with the received signal of the plane wave arriving from the direction ⁇ at the leftmost antenna element and the leftmost as the 0th. ) Represents the phase difference from the received signal at the antenna element.
  • FIG. 9A to 9C are diagrams illustrating waveforms generated by the spatial correlator 702 of FIG.
  • the delay profile waveform graph 1000 shown in FIG. 9A shows the power of impulse response (delay response) waveforms 1010, 1020, 1030, and 1040 after Fourier transform of the reference signal received by the four receiving antennas of the base station apparatus. (Amplitude) Waveform is plotted. Since the antenna elements 901 to 904 shown in FIG. 8A receive substantially plane waves, the impulse response waveforms 1010, 1020, 1030, and 1040 have substantially the same waveform.
  • each of the impulse response waveforms 1010, 1020, 1030, 1040 has two peaks (peak 1011 and peak 1012, peak 1021 and peak 1022, peak 1031 and peak 1032, peak 1041 and peak 1042).
  • Peak 1011 and peak 1012, peak 1021 and peak 1022, peak 1031 and peak 1032, peak 1041 and peak 1042 Have Two peaks indicate that there are two arrival paths for the received signal.
  • each received signal received by the antenna elements 901 to 904 has a phase difference corresponding to a distance difference that is an integral multiple of the distance l shown in FIG. 8A, depending on the direction in which the received signal arrives.
  • the delay profile waveform graph 1000 is a plot of the power (amplitude) waveform, the actually generated phase difference (phase information) appears in the delay profile waveform graph 1000. Note that there is no.
  • the spatial correlator 702 shown in FIG. 5 has a waveform h ( ⁇ , k) of the same sample time ⁇ of the impulse response received by each antenna element and the steering vector shown in FIG. Take inner product Ang ( ⁇ , ⁇ ) with AP ( ⁇ , k).
  • K is the number of antenna elements of the base station apparatus
  • k is the antenna element number
  • is the direction of arrival.
  • the arrival direction ⁇ is taken on the horizontal axis (X axis), the time ⁇ is taken in the depth direction (Y axis), and the magnitude of Ang ( ⁇ , ⁇ ) is plotted on the vertical axis (Z axis).
  • the direction-of-arrival waveform graphs 1050 and 1060 shown in FIG. 9B and FIG. 9C are obtained.
  • the graph 1050 is a graph of the arrival direction waveform viewed from the Y-axis direction
  • the graph 1060 is the graph of the arrival direction waveform viewed from the Z-axis direction. Therefore, the graph 1050 is plotted on the same plane even if the arrival direction waveforms of the received signals that actually arrive at different times.
  • the arrival direction is taken on the X axis
  • the arrival time is taken on the Y axis
  • the received power intensity is taken on the Z axis, or the received power is shaded or colored on the XY plane.
  • the data representing the strength of the data or the data expressing them is called a spatio-temporal profile.
  • the arrival direction waveform 1051 reflects the correlation calculation result between the delayed wave corresponding to the peaks 1011, 1021, 1031 and 1041 and the steering vector.
  • the arrival direction waveform 1052 reflects the correlation calculation result between the delayed wave corresponding to the peaks 1012, 1022, 1032, and 1042 and the steering vector.
  • the incoming wave represented by the spatio-temporal profile 1061 corresponds to the incoming wave represented by the arrival direction waveform 1051.
  • An incoming wave represented by a spatio-temporal profile 1062 corresponds to an incoming wave represented by an arrival direction waveform 1052.
  • the communication system 1, the method for realizing the communication system 1, and the program according to the first embodiment equalize a plurality of received signals transmitted from a traveling vehicle in communication in the frequency domain independently of a communication circuit. An impulse response waveform is obtained and a spatiotemporal profile is generated. Next, the communication system 1, the method for realizing the communication system 1, and the program determine whether or not the traveling vehicle in communication is to be charged based on the spatiotemporal profile. According to the first embodiment, the billing area can be determined for the billing area set independently of the communication area.
  • the communication device and processing with the in-vehicle communication devices 30, 31, 32 of the traveling vehicle and the direction in which the reception received from the in-vehicle communication devices 30, 31, 32 of the traveling vehicle arrives are analyzed.
  • the antenna and processing are separated.
  • the determination processing of the in-vehicle communication devices 30, 31, and 32 of the traveling vehicle to be charged can be executed in parallel at higher speed. Therefore, it is possible to charge for more communicating traveling vehicles traveling on the toll road 60.
  • the communication system 1 is used for the in-vehicle communication device 41 of the traveling vehicle outside the toll road 60 that should not be charged even when there is no special construction (for example, a radio wave absorption band) for controlling the electric field strength. On the other hand, it can be determined not to charge.
  • a radio wave absorption band for controlling the electric field strength.
  • the frequency domain is basically described. However, it is also possible to obtain an impulse response waveform by performing a convolution operation between a replica and a received signal in the time domain.
  • the response waveform generator 701 (701-1, 701-2, 701-3) performs Fourier transform on the frequency domain signal input from the demapper 506 (506-1, 506-2, 506-3), and Obtain the received signal in the time domain.
  • the response waveform generator 701 (701-1, 701-2, 701-3) may obtain an impulse response waveform by performing a convolution operation on the received signal in the time domain with a replica.
  • FIG. 10 is a diagram for explaining the operation of the user terminal area determiner 703 according to the second embodiment.
  • the chargeable area 1110 on the travel road is included in the communication area 11 of the roadside device 10.
  • Spatiotemporal profile waveforms 1121, 1122, 1123, and 1124 are obtained at four points P1, P2, P3, and P4 in the billing target area 1110, respectively.
  • the spatio-temporal profile waveforms 1121, 1122, 1123, and 1124 in the billing target area 1110 can be clearly distinguished from each other by using features different from the spatiotemporal profile outside the billing target area 1110.
  • the user terminal area determination unit 703 determines whether or not a traveling vehicle in communication is a charging target by determining whether or not a plurality of spatio-temporal profiles have the characteristics of the spatio-temporal profile in the charging target area 1110. Determine.
  • the criterion for determining whether or not the spatiotemporal profile waveforms 1121, 1122, 1123, and 1124 have the spatiotemporal profile characteristics in the billing area 1110 is a combination of the spatiotemporal profile waveforms 1121, 1122, 1123, and 1124. Whether the waveform falls within the area determined by the arrival waveform of the received signal and its delay time. The area determined by the arrival waveform of the received signal and its delay time is, for example, the area 1131 within the frame 1130.
  • the criteria for determining whether or not the spatiotemporal profile waveforms 1121, 1122, 1123, and 1124 have the spatiotemporal profile characteristics in the billing area 1110 are the spatiotemporal profile waveforms 1121, 1122, 1123, and 1124. Among them, whether or not the number of signals that fall within the area determined by the arrival waveform of the received signal and its delay time exceeds a certain threshold value. By setting the threshold appropriately, the reliability of the determination can be improved.
  • a plurality of spatiotemporal profiles are used in area determination such as a billing area.
  • area determination is performed using a spatio-temporal profile created by equalizing other multiple received signals transmitted from a traveling vehicle in communication in the frequency domain to obtain an impulse response waveform. Also good.
  • the billing target area 1110 shown in FIG. 10 actually shields or reflects radio waves such as fixed obstacles such as guardrails and signs, and moving obstacles such as other traveling vehicles traveling around the area. There are many obstacles that do or both.
  • the user terminal shown in FIG. The possibility of erroneous determination by the area determiner 703 increases. Therefore, in the third embodiment, more spatiotemporal profiles are handled as image data and learned.
  • the chargeable area 1110 can be distinguished from other areas by using the learning result (model) for determination.
  • FIG. 11 is a diagram for explaining an example of the operation of the learning device 1200 according to the third embodiment.
  • a user terminal area determination unit 703 according to Embodiment 3 includes a learning unit 1200.
  • the learning device 1200 learns the spatio-temporal profile of the traveling vehicle in communication and the correct determination result as to whether or not the traveling vehicle is traveling in the chargeable area 1110.
  • the learning device 1200 is, for example, a deep learning device or a support vector machine using a neural network.
  • the learning device 1200 may learn image data representing a spatiotemporal profile.
  • the image data is a plurality of image data 1210 individually representing the spatiotemporal profile waveforms 1121, 1122, 1123, and 1124 at predetermined positions in the billing target area 1110.
  • the image data is one image data 1220 in which spatio-temporal profile waveforms 1121, 1122, 1123, and 1124 at predetermined positions in the chargeable area 1110 are arranged in time series.
  • a plurality of spatiotemporal profiles in an area are learned as image data for area determination, and charge determination is performed using the generated model.
  • the reliability of the determination result by the user terminal area determiner 703 can be improved.
  • area determination is performed using a spatio-temporal profile created by equalizing a plurality of other received signals transmitted from a traveling vehicle in communication in the frequency domain to obtain an impulse response waveform. Also good.
  • a plurality of spatio-temporal profiles are used to reduce the probability of erroneous determination.
  • a plurality of spatiotemporal profiles in which spatiotemporal profiles are generated using a plurality of devices are used.
  • FIG. 12A is a diagram illustrating an example of a roadside apparatus 1320 according to the fourth embodiment.
  • FIG. 12B is a diagram showing an example of spatiotemporal profiles (1331 to 1334 and 1341 to 1344) according to Embodiment 4.
  • the roadside apparatus 1320 forms a communication area 1321.
  • the spatio-temporal profile (1331 to 1334) of the in-vehicle communication device 30 of the traveling vehicle in communication generated by the roadside device 10 is obtained.
  • the determination accuracy of the determination result by the user terminal area determination unit 703 can be increased.
  • the number of roadside devices is two has been described, but the number of roadside devices may be an arbitrary number of two or more.
  • the determination criterion is multidimensionalized by using a plurality of communication devices for generating a spatiotemporal profile. According to Embodiment 4, the reliability of the determination result can be improved.
  • a spatio-temporal profile is acquired using a plurality of roadside devices 10 and 1320.
  • the RRH is installed in a place separated from the base station body by separating a part of the functions of the base station apparatus.
  • the base station body is referred to as a baseband unit (BBU), for example.
  • BBU baseband unit
  • an optical interface such as CPRI (common public radio interface) may be used.
  • RRH may be called RRE (remote radio equipment) or DU (distributed unit).
  • the BBU may also be called CBBU (centralized BBU) or CU (central unit).
  • FIG. 13 is a diagram illustrating an example of a configuration of a roadside device 1400 according to the fifth embodiment.
  • the roadside device 1400 according to Embodiment 5 includes a terminal remote radio head (RRH) 1421, an intermediate remote radio head 1422, and a baseband unit (communication device) 1430.
  • the remote radio head at the end is a remote head that does not have an upstream remote head among serially connected remote radio heads.
  • the intermediate remote radio head is a remote head other than the most upstream remote head among serially connected remote radio heads.
  • An intermediate remote radio head 1422 is provided downstream of the distal remote radio head 1421.
  • FIG. 13 is a diagram illustrating a case where there is one intermediate remote radio head 1422, but there may be a plurality of intermediate remote radio heads 1422.
  • a plurality of remote radio heads 1421 at the end may be provided in parallel upstream of the baseband unit 1430 without providing the intermediate remote radio head 1422.
  • the baseband unit 1430 decodes the uplink radio signal 1411 received by the terminal remote radio head 1421 and the uplink radio signal 1412 received by the intermediate remote radio head 1422 to generate an IP packet 1440.
  • the remote radio heads 1421 and 1422 generate a spatio-temporal profile using the reference signal 605 on the resource block 603 used for communication by the in-vehicle communication device of the target traveling vehicle.
  • FIG. 14 is a diagram for explaining an example of the configuration of the terminal remote radio head 1421 according to the fifth embodiment.
  • the remote radio head 1421 at the end includes a downlink radio frame timing generator 1600 instead of the frame timing generator 505, and the result in the spatial correlator 702 is an intermediate result.
  • the remote radio head 1422 is output to the remote terminal 1422 and the user terminal area determination unit 703 is not provided. Description of points common to the communication apparatus 401 illustrated in FIG. 5 is omitted.
  • One of the channel filters 503 (eg, channel filter 503) (eg, channel filter 503) is a baseband (analog or digital) from one of the four antennas (eg, antenna # 1). ) Signal is passed to the baseband multiplexer 1701 of the intermediate remote radio head 1422, which will be described later with reference to FIG. Note that instead of one of the channel filters 503 (503-1, 503-2, 503-3) passing the baseband (analog or digital) signal to the intermediate remote radio head 1422, all the channel filters 503,503 -1,503-2, 503-3 may pass the baseband (analog or digital) signal to the intermediate remote radio head 1422.
  • the downlink radio frame timing generator 1600 receives the downlink signal transmitted from the baseband unit 1430 and performs synchronization processing to regenerate the frame timing synchronized with the radio frame timing.
  • the conversion timing of the FFT 504 (504-1, 504-2, 504-3) follows the frame timing generated by the downlink radio frame timing generator 1600.
  • the spatial correlator 702 correlates the impulse response waveform generated by the response waveform generator 701 (701-1, 701-2, 701-3) and the steering vector for each time sample, and generates a spatiotemporal profile.
  • the generated space-time profile is passed to the intermediate remote radio head 1422.
  • spatio-temporal profiles at a plurality of positions can be generated from reference signals on the same resource block using a plurality of remote radio heads 1421, 1422.
  • the user terminal area determination unit 703 can determine whether or not the traveling vehicle in communication is in the billing target area 1110 shown in FIG. 10 using a plurality of spatiotemporal profiles.
  • the radio frame timing is detected from the downlink signal, and the timing for generating the spatio-temporal profile is acquired.
  • a spatial profile can be generated.
  • FIG. 15 is a diagram for explaining an example of the configuration of the intermediate remote radio head 1422 according to the fifth embodiment.
  • the intermediate remote radio head 1422 differs from the terminal remote radio head 1421 shown in FIG. 14 in that it includes a baseband multiplexer 1701 and a space-time profile multiplexer 1702. The description of the intermediate remote radio head 1422 is omitted with respect to the points in common with the terminal remote radio head 1421.
  • the baseband multiplexer 1701 multiplexes the baseband signal received from the remote radio head (for example, the remote radio head 1421 at the end) provided on the end side of the intermediate remote radio head 1422 and the baseband signal output from the channel filter 503. Then, the multiplexed baseband signal is passed to a remote radio head (not shown) or baseband unit 1430 provided on the baseband unit 1430 side. Similarly, the space-time profile multiplexer 1702 generates the space-time profile received from the remote radio head (for example, the remote radio head 1421 at the end) provided on the end side of the intermediate remote radio head 1422 and the space correlator 702 generates.
  • the spatiotemporal profile is multiplexed, and the multiplexed spatiotemporal profile is passed to the remote radio head or baseband unit 1430 provided on the baseband unit 1430 side.
  • Multiplexing may be, for example, time division multiplexing (TDM), frequency division multiplexing (FDM), code division multiplexing (CDM), or space division multiplexing (SDM).
  • FIG. 16 is a diagram for explaining an example of the configuration of the baseband unit 1430 according to the fifth embodiment.
  • the baseband unit 1430 includes a signal selector 1501, an FFT 504, a frame timing generator 505, a demapper 506, a decoder 507, and a user terminal area determiner 703.
  • the signal selector 1501 selects the uplink baseband signal to be decoded from the uplink received signals from all the remote radio heads 1421, 1422.
  • the frame timing generator 505 generates frame timing in synchronization with the timing at which the baseband unit 1430 transmits a downlink signal.
  • the FFT 504 converts the uplink baseband signal to be decoded into a frequency domain baseband signal based on the frame timing generated by the frame timing generator 505.
  • the demapper 506 extracts a resource block to be decoded from the frequency domain baseband signal.
  • the decoder 507 extracts the IP packet that has been decoded at the above.
  • the baseband unit 1430 may further perform processing specific to SC-FDMA such as 1/2 subcarrier shift processing.
  • All connected remote radio heads 1421 and 1422 generate a spatio-temporal profile waveform using reference signals from the vehicle-mounted devices of all the traveling vehicles in communication, and transmit them to the baseband unit 1430.
  • the user terminal area determination unit 703 of the baseband unit 1430 determines whether or not the traveling vehicle in communication is within the billing target area, and outputs the determination result.
  • the spatio-temporal profile waveform is generated using the remote radio heads 1421, 1422.
  • an embodiment using the array antenna and the spatial correlator 702 can be considered as in the second embodiment.
  • user terminal area determiner 703 determines whether or not a traveling vehicle in communication exists within billing target area 1110 using a spatiotemporal profile having three-dimensional information.
  • the spatio-temporal profile information having three-dimensional information including arrival angle resolution, delay time resolution, and amplitude resolution information has a large amount of information.
  • the arrival angle is an angle indicating the arrival direction. The greater the amount of information, the longer it takes to determine whether or not the user terminal area determination unit 703 can charge, and the higher the information transmission means, the higher the communication cost and the calculation cost.
  • the delay spread and the angular spread are calculated.
  • the delay spread and the angular spread are calculated.
  • FIG. 17A and FIG. 17B are diagrams for explaining an example of compression of the spatiotemporal profile according to the sixth embodiment.
  • the spatio-temporal profile 1800 includes two delayed waves 1801 and 1802.
  • a dispersion 1811 in the delay direction and a dispersion 1812 in the arrival angle (angle indicating the arrival direction) are obtained for the two delayed waves 1801 and 1802.
  • the dispersion 1811 in the delay direction is called a delay spread Ds, and can be obtained by the following equations (3) to (5).
  • P (t) represents the strength of the received power at the discrete time t
  • T represents the maximum value of the observation time of the received power
  • the dispersion in the angular direction is called an angular spread As and can be obtained by the following equations (6) to (8).
  • P ( ⁇ ) represents the strength of the received power at the arrival angle (angle indicating the arrival direction) ⁇
  • ⁇ min and ⁇ max represent the minimum value and the maximum value of the observed arrival angle of the received power, respectively.
  • the user terminal area determiner 703 performs machine learning or multivariate analysis on the compressed set of spatiotemporal profiles 1830.
  • the multivariate analysis is, for example, multiple regression analysis, principal component analysis, factor analysis, canonical correlation analysis, or discriminant analysis.
  • the user terminal area determination unit 703 determines that the traveling vehicle in communication is in the chargeable area based on a smaller amount of information as compared with the set of uncompressed spatiotemporal profiles. It is determined whether it is inside.
  • machine learning or multivariate analysis is performed on the delay dispersion value (delay spread) and the arrival angle dispersion value (angle spread) extracted from the spatiotemporal profile. Then, using the result of machine learning or multivariate analysis, it is determined whether or not the traveling vehicle in communication is within the chargeable area. According to the sixth embodiment, the reliability of the determination result by the user terminal area determiner 703 can be improved.
  • the user terminal area determination unit 703 identifies and charges a vehicle determined to travel on a toll road. Instead of this, an embodiment in which processing other than charging is performed is also conceivable. For example, an embodiment in which the user terminal area determination unit 703 determines a person who passes through a specific passage, identifies the person who passes through, and records the passerby is also conceivable.
  • the array antenna 900 may be a two-dimensional array antenna. By using a two-dimensional array antenna, the direction of arrival can be detected in two dimensions.
  • the user terminal area determination unit 703 identifies and identifies the mobile terminal of the visitor determined to be in a specific area.
  • An embodiment in which information related to a specific area is provided to the mobile terminal is also conceivable.
  • the user terminal area determination unit 703 identifies and charges a vehicle determined to travel on a toll road. Instead, a charging device provided separately from the user terminal area determination unit 703 may perform a charging process for the vehicle.
  • the present disclosure has been described with respect to an example configured using hardware.
  • the present disclosure can also be realized by software in cooperation with hardware.
  • each functional block used in the description of each of the above embodiments is typically realized as an LSI (large-scale integration) that is an integrated circuit.
  • the integrated circuit may control each functional block used in the description of the above embodiment, and may include an input and an output. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
  • LSI large-scale integration
  • IC integrated circuit
  • system LSI super LSI
  • ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and implementation using a dedicated circuit or a general-purpose processor is also possible.
  • An FPGA Field Programmable Gate Array
  • a Reconfigurable Processor that can reconfigure the connection or setting of circuit cells inside the LSI may be used.
  • the present disclosure can be implemented in all kinds of apparatuses, devices, and systems (collectively referred to as communication apparatuses) having a communication function.
  • communication devices include telephones (cell phones, smartphones, etc.), tablets, personal computers (PCs) (laptops, desktops, notebooks, etc.), cameras (digital still / video cameras, etc.) ), Digital players (digital audio / video players, etc.), wearable devices (wearable cameras, smart watches, tracking devices, etc.), game consoles, digital book readers, telehealth telemedicine (remote health) Care / medicine prescription) devices, vehicles with communication functions or mobile transportation (cars, airplanes, ships, etc.), and combinations of the various devices described above.
  • Communication devices are not limited to those that are portable or movable, but any kind of devices, devices, systems, such as smart home devices (home appliances, lighting equipment, smart meters or non-portable or fixed) Measurement equipment, control panels, etc.), vending machines, and any other “things” that may exist on the IoT (Internet of Things) network.
  • smart home devices home appliances, lighting equipment, smart meters or non-portable or fixed
  • Measurement equipment control panels, etc.
  • vending machines and any other “things” that may exist on the IoT (Internet of Things) network.
  • Communication includes data communication by a combination of these in addition to data communication by a cellular system, a wireless LAN (local area network) system, a communication satellite system, and the like.
  • Communication devices also include devices such as controllers and sensors that are connected or coupled to communication devices that perform the communication functions described in this disclosure. For example, a controller or a sensor that generates a control signal or a data signal used by a communication device that executes a communication function of the communication apparatus is included.
  • the communication apparatus includes infrastructure equipment such as a base station, an access point, and any other apparatus, device, or system that communicates with or controls the various non-limiting apparatuses described above. .
  • a communication apparatus is based on a reception circuit that receives a radio signal transmitted by a mobile station, and a signal waveform profile that includes information on at least two of the arrival direction, arrival time, and reception power of the radio signal. And a processing circuit for estimating the position of the mobile station.
  • the processing circuit determines whether the mobile station is moving in an identification target area based on the estimated position, and the mobile station moves in the identification target area. If it is determined that the mobile station is present, the mobile station is identified based on identification information included in the radio signal.
  • the area to be identified is an area to be charged, and the processing circuit performs a charging process on the identified mobile station.
  • the mobile station includes a plurality of antennas
  • the processing circuit uses the reference waveform included in the radio signals respectively received by the plurality of antennas as the signal waveform profile.
  • a spatio-temporal profile representing the relationship between the arrival direction, the arrival time, and the received power is generated.
  • the processing circuit learns a plurality of the spatio-temporal profiles when the mobile station is moving in an area to be identified, and based on the radio signal received by the receiving circuit Based on the generated spatiotemporal profile and the learning result, it is determined whether or not the mobile station is moving in the area to be identified.
  • the processing circuit receives a signal waveform profile generated based on radio signals received by the other communication device via a plurality of antennas from another communication device, and the processing circuit generates The position of the mobile station is estimated based on the received signal waveform profile and the received signal waveform profile.
  • the other communication device is a remote radio head.
  • the processing circuit generates the signal waveform profile according to a radio frame timing of a downlink radio signal transmitted to the mobile station.
  • the processing circuit detects a value indicating dispersion of the delay amount and a value indicating dispersion of the arrival angle that is an angle indicating the arrival direction from the spatiotemporal profile, and Based on the value indicating dispersion and the value indicating dispersion of the arrival angle, it is determined whether or not the mobile station is moving in the area to be identified.
  • the position estimation method of the present disclosure receives a radio signal transmitted by a mobile station, and based on a signal waveform profile including information on at least two of the arrival direction, arrival time, and reception power of the radio signal, Estimating the position of the mobile station.
  • a position estimation program includes a signal waveform including information on at least two of a process of receiving a radio signal transmitted from a mobile station and an arrival direction, an arrival time, and reception power of the radio signal in a computer. And a process of estimating the position of the mobile station based on the profile.
  • the communication system of the present disclosure includes a mobile station and a communication device according to the present disclosure.
  • One aspect of the present disclosure is useful for charging a vehicle traveling on a toll road adjacent to a general road.

Abstract

This communication device is provided with a receiving circuit which receives a radio signal transmitted by a mobile station, and a processing circuit which estimates the position of the mobile station on the basis of a signal waveform profile including information relating to at least two of an arrival direction, an arrival time, and a reception power of the radio signal. The position estimating method receives a radio signal transmitted by a mobile station, and estimates the position of the mobile station on the basis of a signal waveform profile including information relating to at least two of an arrival direction, an arrival time, and a reception power of the radio signal. The communication system is provided with a mobile station and the communication device according to the present disclosure.

Description

通信装置、位置推定方法、位置推定プログラム、および通信システムCOMMUNICATION DEVICE, POSITION ESTIMATION METHOD, POSITION ESTIMATION PROGRAM, AND COMMUNICATION SYSTEM
 本開示は、通信装置、位置推定方法、位置推定プログラム、および通信システムに関する。 The present disclosure relates to a communication device, a position estimation method, a position estimation program, and a communication system.
 有料道路において、走行している車両が停止しなくても、人の手を介さずに料金収受を行うことができる電子料金収受システムが普及している。日本では、電子料金収受システムに用いることができる無線通信方式として、例えば、ETC(Electronic Toll Collection)システム(非特許文献1)やDSRC(Dedicated Short Range Communications)システム(非特許文献2)が規格化されている。 On electronic toll roads, electronic toll collection systems that can collect tolls without human intervention even when a running vehicle does not stop are widespread. In Japan, for example, ETC (Electronic Toll Collection) system (Non-Patent Document 1) and DSRC (Dedicated Short Range Communications) system (Non-Patent Document 2) are standardized as wireless communication methods that can be used for electronic fee collection systems. Has been.
 また、世界的にも欧州や韓国などでDSRC規格(非特許文献3)を使ったシステムを用いたロードプライシングのサービスの提供が行われている。移動通信方式の標準化団体である3GPP(Third Generation Partnership Project)では、V2X(Vehicle to Everything)として路車間通信のLTE(Long Term Evolution)方式(非特許文献4)による応用を検討している。また、路車間通信は、既に実用化されている電子料金収受システム以外の用途にも広がりを見せている。 Furthermore, road pricing services using systems using the DSRC standard (Non-Patent Document 3) are being provided worldwide in Europe, South Korea, and the like. 3GPP (Third Generation Partnership Project), which is a standardization organization for mobile communication systems, is considering the application of LTE (Long Term Evolution) system for road-to-vehicle communication (Non-patent Document 4) as V2X (Vehicle to Everything). Road-to-vehicle communication is also spreading to uses other than electronic toll collection systems that have already been put into practical use.
 本開示の非限定的な実施の形態は、移動局の位置を推定する、改善された通信装置、位置推定方法、位置推定プログラム、および通信システムの提供に資する。 The non-limiting embodiment of the present disclosure contributes to the provision of an improved communication device, a position estimation method, a position estimation program, and a communication system that estimate the position of a mobile station.
 本開示の一態様に係る通信装置は、移動局が送信した無線信号を受信する受信回路と、前記無線信号の到来方向、到来時刻、および、受信電力のうちの少なくとも2つに関する情報を含む信号波形プロファイルに基づいて、前記移動局の位置を推定する処理回路と、を備える構成を採る。 A communication apparatus according to an aspect of the present disclosure includes a reception circuit that receives a radio signal transmitted by a mobile station, and a signal including information on at least two of the arrival direction, arrival time, and reception power of the radio signal And a processing circuit that estimates a position of the mobile station based on a waveform profile.
 本開示の一態様に係る位置推定方法は、移動局が送信した無線信号を受信し、前記無線信号の到来方向、到来時刻、および、受信電力のうちの少なくとも2つに関する情報を含む信号波形プロファイルに基づいて、前記移動局の位置を推定する構成を採る。 A position estimation method according to an aspect of the present disclosure receives a radio signal transmitted from a mobile station, and includes a signal waveform profile including information on at least two of the arrival direction, arrival time, and reception power of the radio signal Is used to estimate the position of the mobile station.
 本開示の一態様に係る位置推定プログラムは、コンピュータに、移動局が送信した無線信号を受信する処理と、前記無線信号の到来方向、到来時刻、および、受信電力のうちの少なくとも2つに関する情報を含む信号波形プロファイルに基づいて、前記移動局の位置を推定する処理と、を実行させる構成を採る。 A position estimation program according to an aspect of the present disclosure is a computer that receives information on at least two of a process of receiving a radio signal transmitted from a mobile station and an arrival direction, arrival time, and reception power of the radio signal. And a process of estimating the position of the mobile station based on a signal waveform profile including
 本開示の一態様に係る通信システムは、移動局と、本開示に係る通信装置と、を備える構成を採る。 The communication system according to an aspect of the present disclosure employs a configuration including a mobile station and a communication device according to the present disclosure.
 なお、これらの包括的または具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム、または、記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。 Note that these comprehensive or specific modes may be realized by a system, apparatus, method, integrated circuit, computer program, or recording medium, and the system, apparatus, method, integrated circuit, computer program, and recording medium. It may be realized by any combination of the above.
 本開示の一態様によれば、移動局の位置を推定する、改善された通信装置、位置推定方法、位置推定プログラム、および通信システムを提供できる。 According to one aspect of the present disclosure, it is possible to provide an improved communication device, a position estimation method, a position estimation program, and a communication system that estimate the position of a mobile station.
 本開示の一態様における更なる利点および効果は、明細書および図面から明らかにされる。かかる利点および/または効果は、いくつかの実施の形態並びに明細書および図面に記載された特徴によってそれぞれ提供されるが、1つまたはそれ以上の同一の特徴を得るために必ずしも全てが提供される必要はない。 Further advantages and effects of one aspect of the present disclosure will become apparent from the specification and drawings. Such advantages and / or effects are each provided by several embodiments and features described in the description and drawings, but not necessarily all in order to obtain one or more identical features. There is no need.
電子料金収受システムで用いられる通信システムの構成の一例を示す図The figure which shows an example of a structure of the communication system used with an electronic bill collection system 電子料金収受システムで用いられる通信システムの構成の他の一例を示す図The figure which shows another example of a structure of the communication system used with an electronic bill collection system 実施の形態1に係る通信システムを説明する図The figure explaining the communication system which concerns on Embodiment 1 路側装置と車載通信機との間の通信のシーケンスの一例を示す図The figure which shows an example of the sequence of communication between a roadside apparatus and vehicle-mounted communication apparatus 路側装置と車載通信機との間の通信のシーケンスの他の一例を示す図The figure which shows another example of the sequence of communication between a roadside apparatus and vehicle-mounted communication apparatus. 路側装置と車載通信機との間の通信のシーケンスの他の一例を示す図The figure which shows another example of the sequence of communication between a roadside apparatus and vehicle-mounted communication apparatus. 実施の形態1に係る通信装置と走行車両から受信する上り無線信号との関係の一例を示す図The figure which shows an example of the relationship between the communication apparatus which concerns on Embodiment 1, and the uplink radio signal received from a traveling vehicle. 実施の形態1に係る通信装置の構成の一例を示す図The figure which shows an example of a structure of the communication apparatus which concerns on Embodiment 1. 図5に示されるFFT(Fast Fourier Transform)で周波数領域化されたベースバンドデータの一例を表す図The figure showing an example of baseband data frequency-domained by FFT (Fast | Fourier | Transform) shown in FIG. 図5に示される応答波形生成器の動作を説明する図The figure explaining operation | movement of the response waveform generator shown by FIG. 図5に示される応答波形生成器の動作を説明する図The figure explaining operation | movement of the response waveform generator shown by FIG. 図5に示される応答波形生成器の動作を説明する図The figure explaining operation | movement of the response waveform generator shown by FIG. 各アンテナ素子の電波の受信信号における位相差と電波の到来方向との関係を説明する図The figure explaining the relationship between the phase difference in the received signal of the radio wave of each antenna element and the arrival direction of the radio wave 電波の到来方向の推定に用いられるステアリングベクトルの一例を説明する図The figure explaining an example of the steering vector used for estimation of the arrival direction of an electric wave 図5の空間相関器が生成する波形を説明する図The figure explaining the waveform which the spatial correlator of FIG. 5 produces | generates 図5の空間相関器が生成する波形を説明する図The figure explaining the waveform which the spatial correlator of FIG. 5 produces | generates 図5の空間相関器が生成する波形を説明する図The figure explaining the waveform which the spatial correlator of FIG. 5 produces | generates 実施の形態2に係るユーザ端末エリア判定器の動作を説明する図The figure explaining operation | movement of the user terminal area determination device which concerns on Embodiment 2. FIG. 実施の形態3に係る学習器の動作の一例を説明する図The figure explaining an example of operation | movement of the learning device which concerns on Embodiment 3. 実施の形態4に係る路側装置の一例を示す図The figure which shows an example of the roadside apparatus which concerns on Embodiment 4. 実施の形態4に係る時空間プロファイルの一例を示す図The figure which shows an example of the spatiotemporal profile which concerns on Embodiment 4. 実施の形態5に係る路側装置の構成の一例を示す図The figure which shows an example of a structure of the roadside apparatus which concerns on Embodiment 5. 実施の形態5に係る末端のリモートラジオヘッドの構成の一例を説明する図The figure explaining an example of a structure of the terminal remote radio head which concerns on Embodiment 5. FIG. 実施の形態5に係る中間のリモートラジオヘッドの構成の一例を説明する図The figure explaining an example of a structure of the intermediate | middle remote radio head which concerns on Embodiment 5. FIG. 実施の形態5に係るベースバンドユニットの構成の一例を説明する図The figure explaining an example of a structure of the baseband unit which concerns on Embodiment 5. FIG. 実施の形態6に係る時空間プロファイルの圧縮の一例を説明する図The figure explaining an example of compression of the spatiotemporal profile which concerns on Embodiment 6. FIG. 実施の形態6に係る時空間プロファイルの圧縮の一例を説明する図The figure explaining an example of compression of the spatiotemporal profile which concerns on Embodiment 6. FIG.
 本開示の実施の形態の説明に先立ち、従来の技術における問題点を簡単に説明する。無線通信方式を電子料金収受システムに用いる場合、走行している車両の位置に応じて課金を行うか否かを判定する必要がある。このため、走行している車両の位置を推定する機能の提供が求められている。 Prior to the description of the embodiment of the present disclosure, the problems in the prior art will be briefly described. When the wireless communication method is used in the electronic fee collection system, it is necessary to determine whether or not to charge according to the position of the traveling vehicle. For this reason, provision of the function which estimates the position of the vehicle which is drive | working is calculated | required.
 電子料金収受システム(Electronic Toll Collection(ETC) System)は、一例において、車線あるいはレーンに路側機を設けて、路側機直下、または路側機に対応するレーンを通過する車両に搭載された車載器と路側機との間で通信を行い、通過する車両に対して課金を行う。 An electronic toll collection system (Electronic Toll Collection (ETC) System) is an example of an on-board device installed in a vehicle that has a roadside machine in the lane or lane and passes directly under the roadside machine or through the lane corresponding to the roadside machine Communicate with roadside equipment and charge for passing vehicles.
 ここで、レーンごとに設置している路側機が隣のレーンを通過する車両に搭載された車載器と通信してしまうと、当該車載器が走行しているレーンの隣のレーンのゲートが開いてしまうなどシステム動作の混乱を生じる可能性がある。また、路側機と課金対象である有料道路上を走行している車両ではない隣接する一般道路を通過する車両に搭載されている車載器との間で通信が成立してしまうと、一般道路を通過する車両に対して誤って課金してしまう可能性がある。 Here, if the roadside machine installed for each lane communicates with the vehicle-mounted device mounted on the vehicle passing through the adjacent lane, the gate of the lane next to the lane in which the vehicle-mounted device is traveling opens. System operation may be disrupted. In addition, if communication is established between a roadside device and an in-vehicle device mounted on a vehicle passing through an adjacent general road that is not a vehicle traveling on a toll road to be charged, There is a possibility that the vehicle passing through may be charged by mistake.
 上記の問題の発生を抑制するための対策として、例えば、本来路側機が通信エリアとしてカバーするべきレーン以外のレーンにまで通信エリアが広がらないようにすることがある。例えば、路側機において指向性の鋭いアンテナを使用することがある。また、例えば、通信エリア内または通信エリア近傍の電波障害物である路側ブロック、ガードレール、料金所ゲート設備などによって電波が乱反射しないように、電波障害物に電波吸収体を貼り付けることがある。 Measures for suppressing the occurrence of the above problem include, for example, preventing the communication area from extending to a lane other than the lane that the roadside machine should originally cover as the communication area. For example, an antenna having a sharp directivity may be used in a roadside machine. In addition, for example, a radio wave absorber may be attached to a radio wave obstacle so that the radio wave is not reflected irregularly by roadside blocks, guard rails, tollgate gate facilities, and the like that are radio wave obstacles in or near the communication area.
 しかしながら、このような対策は、通信エリアが狭くなることによる通信エラーを増加させる。また、設備の設置時に電波吸収体を貼り付ける必要がある全ての場所を特定し、電波吸収体を貼り付ける作業が求められる。したがって、設備の設置に伴うコストの増大が予想される。また、動的な障害物である大型バスやトラックなど全ての障害物に対して電波の乱反射を防止するための対策を行うことは、困難である。 However, such measures increase communication errors due to a narrow communication area. Further, it is required to identify all the places where the radio wave absorber needs to be pasted at the time of installation of the equipment and paste the radio wave absorber. Therefore, an increase in cost associated with installation of equipment is expected. In addition, it is difficult to take measures to prevent radio wave irregular reflection on all obstacles such as large buses and trucks which are dynamic obstacles.
 図1は、電子料金収受システムで用いられる通信システムの構成の一例を示す図である。 FIG. 1 is a diagram illustrating an example of a configuration of a communication system used in an electronic fee collection system.
 料金所レーンごとに、路側装置10,20の通信エリア11,21が設定されている。路側装置10の通信エリア11内を走行する走行車両の車載通信機30は、路側装置20と通信を開始しないようにする。また、路側装置20の通信エリア21内を走行する、車載通信機31を載せた走行車両は、路側装置10と通信を開始しないようにする。さらに、通信エリア11,21外を走行する走行車両32,33が課金されないようにする。これらを考慮して、路側装置10および20のアンテナ指向性が形成され、路側装置10,20の通信エリア11,21が設定される。 The communication areas 11 and 21 of the roadside devices 10 and 20 are set for each toll gate lane. The in-vehicle communication device 30 of the traveling vehicle traveling in the communication area 11 of the roadside device 10 does not start communication with the roadside device 20. Moreover, the traveling vehicle carrying the vehicle-mounted communication device 31 that travels in the communication area 21 of the roadside device 20 does not start communication with the roadside device 10. Further, the traveling vehicles 32 and 33 traveling outside the communication areas 11 and 21 are not charged. Considering these, the antenna directivity of the roadside devices 10 and 20 is formed, and the communication areas 11 and 21 of the roadside devices 10 and 20 are set.
 ここで、例えば、道路方向に沿った長さが30mの通信エリアの場合、時速100km/hで走行している車両が狭域エリアを通過するために要する時間は、約1秒である。電子料金収受システムは、この間に、車両の車載通信機の通信確立と認証と課金処理とを行う。また、1つの通信エリア内を5台の車両が走行する場合、各車両との通信確立と認証と課金処理とに割り当てることができる時間は、200msecとなる。 Here, for example, in the case of a communication area with a length of 30 m along the road direction, the time required for a vehicle traveling at a speed of 100 km / h to pass through the narrow area is about 1 second. During this period, the electronic toll collection system performs communication establishment, authentication, and billing processing for the in-vehicle communication device of the vehicle. In addition, when five vehicles travel in one communication area, the time that can be allocated to establishment of communication with each vehicle, authentication, and billing processing is 200 msec.
 このように、車両が高速で走行している状態では、各車両に対して課金処理を行うために利用できる時間が比較的短い。受信品質が悪い時の再送処理時間なども考慮すると、高速走行する多数の車両に対して課金することは困難である。 As described above, when the vehicle is traveling at a high speed, the time available for charging the vehicle is relatively short. Considering retransmission processing time when reception quality is poor, it is difficult to charge a large number of vehicles traveling at high speed.
 図2は、電子料金収受システムで用いられる通信システムの構成の他の一例を示す図である。 FIG. 2 is a diagram showing another example of the configuration of the communication system used in the electronic toll collection system.
 側道40上を走行している車両は、課金処理の対象外である。しかしながら、図2に示されるように、他の走行車両(例えば、車載通信機31を載せた車両)が電波反射体となり、電波経路42を通って側道40上を走行している車両の車載通信機41と路側装置10との間で通信が成立し課金されてしまうことがある。 Vehicles traveling on the side road 40 are not subject to billing processing. However, as shown in FIG. 2, another traveling vehicle (for example, a vehicle on which the vehicle-mounted communication device 31 is mounted) serves as a radio wave reflector, and is mounted on a vehicle traveling on the side road 40 through the radio wave path 42. Communication may be established between the communicator 41 and the roadside apparatus 10 and charged.
 そのため、例えば、側道40に届く電界強度を低くするために、課金対象の有料道路60と側道40との間に、電波吸収帯50が設置される。電波吸収帯50が設置されることにより、側道40上を走行している車両の車載通信機41と路側装置10との間の通信が成立し、路側装置10が車載通信機41を載せた車両に対して誤って課金する可能性を減らすことができる。しかしながら、電波吸収帯50を設置するために、施工費用が掛かる。 Therefore, for example, in order to reduce the electric field intensity reaching the side road 40, a radio wave absorption band 50 is installed between the toll road 60 to be charged and the side road 40. By installing the radio wave absorption band 50, communication between the vehicle-mounted communication device 41 of the vehicle traveling on the side road 40 and the road-side device 10 is established, and the road-side device 10 places the vehicle-mounted communication device 41 thereon. The possibility of erroneously charging the vehicle can be reduced. However, since the radio wave absorption band 50 is installed, a construction cost is required.
 本開示では、電子料金収受システムに対して適用可能な通信装置、通信方法、通信プログラム、および通信システムを提供する。ただし、電子料金収受システムは、本開示の通信装置、通信方法、通信プログラム、および通信システムが適用可能なサービスの一例であり、本開示は、移動体または移動体が搭載する通信装置との間で通信を行う様々なシステムに対して適用可能である。 This disclosure provides a communication device, a communication method, a communication program, and a communication system applicable to an electronic fee collection system. However, the electronic fee collection system is an example of a service to which the communication device, the communication method, the communication program, and the communication system of the present disclosure can be applied, and the present disclosure is between the mobile body or the communication device mounted on the mobile body. It can be applied to various systems that communicate with each other.
 以下、本開示に係る実施の形態1~6を説明する。本開示に係る通信システムにおいては、端末との通信と、端末から送信された無線信号が到来する方向などの信号解析とが独立して行われる。実施の形態1~6の各々は、他の実施の形態の少なくとも一部と組み合わせて実施してもよい。また、実施の形態1~6の2以上の形態を組み合わせて実施してもよい。 Hereinafter, Embodiments 1 to 6 according to the present disclosure will be described. In the communication system according to the present disclosure, communication with a terminal and signal analysis such as a direction in which a radio signal transmitted from the terminal arrives are performed independently. Each of Embodiments 1 to 6 may be implemented in combination with at least a part of other embodiments. Further, two or more embodiments of Embodiments 1 to 6 may be combined.
 (実施の形態1)
 図3Aは、実施の形態1に係る通信システム1を説明する図である。通信システム1は、路側装置10,10aと、車載通信機(通信端末)30,31,32,33,41と、を備える。なお、図3Aにおいては、2つの路側装置10,10aが示されているが、路側装置の数は、任意の数であってもよい。
(Embodiment 1)
FIG. 3A is a diagram for explaining the communication system 1 according to the first embodiment. The communication system 1 includes roadside devices 10 and 10a and vehicle-mounted communication devices (communication terminals) 30, 31, 32, 33, and 41. In addition, in FIG. 3A, although the two roadside apparatuses 10 and 10a are shown, the number of roadside apparatuses may be arbitrary numbers.
 路側装置10,10aは、図3Aに示されるように通信エリア11を走行する複数の車両の車載通信機30,31,32,33,41と通信し、車載通信機30,31,32,33を載せた車両が有料道路(例えば、高速道路)60上を走行していると判定し、車両に対して課金する。図3Aには、路側装置10の通信エリア11が破線で示され、路側装置10と車載通信機30,31,32,33,41との間の通信とが、太線矢印で示されている。一点鎖線矢印は、路側装置10の通信エリア11の、路側装置10からの最遠点にある車載通信機33との通信を示す。なお、車載通信機30,31,32,33,41を搭載した車両を、以下、便宜的に、車両30,31,32,33,41のように車載通信機に付した符号を付して表記することがある。 The roadside devices 10 and 10a communicate with the in- vehicle communication devices 30, 31, 32, 33, and 41 of a plurality of vehicles that travel in the communication area 11 as shown in FIG. 3A, and the in- vehicle communication devices 30, 31, 32, and 33 Is determined to be traveling on a toll road (for example, a highway) 60, and the vehicle is charged. In FIG. 3A, the communication area 11 of the roadside device 10 is indicated by a broken line, and the communication between the roadside device 10 and the vehicle-mounted communication devices 30, 31, 32, 33, 41 is indicated by a thick arrow. An alternate long and short dash line arrow indicates communication with the in-vehicle communication device 33 at the farthest point from the roadside device 10 in the communication area 11 of the roadside device 10. For convenience, vehicles equipped with the in- vehicle communication devices 30, 31, 32, 33, and 41 are hereinafter denoted by reference numerals attached to the in-vehicle communication devices such as the vehicles 30, 31, 32, 33, and 41. Sometimes written.
 車載通信機30,31,32,33,41は、路側装置10,10aと通信する。車載通信機30,31,32,33,41が送信する信号には、例示的に、参照信号および識別情報が含まれてよい。車載通信機30,31,32,33,41は、例えば、3GPP(3rd Generation Partnership Project)の通信規格に準拠した端末であってよい。通信規格の非限定的な一例としては、LTE、LTE-A(LTE-Advanced)、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)などが挙げられる。5Gは、NR(new radio)と呼ばれることもある。参照信号には、例えば、復調用参照信号(DMRS)、サウンディングリファレンスシグナル(SRS)が含まれてよい。識別情報は、例えば、通信エリア(例えば、セル)11において車載通信機30,31,32,33,41を一意に識別するための情報である。後述するランダムアクセス手順(procedure)において、識別情報には、ランダムアクセスプリアンブルが用いられてよい。また、識別情報が走行車両への課金処理に用いられる場合、識別情報は、車載通信機30,31,32,33,41を使用する課金ユーザを一意に識別する。 The in- vehicle communication devices 30, 31, 32, 33, and 41 communicate with the roadside devices 10 and 10a. The signals transmitted by the in- vehicle communication devices 30, 31, 32, 33, 41 may illustratively include a reference signal and identification information. The in- vehicle communication devices 30, 31, 32, 33, and 41 may be terminals conforming to a communication standard of 3GPP (3rd generation generation partnership partnership project), for example. Non-limiting examples of communication standards include LTE, LTE-A (LTE-Advanced), 4G (4th generation mobile mobile communication system), and 5G (5th generation mobile mobile communication system). 5G is sometimes called NR (new radio). The reference signal may include, for example, a demodulation reference signal (DMRS) and a sounding reference signal (SRS). The identification information is information for uniquely identifying the in- vehicle communication devices 30, 31, 32, 33, and 41 in the communication area (for example, cell) 11, for example. In a random access procedure described later, a random access preamble may be used as identification information. Further, when the identification information is used for the charging process for the traveling vehicle, the identification information uniquely identifies the charging user who uses the in- vehicle communication devices 30, 31, 32, 33, and 41.
 図3Bは、路側装置10と車載通信機30,31,32,33,40との間の通信のシーケンスの一例を示す。図3Bにおいて、eNB(基地局装置、5GにおいてはgNB)は、路側装置10に相当し、UE(端末機)は、車載通信機30,31,32,33,41に相当する。したがって、路側装置から車載通信機への方向の通信は下り(ダウンリンク;DL)通信と称されてよく、その逆である車載通信機から路側装置への方向の通信は上り(アップリンク;UL)通信と称されてよい。 FIG. 3B shows an example of a communication sequence between the roadside apparatus 10 and the vehicle-mounted communication devices 30, 31, 32, 33, and 40. In FIG. 3B, eNB (base station apparatus, gNB in 5G) corresponds to the roadside apparatus 10, and UE (terminal) corresponds to the in- vehicle communication apparatuses 30, 31, 32, 33, and 41. Therefore, communication in the direction from the roadside device to the vehicle-mounted communication device may be referred to as downlink (downlink; DL) communication, and vice versa, communication in the direction from the vehicle-mounted communication device to the roadside device is uplink (uplink; UL). ) May be referred to as communication.
 まず、図3Bにおいて、UEは、UEが接続可能なeNBのセルを検索(セルサーチ)する。セルは、例えば、図3Aに示される通信エリア11である。UEは、セルサーチにおいて、eNBが送信する報知情報(例えば、system information block, SIB)を受信することにより、接続可能なセル(別言すると、eNB)を発見する。 First, in FIG. 3B, the UE searches for a cell of the eNB to which the UE can connect (cell search). The cell is, for example, the communication area 11 shown in FIG. 3A. In the cell search, the UE finds a connectable cell (in other words, eNB) by receiving broadcast information (for example, system information block, SIB) transmitted by the eNB.
 次いで、UEは、セルサーチにおいて発見した接続可能なeNBに対して、接続要求(例えば、ランダムアクセスプリアンブル)をRACH(Random Access Channel、ランダムアクセスチャネル)において送信する。UEは、eNBから、接続要求に対する応答としてRAR(Random Access Response)を受信することにより、eNBと接続を確立し、RACH手順を完了する。図3Aに示される一点鎖線矢印は、例えば、車載通信機33がランダムアクセス手順において路側装置10に送信した接続要求を示す。 Next, the UE transmits a connection request (for example, a random access preamble) to the connectable eNB discovered in the cell search in RACH (Random Access Channel, random access channel). The UE establishes a connection with the eNB by receiving an RAR (Random Access Response) as a response to the connection request from the eNB, and completes the RACH procedure. The dashed-dotted arrow shown by FIG. 3A shows the connection request which the vehicle-mounted communication apparatus 33 transmitted to the roadside apparatus 10 in the random access procedure, for example.
 次いで、UEは、接続を確立したeNBに対して、UEをコアネットワークに登録するためのアタッチ手順を実行する。次いで、UEは、eNBに対して、UEがeNBとの通信に使用する無線リソース(例えば、時間および周波数)の割り当て要求(スケジューリング要求)を送信する。スケジューリング要求を受信したeNBは、接続要求元のUEに対して無線リソースの割り当てが可能である場合、当該UE宛に無線リソースの割り当て結果を示す許可情報(グラント)を送信する。UEは、受信したグラントによって示される無線リソースを用いて、eNBにデータ信号を送信する。図3Aに示される実線矢印は、例えば、車載通信機30,31,32,41が路側装置10に送信したデータ信号を示す。 Next, the UE executes an attach procedure for registering the UE in the core network with respect to the eNB that has established the connection. Next, the UE transmits an allocation request (scheduling request) for radio resources (for example, time and frequency) used by the UE for communication with the eNB to the eNB. The eNB that has received the scheduling request transmits permission information (grant) indicating the radio resource allocation result to the UE when the radio resource can be allocated to the connection request source UE. The UE transmits a data signal to the eNB using the radio resource indicated by the received grant. A solid line arrow shown in FIG. 3A indicates, for example, a data signal transmitted from the in- vehicle communication device 30, 31, 32, 41 to the roadside device 10.
 図3Cおよび図3Dは、路側装置10と車載通信機30,31,32,33,41との間の通信のシーケンスの他の一例を示す。図3Cおよび図3Dにおいても、eNBは、路側装置10に相当し、UEは、車載通信機30,31,32,33,41に相当する。 3C and 3D show another example of a communication sequence between the roadside device 10 and the vehicle-mounted communication devices 30, 31, 32, 33, and 41. FIG. 3C and 3D, eNB corresponds to the roadside device 10, and UE corresponds to the in- vehicle communication devices 30, 31, 32, 33, and 41.
 図3Cおよび図3Dに示されるアタッチ手順までのシーケンスは、図3Bに示されるアタッチ手順までのシーケンスと同様であり、説明を省略する。図3Cおよび図3Dに示されるシーケンスにおいては、UEは、アタッチ手順の後、例えば、SRS(サウンディングリファレンスシグナル)を送信する。SRSは、例えば、eNBにおいて、UEからのUL送信の品質測定に用いられる。eNBは、UL送信の品質が相対的に高いUEに対して優先的にULの無線リソースを割り当ててよい。 The sequence up to the attach procedure shown in FIG. 3C and FIG. 3D is the same as the sequence up to the attach procedure shown in FIG. In the sequence shown in FIGS. 3C and 3D, the UE transmits, for example, an SRS (Sounding Reference Signal) after the attach procedure. SRS is used for quality measurement of UL transmission from UE in eNB, for example. The eNB may preferentially allocate UL radio resources to UEs having relatively high UL transmission quality.
 SRSの送信タイミングの決定の仕方は、図3Cに示される周期モードと図3Dに示される非周期モードとの二種類がある。周期モードにおいては、UEは、一定の周期毎に、SRSをeNBに送信する。非周期モードにおいては、UEは、eNBからの送信要求に応じて、SRSをeNBに送信する。 There are two ways of determining the transmission timing of SRS: a periodic mode shown in FIG. 3C and an aperiodic mode shown in FIG. 3D. In periodic mode, UE transmits SRS to eNB for every fixed period. In the non-periodic mode, the UE transmits an SRS to the eNB in response to a transmission request from the eNB.
 再度、図3Aを参照する。通信エリア11を、例えば、道路に沿った方向により広くとることで、路側装置10は、より早い時期から、車載通信機30,31,32,33,41との間の通信セッションの確立が可能となり、有料道路60を走行する多くの車両の車載通信機30,31,32,33との通信確立を、より余裕をもって行うことができる。路側装置10は、車載通信機30,31,32,33,41が路側装置10と通信を行っている走行車両(以下、通信中の走行車両と呼ぶ)について、車載通信機30,31,32,33,41から受ける電波の到来する方向、時間、強さの情報に関する特徴量を抽出する。次いで、路側装置10は、特徴量に基づいて、通信中の走行車両が、有料道路60上を走行しているかどうかを判定する。次いで、路側装置10は、有料道路60上を走行していると判定した車両の車載通信機30,31,32に対して、例えば、識別情報で一意に識別される課金ユーザの、予め登録された銀行口座から通行料を徴収することにより、車両の車載通信機30,31,32に対して課金する。 Refer to FIG. 3A again. By making the communication area 11 wider, for example, in a direction along the road, the roadside device 10 can establish a communication session with the vehicle-mounted communication devices 30, 31, 32, 33, 41 from an earlier time. Thus, establishment of communication with the vehicle-mounted communication devices 30, 31, 32, and 33 of many vehicles traveling on the toll road 60 can be performed with more margin. The roadside device 10 is a vehicle-mounted communication device 30, 31, 32, 32 for a traveling vehicle in which the vehicle-mounted communication devices 30, 31, 32, 33, 41 communicate with the roadside device 10 (hereinafter referred to as a traveling vehicle in communication). , 33 and 41, feature quantities relating to information on the direction, time and intensity of arrival of radio waves are extracted. Next, the roadside apparatus 10 determines whether or not the traveling vehicle in communication is traveling on the toll road 60 based on the feature amount. Next, the roadside device 10 is registered in advance with, for example, the charging user uniquely identified by the identification information with respect to the in- vehicle communication devices 30, 31, and 32 of the vehicle determined to be traveling on the toll road 60. By collecting tolls from the bank account, the in- vehicle communication devices 30, 31, 32 of the vehicle are charged.
 図4は、実施の形態1に係る通信装置401と走行車両から受信する上り無線信号400との関係の一例を示す。通信装置401は、例えば、基地局装置(eNodeB)である。通信装置401は、走行車両に搭載された車載通信機(例えば、LTEのユーザ端末)から、上り無線信号400を受信する。次いで、通信装置401は、受信した上り無線信号400を復調、復号し、IP(Internet Protocol)パケット402を出力する。 FIG. 4 shows an example of the relationship between the communication device 401 according to Embodiment 1 and the uplink radio signal 400 received from the traveling vehicle. The communication device 401 is, for example, a base station device (eNodeB). The communication device 401 receives an uplink radio signal 400 from an in-vehicle communication device (for example, an LTE user terminal) mounted on a traveling vehicle. Next, the communication device 401 demodulates and decodes the received uplink radio signal 400 and outputs an IP (Internet Protocol) packet 402.
 図5は、実施の形態1に係る通信装置401の構成の一例を示す。 FIG. 5 shows an example of the configuration of the communication apparatus 401 according to the first embodiment.
 通信装置401は、例えば、マルチパス環境に親和性の高いLTEシステム(3GPP TS 36)の1つのユニットとして構成される基地局装置(eNodeB)である。通信装置401は、複数のアンテナから入力された同一の上り無線信号を用いる。ここでは、4本のアンテナからの入力を例に説明する。 The communication device 401 is, for example, a base station device (eNodeB) configured as one unit of an LTE system (3GPP TS 36) having high affinity for a multipath environment. The communication device 401 uses the same uplink radio signal input from a plurality of antennas. Here, an explanation will be given taking as an example input from four antennas.
 通信装置401は、ダウンコンバータ501(501-1,501-2,501-3)と、AD(analog-to-digital)コンバータ502(502-1,502-2,502-3)と、チャネルフィルタ503(503-1,503-2,503-3)と、FFT504(504-1,504-2,504-3)と、フレームタイミング生成器505と、デマッパ506(506-1,506-2,506-3)と、デコーダ507と、応答波形生成器701(701-1,701-2,701-3)と、空間相関器702と、ユーザ端末エリア判定器703と、を備える。これらの構成要素は、例えば、半導体素子を用いて構成される処理回路で実装される。処理回路は、例えば、メモリを備え、メモリに記憶されたプログラムを実行してもよい。また、処理回路は、接続された外部記憶装置から読み出したプログラムを実行してもよい。 The communication apparatus 401 includes a down converter 501 (501-1, 501-2, 501-3), an AD (analog-to-digital) converter 502 (502-1, 502-2, 502-3), a channel filter 503 (503-1, 503-2, 503-3), FFT 504 (504-1, 504-2, 504-3), frame timing generator 505, and demapper 506 (506-1, 506-2, 506-3), a decoder 507, a response waveform generator 701 (701-1, 701-2, 701-3), a spatial correlator 702, and a user terminal area determination unit 703. These components are mounted by a processing circuit configured using, for example, a semiconductor element. For example, the processing circuit may include a memory and execute a program stored in the memory. Further, the processing circuit may execute a program read from the connected external storage device.
 ダウンコンバータ501(501-1,501-2,501-3)は、無線信号をベースバンド周波数に周波数変換する。ADコンバータ502(502-1,502-2,502-3)は、周波数変換された信号をデジタル信号に変換し、離散化データ信号を生成する。 Down converter 501 (501-1, 501-2, 501-3) converts a radio signal to a baseband frequency. The AD converter 502 (502-1, 502-2, 502-3) converts the frequency-converted signal into a digital signal, and generates a discretized data signal.
 チャネルフィルタ503(503-1,503-2,503-3)は、離散化データ信号を希望信号の周波数帯域に帯域制限する。FFT504(504-1,504-2,504-3)は、帯域制限された離散化データ信号を周波数領域の信号に変換する。FFT504(504-1,504-2,504-3)の処理の内容については、図6を参照して後述する。フレームタイミング生成器505は、例えば基地局装置である通信装置401が送信する下り無線信号のフレームタイミングを生成する。一例において、FFT504の変換のタイミングは、フレームタイミング生成器505が生成するフレームタイミングに従う。 The channel filter 503 (503-1, 503-2, 503-3) limits the discretized data signal to the frequency band of the desired signal. The FFT 504 (504-1, 504-2, 504-3) converts the band-limited discretized data signal into a frequency domain signal. Details of the processing of the FFT 504 (504-1, 504-2, 504-3) will be described later with reference to FIG. The frame timing generator 505 generates the frame timing of the downlink radio signal transmitted by the communication apparatus 401 that is a base station apparatus, for example. In one example, the conversion timing of the FFT 504 follows the frame timing generated by the frame timing generator 505.
 デマッパ506(506-1,506-2,506-3)は、周波数領域の信号から、復調する対象のデータを取り出す。デコーダ507は、対象のデータに復号処理を行い、IPパケットを取り出す。IPパケットには、例えば、車載通信機の識別情報が含まれる。 The demapper 506 (506-1, 506-2, 506-3) extracts data to be demodulated from the frequency domain signal. The decoder 507 performs a decoding process on the target data and extracts an IP packet. The IP packet includes, for example, in-vehicle communication device identification information.
 ダウンコンバータ501(501-1,501-2,501-3)と、ADコンバータ502(502-1,502-2,502-3)と、チャネルフィルタ503(503-1,503-2,503-3)と、FFT504(504-1,504-2,504-3)と、フレームタイミング生成器505と、デマッパ506(506-1,506-2,506-3)と、デコーダ507の処理の内容のうち上述されたものは、通常のLTEの上り受信処理と同様の内容である。必要に応じて、1/2サブキャリアシフト処理といったSC-FDMA(Single Channel-Frequency-Division Multiple Access)固有の処理を実行してもよい。 Down converter 501 (501-1, 501-2, 501-3), AD converter 502 (502-1, 502-2, 502-3), and channel filter 503 (503-1, 503-2, 503-3) 3), FFT 504 (504-1, 504-2, 504-3), frame timing generator 505, demapper 506 (506-1, 506-2, 506-3), and decoder 507 Among these, the contents described above are the same as those in the normal LTE uplink reception process. If necessary, processing specific to SC-FDMA (Single Channel-Frequency-Division Multiple Access) such as 1/2 subcarrier shift processing may be executed.
 デマッパ506(506-1,506-2,506-3)は、通信中の走行車両が通信に使うリソース(ブロック)にマッピングされた参照信号605(図6参照)を取り出す。次いで、デマッパ506(506-1,506-2,506-3)は、取り出した参照信号605を、それぞれ、応答波形生成器701(701-1,701-2,701-3)に出力する。 The demapper 506 (506-1, 506-2, 506-3) takes out the reference signal 605 (see FIG. 6) mapped to the resource (block) used by the traveling vehicle in communication for communication. Next, the demapper 506 (506-1, 506-2, 506-3) outputs the extracted reference signals 605 to the response waveform generators 701 (701-1, 701-2, 701-3), respectively.
 応答波形生成器701(701-1,701-2,701-3)は、既知の参照信号と各アンテナを通して受信した参照信号との積をフーリエ変換(または離散フーリエ変換)し、インパルス応答波形を生成する。応答波形生成器701(701-1,701-2,701-3)の処理内容については、図7を参照して後述する。 The response waveform generator 701 (701-1, 701-2, 701-3) performs Fourier transform (or discrete Fourier transform) on the product of a known reference signal and the reference signal received through each antenna, and generates an impulse response waveform. Generate. The processing contents of the response waveform generator 701 (701-1, 701-2, 701-3) will be described later with reference to FIG.
 空間相関器702は、時間サンプルごとに、応答波形生成器701(701-1,701-2,701-3)が生成したインパルス応答波形とステアリングベクトルとの相関を取り、時空間プロファイルを生成する。 Spatial correlator 702 correlates the impulse response waveform generated by response waveform generator 701 (701-1, 701-2, 701-3) and the steering vector for each time sample, and generates a spatiotemporal profile. .
 ユーザ端末エリア判定器703は、空間相関器702が生成した時空間プロファイルに基づいて、ユーザ端末の位置を推定する。さらに、ユーザ端末エリア判定器703は、推定した位置に基づいて、通信中の走行車両が有料道路60上を走行しているか否かを判定する。次いで、ユーザ端末エリア判定器703は、通信中の走行車両が有料道路60上を走行していると判定した場合、走行車両に対して課金し、そうでない場合、走行車両の車載通信機に割り当てたリソースを解放する。 The user terminal area determiner 703 estimates the position of the user terminal based on the spatiotemporal profile generated by the spatial correlator 702. Furthermore, the user terminal area determination unit 703 determines whether the traveling vehicle in communication is traveling on the toll road 60 based on the estimated position. Next, when the user terminal area determination unit 703 determines that the traveling vehicle in communication is traveling on the toll road 60, the user terminal area determination unit 703 charges the traveling vehicle; otherwise, the user terminal area determination unit 703 allocates to the in-vehicle communication device of the traveling vehicle. Free up resources.
 図6は、図5に示されるFFT504(504-1,504-2,504-3)で周波数領域化されたベースバンドデータの一例を表す図である。図6において、X軸は、時間軸であり、Y軸は、周波数軸である。1つの無線フレーム600の時間幅は、例えば、10m秒である。1つの無線フレーム600は、帯域毎に10個のサブフレーム602を有する。 FIG. 6 is a diagram showing an example of baseband data frequency-domained by the FFT 504 (504-1, 504-2, 504-3) shown in FIG. In FIG. 6, the X axis is a time axis, and the Y axis is a frequency axis. The time width of one radio frame 600 is, for example, 10 milliseconds. One radio frame 600 has ten subframes 602 for each band.
 1つの無線フレーム600は、周波数軸方向に沿って複数のリソースブロック601を有する。複数のリソースブロック601は、1.4MHz、3MHz、5MHz、10MHz、15MHz、20MHzの6個の帯域に対して、それぞれ、6個、15個、25個、50個、75個、100個のリソースブロックを有する。 One radio frame 600 has a plurality of resource blocks 601 along the frequency axis direction. The plurality of resource blocks 601 are 6, 15, 25, 50, 75, and 100 resources for 6 bands of 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz, respectively. Has a block.
 1つのリソースブロック603は、14個のシンボル604を有する。シンボル604は、12個のサブキャリアを有する。各サブキャリアは、QPSK(Quadrature Phase Shift Keying)、16QAM(Quadrature Amplitude Modulation)、64QAMなどで変調される。 One resource block 603 has 14 symbols 604. Symbol 604 has 12 subcarriers. Each subcarrier is modulated by QPSK (Quadrature Phase Keying), 16QAM (Quadrature Amplitude Modulation), 64QAM, or the like.
 車載通信装置であるユーザ端末は、基地局装置によってアサインされた1つのリソースブロック603を使ってデータを送信する。リソースブロック603は、データの復調に使用する参照信号605を含む。基地局装置は、参照信号605を用いて、サブキャリア単位で信号を等化し復調する。 The user terminal that is an in-vehicle communication device transmits data using one resource block 603 assigned by the base station device. The resource block 603 includes a reference signal 605 used for data demodulation. The base station apparatus equalizes and demodulates the signal in units of subcarriers using the reference signal 605.
 図7A~図7Cは、図5に示される応答波形生成器701(701-1,701-2,701-3)の動作を説明する図である。各アンテナから受信し、デマッパ506で取り出した参照信号605の受信波形801は、通信中の走行車両に搭載されている車載通信機と基地局装置との間の電波伝搬環境において、直接波以外に周波数選択性のフェージングを受ける。ここで、周波数選択性のフェージングは、伝搬環境上に存在する電波障害物で反射された反射波によるものである。 7A to 7C are diagrams for explaining the operation of the response waveform generator 701 (701-1, 701-2, 701-3) shown in FIG. The received waveform 801 of the reference signal 605 received from each antenna and taken out by the demapper 506 is not a direct wave in the radio wave propagation environment between the in-vehicle communication device mounted on the traveling vehicle in communication and the base station device. Subject to frequency selective fading. Here, the frequency selective fading is caused by a reflected wave reflected by a radio wave obstacle present in the propagation environment.
 一方、式(1)で示されるように、参照信号605の受信波形801(図7A)と参照信号605そのものの周波数波形802(図7B)との積に対して、フーリエ変換(または離散フーリエ変換)を行うことにより、時間相関波形803(図7C)を得ることができる。 On the other hand, as shown in Equation (1), the Fourier transform (or discrete Fourier transform) is performed on the product of the reception waveform 801 of the reference signal 605 (FIG. 7A) and the frequency waveform 802 (FIG. 7B) of the reference signal 605 itself. ), A time correlation waveform 803 (FIG. 7C) can be obtained.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、Hrx(k)は参照信号605の受信波形を表す関数であり、受信波形801はその電力波形を表す。Hrep(k)は参照信号を表す関数であり、周波数波形802はその電力波形を表す。h(l)はインパルス応答波形を表す関数であり、時間相関波形803はその電力波形を表す。時間相関波形803は、一般的に遅延プロファイルと呼ばれる。NSCは、(離散)フーリエ変換を行うポイント数であり、例えば、LTEのシステム帯域幅:5MHzでは300となる。fSCはサブキャリア間隔を表し、Tはシンボル期間を表す。例えば、LTEの場合、サブキャリア間隔fSCは15kHz、シンボル期間Tは約66マイクロ秒である。 Here, Hrx (k) is a function representing the received waveform of the reference signal 605, and the received waveform 801 represents the power waveform. Hrep (k) is a function representing the reference signal, and the frequency waveform 802 represents the power waveform. h (l) is a function representing the impulse response waveform, and the time correlation waveform 803 represents the power waveform. The time correlation waveform 803 is generally called a delay profile. NSC is the number of points for performing (discrete) Fourier transform, and is 300, for example, in the LTE system bandwidth: 5 MHz. f SC represents a subcarrier interval, T S represents the symbol duration. For example, if the LTE, employed subcarrier interval f SC is 15 kHz, the symbol period T S is approximately 66 microseconds.
 図8Aは、アンテナ素子901~904の電波910の受信信号における位相差と電波910の到来方向との関係を説明する図である。図9に示されるアレイアンテナ900は、一例として、4つのアンテナ素子901~904を備える。アンテナ素子901~904は、例えば、直線上に距離Lの間隔で均等に配置され、アレイアンテナ900を構成する。 FIG. 8A is a diagram for explaining the relationship between the phase difference in the received signal of the radio wave 910 of the antenna elements 901 to 904 and the arrival direction of the radio wave 910. An array antenna 900 shown in FIG. 9 includes four antenna elements 901 to 904 as an example. For example, the antenna elements 901 to 904 are evenly arranged on the straight line at intervals of the distance L, and constitute the array antenna 900.
 アレイアンテナ900に到来する電波910は、電波910の送信源から十分に離れている場合、平面波とみなすことができる。電波910がアンテナ素子901~904の各々に到達する時に、隣接するアンテナ素子(例えば、アンテナ素子901,902)への到達距離の間に、距離l=L×sinθの整数倍の差が生じる。 When the radio wave 910 arriving at the array antenna 900 is sufficiently away from the transmission source of the radio wave 910, it can be regarded as a plane wave. When the radio wave 910 reaches each of the antenna elements 901 to 904, a difference of an integral multiple of the distance l = L × sin θ occurs between the arrival distances to adjacent antenna elements (for example, the antenna elements 901 and 902).
 距離Lが電波の波長の1/2に等しい場合、各アンテナ素子901~904の間の位相差は、一番左のアンテナ素子901を基準にして、π×sinθラジアンの整数倍になる。例えば、電波910がアレイアンテナ900の正面から到来した場合、アンテナ素子901~904の間の位相差は、π×sin(0)ラジアン(=0ラジアン=0度)となる。これは、すべてのアンテナ素子901~904の間に距離差が生じないためである。また、電波910がアレイアンテナ900の真横(+90度=+π/2ラジアン)の方向から到来した場合は、アンテナ素子901~904の間の位相差は、π×sin(π/2)ラジアン(=πラジアン=180度)の整数倍となる。 When the distance L is equal to ½ of the radio wave wavelength, the phase difference between the antenna elements 901 to 904 is an integral multiple of π × sin θ radians with the leftmost antenna element 901 as a reference. For example, when the radio wave 910 arrives from the front of the array antenna 900, the phase difference between the antenna elements 901 to 904 is π × sin (0) radians (= 0 radians = 0 degrees). This is because no distance difference occurs between all the antenna elements 901 to 904. In addition, when the radio wave 910 arrives from the side of the array antenna 900 (+90 degrees = + π / 2 radians), the phase difference between the antenna elements 901 to 904 is π × sin (π / 2) radians (= π radians = 180 degrees).
 図8Bは、電波910の到来方向の推定に用いられるステアリングベクトルAP(φ,k)の一例を説明する図である。ステアリングベクトルAP(φ,k)は、方向φから到来した平面波の、一番左のアンテナ素子における受信信号と、一番左を0番目として、一番左から数えてk番目(アンテナ素子番号k)のアンテナ素子における受信信号との間の位相差を表す。 FIG. 8B is a diagram for explaining an example of the steering vector AP (φ, k) used for estimating the direction of arrival of the radio wave 910. The steering vector AP (φ, k) is a k-th (antenna element number k) counted from the left with the received signal of the plane wave arriving from the direction φ at the leftmost antenna element and the leftmost as the 0th. ) Represents the phase difference from the received signal at the antenna element.
 図9A~図9Cは、図5の空間相関器702が生成する波形を説明する図である。図9Aに示される遅延プロファイル波形のグラフ1000は、それぞれ、基地局装置の4つの受信アンテナで受信された参照信号のフーリエ変換後のインパルス応答(遅延応答)波形1010、1020、1030、1040の電力(振幅)波形をプロットしたものである。図8Aに示されるアンテナ素子901~904は、略平面波を受信するため、インパルス応答波形1010、1020、1030、1040は、略同一の波形となる。 9A to 9C are diagrams illustrating waveforms generated by the spatial correlator 702 of FIG. The delay profile waveform graph 1000 shown in FIG. 9A shows the power of impulse response (delay response) waveforms 1010, 1020, 1030, and 1040 after Fourier transform of the reference signal received by the four receiving antennas of the base station apparatus. (Amplitude) Waveform is plotted. Since the antenna elements 901 to 904 shown in FIG. 8A receive substantially plane waves, the impulse response waveforms 1010, 1020, 1030, and 1040 have substantially the same waveform.
 図9Aに示されるように、インパルス応答波形1010、1020、1030、1040の各々は、2つのピーク(ピーク1011とピーク1012、ピーク1021とピーク1022、ピーク1031とピーク1032、ピーク1041とピーク1042)を有する。2つのピークは、受信信号の到達経路が2つあることを示している。 As shown in FIG. 9A, each of the impulse response waveforms 1010, 1020, 1030, 1040 has two peaks (peak 1011 and peak 1012, peak 1021 and peak 1022, peak 1031 and peak 1032, peak 1041 and peak 1042). Have Two peaks indicate that there are two arrival paths for the received signal.
 一方、アンテナ素子901~904で受信されたそれぞれの受信信号は、受信信号の到来した方向に応じて、図8Aに示される距離lの整数倍の距離差に相当する位相差を持つ。上述したように、遅延プロファイル波形のグラフ1000は、電力(振幅)波形をプロットしたものであるため、実際に発生している位相差(位相情報)は、遅延プロファイル波形のグラフ1000には現れていないことに留意する。 On the other hand, each received signal received by the antenna elements 901 to 904 has a phase difference corresponding to a distance difference that is an integral multiple of the distance l shown in FIG. 8A, depending on the direction in which the received signal arrives. As described above, since the delay profile waveform graph 1000 is a plot of the power (amplitude) waveform, the actually generated phase difference (phase information) appears in the delay profile waveform graph 1000. Note that there is no.
 図5に示される空間相関器702は、下記の式(2)に従い、各アンテナ素子にて受信したインパルス応答の同一サンプル時間τの波形h(τ,k)と、図8Bに示されるステアリングベクトルAP(φ,k)との内積Ang(φ,τ)を取る。 The spatial correlator 702 shown in FIG. 5 has a waveform h (τ, k) of the same sample time τ of the impulse response received by each antenna element and the steering vector shown in FIG. Take inner product Ang (φ, τ) with AP (φ, k).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
ここで、Kは基地局装置のアンテナ素子数、kはアンテナ素子番号、φは到来方向を表す。 Here, K is the number of antenna elements of the base station apparatus, k is the antenna element number, and φ is the direction of arrival.
 次いで、横軸(X軸)に到達方向φをとり、奥行き方向(Y軸)に時間τをとり、縦軸(Z軸)にAng(φ,τ)の大きさをプロットすることにより、図9Bおよび図9Cに示される到来方向波形のグラフ1050,1060が得られる。なお、グラフ1050は、到来方向波形をY軸方向から見たグラフであり、グラフ1060は、到来方向波形をZ軸方向から見たグラフである。したがって、グラフ1050は、実際には異なる時刻に到来した受信信号の到来方向波形であっても、同一平面上にプロットされている。また、グラフ1060のように、X軸に到来方向をとり、Y軸に到来時間をとり、Z軸に受信電力の強さをとる、或いは、X-Y平面上に濃淡または色味で受信電力の強さを表したもの、若しくはこれらを表現するデータを、時空間プロファイルと呼ぶことにする。 Next, the arrival direction φ is taken on the horizontal axis (X axis), the time τ is taken in the depth direction (Y axis), and the magnitude of Ang (φ, τ) is plotted on the vertical axis (Z axis). The direction-of- arrival waveform graphs 1050 and 1060 shown in FIG. 9B and FIG. 9C are obtained. The graph 1050 is a graph of the arrival direction waveform viewed from the Y-axis direction, and the graph 1060 is the graph of the arrival direction waveform viewed from the Z-axis direction. Therefore, the graph 1050 is plotted on the same plane even if the arrival direction waveforms of the received signals that actually arrive at different times. Also, as in graph 1060, the arrival direction is taken on the X axis, the arrival time is taken on the Y axis, and the received power intensity is taken on the Z axis, or the received power is shaded or colored on the XY plane. The data representing the strength of the data or the data expressing them is called a spatio-temporal profile.
 到来方向波形のグラフ1050のうち、到来方向波形1051は、ピーク1011、1021、1031、1041に相当する遅延波とステアリングベクトルとの間の相関演算結果を反映している。また、到来方向波形1052は、ピーク1012、1022、1032、1042に相当する遅延波とステアリングベクトルとの間の相関演算結果を反映している。時空間プロファイル1061で表される到来波は、到来方向波形1051で表される到来波に相当する。また、時空間プロファイル1062で表される到来波は、到来方向波形1052で表される到来波に相当する。 Of the arrival direction waveform graph 1050, the arrival direction waveform 1051 reflects the correlation calculation result between the delayed wave corresponding to the peaks 1011, 1021, 1031 and 1041 and the steering vector. The arrival direction waveform 1052 reflects the correlation calculation result between the delayed wave corresponding to the peaks 1012, 1022, 1032, and 1042 and the steering vector. The incoming wave represented by the spatio-temporal profile 1061 corresponds to the incoming wave represented by the arrival direction waveform 1051. An incoming wave represented by a spatio-temporal profile 1062 corresponds to an incoming wave represented by an arrival direction waveform 1052.
 実施の形態1に係る通信システム1、通信システム1を実現する方法、およびプログラムは、通信中の走行車両から送信される複数の受信信号を、通信用の回路とは独立に周波数領域で等化しインパルス応答波形を得て時空間プロファイルを生成する。次いで、通信システム1、通信システム1を実現する方法、およびプログラムは、時空間プロファイルに基づいて、通信中の走行車両が課金の対象となるか否かを判定する。実施の形態1によれば、通信エリアとは独立に設定された課金エリアに対して、課金エリア判定できる。 The communication system 1, the method for realizing the communication system 1, and the program according to the first embodiment equalize a plurality of received signals transmitted from a traveling vehicle in communication in the frequency domain independently of a communication circuit. An impulse response waveform is obtained and a spatiotemporal profile is generated. Next, the communication system 1, the method for realizing the communication system 1, and the program determine whether or not the traveling vehicle in communication is to be charged based on the spatiotemporal profile. According to the first embodiment, the billing area can be determined for the billing area set independently of the communication area.
 実施の形態1においては、走行車両の車載通信機30,31,32との通信装置および処理と、走行車両の車載通信機30,31,32から受ける受信が到来する方向などを解析するためのアンテナおよび処理と、が分離されている。これにより、実施の形態1によれば、高速走行中の多数の走行車両の車載通信機30,31,32,41との通信と、それら走行車両の車載通信機30,31,32,41のうち課金対象である走行車両の車載通信機30,31,32の判定処理と、を並列してより高速に実行できる。したがって、有料道路60上を走行するより多くの通信中の走行車両に対して課金できる。また、通信システム1は、電界強度を制御するための特別な施工(例えば、電波吸収帯)がない場合であっても、課金するべきではない有料道路60外の走行車両の車載通信機41に対しては、課金しないと判定することができる。 In the first embodiment, the communication device and processing with the in- vehicle communication devices 30, 31, 32 of the traveling vehicle and the direction in which the reception received from the in- vehicle communication devices 30, 31, 32 of the traveling vehicle arrives are analyzed. The antenna and processing are separated. Thus, according to the first embodiment, communication with the in- vehicle communication devices 30, 31, 32, 41 of a large number of traveling vehicles traveling at high speed and the in- vehicle communication devices 30, 31, 32, 41 of these traveling vehicles. Among them, the determination processing of the in- vehicle communication devices 30, 31, and 32 of the traveling vehicle to be charged can be executed in parallel at higher speed. Therefore, it is possible to charge for more communicating traveling vehicles traveling on the toll road 60. In addition, the communication system 1 is used for the in-vehicle communication device 41 of the traveling vehicle outside the toll road 60 that should not be charged even when there is no special construction (for example, a radio wave absorption band) for controlling the electric field strength. On the other hand, it can be determined not to charge.
 なお、上記実施の形態1においては周波数領域を基本として説明したが、時間領域でレプリカと受信信号の畳み込み演算を行う事でインパルス応答波形を求めることも可能である。例えば、応答波形生成器701(701-1,701-2,701-3)は、デマッパ506(506-1,506-2,506-3)から入力された周波数領域の信号をフーリエ変換し、時間領域の受信信号を求める。次いで、応答波形生成器701(701-1,701-2,701-3)は、時間領域の受信信号に対してレプリカとの畳み込み演算を行うことにより、インパルス応答波形を求めてもよい。 In the first embodiment, the frequency domain is basically described. However, it is also possible to obtain an impulse response waveform by performing a convolution operation between a replica and a received signal in the time domain. For example, the response waveform generator 701 (701-1, 701-2, 701-3) performs Fourier transform on the frequency domain signal input from the demapper 506 (506-1, 506-2, 506-3), and Obtain the received signal in the time domain. Next, the response waveform generator 701 (701-1, 701-2, 701-3) may obtain an impulse response waveform by performing a convolution operation on the received signal in the time domain with a replica.
 (実施の形態2)
 上述の実施の形態1においては、単独の時空間プロファイルを用いた場合について説明した。これに代えて、実施の形態2においては、複数の時空間プロファイルを用いた場合について説明する。
(Embodiment 2)
In the first embodiment described above, the case where a single spatiotemporal profile is used has been described. Instead, in the second embodiment, a case where a plurality of spatiotemporal profiles are used will be described.
 図10は、実施の形態2に係るユーザ端末エリア判定器703の動作を説明する図である。走行路上の課金対象エリア1110は、路側装置10の通信エリア11内に含まれる。課金対象エリア1110内の4つのポイントP1,P2,P3,P4において、それぞれ、時空間プロファイル波形1121,1122,1123,1124が得られる。 FIG. 10 is a diagram for explaining the operation of the user terminal area determiner 703 according to the second embodiment. The chargeable area 1110 on the travel road is included in the communication area 11 of the roadside device 10. Spatiotemporal profile waveforms 1121, 1122, 1123, and 1124 are obtained at four points P1, P2, P3, and P4 in the billing target area 1110, respectively.
 課金対象エリア1110内の時空間プロファイル波形1121,1122,1123,1124は、課金対象エリア1110外の時空間プロファイルと異なる特徴を備えることを利用して、これらを明確に区別することができる。ユーザ端末エリア判定器703は、複数の時空間プロファイルが、課金対象エリア1110内の時空間プロファイルの特徴を備えるか否かを判定することによって、通信中の走行車両が課金対象であるか否かを判定する。 The spatio- temporal profile waveforms 1121, 1122, 1123, and 1124 in the billing target area 1110 can be clearly distinguished from each other by using features different from the spatiotemporal profile outside the billing target area 1110. The user terminal area determination unit 703 determines whether or not a traveling vehicle in communication is a charging target by determining whether or not a plurality of spatio-temporal profiles have the characteristics of the spatio-temporal profile in the charging target area 1110. Determine.
 一例において、時空間プロファイル波形1121,1122,1123,1124が、課金対象エリア1110内の時空間プロファイルの特徴を備えるか否かの判定基準は、時空間プロファイル波形1121,1122,1123,1124の合成波形が、受信信号の到来波形とその遅延時間で決定されるエリア内に収まるか否かである。受信信号の到来波形とその遅延時間で決定されるエリアは、例えば、枠1130内のエリア1131である。 In one example, the criterion for determining whether or not the spatiotemporal profile waveforms 1121, 1122, 1123, and 1124 have the spatiotemporal profile characteristics in the billing area 1110 is a combination of the spatiotemporal profile waveforms 1121, 1122, 1123, and 1124. Whether the waveform falls within the area determined by the arrival waveform of the received signal and its delay time. The area determined by the arrival waveform of the received signal and its delay time is, for example, the area 1131 within the frame 1130.
 他の一例において、時空間プロファイル波形1121,1122,1123,1124が、課金対象エリア1110内の時空間プロファイルの特徴を備えるか否かの判定基準は、時空間プロファイル波形1121,1122,1123,1124のうち、受信信号の到来波形とその遅延時間で決定されるエリア内に収まるものの数がある閾値を超えるか否かである。閾値を適切に設定することにより、判定の信頼性を高めることができる。 In another example, the criteria for determining whether or not the spatiotemporal profile waveforms 1121, 1122, 1123, and 1124 have the spatiotemporal profile characteristics in the billing area 1110 are the spatiotemporal profile waveforms 1121, 1122, 1123, and 1124. Among them, whether or not the number of signals that fall within the area determined by the arrival waveform of the received signal and its delay time exceeds a certain threshold value. By setting the threshold appropriately, the reliability of the determination can be improved.
 実施の形態2によれば、課金エリアなどのエリア判定において、複数の時空間プロファイルを用いる。複数の時空間プロファイルを用いることにより、単一の時空間プロファイルを用いた場合と比較して、ユーザ端末エリア判定器703による判定結果の信頼性をより向上できる。なお、実施の形態2において、通信中の走行車両から送信された、他の複数の受信信号を周波数領域で等化しインパルス応答波形を得て作成した時空間プロファイルを用いて、エリア判定を行ってもよい。 According to the second embodiment, a plurality of spatiotemporal profiles are used in area determination such as a billing area. By using a plurality of spatiotemporal profiles, the reliability of the determination result by the user terminal area determiner 703 can be further improved as compared with the case of using a single spatiotemporal profile. In the second embodiment, area determination is performed using a spatio-temporal profile created by equalizing other multiple received signals transmitted from a traveling vehicle in communication in the frequency domain to obtain an impulse response waveform. Also good.
 (実施の形態3)
 図10に示される課金対象エリア1110には、実際には、その周辺にガードレールや標識などの固定障害物や、周辺を走行する他の走行車両などの移動障害物など電波を遮蔽する、または反射する、またはその両方をする障害物が多く存在する。障害物による電波の遮蔽および反射の少なくとも一方によって、課金対象エリア1110とそれ以外のエリアを、図10の1131に示されるように明確に区別することが困難になると、図5に示されるユーザ端末エリア判定器703による誤判定の可能性が高まる。そこで、実施の形態3においては、より多くの時空間プロファイルを画像データとして扱い学習させる。学習の結果(モデル)を判定に用いて課金対象エリア1110とそれ以外のエリアを区別することができる。
(Embodiment 3)
The billing target area 1110 shown in FIG. 10 actually shields or reflects radio waves such as fixed obstacles such as guardrails and signs, and moving obstacles such as other traveling vehicles traveling around the area. There are many obstacles that do or both. When it becomes difficult to clearly distinguish between the billing target area 1110 and the other area as indicated by 1131 in FIG. 10 due to at least one of shielding and reflection of radio waves by an obstacle, the user terminal shown in FIG. The possibility of erroneous determination by the area determiner 703 increases. Therefore, in the third embodiment, more spatiotemporal profiles are handled as image data and learned. The chargeable area 1110 can be distinguished from other areas by using the learning result (model) for determination.
 図11は、実施の形態3に係る学習器1200の動作の一例を説明する図である。実施の形態3に係るユーザ端末エリア判定器703は、学習器1200を備える。学習器1200は、通信中の走行車両の時空間プロファイルと、走行車両が課金対象エリア1110を走行しているか否かの正しい判定結果とを学習する。 FIG. 11 is a diagram for explaining an example of the operation of the learning device 1200 according to the third embodiment. A user terminal area determination unit 703 according to Embodiment 3 includes a learning unit 1200. The learning device 1200 learns the spatio-temporal profile of the traveling vehicle in communication and the correct determination result as to whether or not the traveling vehicle is traveling in the chargeable area 1110.
 学習器1200は、例えば、ニューラルネットワークを用いた深層学習器またはサポートベクターマシンである。学習器1200は、時空間プロファイルを表す画像データを学習してもよい。一例において、画像データは、課金対象エリア1110内の所定の位置の時空間プロファイル波形1121,1122,1123,1124を個別に表す複数の画像のデータ1210である。他の一例において、画像データは、課金対象エリア1110内の所定の位置の時空間プロファイル波形1121,1122,1123,1124を時系列に沿って並べた1つの画像のデータ1220である。 The learning device 1200 is, for example, a deep learning device or a support vector machine using a neural network. The learning device 1200 may learn image data representing a spatiotemporal profile. In one example, the image data is a plurality of image data 1210 individually representing the spatiotemporal profile waveforms 1121, 1122, 1123, and 1124 at predetermined positions in the billing target area 1110. In another example, the image data is one image data 1220 in which spatio- temporal profile waveforms 1121, 1122, 1123, and 1124 at predetermined positions in the chargeable area 1110 are arranged in time series.
 実施の形態3によれば、エリア判定にエリア内の複数の時空間プロファイルを画像データとして用いて学習し、生成されたモデルを用いて課金判定を行う。実施の形態3によれば、ユーザ端末エリア判定器703による判定結果の信頼性を向上できる。なお、実施の形態3において、通信中の走行車両から送信された、他の複数の受信信号を周波数領域で等化しインパルス応答波形を得て作成した時空間プロファイルを用いて、エリア判定を行ってもよい。 According to the third embodiment, a plurality of spatiotemporal profiles in an area are learned as image data for area determination, and charge determination is performed using the generated model. According to the third embodiment, the reliability of the determination result by the user terminal area determiner 703 can be improved. In the third embodiment, area determination is performed using a spatio-temporal profile created by equalizing a plurality of other received signals transmitted from a traveling vehicle in communication in the frequency domain to obtain an impulse response waveform. Also good.
 (実施の形態4)
 上述の実施の形態2および3においては、誤判定の確率を下げるために、複数の時空間プロファイルを用いた。実施の形態4においては、複数の装置を用いて時空間プロファイルを生成した複数の時空間プロファイルを用いる。
(Embodiment 4)
In the above-described second and third embodiments, a plurality of spatio-temporal profiles are used to reduce the probability of erroneous determination. In the fourth embodiment, a plurality of spatiotemporal profiles in which spatiotemporal profiles are generated using a plurality of devices are used.
 図12Aは、実施の形態4に係る路側装置1320の一例を示す図である。図12Bは、実施の形態4に係る時空間プロファイル(1331から1334および1341~1344)の一例を示す図である。 FIG. 12A is a diagram illustrating an example of a roadside apparatus 1320 according to the fourth embodiment. FIG. 12B is a diagram showing an example of spatiotemporal profiles (1331 to 1334 and 1341 to 1344) according to Embodiment 4.
 図12Aに示されるように、路側装置1320は、通信エリア1321を形成する。2つの路側装置10と路側装置1320を用いることにより、図12Bに示されるように、路側装置10により生成される通信中の走行車両の車載通信機30の時空間プロファイル(1331から1334)と、路側装置1320より生成される時空間プロファイル(1341~1344)が得られる。複数の時空間プロファイルに対応する複数の判定基準を用いて判定次元を増やすことにより、ユーザ端末エリア判定器703による判定結果の判定精度を高めることができる。なお、簡単の為、路側装置の数が2つである場合を説明したが、路側装置の数は、2以上の任意の数であってもよい。 As shown in FIG. 12A, the roadside apparatus 1320 forms a communication area 1321. By using the two roadside devices 10 and the roadside device 1320, as shown in FIG. 12B, the spatio-temporal profile (1331 to 1334) of the in-vehicle communication device 30 of the traveling vehicle in communication generated by the roadside device 10, A spatiotemporal profile (1341-1344) generated by the roadside device 1320 is obtained. By increasing the determination dimension using a plurality of determination criteria corresponding to a plurality of spatiotemporal profiles, the determination accuracy of the determination result by the user terminal area determination unit 703 can be increased. For the sake of simplicity, the case where the number of roadside devices is two has been described, but the number of roadside devices may be an arbitrary number of two or more.
 実施の形態4によれば、時空間プロファイルを生成するための通信装置を複数用いることで判定基準を多次元化する。実施の形態4によれば、判定結果の信頼性を向上できる。 According to the fourth embodiment, the determination criterion is multidimensionalized by using a plurality of communication devices for generating a spatiotemporal profile. According to Embodiment 4, the reliability of the determination result can be improved.
 (実施の形態5)
 実施の形態4においては、上述したように、複数の路側装置10,1320を用いて時空間プロファイルを取得する。一方、複数の基地局装置が同時に特定の走行車両の車載通信機との通信を実現することは複雑であり、LTEもDSRCもそのような機能を備えていない。そこで、実施の形態5においては、複数のリモートラジオヘッド(RRH)を用いて、特定の通信中の走行車両について、同時に複数の位置から時空間プロファイルを取得する。なお、RRHは、基地局装置の機能の一部を分離して基地局本体から離れた場所に設置される。RRHに対して基地局本体は、例えばベースバンドユニット(BBU)と称される。RRHとBBUとの間の接続には、例えば、CPRI(common public radio interface)といった光インタフェースが用いられてよい。RRHは、RRE(remote radio equipment)又はDU(distributed unit)と呼ばれることもある。また、BBUは、CBBU(centralized BBU)又はCU(central unit)と呼ばれることもある。
(Embodiment 5)
In the fourth embodiment, as described above, a spatio-temporal profile is acquired using a plurality of roadside devices 10 and 1320. On the other hand, it is complicated for a plurality of base station devices to simultaneously communicate with an in-vehicle communication device of a specific traveling vehicle, and neither LTE nor DSRC has such a function. Therefore, in the fifth embodiment, a spatio-temporal profile is acquired from a plurality of positions at the same time for a specific traveling vehicle in communication using a plurality of remote radio heads (RRH). The RRH is installed in a place separated from the base station body by separating a part of the functions of the base station apparatus. For the RRH, the base station body is referred to as a baseband unit (BBU), for example. For the connection between the RRH and the BBU, for example, an optical interface such as CPRI (common public radio interface) may be used. RRH may be called RRE (remote radio equipment) or DU (distributed unit). The BBU may also be called CBBU (centralized BBU) or CU (central unit).
 図13は、実施の形態5に係る路側装置1400の構成の一例を示す図である。実施の形態5に係る路側装置1400は、末端のリモートラジオヘッド(RRH)1421と、中間のリモートラジオヘッド1422と、ベースバンドユニット(通信装置)1430と、を備える。ここで、末端のリモートラジオヘッドは、シリアル接続されるリモートラジオヘッドのうち、上流のリモートヘッドを有さないリモートヘッドである。また、ここで、中間のリモートラジオヘッドは、シリアル接続されるリモートラジオヘッドのうち、最上流のリモートヘッド以外のリモートヘッドである。中間のリモートラジオヘッド1422は、末端のリモートラジオヘッド1421の下流に設けられる。 FIG. 13 is a diagram illustrating an example of a configuration of a roadside device 1400 according to the fifth embodiment. The roadside device 1400 according to Embodiment 5 includes a terminal remote radio head (RRH) 1421, an intermediate remote radio head 1422, and a baseband unit (communication device) 1430. Here, the remote radio head at the end is a remote head that does not have an upstream remote head among serially connected remote radio heads. Here, the intermediate remote radio head is a remote head other than the most upstream remote head among serially connected remote radio heads. An intermediate remote radio head 1422 is provided downstream of the distal remote radio head 1421.
 末端のリモートラジオヘッド1421と、中間のリモートラジオヘッド1422は、通信中の走行車両の車載通信機から送信された上り無線信号を受信する。なお、図13は、中間のリモートラジオヘッド1422が1つである場合を説明する図であるが、中間のリモートラジオヘッド1422は、複数個あってもよい。また、中間のリモートラジオヘッド1422を設けずに、複数の末端のリモートラジオヘッド1421が、ベースバンドユニット1430の上流に並列に設けられてもよい。 The remote radio head 1421 at the end and the remote radio head 1422 in the middle receive the uplink radio signal transmitted from the in-vehicle communication device of the traveling vehicle in communication. FIG. 13 is a diagram illustrating a case where there is one intermediate remote radio head 1422, but there may be a plurality of intermediate remote radio heads 1422. A plurality of remote radio heads 1421 at the end may be provided in parallel upstream of the baseband unit 1430 without providing the intermediate remote radio head 1422.
 ベースバンドユニット1430は、末端のリモートラジオヘッド1421が受信した上り無線信号1411と、中間のリモートラジオヘッド1422が受信した上り無線信号1412と、を復号し、IPパケット1440を生成する。リモートラジオヘッド1421,1422は、対象となる走行車両の車載通信機が通信に使うリソースブロック603上の参照信号605を用いて時空間プロファイルを生成する。 The baseband unit 1430 decodes the uplink radio signal 1411 received by the terminal remote radio head 1421 and the uplink radio signal 1412 received by the intermediate remote radio head 1422 to generate an IP packet 1440. The remote radio heads 1421 and 1422 generate a spatio-temporal profile using the reference signal 605 on the resource block 603 used for communication by the in-vehicle communication device of the target traveling vehicle.
 次に、複数のリモートラジオヘッドを用いて同時に複数の時空間プロファイルを生成する方法について説明する。 Next, a method for generating a plurality of spatiotemporal profiles simultaneously using a plurality of remote radio heads will be described.
 図14は、実施の形態5に係る末端のリモートラジオヘッド1421の構成の一例を説明する図である。末端のリモートラジオヘッド1421は、図5に示される通信装置401と比較して、フレームタイミング生成器505に代えて下り無線フレームタイミング生成器1600を備える点と、空間相関器702における結果を、中間のリモートラジオヘッド1422に出力する点と、ユーザ端末エリア判定器703を備えない点と、において異なる。図5に示される通信装置401と共通する点については、説明を省略する。 FIG. 14 is a diagram for explaining an example of the configuration of the terminal remote radio head 1421 according to the fifth embodiment. Compared with the communication apparatus 401 shown in FIG. 5, the remote radio head 1421 at the end includes a downlink radio frame timing generator 1600 instead of the frame timing generator 505, and the result in the spatial correlator 702 is an intermediate result. The remote radio head 1422 is output to the remote terminal 1422 and the user terminal area determination unit 703 is not provided. Description of points common to the communication apparatus 401 illustrated in FIG. 5 is omitted.
 チャネルフィルタ503(503-1,503-2,503-3)の1つ(例えば、チャネルフィルタ503)は、4本のアンテナの1つ(例えば、アンテナ#1)からのベースバンド(アナログまたはデジタル)信号を、図15を参照して後述する、中間のリモートラジオヘッド1422のベースバンド多重器1701に渡す。なお、チャネルフィルタ503(503-1,503-2,503-3)の1つがベースバンド(アナログまたはデジタル)信号を中間のリモートラジオヘッド1422に渡すのに代えて、全てのチャネルフィルタ503,503-1,503-2,503-3が、ベースバンド(アナログまたはデジタル)信号を中間のリモートラジオヘッド1422に渡してもよい。 One of the channel filters 503 (503-1, 502-2, 503-3) (eg, channel filter 503) is a baseband (analog or digital) from one of the four antennas (eg, antenna # 1). ) Signal is passed to the baseband multiplexer 1701 of the intermediate remote radio head 1422, which will be described later with reference to FIG. Note that instead of one of the channel filters 503 (503-1, 503-2, 503-3) passing the baseband (analog or digital) signal to the intermediate remote radio head 1422, all the channel filters 503,503 -1,503-2, 503-3 may pass the baseband (analog or digital) signal to the intermediate remote radio head 1422.
 下り無線フレームタイミング生成器1600は、ベースバンドユニット1430の送信する下り信号を受信し、同期処理することにより、無線フレームタイミングと同期したフレームタイミングを再生成する。一例において、FFT504(504-1,504-2,504-3)の変換のタイミングは、下り無線フレームタイミング生成器1600が生成するフレームタイミングに従う。 The downlink radio frame timing generator 1600 receives the downlink signal transmitted from the baseband unit 1430 and performs synchronization processing to regenerate the frame timing synchronized with the radio frame timing. In one example, the conversion timing of the FFT 504 (504-1, 504-2, 504-3) follows the frame timing generated by the downlink radio frame timing generator 1600.
 空間相関器702は、時間サンプルごとに、応答波形生成器701(701-1,701-2,701-3)が生成したインパルス応答波形とステアリングベクトルとの相関を取り、時空間プロファイルを生成し、生成した時空間プロファイルを、中間のリモートラジオヘッド1422に渡す。 The spatial correlator 702 correlates the impulse response waveform generated by the response waveform generator 701 (701-1, 701-2, 701-3) and the steering vector for each time sample, and generates a spatiotemporal profile. The generated space-time profile is passed to the intermediate remote radio head 1422.
 実施の形態5によれば、複数のリモートラジオヘッド1421,1422を用いて、同一のリソースブロック上の参照信号から複数の位置の時空間プロファイルを生成できる。実施の形態5によれば、ユーザ端末エリア判定器703は、複数の時空間プロファイルを利用して、通信中の走行車両が図10に示される課金対象エリア1110内にいるか否かを判定できる。複数の時空間プロファイルを利用し、判定基準を多次元化することで、判定結果の信頼性を向上できる。 According to the fifth embodiment, spatio-temporal profiles at a plurality of positions can be generated from reference signals on the same resource block using a plurality of remote radio heads 1421, 1422. According to the fifth embodiment, the user terminal area determination unit 703 can determine whether or not the traveling vehicle in communication is in the billing target area 1110 shown in FIG. 10 using a plurality of spatiotemporal profiles. By using a plurality of spatio-temporal profiles and making the determination criteria multidimensional, the reliability of the determination result can be improved.
 実施の形態5によれば、リモートラジオヘッドが無線フレームタイミングを把握していない場合であっても、下り信号から無線フレームタイミングを検出し、時空間プロファイルを生成するタイミングを取得することで、時空間プロファイルを生成できる。 According to the fifth embodiment, even when the remote radio head does not grasp the radio frame timing, the radio frame timing is detected from the downlink signal, and the timing for generating the spatio-temporal profile is acquired. A spatial profile can be generated.
 図15は、実施の形態5に係る中間のリモートラジオヘッド1422の構成の一例を説明する図である。中間のリモートラジオヘッド1422は、ベースバンド多重器1701と時空間プロファイル多重器1702とを備える点において、図14に示される末端のリモートラジオヘッド1421と異なる。末端のリモートラジオヘッド1421と共通する点については、中間のリモートラジオヘッド1422の説明を省略する。 FIG. 15 is a diagram for explaining an example of the configuration of the intermediate remote radio head 1422 according to the fifth embodiment. The intermediate remote radio head 1422 differs from the terminal remote radio head 1421 shown in FIG. 14 in that it includes a baseband multiplexer 1701 and a space-time profile multiplexer 1702. The description of the intermediate remote radio head 1422 is omitted with respect to the points in common with the terminal remote radio head 1421.
 ベースバンド多重器1701は、中間のリモートラジオヘッド1422の末端側に設けられるリモートラジオヘッド(例えば、末端のリモートラジオヘッド1421)から受け取るベースバンド信号とチャネルフィルタ503が出力したベースバンド信号とを多重し、多重したベースバンド信号を、ベースバンドユニット1430側に設けられるリモートラジオヘッド(図示せず)またはベースバンドユニット1430に渡す。時空間プロファイル多重器1702は、同様に、中間のリモートラジオヘッド1422の末端側に設けられるリモートラジオヘッド(例えば、末端のリモートラジオヘッド1421)から受け取る時空間プロファイルと、空間相関器702が生成した時空間プロファイルとを多重し、多重した時空間プロファイルを、ベースバンドユニット1430側に設けられるリモートラジオヘッドまたはベースバンドユニット1430に渡す。多重は、例えば、時分割多重(TDM)、周波数分割多重(FDM)、符号分割多重(CDM)、空間分割多重(SDM)の何れかであってよい。 The baseband multiplexer 1701 multiplexes the baseband signal received from the remote radio head (for example, the remote radio head 1421 at the end) provided on the end side of the intermediate remote radio head 1422 and the baseband signal output from the channel filter 503. Then, the multiplexed baseband signal is passed to a remote radio head (not shown) or baseband unit 1430 provided on the baseband unit 1430 side. Similarly, the space-time profile multiplexer 1702 generates the space-time profile received from the remote radio head (for example, the remote radio head 1421 at the end) provided on the end side of the intermediate remote radio head 1422 and the space correlator 702 generates. The spatiotemporal profile is multiplexed, and the multiplexed spatiotemporal profile is passed to the remote radio head or baseband unit 1430 provided on the baseband unit 1430 side. Multiplexing may be, for example, time division multiplexing (TDM), frequency division multiplexing (FDM), code division multiplexing (CDM), or space division multiplexing (SDM).
 図16は、実施の形態5に係るベースバンドユニット1430の構成の一例を説明する図である。ベースバンドユニット1430は、信号選択器1501と、FFT504と、フレームタイミング生成器505と、デマッパ506、デコーダ507と、ユーザ端末エリア判定器703と、を備える。 FIG. 16 is a diagram for explaining an example of the configuration of the baseband unit 1430 according to the fifth embodiment. The baseband unit 1430 includes a signal selector 1501, an FFT 504, a frame timing generator 505, a demapper 506, a decoder 507, and a user terminal area determiner 703.
 信号選択器1501は、全てのリモートラジオヘッド1421,1422からの上り受信信号から、復号対象の上りベースバンド信号を選択する。フレームタイミング生成器505は、ベースバンドユニット1430が下り信号を送信するタイミングに同期して、フレームタイミングを生成する。FFT504は、フレームタイミング生成器505が生成したフレームタイミングに基づいて、復号対象の上りベースバンド信号を周波数領域のベースバンド信号に変換する。 The signal selector 1501 selects the uplink baseband signal to be decoded from the uplink received signals from all the remote radio heads 1421, 1422. The frame timing generator 505 generates frame timing in synchronization with the timing at which the baseband unit 1430 transmits a downlink signal. The FFT 504 converts the uplink baseband signal to be decoded into a frequency domain baseband signal based on the frame timing generated by the frame timing generator 505.
 デマッパ506は、周波数領域のベースバンド信号から復号対象のリソースブロックを取り出す。デコーダ507は、にて復号されIPパケットを取り出す。なお、ベースバンドユニット1430は、さらに、1/2サブキャリアシフト処理などSC-FDMA固有の処理を行ってもよい。 The demapper 506 extracts a resource block to be decoded from the frequency domain baseband signal. The decoder 507 extracts the IP packet that has been decoded at the above. Note that the baseband unit 1430 may further perform processing specific to SC-FDMA such as 1/2 subcarrier shift processing.
 接続されている全てのリモートラジオヘッド1421,1422は、全ての通信中の走行車両の車載器からの参照信号を用いて、時空間プロファイル波形を生成し、ベースバンドユニット1430に送信する。ベースバンドユニット1430のユーザ端末エリア判定器703は、通信中の走行車両が課金対象エリア内であるか否かを判定し、判定結果を出力する。 All connected remote radio heads 1421 and 1422 generate a spatio-temporal profile waveform using reference signals from the vehicle-mounted devices of all the traveling vehicles in communication, and transmit them to the baseband unit 1430. The user terminal area determination unit 703 of the baseband unit 1430 determines whether or not the traveling vehicle in communication is within the billing target area, and outputs the determination result.
 実施の形態5においては、リモートラジオヘッド1421,1422を用いて、時空間プロファイル波形を生成した。リモートラジオヘッド1421,1422を用いる実施の形態についても、実施の形態2と同様に、アレイアンテナおよび空間相関器702を用いる実施の形態が考えられる。 In the fifth embodiment, the spatio-temporal profile waveform is generated using the remote radio heads 1421, 1422. As for the embodiment using the remote radio heads 1421, 1422, an embodiment using the array antenna and the spatial correlator 702 can be considered as in the second embodiment.
 (実施の形態6)
 実施の形態1~5においては、ユーザ端末エリア判定器703は、通信している走行車両が課金対象エリア1110内に存在するか否かを、3次元の情報を持つ時空間プロファイルを用いて判定する。しかしながら、到来角度分解能、遅延時間分解能、および振幅分解能の情報を有する3次元の情報を持つ時空間プロファイル情報は、情報量が多い。到来角度とは、到来方向を示す角度である。情報量は、多ければ多い程、ユーザ端末エリア判定器703による課金可否の判定に時間を要し、また、高速な情報伝送手段を要するので、通信コストおよび計算コストがかかる。
(Embodiment 6)
In Embodiments 1 to 5, user terminal area determiner 703 determines whether or not a traveling vehicle in communication exists within billing target area 1110 using a spatiotemporal profile having three-dimensional information. To do. However, the spatio-temporal profile information having three-dimensional information including arrival angle resolution, delay time resolution, and amplitude resolution information has a large amount of information. The arrival angle is an angle indicating the arrival direction. The greater the amount of information, the longer it takes to determine whether or not the user terminal area determination unit 703 can charge, and the higher the information transmission means, the higher the communication cost and the calculation cost.
 そこで、実施の形態6においては、時空間プロファイル生成後に、遅延スプレッドと角度スプレッドを計算する。次いで、時空間プロファイルの、到来角度分解能、遅延時間分解能、および振幅分解能の三次元の情報を、二次元の情報に圧縮し、圧縮された二次元の情報を使って端末エリア判定を行うことによって、通信コストおよび計算コストを低減できる。 Therefore, in the sixth embodiment, after the spatiotemporal profile is generated, the delay spread and the angular spread are calculated. Next, by compressing the three-dimensional information of the arrival angle resolution, delay time resolution, and amplitude resolution of the spatiotemporal profile into two-dimensional information, and performing terminal area determination using the compressed two-dimensional information Communication cost and calculation cost can be reduced.
 図17Aおよび図17Bは、実施の形態6に係る時空間プロファイルの圧縮の一例を説明する図である。図17Aにおいて、時空間プロファイル1800には、2つの遅延波1801,1802が存在する。時空間プロファイル1800を圧縮するために、まず、2つの遅延波1801,1802について、遅延方向の分散1811と到来角度(到来方向を示す角度)の分散1812を得る。 FIG. 17A and FIG. 17B are diagrams for explaining an example of compression of the spatiotemporal profile according to the sixth embodiment. In FIG. 17A, the spatio-temporal profile 1800 includes two delayed waves 1801 and 1802. In order to compress the spatio-temporal profile 1800, first, a dispersion 1811 in the delay direction and a dispersion 1812 in the arrival angle (angle indicating the arrival direction) are obtained for the two delayed waves 1801 and 1802.
 遅延方向の分散1811は遅延スプレッドDsと呼ばれ、次の式(3)~式(5)により得ることができる。 The dispersion 1811 in the delay direction is called a delay spread Ds, and can be obtained by the following equations (3) to (5).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
ここで、P(t)は、離散時間tにおける受信電力の強さを表し、Tは、受信電力の観測時間の最大値を表す。 Here, P (t) represents the strength of the received power at the discrete time t, and T represents the maximum value of the observation time of the received power.
 また、角度方向の分散は角度スプレッドAsと呼ばれ、次の式(6)~式(8)により得ることができる。 Further, the dispersion in the angular direction is called an angular spread As and can be obtained by the following equations (6) to (8).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
ここで、P(φ)は、到来角度(到来方向を示す角度)φにおける受信電力の強さを表し、φmin,φmaxは、それぞれ、受信電力の観測到来角度の最小値および最大値を表す。 Here, P (φ) represents the strength of the received power at the arrival angle (angle indicating the arrival direction) φ, and φmin and φmax represent the minimum value and the maximum value of the observed arrival angle of the received power, respectively.
 リモートラジオヘッドの数をNrrhとし、特定の通信中の走行車両の観測位置の数をMposとすると、Nrrh×Mpos個の圧縮された時空間プロファイルの組1830(図17B)が得られる。ユーザ端末エリア判定器703は、圧縮された時空間プロファイルの組1830を、機械学習または多変量解析する。ここで、多変量解析とは、例えば、重回帰分析、主成分分析、因子分析、正準相関分析、判別分析である。このように、実施の形態6に係るユーザ端末エリア判定器703は、圧縮されていない時空間プロファイルの組と比較して、より少ない量の情報に基づいて、通信中の走行車両が課金対象エリア内にいるか否かを判定する。 If the number of remote radio heads is N rrh and the number of observation positions of a specific traveling vehicle in communication is M pos , N rrh × M pos sets of compressed spatiotemporal profiles 1830 (FIG. 17B) are obtained. It is done. The user terminal area determiner 703 performs machine learning or multivariate analysis on the compressed set of spatiotemporal profiles 1830. Here, the multivariate analysis is, for example, multiple regression analysis, principal component analysis, factor analysis, canonical correlation analysis, or discriminant analysis. As described above, the user terminal area determination unit 703 according to the sixth embodiment determines that the traveling vehicle in communication is in the chargeable area based on a smaller amount of information as compared with the set of uncompressed spatiotemporal profiles. It is determined whether it is inside.
 実施の形態6によれば、時空間プロファイルから抽出した遅延分散値(遅延スプレッド)と到来角度分散値(角度スプレッド)を、機械学習または多変量解析する。そして、機械学習または多変量解析の結果を用いて通信中の走行車両が課金対象エリア内にいるか否かを判定する。実施の形態6によれば、ユーザ端末エリア判定器703による判定結果の信頼性を向上できる。 According to Embodiment 6, machine learning or multivariate analysis is performed on the delay dispersion value (delay spread) and the arrival angle dispersion value (angle spread) extracted from the spatiotemporal profile. Then, using the result of machine learning or multivariate analysis, it is determined whether or not the traveling vehicle in communication is within the chargeable area. According to the sixth embodiment, the reliability of the determination result by the user terminal area determiner 703 can be improved.
 (その他の実施の形態)
 実施の形態1~6においては、ユーザ端末エリア判定器703が、有料道路を走行すると判定した車両に対して、車両を識別して課金する。これに代えて、課金以外の処理が行われる実施の形態も考えられる。例えば、ユーザ端末エリア判定器703が、特定の通路を通行する人を判定し、識別して通行人を記録する実施の形態も考えられる。また、アレイアンテナ900は、二次元のアレイアンテナであってもよい。二次元のアレイアンテナを用いることによって、到来方向を二次元で検出できる。例えば、二次元のアレイアンテナ900が天井から鉛直下向きに設置された屋内のイベント会場において、ユーザ端末エリア判定器703が、特定のエリアにいると判定した来場者の携帯端末を識別して、識別された携帯端末に特定のエリアに関連する情報を提供する実施の形態も考えられる。
(Other embodiments)
In the first to sixth embodiments, the user terminal area determination unit 703 identifies and charges a vehicle determined to travel on a toll road. Instead of this, an embodiment in which processing other than charging is performed is also conceivable. For example, an embodiment in which the user terminal area determination unit 703 determines a person who passes through a specific passage, identifies the person who passes through, and records the passerby is also conceivable. The array antenna 900 may be a two-dimensional array antenna. By using a two-dimensional array antenna, the direction of arrival can be detected in two dimensions. For example, in an indoor event venue where the two-dimensional array antenna 900 is installed vertically downward from the ceiling, the user terminal area determination unit 703 identifies and identifies the mobile terminal of the visitor determined to be in a specific area. An embodiment in which information related to a specific area is provided to the mobile terminal is also conceivable.
 実施の形態1~6においては、ユーザ端末エリア判定器703が、有料道路を走行すると判定した車両に対して、車両を識別して課金する。これに代えて、ユーザ端末エリア判定器703とは別に設けられた課金装置が、車両に対する課金処理を行ってもよい。 In Embodiments 1 to 6, the user terminal area determination unit 703 identifies and charges a vehicle determined to travel on a toll road. Instead, a charging device provided separately from the user terminal area determination unit 703 may perform a charging process for the vehicle.
 以上、図面を参照しながら各種の実施の形態について説明したが、本開示はかかる例に限定されないことは言うまでもない。当業者であれば、請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。また、開示の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。 Although various embodiments have been described above with reference to the drawings, it goes without saying that the present disclosure is not limited to such examples. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present disclosure. Is done. In addition, the constituent elements in the above embodiments may be arbitrarily combined within the scope not departing from the spirit of the disclosure.
 上記各実施の形態では、本開示はハードウェアを用いて構成する例にとって説明したが、本開示はハードウェアとの連携においてソフトウェアでも実現することも可能である。 In each of the above embodiments, the present disclosure has been described with respect to an example configured using hardware. However, the present disclosure can also be realized by software in cooperation with hardware.
 また、上記各実施の形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSI(large-scale integration)として実現される。集積回路は、上記実施の形態の説明に用いた各機能ブロックを制御し、入力と出力を備えてもよい。これらは個別に1チップ化されてもよいし、一部または全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC(integrated circuit)、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。 Also, each functional block used in the description of each of the above embodiments is typically realized as an LSI (large-scale integration) that is an integrated circuit. The integrated circuit may control each functional block used in the description of the above embodiment, and may include an input and an output. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them. Although referred to as LSI here, it may be called IC (integrated circuit), system LSI, super LSI, or ultra LSI depending on the degree of integration.
 また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサを用いて実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)、LSI内部の回路セルの接続又は設定を再構成可能なリコンフィギュラブル プロセッサ(Reconfigurable Processor)を利用してもよい。 Further, the method of circuit integration is not limited to LSI, and implementation using a dedicated circuit or a general-purpose processor is also possible. An FPGA (Field Programmable Gate Array) that can be programmed after manufacturing the LSI, and a Reconfigurable Processor that can reconfigure the connection or setting of circuit cells inside the LSI may be used.
 さらには、半導体技術の進歩又は派生する別技術により、LSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックを集積化してもよい。バイオ技術の適用等が可能性としてありえる。 Furthermore, if integrated circuit technology that replaces LSI emerges as a result of advances in semiconductor technology or other derived technologies, it is naturally also possible to integrate function blocks using this technology. Biotechnology can be applied.
 本開示は、通信機能を持つあらゆる種類の装置、デバイス、システム(通信装置と総称)において実施可能である。通信装置の、非限定的な例としては、電話機(携帯電話、スマートフォン等)、タブレット、パーソナル・コンピューター(PC)(ラップトップ、デスクトップ、ノートブック等)、カメラ(デジタル・スチル/ビデオ・カメラ等)、デジタル・プレーヤー(デジタル・オーディオ/ビデオ・プレーヤー等)、着用可能なデバイス(ウェアラブル・カメラ、スマートウオッチ、トラッキングデバイス等)、ゲーム・コンソール、デジタル・ブック・リーダー、テレヘルス・テレメディシン(遠隔ヘルスケア・メディシン処方)デバイス、通信機能付きの乗り物又は移動輸送機関(自動車、飛行機、船等)、および上述の各種装置の組み合わせがあげられる。 The present disclosure can be implemented in all kinds of apparatuses, devices, and systems (collectively referred to as communication apparatuses) having a communication function. Non-limiting examples of communication devices include telephones (cell phones, smartphones, etc.), tablets, personal computers (PCs) (laptops, desktops, notebooks, etc.), cameras (digital still / video cameras, etc.) ), Digital players (digital audio / video players, etc.), wearable devices (wearable cameras, smart watches, tracking devices, etc.), game consoles, digital book readers, telehealth telemedicine (remote health) Care / medicine prescription) devices, vehicles with communication functions or mobile transportation (cars, airplanes, ships, etc.), and combinations of the various devices described above.
 通信装置は、持ち運び可能又は移動可能なものに限定されず、持ち運びできない又は固定されている、あらゆる種類の装置、デバイス、システム、例えば、スマート・ホーム・デバイス(家電機器、照明機器、スマートメーター又は計測機器、コントロール・パネル等)、自動販売機、その他IoT(Internet of Things)ネットワーク上に存在し得るあらゆる「モノ(Things)」をも含む。 Communication devices are not limited to those that are portable or movable, but any kind of devices, devices, systems, such as smart home devices (home appliances, lighting equipment, smart meters or non-portable or fixed) Measurement equipment, control panels, etc.), vending machines, and any other “things” that may exist on the IoT (Internet of Things) network.
 通信には、セルラーシステム、無線LAN(local area network)システム、通信衛星システム等によるデータ通信に加え、これらの組み合わせによるデータ通信も含まれる。また、通信装置には、本開示に記載される通信機能を実行する通信デバイスに接続又は連結される、コントローラやセンサー等のデバイスも含まれる。例えば、通信装置の通信機能を実行する通信デバイスが使用する制御信号やデータ信号を生成するような、コントローラやセンサーが含まれる。 Communication includes data communication by a combination of these in addition to data communication by a cellular system, a wireless LAN (local area network) system, a communication satellite system, and the like. Communication devices also include devices such as controllers and sensors that are connected or coupled to communication devices that perform the communication functions described in this disclosure. For example, a controller or a sensor that generates a control signal or a data signal used by a communication device that executes a communication function of the communication apparatus is included.
 また、通信装置には、上記の非限定的な各種装置と通信を行う、あるいはこれら各種装置を制御する、インフラストラクチャ設備、例えば、基地局、アクセスポイント、その他あらゆる装置、デバイス、システムが含まれる。 The communication apparatus includes infrastructure equipment such as a base station, an access point, and any other apparatus, device, or system that communicates with or controls the various non-limiting apparatuses described above. .
 以上の説明において、各構成要素に用いる「・・・部」という表記は、「・・・回路(circuitry)」、「・・・デバイス」、「・・・ユニット」、又は、「・・・モジュール」といった他の表記に置換されてもよい。 In the above description, the notation "... part" used for each component is "... circuit", "... device", "... unit", or "...". Other notations such as “module” may be substituted.
 (実施の形態のまとめ)
 本開示の通信装置は、移動局が送信した無線信号を受信する受信回路と、前記無線信号の到来方向、到来時刻、および、受信電力のうちの少なくとも2つに関する情報を含む信号波形プロファイルに基づいて、前記移動局の位置を推定する処理回路と、を備える。
(Summary of embodiment)
A communication apparatus according to the present disclosure is based on a reception circuit that receives a radio signal transmitted by a mobile station, and a signal waveform profile that includes information on at least two of the arrival direction, arrival time, and reception power of the radio signal. And a processing circuit for estimating the position of the mobile station.
 本開示の通信装置において、前記処理回路は、推定した前記位置に基づき、前記移動局が識別対象のエリアを移動しているか否かを判定し、前記移動局が前記識別対象のエリアを移動していると判定した場合、前記無線信号に含まれる識別情報に基づいて、前記移動局を識別する。 In the communication device according to the present disclosure, the processing circuit determines whether the mobile station is moving in an identification target area based on the estimated position, and the mobile station moves in the identification target area. If it is determined that the mobile station is present, the mobile station is identified based on identification information included in the radio signal.
 本開示の通信装置において、前記識別対象のエリアは、課金対象のエリアであり、前記処理回路は、前記識別した移動局に対して、課金処理を行う。 In the communication device according to the present disclosure, the area to be identified is an area to be charged, and the processing circuit performs a charging process on the identified mobile station.
 本開示の通信装置において、前記移動局は、複数のアンテナを有し、前記処理回路は、前記複数のアンテナでそれぞれ受信した無線信号に含まれる参照信号に基づいて、前記信号波形プロファイルとして、前記到来方向、前記到来時刻、および、前記受信電力の関係を表す時空間プロファイルを生成する。 In the communication apparatus according to the present disclosure, the mobile station includes a plurality of antennas, and the processing circuit uses the reference waveform included in the radio signals respectively received by the plurality of antennas as the signal waveform profile. A spatio-temporal profile representing the relationship between the arrival direction, the arrival time, and the received power is generated.
 本開示の通信装置において、前記処理回路は、前記移動局が識別対象のエリアを移動している場合の複数の前記時空間プロファイルを学習し、前記受信回路にて受信した前記無線信号を基に生成した前記時空間プロファイルと、前記学習の結果とに基づき、前記移動局が前記識別対象のエリアを移動しているか否かを判定する。 In the communication device according to the present disclosure, the processing circuit learns a plurality of the spatio-temporal profiles when the mobile station is moving in an area to be identified, and based on the radio signal received by the receiving circuit Based on the generated spatiotemporal profile and the learning result, it is determined whether or not the mobile station is moving in the area to be identified.
 本開示の通信装置において、前記処理回路は、他の通信装置から、前記他の通信装置が複数のアンテナにて受信した無線信号を基に生成した信号波形プロファイルを受信し、前記処理回路が生成した信号波形プロファイルと前記受信した信号波形プロファイルとに基づいて、前記移動局の位置を推定する。 In the communication device according to the present disclosure, the processing circuit receives a signal waveform profile generated based on radio signals received by the other communication device via a plurality of antennas from another communication device, and the processing circuit generates The position of the mobile station is estimated based on the received signal waveform profile and the received signal waveform profile.
 本開示の通信装置において、前記他の通信装置は、リモートラジオヘッドである。 In the communication device of the present disclosure, the other communication device is a remote radio head.
 本開示の通信装置において、前記処理回路は、前記移動局宛に送信する下り無線信号の無線フレームタイミングに従って前記信号波形プロファイルを生成する。 In the communication device according to the present disclosure, the processing circuit generates the signal waveform profile according to a radio frame timing of a downlink radio signal transmitted to the mobile station.
 本開示の通信装置において、前記処理回路は、前記時空間プロファイルから、遅延量の分散を示す値と前記到来方向を示す角度である到来角度の分散を示す値とを検出し、前記遅延量の分散を示す値および前記到来角度の分散を示す値に基づき、前記移動局が識別対象のエリアを移動しているか否かを判定する。 In the communication device according to the present disclosure, the processing circuit detects a value indicating dispersion of the delay amount and a value indicating dispersion of the arrival angle that is an angle indicating the arrival direction from the spatiotemporal profile, and Based on the value indicating dispersion and the value indicating dispersion of the arrival angle, it is determined whether or not the mobile station is moving in the area to be identified.
 本開示の位置推定方法は、移動局が送信した無線信号を受信し、前記無線信号の到来方向、到来時刻、および、受信電力のうちの少なくとも2つに関する情報を含む信号波形プロファイルに基づいて、前記移動局の位置を推定する。 The position estimation method of the present disclosure receives a radio signal transmitted by a mobile station, and based on a signal waveform profile including information on at least two of the arrival direction, arrival time, and reception power of the radio signal, Estimating the position of the mobile station.
 本開示の位置推定プログラムは、コンピュータに、移動局が送信した無線信号を受信する処理と、前記無線信号の到来方向、到来時刻、および、受信電力のうちの少なくとも2つに関する情報を含む信号波形プロファイルに基づいて、前記移動局の位置を推定する処理と、を実行させる。 A position estimation program according to the present disclosure includes a signal waveform including information on at least two of a process of receiving a radio signal transmitted from a mobile station and an arrival direction, an arrival time, and reception power of the radio signal in a computer. And a process of estimating the position of the mobile station based on the profile.
 本開示の通信システムは、移動局と、本開示に係る通信装置と、を備える。 The communication system of the present disclosure includes a mobile station and a communication device according to the present disclosure.
 本開示の一態様は、一般道路に隣接する有料道路を走行している車両への課金に有用である。 One aspect of the present disclosure is useful for charging a vehicle traveling on a toll road adjacent to a general road.
 10 路側装置
 11,21 通信エリア
 20 路側装置
 30,31,32,33,41 車載通信機(車両)
 40 側道
 42 電波経路
 50 電波吸収帯
 60 有料道路
 401 通信装置
 402 IPパケット
 501,501-1,501-2,501-3 ダウンコンバータ
 502,502-1,502-2,502-3 ADコンバータ
 503,503-1,503-2,503-3 チャネルフィルタ
 504,504-1,504-2,504-3 FFT
 505 フレームタイミング生成器
 506,506-1,506-2,506-3 デマッパ
 507 デコーダ
 600 無線フレーム
 601 リソースブロック
 602 サブフレーム
 603 リソースブロック
 604 シンボル
 605 参照信号
 701,701-1,701-2,701-3 応答波形生成器
 702 空間相関器
 703 ユーザ端末エリア判定器
 801 受信波形
 802 周波数波形
 803 時間相関波形
 900 アレイアンテナ
 901~904 アンテナ素子
 910 電波
 1010 インパルス応答波形
 1050,1060 到来方向波形のグラフ
 1051,1052 到来方向波形
 1061,1062 時空間プロファイル
 1110 課金対象エリア
 1121,1122,1123,1124 時空間プロファイル波形
 1200 学習器
 1320 路側装置
 1321 通信エリア
 1400 路側装置
 1421 末端のリモートラジオヘッド
 1422 中間のリモートラジオヘッド
 1430 ベースバンドユニット
 1440 IPパケット
 1501 信号選択器
 1600 無線フレームタイミング生成器
 1701 ベースバンド多重器
 1702 時空間プロファイル多重器
 1800 時空間プロファイル
 1801 遅延波
DESCRIPTION OF SYMBOLS 10 Roadside device 11,21 Communication area 20 Roadside device 30,31,32,33,41 In-vehicle communication apparatus (vehicle)
40 Side road 42 Radio wave path 50 Radio wave absorption band 60 Toll road 401 Communication device 402 IP packet 501, 501-1, 501-2, 501-3 Down converter 502, 502-1, 502-2, 502-3 AD converter 503 , 503-1, 503-2, 503-3 channel filter 504, 504-1, 504-2, 504-3 FFT
505 Frame timing generator 506, 506-1, 506-2, 506-3 Demapper 507 Decoder 600 Radio frame 601 Resource block 602 Subframe 603 Resource block 604 Symbol 605 Reference signal 701, 701-1, 701-2, 701- DESCRIPTION OF SYMBOLS 3 Response waveform generator 702 Spatial correlator 703 User terminal area determination device 801 Reception waveform 802 Frequency waveform 803 Time correlation waveform 900 Array antenna 901-904 Antenna element 910 Radio wave 1010 Impulse response waveform 1050, 1060 Graph of arrival direction waveform 1051, 1052 Direction-of- arrival waveform 1061, 1062 Spatio-temporal profile 1110 Chargeable area 1121, 1122, 1123, 1124 Spatio-temporal profile waveform 1200 Learning device 320 Roadside Device 1321 Communication Area 1400 Roadside Device 1421 Terminal Remote Radio Head 1422 Intermediate Remote Radio Head 1430 Baseband Unit 1440 IP Packet 1501 Signal Selector 1600 Radio Frame Timing Generator 1701 Baseband Multiplexer 1702 Space-Time Profile Multiplexer 1800 Spatio-temporal profile 1801 Delayed wave

Claims (12)

  1.  移動局が送信した無線信号を受信する受信回路と、
     前記無線信号の到来方向、到来時刻、および、受信電力のうちの少なくとも2つに関する情報を含む信号波形プロファイルに基づいて、前記移動局の位置を推定する処理回路と、
     を備える通信装置。
    A receiving circuit for receiving a radio signal transmitted by the mobile station;
    A processing circuit that estimates a position of the mobile station based on a signal waveform profile including information on at least two of the arrival direction, arrival time, and reception power of the radio signal;
    A communication device comprising:
  2.  前記処理回路は、
     推定した前記位置に基づき、前記移動局が識別対象のエリアを移動しているか否かを判定し、
     前記移動局が前記識別対象のエリアを移動していると判定した場合、前記無線信号に含まれる識別情報に基づいて、前記移動局を識別する、請求項1に記載の通信装置。
    The processing circuit includes:
    Based on the estimated position, determine whether the mobile station is moving in the area to be identified,
    The communication apparatus according to claim 1, wherein when it is determined that the mobile station is moving in the area to be identified, the mobile station is identified based on identification information included in the radio signal.
  3.  前記識別対象のエリアは、課金対象のエリアであり、前記処理回路は、前記識別した移動局に対して、課金処理を行う、請求項2に記載の通信装置。 The communication apparatus according to claim 2, wherein the area to be identified is an area to be charged, and the processing circuit performs a charging process on the identified mobile station.
  4.  前記通信装置は、複数のアンテナを有し、
     前記処理回路は、前記複数のアンテナでそれぞれ受信した前記無線信号に含まれる参照信号に基づいて、前記信号波形プロファイルとして、前記到来方向、前記到来時刻、および、前記受信電力の関係を表す時空間プロファイルを生成する、
     請求項1から3のいずれか一項に記載の通信装置。
    The communication device has a plurality of antennas,
    The processing circuit is a space-time representing a relationship between the arrival direction, the arrival time, and the received power as the signal waveform profile based on reference signals included in the radio signals respectively received by the plurality of antennas. Generate a profile,
    The communication apparatus as described in any one of Claim 1 to 3.
  5.  前記処理回路は、
     前記移動局が識別対象のエリアを移動している場合の複数の前記時空間プロファイルを学習し、
     前記受信回路にて受信した前記無線信号を基に生成した前記時空間プロファイルと、前記学習の結果とに基づき、前記移動局が前記識別対象のエリアを移動しているか否かを判定する、
     請求項4に記載の通信装置。
    The processing circuit includes:
    Learning a plurality of the spatio-temporal profiles when the mobile station is moving in the area to be identified;
    Based on the spatiotemporal profile generated based on the radio signal received by the receiving circuit and the learning result, it is determined whether the mobile station is moving in the area to be identified;
    The communication apparatus according to claim 4.
  6.  前記処理回路は、
     他の通信装置から、前記他の通信装置が複数のアンテナにて受信した無線信号を基に生成した信号波形プロファイルを受信し、前記処理回路が生成した信号波形プロファイルと前記受信した信号波形プロファイルとに基づいて、前記移動局の位置を推定する、
     請求項4または5に記載の通信装置。
    The processing circuit includes:
    A signal waveform profile generated based on radio signals received by a plurality of antennas from another communication device is received from another communication device, and the signal waveform profile generated by the processing circuit, the received signal waveform profile, To estimate the position of the mobile station based on
    The communication apparatus according to claim 4 or 5.
  7.  前記他の通信装置は、リモートラジオヘッドである、
     請求項6に記載の通信装置。
    The other communication device is a remote radio head,
    The communication apparatus according to claim 6.
  8.  前記処理回路は、
     前記移動局宛に送信する下り無線信号の無線フレームタイミングに従って前記信号波形プロファイルを生成する、
     請求項1に記載の通信装置。
    The processing circuit includes:
    Generating the signal waveform profile according to a radio frame timing of a downlink radio signal transmitted to the mobile station;
    The communication apparatus according to claim 1.
  9.  前記処理回路は、
     前記時空間プロファイルから、遅延量の分散を示す値と前記到来方向を示す角度である到来角度の分散を示す値とを検出し、
     前記遅延量の分散を示す値および前記到来角度の分散を示す値に基づき、前記移動局が識別対象のエリアを移動しているか否かを判定する、
     請求項4に記載の通信装置。
    The processing circuit includes:
    From the spatiotemporal profile, a value indicating dispersion of delay amount and a value indicating dispersion of arrival angle which is an angle indicating the arrival direction are detected,
    Based on a value indicating dispersion of the delay amount and a value indicating dispersion of the arrival angle, it is determined whether or not the mobile station is moving in an identification target area.
    The communication apparatus according to claim 4.
  10.  移動局が送信した無線信号を受信し、
     前記無線信号の到来方向、到来時刻、および、受信電力のうちの少なくとも2つに関する情報を含む信号波形プロファイルに基づいて、前記移動局の位置を推定する、
     位置推定方法。
    Receive the radio signal transmitted by the mobile station,
    Estimating the position of the mobile station based on a signal waveform profile including information on at least two of the arrival direction, arrival time, and reception power of the radio signal;
    Position estimation method.
  11.  コンピュータに、
     移動局が送信した無線信号を受信する処理と、
     前記無線信号の到来方向、到来時刻、および、受信電力のうちの少なくとも2つに関する情報を含む信号波形プロファイルに基づいて、前記移動局の位置を推定する処理と、を実行させる、
     位置推定プログラム。
    On the computer,
    A process of receiving a radio signal transmitted by the mobile station;
    A process of estimating the position of the mobile station based on a signal waveform profile including information on at least two of the arrival direction, arrival time, and reception power of the radio signal,
    Position estimation program.
  12.  移動局と、
     請求項1から9のいずれか一項に記載の通信装置と、
     を備える、通信システム。
    A mobile station,
    The communication device according to any one of claims 1 to 9,
    A communication system comprising:
PCT/JP2019/007176 2018-03-08 2019-02-26 Communication device, position estimating method, position estimating program, and communication system WO2019172009A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980017269.1A CN111837049A (en) 2018-03-08 2019-02-26 Communication device, position estimation method, position estimation program, and communication system
EP19764018.8A EP3764122A4 (en) 2018-03-08 2019-02-26 Communication device, position estimating method, position estimating program, and communication system
US17/011,643 US20200400776A1 (en) 2018-03-08 2020-09-03 Communication device, position estimating method, non-transitory recording medium, and communication system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862640260P 2018-03-08 2018-03-08
US62/640,260 2018-03-08
JP2018-230396 2018-12-07
JP2018230396A JP7241296B2 (en) 2018-03-08 2018-12-07 Communication device, position estimation method, position estimation program, and communication system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/011,643 Continuation US20200400776A1 (en) 2018-03-08 2020-09-03 Communication device, position estimating method, non-transitory recording medium, and communication system

Publications (1)

Publication Number Publication Date
WO2019172009A1 true WO2019172009A1 (en) 2019-09-12

Family

ID=67846493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007176 WO2019172009A1 (en) 2018-03-08 2019-02-26 Communication device, position estimating method, position estimating program, and communication system

Country Status (1)

Country Link
WO (1) WO2019172009A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07218611A (en) * 1994-02-03 1995-08-18 Hitachi Ltd Mobile tracking system
US5592181A (en) * 1995-05-18 1997-01-07 Hughes Aircraft Company Vehicle position tracking technique
JP2003244748A (en) * 2001-12-14 2003-08-29 Hitachi Ltd Method and system for detecting position of mobile station
US20080278347A1 (en) * 2007-05-09 2008-11-13 Thua Van Ho Electronic toll collection system with multi-beam antennas
JP2016500212A (en) * 2012-10-01 2016-01-07 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Method and apparatus for RF performance metric estimation
JP2016134885A (en) * 2015-01-22 2016-07-25 中国電力株式会社 Use restriction system
WO2016159874A1 (en) * 2015-03-27 2016-10-06 Agency For Science, Technology And Research Method and device for vehicle detection
JP2016194454A (en) * 2015-03-31 2016-11-17 三菱重工メカトロシステムズ株式会社 Radio wave coming angle detection device, vehicle detection system, radio wave coming angle detection method and vehicle erroneous detection prevention method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07218611A (en) * 1994-02-03 1995-08-18 Hitachi Ltd Mobile tracking system
US5592181A (en) * 1995-05-18 1997-01-07 Hughes Aircraft Company Vehicle position tracking technique
JP2003244748A (en) * 2001-12-14 2003-08-29 Hitachi Ltd Method and system for detecting position of mobile station
US20080278347A1 (en) * 2007-05-09 2008-11-13 Thua Van Ho Electronic toll collection system with multi-beam antennas
JP2016500212A (en) * 2012-10-01 2016-01-07 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Method and apparatus for RF performance metric estimation
JP2016134885A (en) * 2015-01-22 2016-07-25 中国電力株式会社 Use restriction system
WO2016159874A1 (en) * 2015-03-27 2016-10-06 Agency For Science, Technology And Research Method and device for vehicle detection
JP2016194454A (en) * 2015-03-31 2016-11-17 三菱重工メカトロシステムズ株式会社 Radio wave coming angle detection device, vehicle detection system, radio wave coming angle detection method and vehicle erroneous detection prevention method

Similar Documents

Publication Publication Date Title
JP7241296B2 (en) Communication device, position estimation method, position estimation program, and communication system
Chi et al. Leveraging ambient lte traffic for ubiquitous passive communication
Zhao et al. Vehicular communications: Standardization and open issues
KR20170034023A (en) Method and apparatus for resoruce allocaton in v2x communicaton system
CN109644455A (en) CSI measures feedback method, device and storage medium
Bontu et al. Wireless wide-area networks for internet of things: An air interface protocol for IoT and a simultaneous access channel for uplink IoT communication
CN103200694B (en) Random access method and device in communication system
KR102317551B1 (en) Method and terminal for performing v2x communicaton
CN109565647B (en) Information transmission method, device and system between Internet of vehicles equipment
CN110419191A (en) Part sub-frame transmission technology in shared radio spectrum
CN104604315A (en) Mobile communications system, network element and method for resource allocation on virtual carrier for machine-type communications with narrow band epdcch
US11937156B2 (en) CPM message division method using object state sorting
CN104796367B (en) A kind of sending method of synchronizing information, detection method and user equipment
CN106376088A (en) Channel competition based resource-pool resource distribution method in vehicle-vehicle communication
CN109905915B (en) Internet of things data transmission method of multi-hop network architecture
CN104145523B (en) Information transferring method and terminal, base station
CN116076046A (en) Techniques for side-link communication using side-link resource pools configured for different radio access technologies
CN108023703A (en) Communication means and communicator
CN117295974A (en) Collaborative vehicle radar sensing
CN106488478A (en) A kind of vehicle termination and the method for roadside device and its communication
WO2019172009A1 (en) Communication device, position estimating method, position estimating program, and communication system
CN109743677B (en) Heterogeneous network-based multi-level data transmission method in narrow-band Internet of things
CN115918175A (en) Dynamic sensor sharing with confidence requirement
CN109617665B (en) Grading data transmission method in narrow-band Internet of things
Wietfeld et al. Vehicle-to-infrastructure communications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19764018

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019764018

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019764018

Country of ref document: EP

Effective date: 20201008